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Abstract 

Streams in British Columbia's humid, organic-rich Pacific Coastal Temperate Rainforest (PCTR) 

deliver globally significant yields of soil-derived dissolved organic carbon (DOC) to the ocean, 

which can affect ocean acidification, provide energy to coastal food webs, and off-gas to the 

atmosphere as CO₂. Although there is an established relationship between discharge and DOC, 

the key subsurface processes controlling stream DOC in this region have not been determined, 

and the balance between organic carbon export and stream CO₂ and CH₄ efflux in this region is 

currently unknown. To determine seasonal and landscape controls on stream DOC, CO₂, and 

CH₄ in the PCTR, we used automated, in situ fDOM sensors in combination with field-based 

sampling in up to four PCTR watersheds over a two-year period. We analyzed the hysteresis 

between stream DOC and discharge to develop a seasonal model of subsurface hydrologic 

connectivity and DOC transport, and used field data to develop reach and sub-basin scale 

multivariate predictive models of stream CO₂ and CH₄ flux in the PCTR. Determining seasonal 

and spatial controls on stream DOC, CO₂, and CH₄ in this high-carbon region has critical 

implications for coastal marine ecology and the global carbon cycle, and will improve our ability 

to predict how these systems may be affected by environmental and climatic changes in the 

future.  
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1.0 General Introduction 

 

Rivers and streams play a key role in the global carbon cycle as biogeochemical conduits 

in the landscape (Martin and Meybeck, 1979; Newbold, 1982), as well as sources of atmospheric 

CO₂ (Mayorga et al., 2005; Butman and Raymond, 2011, Raymond et al., 2013). With an annual 

global flux estimated at 0.4x10⁵ gC (Bernhardt and Schlesinger, 2013), rivers connect spatially 

distinct carbon stores by transporting and transforming particulate organic matter (POM), and 

dissolved organic carbon (DOC) in the form of dissolved organic matter (DOM), through 

terrestrial to freshwater and marine environments (Lauerwald et al., 2012; Smith et al., 2013; 

Raymond and Spencer, 2015). Stream DOC influences light attenuation, photo-reactivity 

(Bertilsson and Tranvik, 2000), primary production, ecosystem metabolism (Fisher and Likens, 

1973), energy budgets, bacterial respiration and decomposition (Tank et al. 2010), inorganic 

nutrient mineralization, and food web structure (Ylostalo et al. 2016, Traving et al. 2017).  

The composition of DOC strongly influences bacterial metabolism, and different sources 

of DOC are metabolized at different rates depending on their molecular composition (Berggren 

and del Giorgio, 2015). Autochthonous DOC in the form of DOM is generated internally within 

river ecosystems by algal and macrophytic photosynthesis (Findlay and Sinsabaugh, 2003), 

whereas allochthonous C is input from external sources including microbial degradation of soil 

organic material, root respiration, and litterfall (Meyer et al., 1998). Within aquatic systems, 

autochthonous DOC is usually characterized by labile, bioavailable, low molecular weight 

compounds such as carbohydrates, lipids and proteins (Mayorga et al., 2005; Yang et al., 2016). 

Allochthonous DOM is typically composed of complex, aromatic, high-molecular-weight 

molecular compounds with low bioavailability, such as lignin found in plant material, and 

hydrophobic organic acids found in soils (Weishaar et al., 2003, Seifert et al., 2016). However, 
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the age of allochthonous DOC is a factor of biolability, as fresh, humic DOC (eg. forest litter) 

can be preferentially metabolized compared to older DOC from peatlands (Berggren and del 

Giorgio, 2015). Allochthonous DOM usually dominates small headwater streams due to the 

influx of leaf litter and other organic materials, coinciding with the river-continuum concept 

(Vannote et al. 1980). During transport, DOM can be transformed or removed from riverine 

ecosystems through microbial decomposition and respiration, photo-oxidation, sorption to metal-

oxide compounds, and flocculation to sediment particles (Raymond and Spencer, 2015, 

Couturier et al. 2016). 

The study of hysteresis dynamics between stream discharge and DOC provides a unique 

opportunity to further our knowledge of the hydro-biogeochemical processes that form the basis 

of watershed-scale carbon cycling and lateral C transport processes. Assessing these hysteresis 

trends can advance our understanding of DOC source distribution and subsurface hydrology, 

allowing for the development of predictive, mechanistic terrestrial-aquatic C cycling models that 

are increasingly critical in the context of global anthropogenic climate change. Previous research 

has demonstrated that stream discharge exhibits a significant positive, non-linear correlation with 

stream DOC concentration (Lundquist et al., 1999; Mladenov et al., 2005; Raymond and Saiers, 

2010; Emili and Price, 2013; Strohmeier et al., 2013). The majority of terrestrial DOC export 

occurs during rapid hydrologic events where a large quantity of water is input to the landscape 

over a short period of time, i.e. storms or spring snowmelt (Raymond and Saiers, 2010). The 

non-linearity of the relationship between DOC and discharge creates a cyclical pattern known as 

hysteresis (Figure 1.1) (Hendrickson and Krieger, 1964; Toler and Ocala, 1965; Lloyd et al. 

2015), where DOC concentrations loop in a clockwise (peak DOC on the rising hydrograph 

limb) or counterclockwise (peak DOC on the falling hydrograph limb) direction, or in both 
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directions in a “figure-of-eight” formation (Zuecco et al., 2016). The slope of the hysteresis loop 

has been used to identify the DOC concentration gradient through the duration of the storm event 

(Figure 1.1) (Vaughan et al. 2017; from Butturini et al. 2008).  

Various mechanisms have been hypothesized as potential controls on temporal hysteresis 

relationships between DOC and discharge, with an emphasis on shallow-subsurface moisture and 

flowpath connectivity (Lloyd et al., 2015; Outram et al., 2016; Tunaley et al., 2016). Clockwise 

hysteresis has been attributed to the build-up of DOC in shallow, sub-surface soil pore waters 

during dry conditions, and rapid flushing when a storm event initiates local hydrologic 

connectivity through precipitation infill and pore-water displacement (Mladenov et al., 2005; 

Saraceno et al., 2009). Anticlockwise hysteresis has been modeled as the result of delayed DOC 

contributions to local flowpaths, due to full hydrologic connectivity only occurring at maximum 

catchment flow (Inamdar et al. 2004). The slope of the hysteresis loop demonstrates either a 

flushing, dilution, or chemostatic DOC response, which can be indicative of soil DOC transport 

availability and/or DOC source proximity (Vaughan et al. 2017; from Butturini et al. 2008). 

