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Abstract 
 

Objective: We advance the literature on frailty measurement and conceptualization by applying 

data-driven analytic technologies to multiple aging morbidity indicators in order to detect 

clusters of deficits or individual features that elevate risk for (a) frailty emergence and 

progression and (b) adverse cognitive outcomes or trajectories. Studies 1-3 are presented in 

Chapters 2-4, respectively. In Study 1, we examined whether baseline frailty profiles could be 

empirically determined; extracted profiles predicted frailty progression and neurocognitive 

slowing; and results generalized across sex. In Study 2, we aimed to extract longitudinal frailty 

profiles (or statuses); characterize patterns of frailty progression; and identify predictors of 

baseline frailty classifications and transitions. In Study 3, we sought to identify frailty-related 

features that increase risk for cognitive impairment and dementia; calculate a data-driven frailty 

index; and (c) examine whether frailty levels vary across clinical cohorts and complementary 

frailty index operationalizations.  

Overall Method:  

Study 1 participants (n = 649) were cognitively normal (CN) adults from the Victoria 

Longitudinal Study who contributed data for baseline multi-morbidity assessment and 

longitudinal trajectory analyses. Exploratory factor analysis (EFA) was applied to 50 multi-

morbidity items, revealing 7 separable domains. The proportion of deficits accumulated in each 

domain was submitted to latent profile analysis. The extracted profiles were tested as predictors 

of level and change trajectories in a 50-item frailty index and a latent neurocognitive speed 

variable.  

Study 2 participants (n = 3,074) were clinical cohorts from the National Alzheimer’s 

Coordinating Center with amnestic mild cognitive impairment (aMCI) or Alzheimer’s disease 
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(AD). Participants contributed baseline and 2-year follow-up data for 43 multi-morbidity items 

and baseline risk characteristics for prediction analyses. EFA was applied to 43 multi-morbidity 

items, revealing 5 separable domains. The proportion of deficits accumulated was submitted to 

latent transition analysis.  

Study 3 participants (n = 255) were from the Comprehensive Assessment of 

Neurodegeneration in Aging. Participants contributed cross-sectional aging morbidity indicators 

(n = 84). We used random forest analysis to identify the most important features that 

discriminate cohorts with subjective cognitive impairment (SCI), MCI, or AD from CN controls. 

A 30-item data-driven frailty index and a complementary 81-item index was calculated.  

Results:  

Study 1: We detected three early frailty profiles: not-clinically frail (84%), mobility-type 

frailty (9%), and respiratory-type frailty (7%). Mobility-type frailty predicted accelerated deficit 

accumulation and neurocognitive slowing, followed by respiratory-type frailty, and not-clinically 

frail. Results were robust across sex.  

Study 2: We detected two baseline statuses: Not-Clinically Frail (91%) and Moderately 

Frail (moderate ambulatory impairment endorsed; 9%). At follow-up, Not-Clinically Frail 

(56%), Moderately Frail (19%), Mildly Frail (mild ambulatory impairment; 21%), and Severely 

Frail statuses (severe ambulatory impairment; 4%) were detected. Moderately Frail participants 

were more likely to remain in statuses characterized by a higher frailty burden, and discriminated 

by age, male sex, AD diagnosis, and global cognition.  

Study 3: Central risk elevating characteristics included quality of life (QoL), lymphocytes, 

and neutrophils for SCI; QoL, male sex, lymphocytes, and eyesight for MCI; and QoL, olfaction, 

visual contrast sensitivity, male sex, and instrumental activities of daily living for AD. We also 
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detected features that were selectively sensitive to SCI, MCI, and AD. Clinical cohorts reported 

(a) comparable levels of frailty and (b) higher levels of frailty on the 30-item index as compared 

to CN controls and the 81-item index.  

Discussion: In a programmatic series of three studies, this dissertation research applied a suite of 

data-driven technologies to the challenge of resolving several empirical and clinical 

inconsistencies in the multi-morbidity and aging literature. Study 1 provides novel insight into 

critical early domains of frailty (e.g., mobility impairment) that serve as portals into broader and 

chronic frailty. Study 2 demonstrated that these domains are relevant for aMCI and AD in that 

(a) frailty statuses varied along a continuum of ambulatory impairment and (b) moderate 

impairment exacerbated risk for adverse frailty transitions. Study 3 identified selected important 

features of frailty that elevate clinical risk for SCI, MCI, and/or AD. Overall, these results 

demonstrate that some features of frailty are important across a clinical spectrum of aging and 

AD and thus may increase prediction accuracy in clinical-research setting. Further, early 

interventions targeting mobility and related functional impairments may prevent frailty 

emergence and progression, as well as downstream negative outcomes.  
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Chapter 1: General Introduction 
 

Global life expectancy at birth has risen dramatically over the course of history. Early 

gains were attributed to organized efforts to control the spread of infectious disease, as well as 

declines in infant and child mortality rates (Wilmoth, 2000). Since the 1970s, the primary factor 

contributing to rising life expectancies in developed high-income countries (Kontis et al., 2017) 

are reduced mortality rates amongst older adults, particularly those that are attributed to non-

communicable diseases (e.g., cardiovascular disease or cancer; Mathers et al., 2015). The rate of 

these improvements varies by geographic location. A recent study ranked 53 high-income 

countries by the average annual rate of increase in life expectancy for males and females at the 

age of 60 over the period of 1980-2011 (Mathers et al., 2015). The greatest annual gains were 

recorded for males in New Zealand (0.22) and females (0.24) in Japan. Put into context, these 

values indicate that life expectancy for 60-year-old Japanese females has been increasing at an 

average rate of 6 hours per day, or nearly a quarter of a year per year. Canada and the United 

States (US) ranked respectively as 13th (0.9) and 24th (0.8) for males, 26th (0.5) and 38th (0.4) for 

females. Current estimates of maximum life expectancy at birth is 78.3 years for Canadian males 

and 83.0 years for Canadian females (Barthold et al., 2014). Maximum life expectancy at birth 

for American males and females is comparatively lower at 75.3 years and 80.4 years, 

respectively (Barthold et al., 2014). These trends, together with the aging of the baby boom 

generation (the oldest of which turned 74 in 2020), has led to a rising number and proportion of 

North Americans aged 65+ (Alzheimer’s Association, 2016). The most recent prevalence 

estimates in this age bracket are 16.2% in the US and 17.6% in Canada (World Bank, 2019).  

Because chronological age per se is the single most predictive biomarker of Alzheimer’s 

disease (AD; the most common cause of dementia), the prevalence of AD is expected to increase 
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dramatically in the coming years. In 2016, an estimated 564,000 Canadians had a diagnosis of 

dementia. By 2031, this number is expected to increase to 937,000 (Alzheimer Society of 

Canada, 2016). The incidence of AD is projected to increase from 1 new case every 5 minutes to 

1 new case every 2 minutes over this same time frame. The individual and societal impact of AD 

is considerable (Alzheimer Society of Canada, 2016; Alzheimer’s Association, 2016; Public 

Health Agency of Canada, 2019). Males with AD or a related dementia lose an average of 16.0 

years of life in full health due to disability and premature death, while females lose an average of 

15.2 years in full health due to these same considerations (Bray & Huggett, 2016). Direct 

healthcare costs, unpaid caregiver opportunities, and indirect costs associated with the provision 

of unpaid care are expected to cost Canadian society upwards of $872 billion over the next 30 

years (Alzheimer Society, 2010). Notably, there are currently no medications approved for AD 

prevention or treatment, despite the emergence of powerful large-scale observational studies and 

carefully designed clinical trials (Cummings et al., 2019). Consistent failures of pharmaceutical 

interventions are attributed to lack of efficacy, excessive side effects, and/or difficulties in 

clinical trial execution (e.g., protracted time frame required to recruit study participants or 

determine whether the investigational treatment alters disease progression; Alzheimer’s 

Association, 2019; Cummings et al., 2014). The success rate for AD drug development may 

improve as knowledge on the complex neurobiology of AD advances and/or novel disease 

pathways that are amenable to pharmacological intervention are identified.  

Identification of modifiable risk factors that may inform secondary prevention strategies is 

another critical area of research attention (Anstey et al., 2015; Dixon & Lachman, 2019; 

Livingston et al., 2017). In fact, dementia prevention was recently established as a leading 

objective in Canada’s first national dementia strategy (Public Health Agency of Canada, 2019). 
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This objective encompasses (a) evidence-based identification and assessment of modifiable risk 

and protection factors, (b) risk reduction and protection elevation in older adults who are 

demonstrating normal brain and cognitive aging, and (c) design and implementation of 

interventions directed towards slowing progression of cognitive decline or impairment in older 

adults with minor neurocognitive disorders. Non-modifiable risk factors include important risk 

elevating characteristics such as chronological age, sex, and AD genetic risk loci, whereas 

modifiable risk factors include potentially reversible or controllable characteristics, such as 

hearing loss, social isolation, and hypertension (Livingston et al., 2017; Public Health Agency of 

Canada, 2019). A recent systematic umbrella review reported that low education, diabetes, 

smoking, depression, high homocysteine, and midlife obesity are modifiable risk factors that 

reliably predicted an increased risk for AD (Anstey et al., 2019). Physical activity, fish 

consumption, light alcohol consumption, and statin use are modifiable risk factors that reliably 

predicted a reduced risk for AD. The authors cautioned, however, that there remain considerable 

gaps in the literature on dementia risk factors. For example, few studies have sought to develop 

more nuanced approaches to dementia risk reduction (e.g., personalized interventions tailored to 

specific subgroups of older adults). This is a priority area, as even a modest reduction in 

modifiable risk factor prevalence may delay or prevent a third of dementia cases (Livingston et 

al., 2017).  

Accumulating longitudinal research highlights that non-modifiable and modifiable risk 

factors may independently or interactively contribute to substantial variability in level and 

change trajectories across multiple domains of brain and cognitive functioning. These domains 

include indicators of structural and functional neuroimaging (Harada et al., 2013; Nyberg et al., 

2012; Raz et al., 2010), episodic and semantic memory (Josefsson et al., 2012; McFall et al., 
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2019; Nyberg et al., 2012), executive functions (de Frias et al., 2009; Lin et al., 2017), 

neurocognitive speed (Bott et al., 2017; Lin et al., 2013), and global cognition (Hayden et al., 

2011; Hochstetler et al., 2016; Yaffe et al., 2009). This dynamic heterogeneity has been linked to 

a range of cognitive change trajectories and clinical outcomes, including cognitively stable or 

elite (Borelli et al., 2018; Dixon & de Frias, 2014), cognitively normal (CN; Harada et al., 2013), 

mild cognitive impairment (MCI; Kim et al., 2019), and dementia (Zahodne et al., 2016). Several 

recent reviews (Anstey et al., 2015, 2019; Dixon & Lachman, 2019) highlight that these 

cognitive phenotypes are jointly produced by modalities of non-modifiable and modifiable risk 

factors, including genotype (e.g., Apolipoprotein E), environment (e.g., air pollution, pesticides, 

and lead exposure), and behavioral and lifestyle factors (e.g., sleep, attitudes towards aging, and 

cognitive activity).   

Notably, frailty may also account for variability in cognitive aging trajectories (Brigola et 

al., 2015; Canevelli et al., 2015; Robertson et al., 2013). Frailty reflects a state of increased 

vulnerability to relatively minor stressors due to age-related declines in multiple interrelated 

physiological and health systems, leading to reduced homeostatic reserve and resiliency (Clegg 

et al., 2013). A systematic review based on 21 cohorts involving 61,500 community dwelling 

participants reported that, on average, 10.7% of adults aged 65 and up are frail and 41.6% are 

pre-frail (Collard et al., 2012). Further, the prevalence of frailty was reported to increase with 

age, and more females than males are frail. The prevalence of frailty is even higher in continuing 

care settings. A recent meta-analysis reported that 52% of older adults in long-term care facilities 

are frail and an additional 40% are pre-frail (Kojima, 2015). These estimates are concerning, 

given that frailty has been characterized as one of the most problematic expressions of 

population aging (Clegg et al., 2013). Higher levels of frailty predict an increased susceptibility 
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to numerous additional adverse outcomes, including falls, incident disability, institutionalization, 

hospitalization, and mortality (Clegg et al., 2013; Gonzalez-Colaço Harmand et al., 2017; 

Rockwood et al., 2007). Understanding frailty and its impact is thus a pressing clinical and 

research priority (Lim et al., 2018).  

Currently, two approaches to frailty measurement and conceptualization predominate: the 

physical frailty phenotype and the frailty index. The former approach was developed and 

validated by Fried and colleagues using data from the Cardiovascular Health Study (Fried et al., 

2001) and operationalizes frailty as a characteristic syndrome that is marked by the presence of 

three of the following five features: unintentional weight loss, self-reported exhaustion, low 

energy expenditure, slow gait speed, and weak grip strength. Older adults with none of these 

features are considered robust, while those with one or two of these features are considered pre-

frail. The latter approach was developed and validated by Rockwood and colleagues using data 

from the Canadian Study of Health and Aging (Mitnitski et al., 2001) and operationalizes frailty 

as a state of age-related deficit accumulation that can be quantified in a frailty index. A 

continuous frailty index is formed by calculating the ratio of deficits present in a given individual 

relative to the total number of deficits considered.  

Considerable debate abounds in the literature as to which of these operationalizations is 

most suitable for clinical and/or research application (Rockwood & Howlett, 2018). A strength 

of the frailty phenotype is that it can be applied at first contact with an older adult and does not 

require a preliminary clinical evaluation (Cesari et al., 2014). This approach thus easily lends 

itself to the initial stratification of older adults into discrete categories of frailty risk (i.e., robust, 

pre-frail, and frail). However, it has been expressed that, because the frailty phenotype considers 

only a pre-determined and restricted number of physical and performance-based characteristics, 
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it may (a) not afford understanding of what preventative or therapeutic interventions are 

required, (b) lack sensitivity to early stages of risk, and (c) show ceiling effects (Cesari et al., 

2014; Lacas & Rockwood, 2012). Indeed, several studies show that, relative to the frailty index 

which permits a finer gradation of risk, the phenotype has both limited discriminatory ability for 

older adults with moderate or severe frailty and less predictive value for negative outcomes 

(Kulminski et al., 2008; Rockwood et al., 2007). Conversely, a frailty index can be calculated 

using a wide array of clinical symptoms, signs, diseases, disabilities, and abnormal laboratory 

values providing that the following criteria are satisfied: biologically sensible, accumulates with 

age, does not saturate too early, and covers a range of aging systems (Searle et al., 2008). This 

approach may not be feasible at first contact with an older adult, however, once the frailty index 

has been calculated, it has considerable utility for examining trajectories of multi-morbidity over 

time and determining the effectiveness of an intervention (Cesari et al., 2014). Moreover, 

because there are few restrictions on what deficits can be included in a frailty index, this 

approach is useful for secondary analysis of existing longitudinal data sets that did not initially 

purport to investigate frailty (Lacas & Rockwood, 2012; Thibeau et al., 2019). Nevertheless, this 

approach is not without criticism (Walston et al., 2006). Chief amongst these is that the number 

of equally weighted deficits is taken as the measure of accumulated vulnerability and 

susceptibility to adverse outcomes. This raises the possibility that distinct (and even unexpected) 

clusters of aging morbidity may serve as (a) domain-specific intensifiers of frailty effects on 

adverse aging outcomes or (b) early signals or even portals to emerging global and chronic 

frailty. Neither current approach to frailty assessment is optimally suited to investigate these 

possibilities.  
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Notably, growing research attention has been directed towards identifying novel 

approaches to frailty measurement and conceptualization that may produce some resolution of 

contradictions or inconsistencies between prevailing frailty models (Anstey & Dixon, 2014; 

Clegg et al., 2013; Fulop et al., 2010; Rockwood & Howlett, 2018; Walston et al., 2018). 

Accordingly, this program of dissertation research aimed to (a) develop an unbiased approach to 

measuring and conceptualizing frailty and (b) detect data-driven frailty clusters or profiles that 

portend an increased risk for negative cognitive aging trajectories and/or clinical outcomes. 

Research investigating these aims has implications for both concurrent identification of frailty 

and early detection of elevated frailty risk. We examined these research aims using contemporary 

and data-driven (as opposed to hypothesis-guided) analytical approaches. Specifically, we 

employed structural equation modeling (e.g., latent growth curve models), mixture modeling 

(e.g., latent profile analysis [LPA] and latent transition analysis [LTA]), and machine learning 

technologies (e.g., random forest [RF] analysis). Data-driven approaches provide a potentially 

powerful technology for studying heterogeneous clinical syndromes for which there is limited 

consensus on its defining and emergent characteristics. A potential outcome of these approaches 

is unbiased discovery of distinct frailty profiles that may overlap with some phenotypes but may 

also reflect novel combinations of indicators of aging multi-morbidity. These profiles may 

represent subgroups of older adults who are at increased risk for frailty emerge and progression, 

as well as adverse frailty-related outcomes.  

This dissertation presents a programmatic series of three studies that integrated the main 

research components outlined above. Specifically, we applied data-driven analytical techniques 

to the analysis of large-scale, multi-domain data sets in order to develop an empirically refined 

operational conceptualization of frailty. Large-scale longitudinal studies of human aging provide 
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an ideal platform for these investigations because they (a) implement comprehensive 

measurement batteries that span multiple domains of aging morbidity (e.g., biological, 

functional, health, genetic, neuropsychological, and lifestyle characteristics), (b) involve varied 

samples and clinical cohorts (e.g., normal cognitive aging, impairment, and dementia) that span 

broad bands of aging (e.g., mid- to later-life), and (c) lend themselves to understanding profiles, 

patterns, predictors, and outcomes of frailty.  

The present studies begin with data-driven analyses conducted on the following three 

large-scale data sets: Victoria Longitudinal Study (VLS), National Alzheimer’s Coordinating 

Center (NACC), and The Comprehensive Assessment of Neurodegeneration and Dementia 

Study (COMPASS-ND). In Study 1, we applied LPA to baseline multi-morbidity indicators from 

the VLS in order to detect underlying early frailty profiles in CN older adults. In Study 2, we 

applied LTA (a longitudinal extension of LPA) to two waves of multi-morbidity data from the 

NACC in order to detect frailty profiles in clinical cohorts of older adults who are classified at 

baseline as having amnestic MCI (aMCI) or AD. In Study 3, we assembled cross-sectional multi-

morbidity data from the COMPASS-ND database and employed RF analysis in order to identify 

the most important frailty-related features that discriminate clinical cohorts of older adults with 

subjective cognitive impairment (SCI), MCI, or AD from a benchmark sample of CN controls. In 

each of the respective studies, we evaluated the predictive validity of our data-driven frailty 

models concurrently by examining the extent to which they predict frailty emergence and 

progression and/or negative outcomes across a spectrum of normal cognitive aging through to 

impairment and dementia.  

Organization of the Dissertation 
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We turn now to a brief overview of the three studies that comprise the dissertation 

research. We present separate, detailed descriptions of each study in Chapters 2–4. Specifically, 

in each of the latter chapters we outline the relevant literature, methods, results, and conclusions. 

Tables and figures for each study are presented at the end of the corresponding chapter. 

References for each chapter are presented at the end of the dissertation. Supplementary material 

for Chapter 2 is presented in Appendix A (at the end of the corresponding chapter). In Chapter 5, 

we present a general discussion of the dissertation results, as integrated and compared across 

studies, and highlight potential directions for follow-up research.  

Overview of the Dissertation Studies 

Study 1: Portals to Frailty? Data-Driven Analyses Detect Early Frailty Subtypes 

In this study (presented in Chapter 2; Bohn et al., 2021), we assembled data for a large 

sample of CN older adults (n = 649) from the VLS in order to test whether (a) early frailty 

profiles representing distinct configurations of aging morbidity could be empirically determined 

at baseline using person-centered and data-driven analytic technologies; (b) early frailty profiles 

were differentially related to level and change trajectories in a global frailty index and a latent 

neurocognitive speed variable; and (c) profile and prediction patterns generalized across sex. The 

impact of this study is identification of a complementary approach to frailty measurement and 

conceptualization that may be useful for early detection of elevated frailty risk.  

Study 2: Tracking and Predicting Heterogenous Frailty Changes in Amnestic Mild 

Cognitive Impairment and Alzheimer’s Disease: A Latent Transition Analysis 

In this study (presented in Chapter 3), we advanced the results of Study 1 across a wider 

range of clinical cohorts, a different profile of measurement occasions, and a broad spectrum of 

morbidity indicators and predictors. Specifically, we assembled longitudinal big data from the 
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NACC for clinical cohorts of older adults with a baseline diagnosis of aMCI (baseline n = 878) 

or AD (baseline n = 2,196) in order to test the following specific research goals: (a) detect 

underlying clusters (or statuses) of aging multi-morbidity across two measurement occasions; (b) 

characterize patterns of frailty transitions; and (c) examine frailty emergence and progression in 

relation to demographic (age, sex, race/ethnicity, education), cognitive (clinical cohort, global 

cognition), and genetic (Apolipoprotein E) risk characteristics. Findings from this study advance 

the emerging literature on the natural history of frailty, data-driven frailty assessment, and frailty 

transitions in cognitive impairment and dementia.  

Study 3: Application of Machine Learning Technology to the Identification of 

Frailty-Related Risk Characteristics that Discriminate Four COMPASS-ND Cohorts: 

Cognitively Normal, Subjective Cognitive Impairment, Mild Cognitive Impairment, and 

Alzheimer’s Disease 

This study (presented in Chapter 4) advanced the methodological approach of Studies 1 

and 2 by (a) including a wider breadth of aging morbidity indicators, (b) examining the full AD 

spectrum with multiple clinical cohorts and (c) applying unbiased machine learning techniques to 

individual indicators (versus domains). The specific aims of this study were to: (a) apply 

machine learning technology to the analysis of COMPASS-ND data in order to test the relative 

predictive importance of 84 frailty-related features in discriminating older adults with SCI (n = 

36), MCI (n = 116), or AD (n = 43) from a benchmark sample of CN controls (n = 60); (b) 

calculate a data-driven frailty index for each clinical cohort using data for the top 30 predictors 

identified in RF analysis; and (c) examine whether frailty levels varied across cohorts and 

complementary operationalizations of a frailty index. Findings from this study produced some 

resolution of the various empirical and clinical inconsistencies between leading frailty 
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operationalizations through a complementary conceptualization and the application of a data-

driven approach to measurement, analysis, and interpretation.  

Significance 

Results from this line of research have important theoretical and practical applications. 

First, the dissertation studies supplement the small but growing body of research that has 

examined frailty measurement, analysis, and conceptualization from a data-driven and cohort 

specific perspective. These results have implications for clarifying selected contradictions or 

inconsistencies between prevailing frailty models and research approaches, and in turn, 

advancing understanding of the antecedents, emergence, or differential mechanisms associated 

with frailty. Second, in each of the dissertation studies, we identified data-driven clusters of 

characteristics or individual aging morbidity indicators that exacerbated risk for frailty 

emergence and progression and/or exacerbated cognitive decline, impairment, and dementia. 

Targeting and tracking these features in clinical-research settings may reduce the incidence of 

frailty and related negative outcomes across the AD spectrum.  
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Chapter 2: Study 1 

Portals to Frailty? Data-Driven Analyses Detect Early Frailty Subtypes 
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Background 

Frailty is a heterogeneous condition that reflects accumulated age-related multi-morbidity, 

leading to diminished physical function and reduced physiological reserve (Morley et al., 2013). 

Progression along the fitness-frailty continuum is associated with an increased risk for numerous 

adverse aging outcomes (Romero-Ortuno & O’Shea, 2013), including differential cognitive 

decline, impairment, and dementia (Armstrong et al., 2015; Song et al., 2014; Thibeau et al., 2019). 

Against this backdrop, frailty is characterized as the most problematic expression of population 

aging (Clegg et al., 2013) and has been established as a priority area in clinical and research 

settings (Lim et al., 2018). Yet, considerable debate continues regarding the measurement and 

conceptualization of frailty. At present, two productive approaches dominate the literature: the 

physical frailty phenotype (Fried et al., 2001) and the frailty index (Mitnitski et al., 2001). We 

explored a third approach which could be applicable to early detection of elevated frailty risk: data-

driven frailty assessment.  

The physical phenotype approach defines frailty using the following cluster of variables: 

unintentional weight loss, self-reported exhaustion, weak grip strength, slow gait, and low physical 

activity. Notably, the phenotypes are ordered on the basis of the number of deficits, such that an 

individual with no deficits is classified as robust, one to two deficits is pre-frail, and three or more 

deficits is frail (Clegg et al., 2013). Because this approach incorporates a restricted number of 

physical characteristics, it may be limited in early detection of frailty risk. In contrast, the frailty 

index embraces heterogeneity in that responses across multiple indicators of aging systems are 

summed to create a single score that represents the ratio of deficits present in an individual relative 

to the total number of deficits considered. However, values on the index reflect the number of 

deficits that an individual has accumulated— and in pre-clinical aging, the global frailty index may 
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be relatively low while specific morbidity sources or domains of impairment are emerging. New 

data-driven analytic technologies may be useful in early detection of frailty profiles that serve as 

portals to the emergence of global frailty in aging— and as harbingers of a host of adverse aging 

outcomes.  

Accordingly, we applied latent profile analysis (LPA) to a database of multi-morbidity 

indicators in order to detect underlying clusters or profiles of early frailty. LPA is a data-driven, 

person-centered statistical approach that can identify homogenous subgroups of individuals based 

on a set of observed indicators (Nylund-Gibson & Choi, 2018). This statistical approach is 

analogous to latent class analysis (LCA)— with the exception that the indicators are continuous. 

LPA is a sensitive analytical technique for studying heterogeneous clinical syndromes for which 

there is limited consensus on its defining and emergent characteristics (Muthén & Muthén, 2000). 

Findings from this study will advance the literature on measurement, analysis, and 

conceptualization of frailty by identifying empirically derived frailty profiles that are not 

differentiated on the basis of the number of physical impairments or proportion of accumulated 

deficits. Instead, detected profiles would reflect empirically observed classes of deficits, within a 

broad spectrum of morbidity, sharing pattern and severity characteristics.  

Interestingly, identification of clusters of vulnerabilities, signs, and symptoms of frailty was 

established as a priority area in the beginning stages of this field (Bergman et al., 2007; Walston et 

al., 2006). Some experts reasoned that detection of frailty subtypes may contribute to a refined 

definition that would be useful for understanding the antecedents, emergence, or differential 

mechanisms associated with the variety of deficits subsumed under this general construct. 

Nevertheless, few studies have employed data-driven statistical techniques to distinguish frailty 

profiles based on multidomain deficit accumulation. Recently, Sadiq and colleagues (Sadiq et al., 
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2018) assembled 18 items related to physical, functional, emotional, and social deficits and 

subjected these data to an LCA. Findings revealed three discrete frailty profiles that differed 

primarily in overall severity: (a) not frail, which was characterized by minimal impairment across 

all morbidity indicators, (b) moderately frail, which was characterized by moderate physical and 

functional limitations, and (c) severely frail, which was characterized by severe limitations in 

physical, functional, and emotional health. These findings converge with an earlier study that 

subjected 41 items related to self-reported health, cognitive function, social function, mental health, 

morbidity status, and functional limitations to an LCA (Looman et al., 2018). The following six 

frailty profiles, that also differed primarily in overall severity, were distinguished: relatively 

healthy, mild physically frail, psychologically frail, severe physically frail, medically frail, and 

multi-frail. The relatively healthy profile was characterized by minor problems across all 

indicators, whereas the remaining profiles were characterized by singular deficits in either physical 

or psychological health (at varying levels of severity), or by a combination of physical, 

psychological, cognitive, and social deficits.  

We extend this prior work by determining which frailty profiles representing distinct 

configurations of aging morbidity are detected and examining how they are related to level and 

change trajectories in neurocognitive speed. Accumulating literature suggests that frailty and 

cognitive impairment are related but distinct concepts that frequently co-occur in older age 

(Robertson et al., 2013; Searle & Rockwood, 2015). Yet, few studies have examined broader 

definitions of frailty in relation to normal age-related decline in specific domains of cognition 

(Canevelli et al., 2015), such as neurocognitive speed (Boyle et al., 2010; Bunce et al., 2019; 

Rolfson et al., 2013). Given that non-memory domains may be particularly susceptible to early 

frailty effects (Wu et al., 2015), this is an important target of research attention. Findings from this 
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study may advance understanding of whether there are specific combinations of deficits that appear 

early in the frailty trajectory that predict an increased risk for accelerated cognitive decline.  

Data were drawn from the Victoria Longitudinal Study (VLS), which is a multi-faceted, 

large-scale, long-term investigation of biomedical and neurocognitive aging (Dixon & de Frias, 

2004). We assembled baseline data for each participant that included 50 items representing the 

typical heterogeneity of frailty (Thibeau et al., 2019). We used exploratory factor analysis to 

reduce the total number of items for estimation feasibility in the LPA. These results produced 

separable health domains that were interpreted on the basis of previous research (Kamaruzzaman et 

al., 2010; Lafortune et al., 2009; Sadiq et al., 2018). The proportion of deficits accumulated in each 

domain was calculated for each participant and used as continuous observed indicators in the LPA.  

A recent VLS study used these same 50 items to calculate a frailty index and investigated 

whether the level and/or rate of change in frailty predicted performance and decline in 

neurocognitive speed across a 40-year band of aging (Thibeau et al., 2019). Findings showed that 

the level of frailty at baseline was predictive of neurocognitive speed performance at baseline. 

Moreover, change in the level of frailty was related to the rate of change in neurocognitive speed 

performance. Of note, these effects were moderated by sex, such that frailty change predicted the 

change in speed selectively for females, whereas frailty was unrelated to level or change in speed 

for males. At least one other study pointed to sex differences in the mechanisms linking frailty with 

early changes in cognitive function (Gifford et al., 2019). Given these findings and those from 

related research (McFall et al., 2019; Tierney et al., 2017), we tested whether our results were 

robust across sex.  

The specific research goals (RG) of this study were as follows. For RG1, we employed LPA 

in order to detect empirically derived frailty profiles. As the sample was relatively healthy, we 
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expected to observe early frailty profiles that differed in the nature of deficit accumulation. For 

RG2, we investigated how frailty profiles related to performance and decline in neurocognitive 

speed. We expected to observe frailty-cognition associations, although the extent could vary across 

detected profiles. For RG3, we tested whether profile membership and trajectory predictions 

generalized across sex.   

Methods 

Participants 

 Participants were community dwelling older adults from the VLS who provided written and 

informed consent. Both the VLS and data collection procedures were in full and certified 

compliance with prevailing human research ethics guidelines and boards. The VLS is comprised of 

longitudinal cohorts that were aged 53–85 years at recruitment. Continuing participants were tested 

at an average of 4.4-year intervals. The source cohort for this study (n = 693) provided (a) baseline 

multi-morbidity data and (b) three waves of neurocognitive speed data. In accordance with 

established procedures for accelerated longitudinal designs (Galbraith et al., 2017; Little, 2013), 

age was used as the metric of longitudinal change. This approach allowed us to control for age-

related effects and increase interpretability of the findings. The resulting design spans a 40-year 

band of aging (McFall et al., 2019). 

The following exclusionary criteria were applied at baseline: (a) diagnosis of Alzheimer’s or 

dementia (n = 0), (b) missing data across each of the 50 multi-morbidity items at baseline (n = 40), 

and (c) missing data across all waves and indicators of the latent speed variable (n = 4). Descriptive 

statistics for the remaining sample are outlined in Table 2-1 (n = 649; 431 females; Mage = 70.61, 

SD = 8.64, age range = 53 – 95 years; primarily White). Retention rates were 82% for wave 1 to 

wave 2 and 78% for wave 2 to wave 3.  
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Measures 

Multi-morbidity data. We assembled baseline data for 50 multi-morbidity items that (a) have 

been used in the VLS and related research to form a frailty index (Thibeau et al., 2019), (b) have 

demonstrated associations with adverse brain and cognitive aging outcomes (Thibeau et al., 2019), 

and (c) satisfy prevailing conventions surrounding deficit accumulation approaches to frailty 

assessment (Searle et al., 2008). Data for these items were collected using self-report, physical 

examinations, and formal tests with standardized scales. All items were recoded such that scores 

ranged from 0 (no deficit present) to 1 (deficit was maximally expressed (Searle et al., 2008); see 

Table 2-2 for examples; full list in Supplementary Table 1, see Appendix A).   

Neurocognitive speed. We represented neurocognitive speed as a multi-indicator latent 

variable using the following four manifest indicators: simple reaction time, choice reaction time, 

lexical decision, and sentence verification. Each of these indicators are multi-trial, computer-based 

neuropsychological tasks that have (a) established psychometric properties, (b) been widely used 

and documented in the VLS and related cognitive aging research, and (c) demonstrated sensitivity 

to neurocognitive factors and functional biomarkers (Bohn et al., 2020; Thibeau et al., 2019). The 

target measure for each task was the average response latency across the test trials. Responses were 

recoded such that higher scores represented better performance. We present descriptions of each 

task and data correction procedures in the Supplementary Methods (see Appendix A).  

Statistical Analyses 

Analyses were conducted using Mplus 8.0 (Muthén & Muthén, 1998-2017). Missing data 

were handled using full information maximum likelihood unless specified as otherwise.  

Foundational analyses. The following foundational analyses served the purpose of testing 

and confirming basic characteristics of the neurocognitive speed data, as well as preparing the 
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latent variable: (a) confirmatory factor analysis, (b) longitudinal measurement invariance tests, and 

(c) unconditional latent growth modeling. Further details are presented in the Supplementary 

Methods (see Appendix A).  

Focal analyses. The 50 multi-morbidity items were submitted to an exploratory factor 

analysis. Importantly, we made decisions related to the number of factors (health domains) and 

which indicators to retain on the basis of best-practices literature (Costello & Osborne, 2005; 

Muthén & Muthén, 2009). We verified that this latent structure fit the data using confirmatory 

factor analysis. Model fit was determined using standard indices (see Supplementary Methods, 

Appendix A).  

For the latent profile analysis (LPA), we fit a sequence of models with varying numbers of 

latent profiles (e.g., 1, 2, 3). We selected the best fitting model based on interpretability of the 

study findings, as well as the following model parameters, tests, and fit indices (Masyn, 2012): (a) 

log-likelihood value (LL); (b) number of parameters estimated; (c) Bayesian Information Criterion 

(BIC); (d) sample-size adjusted BIC (SABIC); (e) Akaike Information Criterion (AIC); (f) adjusted 

Lo-Mendell-Rubin likelihood ratio test (LMR-LRT); (g) adjusted Vuong-Lo-Mendell-Rubin 

likelihood ratio test (VLMR-LRT); and (h) entropy. Low values of BIC, SABIC, and AIC indicate 

better fit (Nylund-Gibson & Choi, 2018). The LMR-LRT and VLMR-LRT compare the current 

model (k) against the model of one fewer latent profile (k-1); a non-significant p-value supports the 

selection of the k-1 profile model (Nylund-Gibson & Choi, 2018). Entropy (ranging between 0 and 

1) is not used for model selection but suggests the classification accuracy (the higher the better).  

