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Abstract

The particle transport, plasma currents, and magnetic fields were investigated in

laboratory plasmas, both with the Optical Thomson Scattering (OTS) diagnostic

and in theory and numerical simulations.

Weibel-unstable plasma was simulated using the OSIRIS particle-in-cell code to

examine the capabilities of the OTS diagnostics in counter-streaming plasmas. Syn-

thetic OTS spectra were generated from the simulations, allowing OTS measurement

uncertainties to be analyzed. Accurate measurements of current were demonstrated

and applied to magnetic field calculations. In experiments at the OMEGA laser

facility and MAGPIE pulsed power device, this technique was used successfully to

measure magnetic field structures formed in plasma.

In order to understand plasma ablation in Inertial Confinement Fusion (ICF) ex-

periments, metal spheres were shot at the OMEGA laser facility. Ablated plasma

was measured with OTS, with basic plasma properties in good agreement with simu-

lations. Heat transport was measured using the ion acoustic wave spectrum, finding

heat fluxes consistent with local transport in the second half of the shot duration,

but strongly inhibited during the initial laser heating period. Theory and application

of the OTS heat transport measurements were supported by Vlasov-Fokker-Planck

simulations to determine the electron distribution functions and the resulting OTS

spectra.
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Parts of the research conducted in this thesis are components of research collabora-

tions spanning the University of Alberta, Lawrence Livermore National Laboratory

(LLNL), Stanford Linear Accelerator Complex (SLAC), Imperial College London,

and the Laboratory for Laser Energetics (LLE).

Chapter 2 contains theory that I reviewed and outlined for a publication on Optical

Thomson Scattering (OTS) measurement precision, [1] in which I contributed to

manuscript edits.

In Chapter 3, I ran Particle-in-Cell (PIC) simulations of the Weibel instability and

analyzed the synthetic Thomson scattering effects. I also composed the manuscript

analyzing the capability of the OTS diagnostic based on my simulation results [2].

I then analyzed the various experimental measurements of Weibel-unstable plasma

included in chapter 3, and assisted in shot planning for the shots at the National Igni-

tion Facility (NIF). I also analyzed the OTS spectra from the magnetic reconnection

experiment at the Magpie pulsed power facility. These projects contributed to other

publications [3–5], in which I also contributed to manuscript editing.

In Chapter 4, I analyzed the sphere experiments conducted at the OMEGA laser

facility by George Swadling. I used simulations run by Mark Sherlock to model the

effects of heat transport on the measurements. I was also involved in the planning

of the later mid-Z shots. I wrote up the results of this work in our publication on

the coronal heat transport measurement [6]. My analysis of these experiments also

contributed to other publications [7, 8].
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1.9 Spitzer-Härm f1 distribution for δT = 0.01 projected onto the direction

of the temperature gradient. . . . . . . . . . . . . . . . . . . . . . . 31

1.10 Direct Drive Inertial Confinement Fusion (ICF) cross-section. Drive

beams heat the ablator (brown), causing it to ablate and flow away

from the target. This flow provides an inwards force on the fuel, leading

to compression and heating which create fusion. . . . . . . . . . . . . 33

x



2.1 A generic OTS telescope. Scattered light is collected and collimated

from a scattering location in the plasma and passed into a spectrometer. 34

2.2 A Czerny-Turner spectrometer. Light of different wavelengths is sepa-

rated in space by a diffraction grating. . . . . . . . . . . . . . . . . . 35

2.3 A streak camera. Spectrally resolved light from the spectrometer

(right) incident on the photo-cathode (yellow) releases electrons, which

are accelerated across some voltage difference V0 towards a phosphor

screen (green) connected to CCDs (black). A transverse time-dependent

electric field (left, t1 < t2 < t3) can be applied to move the electrons

perpendicularly to the spectral direction. The CCDs record light re-

leased by the phosphor screen, creating the detected image. . . . . . . 35

2.4 OTS volume shape for the two ω system at the OMEGA laser facility

[3], θ = 60.3◦ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.5 EPW for multiple OTS locations across a density gradient. LTS/Lne =

0.5, ne = 2× 1020cm−3, Te = 1keV . . . . . . . . . . . . . . . . . . . 40

2.6 Thomson scattering images taken in the radial scattering direction,

available at Ref. [46]. a) Raw EPW spectrum, with red lines marking

where profiles are taken for background subtraction. b) EPW spectrum

after background subtraction. c) Raw IAW spectrum, with a red line

denoting the probe wavelength. [From [6], associated dataset available

at https://doi.org/10.5281/zenodo.4950679] (Ref. [46]). . . . . . . . 41

2.7 Transmission function from calibration (blue) and from black-body

spectrum and background (red) for the 3ω OTS at NIF . . . . . . . 42

xi



2.8 Electron plasma wave for magnetized (red) and unmagnetized (blue)

plasma, with ne = 1 × 1020cm−3, Te = 800ev, B = 100T . The angle

is between the scattering vector and the field changes with wavelength

shift and is shown on the right (blue). The EPW from a 263.25 nm

probe with the central scattering vector 87.5◦ from B⃗ and B⃗ 70◦ out

of the OTS scattering plane is shown. Here Ωce/kvTe ≈ 0.06 . . . . . 43

2.9 Electron plasma wave for magnetized (pink) and unmagnetized (black)

plasma, with ne = 1 × 1020cm−3, Te = 0.8keV , B = 200T , integrated

over the range of scattering angles in the OMEGA 4ω OTS system (Fig.

2.21). The EPW from a 263.25 nm probe with the central scattering

vector 87.5◦ from B⃗ and B⃗ 70◦ out of the OTS scattering plane is

shown. The expected signal on the streak camera is shown on the right. 44

2.10 Distribution functions for fe and fi projected onto one direction for

Z = 50 gold plasma, Te = Ti = 1keV for a plasma with an ion beam.

The right beam with nb/ni = 0.1 has ion acoustic waves similar to those

of a Maxwellian plasma, except that the electron density is higher than

Znb, with the charge balanced by the ion around v = 0 which do not

otherwise contribute to the beam’s IAW. . . . . . . . . . . . . . . . . 46

2.11 Si and Se for ZTe/Ti = 36 . . . . . . . . . . . . . . . . . . . . . . . . 47

2.12 Spitzer Harm (blue) and drifting Maxwellian (black) distribution func-

tions with the even part subtracted, with vd from eq. 2.21. The slopes

of the distribution functions at v = 0 are equivalent. . . . . . . . . . 50

2.13 Spitzer Harm IAW (black) and drifting Maxwellian IAW (red) for Z=50

Au . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.14 Ratio of ion term to electron term in OTS form factor, using Te=Ti,

α = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

xii



2.15 Ion acoustic wave change with 50% increase in Ti for Au and Ne plasma.

Ion acoustic wave asymmetry from Landau damping is sensitive to

temperature for plasma with Z ⪅ 12 . . . . . . . . . . . . . . . . . . 51

2.16 Electron susceptibility function (left), (2.3) and ωiaw (right) as a func-

tion of super-Gaussian order m, using Te = Ti = 1keV , ne = 2 ×

1020cm−3 in Au plasma, Z = 50 . . . . . . . . . . . . . . . . . . . . . 53

2.17 IAW spectrum from gold plasma, Z=50, Te=2 keV, Ti=1 keV, ne=2.25×

1020cm−3 and ve = −60km/s (kλii ≈ 0.1). The black dotted line shows

the spectrum with no ion collisions, and the red line shows the spec-

trum including the effects of ion collisions, normalized to have the same

peak amplitude. (From [6]) . . . . . . . . . . . . . . . . . . . . . . . . 55

2.18 OTS angle effects with stretch (left) of angle δθs and tilt (right) of

angle δθt of the scattering vector k. The altered k vector is shown

in red, with the nominal scattering k in black. The range of angles

permitted in the probe and collection cones are shown in blue. . . . 57

2.19 Range of angles present in the probe (blue) and collection (red), Eq.(2.29),

and the resulting distribution of stretch angles (green), Eq. (2.31) as

a function of angular deviation δθ from the normal wave-vector. . . . 58

2.20 OTS wave vectors (also seen in Fig. 2.18) viewed from with the OTS

plane. v⃗ (black, top right) defines the component of the direction of

interest in the plasma not captured by k⃗: v⃗ · k⃗ = 0. This defines the

angle θTS, the angle between the OTS plane and the v⃗k⃗ plane relevant

for tilt (2.32). Deviation of k⃗ out of the OTS plane is shown in green:

this determines the angle θp that k⃗
′
points out of plane. . . . . . . . . 59

2.21 Distribution of scattering angles for the OMEGA laser facility, with an

f/6.7 probe and f/10 collection. Angles out of plane θTS are a) 0◦, b)

30◦, c) 60◦, d) 90◦ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

xiii



2.22 Total EPW amplitude
∫︁∞
−∞ Se(k⃗, ω)dω as a function of α (left). The

approximation 2πα−2 (2.41) is shown in black. On the right the cross-

section is shown multiplied by density for Te = 1keV plasma, making

it linear with the scattered power (2.1) . . . . . . . . . . . . . . . . . 63

2.23 SIAW from S(k, ω) (2.2, left) and from (2.49, right) for Carbon plasma,

Te = 1keV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

2.24 SIAW from S(k, ω) (2.2, yellow) and from (2.49, black) for Carbon

plasma, Te = 1keV , ne = 1× 1020cm−3. . . . . . . . . . . . . . . . . 65

2.25 In dark regions of OTS spectra, the effects of individual photo-electrons

can be identified. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.1 Initial ion density at times corresponding to propagation distances of

0 (black), 11c/ωpi (blue), 14c/ωpi (green), and 18c/ωpi (red), (a) and

simulated ion current along x for times when the plasma propagation

distances is (b) 11c/ωpi, (c) 14c/ωpi, and (d) 18c/ωpi, with green current

in the +x direction, and purple in -x. A sample OTS box is shown in

red. (From [2]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.2 Simulated growth of magnetic field energy from the Weibel instability

is shown in blue, plotted against the plasma propagation distance (pro-

portionate to the time elapsed). In blue the magnetic energy density

within 27c/ωpi < x < 33c/ωpi is shown. The theoretical growth rate of

the magnetic energy is shown in red. (From [2]) . . . . . . . . . . . . 74

3.3 Simulated modes in electron density at L=18c/ωpi. In (a) we see that

amplitude of modes excited by ion two-stream instability decrease with

increasing k, which means that the high-k measurements taken with

OTS will not scatter from these modes. OTS samples modes on the

order of kx ≈ kD = 145ωpi/c. (b) shows effects on electron density

associated with the ion Weibel instability. (From [2]) . . . . . . . . . 76

xiv



3.4 Example of IAW OTS spectrum (red) for counter-streaming plasmas

with drifting Maxwellian ion distribution fi(vx) (blue) with n1/ni=0.9.

Black curves show electron distribution fe(vx) for ve = 0 (solid) and

J=0 (dashed). The red curves show the OTS spectra corresponding to

both cases, respectively. Spectra are generated with Z = 4, Te = Ti = 1

keV, v1/c = v2/c = 0.0033 and λ0 = 526.5 nm (green) (From [2]) . . . 77

3.5 Synthetic OTS spectra from PIC at propagation distance L=19c/ωpi

with fit OTS spectrum. Mesured conditions are 0.94 keV Be ion, 1.51

kev electrons streaming at 0.0032c with n1/ni=0.254 and J=-0.000418

en0cx̂. (From [2]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.6 Comparison of the currents and magnetic field obtained from fits of

synthetic OTS spectra (points) and directly inferred in the PIC simu-

lations (solid curve) at two different locations in the plasma centered

on (a) y=3.28 c/ωpi and (b) y=3.88 c/ωpi. (From [2]) . . . . . . . . . 82

3.7 Deviation of the ion distribution function in the flow direction from

a Maxwellian, at early (a) and late (b) times in the simulation. The

relative deviation present in the spectrum at the phase velocity of the

IAW is also shown (c). At early times, faster ions arrive earlier, con-

tributing to a tail towards higher velocity, while at later times, the

streams begin to slow, creating tails towards lower velocity. (From [2]) 83

3.8 Growth rates from total current (a) and ion current (b) seen from a

half-ion skin depth box in different locations are Γ = 0.31 ± 0.13 for

the total current and Γ = 0.98± 0.15 for the ion current, where as the

expected rate is Γ = 0.32. (From [2]) . . . . . . . . . . . . . . . . . . 85

xv



3.9 Growth of ion and electron Jx in the OTS volume. Electrons start

forming current filaments around L = 7c/ωpi. The ions start respond-

ing and become unstable around L = 8c/ωpi. As the ion current grows

the electrons transition into screening the ion current. During this

transition, the ion current grows much faster than the total current.

(From [2]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.10 Target configuration of counter-streaming plasma experiment. Be foils

are illuminated with the 3ω drive, shown in blue. Plasma counter-

streams between the two targets, forming current filaments (green and

purple). The 2ω OTS probe (red) and collection (black) are arranged

to measure a wave vector k⃗ parallel to the plasma flow. . . . . . . . 87

3.11 IAW spectrum from counter-streaming plasma, with an OTS probe

wavelength of 526.5 nm. The blue-shifted feature can be seen to be

greatly enhanced above the red-shifted feature for the majority of the

shot. (From [2]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.12 (a) Electron/EPW and (b) Ion/IAW OTS spectra (dotted blue) from

counter-propagating Be plasmas are shown at 4.3 ns from the start

of the drive laser. The corresponding fits of the OTS spectra (solid

red) lead to the measurement of ne = 1.95± 0.2e19cm−3, Te = 0.53±

0.08keV , Ti = 0.26 ± 0.05keV , v1 = 0.0020 ± 0.0001c, v2 = 0.0017 ±

0.0001c, n1/ni = 0.98± 0.01, and ve = 0.0014± 0.0003c. (From [2]) . 89

3.13 Current measured by OTS over the duration of the counter-streaming

plasma (IAW seen in figure 3.11). (From [2]) . . . . . . . . . . . . . . 91

3.14 Magnetic field amplitude (blue) inferred from the experiment as a func-

tion of filament size, based on current density in the OTS region (Fig.

2.4) for cylindrical filaments scaled by the 2D field model (Eq. 3.14).

The theoretical Alfvén limit BA (purple) and magnetic trapping limit

BT (light blue) are also shown. (From [2]) . . . . . . . . . . . . . . . 91

xvi



3.15 Target configuration of tilted counter-streaming plasma experiment [3],

with targets tilted 25◦ in the transverse direction. Be foils are illu-

minated with the 3ω drive, shown in blue. Plasma counter-streams

between the two targets, forming current filaments (green and purple).

The OTS probe (red) and collection (black) are arranged to measure a

wave vector k⃗ parallel to the current filaments, while the plasma passes

the OTS volume transversely due to the flow induced from the tilt of

the targets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.16 IAW spectrum from counter-streaming plasma with tilted targets, caus-

ing the OTS volume to pass through multiple filaments over the course

of the shot. (From [3]) . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.17 Measured parameters in the y direction from OTS data from tilted

targets (Fig. 3.13). The measured current is shown in green, with a

corresponding field amplitude in blue dots. The red dotted line shows a

possible current profile which, when convoluted with the OTS volume

shape resulting in the solid red line, matches the measured current

fairly well. This current profile produces the field seen in the blue

crosses, exceeding 40T . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.18 Density (left) and temperature (right) as measured from the EPW

spectra in the CD2 shots. Density of counter-streaming, non-interacting

plasma is also shown with a dotted line at 2× the single stream ne.

Excess density above this value in the two-flow case indicates shock

formation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.19 EPW (left) and IAW (right) spectra from the CH2 counter-streaming

shot. The probe wavelength is shown in red on the IAW spectrum. . 96

3.20 Carbon temperatures measured from the CH2 shot IAW spectrum. . 97

3.21 Carbon (left) and Hydrogen (right) blue-shifted stream and red-shifted

stream flow velocities, measured with the IAW spectrum (Fig. 3.19). 97

xvii



3.22 Density (left) and temperature (right) as measured from the EPW

spectra in the CH2 counter-streaming shot. . . . . . . . . . . . . . . 98

3.23 Electron (green) and ion (pink) thermal pressure in the CH2 counter-

streaming shot. The rapid change in electron pressure at ≈ 13ns is

equivalent to the magnetic pressure of a 140T field. . . . . . . . . . . 98

3.24 Measured probe power (black) and probe power used for IAW fit (red) 99

3.25 Magnetic Re-connection experimental configuration on MAGPIE. Cur-

rent is run through aluminum wire meshes (grey) in the −ẑ direction
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tively. Spitzer-Härm (black) and VFP (red) as well as the expected

super-Gaussian of m=2.3 (blue) and an m=2.8 super-Gaussian (green)

are shown. Inversion in the return current due to density gradients can

be seen in (c) for the m=2.8 super-Gaussian and the VFP distribution

function. (From [6]) . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

xx



4.13 Mean free path and δT = λei
d
dx

ln(Te) from simulations for Au, Ag and

Be sphere experiments. Gold δT values (red dots) are taken from the

simulated profiles (Fig. 4.11) while the other elements use time resolved

simulations of Te at different locations. Higher Z reduces electron mean

free path, but also increases temperature and reduces temperature gra-

dients, so increases in locality of heat transport for higher Z plasmas

are minimal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.14 IAW data (blue) in photo-electrons produced per CCD cell, and spectra

from VFP EDFs with collisions (red) and without collisions (black).

Flow velocity is fit to the IAW data while all other parameters are

generated from the simulated profiles (Fig. 4.11). Figures a) and

b) show good agreement with temperature (Seen in IAW separation)

before the drive is turned off at 2ns. (From [6]) . . . . . . . . . . . . 127

4.15 Measured IAW asymmetry (blue) and expected (red) observed in Be

and Ag sphere shots, with values representing the total integrated sig-

nal in the blue-shifted IAW peak divided by the sum of both the blue

and red-shifted peaks. Expected asymmetry is calculated from OTS-

measured plasma parameters, with temperature scale lengths and un-

certainties from SNB simulations. . . . . . . . . . . . . . . . . . . . 128

xxi



4.16 Electron heat flux out of the gold spherical target (a) and asymmetry

of the ion acoustic wave (b). Various transport models applied to the

simulated plasma profiles at the plasma parameters found with OTS

measurements (Fig. 4.3) are shown in red. (a) shows heat flux found

with SH fits to OTS data in black. A commonly used flux limiter

of f=0.03 is shown in green in figure (a) for comparison. (b) shows

the asymmetry of the IAW in blue, plotted as the integrated detected

signal in the blue-shifted peak divided by the total IAW signal. The

shaded error region represents the statistical error of the photoelectrons

appearing in each IAW feature. (From [6]) . . . . . . . . . . . . . . . 130

4.17 EPW spectra from Be sphere shots, pointed at a radius of 680, 730 and

780 µm respectively. A driven wave can be seen when the EPW crosses

210 nm at 680 and 730 µm while the drive laser is still on (Fig. 4.2),

but is absent at 780 µm when the EPW never reaches this wavelength. 133

4.18 Scattering diagram for OTS light and driven beat wave at r=730 µm.

The 2ω unconverted light and 3ω refracted drive create a 1ω beat wave

with the correct k⃗ (shown in black) to scatter the 4ω probe to the OTS

collection at 5ω (210.6 nm). A sample 3ω ray from beam 35 is shown

on the left, with a refracted path reaching within 33 µm of the nominal

OTS point, and within 3.6◦ of the nominal angle to produce the beat

wave. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

4.19 EPW resonance factor χe

1+χe
for the resonance at t = 2ns for the 680µm

Be sphere shot. The 5ω driven wave is shown in red at 210.6 nm with

χe

1+χe
= 6.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

4.20 EPW and driven wave at 2 ns in the shot with OTS at r=680 µm.

The fit of the blue-shifted EPW is shown in red, with the data in blue,

averaged over 56 pS. An additional 50 photo-electrons are included at

λ = 210.6, matching the observed driven wave. . . . . . . . . . . . . 137

xxii



List of Symbols

λDe Debye length
√︂

Te

4πnee2

ωpe Electron plasma frequency α
√︁

(4πnee2/me)

ωpi Ion plasma frequency α
√︁

(4πniZ2e2/mi)

B⃗ Magnetic field

E⃗ Electric field

c speed of light. 299, 792, 458m/s

e electron charge, 1.06× 10−19C =4.803×10−10 Fr

mα mass of particles of species α

nα density of particles of species α

PL, ωL, kL power, frequency and wave number of a laser

Ps, ωs, ks power, frequency and wave number of scattered light

Tα Temperature of particles of species α 2
3
times the average particle energy

ve Mean electron flow velocity

vi Mean ion flow velocity

vTα Thermal velocity of particles of species α
√︂

Tα

mα

Z ion charge qi/e

xxiii



Chapter 1

Introduction

This thesis describes analysis, simulations, and experiments conducted in the pursuit

of multiple goals in plasma physics research summarized below. These projects are

connected by their use of the Optical Thomson Scattering (OTS) systems and its

interaction with electric currents, driven by heat flux or plasma instabilities. All

these processes are discussed later in this chapter.

I have written and contributed to several publications, in which we initially con-

firmed that currents in plasma had predictable effects on measured OTS spectra and

that these effects could be distinguished from other phenomena present in unstable

plasma [2]. We later used this technique to ascertain the magnetic field structure

and amplitude in Weibel-unstable plasma [3], and assisted with measurements of col-

lisionless shock formation [4] by quantifying the measurement precision of the OTS

system [1]. The current sheet in plasma undergoing magnetic reconnecting was also

similarly measured [5].

OTS spectra are affected by currents in plasma and by currents induced by heat

transport processes, which are of crucial importance to the modeling of ICF (Inertial

Confinement Fusion) plasma evolution. In order to further the understanding of

heat transport in these conditions, we analyzed plasma conditions in various ablation

plasmas [7, 8] and observed currents caused by heat transport in gold plasma [6].

Return currents in gas-jet plasma were also seen to drive the growth of the ion acoustic
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wave [9].

1.1 Laser Plasma Coupling

The primary experimental diagnostic discussed in this work is Optical Thomson Scat-

tering (OTS). In this section, we will outline the process by which the probe laser

is scattered from the plasma, as well as the thermal and driven fluctuations which

scatter the probe, forming the OTS spectrum.

1.1.1 Thomson Scattering

Photon-electron interactions with free electrons and high-energy photons can be de-

scribed by Compton scattering. The energy loss of the scattered photon compared

to the incident photon ∆Eγ = −( mec2

Eγ(1−cos θ)
+ 1)−1Eγ [10]. For light in the visible

range, the photon energy Eγ is on the order of ∼ 3eV , leading to ∆Eγ/Eγ ≈ 0. This

means we can neglect the momentum imparted on the electron for these laser-plasma

scattering events.

When a probe laser propagates through a plasma, the laser field E⃗L = E⃗0 cos(kL⃗ ·

r⃗ − ωLt) , where kL and ωL are the laser wave number and frequency, will cause

the electrons in the plasma to oscillate in the direction of E⃗0. When observing from

outside of the plasma in the radiation zone (distances much larger than the electron

oscillation radius [11]), the scattered light from one electron is

δE⃗se = − e

cR

(︄
ŝ× (ŝ− v⃗

c
)× a⃗

c

(1− ŝ · v⃗
c
)3

)︄
time=t′

(1.1)

where t′ = t−R/c+ ŝ · r⃗/c is the retarded time of the electron at position r⃗ seen from

the observer at position R⃗, in direction ŝ [12].

For non-relativistic oscillation of electrons, |v
c
| ≪ 1. The field can be simplified to

δE⃗se = − e

cR

(︃
ŝ× ŝ× a⃗

c

)︃
time=t′

=
e2

c2Rme

cos(kL⃗ · r⃗ − ωLt
′)
(︂
ŝ× ŝ× E⃗0

)︂
(1.2)
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We are interested in the spectrum of light emitted, as observed outside the plasma.

This can be found with the Fourier transform of the field in time:

δE⃗se(ωs) =

∫︂
dtδE⃗se exp (iωst) =

∫︂
dtδE⃗se exp (iωs(t

′ − ŝ · r⃗
c

+
R

c
)) (1.3)

The electron density in the plasma is also transformed, giving a spectrum in k⃗, ω

of fluctuations in the plasma.

ne(r⃗, t) =

∫︂
d3vFe =

1

(2π)3

N∑︂
j=1

∫︂
dk⃗ne(k⃗, t) exp (i(k⃗ · r⃗j − k⃗ · v⃗jt′)) (1.4)

where Fe is the discrete electron distribution function Fe(r⃗, v⃗, t
′) =

∑︁N
j=1 δ(r⃗−r⃗j(t′))δ(v⃗−

v⃗j(t
′))

This scattered field will be emitted by every electron in the probe beam’s path.

For N electrons traversed, a field E⃗s =
∫︁
d3v
∫︁
V
d3rFeδE⃗se will be emitted, where V

is the volume of plasma intersecting the laser. The total field in frequency space can

then be written

E⃗s(k⃗, t) =
e2

c2Rme

(︂
ŝ× ŝ× E⃗0

)︂
V ne(k⃗, t)

1

2

N∑︂
j=1

(exp(iϕ1j) + exp(iϕ2j)) (1.5)

where

ϕ1j = k⃗ · r⃗j − k⃗ · v⃗jt′ + ωst
′ − ωs

ŝ · r⃗j
c

+ ωs
R

c
+ kL⃗ · r⃗ − ωLt

′

= ωs
R

c
− t′(k⃗ · v⃗j − (ωs − ωL)) + (k⃗ − (ωs

ŝ

c
− kL⃗)) · r⃗j

(1.6)

ϕ2j = k⃗ · r⃗j − k⃗ · v⃗jt′ + ωst
′ − ωs

ŝ · r⃗j
c

+ ωs
R

c
− kL⃗ · r⃗j + ωLt

′

= ωs
R

c
− t′(k⃗ · v⃗j − (ωs + ωL)) + (k⃗ − (ωs

ŝ

c
+ kL⃗)) · r⃗j

(1.7)

ϕ2j (1.7) is identical to ϕ2j , except with negative values of ωs. We are interested

in the time-average of the squared field to find the scattered power, < |E⃗s(k⃗)|2 >=
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limT→∞
1
T

∫︁ T/2

−T/2
|E⃗s(k⃗, t)|2dt. As particles in the plasma are uncorrelated, all phase

terms in < |E⃗s(k⃗, t)|2 > with different particles will integrate to 0 over the volume

V , as
∫︁
dt′ exp (i(ϕ1j − ϕ1i)) = 0 for j ̸= i [11]. What remains is the incoherent

superposition of particle scattering. Therefore, the scattered light will be composed

of the auto-correlation of particles, summed over all particles in the distribution. This

allows the spectrum of density fluctuations (1.4) to be written using the continuous

particle distribution function, fe, with the discrete list of particle speeds k⃗ ·v⃗j replaced

with the scattering frequency ω.

ϕ1 = ωs
R

c
− t′(ω − (ωs − ωL)) + (k⃗ − (ωs

ŝ

c
− kL⃗)) · r⃗ (1.8)

ϕ2 = ωs
R

c
− t′(ω − (ωs + ωL)) + (k⃗ − (ωs

ŝ

c
+ kL⃗)) · r⃗ (1.9)

Under time and space integration the phase in ϕ1 determines the relation between

scatted light and perturbations in the plasma density:
∫︁∞
−∞ dt′ exp (−it′(ω − (ωs − ωL))) =

2πδ(ω− (ωs−ωL)) and
∫︁∞
−∞ dr exp (ir⃗ · (k⃗ − (ωs

ŝ
c
− kL⃗))) = 2πδ(k⃗− (k⃗s− k⃗L)), where

k⃗s is found using the scattered light’s dispersion relation in vacuum ωs = ksc. As only

ω = ωs − ωL contributes to scattering, this becomes the wave frequency ω scattering

all light at frequency ωs. This allows the scattered frequency and wave number to be

defined:

ωs = ω + ωL (1.10)

k⃗s = k⃗ + k⃗L (1.11)

The time-averaged field is replaced with the frequency-averaged field [12]:
∫︁
dt|E⃗s(t)|2 =

1
2π

∫︁∞
−∞ |E⃗s(k⃗, ω)|2dω = 1

π

∫︁∞
0

|E⃗s(k⃗, ω)|2dω. The term of Eq. (1.5) with phase ϕ2j

then completes the spectrum for negative frequencies.
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The resulting scattered power spectrum can be seen in the flow of energy in the

scattered light, which has energy density U = U(E⃗) + U(B⃗) = E⃗
2
s

4π
. The differential

power spectrum Ps(k⃗, ω) can then be defined with the spectrum of the field E⃗s(k⃗, ω),

where ω = k⃗ · v⃗:

Ps(k⃗, ω) = dΩR2c
E⃗

2

s

4π2

= dΩc
E2

0V

4π2

e4

c4m2
e

|ŝ× ŝ× Ê0||ne(k⃗, ω)|2(
1

4
)

(1.12)

With time-averaged probe power PL =
cE2

0

8π
A, where A is the area of the probe

beam,

Ps(k⃗, ω) = dΩ
PLLTS

2π

e4

c4m2
e

|ŝ× ŝ× Ê0|neS(k⃗, ω) (1.13)

where LTS is the length of the Thomson scattering volume in the direction of the

probe, and S(k⃗, ω) = <|δne(k⃗,ω)|2>
ne

is the dynamical form factor of electrostatic waves

in the plasma. The spectrum of this form factor is derived in section 1.1.2.

1.1.2 Fluctuations from Particle Discreteness

When plasma is in thermal equilibrium with no external forces acting on it, the

isolated particles in the plasma still produce fluctuations. The discrete nature of

particles leads to a level of density fluctuations on different length scales, which evolve

according to the electromagnetic susceptibility of the plasma.

Plasma typically consists of two different species: electrons and ions. Electrons

move to shield charges at distances greater than the Debye length, and ion fluctuations

create similar fluctuations in electron density, which maintains the plasma quasi-

neutrality [13].

To quantify the waves that exist in thermal plasma, we supplement the equilibrium

distribution of particles f to create a test perturbation distribution Fαt, approximat-

ing the discrete particle distribution Fα(r⃗, v⃗, t) around t = 0. Each particle in Fαt is
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assumed to be free streaming for the duration of the plasma response. Fluctuations in

either of these species have impacts on both species. For a plasma with Nα particles

of species α, the perturbation to the plasma is then

Fαt =
Nα∑︂
j=1

δ(r⃗ − r⃗jα − v⃗jαt)δ(v⃗ − v⃗j) (1.14)

The motion of each test particle also polarizes the rest of the distribution function.

The electron distribution function can be split into Fe = Fet + fe,(et) + fe,(it): the

perturbation distribution due to test particles, the electron polarization response to

electron test particles, and the electron polarization response to ion test particles.

The ions also respond to electron perturbations, making Fi = Fit + fi,(it) + fi,(et).

The Poisson equation for these effects can be written

−∇2Φ = 4π

∫︂
d3v(−eFe + ZeFi) (1.15)

As the Poisson equation is linear in charge density, (1.15) can be split into two

potentials: an electron perturbation potential and an ion perturbation potential,

which each balance separate polarization distributions in the plasma.

−∇2Φe = 4π

∫︂
d3v(−eFet − efe,(et) + Zefi,(te)) (1.16)

−∇2Φi = 4π

∫︂
d3v(ZeFit − efe,(it) + Zefi,(it)) (1.17)

The electron and ion polarization can be related to these potentials using the

Vlasov equation:

∂

∂t
fe,(et) + v⃗ · ∇fe,(et) −

e

me

∇Φe ·
∂Fe

∂v⃗
= 0 (1.18)

∂

∂t
fi,(et) + v⃗ · ∇fi,(et) +

Ze

mi

∇Φe ·
∂Fi

∂v⃗
= 0 (1.19)
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∂

∂t
fe,(it) + v⃗ · ∇fe,(it) −

e

me

∇Φi ·
∂Fe

∂v⃗
= 0 (1.20)

∂

∂t
fi,(it) + v⃗ · ∇fe,(it) +

Ze

mi

∇Φi ·
∂Fi

∂v⃗
= 0 (1.21)

Applying the Fourier transform 1
(2π)3

∫︁
d3r exp (−ik⃗ · r⃗) as well as time dependence

∼ exp (−ik⃗ · v⃗jt) to these the electron polarization equations gives

fe,(et)(k⃗, v⃗, t) = − e

me

Φe
1

(v⃗ · k⃗ − v⃗j · k⃗)
k⃗ · ∂Fe

∂v⃗
(1.22)

These can be simplified by using the susceptibility function χα, with ωj = v⃗j · k⃗:

χα =
ω2
pα

k2

∫︂
d3v

1

(ω − k⃗ · v⃗)
k⃗ · ∂

∂v⃗
fᾱ(v) (1.23)

Where α = e, i and fᾱ(v) = fα(v)
nα

is the normalized distribution function. ω2
pe =

4πe2ne

me
, so Eq. (1.22) can be simplified to

δne,(et)(k⃗, t) =

∫︂
d3vfe,(et)(k⃗, ω, v) =

Ne∑︂
j=1

− Φek
2

(−e)4π
χe(k⃗, k⃗ · v⃗j) exp (−ik⃗ · (r⃗je + v⃗jet))

(1.24)

Where δne,(et) is the electron density fluctuation of the plasma in response to an

electron density perturbation net. Similarly, Eq. (1.19) can be solved for the ion

response from an electron charge perturbation:

δni,(et)(k⃗, t) =

∫︂
d3vfi,(et)(k⃗, ω, v) =

Ne∑︂
j=1

− Φek
2

(Ze)4π
χi(k⃗, k⃗ · v⃗j) exp (−ik⃗ · (r⃗je + v⃗jet))

(1.25)

The transformed Poisson equation can then be used to find Φe:

k2Φe(k⃗, t) =
Ne∑︂
j=1

exp (−ik⃗ · (r⃗je + v⃗jet))(4πe)

(︃
−net −

∫︂
d3vfe,(te)(k⃗, ω) + Z

∫︂
d3vfi,(te)(k⃗, ω)

)︃
(1.26)
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Solving (1.26) for Φe also determines δne,(et)(k⃗, v⃗, t), the fluctuations in electron

density due to the ion an electron response to electron discreteness:

Φe(k⃗, t) =
Ne∑︂
j=1

−4πenet exp (−ik⃗ · (r⃗je + v⃗jet))

k2(1 + χe + χi)
(1.27)

δne,(et)(k⃗, ω) =
Ne∑︂
j=1

−net exp (−ik⃗ · (r⃗je + v⃗jet))
χe

(1 + χe + χi)
(1.28)

Eqs. (1.20,1.21) can be used similarly to find the electron response to a perturba-

tion in the ion distribution function:

δne,(it)(k⃗, ω, v) =

Ni∑︂
j=1

exp (−ik⃗ · (r⃗ji + v⃗jit))
χe

(1 + χe + χi)
(1.29)

The total change in the electron distribution is then δne = net + δne,(et) + δne,(it).