Flowpath mixing models have been used to determine groundwater, antecedent moisture, and 

lateral subsurface riparian flowpaths as significant controls on temporal trends in DOC 

concentration (Elder et al., 2000; Strohmeier et al., 2013; Seifert et al., 2016; Tunaley et al., 

2016), whereas stream size and surface flow have been identified as less influential controls 

(Fellman et al., 2013). Coupled hydrologic-biogeochemical models have been developed and 

tested successfully to utilize the predictive capacity of the DOC-discharge relationship (Birkel et 

al., 2013; Dick et al., 2015; Birkel et al., 2017). In addition to hydrologic variables, the temporal 

trends and quantity of allochthonous stream DOC can be influenced by landscape factors such as 

ecosystem type (Vaughan et al., 2017; Emili and Price, 2013) and climatic factors such as 
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seasonal temperature variability (Saraceno et al., 2009; Strohmeier et al., 2010, Futter et al., 

2011). 

Precise quantification of the non-linearity between DOC concentration and discharge has 

until recently been limited by coarse data resolution from periodic grab sampling programs 

(Fellman et al., 2013). The advent of digital technology in the late 1990’s to early 2000’s caused 

a major transition in the field of biogeochemistry towards automated, in situ sampling (Meinson 

et al. 2016). The introduction of in situ fluorescent DOM (fDOM) sensors to freshwater DOM 

research has provided continuous, high-frequency data which capture event discharge and DOC 

dynamics at previously unavailable temporal resolutions (i.e., minute, hourly, and daily timestep 

intervals) (Pellerin et al., 2011, Ruhala and Zarnetske, 2016; Rode et al., 2016). However, in situ 

fDOM sensor output readings are highly sensitive to certain environmental variables, including 

temperature due to the process of thermal quenching (Baker, 2005; Watras et al., 2011; Downing 

et al., 2012), turbidity due to the attenuation of light by suspended particles (Saraceno et al., 

2009; Lee et al., 2015), and absorbance (“inner-filter effects”) by chromophores in DOM 

compounds (Downing et al., 2012; Wilson et al., 2013). To effectively use in situ fluorescence 

sensor output, corrections for the inaccuracies caused by these variables are necessary 

(McKnight et al, 2001).  

Another important component of the global carbon cycle is the emission of greenhouse 

gases, such as CO₂ and CH₄, from inland freshwaters. Global inland freshwater CO2 emissions 

are estimated at an annual rate of 3.9 PgC (Drake et al., 2018), and global inland freshwater CH4 

emissions are estimated at ~0.075 PgC yr-1 (Bastviken et al. 2011). Sinks of dissolved stream 

CO₂ gas include uptake by photosynthetic organisms (Jones and Mulholland, 1998). Sources 

include root respiration and DOC mineralization via bacterial respiration in the stream and in 
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adjacent riparian soil pore water, which in turn contribute to freshwater CO₂ emissions or 

atmospheric evasion (Mayorga et al., 2005; Waterloo et al., 2006; Berggren and del Giorgio, 

2015). As seasonal climatic and hydrologic patterns transform due to global climate change, it is 

critical to identify controls of the atmospheric evasion of dissolved CO₂ and CH₄ to determine 

the influence of this potentially significant component of the carbon cycle on global climate 

feedback dynamics (Raymond et al., 2013).  

The aim of this thesis was twofold, broadly investigating lateral stream DOC transport 

and stream greenhouse gas emissions (CO2 and CH4). Specifically, our objectives were to:  

1) Assess the utility of automated, in situ fDOM sensors for modelling stream DOC; 

use the resulting high-resolution DOC dataset to determine the seasonal variation 

in and controls on event-based lateral DOC transport via hysteresis analysis; and 

create a mechanistic conceptual model of seasonal lateral DOC transport in our 

study region.  

2) Determine the spatial variation in and controls on dissolved stream CO2 and CH4 

partial pressures and efflux at both the reach and sub-basin scale; and to compare 

the relative predictive strengths of our models at each scale.  

This study was situated on Calvert and Hecate Islands in the Northern Pacific Coastal 

Temperate Rainforest (NPCTR), off the central Pacific coast of British Columbia, Canada (Lat 

51.650, Long -128.035). Recently, stream DOC export in this region has been assessed through a 

grab sampling program as being very high, primarily allochthonous, and highly aromatic (Oliver 

et al., 2017). That study proposed that organic-rich upland forest soils and organic material 

contributions from abundant peatlands are key factors in the production of high annual stream C 
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exports. However, a quantitative evaluation of the seasonal and spatial controls on lateral and 

atmospheric stream C exports in this high-carbon region has not yet been conducted. 
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1.1 Figures 

 
 

Figure 1.1: Conceptual models of flushing index (FI) and hysteresis index (HI) range and 

thresholds (Aguilera and Melack, 2018), and schematic examples of different event types. a) HI 

threshold ranges based on loop direction and amplitude, which correspond to HI sign (-/+) and 

magnitude: clockwise (0.05 < HI < 1), anticlockwise (-1 > HI > -0.05), and no hysteresis (-0.05 > 

HI < 0.05); b) FI threshold ranges based on FI slope, which corresponds to FI sign (+/-) and 

magnitude: flushing (0.1 < FI < 1), dilution (-1 > FI > -0.1), and chemostasis (-0.1 > FI < 0.1); c) 

a schematic example of a flushing, no hysteresis event (FN); d) a schematic example of a 

dilution, anticlockwise event (DA).  
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2.0 Seasonal dynamics and controls on DOC transport in the high-carbon region of the 

northern Pacific Coastal Temperate Rainforest 

 

2.1 Introduction 

 

Fluvial systems (hereafter “streams”) are biogeochemical catalysts in the global carbon 

cycle. They connect spatially distinct carbon stores in terrestrial ecosystems, the ocean, and the 

atmosphere, and transform carbon between organic and inorganic forms (Aufdenkampe et al., 

2011; Newbold, 1982; Martin and Meybeck, 1979). A portion of soil- and stream-derived 

dissolved organic carbon (DOC) is delivered to the oceans, where it supports coastal ecosystems 

as an energy source (Bernal et al., 2018; Cole and Caraco, 2001). Another portion of stream 

DOC is emitted to the atmosphere as CO₂ via in-stream microbial mineralization (Rasilo et al., 

2017). Thus, understanding the processes that govern streamwater DOC has both ecological and 

climatic implications, over a variety of scales (Johnston et al., 2018; Moody et al., 2013).  

