Clinical and research applications of real-time ultrasonography in bovine reproduction: A review

Raja Rajmahendran, Divakar J. Ambrose, Bruce Burton

Abstract
Transrectal real-time ultrasonography has proved to be a rapid and reliable technique for studying reproductive functions in cattle. Through ultrasonography it is now established that follicular growth occurs in wave-like patterns during each estrous cycle. It has been shown that follicular growth and regression continue during early pregnancy, as well as in the postpartum anestrous period. Ultrasonography has also helped us to understand the influence of dominant follicles on medium and small follicles. Among the numerous demonstrated applications of ultrasonography, early pregnancy diagnosis, fetal sexing, and postpartum reproductive management appear to be promising areas for immediate application. The new information that has been generated through ultrasonography has thrown light on hitherto poorly understood areas of ovarian follicular dynamics, corpus luteum function, pregnancy establishment, and embryonic development in cattle, thereby opening newer areas for research. Still there is great potential for the continued application of this technology to further our understanding of the reproductive processes and to maximize reproductive efficiency of the bovine species. The significant contributions of real-time ultrasonography to the study of bovine reproduction in general and its practical applications in particular are discussed in this paper. The need for taking up technology assessment studies and for the introduction of low-cost portable equipment are stressed. Literature search for this review was done by scanning Current Contents Series 1991–92, AGRICOLA 1980–92, and MEDLINE 1990–92.

Résumé
Revue de l'utilisation de l'imagerie avec les ultrasons en reproduction bovine dans les domaines de diagnostic médical et de recherche. L'échographie effectuée par voie transrectale est une méthode fiable et rapide pour suivre le cycle reproducteur chez les bovins. L'imagerie avec les ultrasons a permis de visualiser la croissance folliculaire, laquelle se présente sous forme d'ondes à chaque cycle d'oestrus. De plus, il est démontré que la croissance et la régression folliculaires se pour-

reduct of the veterinary profession to adopt it, in contrast to its widespread acceptance as a clinical tool in human medicine. Interest in ultrasonography among both veterinarians and animal scientists began to grow in the early eighties, following reports (2–4) on the usefulness of the technique in studying the reproductive organs of the cow. Since that time, a dramatic growth in the application of real-time ultrasonography has been witnessed. Over the past decade, several applications of ultrasonography in bovine reproduction have been described (5–34, Table 1).

Reviews on the use of ultrasound in diagnostic veterinary medicine and its research applications in cattle and other farm animals have appeared recently (35–41). However, with the widening scope of ultrasonography, an enormous amount of information is being generated rapidly. It is impossible for practitioners to keep abreast of all published information. Periodic "progress reports" in the form of review articles thus serve to fill in the information gaps. This review aims to recapitulate the significant contributions made by real-time ultrasonography in the past decade and update the more recent developments in diagnostic ultrasonography with particular reference to bovine reproduction. We hope that such a focused review will be useful, specifically to those associated with bovine reproduction.

Materials and methods

The literature search for this review was performed by computer-aided scanning of Current Contents Series 1991 and 1992 (Institute for Scientific Information, Philadelphia, Pennsylvania, USA), MEDLINE 1990 to 1992 (Excerpta Medica, New York, New York, USA), and CD-ROM AGRICOLA 1980 to July 1992 (National Agricultural Library, Beltsville, Maryland, USA). Recent issues (July 1992 onwards) of popular animal and veterinary science journals available at the University of British Columbia libraries, and research papers available on personal files of the authors were also consulted for relevant literature. Ultrasound, Ultrasonography, Ultrasonic, Bovine, Cattle, Reproduction, Follicle, Cyst, Cystic, Uterus, Ovary, Fetus, Fetometry. Imaging, Sexing, Pregnancy diagnosis, and Corpus luteum were the key words used for literature search. We scrutinized all the literature that we had access to, and excluded or included papers based on the following criteria. All papers reporting a new application of ultrasound were included. Reports supporting or contesting previous findings were included or excluded at our discretion, depending on their importance and relevance to context.

Equipment for ultrasound scanning

Sector and linear-array, real-time (B-mode [brightness modality]), ultrasound devices are commonly available for veterinary applications. In general, linear-array transducers are used with linear-array imagers, and sector transducers are used with sector scanners. Scanners that can be used with both sector and linear-array transducers are also available. A linear-array transducer has several piezo electric crystals (which emit high frequency sound waves on being energized) arranged in a row, while the sector transducer has only a few such crystals. The other major difference between the two systems is that the image produced by the linear-array transducer appears rectangular on the screen, whereas the sector transducer produces a pie-shaped image corresponding to the field of scan. Readers interested in detailed information on the principles and types of ultrasound equipment available are directed to the relevant literature (42–46). The most common approach for scanning bovine reproductive organs is per rectum, using a transrectal transducer and a linear-array scanner. Transvaginal scanning is performed, usually with sector transducers, for certain special applications. Transducers usually come in 3.0, 3.5, 5.0, and 7.5 MHz frequency ranges. The tissue penetration of sound waves and the image resolution depend on the frequency of the transducer used. Accordingly, a 3.0 MHz transducer will give greater tissue penetration but minimum detail, whereas a 7.5 MHz transducer will give minimum tissue penetration yet maximum resolution. A transducer of 5.0 MHz is a general purpose one, providing reasonably detailed images of ovaries and uterus.