δne = net(1−
χe

1 + χe + χi

)
Ne∑︂
j=1

exp (−ik⃗ · (r⃗je + v⃗jet))

+nit(−
χe

1 + χe + χi

)

Ni∑︂
j=1

exp (−ik⃗ · (r⃗ji + v⃗jit))

(1.30)

Correlations between particles will contribute to the fluctuation spectrum. As

the particle perturbations net and nit come from free streaming test particles in the

electrons and ions respectively, the correlations < netnit >= 0.

When the quantity δn2
e is averaged over a volume with |L| ≫ k−1, terms with

non-identical particles in < netnit >= 0 will integrate to 0, as the test particles are

uncorrelated and leave a non-zero phase. In each wavelength of a fluctuation with

wave number k⃗, the number of particles that exist of species α is 2π
k
nαfᾱ(v = ω

k
) [12].

The variance of particle fluctuations < nαtnαt >= |δnα|2 is equivalent to the number

of particles that can affect a wave of wave number k⃗.

This allows the definition of the expected fluctuations in stable plasma, S(k⃗, ω),

defining the frequency ω = k⃗ · v⃗j:
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Figure 1.1: Form factor S(k⃗, ω) for Te = Ti = 1keV Neon plasma. Red and blue
shifted electron plasma waves (first term, (1.31)) can be seen on the top and bottom,
with the ion acoustic wave is constrained to lower phase velocities in the center.

S(k⃗, ω) =
< |δne|2 >

ne

=
2π

k

⃓⃓⃓
1− χe

ϵ

⃓⃓⃓2
fē

(︂ω
k

)︂
+

2π

k

⃓⃓⃓χe

ϵ

⃓⃓⃓2
Zfī

(︂ω
k

)︂
(1.31)

where ϵ = 1 + χe + χi. Eq. (1.31) is the dynamic form factor of electrostatic waves

in electrons, which determines the spectrum of scattered light in OTS (1.13). This

determines the OTS scattering spectrum from stable plasma. Typical examples as

well as additional effects on the OTS spectrum are included in Ch. 2.

1.1.3 Driven Waves

In addition to fluctuations from particle discreteness, waves in plasma can be driven

by external forces. Lasers can exert these forces in plasma, driving waves that can

resonate with the plasma response to produce large-scale changes in density. Laser

coupling to electrostatic waves in plasma typically occurs via the ponderomotive force,

which can be enhanced by plasma and laser properties increasing the oscillation time

and amplitude.
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Ponderomotive Force

Lasers in plasma initially impact plasma electron density with the ponderomotive

force, where the laser field drives electrons in the plasma away from places with

higher field intensities.

A stationary particle in a laser field will experience an electric field oscillating with

the frequency of the laser, E⃗ = E⃗0(x) cos (ωt). For low-intensity or high-frequency

lasers ( eE0

mω
≪ c) [14], the effects of the magnetic field are small and can be neglected.

If E0(x) is non-uniform, it can induce motion in charged particles at two time scales:

the short period of the laser 2πω−1, and the longer time scale associated with the

drift of the particles across the length scale of the laser spot [15],[16].

The motion of charged particles in a laser polarized in the x̂ direction can be

described as x = x0 + x1, where x0 is the slower drift response of the particle and x1

is the fast motion of the particle at the frequency of the laser. As x1 is small and

changes quickly, ∂2x1

∂t2
≫ ∂2x0

∂t2
, and |E⃗0(x0)| ≫ x1

dE0(x0)
dx

. This allows the equation of

motion to be split:

d2x1
dt2

=
q

m
|E⃗0(x0)| cos (ωt) (1.32)

d2x0
dt2

=
q

m

ω

2π

∫︂ 2π/ω

0

x1(
dE⃗0(x)

dx
)|x=x0 cos (ωt)dt (1.33)

This results in particle trajectories for slow and fast motion:

x1 = − q

m

|E⃗0(x0)|
ω2

cos (ωt) (1.34)

d2x0
dt2

= − q2

m2
∇|E0(x0)

2|
4ω2

(1.35)

The factor q2

m2 indicates that in quasi-neutral plasma, the total force on the ion

species will be smaller by a factor of at least 1836 compared to electrons, so the tiny
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force on the ions can be ignored. In the x̂ direction, the force takes the form of a

gradient of E2
0 . This allows the force on electrons F⃗ p to be written as the gradient of

a potential: F⃗ p = −∇Up

Up =
e2E2

0

4meω2
(1.36)

Ponderomotive force from the beating of two lasers

When two lasers overlap, they can produce a beat wave in a plasma. This beat drives

waves via the ponderomotive force (1.36). The beat frequency and wave number can

vary with the laser propagation directions and frequencies. If this beat reaches the

phase velocities of electron or ion waves, the plasma response can become much larger

for the beating waves than for separate lasers.

The amplitude of the electric field of two lasers can be described as

E⃗ = E⃗01 exp (iω1t− ik⃗1 · r⃗) + iθ1 + E⃗02 exp (iω2t− ik⃗2 · r⃗ + iθ)

= exp (i
ω1 + ω2

2
t− i

k⃗1 + k⃗2
2

· r⃗)(︄
E⃗01 exp (i

(ω1 − ω2)

2
t− i

k⃗1 − k⃗2
2

· r⃗ + iθ1) + E⃗02 exp (−i
(ω1 − ω2)

2
t+ i

k⃗1 − k⃗2
2

· r⃗ + iθ2)

)︄
(1.37)

where E⃗01, E⃗01 are the amplitudes of the electric fields of the two lasers, and ω1, ω2,

k⃗1, k⃗2 are the respective frequencies and wave numbers of the lasers. θ1 and θ2 are

the phase shifts of the two lasers.

We see in Eq. (1.37) that this results in a higher frequency of ω1+ω2

2
, and a lower

frequency ω1−ω2

2
response. For |ω1 − ω2| ≪ ω1 + ω2, the high frequency effect will

change the sign of the beat many times during the slower period, making the slow

wave’s current amplitude act as an envelope of the wave. As the ponderomotive force

is proportionate to |E⃗|2 the effective frequency of this envelope is doubled to become

|ω1 − ω2|, which is known as the beat frequency, ωb (Fig. 1.2).
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Figure 1.2: Beat wave at a point from two counter-propagating lasers, with E⃗01 = E⃗02

and ω2 = 1.1ω1

The beat frequency can be seen in the time dependence of the envelope E2
env = |E⃗|2:

E2
env = (|E⃗01|2 + |E⃗02|2) + 2E⃗01 · E⃗02 cos ((ω1 − ω2)t− (k⃗1 − k2⃗) · r⃗ + (θ1 − θ2))

(1.38)

The constant terms in (1.38) are the part of the E⃗ field with no beat wave, con-

taining only fast oscillations in the E⃗ field (1.37). These fast oscillations have phase

velocities ω/k ≥ c, limiting the plasma response they can create. The effect on the

plasma would be the same as separate beams would have, so the constant terms in

(1.38) can be ignored when investigating resonant plasma response to the beat wave.

The second term in Eq. (1.38) will contain much lower velocity waves for similar

frequencies of counter-propagating beams, where k⃗b = |k⃗1 − k⃗2| ≫ |k⃗1|. These low

phase velocity waves follow an amplitude controlled by the angle of the two lasers

(1.36):

Up =
2e2E⃗01 · E⃗02

me(ω1 + ω2)2
cos (ωbt− k⃗b · r⃗ + (θ1 − θ2)) (1.39)

This ponderomotive potential forces electrons away from the beating wave but has

a negligible effect on ions due to their much larger mass. This results in a charge

imbalance, where the change in electron density due to the ponderomotive force δne
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creates an electric potential ϕ ∝ Up. The potential can be found with the Poisson

equation:

−∇2ϕ = −4πeδne + 4πZeδni (1.40)

To evaluate the change in density δne and δni, the Vlasov equation is used:

∂fe
∂t

+ v⃗ · ∇fe +
−∇(Up − eϕ)

me

∂fe
∂v

= 0 (1.41)

∂fi
∂t

+ v⃗ · ∇fi +
−∇(Zeϕ)

mi

∂fi
∂v

= 0 (1.42)

where fe = fe(r⃗, v⃗, t) and fi = fi(r⃗, v⃗, t) are the electron and ion distribution func-

tions, respectively. The density perturbation can be found by linearizing the Vlasov

equation [17] (1.41), with f = f0 + δf , δn =
∫︁
δfdv3. The gradients of the potential

ϕ and ponderomotive potential Up are small, and the terms δf , Up and ϕ all change

in time and space like exp(i(ωbt− k⃗br⃗)), leading to the equations

ωbδfe − v⃗ · k⃗bδfe −
eϕ− Up

me

k⃗b ·
∂fe0
∂v⃗

= 0 (1.43)

ωbδfi − v⃗ · k⃗bδfi +
Zeϕ

mi

k⃗b ·
∂fi0
∂v⃗

= 0 (1.44)

Re-arranging and integrating over velocity gives an expression for δn

δne =
eϕ− Up

me

∫︂
d3vk⃗b ·

∂fe0
∂v⃗

1

(ωb − k⃗b · v⃗)
(1.45)

δni =
−Zeϕ
mi

∫︂
d3vk⃗b ·

∂fi0
∂v⃗

1

(ωb − k⃗b · v⃗)
(1.46)

This density fluctuation level can similarly be combined with the Poisson equation

(1.40) to solve for ϕ in terms of Up.
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ϕ =
Up

e

χe

1 + χe + χi
(1.47)

where χ is the susceptibility (1.23,1.48) (Fig. 1.3):

χe =
4πe2

mek2

∫︂
d3vk⃗b ·

∂fe
∂v⃗

1

(ωb − k⃗b · v⃗)
(1.48)

χi =
4πZ2e2

mik2

∫︂
d3vk⃗b ·

∂fi
∂v⃗

1

(ωb − k⃗b · v⃗)
(1.49)

Figure 1.3: Electron susceptibility function for ne=1020cm−3, Te=1keV, k = 0.56kDe.
Resonance factor for waves is shown in black, for the high frequency approximation
(χi = 0). Waves with ω/k > 5vTe are strongly suppressed (1.50)

The electron density perturbations are then given by

δne = ne
−Upk

2

meω2
p

χe(1 + χi)

1 + χe + χi

(1.50)

For high frequencies (ωb ≫ ωpi), these perturbations are primarily dependent on

the electron distribution function around the phase speed of the beat, ωb/kb. In figure

1.3, we can see that the beat can be strongly enhanced when it coincides with the

electron plasma wave’s phase velocity [18]. This resonance becomes sharper and more

enhanced with increased OTS parameter α = 1
kλDe

.

Laser-driven waves in plasma traveling much faster than the thermal electrons have

very little impact on the electron density fluctuations (Fig. 1.3). For lasers at very
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different frequencies, this makes the effect of counter-propagating lasers generating

beating waves much larger than the effects of co-propagating lasers, as the phase

velocity of the beat can be much lower than c, coinciding with the EPW resonance.

For lasers of very similar frequencies, co-propagating lasers can also have lower phase

velocities, as their small differences in k⃗ can exceed their smaller differences in fre-

quency. In these cases, the driven wave can gain an amplitude larger than that of

thermal fluctuations, as seen in sec. 4.5.

1.2 Laser Plasmas Relevant to Astrophysics

Astrophysical plasmas are investigated for their ability to accelerate particles, creat-

ing high energy cosmic rays that can be detected on earth [19, 20]. These plasmas of

interest typically contain counter-streaming flows, providing the energy necessary to

create electromagnetic fields, shocks, and high-energy particles [21]. Similar environ-

ments can also be produced in laboratory plasmas, allowing for detailed measurement

and analysis of processes that would otherwise be far out of reach.

1.2.1 Weibel Instability

When two expanding plasmas interpenetrate under collisionless conditions, they pro-

duce an initially homogeneous plasma containing two distinct sets of particles stream-

ing in opposite directions. This arrangement of plasma is unstable to the formation

of separated currents: small fluctuations in current create fields which enhance these

currents along the flow directions, driving the growth of stronger magnetic fields.

This growth of magnetic fields can eventually lead to turbulence and the formation

of a collisionless shock [4] [22] [23].

If a homogeneous counter-streaming plasma has flows with velocity ±v0x̂, the

formation of currents filaments [24] can be found by observing the dynamics of a

small transverse fluctuation in the ŷ direction with field E⃗ = E1 exp i(ky − ωt)x̂,

velocity v⃗a,b = ±v0x̂ + v⃗1 exp i(ky − ωt)x̂, and a density for each stream of na,b =
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n0 + n1 exp i(ky − ωt) (Fig. 1.4).

The momentum equation for the electron fluid is then

∂v⃗

∂t
+ (v⃗ · ∇)v⃗ = − e

me

E⃗ − e

me

v⃗

c
× B⃗ (1.51)

Figure 1.4: Geometry of the Weibel instability

The electromagnetic fluctuations can be described with Faraday’s law: ∇ × E⃗ =

−1
c
∂B⃗
∂t
. For the fluctuations in ŷ, this reduces to B⃗ = −ẑ kc

ω
E1. This can be combined

with the fluid equation, and the flow velocity can be split into two directions, with

v1⃗ = v1xx̂+ v1yŷ. v1x is driven by the E⃗ field, and v1y is driven by v⃗ × B⃗.

v1x = −i e

meω
E1 (1.52)

v1y = −i e

meω
E1(

kv0
ω

) (1.53)

To find the current, we must also find the perturbed density of the flows, using the

continuity equation:

∂n

∂t
+∇ · (nv⃗) = 0 (1.54)

Divergence can only come from the perturbation velocity v⃗1. The resulting density

perturbation depends on the transverse velocity (1.53):
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n1 = n0
kv1y
ω

= −in0
k2

ω2

ev0
meω

E1 (1.55)

Two currents can be calculated, for the streaming direction x̂ and the wave direc-

tion ŷ. Current in ŷ is linear with v0, and therefore is canceled in counter-streaming

flows. The bulk current ±v0n0ex̂ is also canceled, leaving the first order perturbations

to the current in x̂ to be −2n1v0e and −2n0v1xe:

Jx = 2in0
e2

meω
E1 + n0

k2

ω2
i
e2v20
meω

E1 = in0
e2E1

meω
(1 +

k2v20
ω2

) (1.56)

We can use this current Jx to find the dispersion relation of the Weibel instability

using Maxwell’s equations. Since ∇×∇× E⃗ = k2E1 = iω 4π
c2
Jx+

ω2

c2
E1. Factoring out

the initial perturbation field E1, we have

k2 − ω2

c2
= −4π(2n0)e

2

mec2
(1 +

k2v20
ω2

) (1.57)

using 4π(2n0)e2

me
= ωpe, and v0 ≪ c, we can simplify (1.57) to the dispersion relation

ω2 = −
ω2
pek

2v20
ω2 + c2k2

(1.58)

Eq. (1.58) results in γ = ℑ(ω) > 0 for the mode perpendicular to the flow,

confirming that the perturbation fields and currents will grow in amplitude, creating

transversely modulated currents. This process is demonstrated with Particle in Cell

simulations in Ch. 3 (Fig. 3.3) and explored in more detail.

1.2.2 Magnetic Reconnection

When counter-streaming plasma is magnetized before it interacts, the magnetic fields

can control the evolution of the plasma by their pressure and stored energy [25–27].

Magnetic fields are transported by both plasma flow and magnetic diffusion. These

effects are expressed in the non-ideal Magnetohydrodynamics (MHD) equations [13,

28], where the time dependence of the magnetic field is shown as:
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∂B⃗

∂t
= ∇× v⃗ × B⃗ +

c2

4πσ
∇2B⃗ (1.59)

where σ = nee2

meνei
is the electrical conductivity of the plasma, and νei is the collision

rate.

The first term in (1.59) controls the advection of magnetic fields due to flows in the

plasma, and the second term is caused by the diffusion of fields through the plasma.

The ratio of these terms is known as the magnetic Reynolds number, Rm = V L4πσ
c2

,

where V and L are the velocity and length scales of the plasma respectively. Rm

represents the ratio of field advection to the diffusion of magnetic fields.

In order to carry fields towards each-other, counter-streaming flows must start with

high magnetic Reynolds numbers. As the flows reach each other, the length scales

can shorten, facilitating diffusion.

Figure 1.5: Reconnection fields (blue), flow (black) and current (pink)

A counter-streaming plasma that forms a steady state quasi-neutral system has

∇ · E⃗ = ∇ × E⃗ = 0, requiring that any electric field be a homogeneous field E⃗0.

The upstream magnetized plasmas in its own rest frames has electric field E⃗ = 0 =

E⃗0 +
v⃗
c
× B⃗, requiring a uniform field of E⃗0 = − v⃗

c
× B⃗.

Between two oppositely directed fields, the magnetic field must reduce to 0 some-

where between the two flows. This point will have E⃗ = E⃗0, driving a current J⃗ = σE⃗0
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If the magnetic field changes over a small region of interaction between the two

plasma flows, we can expect the slope of the magnetic field ∇ × B⃗ to approximate

its average value of B0/L, where B0 is the upstream field and L is the radius of the

current sheet. This allows the scale of the current sheet and the plasma properties to

be related:

|J⃗ | = | c
4π

∇× B⃗| ≈ c

4π
(B0/L) (1.60)

|J⃗ | = σE0 = σ
v0
c
B0 (1.61)

This allows the magnetic Reynolds number of the current sheet to be found:

4πσ

c2
v0L = Rm = 1 (1.62)

With Rm = 1 on the current sheet scale, the fields can diffuse to reconnect, resulting

in energetic outflows of plasma (Fig. 1.5). Empirical measurements of this field

structure are explored in section 3.5.

1.2.3 Comparing Plasmas Over Different Scales

As laboratory astrophysics attempts to relate the physics of small, dense, and quickly

dissipating laser-ablated plasmas to much larger, lower-density, and longer-lasting

astrophysical plasmas, properties observed must be compared across different scales.

Simulations using effects relevant to different time and length scales must also be

compared to these observables (sec. 3.1). To this end, the causes of plasma evolution

and time scales must be understood with respect to characteristic lengths within the

plasma. The driving equations can then be transformed into dimensionless equations

using these quantities [29].

To fully describe the dynamics of the plasma, we need the election and ion Vlasov

equation:
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∂fα
∂t

+ v⃗ · ∇fα +
qα
mα

(E⃗ +
v⃗

c
× B⃗) · ∂fα

∂v
= 0 (1.63)

where α = e, i. The evolution of the electric and magnetic fields can be described by

∇2ϕ = −4π(−ene + Zeni) (1.64)

∇2A⃗ = −4π

c
(−eneve + Zenivi) (1.65)

E⃗ = −∇ϕ− 1

c

∂A

∂t
(1.66)

B⃗ = ∇× A⃗ (1.67)

where ve,i =
1

ne,i

∫︁∞
−∞ fe,iv⃗d

3v and ne,i =
∫︁∞
−∞ fe,id

3v.

For flowing plasmas, dimensionless equations for ion instabilities can be found using

the ion plasma frequency, as well as the characteristic flow speed of the plasma.

Electromagnetic systems

For flowing plasma systems where electromagnetic effects are dominant, ∇ · ϕ can

be dropped, relying entirely on the vector potential A⃗ to drive the plasma dynamics.

Characteristic scales are then chosen based on the density and flow velocity u (table

1.1)

time c
uωpi

t′ = t
uωpi

c

length c
ωpi

r′ = r
ωpi

c

energy miuc
Ze

A⃗
′
= A⃗ Ze

miuc

distribution nα

u3 f ′
α = fα

u3

nα

Table 1.1: Characteristic lengths used for plasma evolution driven by electromagnetic
properties.

The dimensionless Vlasov equation is then reduced to

∂f ′
α

∂t′
+ v⃗′ · ∇′f ′

α +
qαmi

qimα

(−∂A
′⃗

∂t
+ v⃗′ ×∇′ × A′⃗ ) · ∂f

′
α

∂v′
= 0 (1.68)
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This contains only one parameter in the electron equation: mi

Zme
. This implies that

two systems with different speeds, densities, lengths, and fields with similar mass to

charge ratios for their ions will evolve in the same way, given a similar shape in their

initial conditions. The quantities in the two systems can be compared using the scales

in table 1.1.

These scaling laws are used in section 3.1 to compare simulations of the Weibel

instability to experimental plasmas.

Electrostatic systems

Electrostatic evolution is typically faster than electromagnetic instabilities [29], al-

lowing the short-term evolution of streaming plasmas to be analyzed using exclusively

electrostatic equations. For these systems, A⃗ is dropped, removing magnetic effects.

Characteristic scales are chosen based on the speed and density of the plasma (table

1.2)

time 1
ωpi

t′ = tωpi

length u
ωpi

r′ = r
ωpi

u

energy miu
2

Ze
ϕ′ = ϕ Ze

miu2

distribution nα

u3 f ′
α = fα

u3

nα

Table 1.2: Characteristic lengths used for plasma evolution driven only by electro-
static properties.

This reduces the Vlasov equation to a similar dimensionless from:

∂f ′
α

∂t′
+ v⃗′ · ∇′f ′

α +
qαmi

qimα

(−∇′ϕ′) · ∂f
′
α

∂v′
= 0 (1.69)

This electrostatic set of equations also has only one parameter controlling plasma

evolution: Zme

mi
. Fixing this quantity allows plasmas across different length, speed,

and density scales to be compared, using the scaling relation in table 1.2.
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Self-similar plasma expansion

In order to create plasma with similar relative conditions, and therefore identical

governing equations (1.68,1.69,1.64,1.65), the plasma conditions must be controlled.

The ratios of field energy, kinetic energy, and thermal energy must be equal between

two systems in order for them to evolve identically (tables 1.1,1.2).

To control the kinetic energy observed in an ablating plasma, the distance from

the plasma source can be used [30]. Once the expanding plasma reaches a scale larger

than the Debye length λDe =
√︂

Te

4πnee2
, the plasma expands as a quasi-neutral fluid,

with electron pressure pulling ions towards the vacuum [31].

The shape of the ion density in the plasma can be understood as a cold fluid. In

this case, ion are governed by the continuity and momentum equations:

∂ni

∂t
+∇(vni) = 0 (1.70)

∂v

∂t
+ v∇v + Ze

mi

∇ϕ = 0 (1.71)

The electrons have a significant temperature Te, driving the ions to expand. The

electrons are described by a Boltzmann distribution with electrostatic potential ϕ:

ne = Zn0 exp (
−eϕ
Te

) (1.72)

When considering the 1D expansion of plasma into vacuum and using a sound

speed cs =
√︂

ZTe

mi
, these equations can be made dimensionless with the following

parameters:

Using quasi-neutrality and the Boltzmann distribution (1.72) we can write the

potential as Φ = ln ni

n0
as The continuity and momentum equations (1.70, 1.71) can

then be re-written as

(u− ϵ)
d lnni

dϵ
+
du

dϵ
= 0 (1.73)
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self similar parameter ϵ = x
tcs

flow speed u = v
cs

normalized potential Φ = eϕ
Te

Table 1.3: Dimensionless parameters for self-similar expansion

(u− ϵ)
du

dϵ
+
d lnni

dϵ
= 0 (1.74)

This can be solved for velocity to u = ϵ± 1. Taking the solution that corresponds

to out-flowing plasma, we find the self-similar flow velocity vss of expanding plasma

is

vss =
x

t
+ cs (1.75)

This allows for the selection of flow velocities from ablation plasmas by sampling

the plasma at the correct distance and time. This self-similar velocity can be seen to

match ablated plasma velocities early in plasma evolution (sec. 3.4).

1.3 Kinetic Theory and Particle Transport

When temperature gradients exist in a plasma, energy can be transferred from the

hot to the cold regions, driven by the diffusion of high and low energy electrons. This

can be described by a heat flux q⃗ requiring a non-isotropic electron distribution fe(v⃗):

q⃗ =

∫︂
mev

2

2
v⃗fe(v⃗)d

3v (1.76)

In order to describe thermal transport, fe(v⃗) is typically expanded into Legendre

polynomials, with some characteristic direction x̂ aligned with the direction of the

temperature gradient in the plasma. The first two terms f0(v) and f1(v)
v⃗·x̂
v

describe

the temperature and shape of the electron distribution and the majority of the trans-

port, respectively. The shape and size of these distributions is controlled by a balance

between transport and particle collisions.
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1.3.1 Particle Collisions

When particles are induced to move in plasma by fields or temperature gradients, they

quickly reach an equilibrium flux, with the driving thermodynamic forces balanced

by friction due to particle collisions. These collisions must be quantified based on

particle velocity and plasma properties to determine the equilibrium conditions of a

particle transport model.

Coulomb Collisions

To understand collision rates in plasma, the properties of individual coulomb collisions

must be quantified. When two particles of mass, charge, and initial momentum

mα,mβ, qα, qβ, and piα, piβ collide, they follow a trajectory in a 2D plane. In the center

of mass frame, the only force between the particles is radial, making their angular

momentum constant. Using the particles’ reduced mass mαβ =
mαmβ

mα+mβ
and relative

velocity u⃗ = v⃗α − v⃗β, the conserved quantities of energy and angular momentum can

be written [32]:

Figure 1.6: Coulomb collision for two charged particles

E0 =
1

2
mαβu

2
0 =

1

2
mαβu(t)

2 +
qαqβ
r

(1.77)
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L0 = mαβbu0 = mαβr
2dχ

dt
(1.78)

Using u2 = (dr
dt
)2 + r2(dχ

dt
)2, we can use (1.77,1.78) to find the trajectory of the

charged particle:

dr

dχ
=
r2

b

√︄
1− b2

r2
− 2qαqβ
rmαβu20

(1.79)

At dr
dχ

= 0, the closest approach can be found: rmin = b√︄
1+

q2αq2
β

m2
αβ

u40b
2−

qαqβ

mαβu20b

(Fig.

1.6). This can then be used with (1.79) to find the angle corresponding to rmin:

χ0 =

∫︂ rmin

∞
(
dr

dχ
)−1dr =

∫︂ rmin

∞

b

r2
√︂
1− b2

r2
− 2qαqβ

rmαβu
2
0

dr (1.80)

the integral gives

χ0 = arcsin

⎛⎜⎜⎝ b
rmin

+
qαqβ

bmαβu
2
0√︃

1 +
q2αq

2
β

m2
αβu

4
0b

2

⎞⎟⎟⎠− arcsin

⎛⎜⎜⎝
qαqβ

bmαβu
2
0√︃

1 +
q2αq

2
β

m2
αβu

4
0b

2

⎞⎟⎟⎠ =
π

2
− arctan

qαqβ
bmαβu20

(1.81)

From figure 1.6, we see χ0 =
π
2
− θ

2
, which yields the impact parameter as a function

of scattering angle θ:

b =
qαqβ

mαβu20 tan
θ
2

(1.82)

Collision Operator

When particles move through a plasma, coulomb collisions (1.82) can occur with any

other particle in the plasma. These collisions are limited, however, by the screening

of charges: electrons move towards positive charges and away from negative charges.

The extent of this screening is determined by the thermal velocity of the particles.

This results in Debye screening: the potential from a point charge q is reduced to
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Φ = q
r
exp (−r/λDe). This means that coulomb collisions will not occur over all angles,

but will be restricted to angles where b is smaller than ∼ λDe.

The rate of change of a distribution function d
dt
fα due to collisions (Cαβ) is then

the rate of collisions resulting in velocity v⃗ minus the rate starting with velocity v⃗i.

These terms are equivalent to the phase density of the distribution functions at the

required velocities, integrated over the area the particles can stream through and

multiplied by the particle speed. When these particle distributions are assumed to

be independent, this forms the Boltzmann collision operator:

Cαβ =

∫︂
d3viβ

∫︂ π

0

dϕ

∫︂ λDe

0

db(bu)(fα(v⃗iα)fβ(v⃗iβ)− fα(v⃗α)fβ(v⃗β)) (1.83)

Using (1.82), we can convert 1.83 to an integral over scattering angles θ. We find

db
dθ

=
−qαqβ
mαβu

2
0

1
2 sin θ/2

, with a minimum scattering angle θ0 ≈ 2qαqβ
mαβu

2
0λDe

. For u0 ≈ vTe and

mαβ ≈ me, this gives a minimum angle θ0 =
2
Λ
, where Λ = 4πneλ

3
De is proportionate

to the number of electrons within a Debye sphere.

Cαβ =
q2αq

2
β

m2
αβ

∫︂
d3viβ

∫︂ 2π

0

dϕ

∫︂ π

θ0

dθ
cos θ/2

sin3 θ/2

1

2u3
(fα(v⃗iα)fβ(v⃗iβ)−fα(v⃗α)fβ(v⃗β)) (1.84)

If we define the direction of the change in momentum in a given collision ζ̂ =

u⃗f−u⃗0

|u⃗f−u⃗0| = − sin θ
2
u0̂ + cos θ

2
û⊥, this vector can be used to determine the final relative

velocity u⃗f after a collision with the initial relative velocity u⃗0 (fig. 1.6). The collision

can be described by the operator (I − 2ζ̂ ζ̂), or u⃗f = (I − 2ζ̂ ζ̂)u⃗0. This operator is its

own inverse: u⃗0 = (I − 2ζ̂ ζ̂)u⃗f .

The change in velocity during scattering is then

∆u⃗ = u sin θû⊥ + u(cosθ − 1)û0 (1.85)

This particle species’ velocity changes can be expressed as
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∆vα⃗ =
∆u⃗mαβ

mα

(1.86)

The difference in the distribution functions can then be approximated by the gra-

dients in the electron distribution function for small changes in velocity ∆v:

fe(v⃗0e)− fe(v⃗e) = −∆v⃗ · ∇v⃗efe(v⃗e)−
1

2
(∆v⃗e · ∇v)

2fe(v⃗e) (1.87)

Ions similarly can be expanded in terms of ∇vfi(v⃗i), but fe remains mostly un-

changed over the range of ∇vfi(v⃗i) values due to the much higher ion mass, so these

terms integrate to 0 for electron-ion collisions, allowing the ion distribution to be

separated from the integral.

Because collisions are integrated over 2π in ϕ, all parts of the velocity gradient of

fe perpendicular to û0 will cancel in the first order approximation of fα(v⃗0α), leaving

only the v̂ term of (1.85). This term is quadratic in θ for small values of θ, contributing

to collisions at a level similar to the perpendicular terms of (∆v)2.

This cancellation leaves fe(v⃗0e)−fe(v⃗e) ∝ θ2. The collision frequency terms in Cαβ

are proportionate to θ−3 (1.84), leaving a dependence on scatting angle of θ−1. The

operator Cαβ is therefore mostly composed of small angle collisions. Expanding the

separate gradients from the first and second-order derivatives and using mei ≈ me

due to the high ion mass, we have

Cei ≈
2πZ2e4

m2
e

∫︂ π

θ0

dθ
4

tan( θ
2
)

1

2u3
(−u⃗0∇vfe +

u2

2
(I − û0û0)∇2

vfe) (1.88)

The integral
∫︁ π

θ0
dθ 1

tan( θ
2
)
= 2 ln (2/θ0) = 2 ln (Λ) produces the coulomb logarithm:

the factor controlling collisions based on the extent of fields in the plasma. Using

u⃗ ≈ v⃗, the collision operator can then be simplified by integration by parts:

Cei =
2πZ2e4ni ln Λ

m2
e

∇v ·
1

v
(I − v⃗v⃗

v2
) · ∇vfe (1.89)
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This consists of a term (I − v⃗v⃗
v2
) leading to isotropic distributions dfe

dθ
= 0 where

angular features in the distribution function are removed due to collisions.

1.3.2 Local Transport Theory

In this section, I will summarize the classical, Spitzer-Härm (SH) transport theory

[33] by deriving a stationary solution to the kinetic equation assuming that there is

zero current in the plasma, in the limit of temperature scale lengths much longer than

the collision mean free path of electrons. For large Z, this collision mean free path is

dominated by the ion collision rate. In this case, the expansion is characterized by

the small parameter

δT = λei
d

dx
ln(Te) (1.90)

where λei =
vTe

νei
is the electron mean free path, and νei is the electron-ion collision

rate. δT is also known as the electron temperature Knudsen number: the ratio of the

mean free path of electrons to the scale length of the electron temperature.

A steady-state solution for transport is found when collisions balance the diffusion

of particles, leading to a static distribution function. Assuming azimuthal symmetry,

we can write Eq. (1.89) in the following form:

Cei =
2πZ2e4ni ln Λ

m2
e

1

v3
1

sin θ

∂

∂θ
(sin θ

∂fe
∂θ

) (1.91)

The distribution function is assumed to take the form fe = f0 + cos θf1, where f0

is the Maxwellian distribution f0 = ( me

2πTe
)
3
2 exp (−v2me

2Te
), f1 is the smaller transport

distribution, and θ is the angle from the direction of the temperature gradient.

Given the form of fe − f0 ∝ cos θ, and the equilibrium under collisions of f0, the

operator 1
sin θ

∂
∂θ
(sin θ ∂

∂θ
) simplifies to −2 cos θ.

As the electron distribution function for transport should be time-independent, it

will follow the steady-state equation:
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v⃗ · ∇fe −
e

me

E⃗ · ∂fe
∂v⃗

= Cei (1.92)

With a temperature gradient in the ẑ direction, ∇fe = ∂fe
∂z
ẑ. The electric field

must also be in the ẑ direction, as this is the only direction of asymmetry. Keeping

the leading order for each term, (1.92) then becomes

v cos θ
∂f0
∂z

+ v cos θ
eE

Te
f0 =

2πZ2e4ni ln Λ

m2
e

1

v3
(−2 cos θ)f1 (1.93)

For a Maxwellian f0,
∂f0
∂z

= (−3
2
+ 1

2
v2

v2Te
)f0

d lnTe

dz
. This gives f1 terms proportionate

to v4f0 and v6f0. To solve for the electric field E, we use the zero current condition:∫︁
d3vf1 cos θv⃗ = 0 or equivalently

∫︁∞
0
f1(v)v

3dv = 0.

Using the identity
∫︁∞
0
vn exp (−0.5v2)dv =

Γ(n+1
2

)

0.50.5(n−1) , we find
∫︁∞
0
v7 exp (−0.5 v2

v2Te
)dv =

1
8

∫︁∞
0
v9 exp (−0.5 v2

v2Te
)dv. The electric field caused by transport then must be E =

− 5
2e

dTe
dz

The result is the Spitzer-Härm heat transport distribution function:

f1 =
m2

ev
4

2πZ2e4ni ln Λ
f0(4−

1

2

v2

v2Te

)
d lnTe
dz

(1.94)

Given a collision rate νei =
4
√
2πZ2e4ni ln (Λ)
3T 1.5

e
√
me

[34], the transport distribution f1 can

be written in terms of the temperature scale length parameter (Knudsen number,

(1.90)) δT . This shows f1 is linear with the temperature scale length (1.7):

f1 =

√︃
2

9π
f0
v4

v4Te

(4− 1

2

v2

v2Te

)δT (1.95)

The contribution of f1 to the distribution function is f1 cos θ, which can be seen

in figure 1.8. Heat is transported in high velocity electrons, while the total current is

balanced by the reversed return current close to v⃗ = 0.