Stream DOC can be produced autochthonously via primary production, or it can be 

derived from terrestrial primary production that is transported to the stream via subsurface runoff 

pathways. In small watersheds and headwaters, the of terrestrially-derived DOC typically 

outweighs that of autochthonous origin (Tank et al., 2010; Findlay and Sinsabaugh, 1999; Creed 

et al. 2015). As such, small headwater streams are the predominant pathway by which a portion 

of terrestrial NPP is diverted from soil sequestration and returned to marine or atmospheric 

stocks for continued cycling (Lauerwald et al., 2015). Indeed, recent work points to an 

overarching influence of NPP on stream DOC export at a regional landscape scale (Hutchins et 

al., 2019).  The extent to which aquatic flowpaths divert terrestrial NPP and affect marine and 

atmospheric carbon cycling is primarily influenced by underlying hydrologic and climatic 

factors, however. Understanding controls on soil-derived stream DOC transport and export 
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therefore lays the foundation for predictive models of coastal ecology and stream CO₂ emissions 

under various climate change scenarios.  

Previous research has demonstrated that stream DOC concentrations are related to 

discharge and that DOC export is episodic, following pulses of discharge from hydrological 

events such as storms and snow melt (Mladenov et al., 2005; Raymond and Saiers, 2010; 

Strohmeier et al., 2013). During storm events, the orientation of peak DOC to peak discharge can 

provide insight into the subsurface hydrology and flowpaths controlling soil-derived stream 

DOC concentrations. This orientation, when plotted on a biplot of discharge and DOC or a “C-Q 

plot”, is represented by a characteristic hysteresis “loop” in a clockwise or anticlockwise 

direction where the change in concentration over the duration of the event is represented by the 

loop’s slope (Hendrickson et al., 1964; Toler, 1965, Williams, 1989; Long et al., 2017). Several 

indices have been developed to quantify event hysteresis characteristics from C-Q plots, 

including ΔC (Butturini et al. 2006; Butturini et al., 2008) or the similarly-derived flushing index 

(FI; Vaughan et al. 2017), which assesses the change in concentration over the course of the 

event, and the hysteresis index “HI”, which assesses the direction and magnitude of the 

hysteretic loop (Lloyd et al., 2016b) (Figure 1.1). The direction and slope of hysteresis loops 

have been correlated with various subsurface hydrologic flowpaths, and models of subsurface 

DOC transport (Evans and Davies, 1998; Butturini et al., 2006; Butturini et al., 2008; Zuecco et 

al., 2016), making them a useful tool for developing mechanistic models of soil-derived stream 

DOC transport and the factors controlling stream DOC concentrations over time (for example, 

Long et al., 2017). Aside from soil-derived stream DOC research, hysteresis analyses of heavy 

metals dynamics (Rodriguez-Blanco et al., 2018), trends in suspended sediment (Ziegler et al., 

2016), various nutrients such as NO3
- (Cerro et al., 2014), NH4

+, and PO4
3+ (Aguilera and 
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Melack, 2018), and total N and P (Outram et al., 2016), and ions such as Ca2+ (Rose et al., 2017) 

are becoming increasingly prominent. 

When considering HI, anticlockwise hysteresis is typically considered the result of a time 

delay, caused by an initial first flush of diluted runoff at the beginning of an event followed by 

DOC-rich inputs, often from wetlands (Fovet et al., 2013; Knorr et al., 2013), or by the 

expansion of the riparian saturated zone to connect previously isolated DOC sources, such as 

hillslopes, to subsurface flowpaths (Inamdar et al., 2004; Tunaley et al., 2016). Typically, 

widespread, unlimited DOC sources throughout the catchment are thought to result in 

anticlockwise hysteresis (Coch et al., 2018, Rose et al., 2017). Conversely, clockwise hysteresis 

is indicative of subsurface hydrologic isolation, where immediate flushing of proximal, limited 

DOC-rich water is transported to the stream via shallow, subsurface flowpaths once a critical 

saturation threshold is reached (Birkel et al., 2017). Soil “wetting up time” has been proposed as 

a control on the amplitude of hysteresis loops, which indicates the strength of the hysteresis 

trend, or how coincident solute and discharge peaks are (Eckard et al., 2017). When considering 

ΔC or FI, dilution is typically thought of as a response to high hydrologic connectivity within the 

lateral, subsurface flowpath network and is thus associated with DOC stores that are distant from 

the stream. Flushing is considered as the result of DOC build-up in the soil during an antecedent 

dry period, and is also associated with DOC stores that are in close proximity to the stream 

(Vaughan et al. 2017). These concepts were initially proposed in conceptual models, which have 

been followed by studies using stable isotope observations (Tunaley et al., 2016), rainfall-runoff 

models (Birkel et al., 2014), and changes in DOC concentration relative to reference samples 

(Birkel et al., 2017; Eckard et al., 2017). Within regions, these studies have validated the ties 
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between hysteresis characteristics, subsurface hydrologic dynamics, and seasonal controls on 

soil-derived DOC transport.  