To avoid local maxima, we used 5000 multiple starting values. Indicators were allowed to 

covary within class, while the variances-covariances were constrained to be equal across profiles 

(i.e., class invariant-unrestricted structure). Alternative models allowing free estimation of 



DATA-DRIVEN APPROACHES TO FRAILTY AND RISK PREDICTION 20 

variance-covariance across profiles did not converge, suggesting over-parameterization (Chen et 

al., 2001). We controlled for potential age effects by regressing the observed indicators and profile 

membership on age. An adapted formula for Cohen’s d was used to (a) calculate standardized mean 

differences across latent profiles in the observed indicators and (b) facilitate interpretations of the 

final latent-profile solution (Masyn, 2012). Values > 2.0 indicate a less than 20% overlap in 

profile-specific distributions and a high degree of separation on the associated indicator, whereas 

values < 0.85 indicate more than 50% overlap and a low degree of separation on the associated 

indicator.  

We examined how the frailty profiles related to intercept (performance at a statistical 

centering age) and linear slope (longitudinal change) of neurocognitive speed using the manual 

BCH method (Asparouhov & Muthén, 2014; Vermunt, 2010). We tested whether latent profiles 

differed in the level or rate of change by comparing the nested models with constrained equal 

performance level (i.e., intercept) or decline in speed (i.e., linear slope) with the full model where 

performance level and decline in speed were freely estimated for each latent profile using χ2 tests. 

Significant differences were inferred from a -2LL difference statistic (D at p < .10), which 

compared the unconstrained model to the constrained model.  

We tested whether membership in the frailty profiles was comparable across sex by 

performing a multinomial logistic regression using the R3step approach (for further details see 

Asparouhov & Muthén, 2014). We examined whether frailty-cognition associations generalized 

across sex by regressing the intercept and slope of speed on sex separately for each profile.  

Results 

Foundational Analyses 
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Results of the confirmatory factor analysis indicated that a single-factor latent variable model 

for neurocognitive speed fit the data adequately. Measurement invariance tests showed full metric 

and full scalar invariance (final model fit indices: root mean square error of approximation 

(RMSEA) = .08; comparative fit index (CFI) = .96; standardized root mean square residual 

(SRMR) = .09; see Supplementary Table 2, Appendix A). Regarding the latent growth model for 

speed, participants demonstrated (a) significant variation in level of performance (σ"2 = 1.00, p < 

.001), (b) significant decline over time (M = -.074, p < .001), and (c) significant interindividual 

differences in the rate of decline (σ"2 = .003, p < .001; see Supplementary Table 3, Appendix A). 

This model was subsequently used to generate intercept and linear slope estimates for each 

participant, which then served as the target distal outcome measures.  

RG1a: Exploratory and confirmatory factor analysis for multi-morbidity items   

Results from the exploratory factor analysis indicated that a 7-factor solution adequately 

explained associations amongst the final 30 multi-morbidity items. We tested whether this latent 

structure fit the study data using confirmatory factor analysis. Results showed adequate to good 

model fit (χ2(384) = 649.02, p < .001; RMSEA = .03; CFI = .90) and all indicators had strong 

loadings on the corresponding latent construct (for model depiction see Supplementary Figure 1, 

Appendix A). In accordance with earlier research (Kamaruzzaman et al., 2010; Lafortune et al., 

2009; Sadiq et al., 2018), we labeled these domains as: mobility (n = 4), instrumental health (n = 

6), emotional wellbeing (n = 4), comorbidity (n = 4), respiratory symptoms (n = 3), cardiac 

symptoms (n = 5), and physical activity (n = 4). Indicators for each domain are outlined in Table 2-

2. We subsequently calculated the proportion of deficits in each domain for each participant. 

Values ranged between 0 and 1, with higher scores denoting greater impairment. These data were 

used as continuous observed indicators in the LPA.  
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RG1b: Identification of latent frailty profiles  

As shown in Table 2-3, AIC, BIC, and SABIC all steadily decreased (i.e., became more 

negative) as the number of latent profiles increased, suggesting that model fit improved with the 

addition of each latent profile. Further, the adjusted LMR-LRT (p < .001) and VLMR-LRT (p < 

.001) indicated that the 3-profile solution provided better fit relative to the 2-profile solution. 

Notably, prevalence of each profile exceeded a conventional standard of 5% (Nylund-Gibson & 

Choi, 2018). Entropy for this solution was also high (0.99), indicating that participants were 

classified into the profiles with a high degree of precision. The 3-profile solution was therefore 

selected as the final model.  

Interpretation of the frailty profiles. Model estimated indicator means for each latent profile 

are depicted in Figure 2-1. The first profile (n = 542, 84%) was characterized by relatively low 

impairment across all observed indicators and was thus labeled as not-clinically-frail (NCF). 

Notably, participants in this profile had an average score on the frailty index (see Table 2-1) that 

fell below the clinical threshold typically used to assign frailty status, whereas the remaining two 

profiles had scores that met or exceeded a previously established cut-off value of .20 (Searle et al., 

2008). The second profile (n = 59, 9%) was characterized by pronounced impairment in mobility 

function relative to the first (d = 5.09) and third (d = 3.90) profile. This profile was thus labeled as 

mobility-type frailty (MTF). The third profile (n = 48, 7%), labeled as respiratory-type frailty 

(RTF), was characterized by pronounced impairment in respiratory function relative to the NCF (d 

= 6.96) and MTF profiles (d = 4.72). Interestingly, none of these profiles were distinguished on the 

basis of emotional well-being, comorbidity, cardiac symptoms, or physical activity (for details see 

Supplementary Table 4, Appendix A). As highlighted in Table 2-1, the pattern of mean differences 

observed across profiles in performance-based tasks was in keeping with our interpretations. That 
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is, participants classified into MTF had the slowest performance on a timed-walk task, while 

participants classified into RTF had the lowest peak-expiratory flow. We present further 

descriptive baseline information for each latent profile in Table 2-1. 

In a series of follow-up analyses, we tested whether the MTF and RTF profiles function as 

morbidity-intensive portals that subgroups of older adults pass through into classifiable chronic 

frailty. We assembled three waves of data for the 50-item frailty index (Thibeau et al., 2019) and 

calculated a growth model over the 40-year longitudinal band. Key results showed significant (a) 

variation in the level of frailty (σ"2 = .004, p < .001), (b) increase in frailty over time (M = .003, p < 

.001), and (c) interindividual differences in the rate of frailty progression (σ"2 = .001, p < .001; see 

Supplementary Table 3, Appendix A). We generated intercept and linear slope estimates for each 

participant and tested whether the profiles were differentially related to level (severity) and rate of 

change in the frailty index using the manual BCH approach. Evidence in support of a portal 

approach to frailty emergence and progression would be constituted by a higher level and steeper 

rate of deficit accumulation for MTF and RTF as compared to the NCF profile.  

Results for portal-related analyses. The predicted growth curve model for the frailty index is 

presented in Figure 2-2. Consistent with our expectations, profiles differed significantly in 

intercept. Specifically, older adults with MTF (b = .20, p < .001) and RTF (b = .20, p < .001) had 

higher (worse) scores on the frailty index relative to those who were NCF (b = .14, p < .001; D = 

11.20, Ddf = 4, p < .001). Differences across profiles in the rate of frailty progression (slope) were 

also in the expected direction. MTF was associated with the fastest rate of deficit accumulation (b 

= .005, p < .001), followed in order by RTF (b = .004, p < .001; D = 8.62, Ddf = 2, p = .01), and 

then NCF (b = .003, p < .001; D = 14.71, Ddf = 2, p < .001).  

RG2: Latent profile-speed associations 
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The predicted growth curve model for neurocognitive speed is depicted in Figure 2-3. 

Intercept did not vary significantly across MTF (b = -.46, p < .001), RTF (b = -.47, p < .001), and 

NCF (b = -.24, p < .001) profiles (D = 7.87, Ddf = 4, p = .10). However, we observed significant 

differences across profiles in the rate of cognitive decline (slope; D = 31.81, Ddf = 4, p < .001). 

Specifically, MTF (b = -.10, p < .001) was associated with more precipitous decline relative to 

RTF (b = -.08, p < .001; D = 13.90, Ddf = 2, p < .001) and the NCF profile (b = -.08, p < .001; D = 

23.61, Ddf = 2, p < .001). RTF was also associated with more accelerated decline relative to the 

NCF profile (D = 7.88, Ddf = 2, p = .02).  

RG3: Generalizability of profile membership and prediction patterns across sex 

We found that profile membership was similar across sex (coded as 0 = female, 1 = male) 

such that male sex was equally related to the likelihood of being classified into MTF (OR = .62, ns) 

or RTF (OR = 0.61, ns) as compared to NCF. Further, male sex was equally related to the 

likelihood of being classified into RTF as compared to MTF (OR = .98, ns). Similarly, sex showed 

comparable associations with the level and rate of change in neurocognitive speed for each of the 

frailty profiles (all p-values > .20). 

Discussion 

The frailty phenotype (Fried et al., 2001) and the frailty index (Mitnitski et al., 2001) are the 

two important and productive approaches to measuring, conceptualizing, and investigating frailty. 

Each of these approaches have been widely used to capture variations in the risk for adverse aging 

outcomes (Gonzalez-Colaço Harmand et al., 2017), including accelerated cognitive decline and 

dementia (Armstrong et al., 2015; Song et al., 2014). The present study examined a complementary 

approach that relied on data-driven statistical techniques. Specifically, we submitted 50 items to an 

exploratory factor analysis and derived the following 7 domains of aging morbidity: mobility, 
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instrumental health, emotional wellbeing, comorbidity, respiratory symptoms, cardiac symptoms, 

and physical activity (Kamaruzzaman et al., 2010; Lafortune et al., 2009; Sadiq et al., 2018). We 

calculated the proportion of deficits accumulated in each domain and submitted these data to a 

latent profile analysis (LPA) in order to detect frailty profiles. We then examined whether (a) 

distinguishable early frailty profiles could be empirically detected and characterized, (b) frailty 

profiles differentially predicted the level and rate of change in neurocognitive speed, and (c) profile 

membership and prediction of cognitive trajectories was comparable across sex.  

RG1: Identification of latent frailty profiles 

In this person-centered analysis, three mutually exclusive early morbidity profiles of 

individuals were identified. The first profile we identified, not-clinically-frail (NCF), has been 

reliably documented in related research (Liu et al., 2017; Looman et al., 2018; Olaya et al., 2017; 

Sadiq et al., 2018) and was characterized by individuals with minimal impairment across the 

observed indicators and low scores on the frailty index. This pattern would be expected in a 

relatively healthy and cognitively normal aging group, and thus would include numerous persons 

who could later develop global or phenotypic frailty. The second profile, mobility-type frailty 

(MTF), was differentiated on the basis of deficits in mobility function. This profile is consistent 

with some research that suggests mobility deficits may aggregate to form a unique frailty subtype 

(Chhetri et al., 2017; Sarksian et al., 2008; Sourial et al., 2012). For example, Liu and colleagues 

(Liu et al., 2017) recently applied latent class analysis (LCA) to the five items from the physical 

frailty phenotype and detected four subtypes, one of which was labelled mobility-type. The present 

study extracts this subtype from a much broader range of morbidity measures and identifies it as an 

early frailty profile. The third profile we detected represented respiratory-type frailty (RTF). This 

profile was comprised of individuals with pronounced impairment in respiratory function. 
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Identification of RTF as an early frailty profile advances the literature on subgroups of frail older 

adults. Although expanding (Nguyen et al., 2019), the vast majority of available works have 

conceptualized frailty using only the physical phenotype (Bandeen-Roche et al., 2006; Liu et al., 

2017; Lohman et al., 2014; Segaux et al., 2019) or have not included respiratory symptoms and 

diseases in the measurement of aging morbidity (Looman et al., 2018; Sadiq et al., 2018). 

However, another recent study also distinguished a data-driven frailty subtype marked by 

concomitant respiratory impairment (Pikoula et al., 2019). Our results suggests that deficits in 

respiratory function are a defining characteristic of early frailty profiles and should be targeted and 

tracked in clinical and research settings (Olaya et al., 2017; Sugimoto et al., 2020; Trevisan et al., 

2019). Finally, we note that older adults classified into the two early frailty profiles had 

comparable scores on the 50-item frailty index— and these scores exceeded those of the non-frail 

group and met an established threshold for clinical frailty (Searle et al., 2008). 

We tested whether MTF and RTF may represent early and specific morbidity-intensive 

portals into broader and chronic frailty in a series of follow-up analyses. Notably, the results 

buttressed this interpretation. Not only did older adults classified as MTF or RTF have higher 

levels of frailty (intercept), but they also showed more rapid progression into general frailty as 

compared to those who were NCF (slope). Interestingly, MTF was also associated with a faster rate 

of deficit accumulation as compared to RTF. These findings contribute to the emerging literature 

on trajectories of frailty (Rohrmann, 2020) and extend earlier research that reported single 

indicators of mobility (Doi et al., 2018; Fallah et al., 2011) and respiratory function (Pollack et al., 

2017; Vaz Fragoso et al., 2012) are predictive of frailty progression. We advance these works by 

proposing and validating a portal approach to frailty emergence, which reasons that profiles of 

aging morbidity marked by mobility or respiratory deficits may serve as gateways to classifiable 
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global frailty, which then cascades into more rapid and widespread deficit accumulation (Anstey & 

Dixon, 2014). The present focus on detecting early manifestations of frailty profiles and the 

representation of these as portals into global frailty is a promising research direction. Future 

epidemiological studies would profitably be directed towards replicating and extending these 

results (e.g., data-driven frailty assessment in clinical cohorts).   

RG2: Latent profile-speed associations 

We found that, while the two emergent frailty profiles differed only marginally for prediction 

of level (intercept of neurocognitive speed), they differed significantly for slope (decline or 

slowing). Regarding level, the pattern of effects was in the expected direction (Bunce et al., 2019; 

Rolfson et al., 2013; Thibeau et al., 2019). Specifically, older adults classified into MTF or RTF 

subtypes trended towards worse performance relative to those who were NCF. Notably, regarding 

slope, older adults classified as having MTF showed the most precipitous decline, followed in 

order by RTF and then NCF. These relationships support the validity of these profiles and suggest 

that distinct configurations of aging morbidity marked by deficits in mobility and respiratory 

function may have differential effects on neurocognitive slowing. We note that these results cannot 

be attributed to age, educational background, or proportion of deficits accumulated. Three reasons 

are noted. First, we statistically controlled for the effects of age. Second, the frailty profiles did not 

differ from one another in their level of educational achievement. Third, participants assigned to 

MTF and RTF had comparable baseline scores (and intercept values) on the frailty index and yet 

they differed in the rate of decline.  

To our knowledge, this is the first study to determine data-driven early frailty profiles using 

LPA and examine their prediction of cognitive aging trajectories. Of the related works summarized 

above, cognition was treated variably as (a) a study covariate (Lohman et al., 2014), (b) amongst 



DATA-DRIVEN APPROACHES TO FRAILTY AND RISK PREDICTION 28 

one of the indicators of aging morbidity (Looman et al., 2018; Segaux et al., 2019), or (c) not 

relevant or included in the analysis (Bandeen-Roche et al., 2006; Sadiq et al., 2018). Notably, Liu 

and colleagues (2017) explored descriptive differences across frailty subtypes and reported 

findings that run in parallel to our own in mobility-type frailty was associated with lower scores on 

the MMSE relative to the robust subtype. Other research highlights that single indicators of 

mobility or physical function, such as gait speed or grip strength, are associated with decline in 

processing speed (Hooghiemstra et al., 2017; Inzitari et al., 2007). Far less research has examined 

respiratory-cognition associations (Duggan et al., 2018), particularly within the context of frailty 

(Vaz Fragoso et al., 2012). Olaya and colleagues (2017) recently reported that older adults assigned 

to a cardiorespiratory latent multi-morbidity profile had worse verbal memory performance 

relative to a healthy profile. Several recent reviews have also reported that single indicators of 

respiratory function, such as forced expiratory volume or asthma, predict neurocognitive slowing 

(Dodd, 2015; Duggan et al., 2018). Nevertheless, this is the first study to extract MTF and RTF 

profiles from a multi-morbidity inventory in mostly non-frail older adults and then systematically 

compare them in their initial frailty scores (similar), rate of frailty progression (dissimilar), and 

their predictions of cognitive change trajectories (dissimilar). These results suggest older adults 

presenting with deficits in mobility or respiratory function may be particularly vulnerable to 

advancing frailty and accelerated neurocognitive slowing. Proper assessment and management of 

these signs, symptoms, and diseases as they appear early on in the frailty trajectory is therefore 

encouraged. Accumulating literature suggests that frailty is a potentially reversible condition 

(Canevelli et al., 2017). It has therefore been reasoned that early interventions designed to reverse 

or attenuate frailty progression may have downstream effects on reducing negative aging 
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outcomes, including differential cognitive decline and impairment (Borges et al., 2019; Robertson 

et al., 2013).   

RG3: Generalizability of profile membership and prediction patterns across sex 

Limited research has examined whether data-driven early frailty profiles, particularly those 

derived on the basis of multidomain deficit accumulation, are robust across sex. A small number of 

studies have explored whether the proportion of males and females assigned into frailty profiles is 

comparable; however, this question differs conceptually from the one tested in the present study 

and the earlier findings were equivocal (Liu et al., 2017; Sadiq et al., 2018; Segaux et al., 2019). 

Our results indicated that males and females were equally likely to be classified into the MTF, 

RTF, and NCF profiles. Looman and colleagues (2018) also examined whether profile membership 

generalized across sex and reported findings that converge with our own. Previous literature 

suggests that there may be sex differences in the impact of frailty on cognitive aging trajectories 

(Gifford et al., 2019; Song et al., 2014; Thibeau et al., 2019). However, we did not detect such a 

pattern in our data. Rather, we found that performance and decline in neurocognitive speed was 

comparable across sex. Sex differences may be more likely to appear in later life or in more serious 

frailty conditions.  

Given the heterogeneity of frailty, the mechanisms underlying the observed associations are 

unclear. Current reviews attribute frailty-cognition associations to hormonal dysregulation, 

nutritional factors and deficiencies, chronic inflammation, and cardiovascular risks (Canevelli et 

al., 2015; Panza et al., 2015; Robertson et al., 2013). Perhaps more relevant for the present research 

are studies showing that non-demented older adults accumulate neuropathology (Buchman et al., 

2008, 2013; Wolf et al., 1999) and show structural and functional declines (Seidler et al., 2010) in 

the regions that underlie motor functions and processing speed, such as the striatum, substantia 
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nigra, and motor cortices. Increased white matter hyper-intensities and decreased cerebellar gray 

matter volumes have also been linked with reduced mobility function (Chhetri et al., 2017) and 

poorer performance on speeded tasks (Eckert et al., 2010; Papp et al., 2014). Similarly, impaired 

respiratory function predicts overall and subcortical brain atrophy as well as white matter 

hyperintensities (Sachdev et al., 2006). One possible explanation for the finding that MTF was 

associated with accelerated cognitive decline relative to RTF is that our measures of 

neurocognitive speed were computer-based reaction time tasks. Performance on these tasks thus 

reflects not only processing speed, but also motor control and muscle function. Individuals with 

deficits in mobility function may therefore have been disproportionately impaired on these tasks 

relative to those with respiratory deficits. Although linked to relevant literature, these explanations 

are speculative and multiple contributing mechanisms likely account for the frailty-speed 

associations. Continued research efforts are required in order to understand the pathophysiologic 

underpinnings of MTF and RTF.  

Strengths and limitations 

We acknowledge several methodological strengths and limitations. First, with respect to the 

former, we used a substantial and well-characterized sample of participants from the VLS. These 

individuals were tested on three occasions across a 40-year band of aging and were relatively 

healthy and free of neurodegenerative disease at baseline. These characteristics allowed us to 

distinguish and subsequently examine the impact of early frailty profiles on normal cognitive aging 

trajectories. At the same time, our findings may be limited in generalizability to other populations 

(e.g., more frail older adults; ethnic minorities) or contexts (e.g., continuing care settings). Future 

investigations should explore this possibility. Second, we examined our research questions using 

contemporary statistical approaches. Specifically, we derived empirically based frailty profiles 
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using LPA. This data-driven approach boasts several advantages over classical statistical models 

(e.g., cluster analysis; Muthén & Muthén, 2000), such as model-based participant classifications, 

statistical diagnostic tools that elucidate the quality of participant classifications, and information-

theoretic indices that favor selection of the most parsimonious model (thus discouraging 

overfitting). We validated our profiles by examining how they related to the level and rate of 

change in frailty and neurocognitive speed using the BCH approach, which allowed us to 

statistically account for misclassification errors. We calculated the primary distal outcome measure 

using multiple standard neuropsychological tasks, which contributed to a validated, invariant, 

longitudinal, latent measure of neurocognitive speed. We controlled for the potential confounding 

effects of age, as well as verified that prediction patterns generalized across sex and could not be 

attributed to educational background or proportion of deficits accumulated. Third, we assembled 

baseline data that represented the heterogeneity of frailty. This enabled us to detect nuanced frailty 

profiles and address a prominent criticism of earlier data-driven research (Rockwood et al., 2007). 

It is worth noting, however, that our indicators in the LPA do not represent the full range of deficits 

that older adults may accumulate. For example, due to unavailability, we did not include indicators 

related to social function (beyond those included in instrumental health) or nutritional status. 

Previous studies including these indicators did not distinguish social or nutrition profiles (Looman 

et al., 2018; Sadiq et al., 2018; Segaux et al., 2019; Sourial et al., 2012). This is a common issue in 

frailty research. The phenotype approach does not include all possible phenotypes and the frailty 

index includes no phenotypes, but rather a score that could vary according to the available items. 

Nevertheless, future studies could explore whether inclusion of social and nutritional deficits may 

result in profile interpretations and prediction patterns that diverge from the present research.  

Conclusions 
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Our study distinguished three early frailty profiles using data-driven statistical techniques: 

not-clinically-frail (NCF), mobility-type frailty (MTF), and respiratory-type frailty (RTF). Whereas 

the former and larger profile represented older adults with minimal current impairment across 

multiple indicators of aging morbidity, the latter two profiles represented individuals with marked 

impairment in either mobility or respiratory function. Prevailing approaches that collapse across 

markers of aging morbidity may therefore mask important variability, including identification of 

(a) differentiable profiles that may be characterized as morbidity-intensive portals into broader and 

chronic frailty and (b) older adults at risk for accelerated cognitive decline and impairment. These 

profiles were differentially associated with longitudinal change in neurocognitive slowing, such 

that MTF was associated with the steepest decline, followed by RTF. As new and more effective 

treatments become available, studies directed towards identifying subgroups of frail older adults 

who are not yet exhibiting cognitive impairment but who are at increased risk are essential. Our 

results indicate that older adults presenting with mobility or respiratory complaints may benefit 

from early and targeted interventions (Apóstolo et al., 2018; Sugimoto et al., 2020). Future 

research should explore the extent to which rehabilitation and pharmacologic treatments targeting 

these deficits may offset or delay cognitive decline and frailty progression.   
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Table 2-1. Participant Characteristics at Baseline 
 
 

 

 

 

 

 

 

 

Note. Results presented as mean (standard deviation). P values are based on one-way ANOVA or chi-square tests, as appropriate. We 

adjusted for multiple comparisons using post-hoc Tukey tests. Values with different superscripts differ from one another. a We 

calculated the proportion of deficits for each person on the 50-item frailty index as reported in Thibeau et al. (2019). b We tested 

whether mobility- and respiratory-type differed from one another and the not-clinically-frail profile using planned comparisons. c The 

number of seconds taken to walk 20 feet. d The largest volume of air expired over three attempts.  

*** p < .001

Characteristic Total sample Not-clinically-frail Mobility-type Respiratory-type Sig. 

Class prevalence n(%) -- 542 (84%) 59 (9%) 48 (7%)  

n(%) female 431 (66%) 351 (65%) 44 (75%) 36 (75%) ns 

Age (in years) 70.61 (8.64) 69.78 (8.39) e 78.21 (7.53) f 70.60 (8.27) e *** 

Education (in years)  15.27 (2.97) 15.39 (2.94) 14.67 (2.83) 14.54 (3.34) ns 

APOE ɛ4+ 150 132 (24%) 6 (11%) 12 (25%) ns 

Frailty index a 0.13 (0.07) 0.11 (0.06) e 0.22 (0.07) f 0.20 (0.07) f *** 

MMSE 28.67 (1.25) 28.70 (1.24)  28.29 (1.39)  28.78 (1.11)  ns 

Timed walk b, c 6.42 (1.65) 6.12 (1.13) e 9.28 (2.80) f 6.51 (1.65) e *** 

Peak flow (L/min) b, d 421.98 (117.77) 435.40 (114.01) e 360.17 (100.86) f 329.10 (123.31) g *** 
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Table 2-2. Multi-morbidity Items by Exploratory Factor Analysis Derived Frailty Domain 

Domain Indictor 

Mobility Finger dexterity a 

 Timed turn a 

 Grip strength b 

 Use of walker, cane, or wheelchair c 

Instrumental health  Health has affected ability to travel d 

 Health has affected ability to socialize d 

 Health has affected ability to do hobbies d 

 Health has affected ability to do mental activities d 

 Health has affected ability to get around town d 

 Health has affected ability to do chores d 

Emotional wellbeing  Bradburn negative affect (restless, lonely, bored, depressed, upset due to 

criticism) e 

 CES-D “during the past week, my sleep was restless” f 

 CES-D “during the past week, I felt depressed” f 

 CES-D “during the past week, I felt lonely” f 

Comorbidity Anemia g 

 Sex-related health problems (i.e., gynecological problems or prostate 

problems) g 

 Gastrointestinal problems (colitis/diverticulitis, gall bladder trouble, 

and/or liver trouble) g 

 Kidney or bladder trouble g 

Respiratory symptoms Feeling short of breath c 

 Bronchitis or emphysema g 

 Asthma g 

Cardiac symptoms  Pulse pressure h 

 Heart trouble g 

 Hardening of arteries (i.e., atherosclerosis) g 



DATA-DRIVEN APPROACHES TO FRAILTY AND RISK PREDICTION 47 

 High blood pressure g 

 Stroke g 

Physical activity  Stay at home but in chair most of the time c 

 Health has affected ability to do physical recreational activities d 

 Spinal condition and/or back trouble g 

 Arthritis (rheumatoid and/or osteo) g 

Note. 
a Performance was recoded as 0 (< 90th percentile) or 1 (within 90th percentile). b Performance 

was recoded as 0 or 1. See Supplementary Table 1, Appendix A. c 0 = no, 1 = yes. d 0 = no change, 

improved, N/A; 0.25 = slightly reduced; 0.50 = moderately reduced; 0.75 = drastically reduced; 1 = 

gave up doing activity. e 0 = no to all; 0.2 = yes to one; 0.4 = yes to two; 0.6 = yes to three; 0.8 = 

yes to four; 1 = yes to all. f 0 = rarely or none of the time; 0.33 = some or a little of the time; 0.67 = 

occasionally or a moderate amount of the time; 1 = most or all of the time. g 0 = no; 0.33 = yes, not 

serious; 0.67 = yes, moderately serious; 1 = yes, very serious. h Performance was recoded as 0 

= 32.13–63.90; 0.5 = 64-75.9; 1 = 76+. 
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Table 2-3. Model Fit Indices for One- to Four-Latent Profile Solutions 

Profile (-)2LL npar AIC BIC SABIC LMR VLMR Entropy 

1 -5029.43 42 -4945.43 -4757.47 -4890.81 -- -- -- 

2 -5584.96 51 -5482.96 -5254.72 -5416.64 <.001 <.001 0.99 

3 -5880.55 60 -5760.55 -5492.02 -5682.52 <.001 <.001 0.99 

  4 b -6235.52 69 -- -- -- -- -- -- 

Note. (-2)LL, -2 log-likelihood; npar, number of parameters free; AIC, Akaike information 

criterion; BIC, Bayesian information criterion; SABIC, sample size adjusted BIC; LMR, adjusted 

Lo-Mendell-Rubin likelihood ratio test; VLMR, adjusted Vuong-Lo-Mendell-Rubin likelihood 

ratio test. b This model was not considered due to non-replicated log-likelihood.  
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Figure 2-1. Model estimated observed indicator means for each latent profile. PA = Physical 

activity; CS = Cardiac symptoms; RS = Respiratory symptoms; CO = Comorbidity; EW = 

Emotional well-being; IH = Instrumental health; MO = Mobility. For further explanation of the 

profile interpretations see the Results section.  
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Figure 2-2. Predicted growth curve model for the 50-item frailty index across profile. Age in years 

was used as the metric of change and centered at 75 years. Profiles differed significantly in 

intercept and slope.  
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Figure 2-3. Predicted growth curve model for speed factor scores across profile. Age in years was 

used as the metric of change and centered at 75 years. Intercept was comparable across profiles. 

Slope differed significantly across profiles.   
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Chapter 3: Study 2 
 

Tracking and Predicting Heterogenous Frailty Changes in Amnestic Mild Cognitive Impairment 

and Alzheimer’s Disease: A Latent Transition Analysis 
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Background  

  Emerging literature suggests that frailty is a dynamic process, characterized by 

multidirectional trajectories of deficit accumulation (Fallah et al., 2011; Rogers et al., 2017; 

Thompson et al., 2018) or recurrent transitions between frailty states over time (Etman et al., 2012; 

Trevisan et al., 2017). A recent systematic review and meta-analysis assembled data from 16 

studies for 42,775 community-dwelling older adults and examined transitions across physical 

frailty phenotypes over time (Kojima et al., 2019), including robust (0 deficits), pre-frail (1-2 

deficits), and frail (3 or more of the following deficits: weight loss, exhaustion, weakness, slowness 

walking speed, and low physical activity; Fried et al., 2001). Results indicated that 13.7% of 

participants improved, 29.1% worsened, and 56.5% remained stable. The high degree of 

heterogeneity in frailty transition patterns persisted in sex stratification analyses. These results 

suggest that frailty can change in multiple directions, including the possibility of reversion from 

more to less frailty. It is important to note, however, that systematic investigations of heterogeneity 

in frailty progression remain relatively limited, and several reviews have issued a call for increased 

longitudinal epidemiological research on this topic (O’Caoimh et al., 2018; Rohrmann, 2020; 

Welstead et al., 2020). The present study fills in this gap by applying latent transition analysis 

(LTA) to a large database of longitudinal multi-morbidity indicators in order to (a) detect 

underlying clusters of aging multi-morbidity (or frailty statuses) across two measurement occasions 

and (b) examine patterns and predictors of frailty transitions.  

LTA is a longitudinal extension of latent profile and latent class analysis— person-centered 

statistical approaches that can identify homogenous subgroups of individuals based on a set of 

observed indicators (Nylund-Gibson & Choi, 2018). Both are data-driven and person-centered 

analytic approaches. However, LTA includes two important features relevant to this study: (a) it 
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allows participants’ profile memberships to change over time and (b) it provides the analytic tools 

to track and model these changes (Lanza & Collins, 2008). In the LTA approach, it is customary to 

use the term latent statuses (vs. profiles) to refer to the detected subgroups. This terminology better 

highlights the notion that subgroup membership is not fixed over time. We selected the LTA 

approach based on literature suggesting that alternate approaches to modeling change trajectories 

(e.g., latent growth curve analysis) may be less suitable for addressing research questions 

pertaining to multidimensional constructs, such as frailty (Clegg et al., 2013), which may evince 

multidirectional patterns of transitions over time (Lanza & Collins, 2008).  

To our knowledge, only one study has modeled heterogeneity in frailty emergence and 

progression using LTA. In this study, Lafortune and colleagues (2009) applied LTA to 17 multi-

morbidity indictors collected from a baseline sample of 1,164 cognitively normal community-

dwelling frail older adults (age range: 64–104 years; 71% female). Participants were followed over 

three measurement occasions (12- and 22-month follow-up) and contributed longitudinal data 

related to chronic health conditions, cognitive deficits, depression, sensory limitations, functional 

limitations, and impairment in activities of daily living. Results showed that (a) a four-status 

solution provided the best fit to the data at each measurement occasion and (b) latent statuses were 

invariant over time (i.e., retained the same substantive interpretation across measurement 

occasions). Statuses were distinguished primarily on the basis of the pattern and severity of deficits 

observed in the physical and cognitive domain and subsequently interpreted as: (a) cognitively and 

physically impaired, (b) cognitively impaired, (c) physically impaired, and (d) relatively healthy. 

Transition analyses showed that older adults classified as cognitively and physically impaired or 

cognitively impaired had a higher probability of unfavorable transitions, lower probability of 

improvement, and increased mortality risk. Interestingly, frailty transition patterns and mortality 
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risk were also reported to vary as a function of sex. These results suggest that, within this 17-item 

roster of morbidities, cognitive deficits portended a poorer prognosis for frailty emergence and 

progression. Although a promising approach with novel results, this study was limited by (a) the 

relatively small number and limited breadth of the morbidity indicators and (b) reporting of 

pertinent clinical characteristics of the study sample. For example, with respect to the former, 

cognitive deficits were indexed by scores on the Short Portable Mental Health Questionnaire 

(Pfeiffer, 1975)— a brief cognitive screening instrument that may be limited in diagnostic and 

clinical utility due to its low sensitivity and specificity (Malhotra et al., 2013). With respect to the 

latter, the authors noted that all study participants were frail but provided no summary measure of 

frailty levels at baseline or follow-up.  

The current research builds on this limited prior work by assembling longitudinal data from 

the National Alzheimer’s Coordinating Center (NACC) for two related clinical cohorts of older 

adults. Specifically, we included persons with a baseline diagnosis of amnestic mild cognitive 

impairment (aMCI; baseline n = 878) or Alzheimer’s disease (AD; baseline n = 2,196). We 

subsequently applied LTA to data for the entire study sample in order to examine two specific 

research aims: (a) detect underlying clusters of aging multi-morbidity across two measurement 

occasions and (b) examine patterns of frailty emergence and progression in relation to the two 

clinical cohorts. Regarding the latter, we tested baseline clinical cohort as a predictor of (a) 

baseline membership in the detected statuses and (b) the probability of transitioning across latent 

frailty statuses. We note that two data-driven analytic approaches would have been possible. We 

selected a full clinical cohort approach over a multiple-group (aMCI, AD) approach because a 

substantial subset of participants changed diagnosis across the study duration. In a typical multiple-

group LTA, the grouping variable does not vary across the study duration (Collins & Lanza, 2010). 
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However, in the present study, between Time 1 and Time 2, 64 (7.3%) participants with aMCI 

transitioned to cognitively normal and 366 (41.7%) participants transitioned to AD. This pattern is 

consistent with literature characterizing aMCI as a transitional (and potentially reversible) stage 

between normal cognitive aging and dementia (Fischer et al., 2007; Janoutová et al., 2015).  

We elected to exclude participants who were cognitively normal at baseline for two reasons. 

First, preliminary analyses indicated that cognitively normal participants in the NACC reported 

relatively low levels of frailty, and as such, we were unable to detect significant heterogeneity in 

frailty subtype emergence and progression. Second, previous studies that assembled multi-

morbidity data for a range of clinical cohorts and subsequently considered cognitive status as 

amongst one of the indicators of aging morbidity were unable to detect significant heterogeneity 

within cognitively impaired samples (Ng et al., 2019; Whitson et al., 2016). That is, participants 

with cognitive impairment or dementia tended to be classified into a single data-driven subtype. 