In the direction of the temperature gradient, this can be integrated to see the shape

of the distribution function in one direction of interest (Fig 1.9):
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Figure 1.7: Spitzer-Härm f1 distribution for δT = 0.01

Figure 1.8: Spitzer-Härm f1 distribution for a temperature gradient in the x̂ direction,
with positive f1 in red and negative f1 in blue

f1(vx) =
9

6
√
2π

vx
v2Te

(1−erf( |vx|√
2vTe

))δT+
vx|vx|
6πv3Te

exp (− v2x
2v2Te

)(9+3
v2x
v2Te

− v4x
v2Te

)δT (1.96)

This distribution has heat flux (1.76) proportionate to the relative temperature

gradient:

qSH = −128

3π
nemev

3
TeδT (1.97)
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Figure 1.9: Spitzer-Härm f1 distribution for δT = 0.01 projected onto the direction
of the temperature gradient.

The SH distribution function (1.95,2.22) is used in section 4.4 to analyze transport

based on IAW spectra observed in OTS experiments.

1.3.3 Non-local Transport

Observing the heat flux (1.97) from the Spitzer-Härm distribution (1.94), we see

that qSH can be arbitrarily high given a sufficiently large temperature gradient. The

electron distribution function at a given temperature, however, has a finite amount

of heat flux in any given direction that can be energetically permitted. If all of the

thermal energy of the plasma was transmitted in one direction at the speed of the

thermal energy for electrons, we would see a heat flux of qf , the free streaming heat

flux:

qf = neTevTe (1.98)

This free streaming heat flux is the maximum theoretical limit of particle heat

transport in a hot plasma. qsh is greater than qf (1.97) for any δT > 0.0736. In

simulations, heat flux is typically limited to some smaller value fqf ∼ 0.1qf , where

the electrons at ≈ 3vTe which mediate most of the heat transport have mean free

paths similar to the temperature scale length.
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Alternatively, non-local approaches can be taken to determine heat transport.

These are often more resource-intensive and can require kinetic modeling of the

plasma. These models strongly reduce heat transport for plasmas with high heat flux

under the local SH model, where δT > 0.06√
Z

[35] [36] [37], and also pre-heat plasma

further from a temperature gradient, as the streaming distance of hot electrons that

carry most of the heat can be much longer than the thermal mean free path, and

comparable to the temperature scale lengths.

1.4 Plasma Experiments

In order to measure some of the phenomena mentioned above in different conditions,

plasmas are created in laboratories by ionizing a target. This ionized plasma then

expands due to its pressure, typically in a shape that can initially be approximated

by a self-similar expansion (1.75) for high-density targets.

Two main methods of ionizing a target to generate plasma are lasers and electric

currents, also known as pulsed power. The MAGPIE pulsed power facility is an

example of the latter technique. Here, capacitor banks run 1 TW of power through

a wire mesh, creating a magnetized plasma [38]. An experiment at this facility is

explored in section 3.5

Laser ablation is used to create plasma in many Inertial Confinement Fusion (ICF)

laboratories. ICF involves the compression of a fuel composed of light nuclei by the

heating and ablation of a shell of plasma around the fuel. This shell can be heated by

lasers directly (Direct Drive, Fig. 1.10) or by laser-produced x-rays (Indirect Drive).

The ablating shell exerts pressure on the fuel, driving it to a higher density and

enhancing nuclear fusion [39].

Two ICF labs using laser ablation are the National Ignition Facility (NIF) and the

OMEGA laser facility. Both use neodymium lasers, with their wavelength converted

from 1053 nm to 351 nm before they enter the target chamber. At the time of this

writing, NIF is the highest energy laser facility in the world, with shots delivering over

32



Figure 1.10: Direct Drive Inertial Confinement Fusion (ICF) cross-section. Drive
beams heat the ablator (brown), causing it to ablate and flow away from the target.
This flow provides an inwards force on the fuel, leading to compression and heating
which create fusion.

2 MJ to the target with 192 beams [40]. An experiment on the ion Weibel (section

1.2.1) instability conducted here is examined below (section 3.4)

OMEGA is a smaller facility with a higher shot rate and advanced diagnostic ca-

pabilities. It delivers over 30kJ per shot with 60 beams [41]. Experiments conducted

here are examined in chapters 3 and 4.

33



Chapter 2

Optical Thomson Scattering

Optical Thomson Scattering (OTS) described in the previous chapter (sec. 1.1) has

numerous observables when spectrally resolved. These observables are sensitive to a

variety of plasma properties, allowing detailed OTS spectra to diagnose most condi-

tions of interest in a plasma. In this chapter, I review the observables present in the

wide band Electron Plasma Wave (EPW, sec. 2.1) and narrow band Ion Acoustic

Wave (IAW, sec. 2.2) and their corresponding plasma conditions.

Figure 2.1: A generic OTS telescope. Scattered light is collected and collimated from
a scattering location in the plasma and passed into a spectrometer.

To observe OTS spectra, light is first collected in a telescope [42] (Fig. 2.1), then

passed through a Czerny-Turner imaging spectrometer [43, 44] (Fig. 2.2) onto a
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Figure 2.2: A Czerny-Turner spectrometer. Light of different wavelengths is separated
in space by a diffraction grating.

Figure 2.3: A streak camera. Spectrally resolved light from the spectrometer (right)
incident on the photo-cathode (yellow) releases electrons, which are accelerated across
some voltage difference V0 towards a phosphor screen (green) connected to CCDs
(black). A transverse time-dependent electric field (left, t1 < t2 < t3) can be applied
to move the electrons perpendicularly to the spectral direction. The CCDs record
light released by the phosphor screen, creating the detected image.

streak camera, where time can be resolved with a time-varying transverse electric

field moving photo-electrons in the streak tube [45] (Fig. 2.3). The geometry of these

processes determines the resolution of the spectrum, as well as the waves sampled

35



in the plasma (sec. 2.3). The attenuation of light in the telescope and spectrometer

affects the shape of the spectrum, and the behavior of the statistical error of the

spectrum is controlled by the properties of the streak camera (sec. 2.4). These

properties can be accounted for to more accurately infer plasma properties from OTS

observables.

2.1 Scattering From Electron Plasma Waves

The electromagnetic waves scattered in the plasma follow the dispersion relation

ω2 = ω2
pe + k2c2, where ωpe is the plasma frequency in the OTS volume. The light

scatters from particles and waves traveling at phase velocity vphase = ω
k
k̂ = ωs−ωL

ks−kL
k̂,

where k̂ is in the direction of the change in momentum ks⃗ − kL⃗. Here ωL and kL⃗ are

the frequency and wave number of the probe beam, and ωs and ks⃗ are the frequency

and wave number of the scattered light.

The quantity of light scattered from the plasma can be described by power Ps [12]

per solid angle dΩ and spectral width dω with the scattering k⃗ determined by the

geometry of the telescope (Fig. 2.1):

dPs

dΩdω
= neLTSPL

r2e
2π

(1 +
2ω

ωL

)S(k⃗, ω)sin2(ψ) (2.1)

Here, re = e2

mec2
is the classical radius of an electron, c is the speed of light, PL is

the power of the probe. The angle ψ is the angle between the scattered light and the

polarization direction of the probe, which is typically controlled to be 90◦ to maximize

Ps. LTS is the length of OTS volume along the direction of the probe, and S(k⃗, ω) is

the spectral density function,

S(k⃗, ω) =
2π

k

⃓⃓⃓
1− χe

ϵ

⃓⃓⃓2
fē

(︂ω
k

)︂
+

2π

k

⃓⃓⃓χe

ϵ

⃓⃓⃓2
Zfī

(︂ω
k

)︂
(2.2)

χα =
ω2
pα

k2

∫︂ ∞

−∞

1

(ω/k − v)

d

dv
fᾱ(v)dv (2.3)

36



where ω is the frequency shift applied to the scattered light, ϵ = 1+χe+χi is the longi-

tudinal dielectric function, and Z is the ionization state. fī and fē denote the velocity

distribution functions of ions and electrons respectively projected onto the direction

of k⃗. This accurately describes the fluctuations in stable plasma, homogeneous at the

scale of the scattering volume.

For Maxwellian plasma, these expressions can be used to evaluate the dispersion

relation of the plasma waves and scattered light. For fᾱ(v) = 1√
2πvTα

exp−1
2
( v2

v2Tα
),

with vTα =
√︂

Tα

mα
, the susceptibility (2.3) can be approximated analytically [12, 32]

for ω
k
≫ vTα:

χα ≈
ω2
pα

k2v2Tα

(︃
−k

2v2Tα

ω2
− 3

k4v4Tα

ω4

)︃
(2.4)

To find the dispersion relation for the EPW at long wavelength, ϵ = 0 = 1 + χe is

evaluated for ω/k ≫ vTe resulting in

ω2 = ω2
pe + 3k2v2Te (2.5)

The EPW spectrum must also be multiplied by the wavelength-dependent sensi-

tivity curve, based on the transmission of light in the OTS apparatus (section 2.1.2).

Both IAW and EPW spectra are then broadened by convolution with the instrument

point spread function to account for the resolution of the measurement.

2.1.1 Scattering Effects of Density Variations

Because the OTS system collects light from finite volumes on the order of 100 µm

(Fig. 2.4) with scattering vectors |k⃗| > 1µm−1, the observed OTS spectrum is a

sum of a variety of locations in the plasma, with slightly different plasma conditions.

Gradients in the plasma can be accounted for by integrating the power spectrum (2.1)

over the scattering volume:
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Figure 2.4: OTS volume shape for the two ω system at the OMEGA laser facility [3],
θ = 60.3◦

dPs

dΩdω
=
r2e
2π

∫︂ ∫︂ ∫︂
neIL(1 +

2ω

ωL

)S(k⃗, ω)sin2(ψ)dr3, (2.6)

where IL = PL/A is the intensity of the probe beam.

In the corona of ablation plasmas, gradients in density are typically much larger

than changes in other plasma properties. These strongly affect the EPW by changing

the frequency shift of the Langmuir waves (2.5).

For the EPW, the highly collective response corresponds to α ≫ 1, where the

parameter α = 1
kλDe

, and λDe =
√︂

Te

4πnee2
is the Debye length, the scale length of

charge screening in the plasma. At high α, the EPW resonance can be very narrow. In

this case, local calculations of the spectrum may not match the effect of a continuous

density gradient. To fix this, gaussian smoothing and a range of densities can be

combined to match the EPW spectra.

The ratio of the OTS volume diameter to the density scale length, LTS/Lne , where

Lne =
⃓⃓⃓
∇⃗ ln (ne)

⃓⃓⃓−1

controls the broadening effect on the EPW. If the OTS volume

is assumed to be cylindrical, the effective total frequency shift of the resonance will

be approximately ∆ω ≈ 0.25ωpeLTS/Lne . This is divided between smoothing and
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density variation based on the number of points.

Transverse to the probe axis (line of kL⃗, Fig. 2.4), the OTS volume has a circular

shape of roughly uniform intensity. Density gradients perpendicular to this probe

axis will have densities sampled with weighting corresponding to the cord length of

the circle: A(x) =
√︁

(1− x2), where x is the distance from the center of the TS

volume divided by the radius. This distribution of locations must be sampled at a

finite number of points to allow computation. If N points are chosen, OTS spectra

are generated at locations xn = −1 + n(2/(N + 1)) where n =1 to N. If the density

is assigned as with ne(x) = n0 exp(xLTS/Lne), the maximum shift in the plasma

frequency (2.5) ωδ between two adjacent points in this range of densities can be used

to estimate the required smoothing. This value ωδ is then used to determine the

portion of the smoothing done with a gaussian filter. A ratio of smoothing to density

variation R = 0.6ωδ

∆ω
appears to be sufficient to smooth contributions from spectra at

different densities, creating a similar spectrum to a continuous density variation (Fig.

2.5).

The total smoothing of the EPW peak ∆ω is then applied by a mix of smoothing

with a gaussian filter and smoothing with a mix of ne values. Shifts in density are

reduced to account for smoothing, with ne(x) = n0 exp(
√︁
1/(R2 + 1)xLTS/Lne), and

gaussian smoothing is applied with a standard deviation of ωsmooth =
√︁
R2/(R2 + 1)0.25ωpeLTS/Lne

(Fig. 2.5).

2.1.2 Background Light and Transmission

The captured image of the EPW typically includes significant self-emission from the

hot plasma in addition to the light scattered from Langmuir wave fluctuations. This

background must be removed to fit the EPW spectrum.

This can be accomplished with an additional shot with no OTS probe, giving a

measurement of the plasma self-emission alone. Alternatively, the self-emission can

be approximated with a linear extrapolation from light outside of the region of the
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Figure 2.5: EPW for multiple OTS locations across a density gradient. LTS/Lne =
0.5, ne = 2× 1020cm−3, Te = 1keV

streak camera where the EPW signal is expected (red lines, Fig. 2.6a). Between the

horizontal lines, the time dependence of the background radiation is measured, and

the region between the vertical lines is used to measure the wavelength dependence.

These are assumed to be independent and multiplied to produce a background radi-

ation image which can be subtracted from the raw signal to produce the EPW data,

shown in Fig. 2.6b.

The EPW telescope, spectrometer, and photo-cathode may all have large variations

in light transmission across the bandwidth of the spectrometer. This transmission

function can be calibrated with a known source, but this can become outdated if

changes are made to the OTS system. The transmission function can be seen to

be out of date if the shape of the transmission function is no longer seen in heavily

damped EPW spectra.

To measure an approximate transmission function, the background can be used.

If the background is assumed to come from a black-body spectrum emitted from the
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Figure 2.6: Thomson scattering images taken in the radial scattering direction, avail-
able at Ref. [46]. a) Raw EPW spectrum, with red lines marking where profiles are
taken for background subtraction. b) EPW spectrum after background subtraction.
c) Raw IAW spectrum, with a red line denoting the probe wavelength. [From [6],
associated dataset available at https://doi.org/10.5281/zenodo.4950679] (Ref. [46]).

hot plasma in the collection volume, the emitted light follows the Planck spectral

radiance of ω2

2π2c3
ωℏ

exp(ωℏ/Te)−1
. The transmission function can be found by dividing the

observed background spectrum by the black-body spectrum at the temperature of

the plasma.

This process has some errors associated with the non-uniformity of the plasma and

non-blackbody self-emission spectra but tends to return the approximate shape of the

transmission function well (Fig.2.7).
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Figure 2.7: Transmission function from calibration (blue) and from black-body spec-
trum and background (red) for the 3ω OTS at NIF

2.1.3 Magnetized Plasma

When magnetic fields are present in plasma, charged particles begin to gyrate at

frequency Ωce =
qB
mc

around the magnetic field lines. Light scattered from scattering

vectors perpendicular to these field lines can contain these resonances [12], separated

by Ωce =
eB
mec

, provided the electrons in the plasma are magnetized: ρe =
vTe

ωce
<< λei

Se(k, ω) = 2
√
π

⃓⃓⃓⃓
1− He

ϵL

⃓⃓⃓⃓2 +∞∑︂
l=−∞

exp(−k2⊥ρ−2
e )Il(−k2⊥ρ−2

e )exp(−(ω − lΩce)
2

2k2∥v
2
Te

)
1

k∥
√
2vTe

(2.7)

He(k, ω) = α2

(︄
1−

∑︂
l

exp(k2⊥ρ
−2
e )Il(−k2⊥ρ−2

e )(
ω

ω − lΩce

)× (2xelexp(−x2el)∫︂ xel

0

exp(p2)dp+ i
√
πxelexp(−x2el))

(2.8)

Where xel = (ω− lΩe)/k∥
√
2vTe, Il is the modified Bessel function of the first kind.
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This results in a spectrum made up of features of spectral width k∥vTe, separated by

frequency Ωce. This means it is only possible to observe these effects for k∥vTe < Ωce

(Fig. 2.8), so only sufficiently large fields change the OTS spectrum.

Figure 2.8: Electron plasma wave for magnetized (red) and unmagnetized (blue)
plasma, with ne = 1 × 1020cm−3, Te = 800ev, B = 100T . The angle is between the
scattering vector and the field changes with wavelength shift and is shown on the right
(blue). The EPW from a 263.25 nm probe with the central scattering vector 87.5◦

from B⃗ and B⃗ 70◦ out of the OTS scattering plane is shown. Here Ωce/kvTe ≈ 0.06

For any magnetized plasma, these conditions are met for a sufficiently small value

of k⃗ · B̂. However, OTS images contain a finite range of angles (Fig. 2.21). This

limits the observable magnetic field to electron cyclotron frequencies greater than the

broadening of the Bernstein waves due to differences in k⃗ (Fig 2.9).

For typical OTS spectra, the EPW spectrometer (Fig. 2.2) is configured to capture

most of the EPW spectrum, or most of the blue-shifted EPW for four-omega OTS.

In these cases, it can be difficult to detect the effects of magnetized electrons due to

the shape and counting of photo-electrons in the streak camera. This both broadens

the resonances of the magnetized EPW and masks the oscillations with random noise
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Figure 2.9: Electron plasma wave for magnetized (pink) and unmagnetized (black)
plasma, with ne = 1× 1020cm−3, Te = 0.8keV , B = 200T , integrated over the range
of scattering angles in the OMEGA 4ω OTS system (Fig. 2.21). The EPW from a

263.25 nm probe with the central scattering vector 87.5◦ from B⃗ and B⃗ 70◦ out of the
OTS scattering plane is shown. The expected signal on the streak camera is shown
on the right.

2.2 Scattering From Ion Acoustic Waves

Ion acoustic waves are electrostatic waves in plasma similar to Langmuir waves with

much lower frequencies due to the higher mass of the ions. The dispersion relation

for these waves can be found from Eq. 2.4, at vTe ≫ ω/k ≫ vT i. This results in the

dispersion relation:

ω2
iaw =

ω2
pi

1 + α2
+ 3k2v2T i (2.9)

Ion acoustic waves in plasma also cause fluctuations in the electron density, which

can be observed with Thomson Scattering. For low Ti and high α, the dispersion

relations can be well approximated by ωiaw = kcs√
1+k2λ2

De

[47] where cs =
√︁
(ZTe/mi).

This shows that the electron temperature can be measured from the IAW spectrum

due to the separation of the IAW peaks.

Because background subtractions and transmission function measurements are im-

perfect, the shape of heavily damped EPW spectra can have large errors when de-

termining the temperature of the plasma. Similarly, errors in electron temperature
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measurements can be introduced in highly collective EPW spectra if density gradi-

ents are modeled incorrectly. To avoid these problems, the IAW separation can more

accurately measure Te as long as the ionization is well understood (Fig. 2.6c).

2.2.1 Damped Ion Acoustic Waves

Like the electron plasma wave, the ion acoustic wave can become heavily damped,

corresponding to ion velocities instead of ion thermal acoustic wave phase velocities.

Unlike the EPW, however, the IAW is affected by both electron and ion properties,

so the transition to heavily damped waves can be caused by a variety of factors.

For Maxwellian ion and electron distribution functions, the IAW damping is af-

fected by ionization (Z), electron and ion temperatures, and the wave number k. We

can see from Eq. (2.3) that the relative electron and ion density also affect the damp-

ing of the IAW. Plasma is generally neutral, with Zni = ne, but for ’beam’ plasmas

with counter-streaming ions, the sample of ions near a certain velocity may have a

lower density nb than the total ion density ni, or Znb < ne. These ion beams can

contain ion acoustic waves identical to thermal plasma, except with a higher effec-

tive electron density, neutralized by ions streaming with a very different velocity and

therefore not contributing to the beam’s waves as shown in figure 2.10. We can take

this into account when analyzing IAW damping by including the factor nb

ni
, which is

1 for thermal plasmas.

The transition is affected by the OTS alpha parameter, α = 1/(kλDe), the ioniza-

tion and temperature Z Te

Ti
, and the ion beam density nb

ni
representing the fraction of

the ion density present in the ion beam of interest.

To determine the state of the IAW resonance shape analytically, the shape of the

function at ω/k ≈ vi where vi is the mean velocity of the ions, can be examined to

determine if it is consistent with resolvable peaks. Taylor expanding the dielectric

function (2.3) in small relative phase velocity vϕ/vT i = (ω/k − vi)/vT i ≪ 1, the

relevant susceptibilities are given by [12]:

45



Figure 2.10: Distribution functions for fe and fi projected onto one direction for
Z = 50 gold plasma, Te = Ti = 1keV for a plasma with an ion beam. The right beam
with nb/ni = 0.1 has ion acoustic waves similar to those of a Maxwellian plasma,
except that the electron density is higher than Znb, with the charge balanced by the
ion around v = 0 which do not otherwise contribute to the beam’s IAW.

ℜ(χi) ≈
nb

ni

ZTe
Ti

ω2
pe

k2v2Te

(︃
1−

v2ϕ
v2T i

)︃
(2.10)

ℑ(χi) ≈
nb

ni

ZTe
Ti

ω2
pe

k2v2Te

vϕ
vT i

(2.11)

ℜ(χe) ≈
ω2
pe

k2v2Te

(2.12)

The derivatives of χe can be neglected as χe varies on the scale of vTe >> vT i. The

second derivative of Si can be evaluated at the mean ion population velocity vi to

find the local curvature of the spectrum around ω/k = vi:

d2Si

dv2ϕ
(k⃗, vϕ)|vϕ=0 =

nb

ni

ZTe
Ti

χ2
efi

ϵ2v2T i

(−πχ
2
i

ϵ2
+ 4

χi

ϵ
− 1) (2.13)

Positive curvature indicates that the feature has the double-peaked mode structure

while negative curvature indicates the feature has only a single peak. The threshold

for double peak structure to be observed may be written in terms of the ratio of the

46



ion density of the flow to the total density and the Thomson scattering α parameter

as

nb

ni

ZTe
Ti

>
1−

√
4− π

π − 3
(1 + α−2) ≈ 0.519(1 + α−2) (2.14)

Typically OTS geometry is chosen to create a high α parameter, so IAW peaks are

visible unless Ti >> ZTe or the ion stream fraction is small.

Negative concavity in the center of the IAW can also be seen for nb

ni

ZTe

Ti
> 1+

√
4−π

π−3
(1+

α−2). These IAWs still have two resonant peaks, but a local maximum is seen between

the peaks at the center of the ion distribution function (Fig. 2.11). This is caused by

the value of ℑ(χi) increasing damping away from vϕ = 0 and by the peak of the fi

distribution.

Figure 2.11: Si and Se for ZTe/Ti = 36

2.2.2 Electron drift

Ion acoustic waves traveling in plasma experience damping from electrons propor-

tionate to the derivative of the electron distribution function at the phase velocity of

the ion acoustic wave. Any asymmetry of the electron flow relative to the ion flow
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will result in asymmetric damping of the IAWs, resulting in different amplitudes for

the red-shifted and blue-shifted waves.

Asymmetry in the electron distribution function can correspond to a current in the

plasma, where the mean electron velocity ve is different than vi, or to heat transport,

where a return current of slow electrons is required to balance the current of heat-

carrying electrons, resulting in a net zero current plasma. For highly collisional plas-

mas with mild temperature gradients, this follows a current-free Spitzer-Härm (SH)

distribution [33] (sec. 1.3.2). This distribution (2.15) diverges from a Maxwellian

linearly with δT = λei
d
dx
ln(Te), where λei is the electron mean free path for ion colli-

sions.

fSH(|v⃗|, vx) = fM(|v⃗|) +
√︃

2

9π
(
|v⃗|
vTe

)4(4− v2

2v2Te

)fM(|v⃗|)δT
vx
|v⃗|

(2.15)

where fM(|v⃗|) is the Maxwell distribution, vTe =
√︁
Te/me and the gradient ∇⃗Te is

anti-parallel to the x-axis.

Since transport and plasma current have equivalent effects on the IAW, we can

find the drift velocity vd = ve − vi required to produce the same asymmetry as an

electron temperature profile with δT = λe
d
dx
ln(Te), where x̂ = k̂. To do this, we

observe the growth rates γ of Ion Acoustic Wave instabilities in current or return

current scenarios.

From [32] p183 Eq6.12, for the ion acoustic wave with phase velocity ωiaw

k
, we have

γ(k) =
α3

(1 + α2)1.5

√︃
Zπme

8mi

k[(vd −
ω

k
)
ω

ωiaw

+ Z
ω

k

√︄
miT 3

e

meT 3
i

exp(− α2

1 + α2

ZTe
2Ti

)] (2.16)

Where ω = ±ωiaw is the IAW resonance frequency and vd is the electron drift

velocity. With ZTe >> Ti and long wavelength limit α ≫ 1 we have

γ(k) =

√︃
Zπme

8mi

k[vd −
ω

k
]
ω

ωiaw

(2.17)

Similarly from [48], Eq 12:
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γ(k) =

√︃
π

8

ω2
pi

ωpe

kλDe

(1 + k2λ2De)
2
[
3

2
cos(θ)

kvTe

ωiaw

δT
ω

ωiaw

− 1] (2.18)

Where θ is the angle to the temperature gradient. Using
√︂
Zme

mi
= ωpi/ωpe, equa-

tion 2.18 becomes

γ(k) =

√︃
Zπme

8mi

ωpiλDe
k

(1 + k2λ2De)
2
[
3

2
cos(θ)

kvTe

ωiaw

δT
ω

ωiaw

− 1] (2.19)

Using cold ion limit, ωiaw =
ωpi√

1+k−2λ−2
De

γ(k) =

√︃
Zπme

8mi

k

(1 + k2λ2De)
1.5

[
3

2
cos(θ)vTeδT − ω

k
]
ω

ωiaw

(2.20)

Taking the long wavelength limit and comparing it to equation 2.17, we can see

that

vd =
3

2
cos(θ)vTeδT (2.21)

This drift velocity produces a slope at v = vi equivalent to the Spitzer-Harm distri-

bution projected onto the vx direction (2.22), shown in fig. 2.12.

fSH(vx) =

∫︂
fSH(|v⃗|, vx)dvydvz (2.22)

We have computed OTS spectra numerically with the Spitzer Harm distribution

function [33]. Using Eq. (2.21), the resulting IAW from the Spitzer Harm distribution

can be compared to the IAW from the equivalent drifting Maximilian:

fdM(vx) =

√︃
me

2πTe
exp(−me(vx − vd)

2

2Te
) (2.23)

This relation seems to match the IAW shape well for δT < 0.006 (Fig. 2.13).

As distinct IAW peaks disappear due to increased ion Landau damping (2.14),

asymmetric Landau damping due to electrons has a less significant effect on the IAW

amplitude. As Si/Se increases, the magnitude of the asymmetry of the IAW can
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Figure 2.12: Spitzer Harm (blue) and drifting Maxwellian (black) distribution func-
tions with the even part subtracted, with vd from eq. 2.21. The slopes of the distri-
bution functions at v = 0 are equivalent.

Figure 2.13: Spitzer Harm IAW (black) and drifting Maxwellian IAW (red) for Z=50
Au
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Figure 2.14: Ratio of ion term to electron term in OTS form factor, using Te=Ti,
α = 2

Figure 2.15: Ion acoustic wave change with 50% increase in Ti for Au and Ne plasma.
Ion acoustic wave asymmetry from Landau damping is sensitive to temperature for
plasma with Z ⪅ 12

become more sensitive to the ion temperature than the electron drift. (Fig. 2.15)

This dependence on the ion temperature appears around ZTe/Ti ⪅ 15 (Fig. 2.14).

For high ZTe/Ti, vd can be determined from the asymmetry of the IAW. The
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ion temperature typically cannot be measured, but it does not affect the relative

amplitudes of the waves. For ZTe/Ti ⪅ 8, the ion temperature can be easily measured

from the shape of the IAW spectrum, allowing the asymmetry to be analyzed with a

known ion temperature. Intermediate Z ions, however, may not determine a unique

drift velocity or ion temperature (Fig. 2.15).

2.2.3 Super-Gaussian effects on Ion Acoustic waves

In laser-heated plasmas, the primary process of heat deposition occurs vie Inverse

Bremsstrahlung (IB): electrons are accelerated by the laser field and subsequently

collide with ions to produce a heated, isotropic electron distribution function[49].

The distribution is driven towards a Maxwellian as electron collision exchange electron

energy. However, for sufficiently high laser intensity and electron-ion collisionality can

maintain a non-Maxwellian distribution. This occurs when Z(vosc
vTe

)2 > 1, [50] where

vosc =
e

ωLme

√︂
2I
cϵ0

is the oscillatory velocity of electrons in the electric field of the laser

of intensity I.

The extent of the super-Gaussian effect can be seen in the parameter 5 ≥ m ≥ 2,

[50] controlling the electron distribution function shape:

fSG0(|v⃗|) =
m

4πΓ(3/m)(
√
2vm)3

exp

(︃
−
(︃

|v⃗|√
2vm

)︃m)︃
, (2.24)

where, v is the speed of the electrons and vm =
√︂

3Γ(3/m)
2Γ(5/m)

vTe , vTe =
√︁
Te/me. From

Fokker-Planck simulations in Ref. [50], for homogeneous laser-heated plasma, a prac-

tical expression for the exponent m(α) is found:

m(α) = 2 +
3

1 + 1.66α−0.724
(2.25)

where α = Z(vosc/vTe)
2

The modification of the electron distribution function also alters the spectral shape

of the Thomson scattered light [51–53]. Although the EPW can be sensitive to many
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parts of the distribution function, the IAW is only affected by fe(vx ≈ 0).

The electron distribution function (2.24) projected onto one spatial dimension (x)

is

f̄SG0(vx) =

∫︂ ∞

−∞

∫︂ ∞

−∞
fSG0(|v⃗|)dvydvz =

1

2
√
2Γ(3/m)vm

Γ(2/m,
vmx

(
√
2vm)m

) (2.26)

where Γ(a, x) =
∫︁∞
x
ta−1e−tdt is the incomplete gamma function. From (2.3,2.26), we

can find the susceptibility function for electrons [54] at ω/k ≈ 0:

χe(ω = 0) =
Γ(1/n)Γ(5/n)

3Γ(3/n)2
1

k2λ2De

(2.27)

Figure 2.16: Electron susceptibility function (left), (2.3) and ωiaw (right) as a function
of super-Gaussian order m, using Te = Ti = 1keV , ne = 2× 1020cm−3 in Au plasma,
Z = 50

We can see that super-Gaussian electron distributions require high Z plasma (2.25),

as vosc ≫ vTe typically results in unstable plasma and cannot be sustained long

[50]. This results in IAW frequency ω2
iaw ≈ ω2

pi

1+χe(ω=0)
, as seen in figure 2.16. Be-

cause χe(ω = 0)(2.27) is proportionate to 1
Te
, the IAW spectrum in a super-Gaussian

electron distribution is identical to the IAW spectrum from a Maxwellian electron

distribution with a higher temperature. A super-Gaussian plasma where the IAW

is fit with a Maxwellian electron temperature of Te0 will have a true temperature of

Te =
Γ(1/n)Γ(5/n)

3Γ(3/n)2
Te0
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2.2.4 Collision Effects on OTS

Equation (2.2) is valid for electron density fluctuation correlations at the wave vector

k⃗ and frequency ω that evolve according to collisionless Vlasov theory and originate

from discrete particle noise. For high-Z plasmas, the evolution of density fluctuations

is modified by ion-ion collisions when kλii ≪ 1, where the wave number k corresponds

to the density fluctuations that are tested in OTS and λii is the ion-ion mean free path

for thermal ions. At the same time, electron collisions are often negligible in typical

laser-produced plasmas because kλei ≫ 1 and can be neglected when calculating

S(k⃗, ω). The ion collisions, however, can change the asymmetry of the IAW peaks

and are therefore crucial to the measurement of heat transport in high Z plasma.

Modifications of the IAW spectrum due to damping by ion-ion collisions typically

are superseded by spectral resolution and pulse front tilt [43], but collisions are impor-

tant in determining the relative amplitude of the IAW peaks. At kλii ≈ 0.1, typical

in high Z coronal plasmas, ion damping is at the cusp of the transition between

collisional and collisionless Landau damping (cf. Fig. 3 of Ref. [47]) and therefore

a theory of S(k⃗, ω) requires proper treatment of the weakly collisional limit usually

associated with nonlocal transport. The magnitude of the damping coefficient of the

IAW due to ion collisions is small, comparable to electron Landau damping.

The theory of plasma fluctuations is derived in Ref. [55] for arbitrary collision

frequencies and particle noise sources. Because only ion-ion collisions are important

for the fluctuations tested in OTS measurements of Au plasma, we approximate

results of Ref. [55] by keeping collisional ion-ion terms in ion response functions

that are evaluated for the ion Maxwell distribution functions. All terms involving

electron collisions are dropped and the dynamical form factor is given by the following

expression:

Sc(k⃗, ω) =
2π

k

⃓⃓⃓
1− χe

ϵc

⃓⃓⃓2
fē

(︂ω
k

)︂
+

2

ω

⃓⃓⃓χe

ϵc

⃓⃓⃓2(︃ k

kDe

)︃2

Im[χc
i ]
Ti
Te
, (2.28)
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where ϵc = 1 + χe + χc
i and χ

c
i(k⃗, ω) is the ion susceptibility function calculated with

the effects of ion-ion collisions and defined by Eq. (28) of Ref. [55]. In the limit of

collisionless ions Sc(k⃗, ω) (2.28) takes the form of S(k⃗, ω), Eq. (2.2).

Figure 2.17: IAW spectrum from gold plasma, Z=50, Te=2 keV, Ti=1 keV, ne=2.25×
1020cm−3 and ve = −60km/s (kλii ≈ 0.1). The black dotted line shows the spectrum
with no ion collisions, and the red line shows the spectrum including the effects of
ion collisions, normalized to have the same peak amplitude. (From [6])

Application of Sc(k⃗, ω) (2.28) to the interpretation of the OTS spectra is important

for the modeling of the ion peak asymmetry. While ion collisions do not significantly

shift the measured wavelengths of IAW peaks or substantially modify their widths, the

collisional damping does modify the relative amplitudes of the two peaks. Fig. 2.17

illustrates the effects of including ion-ion collisions on this asymmetry by comparing

results with calculations using the collisionless S(k⃗, ω) Eq. (2.2).

2.3 Geometric Effects

OTS systems are composed of many optical components designed to limit the signal

observed to a sufficiently small range of scattering vectors to allow isolated features to

be identified. However, these restrictions to the observed light must be balanced with

light throughput optimization. The scattering cross-section for OTS (2.1) is small and

typically scatters on the order of 1 × 10−6 of the probe power, requiring significant
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solid angles of acceptance for light collection to transmit a sufficient signal to the

streak camera (section 2.4.3). This means the range of directions of light permitted

in the telescope (Fig. 2.1) and the optics involved in the spectrometer may result in

some changes to the OTS spectrum (2.6).

2.3.1 Range of scattering vectors

When measuring the shape of the IAW spectrum, cf. Fig. 2.6c, it can be important

to account for wavelength-dependent broadening caused by the range of angles in

the probe beam and collection optics [56]. This has two separable effects: changing

the direction of k⃗ in the plasma, and changing the scattering angle, or equivalently,

the size of |k⃗| (Fig. 2.18). The measurement of flow velocity vi is controlled by the

direction of k⃗. When k⃗ and vi are parallel, changes in the direction of k⃗ by a small

angle have no significant effect on the spectrum. Changes in |k⃗|, however, will shift

each part of the spectrum, roughly in proportion to its phase velocity. This effect is

detailed in [8].