Common predictors of hysteresis characteristics and thus stream DOC export include 

antecedent precipitation and soil moisture conditions (Knorr et al., 2003; 2013; Tunaley et al., 

2016; Fovet et al., 2018), as well as groundwater table depth (Emili and Price, 2013; Dick et al., 

2015; Osburn et al., 2018). These predictors have been found consistently across a variety of 

ecosystems, including wetlands (Knorr et al., 2013), upland forest streams (Pellerin et al., 2012), 

seasonally frozen rivers (Kamari et al., 2018) and agricultural, urban, and forested watersheds 

(Vaughan et al., 2017; Fovet et al., 2018). In addition, seasonality has been shown to exert a 

strong influence on loop direction and event DOC concentration (Pellerin et al., 2012; Birkel et 

al., 2014). Generally, in temperate watersheds in eastern North America, storm events in summer 

encapsulate the largest stream DOC responses, winters exhibit subdued responses, and freshet in 

late winter-spring demonstrate increasing DOC responses leading into peak summer DOC 

(Connecticut; Schultz et al., 2018). However, some regions experience peak DOC in late 

summer-Fall, likely due to the accumulation of soil DOC during a drier summer period and 

subsequent transport at the onset of Fall precipitation (New Hampshire; Wilson et al., 2013; 

Koenig et al., 2017). Although some studies have been unable to attribute any significant 

predictors to hysteresis loop direction and change in event concentration (Butturini et al., 2006; 

Butturini et al., 2008), determining the influence of explanatory variables on hysteresis 

descriptors across multiple events is an avenue to understand what controls soil-derived DOC 

transport to streams, DOC sources, preferential flowpaths, and their seasonal dynamics. 
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Here, we work to understand seasonal variation in stream DOC export dynamics in the 

Pacific Coastal Temperate Rainforest (PCTR) ecoregion of North America. The PCTR has 

previously been identified as a potential global DOC export hotspot due to its moderate 

temperatures and extremely high precipitation, which combine to slow soil decomposition rates 

and produce thick, organic-rich topsoils (McNicol et al., 2019). Previous work has identified the 

PCTR ecoregion as a DOC export hotspot in global carbon models (Mayorga et al., 2010), and 

that streams draining small, hypermaritime watersheds at our PCTR study site exhibit globally-

significant yields of terrestrial DOC (~50 MgC km-2) (Oliver et al., 2017). Determining the 

controls on stream DOC export will further our knowledge of how climate change might affect 

stream DOC export in this carbon-rich region. By assessing seasonal variation in storm event 

hysteresis dynamics, and correlating hysteresis characteristics with environmental variables, we 

can develop a conceptual model of subsurface, soil-derived stream DOC transport in the PCTR 

and its variation. This lays a foundation to understand how climate change may affect stream 

DOC flux, and in turn coastal ecosystems, in the high-carbon region of the PCTR. 

We undertook this work using high-frequency, in situ fDOM sensors (Rode et al., 2016) 

to assess trends in hysteresis characteristics at event to inter-annual timescales. Our objective 

was to develop a hydro-biogeochemical conceptual model where the seasonal dynamics and 

environmental controls on soil-derived stream DOC transport and flux are identified within the 

PCTR. Our main research questions were: 1) What are the main trends in hysteresis 

characteristics at event-specific and seasonal timescales?; 2) What are the primary environmental 

and catchment-scale controls on hysteresis characteristics?; and 3) Can a hysteresis-based, 

hydro-biogeochemical conceptual model be developed to understand subsurface DOC transport 

in wet, coastal temperate rainforests? 
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2.2 Methods 

 

2.2.1 Study Site 

 

This study took place across four small watersheds on Calvert and Hecate Islands, 

situated on the central coast of British Columbia, Canada (51.650˚N, 128.035˚W; Figure 2.1). 

Calvert and Hecate Islands are part of the North Pacific Coastal Temperate Rainforest (NPCTR) 

ecosystem (50°N - 58°N), the largest contiguous stretch of coastal temperate rainforest in the 

world stretching from California through British Columbia to Alaska (Kellogg et al., 1995). 

Coastal temperate rainforest ecosystems are distinguished by certain key features: ocean 

proximity, coastal mountains, cool summer temperatures, and high precipitation across all 

seasons (Weigand, 1990). The bulk of the North American coastal temperate rainforest has either 

a perhumid or seasonal humid climate, with moisture indices above zero (annual precipitation > 

potential evapotranspiration; Thornthwaite, 1948). A perhumid climate exhibits summer rainfall 

above 10 percent of the annual total with a mean annual temperate of 7˚C, whereas a seasonal 

humid climate exhibits summer rainfall below 10 percent of the annual total and a mean annual 

temperature of 10˚C, with periodic droughts and summer fires (DellaSalla, 2011). The North 

American PCTR specifically has the highest biomass accumulations and some of the highest 

rates of productivity of forest ecosystems in the world (Barbour and Billings, 2000), as well as 

extremely large stocks of soil organic carbon (SOC) (McNicol et al. 2019). 

Within the perhumid NPCTR, Calvert and Hecate Islands are largely classified 

biogeoclimatically as a “Very Wet Hypermaritime” subzone (CWHvh2), the wettest in the 

Coastal Western Hemlock zone (CWH) of British Columbia (Pojar et al., 1987; Green, 2014). 

This subzone has an annual average of 220 days of precipitation, and the dominant soils are 

poorly drained podzols, organic-rich upland folisols, mineral gleysols due to extended saturation, 
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as well as thick organic wetland soils such as fibrisols, mesisols, and humisols (Banner et al., 

2005). Even within the NPCTR, Calvert and Hecate Islands represent an extreme end of the 

climate spectrum with an annual precipitation of 3414 mm yr-1 at sea level and 4529 mm yr-1 at 

the maximum elevation of 1045 m on Mount Buxton from 1981-2010 (Wang et al. 2016; from 

ClimateBC). Seasons on Calvert and Hecate Islands have been defined by two hydrologically 

distinct periods: wet (September – April) and dry (May – August) (Oliver et al., 2017). 

Temperatures are moderate and cool, with a mean annual temperature of 8.3°C at sea level and 

5.9°C at maximum elevation from 1981-2010 (Wang et al. 2016; from ClimateBC). Precipitation 

is primarily comprised of rainfall with only 141 mm yr-1 of snow at sea level, but as much as 632 

mm yr-1 at maximum elevation (Wang et al. 2016; from ClimateBC). Terrestrial ecosystems on 

Calvert and Hecate Islands reflect the local climate, topography, soils and parent material. 