For example, Whitson et al. (2016) applied latent class analysis to 13 multi-morbidity indicators 

and identified six classes that were distinguished by which conditions had excess prevalence, 

including minimal disease, nonvascular, vascular, cardio-stroke-cancer, and very sick. 

Importantly, they also detected a major neurological disease class, which was characterized by an 

excess prevalence of AD, Parkinson’s disease, and related psychiatric disorders. The current study 

was designed to avoid detecting such a pattern in our data.   

 Interestingly, two recent studies assembled multi-morbidity data from the NACC, and each 

calculated a 45-item frailty index in order to examine how the risk for MCI and/or dementia varies 

according to the proportion of deficits accumulated at baseline (Ward et al., 2021a, 2021b). Results 

from the first study revealed that, amongst participants who were classified as cognitively normal 

at baseline, a higher degree of frailty predicted an increased risk for MCI (amnestic or non-
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amnestic; single-or multi-domain) or all-cause dementia at a 12-month follow-up (Ward et al., 

2021a). Amongst those who were classified as having MCI at baseline, a higher degree of frailty 

predicted an increased risk for dementia conversion and a lower probability of being reclassified as 

cognitively normal. In the second study, Ward and colleagues (2021b) examined whether frailty 

was differentially related to the risk for all-cause dementia amongst participants with a baseline 

diagnosis of aMCI as compared to non-aMCI (single- or multi-domain). Results indicated that, 

over a follow-up period ranging between 6 months to 14 years (median = 4.10 years), frailty 

predicted an increased risk for dementia development across both subtypes. However, this 

association was comparatively stronger for non-aMCI.   

A small number of cross-sectional studies have applied person-centered analytical 

approaches (e.g., cluster analysis or latent class analysis) to a database of multi-morbidity 

indicators in order to detect frailty subtypes across a range of normal cognitive aging, impairment, 

dementia (Bandelow et al., 2016; Looman et al., 2018; Majnarić et al., 2020) and the findings 

reported converge with earlier research (Lafortune et al., 2009). For example, Looman and 

colleagues distinguished the following six profiles that were ordered based on the pattern and 

severity of deficits accumulated at baseline: (a) relatively healthy, characterized by limited 

problems across domains; (b) mild physically frail, characterized by minor problems in the physical 

domain; (c) psychologically frail, characterized by physical impairments and mental health 

concerns; (d) severe physically frail, characterized by pronounced physical impairments; (e) 

medically frail, characterized by impairments in the physical, psychological, and social domain; 

and (f) multi-frail, characterized by severe deficits in the physical, psychological, functional, 

social, and cognitive domains. Importantly, dementia (0 = no self-reported history; 1 = self-

reported history) was included as amongst one of the indicators of aging morbidity considered in 
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this study. Post-hoc analyses revealed that participants classified as multi-frail had the highest 

dementia prevalence as well as the highest values on an independently calculated 45-item frailty 

index. More recent research reported that older adults with MCI had a greater likelihood of being 

classified into profiles characterized by a higher level of physical frailty as compared to cognitively 

normal older adults (Majnarić et al., 2020).  

The foregoing results suggest that cognitive impairment and frailty may co-exist and 

mutually interact (Godin et al., 2017). Nevertheless, to our knowledge, no studies have examined 

the association between cognitive status (or function) and frailty subtype emergence or 

progression. This is a priority area of research attention. A recent systematic review issued a call 

for future studies to examine patterns and predictors of frailty transitions amongst less-represented 

populations (Welstead et al., 2020), including cognitively impaired samples. Findings from this 

line of research have applications for precision interventions to better identify and treat older adults 

with aMCI or AD who may be at risk for adverse frailty transitions. Early and targeted 

interventions may not only reduce the risk for conversion from MCI to AD (Ward et al., 2021b), 

but also attenuate the rate of cognitive decline amongst older adults living with these clinical 

conditions (Buchman et al., 2007; Robertson et al., 2013).  

Importantly, following from the recommendations outlined in Welstead et al. (2020), we also 

tested non-modifiable (i.e., sex, Apolipoprotein E [APOE] ɛ4 allele carrier status, race/ethnicity, 

and chronological age) and potentially modifiable (i.e., global cognition, clinical cohort, and 

education) baseline risk characteristics as predictors of baseline membership and frailty transition 

patterns. Sex differences in frailty transitions are a topic of increased research interest (Chong et 

al., 2015; Etman et al., 2012; Hubbard, 2015; Kojima et al., 2019; Thompson et al., 2018; Welstead 

et al., 2020). A recent systematic review concluded that females consistently have higher levels of 
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frailty relative to same age males and yet they are better able to tolerate these deficits, as evidenced 

by their lower mortality rates at any given level of frailty (Gordon et al., 2017). Several biological, 

social, and behavioral mechanisms are posited to underlie this sex-frailty paradox (Hubbard, 2015; 

Hubbard & Rockwood, 2011). However, this pattern remains a fundamental paradox of aging 

(Blagosklonny, 2007). A small number of studies have examined whether the greater longevity of 

females may also be attributed to sex differences in the patterns and/or progression of multi-

domain deficit accumulation (Garre-Olmo et al., 2013; Lafortune et al., 2009; Zhang et al., 2020), 

but the results are inconsistent. Similarly, findings from the limited literature examining APOE-

frailty associations are equivocal. For example, one study found no evidence in support of APOE-

frailty associations (Rockwood et al., 2008), whereas more recent research reported that carriers 

of the ɛ4 risk allele were selectively sensitive to frailty effects on exacerbated memory decline 

(Thibeau et al., 2019). To our knowledge, no prior works have tested whether data-driven frailty 

subtype emergence and progression varies as a function of APOE ɛ4 carrier status. 

Notably, findings from related research examining racial/ethnic differences in aging multi-

morbidity suggest that this is a promising area of research attention (Liu et al., 2014). For example, 

Liang et al. (2009) identified three clusters of functional decline using person-centered analytical 

techniques (i.e., group-based semiparametric mixture models), including healthy functioning, 

moderate functional decrement, and large functional decrement. The authors reported that, relative 

to non-Hispanic Whites, Black/African American or Hispanic participants were more likely to be 

classified into the latter two clusters as compared to healthy functioning. Accordingly, in the 

present study we tested whether baseline status membership and progression varied for non-

Hispanic Whites as compared to Black/African Americans. Consistent with the approach 

undertaken in previous frailty-related research (Lafortune et al., 2009) and the prevailing literature 
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on potentially modifiable risk factors for adverse frailty trajectories (Welstead et al., 2020), we also 

tested chronological age, global cognition, and education as potential predictors of these outcomes.  

Research Goals  

The specific research goals (RG) of this study were as follows. For RG1, we applied LTA to 

data for the entire study sample in order to detect underlying statuses of aging multi-morbidity and 

to characterize patterns of frailty transitions. Our expectations for these results were two-fold. First, 

we anticipated that results from these analyses would reveal data-driven frailty statuses that were 

differentiated by the pattern and severity of deficits accumulated at baseline and follow-up 

(Lafortune et al., 2009). Second, we expected that results from the LTA would reveal significant 

heterogeneity in frailty progression such that subsets of participants would transition towards 

statuses representing a higher burden of frailty, others would show stability in frailty progression, 

and the remaining participants would transition towards statuses representing a lower frailty 

burden. For RG2, we sought to identify significant predictors of (a) baseline membership in the 

detected latent status and (b) frailty transition patterns. We predicted that clinical cohort (AD), 

APOE (ɛ4 carriers), race/ethnicity (Black/African American), chronological age (older), global 

cognition (poorer performance), and education (less years) would portend a worse prognosis for 

baseline status membership and progression. Whether our results would generalize (Bohn et al., 

2021) or vary (Hubbard & Rockwood, 2011) across sex was an empirical question. 

Methods 

NACC Dataset  

Data for this study were drawn from the Uniform Data Set (UDS) of the NACC. The UDS 

was implemented in 2005 by the National Institute on Aging Alzheimer Disease Centers (ADCs) 

program (Weintraub et al., 2018). To date, 39 ADCs across the United States have contributed 
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harmonized, large-scale, longitudinal data to the UDS with the overarching goal of advancing 

collaborative research on early detection, diagnosis, treatment, and prevention of age-related 

neurodegenerative disease. Clinical cohorts of older adults are recruited— primarily through 

convenience sampling methods— to the UDS and followed approximately annually. Cognitive 

status is determined by ADC clinicians based on prevailing diagnostic research criteria (Albert et 

al., 2011; McKhann et al., 2011; Sperling et al., 2011). Participants determined to have MCI or all-

cause dementia are subsequently evaluated for primary and contributing etiologic diagnoses 

(Besser et al., 2018). At each measurement occasion, participants are administered a 

comprehensive testing battery spanning demographic, clinical, neurological, neuropsychological, 

health, lifestyle, and functional domains (Beekly et al., 2007). Informed consent is provided at the 

individual ADCs, as approved by individual Institutional Review Boards (IRB). The University of 

Washington’s IRB approved the sharing of deidentified data from the UDS (Weintraub et al., 

2018). 

Participants 

We assembled data for all UDS visits conducted between January 2005 to March 2020. We 

selected for inclusion all three versions of the UDS testing battery (see Besser et al. (2018) for an 

overview of revisions undertaken between UDS Versions 1.0–3.0). As displayed in Figure 3-1, we 

developed firm rules of inclusion and exclusion and applied them to the full UDS (n = 42,661) in a 

series of data selection steps. We briefly summarize here the selection criteria we applied in 

assembling the dataset. We began by stipulating five fundamental requirements for our research 

sample, including: (a) timepoints (restricted to participants with a minimum of three waves); (b) 

follow-up (restricted to in-person visits); (c) inter-wave intervals (restricted to intervals within +/- 1 

SD from the mean); (d) age (restricted to > 53 years at baseline); and (e) clinical cohort (restricted 
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to participants classified at baseline as having MCI or dementia). We then disaggregated the 

sample by clinical cohort and applied the following exclusionary criteria across three measurement 

occasions: (a) cognitive impairment (restricted to single- or multi-domain aMCI) and (b) primary 

etiologic diagnosis (restricted to AD).  

We applied the following exclusionary criteria at baseline: (a) dementia severity (restricted to 

mild or moderate); (b) living situation (restricted to private residence or retirement community); (c) 

psychiatric disorders (restricted to participants without obsessive compulsive disorder, bipolar 

disorder, or schizophrenia); (d) traumatic brain injury (restricted to participants without a self-

reported history); and (e) race/ethnicity (restricted to non-Hispanic White or Black/African 

American). In Table 3-1, we present baseline descriptive and clinical characteristics for the final 

study sample (N = 3,074; 52% female; Mage = 74.70; range = 53 – 100 years; 91% non-Hispanic 

White).  

Measures  

 Multi-morbidity data. We identified 59 candidate multi-morbidity items (see Table 3-2) 

using three waves of data from the UDS. Data for these items were collected using self-report, 

clinician examinations, and formal tests with standardized scales. Items were recoded such that 

values ranged from 0 (no deficit present) to 1 (deficit was maximally expressed; Searle et al., 

2008). Prospective items were selected based on the following considerations. First, many of these 

indicators are harmonized with Study 1 of the dissertation research (Chapter 2; Bohn et al., 2021). 

For example, we assembled indicators related to mobility function, instrumental health, emotional 

well-being, comorbidities, cardiovascular symptoms, and physical activity. Due to unavailability in 

this dataset, we were unable to assemble indicators related to respiratory symptoms and diseases. 

Importantly, however, we assembled indicators related to systems of aging morbidity that were not 
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previously considered due to unavailability (e.g., nutritional status and deficiencies). Second, these 

items harmonize with those used in previous frailty-related research conducted (a) using data from 

the UDS (Ward et al., 2021a, 2021b) and (b) with cognitively impaired samples (Burt et al., 2019; 

Looman et al., 2018; Mitnitski et al., 2001; Rockwood et al., 2016; Wallace et al., 2019).  

Candidate multi-morbidity items were screened for eligibility using standard criteria (Searle 

et al., 2008). We subsequently removed 16 items that were deemed to be redundant, did not 

accumulate with age, or saturated too early. Data for the final set of 43 multi-morbidity items (see 

Table 3-3) were (a) submitted to an exploratory factor analysis (EFA; consistent with the approach 

undertaken in Bohn et al., 2021) and (b) separately used to calculate a cumulative 43-item frailty 

index. Values on the frailty index represent the proportion of deficits accumulated and can range 

between 0 (no deficits endorsed) and 1 (all deficits endorsed). Baseline descriptive statistics for the 

frailty index are presented in Table 3-1.  

Importantly, results from preliminary data-checking analyses conducted with the final set of 

multi-morbidity indicators revealed that there was limited change across many of the items from 

the first to second measurement occasion. We reasoned that this may be due in part to the relatively 

close spacing of the study intervals (M interval = 394.44 days; SD = 58.40), and as such, opted to 

perform our analyses using data from the first and third measurement occasion (hereafter referred 

to as Time 1 and 2, respectively; M interval = 780.01 days; SD = 78.88).  

Time 1 predictors. We assembled baseline data for clinical cohort (0 = aMCI; 1 = AD) and 

self-reported measures of sex (0 = male; 1 = female), race/ethnicity (0 = non-Hispanic White; 1 = 

Black/African American), chronological age (in years), and educational background (total number 

of years). Depending on the version of the neuropsychological testing battery completed at 

baseline, participants were administered either the Mini Mental State Examination (MMSE; 
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Folstein & Folstein, 1975) or the Montreal Cognitive Assessment (MoCA; Nasreddine et al., 2005) 

as a measure of global cognitive function. Participants completing the MoCA were assigned an 

equivalent score on the MMSE using published NACC conversion tables (Monsell et al., 2016). A 

subset of the study participants (n = 2,719) submitted blood samples to the NACC for genotyping. 

For these individuals, we assembled data pertaining to APOE ε4 allelic status (non-carrier = 0; 

carrier = 1). Because previous research indicates that the ε2 allele represents a protection factor and 

the ε4 allele represents a risk factor (McFall et al., 2015), participants with the ε2/ε4 genotype (n = 

70) were excluded from the corresponding prediction analyses. We present descriptive statistics for 

baseline risk characteristics in Table 3-1.   

Analytical Approach 

Analyses were conducted using Mplus 8.0 (Muthén & Muthén, 1998-2017). Missing data for 

the multi-morbidity items were assumed to be missing completely at random (i.e., item 

nonresponse; Little, 2013) and were handled using full-information maximum likelihood. This 

approach estimates model parameters and standard errors directly from the available data (Enders, 

2011; Little, 2013). A small number of participants were missing baseline data for global cognitive 

function (n = 75; 2.4%) or educational background (n = 7; 0.2%). We estimated these missing data 

using multiple imputations. This approach involves the following three steps: (a) plausible 

replacement values for missing predictor variables are imputed; (b) the analysis is conducted using 

multiple versions or replications of the imputed dataset; and (c) model parameters and standard 

errors are estimated by pooling results across the imputed datasets (Enders, 2011). In accordance 

with prevailing conventions (Enders, 2011; Little, 2013) and previous VLS research (Bohn et al., 

2020), we generated 20 imputations of the dataset and pooled these for all prediction analyses. 
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 Exploratory and confirmatory factor analysis. Time 1 multi-morbidity data were 

submitted to an EFA in order to (a) reduce the total number of items for estimation feasibility in the 

LTA and (b) identify salient domains of aging morbidity. We performed these analyses using data 

for a random subset (i.e., 50%) of the overall study sample. Decisions regarding the number of 

factors (or frailty-related domains) and indicators to retain were made in accordance with best-

practices literature (Costello & Osborne, 2005; Muthén & Muthén, 2009). We verified that this 

latent structure fit the data at Time 1 and Time 2 (separately) by applying confirmatory factor 

analysis (CFA) to (a) data for the remaining subset of participants not used in the EFA and (b) data 

for the entire study sample. Model fit was determined using the following standard indices: (a) chi-

square, for which a good fit would produce a non-significant result (i.e., p  > .05; indicates that the 

data do not significantly differ from model-based estimates); (b) the comparative fit index, for 

which fit is judged by a value of  ≥ .95 as good and ≥ .90 as adequate; (c) root mean square error of 

approximation, for which fit is judged by a value of ≤ .05 as good and ≤ .08 as adequate, and (d) 

Tucker-Lewis Index, for which fit is judged by a value of  ≥ .95 as good and ≥ .90 as adequate 

(Little, 2013). The resulting factors (or domains of aging morbidity) were interpreted using 

previous research. The proportion of deficits accumulated in each domain, at each time point, was 

subsequently calculated for each participant and used as continuous observed indicators in the 

LTA. Values could range between 0 and 1, with higher values denoting greater impairment.  

Latent transition analysis. The LTA was conducted in four sequential phases. In the first 

phase, we performed a separate LPA at each time point (Connell et al., 2008). This entailed fitting 

a sequence of models with varying numbers of latent statuses (e.g., 1, 2, 3). As before (Bohn et al., 

2021), we determined the optimal number of latent statuses by considering interpretability of the 

model results, together with the following model parameters, tests, and fit indices (Masyn, 2012): 
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(a) log-likelihood value (LL); (b) number of parameters estimated; (c) Bayesian Information 

Criterion (BIC); (d) sample-size adjusted BIC (SABIC); (e) Akaike Information Criterion (AIC); 

(f) adjusted Lo-Mendell-Rubin likelihood ratio test (LMR-LRT); and (g) adjusted Vuong-Lo-

Mendell-Rubin likelihood ratio test (VLMR-LRT). Lower values of BIC, SABIC, and AIC denote 

better fit. The LMR-LRT and VLMR-LRT test the current model (k) against the model with one 

less latent status (k-1) and are interpreted such that a non-significant p-value supports selecting the 

k-1 model (Nylund-Gibson & Choi, 2018). Entropy was not used for model selection, but rather to 

infer the accuracy with which participants were classified into the latent statuses (ranges between 0 

– 1; higher values denote better classification accuracy). Consistent with Study 1 (Bohn et al., 

2021), we used 5000 multiple starting values in order to avoid local maxima. Indicators were 

allowed to covary within status, while the variances-covariances were constrained to be equal 

across statuses (i.e., class invariant-unrestricted structure). Preliminary analyses indicated that this 

variance-covariance structure provided the best fit to the data (as compared to alternative models 

that allowed free estimation of variance-covariance structures across latent statuses).  

In the second phase, we examined longitudinal measurement invariance of the latent statuses. 

This involves conducting the following sequence of similarity tests (Morin et al., 2016; Morin & 

Litalien, 2017): (a) configural similarity, which tests whether the same number of latent statuses 

based on the same indicators can be identified over time; (b) structural similarity, which tests 

whether within-status means are the same over time; (c) dispersion similarity, which tests whether 

within-status variances are the same over time; and (d) distributional similarity, which tests 

whether the relative size of the statuses is the same over time. Importantly, only structural 

invariance is required to proceed with subsequent steps in the LTA (Morin et al., 2016). 

Constraining model estimated means to be equal over time facilitates model identification by (a) 
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reducing the number of parameters that must be estimated and (b) ensures that the meaning or 

substantive interpretation of the latent statuses remains constant across the study duration (Collins 

& Lanza, 2010). We tested the tenability of invariance assumptions by comparing models with 

unconstrained and constrained parameters using -2 LL difference statistic (Collins & Lanza, 2010). 

The most similar unconditional LTA model was retained and interpreted.  

As in Study 1 (Bohn et al., 2021), latent statuses were interpreted using an adapted formula 

for Cohen’s d. This formula is used to (a) calculate standardized mean differences across latent 

statuses in the observed indicators and (b) facilitate assigning qualitative labels to the detected 

latent statuses. Standardized mean differences > 2.0 indicate a less than 20% overlap in status-

specific distributions and a high degree of separation on the associated indicator, whereas values < 

0.85 indicate more than 50% overlap and a low degree of separation on the associated indicator. 

Standardized mean differences > 1.5 are often used to interpret and subsequently assign qualitative 

labels to the detected latent statuses (Masyn, 2012).  

In the third phase, we examined patterns of frailty transitions. To do this, we first assigned 

participants into their most likely latent status at each time point based on estimated posterior 

probabilities. This approach accords with previous developmental research (Bray et al., 2015; 

Nylund-Gibson et al., 2014; Seaton et al., 2012; Wong et al., 2012) and has the advantage of 

allowing researchers to treat latent status membership as an observed variable within a larger and 

more complex model of empirical interest (Bray et al., 2015; Clark & Muthén, 2009). This 

approach is suitable for use in mixture models that are characterized by high entropy (> .80) and 

large sample sizes (Asparouhov & Muthén, 2014; Clark & Muthén, 2009). We subsequently 

calculated a 2 x 4 matrix of transition probabilities from Time 1 to Time 2 (Lanza et al., 2010; 
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Lanza & Collins, 2008). These values reflect the probability of being in a given status at Time 2, 

conditional on being in a given status at Time 1.  

In the fourth phase, we performed prediction analyses in two sequential stages. In stage one, 

we sought to identify significant predictors of Time 1 latent status membership using multinomial 

logistic regression. As noted above, only a subset of participants had data available for APOE ε4 

allelic status. Rather than impute these data (published attempts to recover missing genes across an 

entire dataset remain limited; Bobak et al., 2020), we opted to perform two multinomial logistic 

regressions— one with the entire study sample (APOE excluded) and the other with the genotyped 

subsample (APOE included together with the remaining predictors). For the latter analysis, we 

report only the results for APOE (and not the remaining predictors). In the second step, we aimed 

to identify significant predictors of the probability of transitioning across latent statuses using 

multinomial logistic regression. Consistent with previous research (Nylund-Gibson et al., 2014), 

we performed this analysis by regressing Time 2 latent status on (a) Time 1 latent status (results 

not reported below), (b) baseline risk characteristics (results not reported below), and (c) 

interaction terms that allowed for the transition probabilities to vary as a function of the considered 

predictors (results reported below). That is, the interaction terms allowed us to test whether Time 1 

predictors affected the probability of older adults transitioning across the data-driven frailty 

statuses. We performed these analyses first for the entire study sample (excluding APOE) and then 

for the genotyped subsample (APOE included together with the remaining predictors). For the 

latter analysis, we report only the results for APOE.  

Results 

Foundational analyses: Exploratory and confirmatory factor analysis  



DATA-DRIVEN APPROACHES TO FRAILTY AND RISK PREDICTION 
 

69 

The EFA revealed five latent factors that accounted for associations amongst the 43 multi-

morbidity indicators. Consistent with previous research (Bohn et al., 2021; Cummings, 1997; 

Kamaruzzaman et al., 2010; Lafortune et al., 2009; Montero-Odasso et al., 2009; Sadiq et al., 2018; 

Yesavage & Sheikh, 1986), we labeled these factors according to the items loading on them. 

Specifically, the observed domains of frailty included: (a) ambulatory ability (e.g., bowel 

incontinence; slowing of motor movements; total n indicators = 5), (b) emotional wellbeing (e.g., 

satisfied with life; often feel helpless; total n indicators = 5), (c) behavioral disturbances (e.g., 

disinhibition; nighttime behaviors; total n indicators = 9), (d) instrumental health (e.g., difficulty 

traveling in neighbourhood; difficulty shopping alone; total n indicators = 10), and (e) 

cardiovascular symptoms (e.g., hypercholesterolemia; diabetes; total n indicators = 4). We present 

the EFA derived domains together with the corresponding indicators in Table 3-4.  

Results from the CFA conducted with (a) the subset of the data not used in the EFA and (b) 

the entire study sample showed adequate model fit at both time points (see Table 3-5 for model fit 

indices). We note that model fit at each time point could have been strengthened by correlating 

indicators with similar methodology (e.g., multi-morbidity indicators drawn from the same scale; 

Little, 2013). However, because we are not estimating factor scores at each time point but rather 

calculating the proportion of deficits accumulated using observed data, we report model fit indices 

for the most restrictive CFA model (i.e., the null model, which assumes that model indicators are 

not correlated). Importantly, all indicators had strong loadings on the corresponding latent 

construct. We display the CFA model applied to data for the entire study sample at both time points 

in Figures 3-2 and 3-3.  

RG1: Latent transition analysis  
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 Step 1: LPA conducted at each time point. We present results from the LPA conducted at 

each time point in Table 3-6. Findings indicated that AIC, BIC, and SABIC all steadily decreased 

as the number of latent profiles increased at Time 1, indicating that model fit improved with the 

addition of each latent profile. The adjusted LMR-LRT (p = .11) and VLMR-LRT (p = .11) 

suggested that the three-profile solution did not provide a better fit to the data relative to the two-

profile solution. Further, participants in the latter solution were classified into the profiles with a 

high degree of precision (entropy = 0.99). We therefore selected the two-profile solution as the 

final model at this time point. Results for Time 2 indicated that AIC, BIC, and SABIC all steadily 

decreased with the addition of each successive latent profile. The adjusted LMR-LRT (p = 1.0) and 

VLMR-LRT (p = 1.0) indicated that the five-profile solution did not provide a better fit to the data 

relative to the four-profile solution. Because participants in the latter solution were also classified 

into the profiles with a high degree of precision (entropy = 0.91), we selected the four-profile 

solution as the final model at this time point. 

Step 2: Longitudinal measurement invariance and status interpretations. Findings from the 

longitudinal measurement invariance tests are presented in Table 3-7. Because results from the 

LPA conducted at each time point indicated that a different number of latent profiles provided the 

best fit to the data, our findings did not support configural or distributional invariance (no formal 

tests were required). This pattern of results is often expected in developmental and aging research 

(Collins & Lanza, 2010). We subsequently tested for structural invariance by estimating two 

models. In the first model, within-status indicator means were free to vary across time. In the 

second model, indicator means of the two latent statuses detected at Time 1 were constrained to be 

equal to two of the latent statuses detected at Time 2. As highlighted in Table 3-7, these constraints 

significantly improved model fit. We subsequently tested for distributional invariance in a third 
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model. This model was identical to the second model, with the exception that within-status 

variances were also constrained to equality across time. Model fit significantly worsened with the 

addition of these constraints. As such, we selected the second model as the final unconditional 

LTA model.  

Model estimated indicator means for the final solution are depicted in Figure 3-4. 

Standardized mean differences are presented in Table 3-8. These values collectively formed the 

basis for interpreting and labeling the frailty statuses. At Time 1, we interpreted the data-driven 

frailty statuses as Not-Clinically Frail (n = 2,790; 91%) and Moderately Frail (n = 284; 9%). At 

Time 2, we again detected the Not-Clinically Frail (n = 1,714; 56%) and Moderately Frail statuses 

(n = 571; 19%). However, we also identified two novel and complementary frailty statuses that we 

interpreted as Mildly Frail (n = 654; 21%) and Severely Frail (n = 153; 4%). The rationales behind 

the foregoing interpretations are as follows. At both time points, the Not-Clinically Frail status was 

characterized by comparatively lower levels of impairment across domains of aging morbidity. 

Although the standardized mean differences outlined in Table 3-8 do not all show a high degree of 

class separation, the general pattern is consistent with our interpretation that Not-Clinically Frail 

participants endorsed the lowest level of aging morbidity features. Further, participants classified 

into this status had lower baseline values on the independently calculated 43-item frailty index (M 

= 0.22; SD = 0.12) relative to Moderately Frail participants (M = 0.37; SD = 0.13; t(3,035) = -

19.17, p < .001). This pattern persisted at Time 2, such that Not-Clinically Frail participants had 

the lowest frailty index values (M = 0.26; SD = 0.13; F(3, 3,051) = 377.31, p < .001). The Mildly 

and Moderately Frail statuses were largely ordered along a continuum representing an increasing 

proportion of deficits accumulated— particularly in terms of ambulatory ability— and successively 

higher values on the frailty index (MMild = 0.33; SD = 0.14; MModerate= 0.43; SD = 0.14). The 
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Severely Frail status was characterized by pronounced deficits in ambulatory ability and 

instrumental health, as well as the highest values on the frailty index (M = 0.55; SD = 0.14). In 

Table 3-9, we present baseline descriptive statistics disaggregated by latent status membership.  

Step 3: Transition probabilities. Unconditional latent transition probabilities are presented in 

in Table 3-10. These values collectively represent patterns of change for all members in a given 

frailty status from the first to second measurement occasion (i.e., collapsing across the risk 

characteristics reported below for RG2). Findings indicated that older adults who were Not-

Clinically Frail at Time 1 had a 0.61 probability of remaining in this status at Time 2. Put 

differently, 61% of the Not-Clinically Frail participants remained stable in their status membership 

over time. Of the Not-Clinically Frail participants who transitioned, the most common trajectory 

was towards the Mildly Frail status (0.21). Not-Clinically Frail participants were comparatively 

less likely to transition towards the Moderately Frail status (0.15) and very unlikely to progress 

towards the Severely Frail status (0.03). Conversely, the latter two transition patterns were amongst 

the most common for participants who were Moderately Frail. Specifically, results indicated that 

55% and 21% of these participants remained Moderately Frail or progressed towards the Severely 

Frail status, respectively. Notably, a subset of Moderately Frail participants reverted to the Mildly 

Frail (0.17) or Not-Clinically Frail (0.07) status at Time 2. We tested and confirmed in a series of 

follow-up analyses (results not shown) that these transition probabilities differed significantly (a) 

across baseline frailty statuses and (b) within baseline frailty statuses.  

RG2: Prediction of baseline membership and transition probabilities  

Step 1: Predicting baseline status membership. We present odds ratios ([OR]; exponentiated 

logistic regression coefficients) from the multinomial logistic regression predicting baseline status 

membership in Table 3-11. These values represent the conditional effect of each predictor on the 



DATA-DRIVEN APPROACHES TO FRAILTY AND RISK PREDICTION 
 

73 

likelihood of being classified into the Moderately Frail as compared to Not-Clinically Frail status. 

OR larger than 1.0 denote an increased risk for the former status, whereas OR less than 1.0 denote 

a reduced risk. Results indicated that older age (1.08) and a baseline diagnosis of AD (OR = 1.79) 

increased risk for being classified as Moderately Frail, while female sex (OR = 0.75) and better 

global cognitive function (OR = 0.97) predicted a reduced risk. Race/ethnicity, educational 

background, and APOE ε4 carrier status did not yield significant results.  

Step 2: Predicting latent transition probabilities. Our results indicated that select transition 

probabilities varied as a function of race/ethnicity, age, and APOE carrier status. Significant 

interactions were probed by (a) stratifying the sample by Time 1 status (i.e., Not-Clinically Frail 

and Moderately Frail) and (b) examining the independent effect of race/ethnicity, age, and APOE. 

Importantly, results for race/ethnicity were no longer significant when we performed prediction 

analyses stratified by Time 1 status. That is, transition probabilities for Not-Clinically Frail and 

Moderately Frail participants did not vary as a function of racial/ethnic background. We attribute 

this finding to the relatively small proportion of participants who were Black/African American, 

which may have reduced power to detect significant differences. Specifically, 9% of the Not-

Clinically Frail participants (n = 259) and 12% of the participants with Moderately Frail 

participants (n = 33) at Time 1 were Black/African American.  

Results for chronological age and APOE remained significant in stratification analyses. With 

respect to the former, we found that older age predicted an increased likelihood of Not-Clinically 

Frail participants progressing towards the Mildly Frail status (OR = 1.05; 95% CI = 1.04, 1.06) as 

compared to remaining Not-Clinically Frail. Conversely, age was unrelated to the likelihood of 

Moderately Frail participants reverting to the Mildly Frail as compared to Not-Clinically Frail 

status (OR = 0.98; p = 0.46). With respect to APOE, we found that Not-Clinically Frail participants 
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who carried the risk allele were less likely to progress towards the Mildly Frail (OR = .0.81; 95% 

CI = 0.68, 0.96) or Moderately Frail statuses (OR = 0.62; 95% CI = 0.51, 0.75) as compared to 

remaining Not-Clinically Frail. In contrast, Moderately Frail participants who carried the risk allele 

were more likely to revert to the Mildly Frail status as compared to (a) transitioning to the Not-

Clinically Frail status (OR = 8.17; 95% CI = 2.71, 24.33) or (b) remaining Moderately Frail (OR = 

2.85; 95% CI = 1.51, 5.38).  

Given the relatively small number of significant interaction terms, we decided to conduct a 

follow-up multinomial logistic regression in which we regressed Time 2 latent statuses on baseline 

risk characteristics. For this analysis, we specified the Not-Clinically Frail status as the reference 

group. We do not report results for (a) the impact of chronological age on the likelihood of being 

classified as Mildly Frail or (b) the impact of APOE on the likelihood of being classified as 

Moderately or Mildly Frail, given that these effects varied across baseline statuses (as outlined in 

the preceding paragraph). As reported in Table 3-11, sex, education, age, clinical cohort, and global 

cognition were differentially related to the likelihood of being classified as Mildly Frail, 

Moderately Frail, or Severely Frail as compared to Not-Clinically Frail. Specifically, female sex 

(OR = 1.24) and a baseline diagnosis of AD (OR = 1.56) increased risk for classification as Mildly 

Frail. Older age (OR = 1.08), AD (OR = 2.22), poorer global cognitive function (OR = 0.94), and 

increasing education (OR = 1.04) increased risk for the Moderately Frail status. Finally, older age 

(OR = 1.08), AD (OR = 2.16), and poorer global cognition (OR = 0.88) increased risk for being 

classified as Severely Frail.  

Discussion 

The current study assembled baseline and 2-year follow-up multi-morbidity data from the 

NACC for a sample of 3,074 older adults with a baseline diagnosis of aMCI or AD. We 
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subsequently applied data-driven, data-reduction techniques to these indicators and identified the 

following frailty-related domains of aging morbidity: ambulatory ability, emotional well-being, 

behavioral disturbances, instrumental health, and cardiovascular symptoms. The proportion of 

deficits accumulated in each domain (at both time points) was calculated for each participant and 

used as continuous observed indicators in latent transition analysis (LTA)— a longitudinal 

extension of latent profile/class analysis that can model change in latent classifications over time. 

This analytical approach represents a promising alternative to conventional methods for modeling 

heterogeneity in frailty emergence and progression (e.g., latent growth curve analysis) as it allows 

researchers to (a) identify distinct clusters of aging morbidity across multiple measurement 

occasions, (b) determine whether certain statuses may portend a poorer prognosis for frailty 

progression, and (c) identify risk characteristics that predict baseline status membership and 

patterns of frailty transitions. Despite these advantages, limited longitudinal epidemiological 

research has leveraged LTA to examine these research aims, particularly with cognitively impaired 

samples, and several recent reviews have issued a call for increased systematic research on this 

topic (Kojima et al., 2019; Rohrmann, 2020; Welstead et al., 2020). The current study was 

designed to fill these gaps.  