Continued improvements to the existing models of ultrasound scanners are essential. Presently, most of the clinical ultrasound equipment used for diagnostic purposes in cattle is manufactured primarily for the medical profession and equipped with modified transducers for veterinary use. Easily portable but sturdy built scanners, capable of withstanding tough field conditions, particularly dust, moisture, sunlight, extremes of temperature, and voltage fluctuations, need to be designed for veterinary use. Szenci (47) described the practicality of using a battery (direct current) operated portable ultrasound scanner rather than the widely used alternating current machines. The total weight of the equipment was only 6 kg, including the battery, a built-in video recorder, and transducer. The machine was capable of providing four hours of continuous operation without recharging, and

<table>
<thead>
<tr>
<th>Application</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Female Reproductive System</td>
<td></td>
</tr>
<tr>
<td>• follicular dynamics during</td>
<td>5, 6</td>
</tr>
<tr>
<td>a) estrous cycle</td>
<td></td>
</tr>
<tr>
<td>b) pregnancy</td>
<td>7, 8</td>
</tr>
<tr>
<td>c) postpartum period</td>
<td>9, 10</td>
</tr>
<tr>
<td>d) superovulation</td>
<td>11, 12</td>
</tr>
<tr>
<td>• ovulation process</td>
<td>13, 14</td>
</tr>
<tr>
<td>• corpus luteum morphology and growth</td>
<td>15, 16</td>
</tr>
<tr>
<td>• normal uterine status</td>
<td>3, 17</td>
</tr>
<tr>
<td>• pregnancy diagnosis and detection of early embryonic death</td>
<td>18, 19</td>
</tr>
<tr>
<td>• fetal imaging</td>
<td>20, 21</td>
</tr>
<tr>
<td>• fetal sex</td>
<td>22</td>
</tr>
<tr>
<td>• uterine involution</td>
<td>23</td>
</tr>
<tr>
<td>• cystic ovarian conditions</td>
<td>24, 25</td>
</tr>
<tr>
<td>• changes during induced embryo mortality</td>
<td>26, 27</td>
</tr>
<tr>
<td>• pathological conditions of the reproductive system</td>
<td>17, 28, 29</td>
</tr>
<tr>
<td>II. Male Reproductive System</td>
<td></td>
</tr>
<tr>
<td>• testicular tissue</td>
<td>30, 31</td>
</tr>
<tr>
<td>• status of accessory sex glands</td>
<td>32</td>
</tr>
<tr>
<td>III. Other applications</td>
<td></td>
</tr>
<tr>
<td>• collection of oocytes from in situ ovarian follicles</td>
<td>33</td>
</tr>
<tr>
<td>• artificial insemination training</td>
<td>34</td>
</tr>
</tbody>
</table>

Table 1. Applications of real-time ultrasonography in bovine reproduction
it could be recharged from an automobile cigarette lighter outlet. If transducers with advanced features such as the ability to alter frequencies between 3.5, 5.0, and 7.5 MHz could be built, it would be of great advantage because of the wide range of applications that they would provide. An important factor that presently restricts the use of ultrasonography is the cost of the equipment; for example, the present cost of a basic model with a general purpose transducer is about $25,000. If cheaper machines become available, more and more practitioners will be interested in this technology.

Applications of ultrasound to ovarian physiology

Follicular turnover during estrous cycles

Ovarian follicular growth and regression have long been subjects of speculation and controversy, resulting in conflicting hypotheses (48). Now, through the use of ultrasound, it has become firmly established that follicular growth during the bovine estrous cycle occurs in wave-like patterns. Even though there are reports indicating the appearance of two, three, and, sometimes, even four waves during each cycle, a two-wave pattern in cows and a three-wave pattern in heifers appear to be the norm (5,6,49). A follicular wave involves the synchronous growth of a group of follicles from which one attains dominance over the others to become the dominant follicle. Each dominant follicle has a growing phase and a static phase, each lasting about 5–6 d. The first-wave dominant follicle is anovulatory. It remains dominant for 4–5 d, and generally by day 11 or 12 of the cycle it loses its dominance and begins to regress. In the meantime, the second wave of follicles has been recruited and selection of the second-wave dominant follicle has taken place. In a two-wave cycle, this follicle goes on to ovulate, while in a three-wave cycle, the second dominant follicle also regresses making way for yet another cohort of follicles, the third wave.