Watersheds are dominated by varying proportions of wet-moist zonal forests, bog forests, bog 

woodlands, and blanket bog complexes (Green, 2014; Thompson et al., 2016). Geology is 

predominantly granodiorite and quartz diorite bedrock intrusions with some alluvial and glacial 

deposits (Roddick, 1996). Topographic relief is generally low, characterized by rolling inland 

hills, with steeper terrain leading to higher elevations of the headwaters. The predominantly 

gentle terrain, high precipitation, and moderate temperatures together produce thick 

accumulations of organic matter on the forest floor and support the widespread development of 

peatlands (Banner et al., 2005). 

Four watersheds (WS) were chosen as study sites for this project, nested within a long-

term watershed and critical zone observatory operated by the Hakai Institute: WS 703, WS 708, 

WS 819, and WS 1015 (Figure 2.1). Our study period extended from August 2015 – December 

2016. Each watershed is similar in its organic topsoil depth, small area, and dominant ecosystem 
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cover at a regional scale, however there are variations in total water yield, mean slope, lake 

coverage, soil depth, watershed area, and ecosystem mosaic at the watershed and sub-basin scale, 

which can affect biogeochemical processing in the study streams (Table 2.1; Oliver et al. 2017, 

Levy Booth et al. 2019). 

2.2.2 Stream Sensor Network  

 

Automated, continuous, in situ biogeochemical sensors were installed in the stream 

outlets of each study watershed. fDOM sensors (Turner Designs Cyclops 7, excitation/emission 

wavelengths = 370/425nm) were paired with a turbidity sensor (Cyclops Submersible Sensor) 

and water temperature sensor (OTT Hydromet Pressure Level Sensor) to ensure accurate 

correction of fDOM sensor outputs. fDOM and turbidity sensors were installed in WS 708 in 

July 2014, and installed in WS 1015, 819, and 703 in July 2015. Each fDOM and turbidity 

sensor was equipped with a wiper to prevent biofilm accumulation. The fDOM and turbidity 

sensors were calibrated annually, and fDOM outputs were corrected for turbidity, temperature 

and inner filter effects (see below and Appendix). Additional in-stream measurements included 

stage (OTT Hydromet Pressure Level Sensor) and discharge via the auto-salt dilution method 

(Korver et al. 2019). 5-minute discharge rating curves use the Lowess distribution (Korver et al., 

2019). 

2.2.3 Additional ancillary data 

 

Precipitation and air temperature were monitored at various meteorological stations on 

Calvert and Hecate Islands. Data were collected at a station located on the eastern ridge 

separating WS 708 and WS 703 for WS 708; and near the watershed outlets for WS 703, WS 

819, and WS 1015 (Figure 2.1). Precipitation and air temperature were measured every 5 
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seconds, with a mean of this 5 second data being recorded every 5-minutes. Antecedent 

precipitation was calculated from this precipitation data (see below for further details). DOC 

concentration and dissolved organic matter (DOM) absorbance were measured by periodic grab 

sampling. DOC samples were preserved with 7.5 M H3PO4 and analyzed using a total organic 

carbon analyzer (Aurora 1030; OI Analytical; Oliver et al., 2017). Absorbance was determined 

on site using a spectrofluorometer (Aqualog, Horiba Instruments Inc.). Absorbance scans were 

conducted between 200 and 800 nm using a 1 cm quartz cell, with readings baseline corrected as 

outlined in Oliver et al. (2017). Watershed-scale spatial predictors were extracted in ArcGIS 

from the Hakai Watershed LiDAR layer (Gonzalez-Arriola, 2015) and included watershed area, 

mean elevation, mean slope, main channel length, total stream network length, drainage density, 

maximum flowpath length, mean NDVI, mean gap fraction (canopy cover), waterbody cover, 

and wetland cover (Table 2.1). 

2.2.4 fDOM Sensor Corrections 

 

fDOM sensors were corrected for temperature, turbidity, and inner filter effects in a 

stepwise correction process based on the methods of Watras et al. (2011) and Downing et al. 

(2012). The corrected fDOM sensor measurements were converted to an inferred DOC 

concentration via linear regression with lab DOC measurements (Figure 2.2). Throughout this 

paper, we refer to true (lab analyzed) DOC concentrations as “DOC”, and inferred sensor-

derived DOC concentrations as “DOCsensor”. For further details on these methods see Appendix 

1.  
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2.2.5 Event and Event Peak Selection 

 

 We developed a semi-quantitative method of storm event selection to compare DOCsensor 

dynamics across storm events, which involved a combination of automated selection and visual 

assessment. Baseflow was delineated using the online modelling tool SepHydro (Danielescu et 

al., 2018), which applies various digital recursive filters to the discharge timeseries. Discharge 

measurements were input to SepHydro at hourly intervals, as baseflow was overestimated at the 

5-minute data interval. Storm event periods for discharge and DOCsensor at the hourly interval 

were selected automatically by a written loop in R (R Core Team, 2013) using the criteria in 

Lloyd et al. (2015): Storm event starts were defined as the (hourly) point on the rising 

hydrograph limb where the discharge was greater than 20% of the total baseflow component; and 

storm event ends were defined on the decreasing hydrograph limb where the net decrease in 

discharge was greater than 20% of the total baseflow component.  

In SepHydro we applied a digital recursive filter to our hourly interval data developed by 

Eckhardt et al. (2005), which calculates the baseflow index (BFI) as a second parameter to 

complement the primary baseflow separation parameter (alpha) used in previous models (Lyne 

and Hollick, 1979; Arnold and Allen, 1999). The dual-parameter Eckhardt et al. (2004) filter was 

chosen because a second parameter increases robustness, and because this filter provided BFI 

and alpha levels that were calculated and field-verified for watersheds of various sizes and 

substrates (Eckhardt et al., 2005). To delineate baseflow, we selected a BFI (0.71) and alpha 

level (0.98) from the Atlantic coastal northeastern Beaverdam Creek study site calculated during 

April 1950-March 1952, as it was the smallest (50 km²) perennial watershed with the largest 

mean annual precipitation (1075 mm) that had been assessed for these criteria (Eckhardt et al., 

2005). 
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Upon visual assessment of the automatically-selected hourly storm event periods, we 

determined that the criteria from Lloyd et al. (2016b) performed well for large, distinct, isolated 

storm events, but resulted in a high degree of inaccuracy for clusters of consecutive storm events 

(“event series”), and for storm events at low discharge levels. Therefore, a second set of selection 

criteria were developed to inform the manual adjustment of automated selection periods for 

event series and low discharge storms. Event starts were manually selected where discharge 

began to increase after a constant baseline of greater than 2 hr duration on the rising limb, and 

end points were manually selected where discharge returned to pre-event Q, or at the first hourly 

interval of a constant baseline greater than 2 hr on the falling limb (Appendix 1).  