RG1: Latent transition analysis   

We distinguished two mutually exclusive baseline frailty statuses including the predominant 

Not-Clinically Frail (n = 2,790; 91%) and a smaller Moderately Frail (n = 284; 9%) subgroup. At 

Time 2, we again detected the Not-Clinically Frail (n = 1,714; 56%) and Moderately Frail (n = 571; 

19%) statuses, but at this later time point we also detected two additional statuses representing 

participants who were Mildly Frail (n = 654; 21%) and those who were Severely Frail (n = 135; 

4%). This expansion of frailty classifications (from moderate only to mild, moderate, and severe) 



DATA-DRIVEN APPROACHES TO FRAILTY AND RISK PREDICTION 
 

76 

and accumulation of frailty groups (from 1 to 3 and from 9% to 44% of the sample) in the 2-year 

interval between the first and second measurement occasion clearly reflects the net progression of 

study participants towards a higher frailty burden in a relatively brief period. Notably, the Not-

Clinically Frail status had the highest prevalence at both time points and was over 50% at the 

second occasion. This observation of substantial stability in non-frail status accords with previous 

cross-sectional research conducted with cognitively normal older adults (Bohn et al., 2021; Liu et 

al., 2017; Looman et al., 2018; Olaya et al., 2017; Sadiq et al., 2018) and adds to the growing 

literature suggesting that frailty and cognitive impairment are related concepts that mutually 

interact but may not inevitably co-occur (Burt et al., 2019; Kojima et al., 2017; Robertson et al., 

2013). In the current study, Not-Clinically Frail participants were characterized by comparatively 

less impairment across the observed indicators and the lowest values on an independently 

calculated 43-item frailty index, whereas participants who were Mildly or Moderately Frail 

endorsed successively higher levels of aging morbidity, particularly in terms of ambulatory ability, 

and progressively higher values on the frailty index. The Severely Frail status was characterized by 

pronounced ambulatory impairment and a tendency for poorer instrumental health. Further, these 

participants demonstrated the highest burden of frailty on the 43-item index.  

Our finding that the detected latent statuses were largely ordered along a continuum 

representing successively higher levels of ambulatory impairment converges with previous work 

identifying mobility deficits as a defining characteristic of data-driven frailty profiles or statuses 

(Bohn et al., 2021; Chhetri et al., 2017; Liu et al., 2017; Sarksian et al., 2008; Sourial et al., 2012). 

For example, results from the LTA conducted by Lafortune and colleagues (2009) revealed that 

older adults who were classified as relatively healthy endorsed the lowest levels of accumulated 

aging multi-morbidity whereas the remaining statuses were differentiated according to the severity 
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of deficits accumulated in the cognitive domain, mobility disability, and impairment in 

instrumental health. Similarly, in Study 1 of the dissertation research (Bohn et al., 2021), we 

applied latent profile analysis to cross-sectional multi-morbidity data for a large sample of 

cognitively normal older adults and reported that participants with mobility-type frailty differed 

from participants who were not-clinically frail in that they experienced pronounced mobility 

impairment and higher values on a 50-item frailty index. The current study extends these results by 

detecting similarly nuanced longitudinal frailty statuses in clinical cohorts of older adults with a 

baseline diagnosis of aMCI or AD. Taken together, the foregoing pattern of results suggest that 

mobility impairment— or more broadly, ambulatory impairment, which represents the extent to 

which an individual is able to walk unassisted— is a critical component of differentiable frailty 

subtypes across the spectrum of normal cognitive aging, impairment, and dementia.  

Notably, findings from recent cross-sectional research bolsters this claim. Specifically, Yuan 

et al. (2021) applied multiple-group latent class analysis to baseline multi-morbidity data for 

871,801 nursing home residents with normal cognition, MCI, AD, or non-AD dementia. The 

considered indicators (n = 7) were drawn from the FRAIL-NH scale (Theou et al., 2016), which 

includes markers related to fatigue, resistance, ambulation, incontinence, weight loss, nutritional 

status, and help with getting dressed. Findings showed that, for each cohort, a three-class solution 

representing mild physical frailty, moderate physical frailty, and severe physical frailty provided 

the best fit to the data. Convergent with present study, participants classified as having moderate or 

severe physical frailty reported greater mobility dysfunction (e.g., needing physical assistance to 

transfer between locations in the nursing home) as compared to participants with mild physical 

frailty. Further, participants with severe physical frailty were more likely to report both urinary and 

bowel incontinence relative to participants with moderate physical frailty. It is interesting that the 
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class distinctions and subsequent interpretations reported in Yuan et al. overlap with our own, 

given that we assembled longitudinal data for wider range of domains of aging morbidity. That is, 

although we also considered the proportion of deficits participants had accumulated in emotional, 

behavioral, and cardiovascular domains, these systems did not emerge as defining characteristics of 

the data-driven frailty statuses. Notably, a similar pattern was detected in Study 1 (Bohn et al., 

2021), in that frailty profiles were not differentiated based on the pattern and severity of deficits 

accumulated in emotional well-being, comorbidity, and cardiac symptoms. A potential explanation 

for these findings is that— because mobility relies on multiple systems working together in a 

coordinated and integrated fashion (e.g., musculoskeletal, nervous, cardiovascular, and sensorial 

systems)— deficits in this domain may account for numerous medical conditions or comorbidities 

(Montero-Odasso et al., 2009). For this reason, it has been suggested that mobility-related subtypes 

may better capture heterogeneity in the health status of frail older adults as compared to the 

proportion of deficits accumulated in related domains of aging morbidity (Montero-Odasso et al., 

2009). Future studies could examine the generalizability of these results across a wider range of 

frailty domains, clinical cohorts, and follow-up durations.  

As noted in our review, previous research indicates that frailty may be a dynamic process, 

characterized by multidirectional trajectories of frailty progression or recurrent transitions between 

frailty states over time (O’Caoimh et al., 2018; Rohrmann, 2020; Welstead et al., 2020). 

Importantly, however, the majority of these studies have examined frailty progression in 

cognitively normal older adults and employed the physical frailty phenotype (Fried et al., 2001) or 

frailty index (Mitnitski et al., 2001) as the operational definition of frailty. To our knowledge, this 

study is the first to distinguish and subsequently track longitudinal data-driven frailty statuses 

across a two-year study interval in a cognitively impaired sample. Our results indicated that, across 
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clinical cohorts, 61% of the participants who were classified as Not-Clinically Frail at baseline 

remained in this status at follow-up. Analogous findings were reported by Lafortune and colleagues 

(2009), in that 66% of the participants who were classified as relatively healthy at baseline 

remained in this status at the second measurement occasion. After stability, the most common 

transition pattern for Not-Clinically Frail participants in the current study was towards the 

neighbouring frailty status— Mildly Frail (21%). A relatively small proportion of Not-Clinically 

Frail participants transitioned towards statuses representing a marked increase in frailty burden, 

including Moderately (15%) or Severely Frail (4%). Conversely, the latter two transitions were 

amongst the most common for participants who were classified at baseline as Moderately Frail. 

Specifically, 55% of the participants who were classified as Moderately Frail at baseline remained 

in this status at follow-up and 21% progressed towards the status representing the highest frailty 

burden— Severely Frail. Similarly, Lafortune et al. reported that, of the participants who were 

classified as cognitively and physically impaired at baseline, 52% remained in this status at follow-

up and 25% died. Interestingly, our results indicated that a subset of Moderately Frail participants 

regressed to the Mildly (17%) or Not-Clinically Frail (7%) status, suggesting that reversion of 

frailty is possible in aging characterized by aMCI or AD. This is an important finding. Several 

recent reviews have highlighted that spontaneous clinical remission of frailty remains scarcely 

considered and identified this as a priority area (Canevelli et al., 2017; Ofori-Asenso et al., 2019). 

At least one other study examined progression of the physical frailty phenotype in a sample of 

community dwelling older adults with baseline diagnoses of MCI or AD and reported that, across a 

1-year study duration, 32% of the study sample evinced frailty regression (e.g., frail to pre-frail, 

pre-frail to robust; Chong et al., 2015). 



DATA-DRIVEN APPROACHES TO FRAILTY AND RISK PREDICTION 
 

80 

It is important to note, however, that while our results suggest that Moderately Frail 

cognitively impaired older adults may improve their frailty status (to Not-Clinically Frail or Mildly 

Frail), these transitions (a) were comparatively less likely than stability or forward progression and 

(b) were less likely for participants who were classified at baseline as Moderately versus Not-

Clinically Frail. Collectively, these results suggest that, once the disabling cascade of frailty is fully 

established, reversing or attenuating this process may become increasingly challenging (Canevelli 

et al., 2017). Similarly, longitudinal studies examining trajectories of disability or functional 

limitations have reported that individuals presenting with higher levels of baseline impairment have 

a decreased probability of recovery and an increased probability of decline or adverse outcomes 

(Kim et al., 2021; Zacarías-Pons et al., 2021). Together, these data highlight the potential 

importance of early interventions. Specifically, our results suggest that ambulatory impairment 

should be targeted and tracked in clinical and research settings. Future studies could examine 

whether rehabilitation and pharmacologic treatment targeting these deficits may offset, reverse, or 

delay frailty progression and related negative outcomes (Apóstolo et al., 2018).  

Consistent with the present study, accumulating evidence suggests that mobility impairment 

may represent a harbinger of adverse frailty transitions or trajectories. For example, Fallah and 

colleagues (2011) reported that the probability of transitioning between frailty states over time was 

predicted by performance on a rapid gait test, such that participants with poorer mobility function 

were less to remain stable or improve at 18-month, 36-month, and 54-month follow-up as 

compared to participants with better mobility function. More recently, Vergehese et al. (2021) 

assembled longitudinal data for a 41-item frailty index and distinguished the following trajectories 

in a sample of cognitively normal older adults: relatively stable, mild frailty, moderate frailty, and 

severely frail. Of relevance to the current research, each of the respective trajectories were 
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characterized by successively higher levels of baseline impairment in completing a timed walk 

task, leading the authors to suggest that future examinations of risk and prognostic factors for 

frailty progression should incorporate mobility indicators. Towards this end, in Study 1 (Bohn et 

al., 2021) we demonstrated that older adults with mobility-type frailty evinced more rapid and 

widespread deficit accumulation as compared to older adults without such recorded deficits. 

Similarly, Montero-Odasso and colleagues (2009) assembled baseline mobility indicators (n = 11) 

for a large sample of frail older adults and distinguished three profiles representing mild, moderate, 

and severe mobility impairment. These profiles were subsequently validated against prediction of 

adverse frailty-related outcomes. Results indicated that older adults with severe mobility 

impairment were approximately two to three times as likely to die or be placed in a nursing home, 

respectively, as compared to older adults with mild or moderate mobility impairment. These 

associations remained significant after adjusting for age, sex, clinical cohort (self-reported memory 

impairment or dementia), disability in activities of daily living, and medical comorbidities. Further, 

follow-up analyses verified that mobility profiles were stronger predictors of adverse outcomes as 

compared to single indicators. We advance this prior work by (a) modeling progression of data-

driven frailty statuses characterized by varying levels of ambulatory impairment and (b) identifying 

predictors that may elevate risk for classification into statuses characterized by a higher frailty 

burden or worse transition patterns.  

RG2: Prediction of baseline membership and transition probabilities  

We characterized and validated the detected latent statuses by examining non-modifiable and 

potentially modifiable risk factors as predictors of (a) baseline membership and (b) the probability 

of transitioning across frailty statuses. Results from the former analysis revealed that sex, age, 

clinical cohort, and global cognition were associated with baseline frailty classifications. In 
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contrast to our expectations, findings from the latter analysis revealed that only a small number of 

frailty transitions varied as a function of the considered predictors, including age and APOE carrier 

status. Although these null results are consistent with the literature on LTA (e.g., Collins & Lanza, 

2010) and previous studies employing this analytical approach (e.g., Ryoo et al., 2018), for now, 

we note this as a potential study limitation. Specifically, it is possible that for the present frailty 

phenomena, the predictors we selected on the basis of previous literature and availability in the 

NACC database were not in fact among the controlling factors. Accordingly, in future analyses, we 

plan to re-review the NACC database and identify candidate risk and protection factors that may be 

differentially associated with frailty progression. For example, because ambulation is a complex 

process that requires intact function and coordination between multiple aging systems, including 

neuropsychological (e.g., attention, executive function), sensorial, cardiopulmonary, and 

musculoskeletal systems (Chhetri et al., 2017; Montero-Odasso et al., 2009), we will look for 

variables representing these domains. Further, following from previous research suggesting that 

impaired mobility and cognitive function may share common risk factors and pathways, including 

chronic inflammation, hormonal dysregulation, nutritional deficiencies, and reduced physical 

activity (see Chhetri et al., 2017 for a review), we will also examine the NACC database for 

indicators representing these domains. In the interim, we conducted a follow-up analysis in which 

we examined baseline risk characteristics as predictors of latent status membership at Time 2. 

Consistent with the foregoing pattern of results, sex, age, clinical cohort, and global cognition 

differentiated Not-Clinically Frail participants from the remaining statuses. Findings for each of the 

respective predictors are discussed in turn below. Education played a minimal role in prediction 

analyses, with results indicating that higher levels increased odds for the Moderately Frail as 

compared to Not-Clinically Frail status. Given the unexpected direction of this effect (Chang et al., 
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2013; Welstead et al., 2020; Zacarías-Pons et al., 2021) and the fact that educational background is 

often not considered in relation to data-driven frailty profiles (Bohn et al., 2021; Lafortune et al., 

2009; Yuan et al., 2021), we plan to statistically control for education in future analyses (Chong et 

al., 2015; Verghese et al., 2021). 

With respect to sex, our results indicated that, at baseline, females were more likely to be 

classified as Not-Clinically Frail and males were more likely to be classified as Moderately Frail. 

This pattern runs in contrast to Study 1 findings (Bohn et al., 2021), where we reported that sex 

was equally related to the likelihood of being classified into data-driven frailty profiles. 

Importantly, we reasoned that sex differences may be more likely to appear in later life or in more 

serious frailty conditions. Findings from the current study and Lafortune et al. (2009) buttress this 

notion. Specifically, NACC participants were comparatively older (NACC Mage = 74.70; VLS 

Mage = 70.61) and frailer (NACC frailty index M = 0.23; VLS frailty index mean = 0.13) than 

Study 1 participants. Similarly, Lafortune and colleagues characterized their study sample as frail 

old-old adults (Mage = 82 years) and reported that females were more likely to be classified as 

relatively healthy at baseline and males were more likely to be classified into a latent status 

characterized by mobility and functional limitations. Further, the authors reported descriptive 

differences in latent transition probabilities across sex (i.e., no significance tests were reported), 

such that males were more likely to remain stable and females were more likely to transition 

towards frailty statuses representing a higher level of impairment. Although we did not find that 

latent transition probabilities varied significantly across sex, results from our follow-up analysis are 

generally consistent with the preceding pattern. Specifically, we found that (a) the odds of being 

classified as Mildly Frail were greater for females as compared to males and (b) sex was equally 

related to the likelihood of being classified as Moderately or Severely Frail. The latter finding 
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indicated that female sex was no longer a protection factor and implied that females may have had 

a general tendency to advance towards statuses characterized by a higher frailty burden. Relatively 

limited research has examined sex differences in frailty subtype membership or progression and the 

findings reported are equivocal (Garre-Olmo et al., 2013; Lafortune et al., 2009; Looman et al., 

2018; Yuan et al., 2021; Zhang et al., 2020). Similarly, recent systematic reviews have highlighted 

that the sparse literature examining sex differences in frailty index or phenotype progression have 

reported inconsistent findings (Kojima et al., 2019; O’Caoimh et al., 2018; Welstead et al., 2020). 

As such, we identify this as an important area of continued research interest (Thibeau et al., 2019).  

Results for chronological age were consistent with previous variable-centered (Kojima et al., 

2019; O’Caoimh et al., 2018; Welstead et al., 2020) and person-centered (Bandelow et al., 2016; 

Lafortune et al., 2009; Liu et al., 2017; Sadiq et al., 2018; Tomás et al., 2020) research identifying 

older age as a risk factor for frailty, including classification into data-driven clusters characterized 

by greater impairment. For example, Yuan et al. (2021) reported that, across clinical cohorts of 

older adults with normal cognition, MCI, AD, and non-AD dementia, older age was associated 

with higher odds of belonging to the moderate or severe physical frailty classes as compared to 

mild physical frailty. In our study, we found that older age increased risk for assignment into the 

Moderately or Severely Frail status at each time point. Notably, the effects of chronological age on 

the likelihood of transitioning to the Mildly as compared to Not-Clinically Frail status varied across 

baseline statuses. Specifically, amongst Not-Clinically Frail participants, older age increased the 

likelihood of progressing towards the Mildly Frail status. Conversely, age was unrelated to this 

transition probability for Moderately Frail participants. These differential effects suggest that, early 

in the clinical course of frailty, older age may exacerbate risk for frailty progression; however, in 

the moderate stages of frailty progression, younger age may not operate as a protection factor. 
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Because Lafortune and colleagues (2009) statistically controlled for the effects of age in their LTA, 

this study is the first to our knowledge to examine whether longitudinal frailty classifications vary 

as a function of this risk characteristic. Future studies are required to advance understanding of the 

impact of chronological age on data-driven frailty transitions.  

As expected, a baseline diagnosis of AD and poorer global cognitive function each increased 

the odds of being classified as Moderately Frail at the first measurement occasion. At follow-up, 

results indicated that participants who were classified as having AD at baseline were between 1.6–

2.2 times as likely as participants with aMCI to be characterized as Mildly, Moderately, or 

Severely Frail. A similar pattern was detected for global cognition, in that poorer performance 

increased risk for the Moderately or Severely Frail statuses. This study is the first to our knowledge 

to examine the conditional effects of clinical cohort and global cognitive function on data-driven 

frailty classifications. In contrast, much of the available research has operationalized cognitive 

status (or clinical cohort) using summary measures of global cognitive function (e.g., MMSE; 

Bandelow et al., 2016; Bekić et al., 2019; Majnarić et al., 2020), which may be limited in 

diagnostic and clinical utility due to low sensitivity and specificity (Arevalo-Rodriguez et al., 

2015). Of relevance to the present results, Yuan et al. (2021) collapsed across clinical cohort (i.e., 

normal, MCI, AD, non-AD dementia) and reported that successively higher levels of cognitive 

impairment (none/mild, moderate, and severe) increased risk for assignment into moderate or 

severe physical frailty classes. They did not report whether frailty classification varied as a 

function of baseline diagnoses. We advance this limited prior work by (a) demonstrating that 

clinical cohort and severity of cognitive impairment each increased risk for statuses representing a 

higher frailty burden and (b) suggesting that these indicators should be tested as dissociable 

features in future data-driven research.  
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We were initially surprised to find that latent transition probabilities did not vary as a 

function of the above-mentioned risk characteristics, given that previous studies have demonstrated 

that clinical cohort (Buchman et al., 2013, 2014; Trevisan et al., 2017) and global cognition (Lee et 

al., 2014; Mendonça et al., 2020; Nari et al., 2021) affect frailty transitions and trajectories. 

Notably, Chong and colleagues (2015) reported that frailty phenotype transitions did not vary 

across subgroups of older adults with MCI or AD, nor as a function of global cognitive 

performance. Importantly, however, when the sample was stratified on the basis of clinical cohort, 

results indicated that global cognition was unrelated to frailty progression in MCI, whereas 

declining global cognition predicted frailty progression in mild-to-moderate AD. These results 

suggest that significant predictor effects may be more likely to appear in subgroup analyses. 

Accordingly, we stratified the sample on the basis of clinical cohort (aMCI, AD), race/ethnicity 

(non-Hispanic White, Black/African American), and/or sex (male/female). For each stratification, 

we then performed a series of follow-up LTA in order to test whether the detected latent statuses 

and transition patterns varied as a function of these characteristics. Results indicated issues with 

model non-convergence and/or a lack of longitudinal measurement invariance. As such, we note 

this as both a potential study limitation and an important target for follow-up analyses (e.g., 

examine prediction patterns as stratified by sex).  

APOE ɛ4 carrier status was unrelated to frailty classifications at each time point. Importantly, 

however, examination of conditional latent transition probabilities indicated that a subset of APOE 

effects varied across baseline frailty statuses. Follow-up analyses indicated that (a) Not-Clinically 

Frail participants who carried the ɛ4 risk allele were more likely to remain in this status at follow-

up as compared to advancing towards the Mildly or Moderately Frail statuses and (b) Moderately 

Frail participants who carried the risk allele more likely to be reclassified as Mildly Frail as 
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compared to Not-Clinically Frail or remaining Moderately Frail. This pattern suggests that, early in 

the clinical course of frailty, carriers of the ɛ4 allele may be at a reduced risk for frailty status 

progression, whereas in the moderate stages of frailty, carriers of the ɛ4 allele may be more likely 

to experience frailty reversion. In the broader area of brain and cognitive aging, the ɛ4 allele is an 

established risk factor for exacerbated cognitive decline, MCI, and AD (Liu et al., 2013; Schiepers 

et al., 2012). Conversely, the literature examining APOE-frailty associations is sparse and the 

findings are equivocal (Bai et al., 2021; Rockwood et al., 2008; Thibeau et al., 2019; Ward et al., 

2021a). Nevertheless, at least one other frailty-related study indicated a possible protective effect 

of the ɛ4 allele (Kulminski et al., 2008). Specifically, Kulminski and colleagues analyzed sex-

specific associations between APOE isoforms and impairment in activities of daily living and 

reported that (a) female carriers of the ε4/ε4 allele had a five-fold decreased risk for severe 

impairment in activities of daily living as compared to non-carriers and (b) there were no ε4/ε4 

male carriers with disabilities. At present, the reasons for these associations remain unclear as does 

the generalizability of this pattern of results. These questions could be addressed in future studies.  

Strengths and limitations 

We acknowledge several methodological strengths and limitations. First, we used a 

substantial and well-characterized sample of participants from the NACC. Eligible study 

participants contributed longitudinal multi-morbidity data and were diagnosed at baseline as having 

aMCI or AD based on prevailing clinical diagnostic criteria (Albert et al., 2011; McKhann et al., 

2011; Sperling et al., 2011). By excluding participants who were cognitively normal at baseline, we 

were able to (a) avoid the simple clustering of participants into frailty statuses representing 

impaired cognitive function and (b) identify and track significant heterogeneity in frailty 

emergence and progression in a cognitively impaired sample. At the same time, we recognize that 
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our results may be limited in generalizability to cognitively normal older adults. Previous cross-

sectional research reported that data-driven frailty classes were invariant across clinical cohorts of 

older adults with normal cognition, MCI, AD, or non-AD dementia (Yuan et al., 2021). 

Nevertheless, we encourage future longitudinal epidemiological studies to explicitly test this 

research aim.  

 Second, we examined our central research questions using data-driven and person-centered 

analytical techniques. In our review, we identified only one other study that examined frailty 

emergence and progression using LTA (Lafortune et al., 2009). We advance this prior research by 

assembling longitudinal big data for a wider range of (a) clinical cohorts, (b) aging morbidity 

indicators, and (c) non-modifiable or potentially modifiable risk characteristics. Our results have 

applications to precision intervention and treatment protocols by advancing understanding of frailty 

statuses that may portend a poorer clinical prognosis and the types of characteristics that 

individuals comprising an at-risk frailty status may possess. We selected this analytical approach 

on the basis of literature indicating that LTA boasts several advantages over conventional 

approaches to detecting homogenous subgroups (e.g., cluster analysis) or modeling longitudinal 

change trajectories (e.g., latent growth curve analysis). With respect to the former, LTA provides 

(a) model-based participant classifications, (b) statistical diagnostic tools that elucidate the quality 

of participant classifications, and (c) information-theoretic indices that promote selection of the 

most parsimonious model (thus discouraging overfitting; Muthén & Muthén, 2000). Regarding the 

latter, LTA includes features that allow researchers to model multidimensional constructs (such a 

frailty; Clegg et al., 2013) and elucidate (a) multi-directional patterns of transitions and (b) the 

effect of predictor variables on membership and progression (Lanza & Collins, 2008). It is 

important to note, however, that we performed prediction analyses using participants’ most likely 
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latent status at each time point. A potential limitation of this approach is that it does not account for 

uncertainty (or error) in latent classifications. Nevertheless, the “classify-analyze” approach has 

demonstrated utility for modeling complex developmental constructs (Bray et al., 2015; Nylund-

Gibson et al., 2014; Seaton et al., 2012; Wong et al., 2012) and can be readily applied in LTA 

models characterized by large sample sizes and high classification accuracy (Asparouhov & 

Muthén, 2014; Clark & Muthén, 2009). The current study meets these criteria.   

Third, we assembled longitudinal data for multi-morbidity indicators representing the 

heterogeneity of frailty. This allowed us to distinguish nuanced frailty statuses across two 

measurement occasions and identify ambulatory impairment as a harbinger of adverse frailty 

transitions. We note, however, that the domains of aging morbidity considered in the current study 

do not span the full range deficits that an older adult may accumulate. For example, in Study 1 we 

also included respiratory symptoms and diseases and identified respiratory-type frailty as amongst 

one the three profiles representing early aging morbidity (Bohn et al., 2021). Due to unavailability, 

we were unable to consider such indicators in the present study. This is a recurring issue in frailty 

research. Much of the available literature on frailty transitions and trajectories have employed the 

physical frailty phenotype or frailty index as the operational definition of frailty (O’Caoimh et al., 

2018; Welstead et al., 2020). Notably, the former approach considers a restricted number of 

phenotypes, whereas the latter approach considers no phenotypes, but rather a composite score that 

may vary as a function of the considered indicators. Nevertheless, future work could explore 

whether inclusion of deficits not considered in the present research may elucidate frailty statuses 

and patterns of progression that diverge from those we report.   

Conclusions 
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In the current study, we identified and tracked data-driven frailty statuses representing 

varying levels of accumulated aging multi-morbidity in a large sample of cognitively impaired 

older adults, including Not-Clinically Frail, Mildly Frail, Moderately Frail, and Severely Frail. 

Whereas the former status was comprised of participants with relatively limited impairment across 

the considered domains of aging morbidity, the latter three statuses were comprised of individuals 

with successively higher levels of ambulatory impairment and frailty burdens. Latent transition 

analyses indicated that participants who were Not Clinically-frail at baseline had a high probability 

of remaining in relatively better health at a two-year follow-up. In contrast, participants who were 

classified as Moderately Frail at baseline had a high probability of endorsing moderate-to-high 

levels of impairment at follow-up and a comparatively lower likelihood of frailty reversion. 

Collectively, these results indicate that ambulatory impairment should be targeted and tracked in 

clinical-research settings. It is possible that early interventions targeting this domain of aging 

morbidity may offset or delay frailty emergence and progression. This question could be tested in 

future studies. Results from our prediction analyses highlighted that (a) select non-modifiable and 

potentially modifiable risk characteristics were associated with classifications into data-driven 

frailty statuses at each time point and (b) we need to re-examine the NACC database and conduct 

follow-up analyses in order to identify significant predictors of latent transition probabilities. In 

future studies, we plan to also examine the detected latent statuses as predictors of related 

outcomes, including falls, hospitalization, and institutionalization.  



DATA-DRIVEN APPROACHES TO FRAILTY AND RISK PREDICTION 
 

91 

Table 3-1. Participant Characteristics at Baseline  
 
Characteristic Total Sample aMCI AD Sig. 

n(%) 3,074 878 (29%) 2,196 (71%)  

Total n of in person visits 4.50 (1.77) 4.97 (1.97) 4.31 (1.65) *** 

Inter-wave interval (in days) 780.01 (78.88) 788.48 (79.69) 776.62 (78.32) *** 

n(%) female 1,603 (52%) 411 (47%) 1,192 (54%) *** 

Age (in years) 74.70 (8.69) 74.53 (7.52) 74.76 (9.12) ns 

Education (in years)  15.08 (3.37) 16.08 (3.12) 14.68 (3.37) *** 

n(%) non-Hispanic White 2,782 (91%) 802 (91%) 1,980 (90%) ns 

n(%) married  2,215 (72%) 639 (73%) 1,576 (72%) ns
 

n(%) in private residence 2,795 (91%) 806 (92%) 1,989 (91%) ns 

MMSE a 23.34 (4.73) 27.02 (2.41) 21.89 (4.63) *** 

Global CDR 0.79 (0.42) 0.50 (0.10) 0.91 (0.44) *** 

n(%) APOE ε4 b 1,536 (58%) 395 (53%) 1,141 (60%) ** 

Frailty Index 0.23 (0.12) 0.15 (0.09) 0.27 (0.12) *** 

Note. aMCI, amnestic mild cognitive impairment; AD, Alzheimer’s disease; Sig, significance; 

MMSE, Mini-Mental State Exam; CDR, Clinical Dementia Rating Scale; APOE, Apolipoprotein 

E. Results presented as mean (standard deviation) or n(%) of the sample with the associated 

characteristic. p-values are based on independent sample t-tests or chi-square tests, as appropriate. 

Scores on the CDR are interpreted such that 0 = no impairment, 0.5 = questionable impairment, 1 = 

mild impairment, 2 = moderate impairment. 3 = severe impairment. a A subset of each sample was 

administered the Montreal Cognitive Assessment (MoCA) in lieu of the MMSE; education-

adjusted scores on the MoCA were converted to an equivalent MMSE score using published 

conversion tables derived from the National Alzheimer’s Coordinating Center Uniform Data Set 

(Monsell et al., 2016). b Results are based on 746 participants with aMCI and 1,903 participants 

with AD who were genotyped.  

*** p < .001 ** p < .01 * p < .05   



DATA-DRIVEN APPROACHES TO FRAILTY AND RISK PREDICTION 
 

92 

Table 3-2. Complete List of 59 Candidate Multi-Morbidity Items Drawn from the Uniform Data Set 

        Multi-Morbidity Item Coding 

SR or CE  

 

 

 

 

 

 

 

 

 

 

Heart attack or cardiac arrest * 0 = no; 1 = yes 

Atrial fibrillation *  

Carotid procedure: angioplasty, endarterectomy, or 

stent * 

 

Pacemaker and/or defibrillator *  

Congestive heart failure *  

Stroke *  

Parkinson’s disease  

Diabetes *  

Hypertension *  

Hypercholesterolemia  

Vitamin B 12 deficiency  

Thyroid disease *  

Urinary incontinence   

Bowel incontinence   

SR Number of medications * 0 = 0-3; 0.5 = 4-7; 1 = 8+ 

CE Vision functionally normal without corrective 

lenses * 

0 = yes; 1 = no 

 Hearing functionally normal without hearing aid *  

CE Vision functionally normal with corrective lenses * 0 = N/A, yes; 1 = no 

 Hearing functionally normal with hearing aid *  

CE Difficulty writing checks, paying bills, or balancing 

a check book 

0 = normal, N/A; 0.33 = 

difficulty, but 

independent; 0.66 = 

requires assistance; 1 = 

dependent a 

 Difficulty assembling tax records, business affairs, 

or other papers 

 Difficulty shopping alone for clothes, household 

necessities, or groceries * 
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 Difficulty playing a game of skill such as bridge or 

chess, working on a hobby * 

 

 Difficulty heating water, making a cup of coffee, 

turning off the stove * 

 

 Difficulty preparing a balanced meal *  

 Difficulty keeping track of current events  

 Difficulty paying attention to and understanding a 

TV program, book, or magazine * 

 

 Difficulty remembering appointments, family 

occasions, holidays, medications 

 

 Difficulty traveling out of the neighborhood, 

driving, or arranging to take public transportation * 

 

CE Walking changed not due to injury or arthritis 0 = no; 1 = yes 

 Falls more than usual  

 Tremor   

 Slowing of motor movements   

CE Engages in repetitive activities (pacing, handling 

buttons, wrapping string)  

0 = no, N/A; 1 = yes b 

 Nighttime behaviors: awakens in the night, rises too 

early, excessive naps * 

 Appetite: changes in weight or food preferences 

 Delusions  

 Hallucinations  

 Agitation and/or aggression  

 Depression and/or dysphoria*  

 Anxiety  

 Agitation and/or aggression  

 Apathy and/or indifference  
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 Elation and/or euphoria  

 Irritability and/or lability  

 Disinhibition  

M Resting heart rate (bpm) * 0 = 60-99; 1 = < 60 or 

100+ 

 

M Pulse pressure (mmHg) * 0 = 32.13-63.90; 0.5 = 64-

75.9; 1 = < 32.13 or 76+ 

 

M Body mass index (kg/m2) * 0 = 18.5-25; 0.5 = 25.1 to 

< 30; 1 = < 18.5 or ≥ 30 

 

SR Dropped many activities and interests * 0 = no; 1 = yes c 

 Feel that life is empty *  

 Often get bored *  

 Afraid something bad is going to happen to you  

 Often feel helpless *  

 Prefer to stay home rather than going out and doing 

new things * 

 

 Feel worthless *  

 Feel that your situation is hopeless *   

 Feel that most people are better off than you *  

SR Feel full of energy * 0 = yes; 1 = no c 

 Basically satisfied with life *  

Note. SR, self-reported; CE, clinician evaluated; M, measured. * Denotes items that are comparable 

to those used in Bohn et al. (2021) to calculate a frailty index. a Reported as change over the past 

four weeks; b Item from the Neuropsychiatric Inventory Questionnaire; c Item from the Geriatric 

Depression Scale. 
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Table 3-3. List of Variables Submitted to Exploratory Factor Analysis and Used to Construct an Independent 43-Item Frailty Index 

        Multi-Morbidity Item Coding 

SR or CE  

 

 

 

 

 

Stroke 0 = no; 1 = yes 

Diabetes  

Hypertension  

Hypercholesterolemia  

Urinary incontinence   

Bowel incontinence   

SR Number of medications 0 = 0-3; 0.5 = 4-7; 1 = 8+ 

CE Difficulty writing checks, paying bills, or balancing a check book 0 = normal, N/A; 0.33 = difficulty, 

but independent; 0.66 = requires 

assistance; 1 = dependent a 
 Difficulty assembling tax records, business affairs, or other papers 

 Difficulty shopping alone for clothes, household necessities, or groceries * 

 Difficulty playing a game of skill *  

 Difficulty heating water, making a cup of coffee, turning off the stove *  

 Difficulty preparing a balanced meal *  

 Difficulty keeping track of current events  

 Difficulty paying attention to/understanding TV program, book, magazine *  

 Difficulty remembering appointments, family occasions, holidays, 

medications 
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 Difficulty traveling out of the neighborhood, driving, or arranging to take 

public transportation * 

 

CE Walking changed not due to injury or arthritis 0 = no; 1 = yes 

 Falls more than usual  

 Tremor   

 Slowing of motor movements   

CE Engages in repetitive activities (pacing, handling buttons, wrapping string)  0 = no, N/A; 1 = yes b 

 Nighttime behaviors: awakens in the night, rises too early, excessive naps * 

 Appetite: changes in weight or food preferences 

 Delusions  

 Depression and/or dysphoria*  

 Anxiety  

 Agitation and/or aggression  

 Apathy and/or indifference  

 Irritability and/or lability  

 Disinhibition  

M Body mass index (kg/m2) 0 = 18.5-25; 0.5 = 25.1 to < 30; 1 = 

< 18.5 or ≥ 30 

 

SR Dropped many activities and interests 0 = no; 1 = yes c 

 Feel that life is empty  
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 Often get bored  

 Afraid something bad is going to happen to you  

 Often feel helpless  

 Prefer to stay home rather than going out and doing new things  

 Feel worthless  

 Feel that your situation is hopeless  

 Feel that most people are better off than you  

SR Feel full of energy 0 = yes; 1 = no c 

 Basically satisfied with life  

Note. SR, self-reported; CE, clinician evaluated; M, measured. a Reported as change over the past four weeks; b Item from the 

Neuropsychiatric Inventory Questionnaire; c Item from the Geriatric Depression Scale. 
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Table 3-4. Multi-Morbidity Items (n = 33) by Exploratory Factor Analysis Derived Domains 
 