Follicular turnover during pregnancy

Ultrasoundographic studies performed during early pregnancy (7,8,50,51) indicate that waves of follicular growth continue even during pregnancy. A wave-like pattern of follicular growth and atresia continues until at least day 60 in pregnant cows, just as it does in normally cycling cows. One study (51) revealed that pregnant cows have more follicles detectable by ultrasound than do nonpregnant cows; however, there appeared to be no difference in the size of the dominant follicles between the two groups. Earlier, it had been reported (50) that pregnant heifers have smaller dominant follicles than do nonpregnant heifers. The continuous secretion of progesterone during pregnancy is thought to be responsible for follicular turnover. Follicular turnover during mid and late gestation has not been investigated.

Follicular turnover during the postpartum period

Ovarian activity in postpartum dairy and beef cows has been characterized (9,10,52,53), and distinct differences are evident between the two. Studies on dairy cows by Rajamahendra and Taylor (9) and Savio et al (10) resulted in consistent observations that a) in more than 80% of cows, the first ovulation was unaccompanied by overt signs of estrus, and b) the length of the second cycle (luteal phase following first ovulation) was about 23 d. The length of the first cycle was of either short, 17 ± 7 d (9), or normal, 22 ± 9 d (10), duration. Even though a predominantly two-wave follicular growth pattern was observed in these studies, one, two, and three-wave patterns occurred, depending on the initial day of dominant follicle detection. If the dominant follicle was detected after 20 d postpartum, the cycle duration was consistently short (10).

Studies on beef suckler cows (52,53) indicated that patterns of follicular growth differ between first and second cycles. Similar to the observations made for dairy cows, it was recorded in both studies that over 80% of the cows did not show any estrus behavior before the first ovulation. However, the beef cows, unlike dairy cows, had a short luteal phase (<10 d) following the first postpartum ovulation.

Further studies are obviously needed in this very important area to add to the available information. The postpartum period in the dairy animal is a crucial window which could possibly be manipulated with the help of ultrasound to improve reproductive efficiency by closely monitoring the animals. Detection of silent estrus and timely insemination of postpartum cows will play an effective role in reducing the number of open days, thereby improving reproductive efficiency of the herd (see comments at the end of this article).

Follicular development during superovulation

Ovarian responses to superovulation have been studied in heifers (11,12), cows (54), and buffaloes (55). Even though it is possible to categorize animals as good, average, and poor responders, based on ultrasonic imaging of ovaries, there seems to be no significant advantage in using ultrasound over rectal palpation, particularly for assessment of ovarian response. In a recent report (56), the usefulness of ultrasound in monitoring superovulation was critically evaluated, and it was concluded that neither is it possible to obtain an accurate estimate of follicles or luteal structures, nor is it possible to follow the development of individual follicles by ultrasound scanning. Thus, the limitations seem to outnumber the advantages of using ultrasound for monitoring ovarian responses in superovulated cattle. Therefore, for the embryo transfer practitioner, the use of ultrasound for the above purpose may not be justified. However, the use of ultrasound should not be neglected by researchers studying variations in superovulation responses, as it may provide very useful information. If daily ultrasound monitoring is feasible, the technique could help when having to make such crucial decisions as whether to continue with follicle stimulating hormone (FSH) treatment, if the ovarian response is poor after the first few FSH injections.

Investigations on the influence of a dominant follicle on superovulation responses have been initiated (57–60). No conclusive evidence has been presented in these studies to suggest a positive or negative effect of the dominant follicle on superovulation. However, there seems to be a negative influence exerted by the dominant follicle that is present at the time of superovulation on embryo yield.
Table 2. Accuracy/predictive value of ultrasound in pregnancy diagnosis

<table>
<thead>
<tr>
<th>Animal</th>
<th>n</th>
<th>Transducer frequency (MHz)</th>
<th>Days post-Al</th>
<th>Accuracy of positive diagnosis or PPVb (%)</th>
<th>Comments</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cows and heifers</td>
<td>113</td>
<td>3.5</td>
<td>45</td>
<td>100</td>
<td>Accuracy of positive diagnosis varied from 93%--100% from 30 d onwards.</td>
<td>19</td>
</tr>
<tr>
<td>Cows</td>
<td>100</td>
<td>3.5/5.0</td>
<td>27–29</td>
<td>*97</td>
<td>NPVb = 92%</td>
<td>47</td>
</tr>
<tr>
<td>Cows and heifers</td>
<td>320</td>
<td>3.0</td>
<td>25–30</td>
<td>94</td>
<td>Ultrasonic observations confirmed by rectal palpation on day 60. Embryo</td>
<td>70</td>
</tr>
<tr>
<td>Cows</td>
<td>80</td>
<td>3.5</td>
<td>42</td>
<td>100</td>
<td>Accuracy of +ve diagnosis was 100% in cows aged <2 years even by d 28, but 0% in cows aged >8 years</td>
<td>71</td>
</tr>
<tr>
<td>Heifers</td>
<td>36</td>
<td>5.0</td>
<td>20–22</td>
<td>100</td>
<td>Observed only 50% accuracy for +ve diagnosis between d 10 and 18</td>
<td>72</td>
</tr>
<tr>
<td>Cows</td>
<td>85</td>
<td>5.0</td>
<td>26–29</td>
<td>*89</td>
<td>NPV = 100%</td>
<td>73</td>
</tr>
<tr>
<td>Cows</td>
<td>39</td>
<td>7.5</td>
<td>16</td>
<td>33</td>
<td>NPV = 94%</td>
<td>74</td>
</tr>
<tr>
<td>Cows</td>
<td>148</td>
<td>5.0</td>
<td>21–25</td>
<td>*68</td>
<td>NPV = 64%</td>
<td>75</td>
</tr>
<tr>
<td>Cows</td>
<td>200</td>
<td>5.0</td>
<td>23–31</td>
<td>*70</td>
<td>Cows and heifers combined. PPV for cows=65%; heifers=87%</td>
<td>76</td>
</tr>
<tr>
<td>Cows</td>
<td>143</td>
<td>5.0</td>
<td>25–35</td>
<td>*100</td>
<td>PPV was 100% beyond day 27 and the NPV was 100% beyond day 28</td>
<td>77</td>
</tr>
</tbody>
</table>