2.2.6 Hysteresis Analysis  

 

 For each hourly-selected storm event period, the 5-minute interval discharge and 

DOCsensor data were selected and normalized from zero to 1 according to Lloyd et al. (2016b). 

The hysteresis index (HI) and flushing index (FI) were calculated following Lloyd et al. (2016b) 

and Vaughan et al. (2017; see also Butturini et al. 2008), respectively (Figure 1.1). The HI ranges 

from -1 to 1, where negative values indicate anticlockwise hysteresis, positive values indicate 

clockwise hysteresis, and a value of zero or close to zero (-0.05 to 0.05) indicates no hysteresis. 

The absolute magnitude of the HI describes the amplitude of the hysteresis loop, or how 

coincident peak DOC and peak discharge are.  FI also ranges from -1 to +1, with the magnitude 

of this index indicating the direction of the relationship between DOCsensor concentration and 

discharge, and thus the concentration gradient between DOCsensor source areas and the stream 

(see above). Negative FI values indicate DOCsensor dilution, positive FI values indicate DOCsensor 

flushing or accretion, and FI values at or close to zero (-0.1 to 0.1) indicate chemostasis. Further 

details on HI and FI calculations are provided in Appendix 1.  
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2.2.6 Antecedent Precipitation Index 

 

 Antecedent precipitation is often used as a proxy for antecedent soil moisture conditions 

when soil moisture data is unavailable. Precipitation data were collected from the meteorological 

stations as described previously. We calculated an antecedent precipitation index following the 

methods of Saxton and Lenz (1987) from Lloyd et al. (2016a):  

     APIj = K(APIj-1 + Pj-1)         (3) 

Where j is the time step in days, P is the daily precipitation (mm), and K is a decay 

coefficient controlled by evapotranspiration. We used a K decay coefficient value of 0.929, 

derived from a model developed in a small watershed (Deer Creek, 300 ha) in the high 

streamflow Cascade mountain region of western Oregon, US. Deer Creek is within the PCTR 

and has a similar climate, and its small size is comparable to our study watersheds (Fedora and 

Beschta, 1989).  

2.2.7 Statistical Analyses 

 

We delineated our timeframes using the classic Julian day calendar for each year, and 

using Spring, Summer, Fall, and Winter for each season. We delineated seasons based on the 

typical 3-month periods (Spring = March, April, May; Summer = June, July, August; Fall = 

September, October, November; and Winter = December, January, February), adjusted to reflect 

that season’s dominant hydrograph trend; shifting the summer season to coincide with the 

beginning of the dry season during our study period (April 1) and end at the start of Fall rains 

(August 26) (Spring = March; Summer = April - August 26; Fall = August 27 - November; 

Winter = December - February). For example, Summer begins in April, as this month is 



 

20 

 

relatively dry and has rainfall similar to the rest of the summer months, and ends on August 26, 

as that is the last dry day before the characteristic fall rains begin (Figure 2.3).  

Seasonal trends in FI and HI were assessed qualitatively and quantitatively for the four 

study watersheds. Trends were assessed qualitatively through visual inspection of biplots of FI 

and HI, and variation in these indices across months and seasons. We tested the various 

combinations of FI and HI, as well as FI and HI individually, for significance between months, 

seasons, and watersheds using the Kruskal-Wallis test, using the kruskal.test and kruskalmc 

functions from the pgirmess package in R (R Core Team, 2013). We assessed chemodynamism, 

which is conceptually similar to the FI as it expresses the hydrologic sensitivity of solute 

transport, using concentration-discharge (C-Q) plots following Godsey et al. (2009). We 

compared annual and seasonal C-Q plot slopes to the chemostatic/chemodynamic threshold 

levels outlined in Bieroza and Heathwaite (2015). The C-Q plot slopes were calculated on a 

logarithmic scale, and chemostatic responses were assigned to slopes that fell between -0.1 and 

0.1.  

To understand controls on HI and FI, predictor and response variables were input to an 

RDA ordination. Predictor variables included climatic, environmental and watershed-scale 

spatial data. The climatic and environmental predictors included mean temperature per event, 

precipitation per event, the antecedent precipitation index (API) for 3, 7, and 30 days prior to the 

event (as a proxy for soil moisture) (Table 2.2). The spatial, watershed scale predictors input to 

the RDA are identical to those described in Section 2.2.3 (Table 2.1). 

We input categorical response variables of combined FI and HI classes to a Classification 

and Regression Tree analysis. Our response variables included chN (chemostasis, no hysteresis), 
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DN (dilution, no hysteresis), FN (flushing, no hysteresis), DA (dilution, anticlockwise 

hysteresis), DC (dilution, clockwise hysteresis), FA (flushing, anticlockwise hysteresis), and FC 

(flushing, clockwise hysteresis) (E.g. Figure 1.1), with predictor variables identical to those 

described for the RDA above. CART models evaluate various thresholds in the predictor dataset 

to determine the first split that explains the most variation in the response variable. After the first 

threshold is determined, the CART model repeats for each sub-group in the tree until no 

additional significant variation can be explained. To conduct our CART analysis, we used the 

ctree function from the partykit package in R (R Core Team, 2013). 