Domain Indictor 

Ambulatory Ability Bowel incontinence 

 Urinary incontinence 

 Slowing of motor movements  

 Tremor  

 Walking changed not due to injury or arthritis 

Emotional Wellbeing Satisfied with life 

 Often feel helpless 

 Prefer to stay home 

 Often get bored 

 Dropped many activities and interests 

Behavioral Disturbances  Disinhibition 

 Irritability and/or lability 

 Apathy and/or indifference 

 Agitation and/or aggression 

 Anxiety 

 Depression and/or dysphoria 

 Appetite: changes in weight or food preferences 

 Engages in repetitive activities 

 Nighttime behaviors 

Instrumental Health Difficulty traveling out of the neighborhood 

 Difficulty remembering appointments 

 Difficulty paying attention to TV program 

 Difficulty keeping track of current events 

 Difficulty preparing a balanced meal 

 Difficulty turning off the stove 

 Difficulty playing a game of skill 

 Difficulty shopping alone  

 Difficulty assembling tax records 
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 Difficulty paying bills 

Cardiovascular Symptoms Total number of medications  

 Hypercholesterolemia  

 Hypertension 

 Diabetes 
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Table 3-5. Fit Indices for Confirmatory Factor Analysis  

Model χ2 df p RMSEA CFI TLI 

Random subset (50%)       

Time 1 1213.81 485 <.001 .03 (.03 - .03) .89 .88 

Time 2 1337.80 485 <.001 .03 (.03 - .04) .88 .87 

Entire study sample       

Time 1 1794.70 485 <.001 .03 (.03 - .03) .90 .89 

Time 2 2138.87 485 <.001 .03 (.03 - .04) .87 .86 

Note. χ2, chi-square test of model fit; df, degrees of freedom for model fit; RMSEA, root mean 

square error of approximation; RMSEA is shown with 90% confidence intervals; CFI, comparative 

fit index; TLI, Tucker Lewis Index. 
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Table 3-6. Model Fit Indices for Latent Profile Solutions at Each Time Point  

n profiles -2 LL npar  AIC BIC SABIC LMR VLMR Entropy 

Model: Time 1  
     

1 -2,862.42 20 -2822.42 -2701.81 -2765.35 -- -- -- 

2 -4,558.66 26 -4506.66 -4349.86 -4432.48 <.001 <.001 .99 
3 -6,297.75 32 -6,297.75 -6233.75 -6040.77 .11 .11 1.0 

Model: Time 2       

1 610.98 20 650.98 771.60 708.05 -- -- -- 

2 -511.24 26 -459.24 -302.44 -385.05 <.001 <.001 .91 

3 -1,260.28 32 -1196.28 -1003.30 -1104.97 <.001 <.001 .97 

4 -1,640.11 38 -1564.11 -1334.94 -1455.68 <.001 <.001 .91 

5 -2,138.66 44 -2050.66 -1,785.31 -1925.117 1.0 1.0 .92 

Note. -2 LL, -2 log-likelihood; npar, number of parameters free; AIC, Akaike information criterion; 

BIC, Bayesian information criterion; SABIC, sample size adjusted BIC; LMR, adjusted Lo-

Mendell-Rubin likelihood ratio test; VLMR, adjusted Vuong-Lo-Mendell-Rubin likelihood ratio 

test. The best-fitting model is bolded. 
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Table 3-7. Model Fit Indices for Longitudinal Measurement Invariance Tests 
 

 -2 LL npar AIC BIC SABIC D -2LL D AIC D BIC 

Model 1a -6198.77 64 -6070.77 -5684.80 -5888.16 -- -- -- 

Model 2b -6635.85 54 -6527.85 -6202.19 -6373.77 -437.08 -517.39 -457.08 

Model 3c -5733.36 39 -5655.36 -5420.16 -5544.08 902.49 782.03 872.50 

Note. -2 LL, -2 log-likelihood; npar, number of parameters free; AIC, Akaike information criterion; 

BIC, Bayesian information criterion; SABIC, sample size adjusted BIC; D, change in the associated 

parameter. The best-fitting model is bolded. a Indicator means were freely estimated across time. b 

Indicator means for Time 1 latent statuses were constrained to equality over time. c Indicator means 

and within status variances were constrained to equality over time.   
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Table 3-8. Standardized Mean Differences Across Latent Statuses 
 

 Latent Status 

Indicator SEV – MOD SEV – MILD SEV – NCF MOD – MILD MOD – NCF MILD – NCF 

Cardiovascular symptoms .05 .09 .43 .05 .43 .38 

Instrumental health .70 .97 1.47 .20 .89 .69 

Behavioral disturbances .36 .54 .74 .20 .44 .24 

Emotional well-being .15 .37 .43 .24 .31 .09 

Ambulatory ability 8.98 15.20 18.70 6.96 11.27 4.63 

Note. SEV, Severely Frail; MOD, Moderately Frail; MILD, Mildly Frail; NCF, Not-Clinically Frail. Model estimated means for the 

Not-Clinically Frail and Moderately Frail statuses were constrained to equality over time. Indicators are coded such that higher values 

denote greater impairment. Bolded values represent indicators with a moderate-to-high degree of class separation.  
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 Table 3-9. Participant Characteristics at Baseline by Time 1 and 2 Latent Status 

 
Note. NCF, Not-Clinically Frail; MILD, Mildly Frail; MODER, Moderately Frail; SEVERE, Severely Frail; Sig, significance; MMSE, 

Mini-Mental State Exam; CDR, Clinical Dementia Rating Scale; APOE, Apolipoprotein E. Results presented as mean (standard 

deviation) or n(%) of the sample with the associated characteristic. p-values are based on independent sample t-tests, one-way 

ANOVA, or chi-square tests, as appropriate. We adjusted for multiple comparisons using post-hoc Tukey tests or Games-Howell tests 

as appropriate. Scores on the CDR are interpreted such that 0 = no impairment, 0.5 = questionable impairment, 1 = mild impairment, 2 

= moderate impairment. 3 = severe impairment. a A subset of each sample was administered the Montreal Cognitive Assessment 

 Time 1 Latent Status Time 2 Latent Status 

Baseline Characteristic NCF  MODER NCF  MILD MODER SEVERE 

n(%) 2,790 (91%) 284 (9%) 1,714 (56%) 654 (21%) 571 (19%) 135 (4%) 

Total n in person visits 4.53 (1.79) 4.20 (1.46) *** 4.69 (1.89) c 4.50 (1.67) c 4.13 (1.51) d 3.61 (1.01) e, *** 

Inter-wave interval (days) 779.81 (78.71) 782.01 (80.65) 778.68 (77.36) c 776.41 (74.95) c 782.32 (84.16) c 804.56 (89.19) d, ** 

n Female  4,466 (53%) 137 (48%) 876 (51%) c 375 (57%) d 283 (50%) c 69 (51%) c,d ** 

Age (in years) 74.23 (8.63) 79.25 (7.98) *** 72.72 (8.49) c 76.31 (8.36) d  77.96 (8.22) d 78.19 (7.90) d, *** 

Education (in years)  15.12 (3.37) 14.65 (3.43) * 15.27 (3.23) c 14.77 (3.55) d,e 15.07 (3.53) c,d 14.11 (3.38) e *** 

n non-Hispanic White 2,531 (91%) 251 (88%) 1,564 (91%) 593 (91%) 508 (89%) 117 (87%) 

n married  2,021 (72%) 194 (68%) 1,292 (76%) c 449 (69%) d 386 (68%) d 88 (65%) d, *** 

n in private residence 2,552 (92%) 243 (86%) *** 1,584 (94%) c 588 (92%) c,d 505 (90%) d 118 (89%) d, ** 

MMSE a 23.48 (4.62) 21.98 (5.50) *** 24.04 (4.38) c 23.31 (4.43) d 22.04 (5.16) e 20.05 (5.88) f, *** 

Global CDR 0.77 (0.40) 1.02 (0.54) *** 0.71 (0.34) c 0.80 (0.39) d 0.95 (0.50) e 1.09 (0.54) f, *** 

n APOE ε4+ b 1,419 (55%) 117 (49%) ** 912 (61%) c 323 (57%) c 234 (49%) d 67 (60%) c, *** 

Frailty index  0.22 (0.12) 0.37 (0.12) *** 0.20 (0.11) c 0.25 (0.12) d 0.30 (0.13) e 0.37 (0.13) f, *** 
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(MoCA) in lieu of the MMSE; education-adjusted scores on the MoCA were converted to an equivalent MMSE score using published 

conversion tables derived from the National Alzheimer’s Coordinating Center Uniform Data Set (Monsell et al., 2016). b Results are 

based on 2,649 participants who were genotyped. c,d,e,f Values with different superscripts differ from one another.  

*** p < .001 ** p < .01 * p < .05 
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Table 3-10. Latent Transition Probabilities Based on the Unconditional Model 
 
 
 

 

 

 

 

 
Note. Transition probabilities in bold font correspond to membership in the same latent status at both time points. 

 Time 2 Latent Status 

 
Not-Clinically Frail 

(n = 1,714; 56%) 

Moderately Frail 

(n = 571; 19%)  

Mildly Frail  

(n = 654; 21%)   

Severely Frail 

(n = 135; 4%)  

Time 1 Latent Status      

Not-Clinically Frail (n = 2,790; 91%) 0.61 (n = 1,693) 0.15 (n = 416) 0.21 (n = 605) 0.03 (n = 76) 

Moderately Frail (n = 284; 9%) 0.07 (n = 21) 0.55 (n = 155) 0.17 (n = 49) 0.21 (n = 59) 
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Table 3-11. Odds Ratios for Predictors of Latent Status Membership at Time 1 and 2 

 

 

 

 

 

 

 

 

 

 

 

 

Note. The Not-Clinically Frail status was specified as the reference group at each time point. The dashed lines represent covariate 

effects that differed significantly across baseline statuses (see results for RG2, step 2) and were thus excluded from these analyses. 

Odds ratios are presented with 95% confidence intervals. All covariates were entered simultaneously as predictors of latent status 

membership. Categorical variables were coded as follows: sex (0 = male; 1 = female), race/ethnicity (0 = non-Hispanic White; 1 = 

Black/African American), clinical cohort (0 = mild cognitive impairment; 1 = Alzheimer’s disease), and Apolipoprotein ε4 allelic 

status (0 = non-carrier; 1 = carrier). a Results are based on the final subset of participants who were genotyped (n = 2,649).  

 Time 1 Latent Status Time 2 Latent Status 

Predictor  Moderately Frail Severely Frail Moderately Frail Mildly Frail 

Sex 0.75 [0.61, 0.94] * 0.82 [0.60, 1.12] 0.90 [0.76, 1.08] 1.24 [1.06, 1.45] * 

Race/ethnicity  1.17 [0.83, 1.64] 1.10 [0.69, 1.75] 1.15 [0.87, 1.53] 0.95 [0.73, 1.25] 

Education 1.00 [0.97,1.03] 0.99 [0.95, 1.03] 1.04 [1.02, 1.07] ** 0.99 [0.97, 1.02] 

Chronological age 1.08 [1.06, 1.09] *** 1.08 [1.06, 1.10] *** 1.08 [1.07, 1.09] *** -- 

Clinical cohort  1.79 [1.32, 2.43] ** 2.16 [1.31, 3.56] * 2.22 [1.76, 2.80] *** 1.56 [1.27, 1.88] *** 

Global cognition  0.97 [0.94, 1.0] ** 0.88 [0.85, 0.91] *** 0.94 [0.92, 0.96] *** 0.99 [0.97, 1.01] 

APOE ε4 allele status a 0.80 [0.63, 1.01] 1.02 [0.72, 1.44] -- -- 
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Figure 3-1. Flow diagram of study participants. 
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Figure 3-2. Confirmatory factor analysis model conducted with the entire study sample using Time 1 multi-morbidity data.  

Note. Ambul, ambulatory ability; Emot, emotional well-being; Behav, behavioral disturbances; Instrum, instrumental health; Cardio, 

cardiovascular symptoms; Fecal, bowel incontinence; Urine, urinary incontinence; Slow, slowing of motor movements; Trem, tremor; 

Gait, walking changed; Satis, satisfied with life; Help, feel helpless; Home, prefer to stay home; Bore, often bored; Activ, dropped 

many activities; Inhib, disinhibition; Irrit, irritability; Apath, apathy; Agit, agitation; Anxiet; anxiety; Depre, depression; Appet; 

changes in appetite; Repet, repetitive activities; Nite, nighttime behaviors;  Trav, difficulty traveling; Date, difficulty remembering 

appointments; Atten, difficulty paying attention; Event, difficultly tracking current events; Meal, difficulty preparing meal; Stove, 

difficulty turning off stove; Game, difficulty playing games; Shop, difficulty shopping alone; Tax, difficulty assembling tax records; 

Bill, difficulty paying bills; Meds, total number of medications; Choles, hypercholesterolemia; Hyper, hypertension; Diab, diabetes. 

Standardized factor loadings are shown. All loadings were significant at p < .05. Latent covariances and residuals are not depicted. 

Response scales for each item are outlined in Table 3-2.   
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Figure 3-3. Confirmatory factor analysis model conducted with the entire study sample using Time 2 multi-morbidity data.  

Note. Ambul, ambulatory ability; Emot, emotional well-being; Behav, behavioral disturbances; Instrum, instrumental health; Cardio, 

cardiovascular symptoms; Fecal, bowel incontinence; Urine, urinary incontinence; Slow, slowing of motor movements; Trem, tremor; 

Gait, walking changed; Satis, satisfied with life; Help, feel helpless; Home, prefer to stay home; Bore, often bored; Activ, dropped 

many activities; Inhib, disinhibition; Irrit, irritability; Apath, apathy; Agit, agitation; Anxiet; anxiety; Depre, depression; Appet; 

changes in appetite; Repet, repetitive activities; Nite, nighttime behaviors;  Trav, difficulty traveling; Date, difficulty remembering 

appointments; Atten, difficulty paying attention; Event, difficultly tracking current events; Meal, difficulty preparing meal; Stove, 

difficulty turning off stove; Game, difficulty playing games; Shop, difficulty shopping alone; Tax, difficulty assembling tax records; 

Bill, difficulty paying bills; Meds, total number of medications; Choles, hypercholesterolemia; Hyper, hypertension; Diab, diabetes. 

Standardized factor loadings are shown. All loadings were significant at p < .05. Latent covariances and residuals are not depicted. 

Response scales for each item are outlined in Table 3-2.  
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Figure 3-4. Model estimated indicator means for each latent status. Model estimated means for the 

Not-Clinically Frail and Moderately Frail statuses were constrained to equality over time. 

Cardiovascular, cardiovascular symptoms; Instrumental, instrumental health; Behavioral, 

behavioral disturbances; Emotional, emotional well-being; Ambulatory, ambulatory ability.  
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Chapter 4: Study 3 
 

Application of Machine Learning Technology to the Identification of 

Frailty-Related Risk Characteristics that Discriminate Four COMPASS-ND Cohorts: Cognitively 

Normal, Subjective Cognitive Impairment, Mild Cognitive Impairment, and Alzheimer’s Disease 
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Background 

Frailty represents a state of increased vulnerability to relatively minor stressors due to 

impairments in multiple interrelated systems, leading to declining homeostatic reserve and 

resiliency (Clegg et al., 2013; Morley et al., 2013). Frailty has widespread associations with 

negative health-related and cognitive aging outcomes (Canevelli et al., 2015; Vermeiren et al., 

2016) and has recently been characterized as a cornerstone of geriatric medicine (Walston et al., 

2018). Importantly, however, there remains uncertainty about how to best measure and define 

frailty in clinical-research settings. Since its inception (Fried et al., 2001; Mitnitski et al., 2001), 

numerous operational definitions and measurement tools have been developed. A recent systematic 

review revealed that over 65 instruments have been employed (to varying degrees) to identify 

subgroups of frail older adults and to operationalize risk (Buta et al., 2016). These instruments vary 

considerably in the number of indicators and domains of aging morbidity they consider. At the 

same time, it is sobering to note that a subsequent scoping review concluded that the most common 

operational definition employed in acute care settings was none at all (Theou et al., 2018). It has 

been suggested that frequent lack of agreement among conceptual models and operationalization 

techniques may have slowed the development and practical implementation of these tools (Aguayo 

et al., 2017; Walston et al., 2018). Accumulating literature has thus issued a clarion call for novel 

approaches to frailty measurement and conceptualization that may (a) lead to wider and more 

integrative models and (b) produce some resolution of the various empirical and clinical 

inconsistencies between prevailing frailty research (Anstey & Dixon, 2014; Clegg et al., 2013; Lim 

et al., 2018; Rockwood & Howlett, 2018).  

In the broader area of aging and dementia research, new data-driven approaches have been 

applied to modeling large-scale and multi-modal indicators of a range of morbidities and 
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perturbations related to various risk domains that influence brain and cognitive health (Dimitriadis 

et al., 2018; Hochstetler et al., 2016; McFall et al., 2019; Sapkota et al., 2018). Such analytic 

approaches have been tested initially in frailty research with cognitively normal (CN) and other 

aging adults with promising results (Bohn et al., 2021; Peng et al., 2020; Song et al., 2004a; Song 

et al., 2004b). However, such approaches would ideally be tested across multiple cohorts of older 

adults, ranging, for example, from asymptomatic groups through impairment and dementia. 

Accordingly, the present study applied unbiased, machine learning technology to a large database 

of aging multi-morbidity indicators in order to identify the most important frailty-related features 

that discriminate pairwise comparisons between CN older controls and the following three clinical 

cohorts: subjective cognitive impairment (SCI), mild cognitive impairment (MCI), and 

Alzheimer’s disease (AD). This analytical approach allowed us to simultaneously test (in a 

competitive computational context) a large and representative set of indicators that have primarily 

been assimilated in a frailty index (Mitnitski et al., 2001) or used to define the physical frailty 

phenotype (Fried et al., 2001). While hypothesis-guided or composite-related approaches have 

demonstrated utility for the identification of frailty and prediction of related outcomes (Clegg et al., 

2013), these approaches may be limited in identification of important and potentially unexpected 

modifiable targets for early prevention and intervention efforts. We anticipated that findings would 

reveal, from a data-driven and cohort specific perspective, central features of frailty that elevate 

clinical risk for SCI, MCI, and AD. 

Despite the significant potential of data-driven (e.g., Bohn et al., 2021; Study 2) and machine 

learning technologies (Gallucci et al., 2020) to clarify the literature in this area, there are few 

published applications to date. A handful of studies have employed predictive data mining 

techniques in order to determine the risk factors (e.g., comorbidities, physical inactivity, 
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immobility, fluid and neuroimaging biomarkers) that best discriminate non-frail from frail older 

adults (Hassler et al., 2019; Paul et al., 2020). Importantly, however, results from these studies are 

predicated on the frailty index (Hassler et al., 2019) or physical frailty phenotype (Paul et al., 

2020)— both of which are leading approaches to measuring and conceptualizing frailty. Several 

studies have opted instead to develop machine learning models that are evaluated for prediction 

accuracy in classifying surrogates for frailty. For example, Greene and colleagues (2014) used 

support vector machines to examine the individual and combined utility of three performance-

based mobility measures to classify participants according to their level of risk for falling. More 

recent studies have applied machine learning technologies to large databases of aging multi-

morbidity indicators in order to develop predictive models for hospital admissions, permanent 

entry to care, and/or mortality (Lund et al., 2019; Moldovan et al., 2020; Segal et al., 2017). 

Perhaps more relevant to the present study, Peng et al. (2020) used random forest (RF) analysis to 

identify the most important frailty-related indicators that predict unplanned hospitalizations, 

admissions to an intensive care unit, and mortality. Interestingly, the indicators identified as 

important predictors in the RF analysis differed markedly from a previous study that used these 

same data to develop— based on expert recommendation— a multi-morbidity frailty index (Wen et 

al., 2017). When the latter index was compared against an index derived using RF analysis results, 

it was reported that the data-driven frailty index had higher prediction accuracy in classifying 

negative outcomes (Peng et al., 2020).  

Importantly, one machine learning study reported that models of frailty may vary as a 

function of the outcome being considered. Specifically, Tarekegn et al. (2020) applied machine 

learning techniques to a database of clinical characteristics and socioeconomic factors in order to 

identify the most important predictors of mortality, urgent hospitalizations, disability, fracture, and 
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emergency room admissions. Results showed that the predictors deemed to be most important, as 

well as prediction accuracy, varied across the different outcome variables. To our knowledge, no 

studies have sought to identify the most important frailty-related features that distinguish clinical 

cohorts of older adults with SCI, MCI, or AD from a benchmark sample of CN older controls using 

RF analysis. Notably, we did not explore SCI in our previous study (Bohn et al., 2021) and limited 

research has examined frailty-SCI associations (Gifford et al., 2019). Individuals with SCI report 

subjective cognitive complaints but show no signs of objective impairment in measured aspects of 

cognitive function (Jessen et al., 2014; Stewart, 2012). Because this condition is potentially 

modifiable (Bhome et al., 2018; Jessen et al., 2014) and accumulating research indicates that it 

increases risk for exacerbated cognitive decline, impairment, and dementia (Drouin et al., 2020; 

Fonseca et al., 2015; Koppara et al., 2015; Reisberg et al., 2010), we identify this as a critical area 

of research attention. Findings from related (non-machine learning) works have shown that frailty 

is associated with an elevated risk for SCI (Gifford et al., 2019; Hsieh et al., 2018), MCI (Grande et 

al., 2019; Searle & Rockwood, 2015), and AD (Borges et al., 2019a; Canevelli et al., 2015). 

Nevertheless, it remains unclear (a) which deficits show the strongest associations with clinical risk 

for these outcomes and (b) whether prediction patterns vary as a function of the cognitive outcome 

(or clinical cohort) being considered. The current study fills in these gaps.   

Cross-sectional data for this study were drawn from the Comprehensive Assessment of 

Neurodegeneration and Dementia (COMPASS-ND) study, which is the signature clinical cohort 

study of the Canadian Consortium on Neurodegeneration in Aging. As described in greater detail 

elsewhere (Chertkow et al., 2019), COMPASS-ND is a pan-Canadian database that includes 

indicators spanning clinical, neuropsychological, socio-demographic, biological specimen, 

neuroimaging, and genetic domains. This database was recently used to examine the prevalence of 
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frailty in a cohort of older adults (n = 150) with a range of neurodegenerative disorders, including 

SCI (n = 24), MCI (n = 64), and AD (n = 21; Burt et al., 2019). In this study, frailty was 

operationally defined using the 5-item physical frailty phenotype (Fried et al., 2001) and an 81-

item frailty index (Mitnitski et al., 2001). With respect to the former, participants were classified as 

frail if they endorsed three of the following five characteristics: shrinking, weakness, exhaustion, 

slowness, and/or low activity (Fried et al., 2001). With respect to the latter, the proportion of 

deficits accumulated across instrumental or basic activities of daily living (n = 13), quality of life 

(n = 6), and clinical history (n = 61) was calculated for each participant. These indicators were 

selected from the COMPASS-ND database using expert recommendation and standard 

construction guidelines (Searle et al., 2008). Total scores on the frailty index were considered both 

as (a) a continuous variable, representing the proportion of deficits accumulated (0 = no deficits 

endorsed, 1 = all deficits endorsed) and (b) a dichotomous variable, representing whether 

participants’ values exceed a previously established clinical threshold for frailty status (i.e., > 0.25; 

Song et al., 2010). Results indicated that comparable estimates of the prevalence of frailty were 

generated by each operational definition. Specifically, 14% and 11% of the total study sample were 

classified as frail according to the physical phenotype and frailty index, respectively (raw 

agreement = 81%). The average value on the frailty index was 0.15. Important for the present 

study, the authors noted that there were insufficient data available to examine whether the level or 

prevalence of frailty varied across subgroups of neurodegenerative disorders and/or was elevated in 

neurodegenerative disorders as compared to normal cognitive aging.   

We contribute to the emerging frailty research in the Canadian Consortium on 

Neurodegeneration in Aging by (a) considering a wider range of multi-morbidity indicators and (b) 

employing data-driven quantitative modeling techniques in order to identify the most important 
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frailty-related features that elevate risk for SCI, MCI, and AD. Specifically, with respect to the first 

advance, we assembled data for the indicators considered in Burt et al. (2019), as well as data for 

multi-morbidity indicators and fluid-based biomarkers that were not previously considered. 

Detecting and validating frailty biomarkers is increasingly recognized as a pressing clinical and 

research priority (Cardoso et al., 2018; Wallace et al., 2018; Wang et al., 2019). For example, the 

International Conference on Frailty and Sarcopenia Research Task Force recently concluded that— 

because current biomarker discovery efforts are largely based on predefined hypotheses— future 

studies that consider broad panels of potential biomarkers should explore integrated, data-driven 

bioinformatics approaches (Rodriguez-Mañas et al., 2020). With respect to the second advance, we 

expand on the findings reported by Burt and colleagues by (a) developing a 30-item data-driven 

frailty index for each clinical cohort and (b) examining whether frailty levels vary across a 

spectrum of normal cognitive aging, impairment, and dementia. We selected this number of deficits 

based on previous research indicating that a frailty index ought to contain a minimum of 30 

indicators in order to reliably predict adverse outcomes (Rockwood et al., 2007). Further, we 

reasoned that, because it is less computationally demanding to calculate a 30-item frailty index and 

the indicators selected for inclusion are determined using powerful machine learning technology, 

this reduced index may be more readily integrated into clinical-research settings. Screening for 

frailty using appropriate criteria is a public health priority. In doing so, clinicians are better 

positioned to apply interventions that may prevent frailty and benefit cognition, thereby reducing 

health-care costs and improving quality of life (Burt et al. 2019). 

We also planned to advance frailty-related research stemming from the Canadian Consortium 

on Neurodegeneration in Aging and related databases of aging multi-morbidity by examining 

whether prediction patterns generalized across sex. Of the related machine learning work 
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summarized above, only two studies performed prediction analyses as stratified by sex (Greene et 

al., 2014; Peng et al., 2020), with results suggesting that this is a promising avenue of continued 

research interest. Further, recent large-scale epidemiological research reported that frailty effects 

on cognitive level or change trajectories were moderated by sex and concluded that females may 

experience a wider cognitive deficit from higher frailty levels as compared to males (Thibeau et al., 

2019). Nevertheless, because data collection for the COMPASS-ND study was delayed by the 

pandemic, our study was not sufficiently powered to perform RF analyses as stratified by sex. 

Specifically, the sex distributions across each of the four cohorts were as follows: CN = 82% 

female (n = 49); SCI = 83% female (n = 30); MCI = 49% female (n = 57); and AD = 30% female 

(n = 13). As a result, we decided instead to include sex as a predictor in each of the planned RF 

analyses. This approach allowed us to test whether the risk for cognitive impairment and dementia 

varies for males as compared to females. This is a priority area of empirical attention (Andrew & 

Tierney, 2018; Dubal, 2020; Tierney et al., 2017).  

Research Goals 

The four specific research goals (RG) of the current study included the sequential application 

of RF analysis (which can simultaneously process large numbers of individual predictor variables) 

to a database of 84 multi-morbidity indicators and fluid biomarkers in order to identify the most 

important frailty-related features that predict membership in the following clinical cohorts: SCI 

(RG1), MCI (RG2), and AD (RG3). For each of the respective RGs, we tested each targeted 

clinical cohort against a benchmark sample of CN older controls. This statistical approach accords 

with previous machine learning research (e.g., McFall et al., 2019; Sapkota et al., 2018) and has the 

advantage of allowing us to identify both common and distinct domains of deficits that may elevate 

clinical risk for conversion from normal cognitive aging to aging characterized by cognitive 
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impairment or dementia. Whereas the first three RGs concerned the clinical cohorts separately, the 

fourth RG was designed to accomplish an integrative goal and was comprised of several 

interrelated phases. In the first phase, we constructed a data-driven frailty index for each clinical 

cohort using data for the top 30 indicators identified in the previous RF analysis. In the second 

phase, we calculated an 81-item frailty index using the same operational definition as employed in 

Burt et al. (2019). In the third phase, we tested whether the level of frailty varied across cohorts. In 

the fourth phase, we tested whether the level of frailty varied complementary conceptualizations of 

a frailty index.  

We expected that findings for RGs 1–3 would reveal important frailty-related features that 

represent multiple domains or systems of aging morbidity. Further, we anticipated that results for 

these RGs would reveal clusters of features that generalize across prediction of cognitive 

impairment and dementia. Specifically, following from the results reported in Studies 1 (Bohn et 

al., 2021) and 2 of the dissertation research, as well as the accumulating literature on components 

of the physical frailty phenotype as they relate to SCI, MCI, and AD (Borges et al., 2019a; Borges 

et al., 2019b; Boyle et al., 2010; Cui et al., 2021; Gifford et al., 2019; Hooghiemstra et al., 2017; 

McGough et al., 2013), we anticipated that exemplars of mobility and related functional deficits 

(e.g., timed walk; grip strength) would emerge as salient features across RGs. Consistent with 

previous work that identified important discriminative features of non-demented cognitive aging 

trajectories (Caballero et al., 2021; McFall et al., 2019) and adverse frailty-related outcomes 

(Tarekegn et al., 2020) using RF analysis, we also expected to detect clusters of features that are 

selectively sensitive to prediction of SCI, MCI, and AD. Descriptive differences have been 

reported across cohorts of older adults who are CN or have diagnoses of SCI, MCI, or AD in terms 

of aging multi-morbidity, demographic, and lifestyle characteristics (Hao et al., 2019). 
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Nevertheless, to our knowledge, this study is the first to identify frailty-related features that elevate 

clinical risk across the AD spectrum in a competitive machine learning context. With respect to 

RG4, we anticipated that each successive cohort of older adults with normal cognition, SCI, MCI, 

or AD would report higher levels of frailty (Hsieh et al., 2018; Kojima et al., 2017; Merchant et al., 

2021; Sugimoto et al., 2018). Further, we expected that frailty levels would be comparatively 

higher for each cohort on the 30-item relative to 81-item index.  

Methods 

Participants 

The COMPASS-ND participants were recruited from 31 data collection sites across Canada. 

The majority of these were based in academic clinical research settings, including memory clinics, 

stroke clinics, and movement disorders clinics (Chertkow et al., 2019). Ethics approval was 

obtained from the Research Ethics Board of each participating centre. Older adults with the 

following criteria were ineligible to participate in the COMPASS-ND study: (a) presence of 

significant known chronic brain disease (e.g., moderate to severe chronic static 

leukoencephalopathy, including previous traumatic injury), multiple sclerosis, a serious 

developmental handicap, malignant tumors, Huntington’s disease, and other rarer brain illnesses; 

(b) ongoing drug or alcohol abuse; (c) total score < 13 on the Montreal Cognitive Assessment 

(Nasreddine et al., 2005); (d) symptomatic stroke within the previous year; and (e) unwilling or 

unable to undergo magnetic resonance imaging scan (Chertkow et al., 2019). Eligible study 

participants (a) provided written informed consent; (b) were sufficiently proficient in English or 

French (as indexed by performance on the Language Experience and Proficiency Questionnaire; 

Marian et al., 2007); (c) lived within one hour of the study site; and (d) had a study partner with 

whom they interacted on a weekly basis. For the current study, we assembled cross-sectional data 
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for the following deeply phenotyped cohorts of the COMPASS-ND study: CN (n = 60), SCI (n = 

36), MCI (n = 116), and AD (n = 43). By comparison, the Burt et al. (2019) study examined frailty 

prevalence amongst smaller groups of persons classified as having SCI, MCI, or AD, with no CN 

older controls available.  

Participants’ cognitive status was determined by experienced clinicians involved in the 

COMPASS-ND study using current diagnostic criteria (Chertkow et al., 2019). Participants with 

subcortical ischemic vascular MCI, dementia of mixed etiology, frontotemporal dementia, 

Parkinson’s disease, and Lewy body dementia were excluded from the current research. 

Descriptive statistics for the final study sample are presented in Table 4-1 (N = 255; n females = 

149; Mage = 71.18, SD = 6.81, age range = 60.05–89.20 years; 92% non-Hispanic White, n = 234). 

Measures 

Multi-morbidity indicators. We assembled cross-sectional data for aging morbidity 

indicators that were previously drawn from the COMPASS-ND database in order to operationalize 

a frailty index (n = 81) or the physical frailty phenotype (n = 2; Burt et al., 2019), as well as data 

for aging morbidity indicators that were not previously considered (n = 18). Consistent with 

Studies 1 (Bohn et al., 2021) and 2 of the dissertation research, these indicators spanned multiple 

domains of aging morbidity, including activities of daily living, sensory functions, mobility, quality 

of life, emotional well-being, comorbidities, cardiac symptoms, respiratory symptoms and diseases, 

and physical activity. Procedures for collecting these data included self-report, physical 

examinations, and formal tests with standardized scales. Each indicator was (re)coded such that 

scores ranged between 0 (no deficit recorded) and 1 (deficit is maximally expressed; Searle et al., 

2008). Where applicable, cut points for continuous indicators were provided in the COMPASS-ND 

database or determined in accordance with previous empirical research.  
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Fluid biomarkers. Biosamples of blood, saliva, and urine were collected from COMPASS-

ND participants using established operating procedures (Chertkow et al., 2019). We assembled 

cross-sectional data for 67 fluid biomarkers that (a) have been used to varying degrees in previous 

frailty-related research and (b) accord with established procedures for assessing frailty using a 

cumulative frailty index (Searle et al., 2008). Biomarkers were recorded in the COMPASS-ND 

database as 0 (within established reference range) and 1 (outside established reference range; 

Blodgett et al., 2017, 2019; Heikkilä et al., 2021; Howlett et al., 2014).  

Screening of multi-morbidity indicators and fluid biomarkers. Multi-morbidity indicators 

and fluid biomarkers were screened for eligibility for inclusion in RF analyses in a series of 

preliminary analyses. Specifically, we assembled three separate datasets (one for each pairwise 

comparison) and subsequently removed (a) categorical indicators where < 10% of participants in 

each cohort were recorded as having the deficit and (b) indicators with a rate of missingness > 

50%. The final number of indicators submitted to RF analysis was 64 for SCI, 65 for MCI, and 75 

for AD (total n across cohorts = 83; see Table 4-2 for a complete reporting of the eligible frailty-

related indicators and corresponding response scales). Across the entire study sample, the rate of 

missingness for the final set of multi-morbidity indicators ranged between 0–3%, with the average 

rate across predictors at 0.7%. The rate of missingness for the final set of fluid biomarkers ranged 

between 4–50%, with the average rate across predictors at 18%.  

Sex. In line with previous research (e.g., Burt et al., 2019; Thibeau et al., 2019) biological 

sex was measured in a binary fashion (0 = male, 1 = female) by asking participants to self-report 

whether they are male or female. 

Frailty index calculations. We evaluated the level of frailty using two complementary 

approaches to calculating a frailty index. First, we constructed a separate 30-item data-driven 
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frailty index for each clinical cohort using RF analysis results. Specifically, we assembled data for 

the top 30 predictors identified in RGs 1–3 and subsequently calculated the proportion of deficits 

that older adults with SCI (i.e., using results from RG1), MCI (i.e., using results from RG2), or AD 

(i.e., using results from RG3) had accumulated. Values on the data-driven frailty index were 

calculated for CN controls by taking the average value observed across each of the latter indices. 