The sets of all accepted probe and collection directions exist as a pair of spherical

cones. For either of these cones, and wave vector k⃗
′
permitted through the system

must have arccos
(︂

k⃗
′·k⃗0

|k′||k0|

)︂
≤ δθmax, where δθmax is the half-angle of the cone and k⃗0

is the nominal wave vector of the cone (either k⃗L or k⃗s).

The angular changes of the wave vectors that affect the OTS spectrum are typically

confined to a plane. This could be the k⃗vi⃗ plane when plasma flow is not aligned with

k⃗, or the OTS plane kL⃗ ks⃗ when the stretch of k is relevant, or the k⃗ B⃗ plane when

a strong magnetic field is present. In any case, the deviation of angle in the plane δθ

in either the probe or collection cone is of interest for any k⃗
′
in plane with normal P̂ .

The relevant angle of deviation can be defined as δθ = arctan
(︂
( k⃗

′

|k′| −
k0⃗
|k0|) · (1− P̂ )

)︂
for light scattered at wave vector k⃗

′
.

The set of all k⃗
′
with angular deviation δθ in a cone of angle δθmax has a limited

range of angles in the P̂ direction. If this limit is δθ⊥, we have the relation of a circle:

56



Figure 2.18: OTS angle effects with stretch (left) of angle δθs and tilt (right) of angle
δθt of the scattering vector k. The altered k vector is shown in red, with the nominal
scattering k in black. The range of angles permitted in the probe and collection cones
are shown in blue.

δθ2max = δθ2 + δθ2⊥. Normalizing to find the relative intensity f(δθ) (Fig. 2.19) of

transmitted light at angle δθ in the plane of interest, we find

f(δθ) =
2

πδθ2max

√︁
δθ2max − δθ2 (2.29)

The range of OTS scattering angles that determine |k⃗| is simply the convolution

of the function (2.29) for the probe f0(θ) and collection fc(θ) (Fig. 2.19):

fs(δθs) =

∫︂ ∞

−∞
f0(δθs − τ)fc(τ)dτ (2.30)

The range of angles in the tilt of k⃗ depends on the plane of interest. The tilt of

k⃗ in the direction perpendicular to the scattering plane is identical to the range of

’stretch’ angles (2.31), but tilt in the OTS plane is more restricted: For changes of

stretch and tilt angles δθs, δθt and angular spread functions for probe and collection

f0 and fc, tilt angles in the OTS plane are distributed
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Figure 2.19: Range of angles present in the probe (blue) and collection (red),
Eq.(2.29), and the resulting distribution of stretch angles (green), Eq. (2.31) as a
function of angular deviation δθ from the normal wave-vector.

ft∥(δθt) =

∫︂ ∞

−∞
f0(0.5δθs + δθt)fc(0.5δθs − δθt)dδθs (2.31)

where the probe angular deviation is δθ0 = 0.5δθs + δθt and the collection angular

deviation is δθc = 0.5δθs − δθt.

For an arbitrary angle of interest θTS, (Fig. 2.20) for the relevant tilt direction out

of the scattering plane and a k⃗
′
angle out of the OTS plane of θp, the relevant tilt

angle is θt = sin(θTS)θp + cos(θTS)(δθ0 − 0.5θs). The deviation of k⃗
′
out of the OTS

plane can be described as θp = θa + θb, where θa is the angle the probe strays put of

the OTS plane and θb is the angle the collection strays out of the OTS plane.

If we then define θ0 as the angle by which the probe wave vector strays from its

nominal value kL, we can define the deviation of the collection wave vector in the

OTS plane as θc = θs− θ0, where θs is the stretch angle, as we see in Eq. (2.31). This

allows a full distribution of stretch and tilt angles to be calculated by integrating over

all probe angles θ0:
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Figure 2.20: OTS wave vectors (also seen in Fig. 2.18) viewed from with the OTS
plane. v⃗ (black, top right) defines the component of the direction of interest in the

plasma not captured by k⃗: v⃗ · k⃗ = 0. This defines the angle θTS, the angle between
the OTS plane and the v⃗k⃗ plane relevant for tilt (2.32). Deviation of k⃗ out of the

OTS plane is shown in green: this determines the angle θp that k⃗
′
points out of plane.

ft(θs, θt) =

∫︂ ∞

−∞
dθ0

∫︂ √
δθ20max−θ20

−
√

δθ20max−θ20

dθa

∫︂ √
δθ2cmax−(θs−θ0)2

−
√

δθ2cmax−(θs−θ0)2
dθbf0(θ0)fc(θs − θ0)

δ(θt − sin(θTS)(θa + θb)− cos(θTS)(θ0 − 0.5θs))

(2.32)

This displays a distinct shape based on θ0max and θcmax in the OTS plane, and an

isotropic shape when out of plane, seen in figure 2.21.

To reproduce this effect in calculated OTS spectra, (2.1) can be integrated over

f(θs, θt) with scattering angle changed by θs and projections of vi changed by θt.

2.3.2 Pulse front tilt

The IAW spectrum is also affected by pulse front tilt due to the range of path lengths

available to the scattered light in the spectrometer [43], [56]. This range of path

lengths causes a measured IAW spectrum to be composed of a range of times up to

before or after the nominal time, with weighting falling off with a circular shape:
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Figure 2.21: Distribution of scattering angles for the OMEGA laser facility, with an
f/6.7 probe and f/10 collection. Angles out of plane θTS are a) 0◦, b) 30◦, c) 60◦, d)
90◦

fpft(t) =
2

πt2max

√︁
t2max − t2 (2.33)

where tmax is the maximum extent of the pulse front tilt in time.

The value of tmax is determined by the geometry of the IAW spectrometer (Fig.

2.2). Each adjacent groove in the diffraction grating has a light travel time difference

of m 2π
ωL

, where m is the diffraction order. The time difference from the center of the

beam to the edge is then

tmax =
πNm

ωL

(2.34)

where N is the number of illuminated grating grooves [43].

The short time deviations caused by pulse front tilt primarily affect the IAW spec-
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trum by widening the IAW peaks, as slowing flow velocities and cooling temperatures

move the location of the resonance on the streak camera. This does not affect the

total light captured from each IAW resonance, instead distributing this light to pro-

duce a lower, broader peak. This can be matched by adding broadening to the IAW

spectrum or by integrating S(k, ω) over plasma parameters weighted by (2.34).

2.4 Signal, Background and Resolution

When OTS spectra are recorded on a streak camera, the resulting image is mostly a

count of photo-electrons hitting the CCD, with some much smaller CCD read noise.

These photo-electrons can come from OTS scattering (2.1) or from plasmas self-

emission or other non-OTS processes that compose the background of the shot. This

background can be subtracted, leaving the original image (Sec. 2.1.2).

When the background signal is large or the OTS scattered light is small, the sig-

nal can disappear or be significantly changed by statistical noise in the signal and

background. These effects can be quantified to assess potential measurement errors

[1].

2.4.1 Scattering Amplitude of the EPW

Scattering cross-sections for OTS are important both for determining the probe power

required to make desired measurements of plasma conditions and for analyzing possi-

ble driven waves or other features in plasma that can increase scattering cross-sections.

The shape and scale of the EPW spectrum from homogeneous plasma with a

Maxwellian electron distribution function are entirely determined by the scattering

geometry, electron temperature, and electron density.

The total value of S(k⃗, ω) corresponding to the electron plasma wave can be seen

in the first half of (2.2). Integrating this value across all frequencies shows the total

scattering form factor SEPW
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SEPW =

∫︂ ∞

−∞
Se(k⃗, ω)dω =

∫︂ ∞

−∞

2π

k

⃓⃓⃓⃓
1

ϵ

⃓⃓⃓⃓2
fē

(︂ω
k

)︂
dω (2.35)

the integral of
∫︁∞
−∞

⃓⃓
1
ϵ

⃓⃓2
dω at the resonance ℜ(ϵ) = 0 can be approximated for linear

ℜ(ϵ) as
∫︁∞
−∞

1
ℑ(ϵ)2+ω2( d

dω
ℜ(ϵ))2

dω. Since there is a red-shifted and blue-shifted EPW,

this is multiplied by 2 for the full spectrum:

∫︂ ∞

−∞

⃓⃓⃓⃓
1

ϵ

⃓⃓⃓⃓2
dω ≈ 2π

ℑ(ϵ) d
dω
ℜ(ϵ)

(2.36)

At the EPW resonance, we can write the dielectric functions ϵ = 1 + χe (2.3) for

thermal plasma [12] are

ℑ(ϵ) = α2

√︃
π

2

ω

kvTe

exp (−0.5
ω2

k2v2Te

) (2.37)

ℜ(ϵ) = 1 + α2 − α2

(︄
ω

kvTe

exp (−0.5
ω2

k2v2Te

)

∫︂ ω
kvTe

0

exp (−0.5p2)dp

)︄
= 0 (2.38)

d

dω
ℜ(ϵ) = 1

kvTe

(︃
ω

kvTe

− kvTe

ω
(1 + α2)

)︃
(2.39)

using the EPW shape parameter α = ωpe

kvTe
. From these expressions, we can approxi-

mate the total form factor as

SEPW =
4πα−2

ω2

k2v2Te
− (1 + α2)

(2.40)

using the EPW dispersion relation from Eq. 2.5, this reduces to

SEPW = 2πα−2 (2.41)

This expression can be seen to approximate the EPW amplitude well for high α,

where the EPW frequency is well-defined. Low α measurements have a more diffuse

spectrum that is not as well approximated by a resonance (2.5).
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Figure 2.22: Total EPW amplitude
∫︁∞
−∞ Se(k⃗, ω)dω as a function of α (left). The

approximation 2πα−2 (2.41) is shown in black. On the right the cross-section is shown
multiplied by density for Te = 1keV plasma, making it linear with the scattered power
(2.1)

The EPW typically has a different shape than a symmetric resonance, contributing

to some discrepancy in amplitude (Fig. 2.22).

While Electron density increases the OTS α parameter, the scattered power is

linear with density, so for high α spectra the scattered power approaches a constant

with increasing density (Fig. 2.22).

2.4.2 Scattering Amplitude of the IAW

The IAW feature is more commonly enhanced, due to instabilities ([48, 57]) or anoma-

lous collisionality. These effects can be detected if the IAW spectrum is seen to have

an amplitude significantly larger than the thermal spectrum.

Similar to the amplitude of the EPW form factor, the IAW amplitude can be found

by integrating Eq. 2.2. The IAW spectrum involves contributions from both terms

of (2.2), which both contribute the majority of the spectrum in different parameter

regimes. These are shown below:

S(i)IAW =

∫︂ ∞

−∞
Si(k⃗, ω)dω =

∫︂ ∞

−∞

Z2π

k

⃓⃓⃓χe

ϵ

⃓⃓⃓2
fī

(︂ω
k

)︂
dω (2.42)
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S(e)IAW ≈
∫︂ 2ωIAW

−2ωIAW

Se(k⃗, ω)dω =

∫︂ 2ωIAW

−2ωIAW

2π

k

⃓⃓⃓⃓
1 + χi

ϵ

⃓⃓⃓⃓2
fē

(︂ω
k

)︂
dω (2.43)

the value of
⃓⃓
1
ϵ

⃓⃓2
at the resonance ℜ(ϵ) = 0 is approximated as in (2.36). At the IAW

resonance, the dielectric functions ϵ = 1 + χe + χi (2.3) for thermal plasma [12] are

ℑ(ϵ) = α2

√︃
π

2

ω

kvTe

+ α2ZTe
Ti

√︃
π

2

ω

kvT i

exp (−0.5
ω2

k2v2T i

) (2.44)

ℜ(ϵ) = 1 + α2 + α2ZTe
Ti

− α2ZTe
Ti

(︄
ω

kvT i

exp (−0.5
ω2

k2v2T i

)

∫︂ ω
kvTi

0

exp (−0.5p2)dp

)︄
= 0

(2.45)

d

dω
ℜ(ϵ) = 1

kvT i

(︃
ω

kvT i

(1 + α2)− kvTe

ω
(1 + α2 + α2ZTe

Ti
)

)︃
(2.46)

At ω/k ≪ vTe, |χe| ≈ α2, and at the IAW resonance, ℜ(1 + χi) = −ℜ(χe) = −α2

and ℑ(χi) is shown in (2.44). Using ωIAW from (2.9), the two terms of the IAW form

factor to be approximated as:

S(i)IAW =
2πZα2

1 + α2

1

ZTe

Ti
+
√︂

Time

Temi
exp (1

2
(( α2

1+α2
ZTe

Ti
+ 3))

(2.47)

S(e)IAW =
2πα2

1 + α2

1 + π
2
Z2T 2

e

T 2
i
( α2

1+α2
ZTe

Ti
+ 3) exp (−( α2

1+α2
ZTe

Ti
+ 3))

1 +
√︂

Temi

Time

ZTe

Ti
exp (−1

2
( α2

1+α2
ZTe

Ti
+ 3))

(2.48)

SIAW = S(e)IAW + S(i)IAW (2.49)

This amplitude matches the IAW scattering cross-section well for high ZTe/Ti,

where the IAW spectrum has a well-defined resonance, as seen in figures 2.23 and

2.24.
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Figure 2.23: SIAW from S(k, ω) (2.2, left) and from (2.49, right) for Carbon plasma,
Te = 1keV .

Figure 2.24: SIAW from S(k, ω) (2.2, yellow) and from (2.49, black) for Carbon
plasma, Te = 1keV , ne = 1× 1020cm−3.

2.4.3 Photo-electron noise

After light from OTS travels through the spectrometer, photo-electrons are created at

the photo-cathode which are pulled through the drift tube to impact the scintillator

attached to the CCD screen (Fig. 2.3). However, photo-electrons are not typically

confined to one pixel (Fig. 2.25). This causes correlations in adjacent bins of the

OTS spectrum and determines the statistical error of the measurement.

To observe the correlation between adjacent CCD pixels, the dark regions of an

OTS image can be observed, where individual photo-electrons can be identified (Fig.

2.25). These photo-electrons can be measured for their total integrated signal (G)
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Figure 2.25: In dark regions of OTS spectra, the effects of individual photo-electrons
can be identified.

and width (rCCD). Away from any visible photo-electrons, the pixel variance will be

the CCD read noise σ2
rn.

Each photo-electron will also have some variability in the total counts deposited.

If this has an RMS value of δG, the total variance can be found to be proportionate

to the noise factor F 2 = 1 + δG2

G2 , which is typically close to 1 [1, 58]. For an OTS

image smooth on a larger scale than the CCD reading scale rCCD, the variance of

photo-electron signal in a pixel with reading Ai is σ
2
p = AiGF

2.

The OTS image is typically summed over durations comparable to the pulse front

tilt time (2.34) to increase signal. If n pixels are summed over and An = Σn
i=1Ai, then

σ2
s = AnGF

2 (2.50)

This spectrum then has a corresponding covariance matrix K composed of the

photo-electron signal and the CCD read noise:

K = (Iσ2
s) ∗ g + Inσ2

rn (2.51)
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where g is the gaussian shape used to match the spread of CCD pixels excited by one

photo electron: g(x) = 1√
2πrCCD

exp (− x2

2r2CCD
), where x is the deviation in pixels from

the original location.

This covariance matrix can then be used in to fit data and find parameter errors

[1]. Once a theoretical spectrum is found to match the data, the quality of the fit can

be assessed using the covariance matrix.

Using the range of wavelengths as x⃗, a vector of wavelength values with each pixel

as a dimension, the covariance matrix can be used to normalize the residuals by their

expected variance. For a measured spectrum y⃗ and fit spectrum f⃗ , the residuals are

then defined as r⃗ = f⃗ − y⃗. The covariance-normalized sum of the residuals is then:

S = r⃗TK−1r⃗ (2.52)

Based on the statistics of the photo-electrons and read noise, this value should

follow a chi-squared distribution with degrees of freedom ndf = L(r⃗) − nfit, where

L(r⃗) is the number of pixels in the spectrum, and nfit is the number of parameters

adjusted to fit the data. This can be used to determine the likelihood of the summed

residual S being higher than the observed value with a different set of random photo-

electron and pixel read noise, determining the set of plausible spectra. This set can

be approximated by S ≈ ndf , the expected value of the chi-squared distribution.
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Chapter 3

Counter-Streaming Plasmas

The self-generation and amplification of magnetic fields in high-energy-density (HED)

plasmas has attracted significant interest in the last decades due to its importance in

inertial confinement fusion (ICF) experiments [59, 60] and for laboratory astrophysics

studies [19, 20]. In ICF, magnetic fields impact heat transport and may relax the

conditions required for ignition [61]. In laboratory astrophysics, the characterization

of magnetic fields produced by plasma instabilities is central to the study of the

formation of collisionless shocks [21, 62] and their ability to accelerate particles.

Diagnostics of magnetic fields in HED experiments are typically limited to pro-

ton radiography [19, 63, 64] and Faraday rotation [65]. These techniques can only

provide line-integrated measurements over the path of the probing protons or laser.

Furthermore, proton radiography, the most commonly used diagnostic, cannot eas-

ily distinguish between electric and magnetic field deflections. The reconstruction of

the path-integrated fields measured by the protons becomes significantly more chal-

lenging for strong fields, where caustic structures emerge [66]. In cases where the

magnetic field structure is modulated at scales smaller than the scale of the plasma,

retrieving the field structure from these diagnostics becomes even more difficult. This

is the case for the filamentary magnetic fields produced by the Weibel instability in

counter-streaming plasmas [2, 3, 19, 67] or the turbulent fields amplified by small-scale

turbulent dynamos [68].

68



OTS techniques can be used to provide local, model-independent measurements

of the ion and electron currents in the plasma, from which the magnetic field can

be accurately inferred. The application of this technique to the Weibel instability in

counter-streaming plasmas is demonstrated using particle-in-cell (PIC) simulations.

3.1 Theoretical and simulated field growth

The ion Weibel instability is a fundamental plasma instability that drives the forma-

tion of current filaments and amplification of magnetic fields due to velocity anisotropy

in plasmas [24, 69] (sec. 1.2.1). Here we consider the model of the instability associ-

ated with plasma streams counter-propagating and interpenetrating without slowing

each other down. In initially homogeneous and unmagnetized plasmas, the insta-

bility grows from the random, small-scale fluctuations in the plasma density and

velocity, or in the electromagnetic fields. These fluctuations introduce small currents

in the plasma along the flow propagation direction. The magnetic fields associated

with these currents pinch co-propagating ion streams into filaments with wavevectors

transverse to the flow propagation direction, amplifying the initial fluctuations[22].

The amplification of the current filaments enhances the magnetic fields, forming a pos-

itive feedback loop that drives the growth of the instability. If a region of the plasma

smaller than one of these filaments can be probed, the evolution of the instability can

be observed by the characteristics of the filament.

The current growth eventually saturates, after which filaments can merge to form

larger structures [70, 71], break due to secondary kink-type instabilities [72], and

become turbulent. These instabilities are believed to dominate the formation of col-

lisionless shocks in weakly magnetized environments, such as young supernova rem-

nants and gamma-ray bursts [21]. They are expected to play an important role in

the acceleration of charged particles [73] and in their radiative processes in these

environments [74, 75].

The astrophysical plasmas associated with the Weibel instability are almost entirely
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collisionless. Coulomb collisions in counter-streaming plasma can slow the growth of

the Weibel instability [76]. To maintain consistency with the low density astrophysical

plasmas, laboratory astrophysics counter-streaming plasma experiments have used

large spacing of targets to achieve low densities and high temperatures, similarly

mitigating the effects of collisions on the ion Weibel instability [76, 77]. For this

reason, we analyse the collisionless form of the Weibel instability here.

Plasma have been observed to undergo ion heating from the ion two-stream instabil-

ity [13],[78] which is then stabilized by the ion and electron temperature equilibrium.

This stabilization allows the ion Weibel instability to grow unimpeded.

For a thermal collisionless plasma streaming at speed vi, the current filaments form

with wavevectors k⃗ perpendicular to the streaming direction and with the most un-

stable wavelengths typically around the ion inertial length scale c/ωpi. The amplitude

of the current grows as I ∝ eγt, where γ is the linear growth rate of the instability.

It is useful to recast these parameters in dimensionless (sec. 1.2.3) form using

Γ = γc/(ωpivi) (3.1)

and K = kc/ωpi. Assigning coordinates with x in the flow direction and y in the

direction of k⃗, the temperature-dependant instability growth rate can be computed

by solving [22]

Γ = K

v2i +v2Tix−v2Tiy

v2Tiy
+ mi

Zme

v2se+v2Tex−v2Tey

v2Tey
−K2 − Γ2 v

2
i

c2

Di +De

(3.2)

where

Di =
vi
vT iy

(︄
v2i + v2Tix

v2T iy

)︄√︃
π

2
exp(ξ2i )erfc(ξi) (3.3)

De =
vi
vTey

mi

Zme

(︄
v2i + v2Tex

v2Tey

)︄√︃
π

2
exp(ξ2e )erfc(ξe) (3.4)

ξi =
Γvi√
2KvT iy

, ξe =
Γvi√
2KvTey

(3.5)
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here vTαx =
√︁
Tαx/mα, vTαy =

√︁
Tαy/mα, where α = e, i and vse is the streaming

velocity of the electron population. Equation (3.2) for the growth rate γ, of the Weibel

instability is derived [22] for Maxwell distribution functions with nonzero average flow

velocities of electrons and ions and with anisotropic temperatures along x (direction

of the flows) and y (transverse direction corresponding to the unstable k-vectors).

In typical counter-streaming plasma experiments conducted at OMEGA [3, 78–

80], the plasma streams consist of fully ionized beryllium or plastic plasmas with

electron and ion temperatures Te ≈ Ti ≈ 1.0 keV, and flow velocities of ≈ 1000km/s

(vi/c ≈ 0.0033). Although the electrons initially expand out with the velocities of

two interpenetrating ion populations, vse = vi, the electrons are highly collisional and

are therefore expected to isotropize quickly [29], with electron-ion collisions on the

order of 50 ns−1 leading to vse = 0. A similar intra-stream ion collision rate works

to isotropize the ion temperatures. Using the above equations we calculate for the

beryllium plasma case with isotropic temperatures that the fastest growing mode is

K = 0.8, with a growth rate of Γ = 0.35 and corresponding γ = 3.2ns−1 (similar

values are obtained for a carbon plasma). Thomson scattering diagnostics available

at HED experimental facilities routinely resolve time scales shorter than 100ps for

several nanoseconds, presenting the possibility for direct measurement during the

linear phase of the instability.

In order to investigate the evolution of the Weibel instability for the conditions

of current HED experiments, two-dimensional (2D) simulations were run with the

fully electromagnetic, explicit PIC code, OSIRIS 4.0 [81],[82]. I modeled a beryl-

lium plasma (A/Z = 9/4) using a realistic ion-to-electron mass over charge ratio

mi/(meZ) = 4131, unlike typical PIC simulations of these HED systems, which tend

to use reduced values mi/(meZ) ≲ 100. This allows for a more realistic evolution of

the distribution functions.

Both ions and electrons are initialized with drifting Maxwellian distributions stream-

ing at speed vi in the x direction with vTe = 13.4vi and vT i = 0.104vi. These relations
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are the same as those found in typical double-flow experiments. In these simulations

we scale up all flow and thermal velocities by a factor of 10, giving a flow velocity

vi/c=0.03. This is done to reduce the computational cost of the simulations and to

improve numerical accuracy. The evolution of purely electromagnetic instabilities in

counter-streaming plasmas can be rigorously scaled between systems with different

flow velocities (sec. 1.2.3), provided they remain non-relativistic [83]. The nature and

characteristics of the instability in our simulations are therefore expected to match

those of the experimental conditions, albeit while developing on a faster time scale.

Because the simulation is run at a higher velocity scale, it is possible that electro-

static instabilities may grow at a slower rate relative to electromagnetic instabilities

than would be the case in a typical experiment. However, scaled simulations have

been seen to accurately capture the evolution of counter-streaming plasmas [67, 77].

For this reason, we expect the simulations to be an adequate tool to test OTS mea-

surement techniques, even though the resulting plasma may differ from experiments

due to electrostatic instabilities.

The simulations have a box size of 60c/ωpi in the flow direction and 5c/ωpi in the

transverse direction. This domain is resolved with 15360 by 1280 cells, providing

4 grid points per electron skin depth. Each cell is 0.57 Debye lengths, allowing

electrostatic interactions to be resolved.

The simulation is run for a duration of 4.45 × 104ω−1
pe in time steps of 0.175ω−1

pe .

The plasma then propagates a length through the counter-streaming plasma a length

L = tvi. At the end of the simulations, the plasma flows have propagated a distance

L = 23c/ωpi. The length L the plasma has traveled is a useful metric, as it shows

the number of growth lengths the plasma has passed through which indicates the

progression of instability independent of the velocity scale (3.1). For this reason, we

proceed to label times in the simulation with their L value.

Electrons and ions were simulated with 64 particles per cell, in order to have a

large enough number of particles to properly resolve the distribution functions locally
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Figure 3.1: Initial ion density at times corresponding to propagation distances of
0 (black), 11c/ωpi (blue), 14c/ωpi (green), and 18c/ωpi (red), (a) and simulated ion
current along x for times when the plasma propagation distances is (b) 11c/ωpi, (c)
14c/ωpi, and (d) 18c/ωpi, with green current in the +x direction, and purple in -x. A
sample OTS box is shown in red. (From [2])
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Figure 3.2: Simulated growth of magnetic field energy from the Weibel instability
is shown in blue, plotted against the plasma propagation distance (proportionate to
the time elapsed). In blue the magnetic energy density within 27c/ωpi < x < 33c/ωpi

is shown. The theoretical growth rate of the magnetic energy is shown in red. (From
[2])

in the simulation. Numerical convergence tests indicate that this number of particles

is sufficient to provide an accurate description of the evolution of the instability and

to produce accurate synthetic OTS spectra which are analyzed below.

The plasma flows are initialized with the simple density profile illustrated in Fig.

3.1 a). The density of each flow ramps up over a length of 10 c/ωpi, remains flat over

a further 10 c/ωpi, and finally ramps down over 5 c/ωpi. The initial profile for the

species streaming in the +x direction is

n

n0

=

{︄ 0.25(1− cos(π
xωpi

5c
)) xωpi/c ≤ 5

0.5 5 < xωpi/c ≤ 15

0.25(1 + cos(π
xωpi/c−15

10
)) 15 < xωpi/c ≤ 25

(3.6)

The electron and ion species streaming in the −x have a symmetric profile with

respect to the center of the simulation box x = 30c/ωpi. The two flows are initially

separated by a vacuum region of 10c/ωpi and start interacting at the center of the

simulation box, where filamentation develops, as shown in Fig. 3.1 b)-d). The figure

illustrates how after a few tens of ion skin depths of interpenetration, current filaments

form in the plasmas at the expected wavelength of ∼ c/ωpi. After the leading electrons
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first stream across the vacuum and the ions begin counter-streaming, the associated

magnetic energy grows exponentially with a measured growth rate in good agreement

with the theoretical growth rate of (3.2) for the initial parameters of the simulation

(Fig. 3.2).

3.2 Validation of OTS Analysis with PIC simula-

tions

In order to validate OTS theory and measurements of the current structure in the

plasma, we must also verify that non-equilibrium electrostatic fluctuations do not

affect this measurement. The electrostatic ion two-stream instability [78, 84–87] grows

faster than the Weibel instability and is observed in PIC simulations. However, this

instability saturates at low levels of fluctuations via ion trapping and heating and

affects parts of the spectrum of density fluctuations that are not measured by the

OTS diagnostic. Figure 3.3 shows the modes produced by the two-stream ion and

Weibel instabilities, illustrating how they are well separated in k-space from any

density fluctuations measured by Thomson scattering in the kx direction.

The filamentation of the plasma leads to modulations in the ion current at the ion-

inertial length scale. This ion current may simply be viewed as the local difference in

the density of the two streams. When the OTS scattering volume is smaller than this

length scale the average density of the two streams within the scattering volume cam

be different. The density of each ion stream relative to the total density will change

based on the location of the Thomson scattering volume in the plasma, as can be

seen in Fig. 3.1.

The mean electron velocity will also vary, as electrons are driven in the direction

screening the ion current. These changes can be parameterized using the mean elec-

tron velocity, ve, and by n1/ni, where ni = n1 + n2, with n1 being the density of ions

flowing parallel to k⃗, and n2 being the density of ions flowing anti-parallel to k⃗. As-

suming the individual populations are Maxwellian, the ion and electron distribution
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Figure 3.3: Simulated modes in electron density at L=18c/ωpi. In (a) we see that
amplitude of modes excited by ion two-stream instability decrease with increasing k,
which means that the high-k measurements taken with OTS will not scatter from
these modes. OTS samples modes on the order of kx ≈ kD = 145ωpi/c. (b) shows
effects on electron density associated with the ion Weibel instability. (From [2])

functions f fit
i∥ (vx) and f

fit
e∥ (vx) may be written,

f fit
i∥ (vx) =

1

vTi

√
8π

(︄
n1

ni

e
−(vx−v1)

2

2v2
Ti +

n2

ni

e
−(vx+v2)

2

2v2
Ti

)︄
(3.7)

f fit
e∥ (vx) =

1

vTe

√
2π
e

−(vx−ve)
2

2v2
Te (3.8)

These are parameterized by 6 variables, ve, n1/ni, the ion and electron temperatures

Te and Ti and the flow speeds parallel and anti-parallel to the probed k⃗, v1 and v2.

An example of such a set of distribution functions and the corresponding expected

OTS spectrum are displayed in Fig. 3.4, calculated using plasma parameters relevant

to our PIC simulations and experimental results [79]. The OTS spectra are plotted

as functions of the wavelength of scattered light, λs = 2π/ks, for a probe wavelength

λ0 = 526.5nm. The one-dimensional distribution functions in Fig. 3.4 are evaluated in

terms of phase velocities vph = ω/k and plotted as functions of wavelength: vph = ω/k,
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Figure 3.4: Example of IAW OTS spectrum (red) for counter-streaming plasmas with
drifting Maxwellian ion distribution fi(vx) (blue) with n1/ni=0.9. Black curves show
electron distribution fe(vx) for ve = 0 (solid) and J=0 (dashed). The red curves show
the OTS spectra corresponding to both cases, respectively. Spectra are generated
with Z = 4, Te = Ti = 1 keV, v1/c = v2/c = 0.0033 and λ0 = 526.5 nm (green) (From
[2])

λs = λ0(1− vph/c). The typical ion acoustic spectra shown in Fig. 3.4 correspond to

two counter-streaming, interpenetrating plasmas: the blue-shifted feature with two

distinct ion acoustic peaks for plasma flowing in the k̂ direction and the red-shifted

feature for plasma flowing in the −k̂ direction. The asymmetry between the two

features is affected by the relative density of the two streams in the OTS volume, as

detailed in section 2.2.1 and Eq. (2.14). In Fig. 3.4, n1/ni = 0.9 and n2/ni = 0.1,

however, these ratios will depend on the position of the OTS volume with respect

to current filaments and therefore assume arbitrary values in the simulations and

experiments.
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3.2.1 Current features in OTS spectra

Although the ion Weibel instability is electromagnetic and therefore has no direct

Thomson Scattering effect, the resulting plasma structures can be measured with

OTS. The ion flow density ratio n1/ni can be determined based on the relative am-

plitude of the two features corresponding to oppositely moving flows as seen in figure

3.4. Together with the stream velocities seen in the Doppler shift of the modes, this

determines the ion current of the plasma.

For electrons described by a Maxwellian distribution function (3.8), the drift ve-

locity ve affects the relative amplitudes of the forwards and backward propagating

wave within both of the ion streams, as explained in section 2.2.2. In Eq. (2.17), we

see the damping of the IAW is proportionate to (ve − vi − ω
k
) ω
ωiaw

: the difference in

speed between the center of the electron distribution function and the phase speed

of the IAW. In typical counter-streaming plasma with ve < vi, this leads to more

damping of the outer wave in both the blue-shifted and red-shifted streams, reducing

their amplitude and creating asymmetry within each beam’s ion acoustic modes.

An electron velocity closer to the velocity of the ion stream will make the ion stream

in question more symmetric, as the change in the slope of the electron distribution

function between the phase velocities of the red-shifted and blue-shifted modes in the

stream will be smaller. This can be seen in the blue-shifted stream in Fig. 3.4.

Together with the ion parameters, this asymmetry feature determines the current

per particle along the direction of the scattering vector.

J

ene

=
n1

ni

v1 −
n2

ni

v2 − ve (3.9)

This current density in the fit distribution functions is then the measured current

in the OTS volume of the analysed plasma.
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3.2.2 OTS spectra in simulations

To generate an OTS spectrum from a PIC simulation, a small region corresponding

to the OTS scattering volume is chosen in the center of the plasma flow interaction,

as illustrated in Fig.3.1. This box is extended in the flow direction in order to include

more particles in the scattering volume.

An OTS box must be smaller transversely than the current filament width to mea-

sure filamentation. The simulated box extends 0.31 c/ωpi in the transverse direction,

covering half a filament. Simulated distribution functions f sim
e∥ (vx) and f

sim
i∥ (vx) are

constructed by splitting the particles within this OTS volume into velocity bins of

10−4c for electrons and 10−6c for ions, or 345 bins spanning 2vT i. These distribu-

tion functions can then be used to calculate synthetic OTS spectra at multiple times

throughout the simulation, allowing us to study how the evolution of the plasma

influences the scattered light spectrum.

The velocity distribution functions obtained in the simulation are scaled down

in velocity by a factor of 10 to correct for the increased simulation velocity, and

generate distribution functions comparable to those of the current experiments [83].

To guarantee consistency with the shape of the initial distribution, we replace f fit
e∥ (vx)

by a Jüttner distribution. We note, however, that in the velocity range of interest

for our analysis, near the IAW modes, the Jüttner and Maxwell distributions are

equivalent and would yield similar results.

The derivatives of the distribution functions obtained in the simulations are then

used to calculate the susceptibility functions χ (2.3). For ions, this derivative is

computed numerically, but for f sim
e∥ (vx) the derivative around IAW phase velocities

is small compared to fluctuation in the distribution function due to noise associated

with the limited number of particles present in PIC simulations. To avoid numerical

errors in this calculation, the derivative is computed based on a Maxwellian fit to the

distribution function.

79



Figure 3.5: Synthetic OTS spectra from PIC at propagation distance L=19c/ωpi

with fit OTS spectrum. Mesured conditions are 0.94 keV Be ion, 1.51 kev electrons
streaming at 0.0032c with n1/ni=0.254 and J=-0.000418 en0cx̂. (From [2])

Having created an OTS spectrum from the simulations, the shape of this spectrum

can then be fitted with an OTS spectrum generated using Maxwellian distribution

functions of Eqs. (3.7) and (3.8) (cf. Fig. 3.5). We consider an OTS laser probe

wavelength of 526.5 nm. The parameters used to fit the spectrum determine the

measured current in the direction of the k-vector of the fluctuations based on Eq.