*PPV = Positive predictive value (Figures with asterisk indicate PPV)
*NPV = Negative predictive value
AI = Artificial insemination
Heifer = Bred nulliparous female

Assessment of ovulation and corpus luteum dynamics

Ovulation can be unmistakably detected by ultrasonography, since it is characterized by the abrupt disappearance of the large ovulatory follicle (13,14). Even though the process of ovulation in cattle has apparently not been studied by continuous ultrasonic monitoring, various reports indicate the usefulness of ultrasonography performed at 2 h (61), 3 h (55), and 4 h (13) intervals for detecting ovulation and determining the temporal relationships among estrus, ovulation, progesterone and luteinizing hormone (LH) levels, milk yield, and body temperature. One study (61) showed that the rise in vaginal temperature is a reliable measure of the times of ovulation and LH surge. The time interval to ovulation tends to be dependent upon parity, with pluriparous cows ovulating earlier than their biparous counterparts.

The ultrasonic appearance of the corpus luteum (CL) has previously been described (4,51,62–64). Kastelic et al (64) reported that up to 73% of CL were detectable by day 0. However, the findings of Pieterse et al (16) contradict the above observation in that only a 43% positive predictive value and 33% sensitivity were obtainable with ultrasound for detecting young (days 1–4 postovulation) CL. Such a huge variation between the two reports in the reliability of ultrasound for CL detection is bound to raise questions about the credibility of this technique. Even though both studies used 5 MHz transducers and linear array scanners, differences in their scanning methods and equipment may have contributed to the variations. In the one study (64), a transrectal approach was adopted, while a transvaginal approach was used in the other (16). Further, the sensitivity of the ultrasound scanners used could have been different, as they were from different manufacturers (Tokyo Keiki LS-200H in the former study versus Pie Medical-400 in the latter). Generally, with a good quality scanner and general purpose (5 MHz) transducer, coupled with adequate experience, there should be no difficulty in determining the CL status of cattle from day 3 onwards. The use of ultrasound for accurate determination of CL status could also be of particular advantage in certain exotic bovine species, such as the water buffalo, in which accurate detection of a CL by transrectal palpation often proves difficult, even during the mid-luteal phase (65). Development of accessory CL, following human chorionic gonadotrophin (hCG)-induced ovulation of the first-wave dominant follicle, has been monitored (66) by ultrasound.

Ultrasonography in pregnancy diagnosis

The first reported use of real-time ultrasonography for pregnancy diagnosis in cattle was in 1982 by Chaffaux et al (2). They used a 3.5 MHz transducer for

... transrectal ultrasonography and observed irregularly shaped nonechogenic structures in the lumen of the uterus from day 28 postinsemination. The embryo proper was identified within this vesicle from day 35 onwards. Pierson and Ginther (67) later reported that it is possible to recognize the presence of an embryo within the uterus between days 12 and 14 following insemination. In their study, eight heifers were bred at estrus and transrectal ultrasound scanning was done daily from day 0 to day 50 postbreeding. Curran et al (68,69) characterized the ultrasonic anatomy of the developing bovine conceptus from days 10 to 60. An embryonic vesicle was first detectable at a mean 11.7 ± 0.4 d and the embryo proper was visible by 20.3 ± 0.3 d postbreeding. A 5.0 MHz transducer was used and the most significant finding of the study was that it is possible to detect embryonic loss in heifers as early as day 20 postbreeding. The successful application of ultrasound to early pregnancy diagnosis in cattle under farm conditions was soon reported (70). A 3.0 MHz transducer was used to scan 320 cows and heifers. Pregnancy was detectable as early as day 25 postartificial insemination (AI), and the embryo was visible by day 30. The ultrasonic observations were later confirmed on day 60 by rectal palpation. Accuracy of positive diagnosis was 94%, when animals were examined by ultrasound at about 41 days postbreeding.