Second, we assembled data for the 81 items used to operationalize a frailty index in Burt et al. 

(2019) and calculated the proportion of deficits accumulated. The indicators included in the 

calculation of the 30- and 81-item frailty index are presented in Table 4-3.  

Analytical Approach 

We used RF analysis (Kuhn & Johnson, 2013) to test the relative predictive importance of 

frailty-related indicators in discriminating SCI, MCI, or AD from a benchmark sample of CN older 

adults in a series of three pairwise comparisons. Analyses were performed using Python (3.7.6; 

www.python.org) and the scikit-learn package (RandomForestClassifier; Pedregosa et al., 2011). 

RF analysis is a recursive partitioning method that combines predictions across multiple 

classification and regression trees, each of which is based on a random subset of participants and 

predictors. We note several advantages to this approach. First, it has demonstrated utility for 

exploring complex, high dimensional datasets related to frailty (Hassler et al., 2019; Kang et al., 

2019; Kruse et al., 2018; Peng et al., 2020; Segal et al., 2017; Tarekegn et al., 2020) and prediction 

of adverse cognitive aging outcomes (Caballero et al., 2020; McDermott et al., 2017; McFall et al., 

2019; O’Bryant et al., 2011). Second, it can examine many predictors simultaneously and returns a 

model with high prediction accuracy— even in studies with small and/or imbalanced (uneven) 

subsamples. Third, descriptive variable importance measures that reflect the impact of each 
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variable on the outcome of interest can be extracted (Lundberg et al., 2018; Lundberg & Lee, 

2017). 

RF models were evaluated using stratified k-fold cross-validation. We selected this approach 

based on literature indicating that stratified k-fold cross-validation is recommended for use in 

instances where the subsamples comprising the pairwise comparison are small and/or imbalanced 

(Hastie et al., 2009). Stratified k-fold cross-validation ensures that each k-fold (or subsample) 

contains roughly the same proportion of each cohort as is represented in the overall sample. In the 

present study, we used stratified 5-fold cross-validation to divide each pairwise dataset into five 

equally sized folds (or subsamples). In this approach, four of the five folds were used for training 

and the remaining fold was used for testing (Wong, 2015). This process was repeated five times, 

until each fold had been used for testing exactly once. The model then returned the following 

evaluation metrics, each of which were averaged across the five cross-validation folds. The first 

metric was the area under the receiver operating characteristic curve (AUC), which is a summary 

measure of the model’s ability to distinguish between CN controls and the target clinical cohort. 

AUC is interpreted such that 0.5 represents chance, 0.5–0.69 represents poor discrimination, 0.7–

0.79 represents acceptable discrimination, 0.8–0.89 represents excellent discrimination, and > 0.9 

represents outstanding discrimination (Rice & Harris, 2005). The second metric was accuracy, 

which refers to the total percentage of participants who were correctly classified as either CN or as 

belonging to the target clinical cohort (i.e., the fraction of true positives and true negatives over all 

model classifications). The third metric was precision, which represents the percentage of 

participants who were correctly classified into the target clinical cohort (calculated as true positives 

/ (true positives + false positives)). The fourth metric was recall (or sensitivity), which reflects the 

percentage of participants from the target clinical cohort who were correctly classified as such 
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(calculated as true positives / (true positives + false negatives)). The fifth metric was F1 score, 

which is an overall measure of the model’s accuracy that represents the harmonic mean of 

precision and recall (calculated as 2 x (precision × sensitivity) / (precision + sensitivity)). Values 

for the latter four metrics range between 0–1, where higher scores denote better classification 

accuracy. In studies with imbalanced subsamples— as is largely the case in the present study— 

AUC and F1 score are the most robust indicators of classification accuracy (Gómez-Ramírez et al., 

2020). As such, we report the five evaluation metrics outlined above for each RF classification 

model but rely on the latter two metrics when evaluating and interpreting (or assigning a qualitative 

label) to model fit.   

Missing data were handled using IterativeImputer, which represents a sophisticated data 

imputation approach that estimates (or predicts) missing values as a function of all the other 

predictors in the model (Pedregosa et al., 2011). This process is iterative, meaning that refined 

missing data estimates are used as input in subsequent iterations of the imputation process. The 

default estimator in this approach is BayesianRidge, which imputes missing data using regularized 

linear regression. Predictors with the smallest proportion of missing data are estimated first, 

followed in order by predictors with successively higher proportions of missing data. These 

analyses were performed using the sklearn pipeline. This allowed us to impute missing data 

(separately) within each cross-validation fold, thereby avoiding data leakage issues (i.e., between 

training and testing cross-validation folds; Pedregosa et al., 2011). The sklearn pipeline involved 

the following two steps which were conducted sequentially at each fold. First, missing data were 

imputed. Second, classification analyses were performed using RF analysis (n_estimators=1000, 

max_depth=3; max_features= auto).  
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RF analysis results were interpreted using Shapley Additive exPlanation values (SHAP; 

(Bloch & Friedrich, 2021; Ghorbani & Zou, 2019). These values provide researchers with a unified 

framework for determining the relative importance (or model contribution) of the considered 

predictors (Lundberg & Lee, 2017). Previous work indicates that, relative to other individual 

feature attribution methods, SHAP values are the most robust analytical tool for (a) determining the 

relative magnitude of each predictor’s effect on model classifications while at the same time 

controlling for overfitting in heterogeneous or small samples (Bloch & Friedrich, 2021) and (b) 

converging on a single unique solution that balances local accuracy, missingness, and consistency 

(Lundberg et al., 2020). Further, SHAP values elucidate the direction and magnitude of each 

predictor’s effect.  

In the current study, we report two SHAP plots for each RG. These plots provide visual 

interpretation of RF analysis results (Lundberg et al., 2018). First, we present a global feature 

importance plot (hereafter referred to as a waterfall plot; see Figure 4-1 for example). This figure 

depicts the individual and cumulative ratio of the predictors’ contribution to the final classification 

model (represented by the bars and curved line, respectively). Features are presented in descending 

order of global importance. Second, we present a summary plot (see Figure 4-2 for example). This 

figure is interpreted such that (a) each dot represents an individual study participant; (b) the color 

of the dot represents the participant’s value on the associated predictor (red dot = high feature 

value; blue dot = low feature value); and (c) the location of the colored dots along the x-axis 

indicates the direction and magnitude of each predictor’s effect on the model output. Specifically, a 

high density of red dots to the right side of the vertical line on the x-axis indicates that high feature 

values predict an increased risk for belonging to the target clinical cohort. Conversely, a high 

density of blue dots to the right side of the vertical line on the x-axis indicates that low feature 
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values predict an increased risk of belonging to the target clinical cohort. Dots may (a) pile up to 

show density (or frequency of each feature value in the dataset); (b) have a skewed distribution (or 

long tail), which reflects the magnitude of each predictor’s effect (increasingly skewed 

distributions denote larger effects); and/or (c) cluster around 0, which indicates that the predictor is 

unimportant (or contributes very little to the model; Gómez-Ramírez et al., 2020; Lundberg et al., 

2018, 2020). Both the waterfall and summary plot depict the predictors in descending order of 

global importance, and as such, the rank ordering of frailty-related features remains stable across 

the figures. Nevertheless, as described above, each figure presents important and complementary 

information that is useful for model interpretation.  

In the current study, we display results for the top 30 predictors identified in each RF 

classification model. As noted above, data for these predictors were subsequently used to calculate 

a separate 30-item data-driven frailty index for each clinical cohort. We examined whether values 

on the 30- and 81-item frailty index varied across cohorts using a one-way analysis of variance 

(ANOVA) with post-hoc Tukey tests to correct for multiple comparisons. We subsequently tested 

whether, for each cohort, frailty index values varied across the 30- and 81-item index using paired-

sample t-tests. For descriptive purposes, we report the proportion of participants who were 

classified as frail on the 30- and 81-item index using a previously established cut-off value of > 

0.25 (Burt et al., 2019; Song et al., 2010). These analyses were performed using SPSS version 28.0 

(IBM Corp., Armonk, NY). The criterion for statistical significance was established as p < .05.  

Results 

RG1: RF analysis discriminating SCI from CN controls 

We tested 64 predictors in a RF classification model to identify important frailty-related 

features that discriminate a clinical cohort of older adults with SCI from a benchmark cohort of CN 
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controls. Findings revealed that overall fit (or performance) of this model was very good (see Table 

4-4 for evaluation metrics). Specifically, AUC was 0.89 (represents excellent discrimination) and 

F1 score was 0.72 (represents model accuracy based on the harmonic mean of precision and recall). 

Taken together, these metrics indicate that the RF classification model reliably discriminated these 

neighbouring cohorts along the AD spectrum. The waterfall plot for the top 30 predictors is 

presented in Figure 4-1. We interpret results for the top three predictors depicted in this model 

because (a) there is an evident elbow (or break in the distribution) in the cumulative ratio at this 

cut-off, (b) these three predictors collectively explained approximately half of the model, and (c) 

predictors below this cut-off had comparatively smaller contributions to the classification model.  

The three features with the highest global importance (as indexed by the composition ratio 

along the top of the x-axis) are quality of life (memory; explained 21% of the model), lymphocytes 

(explained 15% of the model), and neutrophils (explained 10% of the model). These features 

collectively explained 46% of the classification model (as indexed by the cumulative ratio, which 

is depicted by the blue line). The summary plot is presented in Figure 4-2. These results represent 

the direction, magnitude, and prevalence of effects associated with the top 30 predictors. The 

pattern of SHAP values observed for quality of life (memory)— specifically, red dots clustered to 

the right side of the vertical line on the x-axis— indicates that poorer ratings (represented by higher 

values) predict an increased risk for SCI. Similarly, lymphocyte and neutrophil counts that fall 

outside of the normal range (represented by values of 1) predict an increased risk for SCI (as 

depicted by the high density of red dots clustered to the right side of the vertical line on the x-axis). 

Each of these effects were relatively large in magnitude (reflected by the far-right location and 

wide spread of red dots along the x-axis).  

RG2: RF analysis discriminating MCI from CN controls 
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We tested 65 predictors in order to identify important features that distinguish older adults 

with MCI from CN controls. Results indicated that these cohorts were reliably discriminated by the 

RF classification model (AUC = 0.88, suggesting excellent discrimination; F1 score = 0.84; see 

Table 4-4 for a complete reporting of the evaluation metrics). The waterfall plot for the top 30 

predictors is presented in Figure 4-3. We interpret results for the top five predictors depicted in this 

model because (a) there is an evident elbow in the cumulative ratio at this cut-off, (b) these three 

predictors collectively explained approximately half of the model, and (c) predictors below this 

cut-off contributed less to the classification model. The five features with the highest global 

importance are quality of life (memory, explained 25% of the model), sex (explained 9% of the 

model), lymphocytes (explained 8% of the model), self-rated eyesight (explained 5% of the 

model), and quality of life (leisure, explained 4% of the model). Collectively, these predictors 

explained 51% of the model. The summary plot for the top 30 features is presented in Figure 4-4. 

Visual inspection of this figure revealed that poorer quality of life (memory, leisure), male sex, 

abnormal lymphocyte counts, and poorer self-rated eyesight predict an increased risk for MCI. 

Effects produced by the top three predictors were relatively large in magnitude, whereas effects 

produced by the fourth and fifth predictors were comparatively smaller in magnitude.  

RG3: RF analysis discriminating AD from CN controls 

We tested 75 predictors in order to determine important frailty-related features that 

distinguish older adults with AD from CN controls. Model evaluation metrics indicated that the RF 

classification model discriminated these two cohorts very well (AUC = 0.98, suggests outstanding 

discrimination; F1 score = 0.84; see Table 4-4 for a complete reporting of the results). We present 

the waterfall plot for the top 30 predictors in Figure 4-5. We interpret results for the top 10 

predictors because (a) there is an elbow in the cumulative ratio below this cut-off, (b) these 
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predictors collectively explained over half of the model, and (c) predictors below this cut-off 

contributed comparatively less to the classification model. The 10 predictors with the highest 

global importance include quality of life (memory; explained 15% of the model), olfaction 

(explained 11% of the model), sex (explained 9% of the model), ability to go shopping (explained 

7% of the model), ability to handle money (explained 7% of the model), ability to take medication 

(explained 5% of the model), visual contrast sensitivity (explained 5% of the model), ability to get 

to places beyond walking distance (explained 4% of the model), ability to prepare own meals 

(explained 4% of the model), and ability to do housework (explained 3% of the model). Taken 

together, these predictors explained 70% of the classification model. The direction and magnitude 

of the top 30 predictors’ effects are presented in Figure 4-6. As highlighted in the figure, poorer 

quality of life (memory), olfactory deficits, male sex, higher levels of dependence in instrumental 

activities of daily living (ability to go shopping, handle money, take medication, get to places 

beyond walking distance, prepare own meals, and do housework), and poorer visual contrast 

sensitivity exacerbate AD risk. Each of these features produced effects of a relatively large 

magnitude. 

RG4: Examination of frailty across cohorts and indices 

We present a list of the indicators included in the calculation of the 30- and 81-item frailty 

index (Burt et al., 2019) in Table 4-3. This table provides meaningful insight into the extent to 

which frailty-related features generalize across (a) clinical cohorts and (b) complementary 

conceptualizations of a frailty index. We report descriptive statistics for the 30- and 81-item frailty 

index in Table 4-1. Results from a one-way ANOVA revealed that, while values on the 30-item 

frailty index did not vary across SCI (M = 0.26, SD = 0.09), MCI (M = 0.26, SD = 0.09) or AD (M 

= 0.28, SD = 0.10), each of these clinical cohorts reported higher levels of frailty as compared to 
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CN controls (M = 0.17, SD = 0.07; F(3, 251) = 20.14, p < .001). Similarly, findings for the 81-item 

index revealed that the level of frailty was comparable across SCI (M = 0.18, SD = 0.07), MCI (M 

= 0.20, SD = 0.09), and AD (M = 0.21, SD = 0.09). However, only older adults with AD reported 

higher levels of frailty as compared to CN controls (M = 0.17, SD = 0.07; F(3, 251) = 2.93, p = 

.03). As predicted, values on the 30-item frailty index were higher than the 81-item index for older 

adults with SCI (t(35) = 5.43; p < .001), MCI (t(115) = 11.49; p < .001), or AD (t(42) = 7.14; p < 

.001). The level of frailty did not vary across indices for CN controls (t(59) = 1.04; p = .30).  

Convergent with the foregoing results, a comparable proportion of participants with SCI 

(58.3%), MCI (62.1%), or AD (62.8%) were classified as frail using the 30-item index, however, 

the prevalence of frailty was higher for each of the respective cohorts as compared to CN controls 

(8.3%; χ2(3) = 52.16, p < .001). The following proportion of participants were classified as frail 

using the 81-item index: 13.3% for CN, 16.7% for SCI, 25.9% for MCI, and 34.9% for AD; only 

older adults with AD differed significantly from CN controls (χ2(3) = 7.91, p = .05). We tested and 

confirmed that a higher proportion of participants with SCI, MCI, or AD were classified as frail 

using the 30- as compared to the 81-item index (p-values for all McNemar’s tests < .01). The 

proportion of CN controls classified as frail did not vary across indices (McNemar’s test, p = .45) 

Discussion 

This study aimed to resolve selected empirical and clinical inconsistencies between 

prevailing frailty models through a complementary conceptualization and the application of a data-

driven approach to measurement, analyses, and interpretation. Previous research conducted with 

CN and other aging adults has generated promising results by applying such analytical techniques 

to heterogeneous databases of aging morbidity indicators (Bohn et al., 2021; Peng et al., 2020; 

Song et al., 2004a; Song et al., 2004b). We advance this prior work by assembling cross-sectional 
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multi-morbidity and biomarker data for cohorts of older adults who spanned the AD spectrum. Our 

specific RGs included identification of the most important frailty-related features that 

discriminated clinical cohorts of older adults with SCI (RG1), MCI (RG2), or AD (RG3) from a 

benchmark sample of CN older controls using machine learning-based RF classification analysis. 

For RG4, we calculated a 30-item data-driven frailty index and an 81-item frailty index (Burt et al., 

2019) and tested whether frailty levels varied across cohorts and indices. Results for RGs 1–3 

indicated that each classification model reliably discriminated the target clinical cohort from CN 

controls. Moreover, for each analysis, the following domains of deficits were identified as leading 

risk characteristics: quality of life (as indicated by results for SCI, MCI, and AD), inflammatory 

markers (as indicated by results for SCI and MCI), demographic characteristics (as indicated by 

results for MCI and AD), sensory functions (as indicated by results for MCI and AD), and 

instrumental activities of daily living (as indicated by results for AD). Importantly, we also 

identified frailty-related features that (a) did not elevate clinical risk for cognitive impairment or 

dementia (e.g., depression and polypharmacy) or (b) were selectively sensitive to prediction of SCI 

(e.g., self-reported balance, falls in the past year, white blood cell count), MCI (e.g., pulse pressure, 

episodes of fainting, type II diabetes), and AD (e.g., sleep apnea, heart attack, red cell distribution 

width; see Table 4-3 for generalizability of the top 30 features). Findings for RG4 indicated that, 

while the level of frailty did not vary across clinical cohorts, older adults with SCI, MCI, or AD 

reported a higher frailty burden on the 30-item index as compared to (a) CN controls and (b) the 

81-item index. Each of the respective findings are discussed in further detail below.   

RG1: RF analysis discriminating SCI from CN controls 

The RF classification model distinguished older adults with SCI from CN controls with a 

high degree of accuracy (AUC = 0.89; F1 score = 0.72), which is particularly notable given that 
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these are neighbouring cohorts along the AD spectrum. These results contribute to and extend the 

emerging literature on frailty-SCI associations (Ruan et al., 2020) and identify frailty an important 

risk factor for SCI. A recent cross-sectional study reported a positive association between the 

physical frailty phenotype and measures pertaining to SCI such that each additional deficit 

predicted a nearly threefold increase in the odds of impairment (Gifford et al., 2019). Subsequent 

epidemiological research examined cross-sectional frailty-SCI associations (Margioti et al., 2020). 

In this study, frailty was operationalized using the 5-item physical frailty phenotype (Fried et al., 

2001), a 61-item frailty index, and a 13-item version of the Tilburg Frailty Indicator (Gobbens et 

al., 2010). Briefly, the Tilburg Frailty Indicator is a self-report screening questionnaire that 

incorporates deficits spanning physical, psychological, and social domains. Results indicated that 

frailty, as defined by each measurement approach, was positively related to risk for SCI. 

Importantly, however, frailty-SCI associations were comparatively stronger when a multi-domain 

deficit accumulation approach (as opposed to a physical frailty phenotype) was employed as the 

operational definition. Convergent results were obtained in the present study, in that the top 30 

features identified in machine learning analyses spanned multiple domains or systems of aging 

morbidity. Specifically, we found that poorer quality of life (memory), abnormal lymphocyte 

counts, and abnormal neutrophil counts were leading discriminative features. Collectively, these 

three features explained approximately half of the model’s prediction of SCI.  

Quality of life represents a broad summary measure of one’s perception of their position in 

life relative to beliefs, goals, concerns, and expectations (Hill et al., 2017; WHOQOL Group, 

1998). Quality of life indicators are often (although not always) considered in multi-domain 

approaches to frailty measurement and conceptualization (Buta et al., 2016; Panza et al., 2018; 

Sathyan et al., 2019; Searle et al., 2008). Importantly, however, this study is the first to our 
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knowledge to extract quality of life, particularly as it relates to memory (see Table 4-2 for specific 

item), from a large and heterogeneous multi-morbidity inventory and identify it as a central risk-

elevating characteristic. We note that, while there is some conceptual overlap between this 

indicator and the clinical criteria for SCI (Chertkow et al., 2019), this specific variable is not 

included in the diagnostic criteria for SCI in the COMPASS-ND database. Previous research also 

indicates that quality of life and subjective cognitive complaints are associated (Hill et al., 2017), 

suggesting that this is as an important area of continued research attention.    

Accumulating literature has reported that indicators of peripheral systemic inflammation may 

represent promising biomarkers of frailty (Collerton et al., 2012; Rodriguez-Mañas et al., 2020; 

Wang et al., 2019) and have advocated for including such deficits in the operational definition of 

frailty (Blodgett et al., 2017; Howlett et al., 2014; Mitnitski et al., 2015; Rockwood et al., 2015). 

For example, Mitnitski et al. calculated a frailty index using cross-sectional data for 40 biomarkers 

representing inflammation, cellular aging, haematology, and immunosenescence. The authors 

validated the biomarker-based frailty index against prediction of 7-year mortality and compared its 

performance against prevailing approaches to frailty measurement and conceptualization. Results 

indicated that the biomarker-based frailty index predicted mortality; tended to outperform the 

physical frailty phenotype; performed similarly to a frailty index derived using only clinical 

conditions; and had the highest prediction accuracy when combined with the latter index. 

Approximately half of the biomarkers used to compose the biomarker-based frailty index 

independently predicted mortality, including the following three inflammatory markers that we 

identified as amongst the top 30 risk characteristics for SCI: abnormal lymphocytes, abnormal 

neutrophils, and abnormal white blood cell counts (ranked 4th). The authors concluded that findings 

from this line of research may elucidate the pathophysiologic mechanisms of frailty and thereby 



DATA-DRIVEN APPROACHES TO FRAILTY AND RISK PREDICTION 

 
137 

encouraged future studies to extend these results across prediction of additional adverse frailty-

related outcomes. The current study fills this gap and addresses an important limitation noted in 

previous frailty-SCI research. Specifically, Margioti et al. (2020) stated that, due to unavailability, 

they did not include laboratory tests in their examination of frailty-SCI associations (e.g., routine 

blood exams representing systemic inflammation, vascular pathology, and stress) and highlighted 

the need for further studies to address this research aim.  

At least two other studies have applied machine learning techniques to inflammatory 

biomarkers, clinical history, nutritional status, demographic, and lifestyle characteristics in order to 

identify frailty-related features that exacerbate risk for negative outcomes (Rankin et al., 2020; 

Subudhi et al., 2021). Importantly, the pattern of results reported converge with the present study. 

Specifically, Subudhi and colleagues reported that abnormal lymphocyte and neutrophil counts 

were amongst the top 10 features that increased risk for admission to an intensive care unit (ranked 

6th and 4th, respectively) and mortality (ranked 2nd and 3rd, respectively). Rankin and colleagues 

found that glycated hemoglobin (HbA1c; a blood-based glycemic biomarker and indicator of 

peripheral systemic inflammation) was amongst the top 20 features that discriminated older adults 

with cognitive dysfunction from older adults with normal cognition. We also found that abnormal 

HbA1c was amongst the top 30 features that discriminated older adults with SCI, MCI, or AD from 

a benchmark sample of CN controls (ranked 7th, 7th, and 22nd, respectively). Taken together, these 

results advance previous studies implicating chronic inflammation in the clinical etiology of frailty 

(Fernández-Garrido et al., 2014; Hyde et al., 2019) and lend credence to the notion that 

inflammation represents a potential explanatory mechanism underlying frailty-cognition 

associations (Halil et al., 2015; Robertson et al., 2013; Tay et al., 2016). Future machine learning 

analyses should be applied to the full COMPASS-ND biosample database in order to determine the 
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relative importance of a wider range of blood-based biomarkers in (a) the operational definition of 

frailty and (b) determining risk for adverse frailty-related outcomes.  

RG2: RF analysis discriminating MCI from CN controls 

The RF classification model had high prediction accuracy in discriminating older adults with 

MCI from CN controls (AUC = 088; F1 score = 0.84). These findings mark an important 

contribution to the growing literature on frailty as a potential risk factor for MCI (Borges et al., 

2019b; Canevelli et al., 2015; Fabrício et al., 2020; Panza et al., 2018; Robertson et al., 2013). For 

example, longitudinal data from the Rush Memory & Aging Project showed that physical frailty 

increased the likelihood of incident MCI, such that each additional deficit predicted a 63% increase 

in the risk of cognitive impairment (Boyle et al., 2010). Higher levels of physical frailty were also 

associated with a steeper rate of decline in global cognition, memory performance, perceptual 

speed, and visuospatial abilities. More recent research examined how components from the 

physical frailty phenotype affect cognitive performance and decline (Sternäng et al., 2016; Yassuda 

et al., 2012), as well as risk for MCI (Nyunt et al., 2017), with results suggesting that slower gait 

speed and reduced grip strength have the strongest associations with these outcomes (Boyle et al., 

2010; McGough et al., 2013). We advance these prior works by applying data-driven, machine 

learning technology to a large database of multi-morbidity indicators and identifying the follow 

frailty-related features as leading risk characteristics: poorer quality of life (memory, leisure), male 

sex, abnormal lymphocyte counts, and poorer self-rated eyesight. These features collectively 

explained half of the model’s prediction of MCI.   

Limited literature has examined quality of life as a correlate of MCI or dementia and the 

findings are equivocal, including null, weak, or strong associations (Banerjee et al., 2009; Landeiro 

et al., 2020; Woods et al., 2014). The present study clarifies the evidence in this area by 
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demonstrating that poorer quality of life elevates clinical risk across AD spectrum. Specifically, 

our results indicated that quality of life (memory, leisure) was amongst the top 30 discriminative 

features for SCI (ranked 1st and 9th, respectively), MCI (ranked 1st and 5th, respectively), and AD 

(ranked 1st and 18th, respectively). Analogous findings have been reported in the small number of 

related machine learning works. For example, Rankin and colleagues (2020) identified memory 

concerns as amongst one of the top frailty-related features that exacerbated risk for cognitive 

dysfunction. Another study developed binary classification models using 284 aging morbidity 

indicators and reported that reduced activity participation and boredom were leading features that 

discriminated frail and non-frail older adults (Hassler et al., 2019). Similarly, Na (2019) applied 

machine learning analyses to varied aging morbidity indicators and reported that limited activity 

participation was a top feature that predicted conversion from normal cognitive aging to MCI. 

Although these studies did not explicitly measure quality of life, the findings reported converge 

with the notion that poorer perceptions of quality of life (memory, leisure) may (a) represent a 

critical component of frailty, (b) elevate clinical risk for adverse cognitive aging outcomes 

(Rockwood et al., 2020), and (c) increase prediction accuracy of composite frailty index 

approaches. These possibilities could be tested in subsequent research.  

Notably, other machine learning research has reported that, consistent with the present study, 

male sex is a leading risk characteristic for incident MCI (Na, 2019). These results contribute to 

and extend previous work suggesting that— because the prevalence and incidence of MCI is higher 

amongst males as compared to females (Ganguli et al., 2004; Jack et al., 2019; Petersen et al., 

2010; Ruan et al., 2020)— males may in fact be more vulnerable to cognitive impairment and 

dementia (Dubal, 2020). This is an important target for future large-scale, longitudinal 

epidemiological research. The impetus behind this recommendation is threefold. First, our review 
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indicated that sex (as a predictor or stratification variable) is seldom considered in machine 

learning analyses (Greene et al., 2014; Peng et al., 2020). Second, the limited body of pertinent 

research has reported inconsistent findings with respect to the nature and magnitude of sex-frailty-

cognition associations (Bohn et al., 2021; Thibeau et al., 2019). Third, advanced understanding of 

sex differences in cognitive impairment and dementia risk may reveal novel modifiable targets for 

precision intervention and treatment protocols (Andrew & Tierney, 2018; Dubal, 2020; Tierney et 

al., 2017).  

Our finding that abnormal lymphocyte counts increased risk for MCI converges with results 

recorded for SCI (ranked 2nd) and AD (ranked 15th) and advances the emerging literature on the 

diagnostic and clinical utility of blood-based inflammatory biomarkers (Soria-Comes et al., 2020). 

For example, one study reported that (a) participants with MCI or AD had lower lymphocyte 

counts and percentages relative to CN controls and (b) abnormal neutrophil-to-lymphocyte ratios 

discriminated cohorts with MCI (AUC = 0.60) and AD (AUC = 0.73) from CN controls (Dong et 

al., 2019). Perhaps of greater relevance to the current study, a recent scoping review examined the 

evidence on lymphocytes as a potential biomarker of frailty and reported that abnormal counts or 

percentages are associated with an increased risk for frailty emergence and progression (Navarro-

Martínez & Cauli, 2021). The authors concluded that lymphocytes should be incorporated into the 

operational definition of frailty and our results buttress this claim. Routine monitoring of 

lymphocytes may allow for earlier and more reliable frailty identification in clinical-research 

settings, as well as provide prognostic information on the likelihood of frailty progression and 

response to treatment (Navarro-Martínez & Cauli, 2021). 

Previous research has assimilated indicators representing visual function (and related sensory 

deficits) into a continuous frailty index and demonstrated that higher levels predict MCI (Ma et al., 
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2017), AD (Mitnitski et al., 2011), or all-cause dementia (Song et al., 2014). We extend this prior 

work by identifying self-reported eyesight (see Table 4-2 for item) as a critical component of 

frailty that increases risk for MCI. This finding dovetails with earlier studies that indicated older 

adults with visual impairment were at a nearly twofold increased risk for exacerbated cognitive 

decline relative to older adults without such recorded deficits (Fischer et al., 2016; Lin et al., 2004). 

Similarly, more recent longitudinal research reported that reduced visual acuity increased the odds 

of MCI by 30–70% (Smith et al., 2021). Nevertheless, it has been noted that much of the available 

research on this topic has operationalized visual impairment using objective measures of distance 

visual acuity (Swenor et al., 2019). Because visual function is a complex process, it has been 

suggested that multiple and varied indicators ought to be considered in future vision-MCI research. 

Accordingly, Swenor et al. (2019) examined whether MCI risk varied as a function of deficits 

recorded in visual acuity, visual contrast sensitivity, and stereo visual acuity. Results indicated that, 

across indicators, impaired visual function increased the likelihood of MCI. In the current study, 

we examined objective (i.e., impaired visual contrast sensitivity, clinical history of macular 

degeneration or cataracts) and subjective (i.e., self-reported eyesight) visual deficits in a 

competitive computational context and identified the latter as a leading risk characteristic. This 

result is encouraging, as it suggests that quick and inexpensive markers of visual function may be 

useful for identifying older adults at risk for adverse frailty-related outcomes, including MCI.  

RG3: RF analysis discriminating AD from CN controls 

The RF classification model yielded excellent accuracy in discriminating older adults with 

AD from CN controls (AUC = 0.98; F1 score = 0.84). These results mark an important contribution 

to the literature on frailty-dementia associations (Canevelli et al., 2015; Panza et al., 2018; 

Robertson et al., 2013), where there remains some debate surrounding the nature and magnitude of 
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these associations, as well as how they may vary as a function of the operational definition of 

frailty (Borges et al., 2019a). For example, several studies have demonstrated that the physical 

frailty phenotype predicts vascular dementia, is marginally associated with all-cause dementia, and 

is unrelated to AD (Avila-Funes et al., 2012; Gray et al., 2013; Solfrizzi et al., 2013). Conversely, 

research employing a multi-domain deficit accumulation approach has reported that frailty predicts 

conversion from MCI to AD (Trebbastoni et al., 2017), all-cause dementia (Li et al., 2020), and 

AD (Wang et al., 2017). In the current study, we found that poorer quality of life (memory), 

sensory deficits (olfaction and visual contrast sensitivity), male sex, and higher levels of 

dependence in instrumental activities of daily living (ability to go shopping, handle money, take 

medication, get to places beyond walking distance, prepare meals, and perform housework) are 

critical features of frailty that exacerbate AD risk. The varied nature of these domains suggests that 

(a) older adults with broadly constituted health decline may be more susceptible to AD (Mitnitski 

et al., 2011, 2013; Mitnitski et al., 2004), (b) multiple systems of aging morbidity should be 

included in the operational definition of frailty in order to reliably identify at-risk older adults 

(Stephan et al., 2010), and (c) multi-modal interventions may be required for dementia treatment or 

prevention (Eggink et al., 2019; Livingston et al., 2017). 

As previously noted, sensory deficits are often included in composite frailty index 

approaches (Burt et al., 2019; Ma et al., 2017; Mitnitski et al., 2011; Mitnitski et al., 2004; Song et 

al., 2014; St John et al., 2017). For example, Ma et al. considered deafness, cataracts, vision 

disorder, and hearing impairment in their 67-item frailty index. Burt and colleagues included the 

following indicators from the COMPASS-ND database in their operational definition of frailty: 

self-reported eyesight, self-reported hearing, macular degeneration, cataracts, and glaucoma. The 

present study tested the relative predictive importance of the latter indicators together with the 
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following sensory deficits: visual contrast sensitivity, hearing handicap, and olfaction (see Table 4-

2 for items). To our knowledge, no previous work has considered olfaction as amongst one of the 

indicators of aging multi-morbidity in a cumulative frailty index. The reasons for this pattern are 

unclear, given that olfactory deficits possess the characteristics required for inclusion in a 

traditional frailty index (Searle et al., 2008). For example, cross-sectional and longitudinal data 

indicate that olfactory deficits increase with age (Lara et al., 2015) and may represent a harbinger 

of adverse brain and cognitive aging outcomes, including exacerbated cognitive decline, 

impairment, and dementia (Attems et al., 2015; de Moraes e Silva et al., 2018; Jung et al., 2019; 

MacDonald et al., 2018; Murphy, 2019; Velayudhan, 2015). Furthermore, recent research reported 

that older adults with olfactory dysfunction had higher frailty index scores (Bernstein et al., 2021) 

or were more likely to be classified as physically frail (Laudisio et al., 2019). Our results indicated 

that (a) olfaction and visual contrast sensitivity were leading features that discriminated AD from 

CN controls (ranked 2nd and 7th, respectively) and (b) self-rated hearing and macular degeneration 

were amongst the top 30 discriminative features (ranked 21st and 28th, respectively). Notably, we 

also identified olfaction as amongst the top 30 features that increased risk for MCI (ranked 11th). 

Collectively, these results bolster previous research including sensory deficits in the operational 

definition of frailty and add to the growing literature suggesting that olfaction, visual, and auditory 

deficits may represent modifiable targets for the prevention of accelerated cognitive decline 

(MacDonald et al., 2018), impairment (Murphy, 2019), and dementia (Livingston et al., 2017, 

2020; Risacher et al., 2013, 2020; Rockwood et al., 2020).  

We were initially surprised to find that male sex increased risk for AD given that previous 

studies have suggested that females may be disproportionately affected in terms of prevalence, 

severity, and rate of AD progression (Mazure & Swendsen, 2016). However, we note three 
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potential explanations for this result. First, a recent review reported that, although females often 

have a greater risk of developing AD as compared to males, these differences are typically 

restricted to advanced ages (i.e., > 80 years; Dubal, 2020). In the current research, the average age 

of study participants was well below this threshold (M = 71.18 years). Second, considerable 

research has established chronological age (per se) as the single most important risk factor for AD 

(Riedel et al., 2016). Findings from follow-up analyses indicated that males (M = 72.38) were 

significantly older than females (M = 70.32; p < .05). Third, as outlined above, higher levels of 

frailty increase AD risk. Notably, males (M = 0.27) in our study reported higher values on the 30-

item frailty index as compared to females (M = 0.23; p < .01), suggesting that sex differences in the 

burden of frailty may be an important mechanism contributing to the increased AD risk for males. 

We identify this as an important follow-up question for future COMPASS-ND research.  