(3.9).

The magnetic field corresponding to the current filaments can be estimated from

Ampère’s law, ∇ × B = (4π/c)J , as Bz ≃ (4π/c)J/∆y, where ∆y is the size of

the OTS volume in the y direction. Note that we have neglected the contribution

of the displacement current, which is indeed observed to be negligible in the PIC

simulations.

Figure 3.6 shows a comparison of the currents and magnetic field obtained directly

from the particle distributions in a PIC simulation with those determined by fitting
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the synthetic OTS spectrum generated from the PIC distribution functions with the

OTS dynamical form factor, Eq. (2.2), calculated assuming Maxwellian distribution

functions, Eqs. (3.7) and (3.8).

The dots in Fig. 3.6 are total and ion currents obtained from the Maxwellian fits to

synthetic spectra, as is also done for experimental spectra. The solid lines indicate the

parameters as determined through direct integration of the PIC distribution functions.

For these calculations, the numerical distribution functions were summed over the

OTS scattering volume indicated in Fig. 3.1. The evolution of the plasma current

obtained from OTS is in good agreement with the simulation results. The change in

the magnetic field is also correctly captured. Our results thus indicate the ability of

this novel technique to measure the local evolution of the currents and magnetic field

in HED plasmas.

The errors in the estimate of the total current with the OTS technique observed in

Fig. 3.6 are primarily due to the development of small non-Maxwellian tails in the ion

distribution functions. This is illustrated in Fig. 3.7. When the phase velocities of

the ion acoustic resonances in the OTS spectra are well above the thermal ion velocity

and the current present in the plasma is small, deviations in the OTS spectrum caused

by tails in the ion distribution will affect the peak asymmetry within each flow. This

will impact the accuracy of the electron current calculation because ve is used to

control this asymmetry in the fits of the OTS spectra.

The impact of the ion tails on the ion acoustic modes is proportional to their

relative phase density at the phase velocity of ion acoustic modes, vϕ. For highly

supersonic flows, vϕ is [88]

vϕr = ur ± cs

√︄
nr

ni

1

1 + k2/k2D
, (3.10)

where r = 1, 2 is the index corresponding to each of the flows, uj is the fluid velocity

of each flow, nj is the corresponding ion density, and cs =
√︁
ZTe/mi is the sound

speed in the plasma.
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Figure 3.6: Comparison of the currents and magnetic field obtained from fits of
synthetic OTS spectra (points) and directly inferred in the PIC simulations (solid
curve) at two different locations in the plasma centered on (a) y=3.28 c/ωpi and (b)
y=3.88 c/ωpi. (From [2])
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Figure 3.7: Deviation of the ion distribution function in the flow direction from a
Maxwellian, at early (a) and late (b) times in the simulation. The relative deviation
present in the spectrum at the phase velocity of the IAW is also shown (c). At early
times, faster ions arrive earlier, contributing to a tail towards higher velocity, while
at later times, the streams begin to slow, creating tails towards lower velocity. (From
[2])

83



In the PIC simulation, we observe that in the time interval L = 15c/ωpi − 20c/ωpi,

centered at y = 248c/ωpe, the ion distribution function develops small deviations

from Maxwellian at vϕ, which lead to an average asymmetry of 2.4% between the

amplitudes of the ion acoustic peaks of each flow. When averaged over both flows,

however, the relative asymmetry was only 0.8%, as both flows tended to develop

similar tails, either towards higher or lower velocities (Fig. 3.7). This asymmetry

corresponds to an error in the electron current of 0.0018en0c, which dominates the

error observed in Fig. 3.6.

It is important to note that for the typical experimental conditions that we have

considered the inter-flow collisionality is very low (meaning that the mean free path

for collisions between the two flows is large), but the intra-flow collision frequency

(collisions within each flow) can be large[29], on the order of 50 ns−1. This means

that Coulomb collisions will act to keep the distribution of each flow approximately

Maxwellian and help prevent the development of ion tails described here. The present

PIC simulations are collisionless and thus do not take this effect into account. There-

fore, the errors observed in the total current estimate are likely overestimated by the

ion tails obtained in the collisionless PIC ion distribution simulations.

3.2.3 Simulation growth rate analysis

From a time-resolved measurement of the current in a Weibel unstable plasma, it is

possible to measure the growth rate of the instability. As the OTS measurement is

local, it is important to evaluate the role that spatial fluctuations in the current will

have on the growth rate measurement. In order to investigate the accuracy of the

growth rate measurements from a single OTS measurement, we have measured the

growth rate from different locations to determine its consistency. The total current

and the ion current at each location were fit with exponential growth in time to

determine the rate. These measurements were then compared with the growth rate

obtained over the entire simulation box, which was shown in Fig. 3.2 to be in good
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Figure 3.8: Growth rates from total current (a) and ion current (b) seen from a
half-ion skin depth box in different locations are Γ = 0.31± 0.13 for the total current
and Γ = 0.98±0.15 for the ion current, where as the expected rate is Γ = 0.32. (From
[2])

agreement with theory (3.2). This comparison is shown in Fig. 3.8. The measured

growth rate of Γ = 0.31 ± 0.13 compares well with the growth of the field averaged

over the x direction of the OTS volume of Γ = 0.32.

As ion currents can be measured more reliably than electron currents in the early

phase of the instability (Fig. 3.6), it would be more attainable experimentally to

measure the growth of the ion current with high precision. To evaluate the uses of a

measured ion current growth, it is useful to evaluate the relative growth between the

ion and electron currents. We observe that the growth rate of the ion current is much

larger than that of the total current (Fig. 3.8). This is associated with the temporal

evolution of the electron current, which is non-monotonic and needs to be considered.

We can see in Fig. 3.9 that the electron current grows first and reverses direction

during the growth of the ion current. The initial growth of the electron current is

associated with a fast phase of electron Weibel instability. Before the bulk of the

ions counter-stream, the electrons are largely collisionless over a very small distance

between the plasmas. The fast electrons from each of the flows counter-stream in the

interaction region. This leads to the generation of an electron filamentary current

and associated magnetic field.

85



Figure 3.9: Growth of ion and electron Jx in the OTS volume. Electrons start
forming current filaments around L = 7c/ωpi. The ions start responding and become
unstable around L = 8c/ωpi. As the ion current grows the electrons transition into
screening the ion current. During this transition, the ion current grows much faster
than the total current. (From [2])

As the ions start to respond and become unstable, this magnetic field can seed the

growth of the ion Weibel instability, which will lead to an ion current with the same

sign as the initial electron current. However, the further growth of the magnetic field

will give rise to an inductive electric field that will try to balance the ion current. This

will ultimately lead to the reversal of the electron current in the plasma during the

linear phase of the ion Weibel instability. These results indicate the richness of the

microscopic dynamics associated with this instability and highlight the importance

of measuring both the ion and electron currents to accurately model the evolution of

the instability.

3.3 Magnetic Field Measurement from Experimen-

tal Data

The technique developed in the previous sections was applied to experimental data

obtained at the OMEGA laser facility [3] (sec. 1.4). Two parallel beryllium foil

targets separated by 5mm were shot with a 1 ns 3.5 kJ drive laser, as shown in figure
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Figure 3.10: Target configuration of counter-streaming plasma experiment. Be foils
are illuminated with the 3ω drive, shown in blue. Plasma counter-streams between
the two targets, forming current filaments (green and purple). The 2ω OTS probe

(red) and collection (black) are arranged to measure a wave vector k⃗ parallel to the
plasma flow.

3.10. In the center of the counter-streaming ablating plasma between the two foils,

a 526.5 nm f/6.7 probe beam is focused and collected at 60.3◦ by an f/10 reflective

telescope, resulting in a scattering k⃗ parallel to the flow.

Experimental ion acoustic spectra [3] (Fig. 3.11) were fitted with the dynamic form

factor S(k⃗, ω), (2.2), generated assuming Maxwellian electron and ion distributions to

determine the average current per particle in the same way as it is done with synthetic

spectra in section 3.2. A representative OTS spectrum is shown in Fig. 3.12 at 4.3

ns after the start of the laser drive. The density of the plasma is found by fitting the

electron OTS feature, which also provides the electron temperature (cf. Fig. 3.12 a).

This temperature is then used when fitting the ion spectra. Together these determine

ion and electron temperature, density, and flow velocity as well as the ion and total

current.

Because the experimental OTS volume has different widths normal to the direction
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Figure 3.11: IAW spectrum from counter-streaming plasma, with an OTS probe
wavelength of 526.5 nm. The blue-shifted feature can be seen to be greatly enhanced
above the red-shifted feature for the majority of the shot. (From [2])

of the current, the relation between the field and the current observed in the OTS

window depends on the width of the filaments for small filament sizes. We consider

a simple current sheet sinusoidal model for the magnetic field with wavelength 2df

given by

Bz(y) = B0sin

(︃
πy

df

)︃
, Jx(y) =

B0c

4df
cos

(︃
πy

df

)︃
. (3.11)

We make a conservative estimate of the magnetic field strength by assuming that

the OTS volume is centered in y in the middle of a current filament. The current is

then numerically integrated over the volume of the OTS volume, which determines

the average current measured in the region, ⟨J⟩TS (df ) =
∫︁
V
d3rJx(y)/V , where V is

the OTS volume as seen in Fig. 2.4. The average value of the current in the whole fil-

ament, ⟨J⟩f =
∫︁ df/2

−df/2
dyJx(y)/df , is also computed. The quantity J ⟨J⟩f / ⟨J⟩TS (df )

represents the ratio by which a measured current in an experimental OTS volume

must be scaled to accurately measure the average current in a filament.

The magnetic fields of the ion Weibel instability are primarily driven by current.

In this case, Ampere’s law can be simplified to

∇× B⃗ = 4πJ⃗/c (3.12)
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Figure 3.12: (a) Electron/EPW and (b) Ion/IAW OTS spectra (dotted blue) from
counter-propagating Be plasmas are shown at 4.3 ns from the start of the drive laser.
The corresponding fits of the OTS spectra (solid red) lead to the measurement of ne =
1.95± 0.2e19cm−3, Te = 0.53± 0.08keV , Ti = 0.26± 0.05keV , v1 = 0.0020± 0.0001c,
v2 = 0.0017± 0.0001c, n1/ni = 0.98± 0.01, and ve = 0.0014± 0.0003c. (From [2])
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In a 2D simulation of the Weibel instability with ẑ out of the simulated plane, we

can further simplify this to dBz

dy
= 4π Jx

c
. The magnetic field surrounding a symmetric

current sheet with total current linear density I/Lz =
∫︁
J⃗dy would then be B = ±2πI

Lzc

In a 3D current, however, the field corresponding to the current (3.12) is spit over

the two perpendicular directions. In a cylinder of uniform current density Jx, the

field in a given direction changes at a lower rate than a 2D current sheet.

At any radius r, the current will create and an azimuthal magnetic field of strength

|B| = 2πJr
c

. If we select an arbitrary vector y, z from the center (defined as B = 0), we

can observe that Bz =
2πJy
c

and By = −2πJz
c

. The two terms in (3.12) are equivalent:

dBz

dy
= −dBy

dz
. This means we can divide Amperes law 3.12 equally for both directions:

dBz

dy
= 2π

Jx
c

(3.13)

For this reason, a factor of 0.5 is applied to the magnetic field from this current sheet

analysis to approximate the field strength in a more complex 3D filament structure.

When calculating the amplitude of the magnetic field, this simplified version of

Ampere’s law is integrated over the radius of a filament, df/2. The measured OTS

current is used along with the scaling factor J ⟨J⟩f / ⟨J⟩TS (df ). The measured mag-

netic field amplitude B0 from a measured current J is then

B0(df ) =
2π

c

df
2
J

⟨J⟩f
⟨J⟩TS (df )

(3.14)

Between 3.5 and 4.5 ns from the start of the shot, we observe in OTS spectra that

the current density is approximately constant and has a value of (6.0±0.6)×1011A/m2

(Fig. 3.13). A sample measurement is shown in Fig. 3.12. For this current density in

the OTS window with an unknown filament width, we estimate a minimum magnetic

field value at saturation of 0.268 MG (Fig. 3.14), from (3.14).

The capability to measure the current locally using the OTS technique presented

here provides a powerful way of estimating the magnetic field directly from exper-
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Figure 3.13: Current measured by OTS over the duration of the counter-streaming
plasma (IAW seen in figure 3.11). (From [2])

Figure 3.14: Magnetic field amplitude (blue) inferred from the experiment as a
function of filament size, based on current density in the OTS region (Fig. 2.4) for
cylindrical filaments scaled by the 2D field model (Eq. 3.14). The theoretical Alfvén
limit BA (purple) and magnetic trapping limit BT (light blue) are also shown. (From
[2])
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iments without the need to incorporate additional information from simulations to

deconvolve path-integrated measurements. Based on these magnetic field measure-

ments, we can for instance benchmark saturation models for the Weibel instability.

Different mechanisms have been discussed in the literature, with the most common

being the Alfvén limit [23], where the ion gyroradius equals the filament wavelength,

BA ∼ (mivi)/(2Zedf ), and magnetic trapping [22], where the bouncing frequency

of the ions inside the filaments reaches the growth rate of the Weibel instability,

BT ∼ mivi
Ze

ω2
pi

c2
df
π
. For the parameters of our experiments with vi ≈ 600km/s, both of

these mechanisms are fairly consistent with the measured field for filament widths df

between 130 and 230 µm (Fig. 3.14).

The measured lower bound of the magnetic field corresponds to a ratio of mag-

netic energy density to kinetic energy density σ = B2
sat/(4πnimiv

2
i ) = 0.011, which

is consistent with previous numerical studies [21] and values inferred from proton

radiography and corresponding simulations [77].

Using a different experimental configuration, filament width can be measured si-

multaneously with the current [3], yielding a specific field measurement. This is

accomplished by tilting the foils (Fig. 3.15), causing the counter-streaming plasma to

drift in the transverse direction. Arranged in this way, the filaments travel past the

OTS volume, leading to many filaments being measured over the course of a shot, as

seen in figure 3.16.

The flow speed in the transverse direction can be assumed to be 0.47× the flow

speed measured by OTS, since the targets are tilted at 25◦ out of the counter-

streaming direction. This velocity can be integrated over time to determine the y

distance the plasma has traveled, revealing the filament width (Fig. 3.17). The mag-

netic field can be calculated along the path of the OTS volume by integrating the

current, assuming a cylindrical current filament geometry (3.13). This results in fields

reaching 30T , also consistent with a magnetic energy density to kinetic energy density

ratio σ = B2
sat/(4πnimiv

2
i ) ≈ 0.01.
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Figure 3.15: Target configuration of tilted counter-streaming plasma experiment [3],
with targets tilted 25◦ in the transverse direction. Be foils are illuminated with the
3ω drive, shown in blue. Plasma counter-streams between the two targets, forming
current filaments (green and purple). The OTS probe (red) and collection (black)

are arranged to measure a wave vector k⃗ parallel to the current filaments, while the
plasma passes the OTS volume transversely due to the flow induced from the tilt of
the targets.

Figure 3.16: IAW spectrum from counter-streaming plasma with tilted targets, caus-
ing the OTS volume to pass through multiple filaments over the course of the shot.
(From [3])
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Figure 3.17: Measured parameters in the y direction from OTS data from tilted
targets (Fig. 3.13). The measured current is shown in green, with a corresponding
field amplitude in blue dots. The red dotted line shows a possible current profile
which, when convoluted with the OTS volume shape resulting in the solid red line,
matches the measured current fairly well. This current profile produces the field seen
in the blue crosses, exceeding 40T .

Using the profile of current measurements in y, the field measurement can be

somewhat improved by noting that the OTS volume will spread out the effects of

current on the OTS spectrum in space, which will roughly have the effect of spreading

out the measured current. Finding a current density J(y) that convolutes with the

OTS volume to approximately match the measured current, we find the peak magnetic

field can exceed 40T , as seen in Fig. 3.17.

3.4 Shock signatures in OTS data

When Weibel-unstable plasma counter-streams over a sufficient interpenetration dis-

tance, the magnetic filaments can grow, merging with nearby filaments to increase in

size [89]. This can lead to the filaments themselves becoming unstable [72], slowing

the counter-streaming plasma without collisions, and leading to the formation of a

shock [21, 62]. These shocks are important processes in astrophysics [19, 20] due to

their capability to accelerate particles [4].

At NIF, counter-streaming plasma targets were shot in order to generate colli-
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Figure 3.18: Density (left) and temperature (right) as measured from the EPW
spectra in the CD2 shots. Density of counter-streaming, non-interacting plasma is
also shown with a dotted line at 2× the single stream ne. Excess density above this
value in the two-flow case indicates shock formation.

sionless shocks [4]. These targets were arranged similarly to figure 3.10, but with a

separation distance of 25mm between foils composed of CH2 or CD2 plastic. Foils

were irradiated with 0.455MJ of 3ω light to drive the expanding plasmas towards

each other.

3.4.1 Shock formation

In a counter-streaming shot conducted at NIF (sec. 1.4) with CD2 foils, the EPW

spectra were captured in double-foil and single-foil shots. This allows for a comparison

of density between a single flow of plasma and counter-streaming plasma (Fig 3.18).

The counter-streaming plasma exceeds 4× the single flow density in the first few ns

of the shots, indicating that the plasma compresses.

In the hypothetical plasma conditions of two non-interacting counter-streaming

flows, at 8ns the plasma would have an ion-ion collision mean free path of ≈ 80cm.

In the real counter-streaming plasma experiment, the plasma is already highly com-

pressed at this time. This compression can only come from collisionless shock forma-

tion due to the ion Weibel current filaments [4].

Significant electron heating is also seen in the counter-streaming case (Fig 3.18)

corresponding to the time of shock formation. X-ray self-emission from this heated
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Figure 3.19: EPW (left) and IAW (right) spectra from the CH2 counter-streaming
shot. The probe wavelength is shown in red on the IAW spectrum.

region indicates that the shock extended≈ 5mm. This scale determines the maximum

electron energy that the shock can contain to be ≈ 500keV , consistent with energies

observed in the experiment [4].

3.4.2 Ion Heating

In a counter-streaming shot conducted with CH2 foils, the IAW spectra were captured

along with the EPW spectra. The background from the EPW spectra affected both

images and was subtracted as shown in section 2.1.2, with a black-body self-emission

profile used to estimate transmission. The cleaned EPW and IAW spectra are shown

in figure 3.19.

The IAW spectrum allows for the measurement of the ion temperature, as well as

flow velocity. As ions can be scattered by turbulent magnetic fields in the plasma,

they are strongly heated around shock formation, when much of the kinetic energy in

the flow is converted to thermal energy in the ions (Fig. 3.20). This quickly damps

the IAW spectrum for all but the first few ns of the shot, which is also moderately

damped from the beginning of the shot by the presence of the lower mass hydrogen

ions. With the damped IAW spectrum it is not possible to measure current as was

done in section 3.3. The flow velocities of the plasma and the temperature of the

carbon still appear in the phase velocities of the damped waves.
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Figure 3.20: Carbon temperatures measured from the CH2 shot IAW spectrum.

Figure 3.21: Carbon (left) and Hydrogen (right) blue-shifted stream and red-shifted
stream flow velocities, measured with the IAW spectrum (Fig. 3.19).

The release of kinetic energy by the flow can be seen in the deviation of the flow

velocity from self-similar expansion (1.75). Figure 3.21 shows the self-similar velocity

vss = L/t + cs of plasma expansion in yellow, which is consistent with the initial

speeds observed in the plasma around 6ns. The flow velocity of the carbon ions slows

faster than the self-similar solution as the ions heat (Fig. 3.20).

Hydrogen ions have a smaller contribution to the IAW spectrum than carbon (sec-

tion 2.4.2) making their properties more difficult to determine among the stronger

signal from the carbon ions. However, the flows of hydrogen ions can be seen to slow

down earlier than the carbon ions (Fig 3.21) as their higher q/m ratio makes them

more susceptible to the forming magnetic shock.

The measured density in the CH2 shot can inform us of other dynamics in the

plasma as well. The shot initially has substantially lower densities (Fig. 3.22) than
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Figure 3.22: Density (left) and temperature (right) as measured from the EPW
spectra in the CH2 counter-streaming shot.

Figure 3.23: Electron (green) and ion (pink) thermal pressure in the CH2 counter-
streaming shot. The rapid change in electron pressure at ≈ 13ns is equivalent to the
magnetic pressure of a 140T field.

the CD2 shot (Fig. 3.18) even after electron heating indicates the shock has formed.

Later in the shot at 12.8 ns, we see the density rapidly increase, almost doubling

over the course of 1 ns. At the same time, the electron temperature drops much more

rapidly than at any time in the CD2 shot.

The thermal pressure of electrons increases sharply as the density increases, despite

the falling temperature. The rapid increase in thermal electron pressure Pe = neTe

is equivalent to the magnetic pressure PB = B2

2µ0
with B = 140T (Fig. 3.23). This

magnetic pressure is consistent with collisionless shock simulations [4].
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Figure 3.24: Measured probe power (black) and probe power used for IAW fit (red)

These observations are consistent with the OTS volume being traversed by large

turbulent structures. A high field region of the turbulent shocked plasma could oc-

cupy OTS volume initially, with B ≈ 140T balancing the total pressure with the

surrounding plasma despite the lower density in the observed region. Turbulent ion

dynamics could expand the high-density region, pushing into the OTS volume and

causing the rapid increase in density. If this is the case, we see a significantly higher

temperature electron population in the high-field region, as the electron temperature

rapidly drops when the higher density plasma arrives (Fig. 3.22).

The amplitude of the scattered light observed can indicate the presence of various

instabilities. This can be seen when an enhancement of the scattered power appears,

despite the power of the OTS probe beam remaining constant (2.1). We can compare

the measured power of the probe beam to the change in power needed to match the

observed spectra, as seen in figure 3.24. The EPW spectrum is proportional to the

input probe energy, but the IAW spectrum significantly increases in power for ≈ 2ns,

ending at 12.8 ns at the same time as the density increase. This may indicate some

ion acoustic instability in the highly magnetized region.
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3.5 Magnetic Re-Connection

When counter-streaming collisionless plasma is strongly magnetized, counter-streaming

can be prevented at large scales by magnetic pressure and subsequent magnetic in-

teractions. If fields of the two colliding plasmas are anti-parallel, this can lead to

another kind of current structure, formed by magnetic re-connection. Anti-parallel

magnetic fields annihilate and reconnect (Fig. 3.25), releasing energy [25, 26]. This

process results in a current sheet separating the two anti-parallel fields, driven by a

global E⃗ field, balanced to E ≈ 0 outside of the re-connection layer by v⃗ × B⃗ drift.

Reconnection is essential for understanding space plasmas [26]. The converging

magnetized plasmas and released energy also contain the capability to accelerate

charged particles, making re-connection in astrophysical plasmas a candidate for cos-

mic rays seen on earth [90, 91].

Models of magnetic re-connections have changed from static arrangements with

uniform current sheets to super-alfvenic flows and transient unstable cycles of current

sheet formation and plasmoid instability [27, 92]. For these reasons, the structure,

formation, and time dependence of the current sheet involved in a reconnecting plasma

are necessary to confirm the dynamic nature of re-connection processes.

At the MAGPIE facility, [38] (section 1.4) re-connection experiments were run with

a pulsed power plasma, which applies 1MA of current over ≈ 0.5µs [5]. This creates

a long-lasting re-connection layer (Fig. 3.25).

Measurements of the IAW spectrum were taken at fourteen locations along the

probe. These spectra have resolvable peaks in the center of the plasma, (Fig. 3.26)

but the IAW is more heavily damped farther from the current sheet (2.14) due to

lower electron temperatures (Fig. 3.27). The peaks in the IAW spectrum allow for

the measurement of the current in the ẑ direction, via the asymmetric damping of the

IAW peaks (section 2.2.2). Ion and electron flow velocities vi and ve are measured,

with ions in the current sheet flowing in the +ẑ direction, and electrons in the ẑ
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Figure 3.25: Magnetic Re-connection experimental configuration on MAGPIE. Cur-
rent is run through aluminum wire meshes (grey) in the −ẑ direction to produce
magnetic fields (blue). The magnetized plasmas collide in the center, causing the
anti-parallel magnetic fields to undergo re-connection. The OTS locations are shown
in the center, taken with k⃗ in the ẑ direction. [5, 93]

direction (Fig. 3.25). Similarly to (3.9), we calculate Jz = ene(vi − ve) producing

Jz > 0 as seen in figure 3.28.

The lack of clear peaks in the IAW spectra far from the center of the experiment can

lead to large errors when determining the current at |x| > 0.4mm, where x = 0 is the

midpoint of the two wire arrays (Fig. 3.25). To obtain a more robust measurement of

the magnetic field, we can use a Harris sheet model [94] to force the majority of the

current measurement to be made in the central sheet where the IAW is well resolved.

This profile is often used in re-connection environments to model the current sheet,

with shape

Jz(x) =
cB0

πL

exp (2x/L)

(exp (2x/L) + 1)2
(3.15)

where B0 corresponds to the amplitude of the current, and L to its radius. Using

Ampere’s law with steady state conditions (dE
dt

≪ J) we have dBy

dx
= 4π

c
Jz with which

we can write the corresponding magnetic field as
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Figure 3.26: IAW data (blue) and fit (red) examples from the 14 positions across the
shot, with position 8 (left) at x = 0.02mm, within the current sheet, and position 10
at x = 0.27mm, close to the edge of the current sheet, where x = 0 is the center of
the experiment. [5]

Figure 3.27: Left: Election (red) and Ion (blue) temperatures as measured by IAW
spectra. Right: Electron density profile, measured with interferometry.

By(x) = B0
exp (2x/L)− 1

exp (2x/L) + 1
= B0 tanh (

x

L
) (3.16)

The length L can be found via density measurements of the plasma, where the

current sheet in the center is ≈ 0.3mm in radius [95], restricting most of the current

to the well-resolved IAW spectra (3.26). This results in a field strength of 9.2± 0.7T .

The current measurements from OTS can also be integrated directly to determine the

field, which is similar to the Harris sheet result (3.28).

This magnetic field is significantly higher than the Faraday rotation measurement

of the upstream plasma, which reaches only 4 T . The Faraday probe, however, cannot
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Figure 3.28: Current (green, left) and magnetic field (blue, right) measured from
IAW spectra (×) with error shaded in. A Harris current sheet with radius 0.3mm is
fit to the current (solid lines) with amplitude B0 = 9.2± 0.7T

measure the field near the current sheet due to refraction from the increased density

gradient [96]. It is possible, therefore, that the OTS current measurement corresponds

to field pile-up, where the magnetized plasma pushes more field to the center faster

than the initial re-connection rate [96, 97], causing the field to compress and increase

in amplitude.
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Chapter 4

Particle Transport

In order to investigate the properties of heat transport and the capability of OTS

to directly measure its effects, we investigated laser-ablated Au plasma [6]. Electron

heat flux in ICF plasmas is a kinetic process. It remains an outstanding problem,

and is the subject of much active research within the ICF field [98].

Improving our understanding of thermal transport under ICF hohlraum-relevant

plasma conditions will facilitate the development of predictive models that can be used

to design new and better hohlraums via simulations before significant experimental

testing is preformed. Here we are able to show some discrepancies between simulations

and experimental measurements of heat transport in the corona of ablation plasmas,

even while simulations accurately match the plasma conditions. This discrepancy is

found early on in the heating process, similar to macroscopic models of hohlraum

plasma evolution which have also found the need to artificially lower heat flux early

on in laser shots [99, 100].

4.1 Spherical Target Experiments

The plasmas studied in this chapter are produced in directly-driven experiments con-

ducted at the OMEGA laser facility at the Laboratory for Laser Energetics, University

of Rochester (sec. 1.4). Targets are metal coated plastic spherical bead targets [7, 8]

with a radius of 430 µm.
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Electron heat flux can be quantified using measurements of the temperature and

density gradients and the particle distribution functions [33, 80, 101–103]. We use

a combination of optical Thomson scattering (OTS) measurements and radiation-

hydrodynamic simulations of the plasma dynamics to determine the properties and

profiles of the coronal plasma. Vlasov-Fokker-Planck (VFP) simulations of the parti-

cle kinetics are used to characterize the particle distribution functions. The spectral

effects of these distribution functions within the OTS scattering volume are used to

measure particle heat flux.

4.1.1 Experimental Setup

This chapter primarily explains the analysis of heat flux in a gold sphere shot, outlined

in Ref. [8]. To summarize, the gold target is a 0.86 mm diameter gold coated bead.

Its surface is heated using 59 of the OMEGA heater beams (Fig. 4.1); one beam is

used to generate the OTS probe. Phase plates are used to shape the beam intensity

at the target to produce a smooth intensity distribution over the target surface of

5 × 1014W/cm2 for 2 ns, delivering 21.9kJ (Fig. 4.2). The surface of the sphere is

ablated and expands rapidly outwards as a hot plasma, which is measured with a

Thomson probe.

OTS spectra (seen in Fig. 2.6) were taken in the corona at approximately 735 µm

from the sphere center, (305 µm from the surface) at and angle of 160◦ from the stalk

holding the target (Fig. 4.1). This creates a quasi-1D environment around the probe

location, as it is nearly opposite the only asymmetry in the spherical target. The

probe is pointed at 730 µm, but 5 µm of outwards refraction is expected. The probe

is focused at f/6.7, with a wavelength of 263.25 nm. The pulse shape is similar to

that of the 2 ns drive, but delayed by roughly 0.4 ns. The probe energy was 96.5J

with a radius at the focal point of 35 µm.

Light scattered from the probe is collected with a reflective telescope with a focal

length of f/10 at 60.3◦ off the probe axis, and deposited through separate Czerny-
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Turner optical spectrometers onto ROSS optical streak cameras [Katz2012]. The

wave vector observed in this scattering process is k⃗ = kout⃗ − kin⃗ , where kout⃗ is the

wave vector of the scattered light and kin⃗ is the wave vector of the probe. k⃗ is oriented

along the target normal, making the scattered light sensitive to the expansion flow

velocity of the plasma.

Figure 4.1: Thomsons Scattering probe and collection geometry, observing plasma at
730 µm from the sphere center. The probe beam is shown in red, with the collection
volume in light blue and the resulting wave vector probed in green. (From [6])

4.1.2 Applications of the OTS Diagnostic for the measure-
ment of Heat Transport

The OMEGA Thomson scattering system is used to obtain scattering spectra from

IAW and EPW fluctuations in the ablated plasma. The red-shifted EPW shares

bandwidth with scattering from the 351 nm drive, so the EPW spectrometer ob-

serves blue-shifted light in the range of 190 - 230 nm, capturing only the blue-shifted

Langmuir waves traveling away from the target surface. These spectra are analyzed

to obtain the time evolution of electron temperature and plasma density at the mea-

surement location.
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Figure 4.2: Total drive power for the Au sphere shot, as well as the pulse shape for
other sphere shots use in section 4.4. These shots reach a peak intensity at the target
of ∼ 5× 1014w/cm2

OTS is a powerful diagnostic technique that can provide uniquely local measure-

ments of plasma parameters in high energy density plasmas. This technique has been

applied extensively to make comprehensive studies of the plasma parameters [7, 104],

distribution functions [51, 53, 105], magnetic fields and electric currents [2, 3] and

thermal transport [80, 106–108] in a variety of laser driven plasmas, including ICF

hohlraum plasmas [61]. To properly and accurately fit the OTS spectra, a range of

important effects on the spectral shape must be taken into account, based on the

details of the measurement geometry and the plasma conditions (Chapter 2).

To infer the basic plasma parameters from the OTS spectra, one relies primarily

on the spectral displacements of the resonant peaks in the collective regime of the

OTS. Good accuracy is usually achieved in such a procedure without invoking the

effects of non-Maxwellian distribution functions and particle collisions in the theory

of the dynamical form factor (2.2). Large scale radiation hydrodynamic simulations,

which include the effects of non-local thermal transport, are used to calculate the
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expected evolution of the electron temperature and plasma density gradients for the

analysis of the particle transport. These simulations have been benchmarked against

Thomson scattering measurements and have been shown to successfully reproduce

the evolution of the electron temperature and plasma density in these conditions [7,

8].

Heat flow can be measured in these spherical target experiments through a more

careful analysis of optical Thomson scattering (OTS) data. Diagnosis of the heat flow

is achieved via an analysis of its effect on the relative intensity of two ion-acoustic

scattering peaks (section 2.2.2). The scattering spectrum can only be sensitive to this

effect when the geometry is selected such that the wave vectors of the observed density

fluctuations point along the direction of the heat flow, i.e. the radial expansion vector

of the plasma for the sphere experiments (Fig. 4.1).

Electron heat flow is dominated by the particles in the tail of the electron dis-

tribution, at velocities much greater than the ion acoustic velocity of the plasmas.

This flow of electrons in the tail induces an electric field that drives a return current,

shifting the bulk of the electron distribution function slightly with respect to the ion

flow velocity [33]. The result of this shift is that the velocity gradient of the electron

distribution function at the phase velocities of the two counterpointing ion acoustic

waves can be different. This leads to a difference in the Landau damping rates and

therefore the amplitude of the two peaks. We are therefore able to measure heat flow

indirectly through our more direct measurements of this return current.

Analysis of this effect proceeds by accounting first for the instrumental effects in

the OTS measurements such as angular spreads of the probe and collection optics,

which are particularly important in flowing plasmas (section 2.3), as well as frequency

broadening due to pulse front tilt [43]. In addition to these geometric effects, the

theory of the dynamical factor, S(k⃗, ω) must be expanded beyond the collisionless

model that is typically used to include the effect of ion-ion (section 2.2.4) collisions

in the highly ionized Au plasmas [47, 55].
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Damping of the IAW due to ion-ion collisions is small and comparable with electron

Landau damping from the symmetric f0 electron distribution function, and its effect

on spectral broadening is negligible when compared with the instrumental width of

IAW peaks in the OTS spectrum. However, in the analysis of the relative intensity

of IAW peaks due to the drift velocity of the electrons, electron landau damping is

altered and the ion-ion collision effects can become significant when analyzing the

relative amplitudes of the IAW.

When analyzing the IAW asymmetry, we are measuring the effects of the non-

equilibrium electron distribution functions (EDF). The electron density correlation

function and the dynamical form factor are sensitive to the form of the EDF, as

the damping rate of each ion acoustic peak is sensitive to the gradient of the EDF

at its phase velocity. The non-equilibrium EDFs that are produced by the inverse

bremsstrahlung (IB) heating [49] or thermal transport [101] can be measured exper-

imentally through the EPW feature of the OTS spectrum [51] [109] and applied to

the calculations of plasma parameters and the heat flux.

Using these measurements of the electron return current, we have found that at

late times (t > 1ns after the drive starts, Fig. 4.2) the inferred heat flux is consistent

with the nonlocal Schurtz-Nicolai-Busquet (SNB) [37] model and VFP simulations

[101]. The spatial profiles of plasma density and electron temperature predicted by

the radiation hydrodynamic simulations employing the SNB model disagree with the

Spitzer-Härm (SH) local transport theory interpretation of the IAW asymmetry.