Several reports on the application of real-time ultrasonography for pregnancy diagnosis in cattle are available, but inconsistencies exist among them in terms of the reliability of the results for early diagnosis. Since it would be quite exhaustive to discuss the wide variations among the reports, we have summarized the information from some of the important references (19,47,70–77) in Table 2, so that readers may make their own judgement.

The level of accuracy in pregnancy diagnosis achievable through ultrasound appears to vary widely and may depend on a variety of factors. The type of ultrasound equipment used (sector or linear), frequency of transducer selected, scanning frequency (whether the animal was scanned once or several times), age and parity of the animal selected, stage at which examined (number of days postinsemination), the reporting criteria chosen, and the experience of the operator all seem to contribute to the variability. Expression of diagnostic accuracy in terms of the positive or negative predictive value is perhaps the most accepted criterion for reporting. The positive and negative predictive values may be expressed as (a/(a+b)) x 100 or (c/(c+d)) x 100, respectively, where “a” is the number of correct positive diagnoses, “b” is the number of incorrect positive diagnoses, “c” is the number of correct negative diagnoses, and “d” is the number of incorrect negative diagnoses made (see Table 2 for examples).

It is evident that a 5 MHz or a 7.5 MHz transducer tends to provide more reliable results than does a 3.0 MHz or a 3.5 MHz transducer for early pregnancy diagnosis in cattle. However, the reliable period for pregnancy diagnosis with a positive predictive value of over 95% varies between days 20 and 42 postbreeding. Based on these results, the most realistic early date for reliable pregnancy diagnosis by ultrasound under field conditions may be day 30 postbreeding. Even if early pregnancy is confirmed through ultrasound, it is still advisable to watch the animal closely for estrus and to reconfirm pregnancy around day 60, either ultrasonically or through a carefully conducted transrectal palpation, to rule out chances of embryonic loss after the first ultrasonic confirmation of pregnancy. Even though reports suggest the possibility of confirming pregnancies using ultrasound between days 16 and 21 (68,69,78,79), one should realize that these studies were performed under a research setting, often with repeated and frequent examinations. Since it is extremely difficult to satisfy research requirements under field conditions, attempts to confirm pregnancies earlier than day 30 is not advisable. If the diagnosis can wait, it is probably advisable to delay the examination by an extra five days to minimize the risk of possible trauma to the early fetus, particularly if the operator is not well experienced in ultrasonography.

Fetal imaging by ultrasound
Ultrasound has been used to monitor and document morphological changes in the bovine fetus at different stages of gestation. Conventionally, studies of embryonic development in cattle have depended on aborted fetuses, or those obtained at necropsy or slaughter. One of the early reports on the use of transrectal real-time ultrasonography to study early embryonic development in cattle was by Pierson and Ginther (67). They reported that the embryonic vesicle gradually increased in length until day 26 when it started encroaching into the opposite horn. By day 32, the embryonic vesicle fully occupied both horns. The heart beat was visualized between days 26 and 29. Another study from the same laboratory (69) reported the detection of ultrasonographically identifiable characteristics of the bovine conceptus during days 20 to 60 for gross fetal morphology, fetal heart beat, allantois, spinal cord, limb buds, amnion, optic vesicle, optic lens, split hooves, ribs, and fetal movement. Other workers (78) also found the technique useful to monitor embryonic growth and suggested that such close monitoring of the embryo would help to investigate early embryonic death in cattle.

Kahn (20,21) used transrectal ultrasonography with sector transducers (3.5 MHz and 5.0 MHz) to characterize changes in the size of fetal organs and body parts and to register the relative frequency of different intrauterine positions between 30 d and 10 mo of gestation. Until the fourth month, anterior and posterior presentations occurred with almost equal frequency, with a predominance of anterior presentations during months 5–7. Most large organs of the head, thorax, abdomen, and pelvis were visible with ultrasound during the first four months. Accessibility to the latter three body regions was restricted later on. However, in about 80% of the cases examined, the head was accessible throughout all stages of pregnancy. Fluid filled structures (eyes, braincase, heart, and stomach) were most easily recognizable because of the nonechogenic nature of their contents. Visualization of the entire fetus was difficult in advanced stages of pregnancy on account of the limited field of view and depth penetration of the sound waves. For close range visualization of the fetus, the 5 MHz transducer was used, while the 3.5 MHz transducer was preferred for viewing internal organs. The study...
demonstrated that gross anatomical structures of the bovine fetus can be observed in utero by transrectal ultrasound.

In a similar study performed on *Bos indicus* cows (79), the embryonic vesicle was first observable between days 18 and 20, fetal heart beat was detectable by day 22.6, and fetal movements were seen by day 50.7 ± 1.0. Growth of the embryo proper increased steadily till day 39, with a rapid increase in growth rate thereafter. The overall growth of the *Bos indicus* embryo was slower than that of the *Bos taurus* embryo.