It is interesting that each of instrumental activities of daily living indicators considered in this 

RF analysis emerged as salient risk characteristics. Deficits in performing instrumental activities of 

daily living have been widely assimilated into composite frailty index approaches (e.g., Burt et al., 

2019; Searle et al., 2008) and are established risk factors for cognitive impairment and dementia 

(Cloutier et al., 2021; Mao et al., 2018; Roehr et al., 2019). For example, previous research 

suggests that a reduced capacity to perform instrumental activities of daily living may appear early 

in the neuropathological cascade of AD (Amieva et al., 2008; Brown et al., 2011; Cloutier et al., 

2021; Jutten et al., 2019; Pérès et al., 2008). Further, individuals presenting with both functional 

declines and SCI (Roehr et al., 2019) or MCI (Jekel et al., 2015) may be particularly vulnerable for 

dementia conversion. At least two other studies have concluded that deficits in instrumental 

activities of daily living are a critical feature of data-driven frailty models (Goonawardene et al., 

2018; Hassler et al., 2019). Goonawardene and colleagues applied machine learning techniques to 
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in-home sensor data (i.e., motion sensors that track participants’ movement throughout the home) 

and reported that kitchen activity levels and kitchen use duration were key characteristics that 

discriminated frail from non-frail older adults. Hassler et al. applied machine learning analyses to a 

large number of aging morbidity indicators and found that difficulties in performing housework, 

using the telephone, shopping, cooking, or public transportation were leading features that 

differentiated frail and non-frail older adults.   

RG4: Examination of frailty across cohorts and indices 

As emphasized in the preceding sections, examination of prediction patterns across clinical 

cohorts revealed clusters of frailty-related features that generalized across prediction of SCI, MCI, 

and AD. Importantly, however, we also identified clusters of deficits that were either (a) 

unassociated with clinical risk for SCI, MCI, and AD or (b) selectively sensitive to prediction of 

these cognitive outcomes (or clinical cohorts). Accordingly, we calculated a separate 30-item data-

driven frailty index for each clinical cohort using cross-sectional data for the top 30 features 

identified in the machine learning analyses. We present the full set of cohort comparisons in Table 

4-3 and discuss generalizability of the frailty-related features across RGs 1–3 below, followed by a 

specific overview of findings for RG4.  

As detailed in the foregoing discussion, quality of life (memory, leisure) and inflammatory 

biomarkers (lymphocytes, HbA1c) emerged as important frailty-related features that elevated 

clinical risk for SCI, MCI, and AD. We elaborate on these findings here and note that sleep 

(disturbances, medication), oral health and nutritional factors (self-reported appetite, mouth health, 

difficulty swallowing), and functional indicators (grip strength) were also identified as amongst the 

top 30 features that increased risk for these cognitive outcomes. Sleep disturbances have received 

some empirical interest for their role in the development cognitive impairment and dementia 
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(Rockwood et al., 2020; Wennberg et al., 2017), with evidence suggesting that deficits in this 

domain may exacerbate risk. Interestingly, our results indicated that increased usage of sleep 

medication was associated with a reduced risk for SCI, MCI, and AD. Several viable explanations 

have been posited to underlie sleep-cognition associations (e.g., sleep may promote repair of 

damage caused by other factors; Livingston et al., 2017), however the causal direction and 

pathophysiologic mechanisms of this relationship remains unclear (Wennberg et al., 2019). Oral 

health (Nangle et al., 2019) and nutritional factors (Artero et al., 2008; Reisberg et al., 2010) have 

also been identified as potentially modifiable risk factors for exacerbated cognitive decline, 

impairment, and dementia. Oral health may affect brain and cognitive aging via specific biological 

mechanisms, such as common inflammatory pathways or reduced nutritional intake (Noble et al., 

2013).  

Importantly, of the five indicators included in the operational definition of the physical frailty 

phenotype (Fried et al., 2001), grip strength was the only characteristic that generalized across 

prediction SCI, MCI, and AD. These results replicate previous studies demonstrating an 

independent association between grip strength and reduced cognition function (Cui et al., 2021; 

Sternäng et al., 2016; Zammit et al., 2019) and extend earlier work suggesting that components of 

the frailty phenotype may be differentially associated with risk for cognitive impairment and 

dementia (Al Saedi et al., 2019; Boyle et al., 2010; Gifford et al., 2019; Hooghiemstra et al., 2017; 

Walston et al., 2018). Specifically, our results indicated that unintentional weight loss was 

selectively sensitive to prediction of SCI (ranked 19th), exhaustion predicted SCI and MCI (i.e., 

everything an effort; ranked 30th and 13th, respectively), and AD was selectively predicted by 

slowness and low physical activity (ranked 11th and 30th, respectively). This pattern of results 

advances the literature on frailty as a risk factor for cognitive impairment and dementia by 
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suggesting that a multi-domain deficit accumulation approach may be a more robust and reliable 

indicator of frailty status and risk for adverse cognitive aging outcomes or trajectories as compared 

to the physical frailty phenotype.  

Importantly, we also identified several frailty-related features that did not elevate risk across 

the AD spectrum (e.g., waist-to-hip ratio, hearing handicap, stroke) and discuss two such predictors 

here— depression and polypharmacy. Each of these indicators have been included in composite 

frailty indices (Bohn et al., 2021; Burt et al., 2019; Margioti et al., 2020; Thibeau et al., 2019; 

Ward et al., 2021a) and have been characterized (to varying degrees) as independent risk factors 

for cognitive impairment and dementia. For example, several systematic reviews have examined 

the evidence on depression as it relates to SCI and MCI and concluded that, in general, higher 

levels of depressive symptomatology exacerbate risk (Cooper et al., 2015; Hill et al., 2016; Mourao 

et al., 2016). Importantly, however, the authors cautioned that the evidence in this area remains 

somewhat mixed and noted that future studies are required to establish the reliability of these 

associations. The current study answers this call by deploying a powerful machine learning 

prediction technology that evaluates the relative importance of multiple frailty-related risk factors 

simultaneously. In this competitive analytic context, we observed that depression did not 

distinguish clinical cohorts of older adults with SCI or MCI from CN controls. The evidence on 

depression as a potential risk factor for dementia is less mixed (Livingston et al., 2017, 2020). For 

example, the 2017 Lancet Commission report on dementia prevention, intervention, and care 

concluded that up to a third of dementia cases are attributable to nine modifiable risk factors, 

including depression. Our results suggest that, when tested against a wide and representative set of 

aging morbidity indicators using machine learning technologies, depression is not a central 

characteristic of frailty that elevates AD risk. Similarly, although several studies suggest that 
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polypharmacy may be associated with reduced cognitive function (Langeard et al., 2016; Rawle et 

al., 2018), cognitive impairment (Margolis et al., 2021), and dementia (Cheng et al., 2018; 

Leelakanok & D’Cunha, 2019), polypharmacy did not emerge as a leading feature of frailty that 

increased risk for SCI, MCI, or AD. Interestingly, a recent scoping review reported that this 

variable may be more likely to appear in sex stratification analyses. We intend to examine this 

possibility in a follow-up study.   

Notably, our RF classification models revealed frailty-related indicators that were selectively 

sensitive to prediction of SCI (e.g., self-reported balance, falls in the past year, white blood cell 

count), MCI (e.g., pulse pressure, episodes of fainting, type II diabetes), and AD (e.g., sleep apnea, 

heart attack, red cell distribution width). These findings run in parallel to previous machine 

learning research that reported prediction patterns varied across outcomes, including exacerbated 

cognitive decline (McFall et al., 2019), disability, hospitalization, and mortality (Tarekegn et al., 

2020). Our results have implications for precision health solutions to better identify and target 

clinically relevant signatures of frailty risk across the AD spectrum. Further, our results suggest 

that older adults at risk for frailty and negative cognitive aging outcomes can be reliably identified 

by a relatively small number of data-driven aging morbidity indicators. Specifically, across RF 

classification models, the top 30 frailty-related features explained approximately 90% of the 

model’s prediction of SCI, MCI, or AD.  

Results for RG4 indicated that data-driven frailty index levels did not vary across SCI, MCI, 

or AD (M index score = 0.27) and neither did the prevalence of frailty (M prevalence = 62%). 

However, consistent with our expectations and previous research (Gifford et al., 2019; Kojima et 

al., 2017; Sugimoto et al., 2018), we found that older adults with SCI, MCI, or AD reported higher 

levels of frailty on the 30-item index relative to CN controls. When frailty was measured using an 
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81-item index that was operationalized in previous COMPASS-ND research (Burt et al., 2019), we 

found that (a) the level and prevalence of frailty did not vary across clinical cohorts (M index score 

= 0.20; M prevalence = 26%) and (b) only older adults with AD reported a higher burden and 

prevalence of frailty relative to CN controls. We subsequently compared the level and prevalence 

of frailty across the 30-item and 81-item index and found that, across clinical cohorts, the former 

index generated larger estimates of these outcomes. Future work could examine predictive validity 

of these complementary conceptualizations of a frailty index (Peng et al., 2020).  

Strengths and limitations 

We note several methodological strengths. First, data-driven analyses were conducted using 

powerful machine learning technologies. This analytical approach represents a promising 

alternative to traditional research methods for identifying the key markers of frailty within a cluster 

of aging morbidity indicators, as well as improving prediction of adverse frailty-related outcomes 

and identifying clinically relevant and potentially unexpected signatures of risk. Further, our 

classification models (a) incorporated a wide and representative set of frailty-related features, (b) 

were predicated on well-defined surrogates for frailty, (c) demonstrated high prediction accuracy in 

discriminating clinical cohorts of older adults with SCI, MCI, or AD from a cohort of CN controls, 

(d) elucidated the domains of deficits (and individual indicators) that increased risk for these 

outcomes, and (e) interpreted black-box RF classification models using SHAP values (Bloch et al., 

2021). The latter consideration has relevance in clinical-research settings, where model 

interpretation may be of greater significance than overall prediction performance (Lundberg et al., 

2020). Although expanding, relatively few studies have leveraged these analytical techniques in 

order to advance the literature on frailty measurement and conceptualization. Second, cross-

sectional data were drawn from the COMPASS-ND database, which represents the most 
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comprehensive and ambitious Canadian study of neurodegenerative disorders (Chertkow et al., 

2019). Participants in this study were deeply phenotyped cohorts of older adults who varied along 

the spectrum of normal cognitive aging, through to impairment and dementia. By including a 

cohort of CN older controls, we were able to identify potentially modifiable and unexpected risk 

characteristics that could be targeted prior to the onset of clinically detectable frailty and cognitive 

impairment. To our knowledge, no previous works have developed data-driven models of frailty 

and subsequently validated them against prediction of SCI, MCI, and AD. We encourage future 

replications and extensions within the COMPASS-ND database, as well as in related large-scale 

longitudinal studies of brain and cognitive aging.  

We acknowledge several potential study limitations. First, the uneven sex distributions 

coupled with relatively small subsample sizes precluded us from testing whether prediction 

patterns varied for males as compared to females. We intend to address this research aim in follow-

up work. Findings from this line of research have applications to advancing understanding of sex 

differences in the clinical etiology and progression of frailty, as well as in frailty-cognition 

associations. Second, due to unavailability, we were unable test a larger and more comprehensive 

panel of fluid biomarkers in the RF classification models. Future studies could explore whether 

inclusion of additional biomarkers related to general health, sex-related hormones, inflammation, 

lipid metabolism, and oxidative stress may result in prediction patterns that diverge from the 

present research. However, we restricted our sampling of fluid biomarkers to domains that have 

been previously linked to frailty and aging (Al Saedi et al., 2019; Rodriguez-Mañas et al., 2020). 

As longitudinal follow-up COMASS-ND data become available, we plan to identify frailty-related 

characteristics that exacerbate risk for accelerated cognitive decline, conversion of SCI and MCI, 

and dementia progression.  
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Conclusions 

To summarize, the current study advances the literature on frailty measurement and 

conceptualization by (a) testing a wide and representative set of aging morbidity indicators from 

the COMPASS-ND database in a competitive computational context and (b) identifying selected 

important frailty-related characteristics that elevate clinical risk for SCI, MCI, and/or AD. Using 

ML analyses, we identified domains of deficits that varied in terms of their contribution to the RF 

classification model, but nonetheless generalized across prediction of cognitive outcomes (or 

clinical cohorts), including quality of life (memory, leisure), inflammatory biomarkers 

(lymphocytes, HbA1c), sleep (disturbances, medication), functional markers (grip strength), oral 

health and nutritional factors (self-reported appetite, mouth health, difficulty swallowing). This 

pattern of results suggests that (a) multi-domain deficit accumulation approaches may better 

capture the typical heterogeneity of frailty as compared to syndromic definitions and (b) composite 

indices incorporating these domains of deficits may better identify older adults an increased risk for 

frailty and associated negative outcomes. Notably, we also detected frailty-related features that 

have been previously assimilated in composite index (e.g., dependence in instrumental activities of 

daily living, self-reported hearing) or phenotypic approaches (e.g., unintentional weight loss, timed 

walk) that were selectively sensitive to prediction of SCI, MCI, and AD. As such, we calculated a 

separate 30-item data-driven frailty index for each clinical cohort. Subgroup analyses indicated that 

the level and prevalence of frailty did not vary across clinical cohorts but was elevated in 

comparison to (a) a benchmark sample of CN controls and (b) an 81-item frailty index that was 

operationalized in previous research using standard guidelines (Searle et al., 2008) and expert 

recommendation (Burt et al., 2019). To our knowledge, this study is the first to systematically 

examine these research aims using sophisticated data-driven analyses. Our findings have 
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application to precision interventions to better identify and target frailty across the AD spectrum 

(Apóstolo et al., 2018; Robertson et al., 2013).  
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 Table 4-1. Demographic and Clinical Characteristics Disaggregated by Cohort  

Note. Results are presented as mean (standard deviation) unless noted as otherwise. p-values are 

based on one-way analysis of variance or chi-square tests, as appropriate. We adjusted for multiple 

comparisons using post-hoc Tukey tests. Abbreviations: CN, cognitively normal; SCI, subjective 

cognitive impairment; MCI, mild cognitive impairment; AD, Alzheimer’s disease; sig, 

significance; ns, not significant; MoCA, Montreal Cognitive Assessment. a,b,c Values with different 

superscripts significantly differ from one another.  

* p-value < .05 *** p-value < .001 

 

Characteristic 
CN 

(n = 60) 
SCI 

(n = 36) 
MCI 

(n = 116) 
AD 

(n = 43) 
sig 

n(%) female 49 (82%) a 30 (83%) a 57 (49%) b 13 (30%) c *** 

Age (years) 69.23 (5.52) a 69.62 (6.81) a 71.16 (6.48) a 75.26 (7.70) b *** 

Education (years)  15.84 (3.15) 17.49 (3.11) 15.75 (3.89) 15.34 (4.37) ns 

n(%) married 37 (62%) a 17 (47%) a 75 (65%) a 35 (81%) b * 

n(%) Non-Hispanic White 58 (97%) a 34 (94%) a,b 100 (86%) b 42 (98%) a * 

MoCA 27.90 (1.50) a 27.81 (1.33) a 24.28 (3.08) b 18.63 (3.56) c *** 

30-item frailty index 0.17 (0.07) a 0.26 (0.09) b 0.28 (0.10) b 0.28 (0.10) b *** 

     n(%) frail 5 (8%) a 21 (58%) b 72 (62%) b 27 (63%) b *** 

81-item frailty index 0.17 (0.07) a 0.18 (0.07) a 0.20 (0.09) a 0.21 (0.09) b * 

     n(%) frail  8 (14%) a 6 (17%) a,b 30 (26%) a,b 15 (35%) b * 
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Table 4-2. Indicators Eligible for Inclusion in Random Forest Analyses   

Category        Multi-Morbidity Item Coding 

IADL 

 

 

       Getting to places beyond walking distance *, ^ 0 = without help; 0.5 = with some 

help; 1 = completely unable Going shopping for groceries or clothes *, ^ 

Preparing meals *, ^ 

Doing housework *, ^ 

Taking medication ^  

Handling money ^  

ADL Trouble getting to bathroom in time ^ 0 = no; 1 = yes 

Low activity Physical activity (PASE score) *, ^ 0 = ≥64 for men or ≥52 for 

women; 1 = <64 for men or <52 

for women 

Mobility Self-reported balance 0 = very good; 0.5 = pretty good; 

1 = very poor 

Balance confidence (ABC score) 0 = high; 0.5 = moderate; 1 = low 

       Timed walk (averaged over three 6m trials) * > 1m/s = 0; < 1m/s = 1 

 Falls in the past year ^ 0 = no; 1 = yes 

QOL Physical health *, ^ 0 = excellent; 0.33 good; 0.66 = 

fair; 1 = poor Energy *, ^ 

Mood *, ^  

Memory ^  
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Ability to do chores around the house *, ^  

Ability to do things for fun *, ^  

Anthropometric 

measures 
Waist-to-hip ratio 

< 0.85 females, < 0.96 males = 0; 

> 0.85 females, > 0.96 males = 1 

Waist circumference (cm) 
< 88 females, < 102 males = 0; > 

88 females, > 102 males = 1 

 Body mass index (kg/m2) * 0 = 18.5-25; 0.5 = 25 to < 30; 1 = 

< 18.5 or ≥ 30 

 Unintentional weight loss *, ^ 0 = no; 1 = yes 

 

 

Sensory  Self-reported eyesight *, ^ 0 = excellent; 0.25 = very good; 

0.50 = good; 0.75 = fair; 1 = poor 

or non-existent 

 Self-reported hearing *, ^ 

 Hearing handicap (HHIE score) 0 = no hearing handicap; 0.5 = 

mild/moderate handicap; 1 = 

significant handicap 

 Olfaction (B-SIT score) > 11 = 0; < 10 = 1 

 Visual contrast sensitivity (Mars Letter Contrast 

Sensitivity Test) 

0 = normal; 0.5 = moderate; 1 = 

severe impairment 

 Cataracts ^ 0 = no; 1 = yes 
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 Macular degeneration ^  

Sleep  Sleep duration (PSQI score) 0 = none; 0.33 = slight problem; 

0.66 = somewhat a problem; 1 = 

big problem 

 Sleep efficiency (PSQI score) 

 Sleep disturbances (PSQI score) 

 Daytime dysfunction (PSQI score) 

 Sleep latency (PSQI score) 

 Sleep medication (PSQI score) 

 Self-reported sleep quality *, ^ 0 = very good; 0.33 = fairly good; 

0.66 = fairly bad; 1 = very bad 

Clinical assessment        Grip strength (averaged over three trials) *, ^ Males: for BMI ≤ 24, GS ≤ 29; for 

BMI 24.1-28, GS ≤ 30; for BMI > 

28, GS ≤ 32 

Women: for BMI ≤ 23, GS ≤ 17; 

for BMI 23.1-26, GS ≤ 17.3; for 

BMI 26.1-29, GS ≤ 18; for BMI > 

29, GS ≤ 21 

Pulse pressure (mmHg) * 0 = 32.13-63.90; 0.5 = 64-75.9; 1 

= < 32.12 or 76+ 

Resting heart rate (bpm) * 0 = 60-99; 1 = < 60 or 100+ 

 Self-reported current health b, *, ^  

 Fatigue- everything an effort c, ^  

 Fatigue- could not get going c, *, ^ 
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 Self-reported appetite e, ^  

        Coughing, choking, pain when swallowing f, ^  

 Self-reported mouth health d, ^  

        Eating discomfort due to mouth problems f, ^  

        Avoid eating particular food due to mouth f, ^  

 Polypharmacy h, *, ^  

Osteoarthritis a, *, ^  

Chronic respiratory condition a, *, ^  

 Shortness of breath a, *, ^  

 Sleep apnea a, *, ^  

 High blood pressure or hypertension a, *, ^  

 Atrial fibrillation or irregular heartbeat a, *, ^  

 Heart attack, congestive heart failure a, *, ^  

 Peripheral vascular disease a, *, ^  

 Mini-stroke or TIA a, *, ^  

 Episodes of fainting a, ^  

 Orthostatic blood pressure drop a  

 Vertigo or dizziness  

 Type II diabetes i, *, ^  

 High cholesterol a, *, ^  

 Hypothyroidism a, *, ^  

 Osteoporosis a, *, ^  

 Stomach ulcers a, *, ^  
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 Irritable bowel syndrome a  

 Chronic constipation a, ^  

 Urinary incontinence a, ^  

 Cancer a, *, ^  

 Major depressive disorder a, *, ^  

 Generalized anxiety disorder a, ^  

Fluid biomarkers Hemoglobin  0 = inside established reference 

range; 1 = outside established 

reference range  

Hemoglobin A1c 

       Mean corpuscular hemoglobin concentration 

Mean corpuscular hemoglobin 

Mean corpuscular volume   

White blood cell count   

Red blood cell count  

 Red cell distribution width   

 Number of lymphocytes   

 Number of neutrophils   

 Hematocrit   

Sex Male or Female 0 = male; 1 = female 

Note. Abbreviations: IADL, instrumental activities of daily living; ADL, activities of daily living; QOL, quality of life; PASE, adapted 

Physical Activity Scale for the Elderly (Washburn et al., 1993); ABC, Activities-specific Balance Confidence Scale (Powell & Myers, 

1995); HHIE, Hearing Handicap Inventory for the Elderly— screening version (Ventry & Weinstein, 1982); B-SIT, Brief Smell 

Identification Test (Menon et al., 2013); PSQI, Pittsburgh Sleep Quality Index (Buysse et al., 1989); TIA, transient ischemic attack. * 
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Denotes indicators that are comparable to those used in Bohn et al. (2021) to calculate a frailty index. ^ Denotes indicators that were 

employed in Burt et al. (2019) to calculate a frailty index. a 0 = no; 1 = yes; b 0 = very good; 0.25 = good; 0.50 = average; 0.75 = poor; 

1 = very poor; c 0 = rarely or none of the time; some or a little of the time; 1 = a moderate amount; most of the time; d 0 = excellent; 

0.25 = very good; 0.50 = good; 0.75 = fair; 1 = poor or non-existent; e 0 = very good; 0.33 = good; 0.66 = fair; 1 = poor; f 0 = never; 

0.33 = rarely; 0.66 = sometimes; 1 = often or always; g 0 = very good; 0.33 = fairly good; 0.66 = fairly bad; 1 = very bad; h 0 = 0-4 

medications; 0.5 = 5-7 medications; 1 = 8+ medications. i 0 = no; 0.5 = borderline/high blood sugar; 1 = type I or II diabetes.  
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Table 4-3. Generalizability of the Top 30 Features Identified in Random Forest Analyses 

Indicators Submitted to RF Analysis SCI MCI AD Burt et al. 

Getting to places beyond walking distance (IADL) ^ ^ X X 

Going shopping for groceries or clothes (IADL) ^ ^ X X 

Preparing own meals (IADL) ^ ^ X X 

Doing housework (IADL) X ^ X X 

Taking own medication (IADL) ^ ^ X X 

Handling own money (IADL) ^ ^ X X 

Trouble getting to bathroom in time (ADL) X   X 

Physical activity    X X 

Self-reported balance X    

Balance confidence  X X   

Timed walk    X X 

Falls in the past year X   X 

Physical health QOL X X  X 

Energy QOL X X  X 

Mood QOL  X X X 

Memory QOL  X X X X 

Ability to do chores around the house QOL    X 

Ability to do things for fun QOL X X X X 

Waist-to-hip ratio     

Waist circumference X    

Body mass index  X    

Unintentional weight loss  X ^  X 

Self-reported eyesight   X  X 

Self-reported hearing    X X 

Hearing handicap      

Olfaction  X X  

Contrast sensitivity ^  X  

Cataracts    X 
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Macular degeneration ^ ^ X X 

Sleep duration (PSQI score)  X X  

Sleep efficiency (PSQI score)  X   

Sleep disturbances (PSQI score) X X X  

Daytime dysfunction (PSQI score) X    

Sleep latency (PSQI score)  X X  

Sleep medication (PSQI score) X X X  

Self-reported sleep quality     X 

Grip strength   X X X X 

Pulse pressure   X   

Resting heart rate  X    

Fatigue- everything an effort  X X  X 

Fatigue- could not get going   X  X 

Self-reported current health  X  X 

Self-reported appetite  X X X X 

Coughing, choking, pain when swallowing  X X X X 

Self-reported mouth health  X X X X 

Eating discomfort due to mouth problems X   X 

Avoid eating particular food due to mouth     X 

Polypharmacy     X 

Osteoarthritis     X 

Chronic respiratory condition     X 

Sleep apnea    X X 

High blood pressure or hypertension  X X  X 

Hyperlipidemia  X X X 

Atrial fibrillation or irregular heartbeat    X 

Heart attack, congestive heart failure ^ ^ X X 

Peripheral vascular disease  ^ ^ X 

Mini-stroke or TIA ^  ^ X 

Episodes of fainting  X  X 

Orthostatic blood pressure drop X X   
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Vertigo or dizziness  X   

Type II diabetes ^ X  X 

Hypothyroidism X   X 

Osteoporosis    X 

Stomach ulcers    X 

Irritable bowel syndrome  ^ ^  

Chronic constipation ^  ^ X 

Urinary incontinence    X 

Cancer    X 

Major depressive disorder    X 

Generalized anxiety disorder X   X 

Sex   X X  

Hemoglobin  ^    

Hemoglobin A1c X X X  

Mean corpuscular hemoglobin concentration ^ ^   

Mean corpuscular hemoglobin ^ ^   

Mean corpuscular volume  ^  ^  

White blood cell count  X ^ ^  

Red blood cell count     

Red cell distribution width  ^ ^ X  

Number of lymphocytes  X X X  

Number of neutrophils  X ^ ^  

Hematocrit  ^    

Dressing and undressing (ADL) ^ ^ ^ X 

Eating (ADL) ^ ^ ^ X 

Taking care of appearance (ADL) ^ ^ ^ X 

Walking (ADL) ^ ^ ^ X 

Getting in/out of bed (ADL) ^ ^ ^ X 

Using the telephone (ADL) ^ ^ ^ X 

Rheumatoid arthritis  ^ ^ ^ X 

Other arthritis ^ ^ ^ X 
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Hematologic disease  ^ ^ ^ X 

Hyperthyroidism  ^ ^ ^ X 

Angina or chest pain ^ ^ ^ X 

Inflammatory bowel disease  ^ ^ ^ X 

Celiac disease ^ ^ ^ X 

Glaucoma ^ ^ ^ X 

Psoriasis  ^ ^ ^ X 

Kidney disease  ^ ^ ^ X 

Liver disease  ^ ^ ^ X 

Hepatitis  ^ ^ ^ X 

HIV ^ ^ ^ X 

Bipolar disorder  ^ ^ ^ X 

Other mood disorder  ^ ^ ^ X 

Phobic disorder ^ ^ ^ X 

Obsessive compulsive disorder ^ ^ ^ X 

Panic disorder  ^ ^ ^ X 

Post-traumatic stress disorder ^ ^ ^ X 

Schizophrenia  ^ ^ ^ X 

Suicide attempt  ^ ^ ^ X 

Hip replacement  ^ ^ ^ X 

Knee replacement  ^ ^ ^ X 

Note. ^ Denotes indicators that were excluded from the associated pairwise comparison (for reasons 

as noted in the Methods section). RF, random forest; SCI, subjective cognitive impairment; MCI, 

mild cognitive impairment; AD, Alzheimer’s disease; IADL, instrumental activities of daily living; 

ADL, activities of daily living; QOL, quality of life; PSQI, Pittsburgh Sleep Quality Index; TIA, 

transient ischemic attack.  
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Table 4-4. Evaluation Metrics for Random Forest Models Discriminating the Target Clinical 

Cohort from a Benchmark Sample of Cognitively Normal Controls 

Note. Evaluation metrics reflect average performance of the RF classification model across the five 

cross-validation folds. Each evaluation metric ranges between 0-1 (higher values denote better 

performance; See Methods section for further details). Abbreviations: RG, research goal; RF, 

random forest; AUC, area under the receiver operating characteristic curve; SCI, subjective 

cognitive impairment; CN, cognitively normal; MCI, mild cognitive impairment; AD, Alzheimer’s 

disease.  

  

RF Model AUC Accuracy Precision Recall F1 Score 

RG1: Discriminating SCI from CN 0.89 0.79 0.94 0.58 0.72 

RG2: Discriminating MCI from CN 0.88 0.76 0.75 0.95 0.84 

RG3: Discriminating AD from CN 0.98 0.88 0.98 0.73 0.84 
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Figure 4-1. Waterfall plot depicting the top 30 predictors that discriminate older adults with 

subjective cognitive impairment from cognitively normal controls. Predictors are plotted in 

descending order of contribution to the final classification model. The bars depict the individual 

composition ratio (i.e., the amount that each predictor contributes to the final classification model; 
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see top of the figure for scale). The curved line represents the cumulative ratio (i.e., the total 

amount that each successive predictor contributes to the final classification model; see bottom of 

the figure for scale). The topmost important predictors are denoted above the red line. 

Abbreviations: QOL, quality of life; ADL, activities of daily living; IADL, instrumental activities 

of daily living; BP, blood pressure; BMI, body mass index. 
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Figure 4-2. Summary plot for the top 30 predictors that distinguish older adults with subjective 

cognitive impairment (SCI) from cognitively normal controls. Predictors are presented in 

descending order of impact on model output (i.e., prediction of SCI). Each dot represents one study 

participant. These dots collectively represent the direction and magnitude of each predictor’s effect 

(see Methods section for further details). Abbreviations: QOL, quality of life; ADL, activities of 

daily living; IADL, instrumental activities of daily living; BP, blood pressure; BMI, body mass 

index.
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Figure 4-3. Waterfall plot depicting the top 30 predictors that discriminate older adults with mild 

cognitive impairment from cognitively normal controls. Predictors are plotted in descending order 

of contribution to the final classification model. The bars depict the individual composition ratio 

(i.e., the amount that each predictor contributes to the final classification model; see top of the 
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figure for scale). The curved line represents the cumulative ratio (i.e., the total amount that each 

successive predictor contributes to the final classification model; see bottom of the figure for 

scale). The top predictors are denoted above the red line. Abbreviations: QOL, quality of life; 

hba1c, hemoglobin A1C; BP, blood pressure; Meds, medication. 
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Figure 4-4. Summary plot for the top 30 predictors that distinguish older adults with mild cognitive 

impairment (MCI) from cognitively normal controls. Predictors are presented in descending order 

of impact on model output (i.e., prediction of MCI). Each dot represents one study participant. 

These dots collectively represent the direction and magnitude of each predictor’s effect (see 

Methods section for further details). Abbreviations: QOL, quality of life; hba1c, hemoglobin A1C; 

BP, blood pressure; Meds, medication. 
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Figure 4-5. Waterfall plot depicting the top 30 predictors that discriminate older adults with 

Alzheimer’s disease from cognitively normal controls. Predictors are plotted in descending order of 

contribution to the final classification model. The bars depict the individual composition ratio (i.e., 

the amount that each predictor contributes to the final classification model; see top of the figure for 
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scale). The curved line represents the cumulative ratio (i.e., the total amount that each successive 

predictor contributes to the final classification model; see bottom of the figure for scale). The top 

predictors are denoted above the red line. Abbreviations: QOL, quality of life; IADL, instrumental 

activities of daily living.
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Figure 4-6. Summary plot for the top 30 predictors that distinguish older adults with Alzheimer’s 

disease (AD) from cognitively normal controls. Predictors are presented in descending order of 

impact on model output (i.e., prediction of AD). Each dot represents one study participant. These 

dots collectively represent the direction and magnitude of each predictor’s effect (see Methods 

section for further details). Abbreviations: QOL, quality of life; IADL, instrumental activities of 

daily living.  
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Chapter 5: General Discussion 

The dissertation research applied data-driven and person-centered analytical techniques to 

three large-scale epidemiological databases in order to accomplish two overarching research aims. 

First, we sought to develop an unbiased approach to frailty measurement and conceptualization that 

may contribute to the resolution of contradictions or inconsistencies among prevailing frailty 

models and research approaches (Fried et al., 2001; Mitnitski et al., 2001). Second, we aimed to 

detect data-driven frailty profiles or features that signal an increased risk for more rapid and 

widespread deficit accumulation and/or exacerbated cognitive decline, impairment, and dementia. 

We addressed these research aims in a series of three programmatic studies, as detailed in the 

foregoing chapters. The focus of the present chapter is on providing an integrative review of the 

methodological approaches and findings stemming from the dissertation research, as well as 

highlighting potential future directions for this line of investigation.  

In Study 1 (Bohn et al., 2021), we employed data-driven and person-centered analytic 

techniques in order to test whether (a) early frailty profiles could be empirically determined at 

baseline in a large sample of cognitively normal (CN) older adults from the Victoria Longitudinal 

Study (n = 649); (b) the extracted profiles were differentially related to level and change 

trajectories in frailty and neurocognitive speed across a 40-year band of aging; and (c) the profile 

and prediction patterns were robust across sex. We examined these research aims in a series of 

analytical phases. In the first phase, we applied exploratory factor analysis to 50 baseline multi-

morbidity indicators and identified the following frailty-related domains of aging morbidity: 

mobility (e.g., timed turn, use of a mobility aid, grip strength), instrumental health (e.g., health has 

affected ability to do chores, hobbies, get around town), emotional well-being (e.g., boredom, 

depression, loneliness), comorbidity (e.g., gastrointestinal problems, bladder trouble, anemia), 
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respiratory symptoms (e.g., feeling short of breath, asthma, bronchitis), cardiac symptoms (e.g., 

high blood pressure, stroke, heart trouble), and physical activity (e.g., arthritis, physical recreation 

activities, spinal condition). In the second phase, we submitted the proportion of deficits 

accumulated in each domain to latent profile analysis. Findings revealed three differentiable frailty 

profiles, including: (a) not-clinically frail (n = 542, 84%; (b) characterized by minimal impairment 

across domains), (c) mobility-type frailty (n = 59, 9%; (d) characterized by impaired mobility 

function), and (e) respiratory-type frailty (n = 48, 7%; (f) characterized by impaired respiratory 

function).Whereas the foremost profile has been reliably documented in related research (Liu et al., 

2017; Looman et al., 2018; Olaya et al., 2017; Sadiq et al., 2018), the latter two profiles are 

consistent with emerging evidence suggesting that mobility (Chhetri et al., 2017; Sarksian et al., 

2008; Sourial et al., 2012) or respiratory deficits (Pikoula et al., 2019) may aggregate to form a 

unique data-driven subtype. We extend prior research by extracting these subtypes from much 

broader range of aging morbidity measures and validating them as early frailty profiles.   