The OTS measurements display the change in the direction of the heat flux in re-

sponse to rapid radiation cooling of the dense plasma near the target surface after the

termination of the heating beams. However, a disagreement between measurements

of the heat flux and simulation results is seen early in the plasma evolution, t ≤ 1 ns.

We propose that this discrepancy is the result of the combination of two effects: the

super-Gaussian form of the symmetric part of the EDF due to IB heating and the

presence of steep density gradients at early time [102, 110].
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While for most of the simulation and laser pulse duration, modest changes in the

exponent of the EDF have a small effect on the transport calculations, at early times

the relatively stronger density gradient can reduce the electron heat flux. This is a

consequence of the transport relations for the heat flux in non-equilibrium plasmas

with super-Gaussian EDFs, which include terms proportional to the density gradi-

ents that have negative contributions as compared to the terms proportional to the

temperature gradient [102], leading to an observable suppression of thermal trans-

port. This feature of the local transport theory is seen in VFP simulations containing

nonlocal effects.

4.2 Radiation hydrodynamic simulations and com-

parison with the basic OTS results

The experimental measurements and radiation-hydrodynamic simulations that are

relevant to the current study were described in a recent paper [8], and form part of

an ongoing campaign of experiments on the Omega laser facility that use directly

illuminated Be and Au spherical targets [7] to investigate laser coupling, heat trans-

port, and radiation conversion efficiency in order to improve our understanding of

ICF hohlraum physics.

We will compare transport in the radiation hydrodynamics simulation with detailed

calculations of the observed electron heat flux from the OTS spectra.

4.2.1 Plasma Properties

The radiation hydrodynamic simulations presented here are described in detail in

Refs. [7, 8], in which 2D simulations of uniformly illuminated gold spheres at intensi-

ties of 5× 1014W/cm2 for 2 ns duration laser pulses are reported. These simulations

predict temperature and density gradients in the plasma, which can be compared to

those observed using the OTS signatures of heat transport (section 2.2.2).

Although ICF simulations typically reduce the incident laser power in simulations
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to match observables (either observed bang-time, x-ray flux, or scattered light due

to laser-plasma-interactions), it was found that using power multipliers to match the

measured scattered light did not significantly change the plasma properties at the

location of the OTS probe. This allows conclusions regarding transport to be made

even with a lack of laser coupling to the target [111]. Temperature and density profiles

of the ablating plasma are generated with SNB simulations, shown in Fig. 4.3, with

an ionization of Z ≈ 50 for the gold plasma.

Figure 4.3: Simulated electron temperatures (a) and electron density (b) from the
SNB model as a function of the distance from the center of the sphere. Ionization
remains near Z = 50 over most of the simulated profile. The extent of the probed
region is marked by blue vertical lines. [From [6], associated dataset available at
https://doi.org/10.5281/zenodo.4951053] (Ref. [46]).

The plasma heating by the Thomson probe is included in the simulations. This is

particularly important at the later times after 2 ns when the main drive laser beams

are switched off (Fig. 4.2) and dense plasma cools rapidly outside the Thomson scat-

tering volume due to radiation losses as shown in Fig. 4.3a. The profiles of figure

4.3 will later be reproduced by differentiable fits and used in Vlasov-Fokker-Planck

simulations of the plasma in the OTS volume in Sec. 4.3. All results of radiation-

hydrodynamic simulations have been obtained using the SNB nonlocal transport

model.

These results can be compared to experimental data obtained from the OTS spectra
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at the probe location at 735 µm from the center of the sphere, between the vertical

lines shown in Fig.4.3. These spectra can be fit to the observed IAW and EPW

spectra (shown in Fig. 2.6), producing local measurements of the plasma at the

probe location (Fig. 4.4). The fits to measured OTS spectra were obtained using

OTS theory (2.6)(2.28) with Maxwellian ion distribution functions, and Maxwellian,

super-Gaussian (sec. 2.2.3), and VFP-generated electron distribution functions.

4.2.2 Ablation rates

In laser-ablated plasma, the bulk of the drive energy is deposited close to the critical

surface, making the conditions of the high-density plasma close to the target crucial

for accurate simulations. OTS, however, cannot measure near the critical surface, as

refraction from the high-density plasma ruins the pointing precision of the probe. In

order to gain information on the high-density plasma, shots were taken to measure

the ablation rate caused by the plasma conditions near the target.

Two gold sphere shots similar to the shot seen above (Fig 4.1) but with 0.1 and

0.2 µm of gold on top of plastic were also taken. These shots used OTS data at a

radius of 630 µm, with a scattering vector k⃗ tangential to the sphere surface. The

thin gold layers allowed the burn rate of the solid gold target to be measured from

the beginning of the shot. As the gold plasma is replaced by plastic and dominated

by the charge density of carbon, the sound speed sharply increases with Z/A (Fig.

4.5), increasing the IAW frequency (2.9).

This increase in IAW frequency can be fit by changing the concentration of gold,

carbon, and hydrogen ions in the plasma. Allowing these concentrations to vary, we

can observe a transition from gold ion waves to carbon-dominated ion acoustic waves

around 1.6 ns for the 0.2 µm gold shot (Fig 4.6), where the increase in ωiaw marks the

burn-through time. The two shots’ burn-through times differ by 0.75ns, indicating a

burn rate of 0.13µm/ns.

In addition to the observable change in ωiaw, the IAW spectra show a shift in their
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Figure 4.4: Fits to the experimental OTS data (Fig. 2.6) using a Maxwell distribu-
tion for electrons (a, b), a super-Gaussian model (2.24) with m = 2.3 (c and d), and
using VFP-generated EDF shapes (e and f). Black dots are from radiation hydro-
dynamic simulations using the SNB transport model. Absorption lines seen in the
EPW spectrum may introduce additional uncertainty in the density measurements in
the middle of the shot. The faster cooling and lower densities after the drive is off in
all OTS fits constitute a significant difference from the simulation. Super-Gaussian
distributions are used up to 2 ns in figs. c and d, after which the drive turns off.
(From [6])

central wavelength after burn-through. This shift typically corresponds to the flow

velocity of the ions. In these thin gold shots, however, OTS spectra are taken with

scattering vectors nominally tangential to the surface of the sphere. The expanding

plasma in the corona refracts the probe away from the sphere, and light scattered
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Figure 4.5: IAW spectra from thin gold spheres, with a 0.1µm (left) and 0.2µm (right)
thick layer of gold on top of plastic. The IAW frequency increasing sharply indicates
the burn-through time.

Figure 4.6: Ion change density from OTS fit of thin gold shell spectra (Fig. 4.5,
right). Shaded region indicates error.

down towards the target at the same angle is refracted back into the scattering plane,

as seen in figure 4.7. This gives the scattering vector a rotation towards the target

surface which increases with increasing coronal plasma density.

By comparing the flow velocity observed along the scattering vector in the tan-

gential geometry to the flow velocity of ∼700 km/s at 730 µm (Fig. 4.9), we can

estimate a refraction angle of a few degrees, assuming flows at 200 and 300 µm from

the target are similar to first order. We can see the refraction angle must increase
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when the carbon plasma arrives (Fig. 4.8).

Figure 4.7: Refracted probe beam (red) with refracted collection vector (black) shown

with a veiw from inside the nominal OTS scattering plane. The resulting k⃗ component
perpendicular to the original OTS plane is shown in blue, pointing towards the target.
The refractive index for 4ω light is shown for a low Z, high-density model of the density
gradient.

Figure 4.8: Flow velocity in scattering direction and plasma density from OTS fit
(Fig. 4.5, right). The scattering vector is nominally tangential to the flow, with
velocity proportionate to the refraction angle of the probe beam.

As an alternative to the average burn rate of 0.13µm/ns measured between the

two shots, we can find the target burn depth as a function of time by integrating

the observed density (Fig. 4.4) and flow velocity (Fig. 4.9) found in the radial OTS

measurement of the thick gold sphere. This determines the rate of mass flow of gold

115



passing the OTS volume. Given a solid density for gold of ρAu = 19.3g/cm3, a ratio

of areas of π7302µm2/π4302µm2, and spherical symmetry from the geometry of the

shot, the ablation rate over time can be calculated: (Fig. 4.9).

vablation =
neAmpvi
ZρAu

7302

4302
(4.1)

Figure 4.9: Velocity measured in radial gold shot (left) and the ablation rate (right)
as measured by radial mass flow rate (pink) and by thin gold shots (green)

The burn rate is mostly consistent with the observed gap in burn-through times

for the thin gold shots. This confirms the capability of the thin gold shots to be used

to examine burn-through progress occurring before the OTS probe reaches the target

and validates the use of the ablation rate to measure extended burn-though. By the

end of the probe pulse, the plasma flow indicates ≈ 0.35µm of ablation thickness.

4.3 Heat flux models

To measure the heat flow in the gold plasma using the OTS spectrum, we will follow

an iterative procedure similar to the approach of Ref. [7]. In the collective regime of

the OTS spectra, the location of the IAW peaks is sensitive to electron temperature,

flow velocity, and the ion charge (Z). Fitting of the EPW peak shows electron density

and can verify electron temperature. Although simultaneous analysis of the results

from EPW and IAW spectra can allow for the measurement of Z in the Au plasma
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[112], the simulated ionization of Z=50 is used here to reduce dependence on the

EPW shape, which is sensitive to background light and density gradients in the OTS

volume (2.6). The EPW and IAW are fit together for Te, ne, flow velocity vi, density

gradients, and signal amplitude.

The time evolution of these plasma parameters is consistent with radiation-hydrodynamic

simulations [8], as seen in Fig. 4.4. They are a starting point for the analysis below

where we will examine various non-Maxwellian distribution functions corresponding

to different thermal transport models. In this next approximation, different transport

models are examined, which take these fit plasma parameters as inputs, in addition

to the characteristic spatial profiles found with radiation-hydrodynamic simulations,

shown in Fig. 4.3.

Transport models provide the closure relations for hydrodynamic equations, and

also their related electron distribution functions [80, 101] for any temperature and

density profile. To analyze the discrete time snapshots of the plasma conditions

shown in Fig. 4.3, we have used heat transport models that are consistent with these

conditions and can be compared with measurements. The perturbed EDFs relate the

fast heat-carrying electrons to the resulting return current of slow electrons, which is

measurable in ion acoustics wave spectra.

4.3.1 Spitzer-Härm heat flux

The Spitzer-Härm (SH) classical transport model [33] is valid in plasmas dominated

by particle collisions and is derived from the Fokker-Planck kinetic equation in a

current-free plasma with a temperature gradient, by expansion in the small parameter

δT = λei/LT where LT = ( d
dx

lnTe)
−1 is the signed temperature gradient scale length

and λei is the electron-ion mean free path. To the leading order in δT the electron

distribution function is given by the perturbed local Maxwell distribution function:

fSH(|v⃗|, vx) = fM(|v⃗|) +
√︃

2

9π
(
|v⃗|
vTe

)4(4− v2

2v2Te

)fM(|v⃗|)δT
vx
|v⃗|
, (4.2)
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where fM(|v⃗|) is the Maxwell distribution, vTe =
√︁
Te/me and the gradient ∇⃗Te is

anti-parallel to the x-axis. The small parameter δT also determines the heat flux

calculated using fSH (4.2)

qSH =
me

2

∫︂
d3vvxv

2fSH = −128

3π
nemev

3
TeδT (4.3)

At v > 2
√
2vTe , fast heat-carrying electrons enhance the tail of the distribution func-

tion in the direction opposite to the temperature gradient (4.2). At lower velocities,

the current produced by fast electrons is balanced with a cold return current.

Given any δT , a sufficiently high-velocity regime in fSH (4.2) exists which will

results in a negative distribution function, indicating that the Spitzer-Härm EDF is

non-physical for fast particles, or near thermal particles in environments with long

mean free paths. Steep temperature gradients and long mean free paths corresponding

to δT ≥ 10−2 undo the local closure relation (4.3) and must be replaced by non-local

heat transport models. For this reason, local hydrodynamic models often use flux-

limited SH transport, where q = min(qSH , fqf ), with qf = nemev
3
Te and f << 1 (such

a relation is illustrated later on in Fig. 4.16a).

The IAW spectra depend only on the low-velocity electrons in the one-dimensional

distribution function which comprise the return current. This flow of electrons

changes the damping of the IAW, (2.3) affecting the relative amplitudes of ion-acoustic

resonances in the fluctuation spectra. The damping rate of ion acoustic waves due

to a return current of electrons is approximately equivalent to the damping rate of

a drifting Maxwellian electron distribution function with a velocity vd linear with

transport: vd = 1.5vTeδT . (Sec. 2.2.2)

Depending on the sign of the phase velocity ωs/k, the drift velocity vd increases or

decreases the electron Landau damping (2.16) creating asymmetry in the amplitude of

the IAW resonances seen in the OTS spectra. In addition to electron damping, these

resonances are affected by ion Landau damping proportionate to ωiaw

kvTi
exp(− ω2

iaw

2k2v2Ti
)

[12]. This decreases quickly with increasing ωiaw

kvTi
≈
√︁
ZTe/Ti, causing high Z elements
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to be very weakly Landau damped. Collision damping due to ion-ion collisions,

however, is still present at high Z. Collisions are included in the calculation of the

OTS spectra using Sc(k⃗, ω) (2.28).

4.3.2 Non-Maxwellian EDFs due to IB heating and the elec-
tron thermal transport

In gold and other high-Z laser-produced plasmas it is common to see evidence of

super-Gaussian electron distributions ((2.24) with m > 2), altering the spectral shape

of the scattered light [51–53]. This super-Gaussian distribution function arises due to

competition between IB heating, which evolves the EDF towards the super-Gaussian

distribution [49] and electron-electron collisions which thermalize the plasma. The

super-gaussian EDF (2.24) was derived in Ref. [50] from the results of Fokker-

Planck simulations. For homogeneous laser-heated plasma, Eq.(2.25) approximates

the super-Gaussian exponent well for a given laser intensity, frequency, plasma tem-

perature, and average ionization [50].

For our experiment, the super-Gaussian exponent at the OTS probe location is

limited tom ≤ 2.3 by this relation, based on the intensity of the 3 ω drive [50]. For the

EPW, this small change in the electron distribution function has an insignificant effect

given the noise present in the measured spectrum. The IAW spectrum responds to

the shape of the electron distribution function at |v⃗| << vTe, so larger super-Gaussian

coefficients appear to fit OTS spectra with slightly lower electron temperatures (Fig.

2.16). This is illustrated in Fig. 4.4c,d where we compared the time evolution of

electron temperature and density from the OTS spectra fitted using EDF fSG0,m =

2.3 (2.24) with the radiation-hydrodynamic results.

Successive improvements of the fits to the OTS spectra as we gain a better under-

standing of the kinetic processes underlining the evolution of the plasma are part of

the overall strategy of our OTS experiments. More precise subtraction of the noise in

the EPW spectra in planned experiments with background shots will help to identify
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the effects of the super-Gaussian distribution functions.

When a super-Gaussian electron distribution function is present, IAW resonance

frequencies are increased slightly, and heat transport is significantly affected [102,

103]. The perturbation solution to the Fokker-Planck kinetic equation by expansion in

parameters δT and δn = λei
d
dx

ln(ne) about a super-Gaussian background distribution

results in the following electron distribution function [49] [102]

fSG(|v⃗|, vx) = fSG0(|v⃗|) + fSG0(|v⃗|)
vx
|v⃗|

(︃
|v⃗|√
2vTe

)︃4

(︄(︄
m

2

(︃
|v⃗|√
2vm

)︃m

− 5m

12

Γ(8/m)

Γ(6/m)

(︃
|v⃗|√
2vm

)︃m−2
)︄
δT −

(︄
m

6

Γ(8/m)

Γ(6/m)

(︃
|v⃗|√
2vm

)︃m−2

− 1

)︄
δn

)︄
,

(4.4)

which is an equivalent of the SH theory (4.2) for the super-Gaussian distribution.

Increasing the super-Gaussian coefficient m reduces the effects of temperature gradi-

ents on the heat flux in a plasma [113] (as is shown in Fig. 4.10a) and also results in

contributions to the closure relation that are proportional to density gradients [102,

110, 114], with thermal energy flowing towards the higher density region,

q/qf = (qT + qn)/qf = −KT δTe −Knδn, (4.5)

The transport coefficients KT and Kn can be written as

KT =

√︃
2

9π
a(7b− 5c)

Kn =

√︃
2

9π
2a(b− c)

(4.6)

with a = Γ(3/m)5/2( 3
Γ(5/m)

)7/2, b = Γ(10/m)
12

and c = Γ(8/m)2

9Γ(6/m)
[102] [115]. For ablating

plasmas where temperature and density gradients both point towards the target, this

results in a decreased heat flux when compared to Spitzer-Härm.
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Figure 4.10: a) Heat transport coefficients in super-Gaussian plasma: q/qf =
−KT δTe −Knδn, (4.6) b) Heat transport due to temperature and density gradients
in super-Gaussian plasma found using profiles for t=1ns as seen in Fig. 4.3, shown
as a fraction of qf = nemev

3
Te (From [6])

Transport theory with the super-Gaussian distribution leads to closure relations

for the heat flux that involve gradients of density and temperature. This leads to

better agreement between theory and experimental measurement (sec. 4.4).

4.3.3 Vlasov-Fokker-Planck simulations

As described above in Sec. 4.3.1 the classical SH transport model can work well

in plasmas where the characteristic transport parameter δT < 0.06√
Z

[35] [36]. For

larger temperature gradients it has to be replaced by the kinetic description in terms

of Vlasov-Fokker-Planck (VFP) simulations [116] or nonlocal transport models [37].

The nonlocal transport SNB [37] model has been used in the radiation hydrody-

namic description of the Au plasma [8] and led to accurate modeling of the electron

temperature and density evolution, cf. Fig. 4.4e,f.

We have used density and temperature profiles from the radiation hydrodynamic

simulations with SNB transport in VFP simulations with the K2 code [101]. VFP sim-

ulations were performed around the relatively small OTS volume and usually quickly

121



converged to a quasi-stationary solution for the electron distribution function. This

has been expected as VFP simulations have been consistent with the SNB model [101]

in a broad range of plasma parameters. The density and temperature profiles from

the non-local radiation-hydrodynamic simulations [8] are used as input to Vlasov-

Fokker-Planck (VFP) simulations with the K2 code [101]. In order to initialize the

K2 simulations, we first generate analytic fits to the SNB profiles seen in Fig. 4.3 for

electron temperature and density, respectively (Fig. 4.11):

Te(r)

keV
=
TH − TL

2
tanh

(︃
r + 5µm

75µm

)︃
+
TH + TL

2
+ p0 tanh

(︃
r − p1µm

p2µm

)︃
, (4.7)

ne(r)

1020cm−3
= NH +

q0
2
(1 + tanh

(︃
r + 210µm

7.5µm

)︃
)exp(

−q1r
µm

)

+(1− 0.5(1 + tanh

(︃
r + 210µm

7.5µm

)︃
))(NL −NH)

(4.8)

where TH , TL, and pi, i = 0, 1, 2 are fit from the temperature profile and NH , NL, and

qj, j = 0, 1 are fit from the density profile.

Figure 4.11: Analytical fits (4.7, 4.8) to the simulated temperatures (a) and density
(b) profiles seen in Fig. 4.3. Vertical lines show the limits of the OTS volume where
the OTS probe beam is pointed, which causes some plasma heating at later times.
(From [6])

Once the density and temperature are set, K2 is run iteratively on r=0 to r=1500µm

until a steady-state heat flux is produced which is consistent with the profiles. IB
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heating is applied from the drive and probe beams, and the initial temperature profile

is maintained in K2 by external heating and cooling operators. The electron distribu-

tion function is otherwise permitted to evolve self-consistently along with the electric

field.

The heating and cooling operators increase or decrease the temperature in a manner

that produces a symmetric distribution, f0V FP , with some super-Gaussian character-

istics (Fig. 4.12a), with anti-symmetric perturbations, f1V FP , describing heat flux.

This f1 distribution also shows some super-Gaussian effects, including the reversal of

the transport direction at low velocities seen in higher exponent super-Gaussians in

the presence of density gradients (Fig. 4.12b). The distribution function can be sam-

pled anywhere along the profile to see the resulting form f1V FP (v) of the heat-carrying

electrons and the return current. These profiles typically carry heat at velocities lower

than the Spitzer-Härm distribution (4.2), resulting in a relatively small ratio of heat

flux to return current (seen later in Fig. 4.16).

For the application of VFP simulations to be valid, we are implicitly assuming

the temperature profile produced by the SNB model is not too different from the

temperature profile that would be generated by a fully self-consistent VFP simulation.

Such full VFP simulations are still beyond our modeling capabilities. The heating

operator is of the Langdon form [49], which is important to produce the correct

super-Gaussian exponent for the symmetric part of the electron distribution [50]. The

cooling operator, which accounts for the cooling terms in the radiation hydrodynamic

simulations such as radiative cooling and PdV work [117], is a modified Langdon

operator that generates a cooler Maxwellian distribution (in the absence of other

processes).

The VFP-generated distribution functions can also be used to fit the observed OTS

spectra (Fig. 4.4e,f). In this case, the shape of the electron distribution is taken from

the simulations, but the width and amplitude are fit to match the OTS spectra. This

results in temperatures fairly similar to the simulated temperatures before the drive
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Figure 4.12: Electron distribution functions in the center of the OTS scattering region
in the simulated profiles (Fig. 4.3) at 1ns, Te=2.03keV are displayed. f0 is shown in
linear (a) and log scale (b), and f1 is displayed in (c) and (d) on |v⃗| and projected
onto the scattering direction respectively. Spitzer-Härm (black) and VFP (red) as
well as the expected super-Gaussian of m=2.3 (blue) and an m=2.8 super-Gaussian
(green) are shown. Inversion in the return current due to density gradients can be
seen in (c) for the m=2.8 super-Gaussian and the VFP distribution function. (From
[6])

is off, with an RMS error of 107eV. This can also be seen in the IAW from unchanged

VFP spectra shown at the simulated temperature (Fig. 4.14).

4.4 Heat Flux Measurements

OTS has been established as the routine diagnostic of plasma parameters such as

density, temperature, and flow velocity. Additionally, because the dynamical form

factors S(k⃗, ω) (2.2) and Sc(k⃗, ω) (2.28) are expressed in terms of the particle dis-
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tribution functions they can be used to study non-equilibrium plasmas characterized

by the super-Gaussian or distribution functions with nonzero heat fluxes. Analysis

in this section is focused on the asymmetry of the ion-acoustic peaks in the low-

frequency OTS spectrum (cf. Figs 2.17, 4.14). This asymmetry is caused by the

electron distribution function’s particle heat transport [107] (sec. 2.2.2).

Asymmetry in the ion-acoustic resonances can be produced by a current flowing in

the plasma [2, 3], (Sec. 2.2.2) or by a return current of low-velocity electrons (shown

in Fig. 4.12). A return current is necessary to cancel the current of fast, heat-carrying

electrons in a plasma with nonzero heat flux. Both of these electron distribution func-

tions have a similar effect on the observed IAW spectrum (2.21). In our spherically

symmetric experiments, the geometry justifies an assumption of no significant mag-

netization of the plasma outflow. This allows us to restrict ourselves to investigating

zero-current distribution functions in order to explain the IAW asymmetry.

Similar experiments to the gold sphere were also undertaken with different mate-

rials, allowing us to observe the Z dependence of transport effects (Fig. 4.13). These

other spheres also had a different drive rise time, as is shown in figure 4.2. This causes

the transport-dependant features in these other experiments to be delayed ∼200ps,

but otherwise these shots are largely similar to the description in section 4.1.

4.4.1 Spitzer-Härm Transport Results

We begin by fitting IAW spectra using SH distribution function (4.2) over the full

duration of the OTS probe. Results of this fit are displayed in Fig. 4.16a in terms

of the electron heat flux (4.3) by black dots within the gray background indicating

errors in the measurements. Plasma is assumed to be spherically symmetric, with

radial temperature gradient producing the signed Knudsen number δT = λei
d
dx

ln(Te).

This parameter is fit to the asymmetry of the IAW resonances (seen in the raw

experimental data of Fig. 2.6 and in Fig. 4.14).

Due to the spherical symmetry of the experiment, the resulting particle heat flux
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Figure 4.13: Mean free path and δT = λei
d
dx

ln(Te) from simulations for Au, Ag and Be
sphere experiments. Gold δT values (red dots) are taken from the simulated profiles
(Fig. 4.11) while the other elements use time resolved simulations of Te at different
locations. Higher Z reduces electron mean free path, but also increases temperature
and reduces temperature gradients, so increases in locality of heat transport for higher
Z plasmas are minimal.

away from the target can be integrated around the spherical shell at the OTS radius

of 735µm to find the power of particle transport. The particle heat flux away from

the sphere grows from 0 after ≈ 1ns, reaching 0.4TW before reversing direction at

2ns when the drive is off, cf. Fig. 4.16a.

We have also compared this experimental measurement of the SH heat flux to the

results of radiation-hydrodynamic simulation where the SH heat flux is calculated

from the gradients given by the analytical fits of the profiles, Eqns. (4.7), (4.8), Fig.

4.11 (section 4.3.1). These gradients are averaged over the probed region, weighting by
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Figure 4.14: IAW data (blue) in photo-electrons produced per CCD cell, and spectra
from VFP EDFs with collisions (red) and without collisions (black). Flow velocity
is fit to the IAW data while all other parameters are generated from the simulated
profiles (Fig. 4.11). Figures a) and b) show good agreement with temperature (Seen
in IAW separation) before the drive is turned off at 2ns. (From [6])

laser area and plasma density. The mean free-path over scale lengths from these pro-

files for t = (1.0, 1.5, 1.8, 2.1, 2.3)ns are δT = (−0.00689,−0.00442,−0.00296,−0.000261, 0.00381)

and δn = (−0.0373,−0.0320,−0.0291,−0.0205,−0.00744) (4.5). The resulting SH

heat flux (large red dots, Fig. 4.16a) shows a similar reversal around the drive turn-

off, but there are large discrepancies with the experimental SH-based measurement

(black), which can be seen in Fig. 4.16a.

The SH model of heat transport is expected to fail for weekly collisional plasmas,

where a lack of electron collisions results in limited heat flux at short distances and

pre-heat at larger distances as electrons stream past the temperature profile scale

length. However, this typically happens around δT ≈ 0.06√
Z
, significantly higher than

the simulated profiles suggest for the gold plasma.

Furthermore, the plasmas with lower collisionality appear to lack some of these

discrepancies. Beryllium spheres shot with a similar geometry to the gold sphere

experiment [7] were also analyzed for IAW asymmetry. These shots had a significant

discrepancy between simulated and measured density but had IAW asymmetries more

consistent with simulated temperature gradients (Fig. 4.15).

The expected asymmetry for the beryllium spheres was found using the simulated
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Figure 4.15: Measured IAW asymmetry (blue) and expected (red) observed in Be
and Ag sphere shots, with values representing the total integrated signal in the blue-
shifted IAW peak divided by the sum of both the blue and red-shifted peaks. Expected
asymmetry is calculated from OTS-measured plasma parameters, with temperature
scale lengths and uncertainties from SNB simulations.

temperature scale length with the collision frequency and IAW form factor calculated

using the OTS-measured plasma conditions. This results in a more non-local plasma

for beryllium than gold, with δT ≈ 0.01. However, the asymmetry observed appears

to match the asymmetry from SH transport using the simulated temperature scale

length in the Be experiments much better than the Au and Ag ones, as seen in

figures 4.15. The deviation of the IAW asymmetry away from 0.5 is linear with δT for

δT < 0.01, so this indicates heat flux is modeled fairly well by SH transport in the

beryllium corona. The more local silver sphere has a discrepancy in asymmetry at a

similar time to the gold shot (Fig. 4.16b). This indicates that the observed inhibition

of thermal transport may only occur in high Z plasmas.
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Figure 4.16a also includes our main gold sphere theoretical results, with red crosses

representing the heat flux calculated using electron distribution functions from the

VFP simulations in the OTS volume with the temperature (4.7) and density (4.8)

profiles obtained in radiation-hydrodynamic simulations (cf. Figs. 4.3 and 4.11).

By comparison to these results, interpretation of the OTS measured heat flux uses

temperatures and densities from the basic OTS measurements, Figs. 4.4a,b, and

the heat flux is evaluated from the properties of the experimental spectra using the

Spitzer-Härm EDF and with no input from the radiation-hydrodynamic simulations.

Other EDFs, however, cannot be compared to this result since similar transport

could still produce differing IAW asymmetries. The VFP simulated heat flux dis-

played in figure 4.16a therefore cannot be compared to an experimental observable

directly. The physical processes included in the radiation-hydrodynamic simulations,

such as the nonlocal transport model, SNB [37] and the atomic physics, are incom-

patible with measurements using a simple SH theory of thermal transport.

4.4.2 Thermal Transport Results with Non-Maxwellian Dis-
tributions

A more inclusive approach to comparing experimental results and theories is shown

in Fig. 4.16b where we plot a ratio of areas under the blue and the red-shifted

IAW peaks in the OTS spectra - blue continuous line with the light blue background

defining errors inherent in the streak camera’s light detection. This allows all the EDF

asymmetries to be compared to the observed IAW. These experimental results are well

reproduced by the VFP simulations (cf. Figs. 4.14) and the radiation-hydrodynamic

generated density and temperature profiles at t ≥ 1.5ns and the simulated SH IAW

spectra at t ≥ 1.8ns.

To create the VFP-based IAW spectrum, discussed above, six electron distribution

functions from different locations in the OTS volume are used to construct OTS spec-

tra, which are then averaged weighted by probe area (sec. 2.1.1) and electron density.
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Figure 4.16: Electron heat flux out of the gold spherical target (a) and asymmetry of
the ion acoustic wave (b). Various transport models applied to the simulated plasma
profiles at the plasma parameters found with OTS measurements (Fig. 4.3) are shown
in red. (a) shows heat flux found with SH fits to OTS data in black. A commonly
used flux limiter of f=0.03 is shown in green in figure (a) for comparison. (b) shows
the asymmetry of the IAW in blue, plotted as the integrated detected signal in the
blue-shifted peak divided by the total IAW signal. The shaded error region represents
the statistical error of the photoelectrons appearing in each IAW feature. (From [6])
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The resulting IAW spectrum has asymmetry corresponding to the heat transport pro-

cesses in the Vlasov-Fokker-Planck simulation. As shown in Figs. 4.14 and 4.16b,

these are mostly consistent with the OTS data, with the exception of t=1ns where

no significant asymmetry is detected in the experiment.

The surprising result in Fig. 4.16 is the almost complete disappearance of the heat

flux early in time t ≤ 1ns in the OTS volume. This is illustrated by the lack of

asymmetry in IAW peaks in Fig. 4.16b and in the corresponding blue peak fraction

∼ 0.5 in the experimental asymmetry in Fig. 4.16b. Reduction of the heat flux

would have to be significantly larger than the limit given by f = 0.03 and plotted

for comparison in Fig. 4.16a to reproduce these results. The free streaming flux qf

limited by f = 0.03 agrees with VFP calculations at t=1 ns but it differs from the

experimental measurement of the IAW peak asymmetry at that time. Note, that

macroscopic theories of ICF plasmas [99, 100] have identified a need for changing flux

inhibitors during plasma evolution to strongly reduced transport early on while the

late time evolution was correctly described by the SH model.

The lack of asymmetry in the IAW resonances at 1 ns shows a significant discrep-

ancy with both the SH and VFP electron particle distribution functions. This failure

of radiation hydrodynamic simulations in obtaining correct particle transport occurs

in spite of a reasonable agreement between measured and simulated temperatures and

densities at early times. Closer examination of the time evolution of these parame-

ters, cf. Figs. 8 and 9 in Ref. [8], show different increase rates of electron densities

and temperatures early in time. Further observation has been provided by the on-

going campaign in Be plasmas where no such initial disappearance of the heat fluxes

has been observed, thus suggesting that some ionization-dependent process specific

to high-Z plasmas such as radiation transport or super-Gaussian distributions may

be causing this discrepancy.

If high super-Gaussian exponents are used in the fits of the OTS spectra, the

disappearance of the heat flux could be explained by the effect of the density gradient
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as shown in the local transport theory (4.5), (4.6). To match the early time OTS

data using local transport closures, m ≈ 3.8 is required to eliminate asymmetry in

the ion-acoustic resonances and reduce thermal flux to zero, as seen in Fig. 4.10b.

However, such a high m-coefficient would significantly alter the results of the OTS

fits for temperature and density. Note that fSG (4.4) m = 2.3, which is consistent

with (2.25), changes Te(t) and ne(t) by more than 10% as demonstrated in Figs

4.4c and d, but has a small effect on the heat flux calculations, cf. Fig. 4.16 b.

However, calculated super-Gaussian exponents as well as the IB effects in the VFP

distributions use a smooth laser intensity in space for the probe and heating beams. It

is therefore possible that beam speckles may lead to higher-m super-Gaussian electron

distributions, as the OTS signal will disproportionately come from higher intensity

speckles in the probe. We can see that the direct effects of such a distribution would

be to reduce heat flux and improve the agreement with the data (Fig. 4.16 b), but

an analysis of the full effect of this would require large-scale kinetic simulations to

justify its existence since the SNB simulations used to construct the temperature and

density gradients do not use super-Gaussian effects on heat transport.

4.5 Driven EPW Spectra

Throughout the variety of spherical target shots that were conducted on different ma-

terials, resonant features in the EPW spectrum were sometimes seen. This occurred

when the spectrum crossed the 210 nm line (Fig. 4.17).

The wavelength of 210 nm corresponds to scattered light with a frequency of 5ω, or

5 times the frequency of the unshifted Neodymium glass laser. A 5ω feature may be

observed in OTS if there is a 1ω wave at the vector k⃗ corresponding to light scattering

from the 4ω probe to 5ω collected light. The feature observed in the EPW spectra

also disappears when the drive is off (figures 4.17, 4.2). This suggests some effects of

the drive could be contributing to a wave that scatters the probe.

In the drive beams, the frequency of the light is firstly doubled to produce 2ω green

132



Figure 4.17: EPW spectra from Be sphere shots, pointed at a radius of 680, 730 and
780 µm respectively. A driven wave can be seen when the EPW crosses 210 nm at
680 and 730 µm while the drive laser is still on (Fig. 4.2), but is absent at 780 µm
when the EPW never reaches this wavelength.

light, and then further increased to 3ω. Combining the 3ω and 2ω waves can create

a beat: at any point where the two beams intersect and interfere, the laser field over

time can be seen to be modulated by

E⃗ ∝ cos (2ωt) + cos (3ωt) = 2 cos (2.5ωt) cos (0.5ωt). (4.9)

This 0.5ω envelope contains the faster oscillations and flips sign every half wave-

length, causing the effective frequency of the laser intensity variations and resulting
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ponderomotive forces to be 1ω.