2.3 Results 

 

2.3.1 Sensor Calibrations  

 

 fDOM sensors were corrected for temperature, turbidity, and inner filter effects through 

watershed-specific standard rating curves that were developed annually. The quenching effect of 

temperature on fDOM sensor output was corrected for using the methods in Watras et al. (2012) 

(R2 > 0.99 in all cases for calibration in 2015; Figure A1.1). Turbidity sensors were calibrated 

with standardized turbidity solutions to create linear rating curves (R2 = 1 in all calibration cases 

for 2015; Figure A1.2), and fDOM was corrected for turbidity using standard rating curves fit to 

linear models of the reciprocal of signal loss (%) (i.e., compensating signal gain) and turbidity 

concentration (R2 = 1 in all cases for calibration in 2015; Figure A1.3). Inner filter effects were 

corrected for using standard rating curves developed using a Suwanee River organic matter 

standard and the fDOM sensor output (R2 > 0.99 in all cases; Figure A1.6). After these 

corrections were applied to the fDOM sensor output in a stepwise manner, the final relationships 

between watershed-specific fDOM sensor outputs and DOCsensor were linear, with slope 
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coefficients approximately at 1 and a combined  R2 = 0.74 across all watersheds (Figure 2.2) (R2 

= 0.89, 0.65, 079, and 0.42, for WS 703, 708, 819, and 1015, respectively; Figure A1.8).  

2.3.2 Monthly Hysteresis Trends 

 

 Stream DOC outlet concentrations generally followed catchment outlet hydrographs, 

reinforcing the relationship between DOC and discharge. There are several instances of elevated 

DOC concentrations during storm events across all watersheds during mid-summer, but levels 

remain relatively low until fall precipitation begins in earnest (Figure 2.3) (see also Oliver et al. 

2017). Stream DOC began to decrease across all watersheds beginning in early Winter and 

continued to decrease through late Winter and Spring. Our use of continuous sensor data was 

able to substantially improve the overall representation of storm event dynamics for these study 

streams, which were previously documented using grab sample data (Figure 2.3, Oliver et al., 

2017).   

Regardless of season, all watersheds had more dilution relative to flushing events, as 

shown by the FI (Vaughan et al., 2017 from Butturini et al., 2006), and more anticlockwise 

relative to clockwise events, as demonstrated by the HI (Lloyd et al. 2016) (Figure 2.4; Table 

2.3). Most storm events with a dilution, anticlockwise response (DA; low FI, low HI) occurred in 

the Fall, whereas storm events with a flushing, clockwise response (FC; high FI, high HI) 

predominantly occurred in the Summer with the exception of watershed 819 (Figure 2.4). The 

proportion of different combinations of FI and HI varied across watersheds, however across all 

watersheds the most common response was DA (Figure 2.5; Table 2.3). Events with a DA 

response were most prevalent in watersheds 703, 819, and 1015, whereas storm event responses 

were distributed more evenly in WS 708 (Figure 2.4).  
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On a monthly basis, the proportion of events exhibiting a dilution response (DA and DC) 

generally followed annual trends in storm event count for our study watersheds, with a higher 

proportion of dilution events in winter and fall months and – in general – a greater proportion of 

flushing events in Spring and Summer (Figure 2.5). The flushing responses were dominated by 

anticlockwise (i.e., FA) events, with a cluster of FC event responses occurring in late summer – 

early fall (August, September, and October) (Figure 2.5). The monthly proportion of events 

exhibiting no hysteresis was low (FN, DN, chN), but consistent throughout the year (Figure 2.5).  

2.3.3 Kruskal-Wallis tests 

 

Temporal and spatial variation in storm event responses were further explored with 

nonparametric Kruskal-Wallis tests and post-hoc pairwise comparisons. The combined, 

categorical FI/HI values were defined previously (e.g. FA, DA, FC, DC, etc.) and were tested for 

significant differences in the number of types in each category across seasons, months, and 

watersheds. Individual FI and HI numerical values were assessed for significant differences in 

the same way (Table A2.1).  

The categorical FI/HI combination types were only significantly different between the 

seasons of Winter and Summer (p=0.01), highlighting the influence of seasonal climatic 

variation between wet and dry periods in the region. In addition, the combination of FI and HI 

was significantly different between watersheds 703 and 708 (p=0.003) (Table A2.1). 

When assessing spatiotemporal variation in FI, we found that the flushing-dilution 

response was significantly different between Summer and Winter, and Summer and Fall 

(p<0.001). Specific pairs of months that exhibited significant differences in the FI reflect these 

seasonal trends, and include February-August, April-October, April-November, April- 
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December, June-November, June-December, August-October, August-November, August-

December, and September-November (p<0.001). The only watersheds that were significantly 

different in their FI response were WS 819 and WS 1015 (p=0.011) (Table A1).  

In contrast, the hysteresis response to storm events (HI) was not significantly different on 

a seasonal or monthly basis. This suggests that FI, rather than HI, is driving the observed 

temporal variation. However, significant spatial differences were found in HI between watershed 

703 and 708, and between watershed 703 and 819 (p<0.001) (Table A1).   

2.3.4 C-Q Plots 

 

Slope coefficients of seasonally-demarcated C-Q plots show seasonal patterns that are 

similar across watersheds and that reinforce the event-based FI trends discussed above. Most of 

these responses are weak at the annual scale, or within the -0.1 to +0.1 threshold as demarcated 

in Bieroza and Heathwaite (2015) (Figures 2.7, 2.8) although the variation between hysteresis 

types clearly follows seasonal trends when assessed at the monthly scale (E.g. Figure 2.5). 

Across all watersheds, slope coefficients are primarily negative in winter, indicating a dominance 

of dilution event responses during the region’s wet period, and are primarily positive in summer, 

indicating a predominance of flushing events during the region’s dry period (Figure 2.7). The 

highest cross-watershed divergence in C-Q response occurs in Spring, with watershed 703 

exhibiting an overall flushing response, and watershed 819 exhibiting an overall dilution 

response. The least divergence in seasonal C-Q response occurs in the Fall, with most watersheds 

exhibiting predominantly dilution event responses (Figure 2.7). Across watersheds, WS 1015 

showed the least annual variation in C-Q response, with a slope that was near zero across all 

seasons.  Annually, WS 703 and WS 708 exhibit slight to moderate net flushing, while WS 819 
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and WS 1015 exhibit slight to moderate net dilution. Although none of the annual C-Q plot slope 

coefficients are zero, the fact that many fall within the -0.1 to 0.1 threshold indicates an 

overriding chemostatic response on an annual to seasonal basis (Figure 2.7), as the seasonal 

flushing and dilution behaviours effectively cancel each other out.  