In summary, sonographic imaging is a promising versatile technique to monitor fetal growth and well-being. The results available clearly demonstrate that transrectal ultrasound scanning is a precise technique for the determination of age and intrauterine development of the bovine fetus, and has several distinct advantages over conventional methods.

Fetal sex determination by ultrasound

One of the early reports of visualization of male and female characteristics of bovine fetuses by real-time ultrasound was by Muller and Wittkowski (80). Eighty-two cows were studied between 57 and 120 d gestation using both 3.0 MHz and 5.0 MHz transducers. The scrotal swelling in male and mammary glands in female fetuses were the references for sex determination with an accuracy of 94% between days 70 and 120. Kahn (21) reported that accurate sex determination can be performed after day 60 and that the gender of a male fetus was less difficult to determine than that of a female, based on the presence or absence of a scrotum.

Reports of fetal gender determination based on the genital tubercle are also available (22,81,82). In both sexes, the genital tubercle (forerunner of penis and clitoris) was easily recognizable by ultrasound as a prominent bilobular structure. However, it was not a useful ultrasonic indicator of sex until it reached the vicinity of the umbilical cord in males and the tail in females. On days 48 and 49, the genital tubercle was located between the hind limbs. In male fetuses it then moved cranially, reaching a point just caudal to the umbilical cord by day 56, on average. In female fetuses, it reached a point near the tail around day 54 (82). Curran and Ginther (22) reported up to 100% accuracy in sex determination by ultrasonography between days 50 and 100. However, considerable experience was found to be essential for the accurate determination of sex. The average time required to determine fetal sex varied from 2–15 min per cow (22,83).

In summary, prenatal sex determination is possible in cattle by transrectal real-time ultrasonography under both research and farm conditions. It appears to be a rapid and reliable technique. Accuracy of sex determination by an experienced operator is nearly 100% between days 60 and 70 of gestation. Diagnoses were inaccurate or impossible before 60 d of gestation and became less reliable as the age of the fetus advanced beyond 100 d. Predetermining the sex of fetuses carried by pregnant recipient animals will be of great advantage to commercial embryo transfer companies in planning marketing strategies. Diagnosis of fetal sex will also help dairy farmers in deciding whether or not to retain pregnant cows already earmarked for culling, depending on the sex of the fetus. Sexing of twins is also advantageous as it allows selective termination of unwanted pregnancies, such as those involving a male and a female fetus, which would otherwise bear a freemartin.

Ultrasonography in the diagnosis of ovarian and uterine abnormalities

The ultrasonographic appearance of a cystic CL was first described by Reeves et al (3). The usefulness of ultrasonography in diagnosing cystic ovarian conditions of the cow were soon reported by others (24,25,29,84) and provided practical diagnostic guidelines for differentiating follicular and luteal cysts. Follicular cysts revealed large (25–55 mm) nonechogenic areas with very thin walls. Luteal cysts on the contrary appeared as nonechogenic areas surrounded by echogenic tissue of varying thickness (2–5 mm). In cystic cows, treated with gonadotropin-releasing hormone, the wall of the cyst increased in thickness from 2 mm to 6 mm over a two-week period (29). Rajamahendran and Walton (85) and Peter et al (86) used ultrasonography to monitor the dynamics of follicular cyst formation following steroid administration in dairy cows. Prater et al (87) described the usefulness of ultrasound in detecting ovarian neoplasia.

Ultrasonography has also been found to be immensely useful in diagnosing uterine pathological conditions. Detailed studies (17,28) of common uterine pathological conditions, such as endometritis, pyometra, mucometra, and mummified and macerated fetuses, indicate that images of inflammatory conditions of the uterus are generally characterized by a distended lumen, filled to varying degrees with partially echogenic “snowy” patches. In conditions where fetal remnants are present, images allow visualization of the fragments. For instance, in the macerated fetal condition, the fetal bones were identifiable as echogenic particles in the uterine lumen suspended in the fetal fluids, and the uterine walls were thickened. In mummified fetuses, the uterine fluids were absent and the fetal mummy appeared as a poorly defined echogenic mass.

Studies have investigated the fate of the bovine conceptus and CL after embryonic death had been induced during early gestation using luteolytic substances, the intrauterine administration of colchicine, an anti-mitotic agent, or pure cultures of *Actinomyces pyogenes* (26,27). Through sequential ultrasound evaluations, changes in embryonic viability, cervical patency, uterine fluid volumes, and CL status were recorded. Both studies concluded that the CL of pregnancy was maintained when embryonic death resulted from the administration of colchicine or from bacterial invasion. In contrast, when abortion was induced with a luteolytic agent, the CL regressed within 24 to 72 h. Additionally, significant observations were that embryonic loss following luteolysis was characterized by rapid loss of the conceptus with minimal degeneration. The elimination of the conceptus and its breakdown products were primarily by expulsion through the cervix rather than by resorption (26).