The corresponding wave vector of the beat is is k⃗beat = k⃗3ω − k⃗2ω. This means the

2ω and 3ω light must be almost anti-parallel to create the required beat. Unconverted

2ω light has a focal spot scale around 1cm and comes from every beam, allowing light

coming from most directions towards the sphere surface.

Rotating 3ω light to a direction away from the sphere surface can be done via

refraction off the sphere surface. Using a simulated density model, a ray from beam

number 35 can be found to reach the OTS volume, coming within 33µm of the nominal

scattering location at 730 µm, within 3.6◦ of the required direction (Fig 4.18). The

smallest dimension of the OTS volume has a radius of 35µm and the range in angles

of 2.86◦ in the f/10 collection cone becomes a change of angle of 7.5◦ in the 3ω light,

meaning that this ray can contribute to the required beat to enhance the 1ω feature.

Figure 4.18: Scattering diagram for OTS light and driven beat wave at r=730 µm.
The 2ω unconverted light and 3ω refracted drive create a 1ω beat wave with the
correct k⃗ (shown in black) to scatter the 4ω probe to the OTS collection at 5ω (210.6
nm). A sample 3ω ray from beam 35 is shown on the left, with a refracted path
reaching within 33 µm of the nominal OTS point, and within 3.6◦ of the nominal
angle to produce the beat wave.

With two counter-propagating lasers, the ponderomotive force of the beat displaces
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electrons, creating a beat in electron density (1.50,4.10) with frequency |ω1−ω2| and

amplitude [17] δn
n

of

δn

n
= −k

2c2

ω2
pe

χe

1 + χe

Up

mec2
cos (θ12) (4.10)

where θ12 is the angle between the wave vectors of the two beams, and Up =
2e2|E⃗01·E⃗02|
me(ω1+ω2)2

.

Here E⃗1,2 and ω1,2 are the maximum laser field and frequency of lasers 1 and 2

respectively, and vosc is the maximum oscillation velocity of electron in the laser field.

In order to compare the amplitude of the resonance observed to the enhancement

of amplitude expected by the beating lasers, it is important to make sure the observed

signal in the OTS spectrum is far below the saturation intensity of the streak camera.

To this end, the visible driven wave below the EPW frequency is chosen, at r = 680µm

(Fig. 4.17).

The angle between the 3ω and 2ω light in figure 4.18 is 142.7◦. The 3ω drive in total

has an intensity at the target surface r = 430µm of 5×1014W/cm2. The unconverted

2ω light is expected to have an intensity at the target around 2× 109W/cm2.

Both intensities will be lower by a factor of 0.4 above the target at r = 0.68. To

see the upper bound of the density fluctuations that could be driven, we can use

these lowered total intensities as the intensities of the beat waves in their required

directions. Assuming parallel polarizations between the 2ω and 3ω light, this gives

a normalized ponderomotive potential amplitude of Up

mec2
= 2.58 × 10−8. From the

fit density and temperature from the rest of the OTS spectrum 2 ns into the shot,

χe

1+χe
= 6.3 at the 5ω driven wave.

This suggest a driven wave amplitude <|δn|>
n

= 2.87 × 10−6. To find the signal

we expect to scatter from these fluctuations, we can compare the amplitude to the

density perturbations from OTS [12]:

< δn2 >

n2
= − 1

ne(2π)4

∫︂
dk3

∫︂ ∞

−∞
S(k, ω)dω (4.11)
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Figure 4.19: EPW resonance factor χe

1+χe
for the resonance at t = 2ns for the 680µm

Be sphere shot. The 5ω driven wave is shown in red at 210.6 nm with χe

1+χe
= 6.3

The integral over dk3 encompasses all k values contribution to a specific frequency

shift, but as these k values only correspond to the collection cone angles (sec. 2.3),

S(k, ω) does not change significantly over these vectors, and the integrals can be

separated:
∫︁
dk3 ≈ δθ2k2π(kmax− kmin) (Fig. 2.18). For the 680 µm shot, this shows

that δn
n
= 2.58× 10−6 for the thermal EPW spectrum.

Scattered power is linear with δn2, so we would expect 24% more scattered light

in the driven wave at this point than we have in the EPW spectrum. This would

suggest that we would have ∼ 307 photo-electrons in the resonance in the 5ps pixel

duration used to sample the EPW spectrum, which is much more than the observed

∼ 50 photoelectrons per time step (Fig. 4.20).

A reduced number of photo-electrons by a factor of ∼ 6 is plausible in this case.

The laser intensity of the 3ω drive was assumed to be similar to the drive intensity

on the target, while this could be altered by focusing or absorption in the plasma.

Polarization of the 2ω and 3ω light could also reduce the amplitude of the resulting

beat. The 3ω drive is spread over a range of angles and focused on a small radial

location. Assessing the magnitude of these effects, however, would require a more

precise description of the density gradient in the plasma. The conditions of the beat
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Figure 4.20: EPW and driven wave at 2 ns in the shot with OTS at r=680 µm. The
fit of the blue-shifted EPW is shown in red, with the data in blue, averaged over
56 pS. An additional 50 photo-electrons are included at λ = 210.6, matching the
observed driven wave.

also change over the volume of the OTS location, which could limit the available light.

These effects could all plausibly explain the discrepancy in the amplitude of the beat.

Although this driven wave is only visible in a small number of shots with high

electron densities, the beat is likely present in the plasma in a much larger number

of shots. The presence of the OTS probe is not required for this effect, meaning that

any location with high plasma density and counter-propagating 2ω and 3ω light could

contain this resonant beat. With light from many different drive beams, a variety

of k⃗ vectors are available, meaning each location in the plasma has many samples

of the EPW dispersion relation (2.5) increasing the potential to enhance the driven

wave. It is possible that this could significantly alter the drive beam’s absorption and

transmission through the corona.
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Chapter 5

Summary and Conclusions

In Chapter 2 we detailed the effects of various plasma conditions on the electron

plasma wave and ion acoustic wave spectra. These included magnetized plasma,

highly collisional plasma (λii ≪ k−1), laser-heated plasma with altered electron dis-

tribution functions, and plasma with large temperature or density gradients. The

modifications to the spectrum created by the measurement optics including the range

of scattering angles and transmission differences are also discussed. The signal and

related error expected from optical Thomson scattering is calculated and compared

to sources of background.

The techniques developed here will continue to be used in future Thomson scat-

tering experiments. Additionally, we intend to optimize an OTS system to observe

the spectral effects of magnetized electrons, providing a highly precise and localized

field measurement. The spectral effects of the Thomson scattering optics will also

be applied and revised for the new 5ω optical Thomson scattering system currently

under development.

In Chapter 3, we explored the capabilities and limitations of optical Thomson

scattering in a counter-streaming plasma, and measured the resulting magnetic field

structure in Weibel-unstable plasma and in magnetic re-connection. To this end,

we generated Thomson scattering spectra from kinetic simulations, validating it’s

diagnostic capability in experiments. We also measured the formation of collisionless
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shocks and the resulting ion heating in counter-streaming plasma.

While the optical Thomson scattering measurements conducted in counter-streaming

plasma have provided detailed measurements of the field structure and density evolu-

tion, there are still many properties of collisionless shocks left to measure. Ion heating

is highly non-isotropic and could be measured at different scattering angles to gain

a more complete picture of the energy exchange at shock formation. The plasma

density may also have large scale structures, which could be measured with position

resolution or large scattering angles. The initial growth rate of the Weibel instability

in simulations is sensitive to many plasma conditions, which could be tested for their

resulting growth rate of magnetic fields. Finally, the Biermann field has been observed

to cause the formation of large structures around the edge of ablating plasmas. We

will attempt to use OTS spectra in these features to measure the structure and scale

of these fields.

In Chapter 4, we measured heat transport in the ablated plasma from different

spherical targets. Agreement between optical Thomson scattering observations and

local transport theory was found late in the gold shot, but larger discrepancies were

seen early on. This discrepancy was reduced when using Super-Gaussian electron dis-

tributions and non-local transport generated with Vlasov-Fokker-Planck simulations,

but the measured transport remained significantly smaller than expected.

The discrepancy in transport early on in the sphere shots appears to be more

prevalent in high Z plasmas. We are currently investigating this effect across other

metal spheres.

139



Bibliography

[1] G. Swadling, C Bruulsema, W. Rozmus, and J. Katz, “Quantitative assessment
of fitting errors associated with streak camera noise in thomson scattering data
analysis,” Rev. Sci. Instrum., vol. 94, p. 043 503, 2022.

[2] C Bruulsema et al., “On the local measurement of electric currents and mag-
netic fields using thomson scattering in weibel-unstable plasmas,” Phys. Plas-
mas, vol. 27, p. 052 104, 2020.

[3] G. Swadling et al., “Measurement of kinetic-scale current filamentation dy-
namics and associated magnetic fields in interpenetrating plasmas,” Phys. Rev.
Lett., vol. 124, p. 215 001, 2020.

[4] F. Fiuza et al., “Electron acceleration in laboratory-produced turbulent colli-
sionless shocks,” Nature Physics, vol. 16, p. 916, 2020.

[5] L. G. Suttle et al., “Collective optical thomson scattering in pulsed-power
driven high energy density physics experiments,” Rev. Sci Instrum., vol. 92,
p. 033 542, 2021.

[6] C Bruulsema et al., “Characterization of thermal transport and evolution of
au plasma in icf experiments by thomson scattering,” Phys. Plasmas, vol. 29,
p. 12 304, 2022.

[7] W. A. Farmer et al., “Validation of heat transport modeling using directly
driven beryllium spheres,” Phys. Plasmas, vol. 27, p. 082 701, 2020.

[8] W. A. Farmer et al., “Investigation of heat transport using directly driven gold
spheres,” Phys. Plasmas, vol. 28, p. 032 707, 2021.

[9] A. Milder et al., “Direct measurement of the return current instability in a
laser-produced plasma,” Phys. Rev. Lett., vol. 129, p. 115 002, 2022.

[10] A. H Compton, “A quantum theory of the scattering of x-rays by light ele-
ments,” Phys. Rev., vol. 21, p. 483, 1923.

[11] J. D. Jackson, Classical electrodynamics, 3rd ed. New York, NY: Wiley, 1999,
isbn: 9780471309321. [Online]. Available: http : / / cdsweb . cern . ch/ record/
490457.

[12] D. H. Froula, S. H. Glenzer, N. C. Luhmann, and J Sheffield, Plasma Scattering
of Electromagnetic Radiation: Theory and Measurement Techniques. Elsevier,
2011.

140

http://cdsweb.cern.ch/record/490457
http://cdsweb.cern.ch/record/490457


[13] D. R. Nicholson, Introduction to Plasma Theory. J. Wiley and Sons, New York,
1983.

[14] E. L Lindman and M. A Stroscio, “On the relativistic corrections to the pon-
deromotive force,” Nucl. Fusion, vol. 17, p. 619, 1977.

[15] A. V Gaponov and A. M. Miller, “Potential wells for charged particles in a
high-frequency electromagnetic field,” Zh. Eksp. Teor. Fiz., vol. 34, p. 168,
1958.

[16] W. Kruer, The Physics Of Laser Plasma Interactions. CRC Press, 2003.

[17] P. Michel et al., “Saturation of multi-laser beams laser-plasma instabilities
from stochastic ion heating,” Phys. Plasmas, vol. 20, p. 056 308, 2013.

[18] A. Brantov, V. Y. Bychenkov, V. T. Tikhonchuk, W. Rozmus, and V. K.
Senecha, “Plasma fluctuations driven by a randomized laser beam,” Phys.
Plasmas, vol. 8, p. 3002, 1999.

[19] C. M. Huntington et al., “Observation of magnetic field generation via the
weibel instability in interpenetrating plasma flows,” Nature Physics, vol. 11,
pp. 173–176, 2015.

[20] W. Fox, J. Park, W. Deng, G. Fiksel, A. Spitkovsky, and A. Bhattacharjee,
“Electron heating and energy inventory during asymmetric reconnection in a
laboratory plasma,” Phys. Plasmas, vol. 24, 2017.

[21] H. Takabe et al., “High-mach number collisionless shock and photo-ionized
non-lte plasma for laboratory astrophysics with intense lasers,” Plasma Phys.
Controlled Fusion, vol. 50, p. 12, 2008.

[22] R. Davidson, D. Hammer, I. Haber, and C. Wagner, “Nonlinear development
of electromagnetic instabilities in anisotropic plasmas,” The Physics of Fluids,
vol. 15, p. 317, 1972.

[23] H. Alfvén, “On the motion of cosmic rays in interstellar space,” Phys. Rev.,
vol. 55, p. 425, 1939.

[24] E. S. Weibel, “Spontaneously growing transverse waves in a plasma due to an
anisotropic velocity distribution,” Phys. Rev. Lett., vol. 2, p. 83, 1959.

[25] P. A. Sweet, “The neutral point theory of solar flares,” Phys. Plasmas, vol. 13,
p. 055 501, 1958.

[26] P. E. N., “Sweet’s mechanism for merging magnetic fields in conducting fluids,”
J. Geophys. Res., vol. 62, p. 509, 1957.

[27] P. H. E., “Magnetic field annihilation,” NASA Spec. Publ., vol. 50, p. 425,
1964.

[28] F. F. Chen, Introduction to Plasma Physics and Controlled Fusion. Plenum
Press, 2016.

[29] D. Ryutov, N. Kugl, H.-S. Park, C. Plechaty, B. Remington, and J. Ross,
“Intra-jet shocks in two counter-streaming, weakly collisional plasma jets,”
Phys. Plasmas, vol. 19, p. 074 501, 2012.

141



[30] P. Mora and R. Pellat, “Self-similar expansion of a plasma into a vacuum,”
The Physics of Fluids, vol. 22, p. 2300, 1979.

[31] A. V. Gurevich, L. V. Pariiskaya, and L. P. Pitaevskii, “Self-similar motion of
rarefied plasma,” Soviet Physics JETP, vol. 22, p. 449, 1966.

[32] S Ichimaru, Basic Principles of Plasma Physics - A Statistical Approach. W.A.
Benjamin, Reading, 1973.
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Appendix A: OTS Program

Code used to generate basic OTS spectra in Python is attached below. Special cases

and other updates can be found at: https://github.com/Conotor/OTS.git

A.1 OTSplasma.py

The code below is used to generate electron and ion susceptibility for plasma in

thermal equilibrium, as well as plasma with custom distribution functions of other

shapes.

# helper functions for generating maxwellain OTS spectra

#Created on Fri Sep 2 21:51:32 2022, Colin Bruulsema

import numpy as np

import scipy.special as sps

# from scipy.special import gamma, factorial

# from scipy.special import gammainc

# from scipy.special import gammaincc

from scipy.interpolate import interp1d

# from scipy.interpolate import interp2d

#%%########################################################################

# plasma response integral [p106 Froula2011]

# = 1-2zexp(-z^2)\int_0^z exp(p^2)dp

#determines real factor of plasma response for maxwellian plasma species

#inputs: z=phase velocity / sqrt(2T/m)

def plaZre(z): #Rw(x_e)=1-2xexp(-x^2) int0x exp(p^2)dp

val=0*z

val=1.0-2.0*z*np.exp(-z**2)*0.5*np.sqrt(np.pi)*sps.erfi(z)

if(hasattr(val, "__len__")):
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val[np.isnan(val)]=0

val[np.isinf(val)]=0

else:

if(np.isnan(val) or np.isinf(val)):

val=0

return val

# = sqrt(pi) z exp(-z^2)

#determines imaginary factor of plasma response for maxwellian plasma

species

#inputs: z=phase velocity / sqrt(2T/m)

def plaZim(z): #Rw(x_e)=1-2xexp(-x^2) int0x exp(p^2)dp

val=0*z

val=np.sqrt(np.pi)*z*np.exp(-(z**2))

if(hasattr(val, "__len__")):

val[np.isnan(val)]=0

val[np.isinf(val)]=0

else:

if(np.isnan(val) or np.isinf(val)):

val=0

return val

#coptied to find cust #cbdo check maxv needs

def custZprime(in_xi, makea, maxv):

maker = np.zeros(len(makea[0]))

makei = np.zeros(len(makea[0]))

makex = np.copy(np.real(makea[0])) #cbdo added real

maker[:] = np.real(makea[1,:])

makei[:] = np.imag(makea[1,:])

# print(makea)

# print(makex)

# print(maker)

# print(makei)

ref = interp1d(makex, maker)

imf = interp1d(makex, makei)

length = len(in_xi)

rout = np.zeros(length)

iout = np.zeros(length)

xder=-1.0
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if(in_xi[-1]>in_xi[0]):

xder=1.0

maxfrac=0.99

ai=-1

bi=-1

if(xder>0):

avec=np.array(np.where(in_xi < -1.00*maxfrac*maxv))

#find(xi<-10,1,last); #last index where low

bvec=np.array(np.where(in_xi > 1.00*maxfrac*maxv))

#find(xi>10,1,first); #first index where high

elif(xder<0):

avec=np.array(np.where(in_xi > 1.00*maxfrac*maxv))

#find(xi<-10,1,last); #last index where low

bvec=np.array(np.where(in_xi < -1.00*maxfrac*maxv))

#find(xi>10,1,first); #first index where high

if len(avec[0])>0:

ai=avec[0][-1]

if len(bvec[0])>0:

bi=bvec[0][0]

if (ai<0)and(bi<0):

rout[:] = 1*ref(in_xi[:]) #-1

iout[:] = imf(in_xi[:])

elif (ai<0):

rout[0:bi] = 1*ref(in_xi[0:bi]) #-1

rout[bi:length] = 0*1.0/(in_xi[bi:length])**(2)

iout[0:bi] = imf(in_xi[0:bi])

# iout[bi:length] = 1.0/in_xi[bi:length]**(2)

iout[bi:length] = 0

elif (bi<0):

rout[ai+1:length] = 1*ref(in_xi[ai+1:length]) #1

rout[0:ai+1] = 0*1.0/(in_xi[0:ai+1])**(2)

iout[ai+1:length] = imf(in_xi[ai+1:length])

# iout[0:ai+1] = 1.0/in_xi[0:ai+1]**(2)

iout[0:ai+1] = 0

else:

rout[ai+1:bi] = 1*ref(in_xi[ai+1:bi]) #1

rout[0:ai+1] = 0*1.0/(in_xi[0:ai+1])**(2)

rout[bi:length] = 0*1.0/(in_xi[bi:length])**(2)

iout[ai+1:bi] = imf(in_xi[ai+1:bi])

iout[0:ai+1] = 0

iout[bi:length] = 0

zout = np.zeros([2,length])

zout[0,:] = rout[:]

zout[1,:] = iout[:]

return zout
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#needs 4 vte in each direction to work

def vtabmake(in_dvdist, in_v):

amaxv=np.max(np.abs(in_v))

maxv=np.max((in_v))

minv=np.min((in_v))

ximin = 1.0*minv #change this to c

ximax = 1.0*maxv

minmaxf=0.01

xi = 1.0*in_v #now in v/c

L = len(xi)

N=4 #precision #was 4

IPV=np.zeros(L)

RP=np.zeros(L)

# dvdistf = interp1d(in_v, in_dvdist, fill_value=’extrapolate’)

dvdistf = interp1d(in_v, in_dvdist, fill_value=(0,0),

bounds_error=False)

for i in range(L):

phi=(0.01*np.abs(xi[i])+1e-6*maxv) #defining how close to get to

singularity

dz=phi/N

#nonth why this -1 +1

zm = np.linspace((xi[i]-phi),ximin-minmaxf*amaxv,int(((xi[i]-phi)

-(ximin-minmaxf*amaxv))/dz) )

zp =

np.linspace((xi[i]+phi),ximax+minmaxf*amaxv,int(((ximax+minmaxf*amaxv)

-(xi[i]+phi))/dz) )

Ip=0

Im=0

Ip=dz*sum(dvdistf(zp)/(zp-xi[i]))

Im=dz*sum(dvdistf(zm)/(zm-xi[i]))

IPV[i]=Ip+Im

#evaluating real pole contribution

RP[i]=4*phi*xi[i]

dW = np.array(np.zeros(L), dtype=complex) # fix next line

dW[:]=(IPV[:]+in_dvdist[:]*(-RP[:]-1j*np.pi))

dWT = np.array([xi,dW])

return dWT
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#%%########################################################################

# electron and ion susceptibilty [p50 Froula2011]

#chi e

#chi_e= \omega_pe^2/k^2 \int_{-\infty}^{\infty} (k \cdot df/dv) / (w - kv

-igamma)

#determines plasma response to electron denisty fluctuations

#inputs:

# omg = wave frequency [rad/s]

# sa = scattering angle [deg]

# omgL = probe laser frequency [rad/s]

# Te = electron temperature [keV]

# ne = electron density [cm^-3]

# ve=electron flow speed [c]

def chith_e(omg, sa,omgL,Te,ne,ve):

c=2.99792458e8 #v light in m/s

me=511 #kev

omgpe=56400*np.sqrt(ne) #rad/s

vte=np.sqrt(Te/me) #c

kd=omgpe/(vte*c)

sarad=sa*2*np.pi/360

kL=np.sqrt(omgL**2-omgpe**2)/c

omgs=omg+omgL

ks=np.sqrt(omgs**2-omgpe**2)/c

k=np.sqrt(kL**2+ks**2-2*ks*kL*np.cos(sarad))

kkd=k/kd

xe=((omg/k)-ve*c)/(c*vte*np.sqrt(2.0))

imxe=(kkd**-2)*plaZim(xe)

rexe=(kkd**-2)*plaZre(xe)

return rexe+1j*imxe

#todo remove Te

#chi_i= \omega_pi^2/k^2 \int_{-\infty}^{\infty} (k \cdot df/dv) / (w - kv

-igamma)

#determines plasma response to electron denisty fluctuations

#inputs:

# omg = wave frequency [rad/s]

# sa = scattering angle [deg]

# omgL = probe laser frequency [rad/s]

# Te = electron temperature [keV]

# Ti = ion temperature [keV]

# Z = ion charge = q/e

# Ai=ion protons + nuetrons

# ne = electron density [cm^-3]
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# vi=ion flow speed [c]

def chith_i(omg, sa,omgL,Te,Ti,Z,Ai,ne,vi):

c=2.99792458e8 #v light in m/s

me=511 #kev

mproton=938300 #kev

omgpe=56400*np.sqrt(ne) #rad/s

vte=np.sqrt(Te/me) #c

vti=np.sqrt(Ti/(mproton*Ai)) #c

kd=omgpe/(vte*c)

sarad=sa*2*np.pi/360

kL=np.sqrt(omgL**2-omgpe**2)/c

omgs=omg+omgL

ks=np.sqrt(omgs**2-omgpe**2)/c

k=np.sqrt(kL**2+ks**2-2*ks*kL*np.cos(sarad))

kkd=k/kd

xi=((omg/k)-vi*c)/(c*vti*np.sqrt(2.0))

imxi=(kkd**-2)*plaZim(xi)*Z*Te/Ti

rexi=(kkd**-2)*plaZre(xi)*Z*Te/Ti

return rexi+1j*imxi

#%%########################################################################

#chi_e= \omega_pe^2/k^2 \int_{-\infty}^{\infty} (k \cdot df/dv) / (w - kv

-igamma)

#determines plasma response to electron denisty fluctuations, on 2d omega

k map

#inputs:

# omg = wave frequency [rad/s]

# sa = scattering angle [deg]

# omgL = probe laser frequency [rad/s]

# Te = electron temperature [keV]

# ne = electron density [cm^-3]

# ve=electron flow speed [c]

def chith2D_e(omg, kvals,Te,ne,ve):

c=2.99792458e8 #v light in m/s

me=511 #kev

omgpe=56400*np.sqrt(ne) #rad/s

vte=np.sqrt(Te/me) #c

kd=omgpe/(vte*c)

k=kvals

kkd=k/kd

xe=((omg/k)-ve*c)/(c*vte*np.sqrt(2.0))

# np.array([[1,2], [3, 4], [5, 6]]).flatten().reshape((3, 2))

xesh=np.shape(xe)

xefl=(xe).flatten()
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imxe=(kkd**-2)*plaZim(xefl).reshape(xesh)

rexe=(kkd**-2)*plaZre(xefl).reshape(xesh)

return rexe+1j*imxe

#chi_i= \omega_pi^2/k^2 \int_{-\infty}^{\infty} (k \cdot df/dv) / (w - kv

-igamma)

#determines plasma response to electron denisty fluctuations, on 2d omega

k map

#inputs:

# omg = wave frequency [rad/s]

# sa = scattering angle [deg]

# omgL = probe laser frequency [rad/s]

# Te = electron temperature [keV]

# Ti = ion temperature [keV]

# Z = ion charge = q/e

# ne = electron density [cm^-3]

# vi=ion flow speed [c]

def chith2D_i(omg, kvals,Te,Ti,Z,Ai,ne,vi):

c=2.99792458e8 #v light in m/s

me=511 #kev

mproton=938300 #kev

omgpe=56400*np.sqrt(ne) #rad/s

vte=np.sqrt(Te/me) #c

vti=np.sqrt(Ti/(mproton*Ai)) #c

kd=omgpe/(vte*c)

k=kvals

kkd=k/kd

xi=((omg/k)-vi*c)/(c*vti*np.sqrt(2.0))

xish=np.shape(xi)

xifl=xi.flatten()

imxi=(kkd**-2)*plaZim(xifl).reshape(xish)*Z*Te/Ti

rexi=(kkd**-2)*plaZre(xifl).reshape(xish)*Z*Te/Ti

return rexi+1j*imxi

#%%########################################################################

# advanced electron and ion susceptibilty [p50 Froula2011]

#chi_i= \omega_pi^2/k^2 \int_{-\infty}^{\infty} (k \cdot df/dv) / (w - kv

-igamma)

#determines plasma response to electron denisty fluctuations

#inputs:

# omg = wave frequency [rad/s]

# sa = scattering angle [deg]

# omgL = probe laser frequency [rad/s]

# dists = distributin functions #######################################
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todo label how

# Z = ion charge = q/e

# Ai=ion protons + nuetrons

# ne = electron density [cm^-3]

def chicust_i(omg, sa,omgL,dists,ne,Z,Ai): #Te,Ti,Z

c=2.99792458e8 #v light in m/s

me=511 #kev

mproton=938300 #kev

mi=mproton*Ai

omgpe=56400*np.sqrt(ne) #rad/s

omgpi=omgpe*np.sqrt(Z*me/mi)

sarad=sa*2*np.pi/360

kL=np.sqrt(omgL**2-omgpe**2)/c

omgs=omg+omgL

ks=np.sqrt(omgs**2-omgpe**2)/c

k=np.sqrt(kL**2+ks**2-2*ks*kL*np.cos(sarad))

vel=((omg/k)/c) #v/c

vemax=np.max(np.abs(vel))

nmakea = vtabmake(dists[1], vel) #cbdo check if binning size changes

in vtabmake, bad with non uniform vel

Zpe = custZprime(vel,nmakea, vemax) ##################### numerical

chiEre= (-(1.0/(c*k[:]/omgpi)**2))*(Zpe[0,:]) #me/mi

chiEim= (-(1.0/(c*k[:]/omgpi)**2))*(-1j*Zpe[1,:]) #me/mi

return chiEre+chiEim

#chi e

def chicust_e(omg, sa,omgL,dists,ne):

c=2.99792458e8 #v light in m/s

omgpe=56400*np.sqrt(ne) #rad/s

sarad=sa*2*np.pi/360

kL=np.sqrt(omgL**2-omgpe**2)/c

omgs=omg+omgL

ks=np.sqrt(omgs**2-omgpe**2)/c

k=np.sqrt(kL**2+ks**2-2*ks*kL*np.cos(sarad))

vel=((omg/k)/c) #v/c

vemax=np.max(np.abs(vel))

nmakea = vtabmake(dists[1], vel) #cbdo check if binning size changes

in vtabmake, bad with non uniform vel

Zpe = custZprime(vel,nmakea, vemax) ##################### numerical

chiEre= (-(1.0/(c*k[:]/omgpe)**2))*(Zpe[0,:])

chiEim= (-(1.0/(c*k[:]/omgpe)**2))*(-1j*Zpe[1,:])

return chiEre+chiEim

155



A.2 OTSpower.py

Spectra are generated with the below functions

# functions for generating maxwellain OTS spectra

#Created on Fri Sep 2 23:24:44 2022, Colin Bruulsema

import numpy as np

import scipy.special as sps

import scipy.ndimage as spn

from src.OTSplasma import chith_e

from src.OTSplasma import chith_i

from src.OTSplasma import chicust_i

from src.OTSplasma import chith2D_e

from src.OTSplasma import chith2D_i

#%%########################################################################

#s(k,omega)

#form factor for waves in thermal plasma

#inputs:

# omg = wave frequency [rad/s]

# sa = scattering angle [deg]

# omgL = probe laser frequency [rad/s]

# Te = electron temperature [keV]

# Ti = ion temperature [keV]

# Z = ion charge = q/e

# Ai=ion protons + nuetrons

# ne = electron density [cm^-3]

# ve=electron velocity [c]

# vi=ion velocity [c]

def skw(omg,sa,omgL,Te,Ti,Z,Ai,ne,ve,vi):

chie=chith_e(omg, sa,omgL,Te,ne,ve)

chii=chith_i(omg, sa,omgL,Te,Ti,Z,Ai,ne,vi)

eps=chie+chii+1.0

dispe=np.abs((1+chii)/eps)**2

dispi=np.abs((chie)/eps)**2

eps=1.0+chie+chii

c=2.99792458e8 #v light in m/s

me=511 #kev

mproton=938300 #kev

omgpe=56400*np.sqrt(ne) #rad/s

sarad=sa*2*np.pi/360

kL=np.sqrt(omgL**2-omgpe**2)/c
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omgs=omg+omgL

ks=np.sqrt(omgs**2-omgpe**2)/c

k=np.sqrt(kL**2+ks**2-2*ks*kL*np.cos(sarad))

vte=np.sqrt(Te/me) #c

vti=np.sqrt(Ti/(mproton*Ai)) #c

fe=np.sqrt(1.0/(2*np.pi*vte**2*c**2))*np.exp(-0.5*((omg/k)-ve*c)**2

/(vte**2*c**2))

fi=np.sqrt(1.0/(2*np.pi*vti**2*c**2))

*np.exp(-0.5*((omg/k)-vi*c)**2/(vti**2*c**2))

skwe=(2*np.pi/k)*dispe*fe

skwi=(2*np.pi*Z/k)*dispi*fi

return (skwe+skwi)

#s(k,omega) #high alpha version of skw

#form factor for waves in thermal plasma

#inputs:

# omg = wave frequency [rad/s]

# sa = scattering angle [deg]

# omgL = probe laser frequency [rad/s]

# Te = electron temperature [keV]

# Ti = ion temperature [keV]

# Z = ion charge = q/e

# Ai=ion protons + nuetrons

# ne = electron density [cm^-3]

# ve=electron velocity [c]

# vi=ion velocity [c]

def skwha(omg,sa,omgL,Te,Ti,Z,Ai,ne,ve,vi):

# print(’startHA’)

# print(omg)

chie=chith_e(omg, sa,omgL,Te,ne,ve)

chii=chith_i(omg, sa,omgL,Te,Ti,Z,Ai,ne,vi)

eps=chie+chii+1.0

epse=chie+1.0

dispe=np.abs((1+chii)/eps)**2

dispi=np.abs((chie)/eps)**2

eps=1.0+chie+chii

c=2.99792458e8 #v light in m/s

me=511 #kev

mproton=938300 #kev

omgpe=56400*np.sqrt(ne) #rad/s

sarad=sa*2*np.pi/360

kL=np.sqrt(omgL**2-omgpe**2)/c
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omgs=omg+omgL

ks=np.sqrt(omgs**2-omgpe**2)/c

k=np.sqrt(kL**2+ks**2-2*ks*kL*np.cos(sarad))

# omgpe=56400*np.sqrt(ne) #rad/s

vte=np.sqrt(Te/me) #c

vti=np.sqrt(Ti/(mproton*Ai)) #c

fe=np.sqrt(1.0/(2*np.pi*vte**2*c**2))*np.exp(-0.5*((omg/k)-ve*c)**2

/(vte**2*c**2))

fi=np.sqrt(1.0/(2*np.pi*vti**2*c**2))

*np.exp(-0.5*((omg/k)-vi*c)**2/(vti**2*c**2))

skwe=(2*np.pi/k)*dispe*fe

skwi=(2*np.pi*Z/k)*dispi*fi

specnow=skwe+skwi

kd=omgpe/(vte*c)

#find resonance

negres=np.real(epse)*np.real(np.roll(epse,1))

negres[0]=0

omgres=omg[negres<0]

omgres_e=omgres[np.abs(omgres)>0.99*omgpe]

# print(omgres)

# print(omgres/omgpe)

kres=k[negres<0]

alphares=kd/kres #limit between alpha 3 and 4

# id peak spots

searchlen=1

searchrat=min(0.1*np.abs(omg[0]-omg[-1])/omgpe,0.2) #0.01 #todo make

prop to omega range

thresh=0.2 #was 0.1

# print(alphares)

if(len(omgres_e)>0):

if(np.max(alphares)>3.0): #res 3 alpha at 1.2omgpe, omg rat 1.003175

for res in range(len(omgres_e)):

res1=omgres_e[res] #todo make this work for arbitarty omg

array

argres1=np.argmin(np.abs(omg-res1)) # arg of omg at res. Now

pick arge range that def has resonance.

argres1h=np.argmin(np.abs(omg-(res1+searchrat*np.abs(res1))))

argres1l=np.argmin(np.abs(omg-(res1-searchrat*np.abs(res1))))

# print(omg)

# print(res1)

# print(searchrat)

# print(argres1l,argres1h)

domgsign=1

if(omg[0]>omg[1]):

domgsign=-1
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argres1h=int(argres1h+domgsign*searchlen)

argres1l=int(argres1l-domgsign*searchlen)

argres1ha=argres1h

argres1la=argres1l # set in argument orde now to search

if(omg[0]>omg[1]):

argres1ha=argres1l

argres1la=argres1h

# print(argres1la,argres1ha)

if(skwe[argres1la:argres1ha].size == 0 ):

argmaxspec=argres1la

else:

argmaxspec=np.argmax(skwe[argres1la:argres1ha])+argres1la

if(argres1ha<len(omg) and argres1la<len(omg) and argres1la>0

and argres1ha>0): #cbdo test, new condition

if(skwe[argmaxspec]-skwe[argmaxspec+1]>thresh*skwe[argmaxspec]

or

skwe[argmaxspec]-skwe[argmaxspec-1]>thresh*skwe[argmaxspec]

):

#too much spikey, try smaller omega

omgnew=np.linspace(omg[argres1la],omg[argres1ha],len(omg))

specnew=skwha(omgnew,sa,omgL,Te,Ti,Z,Ai,ne,ve,vi)

for i in range(argres1la,argres1ha):

specnow[i]=0

for i in range(len(specnew)):

argold=np.argmin(np.abs(omg-omgnew[i]))

if(i+1<len(specnew) ):

if( (argold+1)<len(omg) ):

jac=(omgnew[i+1]-omgnew[i])