The third analytical phase was comprised of two interrelated steps. In the first step, we 

assembled three waves of data for a 50-item frailty index (Thibeau et al., 2019) and tested 

longitudinal trajectories stratified by baseline frailty profiles. Findings showed that older adults 

with mobility- or respiratory-type frailty not only had the highest frailty index levels, but they also 

showed more rapid frailty progression as compared to not-clinically frail older adults. Notably, 

individuals classified as having mobility-type frailty also evinced a faster rate of deficit 

accumulation as compared to individuals with respiratory-type frailty. These findings converge 

with earlier research reporting positive associations between frailty progression and single 

indicators of mobility (Doi et al., 2018; Fallah et al., 2011) or respiratory function (Pollack et al., 

2017; Vaz Fragoso et al., 2012). We advance these studies by proposing and validating a portal 
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approach to frailty emergence and progression. Specifically, we demonstrated that frailty profiles 

characterized by impaired mobility or respiratory function may serve as gateways to classifiable 

global frailty, which then cascades into more rapid and widespread deficit accumulation. In the 

second step, we assembled longitudinal data for a latent neurocognitive speed variable and tested 

cognitive trajectories stratified by baseline frailty profiles. Consistent with the foregoing pattern, 

we found that (a) older adults with mobility- or respiratory-type frailty trended towards worse 

performance relative to not-clinically frail older adults and (b) older adults with mobility-type 

frailty evinced the fastest rate of neurocognitive slowing, followed in order by respiratory-type 

frailty, and then not-clinically frail. To our knowledge, this study is the first to determine data-

driven early frailty profiles and validate them against prediction of cognitive aging trajectories. Our 

results suggest that distinct configurations of aging morbidity marked by impaired mobility or 

respiratory function may have differential effects on frailty progression and neurocognitive 

slowing. Proper assessment and management of these signs, symptoms, and diseases in clinical-

research settings is therefore encouraged. In the fourth phase, we tested and confirmed that the 

frailty profiles and prediction patterns generalized across sex. We reasoned that sex differences 

may be more likely to appear in later life or more serious frailty conditions. Because limited work 

has examined these research aims (Liu et al., 2017; Looman et al., 2018; Sadiq et al., 2018; Segaux 

et al., 2019) and the earlier findings reported are equivocal, we identified this as an important target 

for follow-up research.   

In Study 2, we assembled longitudinal big data from the National Alzheimer’s Coordinating 

Center. The general goal was to extend the approach of Study 1 to a wider range of clinical cohorts, 

a different profile of measurement occasions, and a broad spectrum of morbidity indicators and 

predictors. Specifically, we assembled baseline and 2-year follow-up data for 43 deficits 
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representing the heterogeneity of frailty in two related clinical cohorts of older adults, including 

amnestic mild cognitive impairment (aMCI; baseline n = 878) and Alzheimer’s disease (AD; 

baseline n = 2,196). We subsequently applied latent transition analysis (a longitudinal extension of 

latent profile analysis) to data for the entire study sample in order to (a) detect underlying clusters 

(or statuses) of aging multi-morbidity across measurement occasions; (b) characterize patterns of 

frailty transitions; and (c) examine frailty emergence and progression in relation to nonmodifiable 

(e.g., sex) and potentially modifiable risk characteristics (e.g., clinical cohort).  

We examined these research aims in a series of four analytical phases. In the first phase, we 

applied exploratory factor analysis to the aging morbidity indicators and identified the following 

frailty-related domains that were interpreted as ambulatory ability (e.g., slowing of motor 

movements, tremor, incontinence), instrumental health (e.g., difficultly turning off stove, traveling 

out of the neighbourhood, playing a game of skill), emotional well-being (e.g., boredom, 

helplessness, life satisfaction), cardiovascular symptoms (e.g., hypercholesterolemia, hypertension, 

diabetes), and behavioral disturbances (e.g., appetite changes, nighttime behaviors, agitation or 

aggression). Notably, these domains and the corresponding indicators harmonize with those 

detected in Study 1 (Bohn et al., 2021). In the second phase, we conducted latent transition 

analysis, which involved the following sequence of steps: (a) conduct a separate latent profile 

analysis at each time point; (b) establish longitudinal measurement invariance; (c) examine 

unconditional latent transition probabilities; and (d) perform prediction analyses. To our 

knowledge, only one study has examined heterogeneity in frailty emergence and progression using 

latent transition analysis (Lafortune et al., 2009), with results suggesting that this is a promising 

approach. Importantly, however, this study was limited by a focus on CN older adults and a narrow 

breadth of aging morbidity indicators.  
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In the first step of our analyses, we detected two differentiable baseline frailty, including Not-

Clinically Frail (n = 2,790, 91%) and Moderately Frail (n = 284, 9%). At follow-up, we again 

detected the Not-Clinically Frail (n = 1,714; 56%) and Moderately Frail statuses (n = 571; 19%), 

as well as two additional statuses representing participants who were Mildly Frail (n = 654; 21%) 

or Severely Frail (n = 135; 4%). We tested and confirmed in longitudinal measurement invariance 

tests that the Not-Clinically Frail and Moderately Frail statuses retained their substantive 

interpretations over time. Interestingly, the pattern of mean differences observed across statuses 

and the resulting interpretations align with those reported in Study 1 (Bohn et al., 2021). 

Specifically, the Not-Clinically Frail status was characterized at baseline and follow-up by (a) 

relatively limited impairment across the considered domains of aging morbidity, (b) the lowest 

scores on an independently calculated 43-item frailty index, and (c) the highest prevalence. In 

Study 1, we noted that this pattern would be expected in a relatively healthy and CN aging group. 

Results from Study 2 suggest that this pattern may also be expected in aging samples characterized 

by cognitive impairment or dementia, albeit to a lesser extent with advancing age and severity of 

cognitive impairment. These findings validate the growing literature suggesting that frailty and 

cognitive impairment are related constructs that mutually interact but may not inevitably co-occur 

(Burt et al., 2019; Kojima et al., 2017; Robertson et al., 2013). The Mildly, Moderately, and 

Severely Frail statuses were characterized by successively higher levels of ambulatory impairment 

and higher frailty burdens on a 43-item index. When taken together with Study 1 findings, our 

results suggest that mobility deficits are a defining characteristics of data-driven frailty subtypes 

across the spectrum of normal cognitive aging, impairment, and dementia.  

In the third phase, we examined unconditional latent transition probabilities and detected 

significant heterogeneity in frailty progression, including stability, progression, and reversion. This 
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study is the first to our knowledge to distinguish and track frailty statuses in a large sample of older 

adults with a diagnosis of aMCI or AD based on prevailing diagnostic criteria (Albert et al., 2011; 

McKhann et al., 2011; Sperling et al., 2011). We note two specific ways in which these findings 

advance the emerging literature on frailty transitions and trajectories (O’Caoimh et al., 2018; 

Rohrmann, 2020; Welstead et al., 2020). First, our results demonstrate that reversion of frailty is 

possible not only in unimpaired aging groups but also in older adults who have been characterized 

by cognitive impairment or dementia. Several recent reviews have highlighted that spontaneous 

clinical remission of frailty remains scarcely considered and identified this as a priority area 

(Canevelli et al., 2017; Ofori-Asenso et al., 2019). Our results respond to this challenge. Second, 

our results showed that Moderately Frail older adults are more likely be classified at follow-up into 

frailty statuses characterized by a higher frailty burden as compared to Not-Clinically Frail older 

adults. This pattern indicates that (a) there is a lower likelihood of reversing or attenuating frailty 

once the disability cascade is fully established (Canevelli et al., 2017) and (b) older adults 

presenting with higher levels of ambulatory (or mobility) impairment may be at an increased risk 

for adverse frailty transitions or trajectories (as was also depicted in Study 1; Bohn et al., 2021). 

These results collectively suggest that, across the AD spectrum, early and targeted interventions 

may be required for older adults presenting with mobility and related functional complaints. Future 

studies could examine whether rehabilitation and pharmacologic treatments targeting these deficits 

may offset or delay frailty progression and adverse cognitive aging outcomes. 

The fourth phase of our analyses was comprised of two interrelated steps. Specifically, we 

characterized and validated the detected latent statuses by examining non-modifiable and 

potentially modifiable risk factors as predictors of (a) baseline membership and (b) the probability 

of transitioning across latent frailty statuses. Results from the first step indicated that male sex, AD 
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diagnosis, poorer global cognition, and older age increased risk for classification into the 

Moderately Frail status at baseline. Notably, the latter three predictors were not examined in Study 

1 (Bohn et al., 2021) and the conditional direct effect of clinical cohort (based on prevailing 

diagnostic criteria) and global cognitive function on classification into data-driven frailty statuses 

remains scarcely considered. Our results suggest that future research should examine the 

dissociable effects of these predictors on frailty subtype emergence and progression. It is 

interesting that the present results for sex diverged those from Study 1 (Bohn et al., 2021), where 

we reported that males and females were equally likely to be classified as having mobility-type 

frailty, respiratory-type frailty, or as not-clinically frail. Nevertheless, follow-up analyses from 

Study 2 confirmed our supposition that sex differences may be more likely to appear in later life or 

more serious frailty conditions. Specifically, participants in Study 2 were comparatively older and 

frailer than Study 1 participants. Results from the second step of this analytical phase revealed that 

select latent transition probabilities varied as a function of baseline risk characteristics, including 

chronological age and APOE carrier status. The direction of effects for APOE ran in contrast to our 

expectations, such that carriers of the ɛ4 risk allele were less likely to experience adverse frailty 

transitions. Limited literature has examined APOE-frailty associations and the results are equivocal 

(Bai et al., 2021; Rockwood et al., 2008; Thibeau et al., 2019; Ward et al., 2021a). However, at 

least one other study has suggested a possible protective effect of APOE (Kulminski et al., 2008), 

whereby female carriers of the ε4/ε4 allele were less likely to experience severe impairment in 

activities of daily living as compared to non-carriers. We therefore identify this as a priority area 

for follow-up research. 

In summary, Study 1 (Bohn et al., 2021) and 2 of the dissertation research suggest 

that prevailing approaches that collapse across multiple systems of aging morbidity may mask 
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important heterogeneity in (a) frailty emergence and progression and (b) risk for adverse cognitive 

aging outcomes. Specifically, in each of these studies we highlighted that data-driven approaches 

to frailty measurement and conceptualization may elucidate clusters of characteristics that (a) serve 

as morbidity-intensive portals into broader and chronic frailty or (b) are associated with 

exacerbated cognitive decline, impairment, and dementia. We note that, in each of the foregoing 

studies, we applied data-driven data-reduction techniques to a range of aging morbidity indicators 

(n = 40–50) in order to produce separable health domains. We subsequently calculated the 

proportion of deficits accumulated in each domain and applied person-centered and data-driven 

analytical techniques to these summary measures. In Study 3, we advance the methodological 

approach of Studies 1 and 2 by (a) including a wider breadth of aging morbidity indicators, (b) 

examining the full AD spectrum with multiple clinical cohorts, and (c) applying unbiased machine 

learning techniques to individual indicators (as opposed to domains). Together, these three 

methodological advances will help us identify the most important features of frailty that increase 

risk for negative outcomes across the AD spectrum.  

Specifically, in Study 3 we used random forest analysis to test (in a competitive 

computational context) the relative predictive importance of 84 frailty-related features from the 

Comprehensive Assessment of Neurodegeneration and Dementia (COMPASS-ND) database in 

discriminating older adults with subjective cognitive impairment (SCI; n = 36), MCI (n = 116), or 

AD (n = 43) from a benchmark sample of CN controls (n = 60). Thus, whereas Studies 1 and 2 

separately considered cohorts of older adults with normal cognition or aMCI and AD, Study 3 

examined data-driven frailty assessment across the spectrum of normal cognitive aging, through to 

impairment and AD-related dementia. Recent research examined the prevalence of frailty in the 

COMPASS-ND database using an 81-item frailty index (Burt et al., 2019). We contribute to this 
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work by (a) testing aging morbidity indicators that were not previously considered (e.g., fluid 

biomarkers), (b) calculating a 30-item data-driven frailty index for each clinical cohort using 

random forest analysis results, and (c) examining whether frailty levels varied across cohorts and 

complementary operationalizations of a frailty index.  

 In the first phase of our analyses, we conducted a series of three pairwise random forest 

comparisons. Results indicated that each classification model reliably discriminated the target 

clinical cohort (SCI, MCI, or AD) from the benchmark sample of CN controls. These findings (a) 

converge with Studies 1 and 2, where we reported significant associations between data-driven 

frailty classifications, neurocognitive slowing, global cognition, and clinical cohort (aMCI, AD) 

and (b) extend previous work identifying frailty as risk factor for SCI (Gifford et al., 2019) and 

MCI (Borges et al., 2019b). Further, our results clarify the inconsistent evidence on frailty-

dementia associations and suggest that, when a multidomain deficit accumulation approach is 

employed as the operational definition, frailty increases AD risk.  

Examination of prediction patterns across clinical cohorts revealed several important 

findings. For example, across random forest classification models, the top 30 features explained 

90% of the model’s output. These results suggests that increased integration of data-driven frailty 

assessment into clinical-research settings may facilitate accurate identification of at-risk older 

adults and the development of optimized care plans. Further, we identified the following features as 

central risk elevating characteristics for SCI, MCI, and/or AD. With respect SCI, poorer quality of 

life (memory), abnormal lymphocyte counts, and abnormal neutrophil counts were leading 

discriminative features. With respect to MCI, poorer quality of life (memory, leisure), male sex, 

abnormal lymphocyte counts, and poorer self-rated eyesight were leading discriminative features. 

With respect to AD, poorer quality of life (memory), sensory deficits (olfaction and visual contrast 
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sensitivity), male sex, and higher levels of dependence in instrumental activities of daily living 

(ability to go shopping, handle money, take medication, get to places beyond walking distance, 

prepare meals, and perform housework) were leading discriminative features. Importantly, we also 

determined that the following domains of deficits varied in terms of their contribution to the 

random forest classification models but nonetheless generalized across prediction of SCI, MCI, and 

AD: quality of life (memory, leisure), inflammatory biomarkers (lymphocytes, glycated 

hemoglobin), sleep (disturbances, medication), and oral health and nutritional factors (self-reported 

appetite, mouth health, difficulty swallowing), and functional indicators (grip strength). The latter 

finding dovetails with Study 1 (Bohn et al., 2021) and 2, and bolsters the notion that mobility and 

related functional impairments may serve as harbingers of adverse frailty-related outcomes. 

Results stemming from our random forest classification analyses contribute to and extend the 

literature on frailty measurement and conceptualization in the following ways. First, accumulating 

evidence suggests that indicators of peripheral systemic inflammation may represent promising 

biomarkers of frailty (Collerton et al., 2012; Rodriguez-Mañas et al., 2020; Wang et al., 2019) and 

have advocated for including such deficits in the operational definition of frailty (Blodgett et al., 

2017; Howlett et al., 2014; Mitnitski et al., 2015; Rockwood et al., 2015). Our results buttress these 

claims. Second, the varied nature of these domains suggests that (a) multi-domain deficit 

accumulation approaches better capture the typical heterogeneity of frailty as compared to 

syndromic definitions and (b) composite index approaches may increase prediction accuracy by 

incorporating these features into the operational definition.  

Importantly, we also detected frailty-related features that were selectively sensitive to 

prediction of SCI (e.g., unintentional weight loss, white blood cell count), MCI (e.g., self-reported 

eyesight, pulse pressure), and AD (e.g., timed walk, self-reported hearing). These results may 
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inform precision medicine by highlighting critical components of frailty that could be selectively 

targeted across the AD spectrum for the twin purposes of preventing or ameliorating frailty and 

risk for adverse cognitive aging outcomes. Accordingly, we calculated a separate data-driven 

frailty index for each clinical cohort using data for the top 30 features identified in machine 

learning analyses. Subgroup analyses revealed that older adults with SCI, MCI, or AD reported 

comparable levels of frailty across the 30-item data-driven index and the 81-item index (Burt et al., 

2019). However, each of the respective clinical cohorts reported higher levels of frailty on the 30-

item index as compared to CN controls and the 81-item index. To our knowledge, this study is the 

first to calculate a data-driven frailty index and systematically examine whether frailty levels vary 

across the AD spectrum and complementary conceptualizations of a frailty index. Establishing 

reliable estimates of the prevalence of frailty (e.g., values on the frailty index > 0.25) in cognitively 

impaired or demented samples has applications for developing frailty prevention and treatment 

programs. In Study 2, we reported that older adults with aMCI endorsed an average value on the 

43-item frailty index of 0.15, whereas participants with AD endorsed a comparatively higher level 

at 0.27. In Study 3, the average value reported on the 81-item index was 0.18 for SCI, 0.20 for 

MCI, and 0.21 for AD. Follow-up studies could examine frailty index level and change trajectories 

and determine whether change in the level of frailty affects cognitive aging trajectories and 

outcomes (e.g., MCI conversion).   

Future Directions 

We note several potential future directions for follow-up research stemming from Study 1 

(Bohn et al., 2021). First, our focus on detecting early manifestations of frailty profiles and the 

representation of these as portals into global frailty and exacerbated neurocognitive slowing is a 

promising area of continued research interest. In future studies, we could test the detected data-
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driven frailty profiles as predictors of additional frailty-related outcomes, such as falls and 

hospitalization. Second, latent transition analysis could be applied to longitudinal multi-morbidity 

data from the Victoria Longitudinal Study in order to (a) determine whether additional frailty 

classifications can be empirically determined at follow-up in a large sample of CN older adults and 

(b) characterize patterns of frailty transitions. Third, additional risk and protection factors could be 

extracted from this heterogeneous database and subsequently tested as predictors of baseline 

classifications and patterns of frailty progression.  

With respect Study 2, we previously noted that were surprised to find that a relatively limited 

number of risk characteristics predicted frailty progression. That is, the likelihood of transitioning 

across frailty statuses did not vary according to sex (male or female), race/ethnicity (non-Hispanic 

White or Black/African American), clinical cohort (aMCI or AD), global cognition (performance 

on the Mini Mental State Exam or an equivalent measure), or educational background (total years). 

Although this pattern of (null) results is consistent with the literature on latent transition analysis 

(e.g., Collins & Lanza, 2010) and related studies employing this analytical approach (e.g., Ryoo et 

al., 2018), we believe that this study would be strengthened by the identification of significant 

predictors of latent transition probabilities. As such, we plan to re-review the NACC database and 

test theoretically relevant nonmodifiable and potentially modifiable characteristics as predictors of 

baseline frailty classifications and transitions. This research direction, together with those outlined 

for Study 1, may reveal novel and important precision targets for preventing adverse frailty 

transitions and related outcomes across the spectrum of normal cognitive aging, impairment, and 

dementia.  

With respect to Study 3, we previously noted that we were unable to conduct random forest 

analyses as stratified by sex due to the relatively small and/or imbalanced subsample sizes in the 
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COMPASS-ND database. In the interim, we examined whether the risk for SCI, MCI, and AD 

varied across sex, with results suggesting that males were at an increased risk for the latter two 

outcomes. Importantly, we anticipate that, following an upcoming data release, our study will be 

sufficiently powered to examine whether prediction patterns vary for males as compared to 

females. A small number of frailty-related and cognitive aging studies have performed random 

forest analyses as stratified by sex (Greene et al., 2014; McFall et al., 2019; Peng et al., 2020), with 

results suggesting that this is a promising research direction. Findings from this line of 

investigation may (a) reveal sex differences in the frailty-related features or domains of deficits that 

elevate clinical risk across the AD spectrum and (b) advance understanding of sex differences in 

the underlying pathophysiologic mechanisms of frailty.  

Significance and Conclusion 

In summary, the dissertation research demonstrated in a series of three programmatic studies 

that person-centered and data-driven analytic technologies may contribute to the resolution of 

empirical and clinical inconsistencies between prevailing frailty models and research approaches 

by identifying clusters of frailty-related deficits or individual features that serve as portals into 

broader and chronic frailty and/or exacerbated cognitive decline, impairment, and dementia. In 

Study 1 (Bohn et al., 2021), we assembled data for a large sample of CN older adults and 

subsequently (a) distinguished data-driven frailty profiles characterized by mobility or respiratory 

deficits and (b) demonstrated differential associations between these modalities and trajectories of 

frailty index progression and neurocognitive slowing. In Study 2, we assembled big data for older 

adults with aMCI or AD and subsequently (a) detected longitudinal data-driven frailty statuses 

characterized by varying levels of ambulatory impairment, (b) revealed heterogeneity in frailty 

progression, and (c) demonstrated that baseline risk characteristics (e.g., clinical cohort and global 
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cognition) were differentially related to classification into data-driven frailty statuses. In Study 3, 

we assembled data for older adults who spanned the AD spectrum and subsequently (a) identified 

selected important frailty-related features that elevated clinical risk for SCI, MCI, and/or AD and 

(b) examined frailty levels across cohorts and complementary conceptualizations of a frailty index. 

Collectively, these results highlight critical domains of aging morbidity (e.g., mobility and related 

functional indicators) that should be targeted and tracked early in the clinical course of frailty in an 

effort to prevent adverse outcomes.   

We note several potential future directions for the emerging literature on data-driven 

approaches to frailty operationalization and prediction of adverse outcomes. First, in each of the 

foregoing studies we demonstrated significant associations between data-driven frailty 

classifications and cognitive status or performance. We highlighted several potential explanatory 

mechanisms for these associations (e.g., hormonal dysregulation, nutritional factors and 

deficiencies, chronic inflammation, cardiovascular risks) and linked these explanations to relevant 

literature (Canevelli et al., 2015; Panza et al., 2015; Robertston et al., 2013). However, because we 

did not explicitly test these mechanisms and previous reviews have identified this as a priority area 

(Canevelli et al., 2015; Robertson et al., 2013), we note that future studies are required to establish 

the pathophysiologic underpinnings of frailty-cognition associations. Second, our results suggest 

that, while older adults presenting with mobility or ambulatory complaints may be particularly 

vulnerable to adverse frailty transitions or trajectories, reversion of frailty remains possible, even 

amongst older adults characterized with cognitive impairment or dementia. Future studies should 

determine whether precision interventions targeting these deficits (and related functional 

impairments) early in the clinical course of frailty may reverse or attenuate frailty progression and 

have downstream effects on reducing differential cognitive decline and impairment, as well as 
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related negative outcomes. Third, sparse large-scale, longitudinal epidemiological research has 

sought to produce some resolution of the various empirical and clinical inconsistencies between 

prevailing frailty models using powerful machine learning technologies. We noted in our review 

that the majority of available machine learning research is predicated on the frailty phenotype or 

accumulation of deficits approach, whereas relatively few studies have developed random forest 

classification models using well-defined surrogates for frailty. Accordingly, we encourage future 

validation studies to perform random forest prediction analyses across a broader range of (a) 

clinical cohorts (e.g., non-AD dementia), (b) aging morbidity indicators (e.g., fluid biomarkers), 

and (c) frailty-related outcomes (e.g., adverse cognitive aging trajectories). Fourth, a paucity of 

data-driven frailty research has examined whether frailty classifications and prediction patterns 

vary across important stratification variables, including age, sex, and race/ethnicity. This approach 

may reveal novel precision targets for frailty assessment, prevention, and prognostication in 

clinical-research settings. In sum, we identify this line of investigation as a profitable area of 

continued research attention for the prevention or treatment of frailty and related adverse outcomes.  
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Appendix A 

This appendix contains the final supplementary material for Chapter 2: Portals to frailty? 

Data-Driven Analyses Detect Early Frailty Profiles (Bohn et al., 2021).  

 Supplementary Methods 

Measures 

Simple reaction time. Participants were shown a warning stimulus, followed by a signal 

stimulus, in the middle of a computer screen. Participants were asked to press a response key 

as quickly as possible upon detecting the signal stimulus. Participants completed 10 practice 

trials, followed by 50 test trials. Ten randomly arranged trials were presented at each of the 5 

intervals separating the warning and signal stimulus (i.e., 500, 625, 750, 875, and 1,000 ms).  

Choice reaction time. Participants were presented with a 2 x 2 grid on the computer 

screen and instructed that one of the plus signs would be replaced by a square (following a 

1000 ms delay). Their task was to indicate the location of the square as quickly as possible by 

pressing the corresponding key on the response console.  

Lexical decision. Participants were shown a string of five to seven letters on the 

computer screen and informed that their task was to identify, as quickly as possible, whether 

the letters formed an English word (e.g., island vs. nabion). Participants completed 3 practice 

trials, followed by 60 test trials (30 words and 30 nonwords).  

Sentence verification. Participants were presented with a sentence on a computer screen 

and subsequently asked to determine the plausibility of the sentence as quickly as possible 

(e.g., The tree fell to the ground with a loud crash vs. The pig gave birth to a litter of kittens 

this morning). Participants were administered 4 practice trials, followed by 50 test trials.  
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Correction procedures. We trimmed extreme outliers from raw latency scores using 

validated correction procedures (Dixon et al., 2007; McFall et al., 2015). Specifically, we 

applied the following lower and upper limits for each task: (a) simple reaction time: 150 ms 

lower limit, 2500 ms upper limit, (b) choice reaction time: 150 ms lower limit, 4000 ms upper 

limit, (c) lexical decision: 400 ms lower limit, 10,000 ms upper limit, and (d) sentence 

verification: 1000 ms lower limit, 20,000 ms upper limit. We used task-specific lower and 

upper limits in order to account for variability across tasks in cognitive complexity. We 

removed trials that fell three standard deviations above or below the sample mean.  

Foundational analyses 

 Confirmatory factor analysis. We determined statistical model fit using the 

following standard indices: (a) χ2 for which a good fit would produce a non-significant result 

(i.e., p  > .05; indicates that the data do not significantly differ from model-based estimates), 

(b) the comparative fit index (CFI) for which fit is judged by a value of  ≥ .95 as good and ≥ 

.90 as adequate, (c) root mean square error of approximation (RMSEA) for which fit is judged 

by a value of ≤ .05 as good and ≤ .08 as adequate, and (d) standardized root mean square 

residual (SRMR) for which fit is judged by a value of ≤ .08 as good (Little, 2013).  

Longitudinal measurement invariance. We tested longitudinal measurement invariance 

of the speed latent variable by evaluating (a) configural invariance (the same factor loading 

patterns over time); (b) metric invariance (the same factor loadings over time); and (c) scalar 

invariance (the same intercepts over time). We tested invariance assumptions by comparing 

models with unconstrained and constrained parameters using change in CFI, for which 

changes of < .01 suggest the assumption is reasonable (Little, 2013).  
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Unconditional latent growth modeling. In order to establish the functional form of 

speed, we estimated factor scores and employed these in an unconditional latent growth 

model. Age was centered at 75 years for the growth model because (a) this is the approximate 

mean of the 40-year span of data, (b) this as a common inflection point for such age spans in 

cognitive aging research (Dixon et al., 2012), and (c) this is standard practice in VLS research 

(McFall et al., 2015). We established the best model by testing the following models in 

sequence (a) a fixed intercept model, which assumes no intra- or inter-individual variability; 

(b) a random intercept model, which allows for interindividual differences in overall level but 

assumes no intraindividual change; (c) a random intercept fixed slope model, which allows for 

interindividual differences in level but assumes that each person changes at a comparable rate; 

and (d) a random intercept random slope model, which allows for interindividual differences 

in both level and change (Singer & Willett, 2003).   
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Table S1. Complete List of 50 Items Submitted to an Exploratory Factor Analysis  

 Frailty Item Coding 
SR 

 

 

 

 

 

 

 

 

 

 

Stroke 0 = no; 0.33 = yes, not 
serious; 0.67 = yes, 
moderately serious; 1 = 
yes, very serious 
 

 

 

 

 

 

 

Thyroid condition 

Arthritis (rheumatoid and/or osteo-) 

Osteoporosis 

Cancer 

Asthma 

Migraines 

Stomach ulcer 

Kidney or bladder trouble 

Gastrointestinal problems (colitis/diverticulitis, gall 

bladder trouble, and/or liver trouble) 

Bronchitis or emphysema 

Diabetes 

High blood pressure 

Sex-related health problems (i.e., gynecological 

problems or prostate problems) 

Anaemia 

Drug and/or alcohol dependence 

Spinal condition and/or back trouble 

Hardening of arteries (i.e., atherosclerosis) 

Heart trouble 

Other conditions (up to three) 

SR Number of medications 0 = 0-3; 0.5 = 4-7; 1 = 8+ 

SR 

 

 

Subjective health relative to a perfect state of health 0 = very good; 0.25 = 
good; 0.50 = fair; 0.75 = 
poor; 1 = very poor Eyesight relative to age group 

Hearing relative to age group 

SR 

 

Health has affected ability to do chores 0 = no change, improved, 
N/A; 0.25 = slightly 
reduced; 0.50 = moderately Health has affected ability to get around town 
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Health has affected ability to do mental recreational 

activities 

reduced; 0.75 = drastically 
reduced; 1 = gave up doing 
activity 

Health has affected ability to do physical 

recreational activities 

Health has affected ability to do hobbies 

Health has affected ability to socialize 

Health has affected ability to travel 

SR Stay at home but in chair most of the time 0 = no; 1 = yes 
 

SR Number of times sick in bed all day in the past year 0 = 0-3; 1 = 4+ 
 

SR Number of times confined to hospital in the past 

year 

0 = 0; 0.5 = 1-2; 3+ = 1 
 

SR Feeling short of breath 0 = no; 1 = yes 
 

SR Use of a walker, cane, or wheelchair 0 = no; 1 = yes 
 

M Resting heart rate (bpm) 0 = 60-99; 1 = < 60 or 
100+ 
 

M Pulse pressure (mmHg) 0 = 32.13-63.90; 0.5 = 64-
75.9; 1 = 76+ 
 

M Peak expiratory flow (L/min) Men: 0 = >340; 1 = ≤340 
Women: 0 = >310; 1 = ≤ 
310 
 

M Body mass index (kg/m2) 0 = 18.5-25; 0.5 = 25 to < 
30; 1 = < 18.5 or ≥ 30 
 

M Grip strength (kg) Men: for BMI ≤ 24, GS ≤ 
29; for BMI 24.1-28, GS ≤ 
30; for BMI > 28, GS ≤ 32 
Women: for BMI ≤ 23, GS 
≤ 17; for BMI 23.1-26, GS 
≤ 17.3; for BMI 26.1-29, 
GS ≤ 18; for BMI > 29, GS 
≤ 21 

M Timed walk 0 = ≤10s; 1 = >10s 

M Timed turn 0 = < 90th percentile 
1 = within 90th percentile 
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M        Finger dexterity 0 = < 90th percentile 

1 = within 90th percentile 
 

SR CES-D “during the past week, my sleep was 

restless” 

 

0 = rarely or none of the 
time; 0.33 = some or a 
little of the time; 0.67 = 
occasionally or a moderate 
amount of the time; 1 = 
most or all of the time SR CES-D “during the past week, I felt depressed” 

 

SR CES-D “during the past week, I felt lonely” 

 

SR CES-D “during the past week, I could not get 

going” 

SR Bradburn negative affect (restless, lonely, bored, 

depressed, upset due to criticism)  

0 = no to all; 0.2 = yes to 
one; 0.4 = yes to two; 0.6 = 
yes to three; 0.8 = yes to 
four; 1 = yes to all 
 

SR Physical activity at least 2-3 times per week 0 = yes; 1 = no 

Note. SR, self-reported; M, measured; CES-D, Center for Epidemiological Studies Depression 

Scale.   
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Table S2. Fit Indices for Confirmatory Factor Analysis and Measurement Invariance Testing for Neurocognitive Speed    
 
Model AIC BIC χ2 df p RMSEA CFI SRMR  DCFI 

Configural invariance  19013.62 19268.72 217.23 33 <.001 .09 (.08 - .11) .96 .08 -- 

Metric invariance  19010.57 19238.82 226.187 39 <.001 .09 (.08 - .10) .96 .09 <.01 

Scalar invariance a 19022.97 19224.36 250.58 45 <.001 .08 (.07 - .09) .96 .09 <.01 

Note. AIC, Akaike information criterion; BIC, Bayesian information criterion; χ2, chi-square test of model fit; df, degrees of 

freedom for model fit; RMSEA, root mean square error of approximation; RMSEA is shown with 90% confidence intervals; CFI, 

comparative fit index; SRMR, standardized root mean square residual; DCFI = change in CFI.  

a Best fitting model.
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Table S3. Fit Indices for the Unconditional Growth Model for Neurocognitive Speed and the 

Frailty Index 

Model (-)2LL npar free AIC BIC D  Ddf 
Neurocognitive Speed       

     Fixed intercept 5000.61 4 5008.61 5026.51 -- -- 

     Random intercept  3961.54 5 3971.54 3993.92 1039.07* 1 

     Random intercept, fixed slope 3254.56 6 3266.56 3293.41 706.98* 1 

     Random intercept, random slope a 2996.75 8 3012.75 3048.55 257.81* 2 

Frailty Index       

     Fixed intercept -3274.39 4 -3200.11 -3182.30 -- -- 

     Random intercept  -3887.54 5 -3811.64 -3789.38 -607.07* 1 

     Random intercept, fixed slope -3836.62 6 -3746.72 -3720.01 69.37 1 

     Random intercept, random slope a -4109.26 8 -4015.40 -3979.78 -259.78* 2 

Note. -2LL, -2 log-likelihood; npar, number of parameters; AIC, Akaike information criterion; 

BIC, Bayesian information criterion; D, difference statistic. a Best fitting model.  

* p < .001  
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Table S4. Model Estimated Class-Specific Means and Standardized Mean Differences for Each Indicator 
 

 Not-clinically-frail Mobility-type Respiratory-type Standardized mean differences 
Indicator 542 (84%) 59 (9%)  48 (7%) MTF - NCF RTF - NCF MTF - RTF 

Physical activity 0.16 (0.16) 0.29 (0.20) 0.27 (0.22) 0.75 0.67 0.11 

Cardiac symptoms 0.07 (0.10) 0.17 (0.17) 0.10 (0.11) 0.86 0.24 0.78 

Respiratory symptoms 0.03 (0.05) 0.03 (0.08) 0.46 (0.13) 0.14 6.96 -4.72 

Comorbidity 0.12 (0.14) 0.12 (0.14) 0.19 (0.21) 0.01 0.56 -0.52 

Emotional well-being 0.19 (0.18) 0.16 (0.14) 0.24 (0.18) -0.14 0.28 -0.55 

Instrumental health 0.06 (0.10) 0.20 (0.17) 0.12 (0.13) 1.31 0.60 0.80 

Mobility 0.05 (0.10) 0.58 (0.14) 0.12 (0.17) 5.09 0.61 3.90 

Note. Results presented as mean (standard deviation). Indicators are coded such that higher scores denote greater impairment. 

Bolded values represent indicators with a high degree of class separation. NCF, not-clinically-frail; MTF, mobility-type frailty; 

RTF, respiratory-type frailty.  
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Figure S1. Confirmatory factor analysis model of multi-morbidity data. FD, finger dexterity; TT, timed turn; GS, grip strength; 

Walker, use of a walker, cane, or wheelchair; Travel, health has affected ability to travel; Social, health has affected ability to 

socialize; Hobby, health has affected ability to do hobbies; Mental, health has affected ability to do mental recreational activities; 

Town, health has affected ability to get around town; Chores, health has affected ability to do chores; Bradb, Bradburn negative 

affect; Lonely, during the past week I felt lonely; Depress, during the past week I felt depressed; Sleep, during the past week my 

sleep was restless; Sex, sex-related health problems; GI, gastrointestinal problems; Kidney, kidney or bladder trouble; Breath, 

feeling short of breath; Bronch, bronchitis or emphysema; PP, pulse pressure; Heart, heart trouble; Artery, hardening of arteries; 

BP, high blood pressure; Chair, stay at home but in chair most of the time; Rec, health has affected ability to do physical 

recreational activities; Back, spinal condition and/or back problems; Arth, arthritis. Standardized factor loadings are shown. All 
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loadings were significant at p < .05. Covariances and residuals are not depicted. Response scales for each item are outlined in 

Table 2-1.  
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