Ultrasonography has thus been found to be a useful clinical tool for monitoring the response of cystic
ovaries to therapy, studying induced cyst formation, studying conceptus loss following induced abortions, and diagnosing several kinds of ovarian and uterine pathological conditions.

Ultrasound in oocyte aspiration and in other applications

Rapid developments are taking place in bovine in vitro fertilization (IVF) leading to increased success in production of IVF embryos. Bovine IVF largely depends on oocytes aspirated from ovaries collected at slaughter, although laparotomy and laparoscopy are surgical approaches to procure follicular oocytes from the live cow. While repeated laparotomy for follicular aspiration is not a feasible proposition for obvious reasons (surgical trauma, postsurgical adhesions, and ethical considerations), laparoscopic follicular aspiration has been demonstrated to be a feasible and repeatable technique, yielding an up to 88% recovery rate. However, the long-term effects of laparoscopy on the reproductive function and general health of animals subjected to the procedure are of serious concern, due to the invasive nature of the technique.

Over the years, alternative methods of obtaining follicular oocytes have been investigated. A technique for the aspiration of bovine oocytes during transvaginal ultrasound scanning of ovaries was first described by Pieterse et al (33), using a 5.0 MHz sector transducer. Both normally cycling and superovulated cows were used for transvaginal oocyte aspirations, and a 27.4% oocyte recovery was attained. Ovaries of superovulated cows were found to be easier to handle and aspirate, while puncturing small follicles was often difficult and risky, with increased chances of injury to the cow’s rectum or even the operator’s hand.

In a follow-up study (89), repeated follicular aspiration was performed on 21 cows up to three times during each estrous cycle, at approximately six-day intervals over a three-month period. On every occasion, all follicles more than 3 mm in size were punctured and aspirated. The mean total number of follicles punctured per cycle was 12.6 ± 0.3, with the maximum number of follicles for puncture being available on day 3 or 4. The overall oocyte recovery rate was 55%, demonstrating substantial improvement in the efficiency. The IVF rate of transvaginally collected oocytes was significantly higher than that of oocytes aspirated from ovaries obtained at slaughter. The repeated interventions had no apparent deleterious effect on the estrous cycles of the animals studied (90). The findings indicated that transvaginal, ultrasound-guided, follicular aspiration is less traumatic and less invasive than laparoscopy, and that it is possible to repeat the procedure without follicular stimulation and without affecting the cyclicity of the animal. Repeated oocyte collections for IVF from the same cow was possible over several months, and more than 30 transferable embryos per cow could be produced in one year. These findings were further substantiated (91) by demonstrating that without any hormonal pretreatment, immature oocytes collected nonsurgically from cows during normal estrous cycles can be used successfully for in vitro production of viable embryos. This report proposed the transvaginal, ultrasound-guided, follicular aspiration technique in combination with IVF as an attractive and potential alternative to superovulation for bovine embryo production.

Apart from oocyte aspiration, the transvaginal, ultrasound-guided, puncture technique may also be useful for several other applications; for example, aspiration of fetal fluids for sex determination, biochemical analysis, and hormonal estimation; sampling of uterine contents for diagnostic purposes; subsampling of follicular fluid and fluid in the central cavity of CL; injection of substances into the ovaries, follicles, uterus, and oviducts; and possibly even selective elimination of embryos during the early stage of unwanted twin pregnancies. Successful collection of bovine fetal fluid through a transvaginal, ultrasound-guided, puncture technique has already been reported (92). The earliest successful aspiration of amniotic fluid was on day 44 of pregnancy. Even though this study demonstrated the possibility of repeated sampling of amniotic and allantoic fluids up to five times at weekly intervals, the risk of intrauterine fetal death increased with repeated punctures.

The usefulness of real-time ultrasonography in AI training has been reported (34). Ultrasound was used to evaluate the efficiency of AI trainees in depositing semen at the desired site by using a brass bead and string attached to the AI sheath, which was deposited at the site of AI. The location of the bead was immediately confirmed by ultrasound scanning. This method of training is reportedly quick, easy, and effective.

Ultrasonography in male reproduction

Breeding soundness assessments of dairy bulls are currently based on semen parameters, scrotal circumference, and testicular palpation. Specialized examination procedures, such as testicular biopsy, thermography, or tonometry, may involve risks to the reproductive potential of the bulls. Because of this, there has been interest in the application of ultrasonography to assess the normal anatomical appearance of bull testes (30) and accessory sex glands (32). Studies (93,94) have also investigated the possible correlation between ultrasonically determined testicular parameters and breeding soundness score parameters. The testicular diameter measured accurately by ultrasound correlated well with testicular circumference, weight, and volume (94). However, a routine testicular ultrasound examination contributes no significant additional information that could be of value in breeding soundness evaluations (93). Sidibe et al (31) also found ultrasonography not useful for the objective evaluation of artificially induced testicular degeneration in the bull. Since ultrasound waves have no adverse effects on testicular development, sperm production, and semen quality (95), scope for increased application of ultrasonography in male reproduction still remains. Despite the discouraging results obtained (31,93), real-time ultrasonography may have significant advantages over other techniques in the diagnosis of testicular and epididymal abnormalities. The most promising application, however, seems to be in the diagnosis of pathological conditions of the accessory sex glands, since digital palpation has severe limitations.
Comment