/(omg[argold+1]-omg[argold])

else:

jac=(omgnew[i+1]-omgnew[i])/(omg[-1]-omg[-2])

specnow[argold]=specnow[argold]+specnew[i]*jac

# was not indent

return specnow

#s(k,omega) multi Z

#form factor for waves in thermal plasma with two ion species

#inputs:

# omg = wave frequency [rad/s]

# sa = scattering angle [deg]

# omgL = probe laser frequency [rad/s]

# Te = electron temperature [keV]

# Ti = ion temperature [keV]

# Z = ion charge = q/e

# Ai=ion protons + nuetrons

# ne = electron density [cm^-3]
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# ve=electron velocity [c]

# vi=ion velocity [c]

def skwmz(omg,sa,omgL,Te,Ti1,Ti2,Z1,Z2,Ai1,Ai2,ne,ve,vi1,vi2,zf2):

chie=chith_e(omg, sa,omgL,Te,ne,ve)

chii1=chith_i(omg, sa,omgL,Te,Ti1,Z1,Ai1,ne,vi1)*(1.0-zf2)

chii2=chith_i(omg, sa,omgL,Te,Ti2,Z2,Ai2,ne,vi2)*zf2

chii=chii1+chii2

eps=chie+chii+1.0

dispe=np.abs((1+chii)/eps)**2

dispi=np.abs((chie)/eps)**2

eps=1.0+chie+chii

c=2.99792458e8 #v light in m/s

me=511 #kev

mproton=938300 #kev

omgpe=56400*np.sqrt(ne) #rad/s

sarad=sa*2*np.pi/360

kL=np.sqrt(omgL**2-omgpe**2)/c

omgs=omg+omgL

ks=np.sqrt(omgs**2-omgpe**2)/c

k=np.sqrt(kL**2+ks**2-2*ks*kL*np.cos(sarad))

vte=np.sqrt(Te/me) #c

vti1=np.sqrt(Ti1/(mproton*Ai1)) #c

vti2=np.sqrt(Ti2/(mproton*Ai2)) #c

fe=np.sqrt(1.0/(2*np.pi*vte**2*c**2))

*np.exp(-0.5*((omg/k)-ve*c)**2/(vte**2*c**2))

fi1=(1.0-zf2)*np.sqrt(1.0/(2*np.pi*vti1**2*c**2))

*np.exp(-0.5*((omg/k)-vi1*c)**2/(vti1**2*c**2))

fi2=zf2*np.sqrt(1.0/(2*np.pi*vti2**2*c**2))

*np.exp(-0.5*((omg/k)-vi2*c)**2/(vti2**2*c**2))

skwe=(2*np.pi/k)*dispe*fe

skwi1=(2*np.pi*Z1/k)*dispi*fi1

skwi2=(2*np.pi*Z2/k)*dispi*fi2

skwi=skwi1+skwi2

return (skwe+skwi)

#s(k,omega) 3 Z

#form factor for waves in thermal plasma with two ion species

#inputs:

# omg = wave frequency [rad/s]

# sa = scattering angle [deg]

# omgL = probe laser frequency [rad/s]

# Te = electron temperature [keV]

# Ti = ion temperature [keV]

# Z = ion charge = q/e

# Ai=ion protons + nuetrons
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# ne = electron density [cm^-3]

# ve=electron velocity [c]

# vi=ion velocity [c]

def

skw3z(omg,sa,omgL,Te,Ti1,Ti2,Ti3,Z1,Z2,Z3,Ai1,Ai2,Ai3,ne,ve,vi1,vi2,vi3,zf2,zf3):

chie=chith_e(omg, sa,omgL,Te,ne,ve)

chii1=chith_i(omg, sa,omgL,Te,Ti1,Z1,Ai1,ne,vi1)*(1.0-zf2-zf3)

chii2=chith_i(omg, sa,omgL,Te,Ti2,Z2,Ai2,ne,vi2)*zf2

chii3=chith_i(omg, sa,omgL,Te,Ti3,Z3,Ai3,ne,vi3)*zf3

chii=chii1+chii2+chii3

eps=chie+chii+1.0

dispe=np.abs((1+chii)/eps)**2

dispi=np.abs((chie)/eps)**2

eps=1.0+chie+chii

c=2.99792458e8 #v light in m/s

me=511 #kev

mproton=938300 #kev

omgpe=56400*np.sqrt(ne) #rad/s

sarad=sa*2*np.pi/360

kL=np.sqrt(omgL**2-omgpe**2)/c

omgs=omg+omgL

ks=np.sqrt(omgs**2-omgpe**2)/c

k=np.sqrt(kL**2+ks**2-2*ks*kL*np.cos(sarad))

vte=np.sqrt(Te/me) #c

vti1=np.sqrt(Ti1/(mproton*Ai1)) #c

vti2=np.sqrt(Ti2/(mproton*Ai2)) #c

vti3=np.sqrt(Ti3/(mproton*Ai3)) #c

fe=np.sqrt(1.0/(2*np.pi*vte**2*c**2))

*np.exp(-0.5*((omg/k)-ve*c)**2/(vte**2*c**2))

fi1=(1.0-zf2-zf3)*np.sqrt(1.0/(2*np.pi*vti1**2*c**2))

*np.exp(-0.5*((omg/k)-vi1*c)**2/(vti1**2*c**2))

fi2=zf2*np.sqrt(1.0/(2*np.pi*vti2**2*c**2))

*np.exp(-0.5*((omg/k)-vi2*c)**2/(vti2**2*c**2))

fi3=zf3*np.sqrt(1.0/(2*np.pi*vti3**2*c**2))

*np.exp(-0.5*((omg/k)-vi3*c)**2/(vti3**2*c**2))

skwe=(2*np.pi/k)*dispe*fe

skwi1=(2*np.pi*Z1/k)*dispi*fi1

skwi2=(2*np.pi*Z2/k)*dispi*fi2

skwi3=(2*np.pi*Z3/k)*dispi*fi3

skwi=skwi1+skwi2+skwi3

return (skwe+skwi)

#s(k,omega) density gradient, with hig halpha correction

#inputs:
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# omg = wave frequency [rad/s]

# sa = scattering angle [deg]

# omgL = probe laser frequency [rad/s]

# Te = electron temperature [keV]

# Ti = ion temperature [keV]

# Z = ion charge = q/e

# Ai=ion protons + nuetrons

# ne = electron density [cm^-3]

# ltslne=OTS radius /electron density scale length:

ne=ne_0*e^(ltslne*r/lts)

# spots = numper of EPWs of different densities to calculate. Smooting

inscreases if less spots are used.

# ve=electron velocity [c]

# vi=ion velocity [c]

def skwhadnsm(omg, sa, omgL,Te,Ti,Z,Ai,ne,ltslne,spots,ve,vi):

re=2.8179403227e-13 #cm

me=511 #kev

mproton=938300 #kev

c=2.99792458e8 #v light in m/s

omgpe=56400*np.sqrt(ne)

sarad=sa*2*np.pi/360

mid_ind=int(len(omg)/2)

domg=np.abs(omg[mid_ind] - omg[mid_ind + 1])

rtssl=np.linspace(-1.0,1.0,spots+2)

rtss=rtssl[1:spots+2]

amps=(1.0/spots)*np.sqrt(1.0-rtss**2)

amps=amps/np.sum(amps)

#pre smooth: find ratio of smooth to different n

reldomgpe=0.25*ltslne #from gradn_integral.py

domgpesm=omgpe*reldomgpe

domgdnall=domgpesm

nesall=ne*np.exp(rtss*ltslne)

omgpesall=56400*np.sqrt(nesall)

omgdiffall=(omgpesall-np.roll(omgpesall,1))

omgdiffall[0]=omgpesall[1]-omgpesall[0]

omgdiffall[-1]=omgpesall[-1]-omgpesall[-2]

domgpeall=np.max(np.abs(omgdiffall))

allrat=0.6*domgpeall/(np.abs(domgdnall)+1e-12*omgpe) #ratio of dn

omega to sm omega, max about 2, renomred to 1

#smooth step

fracdn=np.sqrt(1.0/(allrat**2+1.0))

nes=ne*np.exp(rtss*ltslne*fracdn) #list of densities to make EWP from
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omgpes=56400*np.sqrt(nes)

omgdiff=(omgpes-np.roll(omgpes,1))

omgdiff[0]=0

omgdiff[-1]=0

domgpe=np.max(np.abs(omgdiff))

reldomgpe=0.25*ltslne #from gradn_integral.py

domgpesm=omgpe*reldomgpe

domgdn=domgpesm*np.sqrt(1.0-fracdn**2)

skom=np.zeros(len(omg))

for i in range(spots):

skomnow=skwha(omg, sa, omgL,Te,Ti,Z,Ai,nes[i],ve,vi)*amps[i]

skom=skom+skomnow

#find iaw range

kL=np.sqrt(omgL**2-omgpe**2)/c

omgs=omg+omgL

ks=np.sqrt(omgs**2-omgpe**2)/c

k=np.sqrt(kL**2+ks**2-2*ks*kL*np.cos(sarad))

mk=np.max(k)*3.0 #1.5

iawomg=mk*np.sqrt(Te*Z/(Ai*mproton))*c

# print((domgpe/domgdn)) # about 2 max for good spectrum, this is

normed to 1 now

skom_e=np.zeros(len(skom))

olds=0

for i in range(len(skom_e)): #spit EPW and IAW spectra so we can

smooth just the EPW due to density variation

if (np.abs(omg[i])>iawomg):

skom_e[i]=skom[i]

olds=skom[i]

else:

skom_e[i]=olds #olds

skom_i=skom-skom_e

skom_e=spn.gaussian_filter(skom_e,domgdn/domg, mode=’reflect’)

#nearest to ohigh

skom=skom_e+skom_i

return skom

#s(k,omega)

#form factor for waves with custom ion distribution

#inputs:

# omg = wave frequency [rad/s]

# sa = scattering angle [deg]

# omgL = probe laser frequency [rad/s]
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# Z = ion charge = q/e

# Ai=ion protons + nuetrons

# ne = electron density [cm^-3]

# ve=electron velocity [c]

# dist [1/c] distribution function of ions, at phase velocity omg/k

def skwic(omg,sa,omgL,Te,Z,Ai,ne,ve,dist):

c=2.99792458e8 #v light in m/s

me=511 #kev

omgpe=56400*np.sqrt(ne) #rad/s

sarad=sa*2*np.pi/360

kL=np.sqrt(omgL**2-omgpe**2)/c

omgs=omg+omgL

ks=np.sqrt(omgs**2-omgpe**2)/c

k=np.sqrt(kL**2+ks**2-2*ks*kL*np.cos(sarad))

vte=np.sqrt(Te/me) #c

fe=np.sqrt(1.0/(2*np.pi*vte**2*c**2))

*np.exp(-0.5*((omg/k)-ve*c)**2/(vte**2*c**2))

chie=chith_e(omg, sa,omgL,Te,ne,ve)

chii=chicust_i(omg, sa,omgL,dist,ne,Z,Ai)

eps=chie+chii+1.0

dispe=np.abs((1+chii)/eps)**2

dispi=np.abs((chie)/eps)**2

fi=1.0*dist[0]/c

skwe=(2*np.pi/k)*dispe*fe

skwi=(2*np.pi*Z/k)*dispi*fi

return (skwe+skwi)

#s(k,omega)

#form factor for any k, omega (2D map)

#inputs:

# omg = wave frequency [rad/s] array

# kvals = wave number [rad/m], array

# Te = electron temperature [keV]

# Ti = ion temperature [keV]

# Z = ion charge = q/e

# Ai=ion protons + nuetrons

# ne = electron density [cm^-3]

# ve=electron velocity [c]

# vi=ion velocity [c]

def skw2D(omg,kvals,Te,Ti,Z,Ai,ne,ve,vi):

kmap=np.outer(np.ones(len(omg)),kvals)

164



omap=np.outer(omg,np.ones(len(kvals)))

chie=chith2D_e(omap, kmap,Te,ne,ve)

chii=chith2D_i(omap, kmap,Te,Ti,Z,Ai,ne,vi)

eps=chie+chii+1.0

dispe=np.abs((1+chii)/eps)**2

dispi=np.abs((chie)/eps)**2

eps=1.0+chie+chii

c=2.99792458e8 #v light in m/s

me=511 #kev

mproton=938300 #kev

k=kvals

vte=np.sqrt(Te/me) #c

vti=np.sqrt(Ti/(mproton*Ai)) #c

fe=np.sqrt(1.0/(2*np.pi*vte**2*c**2))

*np.exp(-0.5*((omap/kmap)-ve*c)**2/(vte**2*c**2))

fi=np.sqrt(1.0/(2*np.pi*vti**2*c**2))

*np.exp(-0.5*((omap/kmap)-vi*c)**2/(vti**2*c**2))

skwe=(2*np.pi/k)*dispe*fe

skwi=(2*np.pi*Z/k)*dispi*fi

return (skwe+skwi)

#s(k,omega) [s] electrons

#form factor for any k, omega (2D map), no ions

#inputs:

# omg = wave frequency [rad/s] array

# kvals = wave number [rad/m], array

# Te = electron temperature [keV]

# ne = electron density [cm^-3]

# ve=electron velocity [c]

def skw2De(omg,kvals,Te,ne,ve):

kmap=np.outer(np.ones(len(omg)),kvals)

omap=np.outer(omg,np.ones(len(kvals)))

chie=chith2D_e(omap, kmap,Te,ne,ve)

eps=chie+1.0

dispe=np.abs((1.0)/eps)**2

eps=1.0+chie

c=2.99792458e8 #v light in m/s

me=511 #kev

mproton=938300 #kev

k=kvals

vte=np.sqrt(Te/me) #c

fe=np.sqrt(1.0/(2*np.pi*vte**2*c**2))

*np.exp(-0.5*((omap/kmap)-ve*c)**2/(vte**2*c**2))

skwe=(2*np.pi/k)*dispe*fe

return (skwe)

#%%########################################################################
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# power

# old way

#inputs:

# omg = wave frequency [rad/s]

# sa = scattering angle [deg]

# omgL = probe laser frequency [rad/s]

# Te = electron temperature [keV]

# Ti = ion temperature [keV]

# Z = ion charge = q/e

# Ai=ion protons + nuetrons

# ne = electron density [cm^-3]

# ve=electron velocity [c]

# vi=ion velocity [c]

# def TSpwr(Pin,Lts,res_om, omg, sa, omgL,Te,Ti,Z,Ai,ne,ve,vi):

# re=2.8179403227e-13 #cm

# skom=skw(omg, sa, omgL,Te,Ti,Z,Ai,ne,ve,vi)

# mid_ind=int(len(omg)/2)

# domg=np.abs(omg[mid_ind] - omg[mid_ind + 1])

# skomres=spn.gaussian_filter(skom,res_om/domg)

# skompow=skomres*(Pin*re**2*Lts/(2*np.pi))*ne*(1+2*omg/omgL)

# return skompow

#OTSpwr

#power shape of OTS scattered light in 4pi radians, [w/omega]

# worsk with any skw form factor

#inputs:

# Pin = input probe power [w]

# Lts = length of scattering collected [cm]

# res_om = frequency broadening [s^-1]

# ne = electron density [cm^-3]

# omg = wave frequency [rad/s]

# omgL = probe laser frequency [rad/s]

# spec = input form factor s(k,omega) [\omega^-1]

def OTSpwr(Pin,Lts,res_om, omg, omgL, ne, spec):

re=2.8179403227e-13 #cm

skom=spec #skw(omg, sa, omgL,Te,Ti,Z,Ai,ne,ve,vi)

mid_ind=int(len(omg)/2)

domg=np.abs(omg[mid_ind] - omg[mid_ind + 1])

skomres=spn.gaussian_filter(skom,res_om/domg)

skompow=skomres*(Pin*re**2*Lts/(2*np.pi))*ne*(1+2*omg/omgL)

return skompow
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#%%########################################################################

A.3 OTStools.py

Helper functions for generating OTS spectra

# common operations using OTS functions

#Created on Fri Sep 9 13:09:10 2022, Colin Bruulsema

import numpy as np

import scipy.special as sps

import scipy.ndimage as spn

# from OTSplasma import chith_e

# from OTSplasma import chith_i

import sys

# sys.path.append("/Users/Colin/OneDrive/EbackMarch2020/OTS/")

#C:\Users\Colin\OneDrive\EbackMarch2021\OTS

# sys.path.append("/Users/Colin/OneDrive/EbackMarch2020/")

from src.OTSpower import skw

import matplotlib.pyplot as plt

import scipy as sp

#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

######################## constants

#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

c=3e8 #m/s

me=511 #kev

mp=938272.0 #keV

#%%%%%%%%%%###########################################################

# Spectral shape diagnostics

#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%#################

#IAW asmmetry from current, maxwellain
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#form factor for waves in thermal plasma

#inputs:

# omg = wave frequency [rad/s]

# sa = scattering angle [deg]

# omgL = probe laser frequency [rad/s]

# Te = electron temperature [keV]

# Ti = ion temperature [keV]

# Z = ion charge = q/e

# Ai=ion protons + nuetrons

# ne = electron density [cm^-3]

# ve=electron velocity [c]

# vi=ion velocity [c]

def asyiaw_max(sa,omgL,Te,Ti,Z,Ai,ne,ve,vi):

#find plasuible extent of IAW: omega=2*cs*k

cs=np.sqrt((Z*Te+3*Ti)/(Ai*mp)) #sound speec/c

omgpe=56400*np.sqrt(ne) #rad/s

kL=np.sqrt(omgL**2-omgpe**2)/c

sarad=sa*2*np.pi/360

kLa=omgL/c #approx laser wave number

ka=np.sqrt(2)*kL*np.sqrt(1.0-1.0*np.cos(sarad)) #approx scattering

wave number

omgR=2*cs*c*ka #0.002*omgL

pix=16001

omg=np.linspace(-omgR,omgR, pix)

#make spectrum, find asymmetry

iaw=skw(omg,sa,omgL,Te,Ti,Z,Ai,ne,ve,vi)

iawb=np.sum(iaw[omg-vi*c*kL>0])

iawr=np.sum(iaw[omg-vi*c*kL<0])

asym=iawb/(iawr+iawb) #####

return asym

# how to verify above :

# iawcdf=np.zeros(len(iaw))

# for ii in range(1,len(iaw)):

# iawcdf[ii]=iawcdf[ii-1]+iaw[ii]*(omg[ii]-omg[ii-1])

#

iawcdfn=np.abs((iawcdf-iawcdf[np.argmin(np.abs(omg-vi*c*kL))])/np.max(iawcdf))

# *np.max(iaw)

# sumiaw=np.max(iawcdf)

# plt.plot(omg,iaw,’r’)

# plt.plot(omg,iawcdfn,’m’)

# plt.ylim(0,1.1*np.max(iaw))

# plt.title(’IAW, asm=’+str(’{:01.3f}’.format(asym))+’

sum=’+str(’{:01.3f}’.format(sumiaw)))

# plt.xlabel(’$\omega$ [$s^{-1}$]’)
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# plt.show()

#tblueredfind_ind: two-peak finder

#returns bin indicies for each peak

#inputs:

# spec = IAW spectrum to find peaks in, [any units]

# res = smoothing to apply to remove noise [bins]

def blueredfind_ind(spec,res=1):

IAWpf=sp.ndimage.gaussian_filter(spec*1.00,res)

tops=np.zeros(len(IAWpf))

for i in range(1,len(IAWpf)-1):

if(IAWpf[i]-IAWpf[i-1]>=0 and IAWpf[i]-IAWpf[i+1]>=0):

tops[i]=1

tops[i-1]=0

index_blue=0

val_blue=0

index_red=0

val_red=0

for i in range(1,len(IAWpf)-1):

if(tops[i]==1):

# print(’top’)

# print(IAWpf[i])

# print(i)

if(IAWpf[i]>val_blue and val_red>val_blue):

val_blue=IAWpf[i]

index_blue=i

else:

if(IAWpf[i]>val_red and val_red<=val_blue):

val_red=val_blue

index_red=index_blue

val_blue=IAWpf[i]

index_blue=i

bluered_ind=np.zeros(2)

bluered_ind[0]=index_blue

bluered_ind[1]=index_red

return bluered_ind

#iawfrqfind: IAW frequency finder

#returns frequncy of IAW

#inputs:

# wv = wavelength of IAW spec [nm]

# iawspec = IAW spectrum to find peaks in, [any units]

def iawfrqfind(wv,iawspec,res):

inds=blueredfind_ind(iawspec,res)
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wv1=wv[int(inds[0])]

wv2=wv[int(inds[1])]

ifrq=np.abs(0.5*(c*2*np.pi/(wv1*1e-9))-0.5*(c*2*np.pi/(wv2*1e-9)))

return ifrq

#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

######################## ots relations

#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

#finds phase velocity of waves from frequency input

#inputs:

# omg = wave frequency [rad/s]

# sa = scattering angle [deg]

# omgL = probe laser frequency [rad/s]

# ne = electron density [cm^-3]

def vfromomg(omg,sa,omgL,ne):

c=2.99792458e8 #v light in m/s

me=511 #kev

omgpe=56400*np.sqrt(ne) #rad/s

sarad=sa*2*np.pi/360

kL=np.sqrt(omgL**2-omgpe**2)/c

omgs=omg+omgL

ks=np.sqrt(omgs**2-omgpe**2)/c

k=np.sqrt(kL**2+ks**2-2*ks*kL*np.cos(sarad))

v=(omg/k)/c

return (v)

#finds frequency of waves from phase velocity

#inputs:

# omg = wave frequency [rad/s]

# sa = scattering angle [deg]

# omgL = probe laser frequency [rad/s]

# ne = electron density [cm^-3]

# steps = umber of iterations to take

def omgfromv(v,sa,omgL,ne,steps):

c=2.99792458e8 #v light in m/s

me=511 #kev

omgpe=56400*np.sqrt(ne) #rad/s

sarad=sa*2*np.pi/360

kL=np.sqrt(omgL**2-omgpe**2)/c

#iterate for k

k=np.ones(len(v))*np.sqrt(kL**2+kL**2-2*kL*kL*np.cos(sarad)) #starting

k with no shift
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for i in range(steps):

const=(omgL**2-omgpe**2-kL**2*np.cos(sarad)**2*c**2+kL**2

*np.sin(sarad)**2*c**2)

rootk=-2*kL*np.cos(sarad)*c**2*np.sqrt(k**2-kL**2*np.sin(sarad)**2)

#maybe crashes if k gets too small to reach

ksq=k**2*(v**2-c**2)

# klin=2*omgL*k*v #will use for lin method

omg=(-const-rootk-ksq)/(2*omgL) #solv for kv

#solve 2nd step

omgs=omg+omgL

ks=np.sqrt(omgs**2-omgpe**2)/c

k=np.sqrt(kL**2+ks**2-2*ks*kL*np.cos(sarad))

omg=k*v*c

return (omg)

#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

######################## dsitribution functions

#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

#idistmax: maxwellian distribution, perfect

#generates [fi,dfi/dv]

# vti is sqrt(Ti/mi) [c],

# vi[c] is central flow velocity

# v=aray of all v/c vals

def idistmax(vti, vi,v):

vdist = np.array(np.zeros(len(v)))

dvdist = np.array(np.zeros(len(v)))

vel = 1.0*v

dvbin=np.zeros(len(v))

for i in range(1,len(v)-1):

dvbin[i]=(v[i+1]-v[i-1])/2.0

dvbin[0]=(v[1]-v[0])/1.0

dvbin[-1]=(v[-1]-v[-2])/1.0

supx = ((vel-vi)/vti)

maxwel=(1.0)*(1.0/(vti*np.sqrt(2*np.pi)))*np.exp(-0.5*(supx)**2)

fi=maxwel #ion distribution function on velocity/vti=supx, needs

\int_-1^1 fitail dv/c =1

vdist[:] = fi[:]

vdist=(1.0*vdist)

#take e derivative

dvdist = np.array(np.zeros(len(vdist)))

derlen =int(1) #59
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for i in range(len(dvdist)-2*derlen):

dvdist[i+derlen]=0

for avi in range(derlen):

dvdist[i+derlen] =

dvdist[i+derlen]+2*(avi+1)*(vdist[i+derlen+avi+1] -

vdist[i+derlen-avi-1])/(v[i+derlen+avi+1] -

v[i+derlen-avi-1])

dvdist[i+derlen] = dvdist[i+derlen]/(derlen*(derlen+1))

return vdist, dvdist

#idistHT: hot ion tails

#generates [fi,dfi/dv]

# vti is sqrt(Ti/mi) [c],

# vi[c] is central flow velocity

# hT=T_{tail}/T_i,

# hf=hot tail fraction

# v=aray of all v/c vals

def idistHT(vti, vi, hT, hf,v):

vdist = np.array(np.zeros(len(v)))

dvdist = np.array(np.zeros(len(v)))

vel = 1.0*v

dvbin=np.zeros(len(v))

for i in range(1,len(v)-1):

dvbin[i]=(v[i+1]-v[i-1])/2.0

dvbin[0]=(v[1]-v[0])/1.0

dvbin[-1]=(v[-1]-v[-2])/1.0

supx = ((vel-vi)/vti)

maxwelW=(1.0-hf)*(1.0/(vti*np.sqrt(2*np.pi)))*np.exp(-0.5*(supx)**2)

maxwelWh=hf*(1.0/(vti*np.sqrt(hT)*np.sqrt(2*np.pi)))

*np.exp(-0.5*(supx/np.sqrt(hT))**2)

fitail=maxwelW+maxwelWh #ion distribution function on

velocity/vti=supx, needs \int_-1^1 fitail dv/c =1

vdist[:] = fitail[:]

vdist=(1.0*vdist)

#take e derivative

dvdist = np.array(np.zeros(len(vdist)))

derlen =int(1) #59

for i in range(len(dvdist)-2*derlen):

dvdist[i+derlen]=0

for avi in range(derlen):

dvdist[i+derlen] =

dvdist[i+derlen]+2*(avi+1)*(vdist[i+derlen+avi+1] -

vdist[i+derlen-avi-1])/(v[i+derlen+avi+1] -

v[i+derlen-avi-1])
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dvdist[i+derlen] = dvdist[i+derlen]/(derlen*(derlen+1))

return vdist, dvdist

#idistmodT: hot ion tail with a tail model

#generates [fi,dfi/dv]

# vti is sqrt(Ti/mi) [c],

# vi[c] is central flow velocity

# hT=T_{tail}/T_i,

# hf=hot tail fraction

# v=aray of all v/c vals

def idistmodT(vti, vi, hf,v):

vdist = np.array(np.zeros(len(v)))

dvdist = np.array(np.zeros(len(v)))

vel = 1.0*v

dvbin=np.zeros(len(v))

for i in range(1,len(v)-1):

dvbin[i]=(v[i+1]-v[i-1])/2.0

dvbin[0]=(v[1]-v[0])/1.0

dvbin[-1]=(v[-1]-v[-2])/1.0

supx = ((vel-vi)/vti)

veld=vel-vi

veldt=veld+0.91*vti

maxwelW=(1.0-hf)*(1.0/(vti*np.sqrt(2*np.pi)))*np.exp(-0.5*(supx)**2)

bs=np.array([3.0,0.4,3.1,0.8])*0.1*vti/0.02569 #*(5e4/3e7)

# sbs=np.array([0.025,0.004,0.01,0.2])*0.1*vti/0.02569

sbs=np.array([0.025,0.1,0.01,0.2])*0.1*vti/0.02569

vexp=0.22*(0.1*vti/0.02569)

tailturng=(1-0.5*(1+np.tanh((veldt-bs[0])/sbs[0])))

*(1-0.5*(1+np.tanh((veldt-bs[2])/sbs[2])))

tailturnh=(0.5*(1+np.tanh((veldt-bs[1])/sbs[1])))

*(0.5*(1+np.tanh((veldt-bs[3])/sbs[3])))

tailmax=np.exp(-1.0*(bs[1]/vexp))

taile=np.exp(-1.0*(veldt/vexp))

taile[(bs[1]>veldt)]=tailmax*np.ones(len(taile[(bs[1]>veldt)]))

tail=taile*tailturng*tailturnh

# tail[0:]

tailnorm=np.sum(tail*np.abs(dvbin))

fi1=hf*tail/tailnorm

# plt.plot(veld/(0.1*vti/0.02569),fi1,’c’)

# plt.plot(veld/(0.1*vti/0.02569),maxwelW,’k’)

# plt.show()

fitail=maxwelW+fi1 #ion distribution function on velocity/vti=supx,

needs \int_-1^1 fitail dv/c =1
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vdist[:] = fitail[:]

vdist=(1.0*vdist)

#take e derivative

dvdist = np.array(np.zeros(len(vdist)))

derlen =int(1) #59

for i in range(len(dvdist)-2*derlen):

dvdist[i+derlen]=0

for avi in range(derlen):

dvdist[i+derlen] =

dvdist[i+derlen]+2*(avi+1)*(vdist[i+derlen+avi+1] -

vdist[i+derlen-avi-1])/(v[i+derlen+avi+1] -

v[i+derlen-avi-1])

dvdist[i+derlen] = dvdist[i+derlen]/(derlen*(derlen+1))

return vdist, dvdist

#idistmaxp: maxwellian distribution, particles

#generates [fi,dfi/dv]

# vti is sqrt(Ti/mi) [c],

# vi[c] is central flow velocity

# v=aray of all v/c vals

# part = number of particles in distribution function

def idistmaxp(vti, vi,v,part):

vdist = np.array(np.zeros(len(v)))

dvdist = np.array(np.zeros(len(v)))

vel = 1.0*v

dvbin=np.zeros(len(v))

for i in range(1,len(v)-1):

dvbin[i]=(v[i+1]-v[i-1])/2.0

dvbin[0]=(v[1]-v[0])/1.0

dvbin[-1]=(v[-1]-v[-2])/1.0

dval=np.average(dvbin)

dmax=int((vti/dval)*0.5) #half len of vti

supx = ((vel-vi)/vti)

maxwel=(1.0)*(1.0/(vti*np.sqrt(2*np.pi)))*np.exp(-0.5*(supx)**2)

maxwelppc=maxwel*np.abs(dvbin)*part

fi=np.random.poisson(maxwelppc)/(np.abs(dvbin)*part) #ion distribution

function on velocity/vti=supx, needs \int_-1^1 fitail dv/c =1

# fierr=np.sqrt(maxwelppc)/(dvbin*part)

vdist[:] = fi[:]

vdist=(1.0*vdist)

#optimize the derivative length

Dpar=(1.0/(np.sqrt(2)*dvbin**2))*np.sqrt(fi*np.abs(dvbin)/part)

Gpar=(dvbin**2/vti**4)*(1.0/12.0)*(3-v**2/vti**2)*(fi*v)
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GD=np.abs(Gpar)/(np.abs(Dpar)+1e-20)

DG=np.abs(Dpar)/(np.abs(Gpar)+1e-20)

dapprox=spn.gaussian_filter(np.abs(1.5*DG)**(1.0/3.5),1) # smooth guess

dlen=np.zeros(len(dapprox),dtype=np.int64)

for i in range(len(dapprox)):

gd=np.abs(((3*dapprox[i]+1)/(2*dapprox[i]+1))*(1/np.sqrt(dapprox[i]**3))

*(1.0/(dapprox[i]+1)**2))

if(gd>GD[i]):

dlen[i]=np.ceil(dapprox[i])

else:

dlen[i]=np.floor(dapprox[i])

if(dlen[i]>dmax):

dlen[i]=dmax

if(dlen[i]<1):

dlen[i]=int(1)

#take v derivative

dvdist = np.array(np.zeros(len(vdist)))

derlenmax=int(np.max(dlen))

for i in range(len(dvdist)-2*derlenmax):

index=i+derlenmax

derlen =(dlen[index]) #59

dvdist[index]=0

for avi in range(derlen):

dvdist[index] = dvdist[index]+2*(avi+1)*(vdist[index+avi+1] -

vdist[index-avi-1])/(v[index+avi+1] - v[index-avi-1])

dvdist[index] = dvdist[index]/(derlen*(derlen+1))

return vdist, dvdist

#idistcp: input distribution, particles

#generates [fi,dfi/dv]

# fiin: input array of f_i(v). Normalized internally

# v: array of velocity values for f_i(v) [c]

# part = number of particles in distribution function

def idistcp(fiin, v,part):

vdist = np.array(np.zeros(len(v)))

dvdist = np.array(np.zeros(len(v)))

dvbin=np.zeros(len(v))

for i in range(1,len(v)-1):

dvbin[i]=(v[i+1]-v[i-1])/2.0

dvbin[0]=(v[1]-v[0])/1.0

dvbin[-1]=(v[-1]-v[-2])/1.0

dval=np.average(dvbin)
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#find norm and temperature of distribution

normfiin=np.sum(fiin*np.abs(dvbin)) #normaliztoin

vfiin=np.sum(v*(fiin/normfiin)*np.abs(dvbin)) #average velocity

vti=np.sqrt(np.sum((v-vfiin)**2*(fiin/normfiin)*np.abs(dvbin)))

dmax=int((vti/dval)*0.5) #half len of vti

# print(’idistcp vti’)

# print(vti)

fi=fiin/normfiin #ion distribution function on velocity/vti=supx,

needs \int_-1^1 fitail dv/c =1

# fippc=fi*dvbin*part #particles per cell in ion distribution, not

used explicitly here

# fierr=np.sqrt(maxwelppc)/(dvbin*part)

vdist[:] = fi[:]

vdist=(1.0*vdist)

#optimize the derivative length

Dpar=(1.0/(np.sqrt(2)*dvbin**2))*np.sqrt(fi*np.abs(dvbin)/part)

Gpar=(dvbin**2/vti**4)*(1.0/12.0)*(3-v**2/vti**2)*(fi*v)

GD=np.abs(Gpar)/(np.abs(Dpar)+1e-20)

DG=np.abs(Dpar)/(np.abs(Gpar)+1e-20)

dapprox=spn.gaussian_filter(np.abs(1.5*DG)**(1.0/3.5),1) # smooth guess

dlen=np.zeros(len(dapprox),dtype=np.int64)

for i in range(len(dapprox)):

gd=np.abs(((3*dapprox[i]+1)/(2*dapprox[i]+1))*(1/np.sqrt(dapprox[i]**3))

*(1.0/(dapprox[i]+1)**2))

if(gd>GD[i]):

dlen[i]=np.ceil(dapprox[i])

else:

dlen[i]=np.floor(dapprox[i])

if(dlen[i]>dmax):

dlen[i]=dmax

if(dlen[i]<1):

dlen[i]=int(1)

#take v derivative

dvdist = np.array(np.zeros(len(vdist)))

derlenmax=int(np.max(dlen))

for i in range(len(dvdist)-2*derlenmax):

index=i+derlenmax

derlen =(dlen[index]) #59

dvdist[index]=0

for avi in range(derlen):
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dvdist[index] = dvdist[index]+2*(avi+1)*(vdist[index+avi+1] -

vdist[index-avi-1])/(v[index+avi+1] - v[index-avi-1])

dvdist[index] = dvdist[index]/(derlen*(derlen+1))

return vdist, dvdist
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