In less than a decade, the quantum of new information generated through the use of diagnostic ultrasound in the field of bovine reproduction is enormous. The advent of ultrasound technology, with the important capability of following the sequential growth and demise of follicles has improved our understanding of folliculogenesis and CL dynamics during different reproductive states. This has contributed richly to a better understanding of the complex subject of animal reproduction as a whole. The reputation of ultrasound for safety (96) and ease of operation only strengthens its potential for future applications. Even though the technology has been in vogue for over 10 yr, no study has so far systematically analyzed the cost-effectiveness of ultrasonography in routine herd management. Will the routine use of ultrasound improve the economic performance of such herds? As of today, there is no definite answer to this question. A preliminary evaluation along these lines was conducted in the authors’ laboratory (97), where ultrasound imaging is being used for routine check-up of all cows (herd size = 40 milch animals) between 30 and 40 d postpartum to evaluate their reproductive status. Based on the findings, appropriate management measures are taken immediately. This procedure helps in early detection of silent estrus, anestrus, and cystic ovarian conditions, and has proved useful in reducing days to first service, days open, and calving interval. It seems apparent that continuing the practice will further help in improving the efficiency of the herd. It would be worth taking up such investigations on large herds, so that critical evaluations could be made of the economic benefits that ultrasound promises to offer.

The feasibility of transcervical, ultrasound-guided, intrafallopian placement of gametes, zygotes and embryos has been demonstrated in human reproduction (98). Such novel approaches may have practical value in bovine reproduction as well. Particularly in the transfer of valuable, in vitro produced, zygotes to the recipient fallopian tube to overcome in vitro developmental blocks, thereby increasing the chances of successful implantation.

There is wide scope for the use of ultrasound as a tool to increase our understanding of bovine reproduction and to manipulate the reproductive processes to maximize the reproductive efficiency of this species. We are confident that this modern technology will soon be a popular tool for early pregnancy diagnosis, prenatal sexing, and the reproductive health management of cattle.

References

Answers to Quiz Corner/Les réponses du Test Éclair

1. c — Some infected cats will die from FeLV infection; however, many more will recover and become immune.
 c — Quelques chats infectés par le FeLV mourront; cependant, beaucoup plus se rétabliront et seront immunisés.
2. c — Hypertonic enemas should not be administered to cats or small dogs, especially if the animal is obstipated.
 c — Les lavements hypertoniques ne devraient pas être administrés aux chats ou à de petits chiens, surtout s’ils souffrent de constipation opiniâtre.
3. d
4. b — These horses should not be allowed to eat anything before definitive treatment at a referral center. Treatment usually involves general anesthesia and softening of the feces. The other options would be appropriate.
 b — Ces chevaux ne devraient rien manger avant le traitement définitif au centre de référence. Le traitement implique habituellement une anesthésie générale et le ramollissement des fèces. Les autres options seraient appropriées.
5. a — Tetracyclines are specific treatment for chlamydial diseases of sheep.
 a — Le traitement aux tétracyclines est spécifique pour les infections chlamydiales des moutons.
6. e — Electric heating pads may cause thermal burns and are particularly dangerous for the unconscious or immobile patient. They have no place in clinical practice and their use only invites a lawsuit.
 e — Les coussins chauffants électriques peuvent causer des brûlures et ils sont particulièrement dangereux pour le patient inconscient ou immobilisé. Ils n’ont pas leur place dans une pratique vétérinaire et leur utilisation ne peut que vous attirer des poursuites judiciaires.
7. a
8. b — Calving interval is the most encompassing measure of reproductive performance. However, it is the slowest to change and, therefore, is not a good indicator of short-term performance to use for decision making.
 b — L’intervalle vêlage-vêlage est la mesure la plus globale de la performance de reproduction. Cependant, la modification de cet indice se fait très lentement et, par conséquent, cet indice n’est pas un bon indicateur de la performance à court terme à utiliser pour la prise de décision.
9. b — A tear of the medial meniscus occurs in 40% to 60% of cases involving rupture of the cranial cruciate ligament.
 b — Une déchirure du ménisque médial se produit dans 40 % à 60 % des cas de rupture du ligament croisé cranial.
10. e — The protein content of milk replacer should be at least 20%. The National Research Council recommends 22%. However, 20% is adequate provided that all of the protein ingredients are from milk sources.
 e — Le contenu protéique du lait de remplacement devrait être d’au moins 20 %. Le National Research Council recommande 22 %. Cependant, 20 % est un contenu adéquat en autant que tous les ingrédients protéiques proviennent de source lactée.