2.3.5 Landscape Drivers of Hysteresis: Redundancy Analysis and CART  

 

The per-event characteristics of our environmental parameters are demonstrated in visible 

boxplot ranges and outliers (Figure 2.8), as well as by descriptive statistics (Table 2.2). RDA 1 

explained 26.3% and RDA 2 explained 8.0% of total variance in HI and FI, resulting in a total of 

34.8% of variance explained by the response variables (Figure 2.9). RDA 1 was most strongly 

associated with the FI response, which was best explained by the climatic variables of API (soil 

moisture) and temperature. A positive (i.e., flushing) FI response was positively correlated with 

temperature, but negatively correlated with antecedent soil moisture. RDA 2 was most strongly 

associated with the HI response, which was best explained by the watershed-scale predictors of 

elevation and waterbody percent (ponds and wetlands). Here, a positive (i.e., clockwise) HI 

response is negatively correlated with watershed area and elevation, and positively correlated 

with % Waterbody and precipitation (Figure 2.9). However, these results may indicate 

differences between watersheds rather than true drivers due to our low watershed sample size 

(n=4).  

Our CART analysis identified a series of environmental and catchment-scale drivers that 

served as determinants of the variation in event responses. Predictors that were identified as 

being significant in explaining the variation in combined, categorical FI and HI event responses 

included: 30-day antecedent soil moisture (30d API), waterbody cover (% ponds and wetlands) 
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(Wtb_prct), mean gap fraction (i.e. canopy cover; Mean_GapFrac), and mean temperature 

(Mean_Temp_QC_DegC) (Figure 2.10).  The percentage of misclassified events in the terminal 

leaf nodes of our CART was moderate (40.5% - 56.8%). 

At the highest level, the API enabled a split between a predominantly flushing (API 30d 

< 57mm) and dilution response (API 30d > 57mm) (Figure 2.10). Then, within the 

predominantly flushing responses (i.e. dry antecedent soil conditions), waterbody cover 

determined whether the response was predominantly anticlockwise (waterbody cover <= 7.5%) 

or clockwise (waterbody coverage > 7.5%).  Within the predominantly dilution responses (i.e. 

antecedent wet soil conditions) a low gap fraction separated out DA events. This is likely a 

separation of WS 703 in the CART pathway analysis due to the high amount of DA events 

occurring in WS 703, and the abundant coverage of dense, wet and wetland forests within that 

watershed. Warm temperatures enabled a flushing response even under wet API 30d conditions 

in the remaining terminal nodes, yet when temperatures were lower, dilution dominated.  

2.4 Discussion 

 

2.4.1 Sensor Performance 

 

 The correlation between DOCsensor concentrations and lab-derived DOC concentrations 

was marginally lower than values reported in other studies using similar fDOM sensors and 

correction methods (R2 = 0.74) (Figure 2.2). High correlations between sensor and lab DOC have 

been found in various studies, including Saraceno et al. (2009) (R2 = 0.97), Downing et al. 

(2012) (R2=0.93), Wilson et al. (2013) (R2=0.85), and Koenig et al. (2017) (R2=0.82). A more 

moderate correlation was found between sensor and stream DOC concentrations in Schultz et al. 

(2018) (R2=0.78). The highest correlation (R2=0.97) was conducted in a study catchment in 
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Sacramento Valley, California, USA, with a mean annual precipitation between 450-860mm 

(Saraceno et al. 2009). In contrast, a study catchment in Massachusetts, USA had a MAP of 

1100mm and a relatively lower correlation between sensor and stream DOC (R2=0.85) (Wilson 

et al. 2013). The study catchments in Koenig et al. (2017) had a MAP of 1031-1260mm and a 

similar correlation between sensor and stream DOC (R2=0.82), with a wide range in sensor 

accuracy depending on the catchment (0.38-0.95). Another fDOM sensor study was conducted in 

the humid, eastern climate of Connecticut, where catchments experienced relatively uniform 

precipitation throughout the year and more moderate correlation between sensor and stream 

DOC concentrations (R2=0.78) (Schultz et al. 2018). Sites with lower mean annual precipitation 

(MAP) generally had a higher correlation between sensor-derived and actual DOC 

measurements. 

Based on the known conditions that influence optical fDOM sensor accuracy (Downing 

et al., 2012), this reduction in sensor accuracy with increasing MAP could indicate a couple of 

mechanisms. High stream turbidity often accompanies high precipitation and could reduce sensor 

accuracy in these regions. High DOC concentrations often accompany high precipitation as well, 

which could increase fDOM sensor inaccuracy due to increased inner filter effects. Our study 

site has high precipitation but low turbidity, suggesting that inner filter effects are the dominant 

source of error in our fDOM sensor calculations. This indicates that we are reaching the upper 

DOC concentration limit for commercial fDOM sensors in this high-carbon region.   

 

2.4.2 Trends in DOC concentration 

 

The occurrence of precipitation primarily as rainfall throughout the winter months on 

Calvert and Hecate Islands (with the exception of some snowfall at elevation) increases the 

overall flux of DOC from soils to streams relative to other temperate ecoregions. The near-
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continual rainfall in the PCTR acts as a transport mechanism for soil DOC from organic-rich 

upland folisol soils throughout the year. More specifically, the largest increase in stream DOC 

concentrations occurs at the onset of Fall rains, which is followed by declining DOC 

concentrations throughout the rest of the wet season (Figure 2.3). This is likely due to the 

accumulation of DOC in riparian soils during the drier Summer months when a water transport 

vector is lacking. Once subsurface flowpaths initiate with increased precipitation, this reservoir 

of soil DOC is flushed to streams, as illustrated by DOCsensor concentrations across our study 

watersheds. DOC concentrations have also been found to be higher during storm events 

following dry conditions in a temperate bog (Tunaley et al. 2016). The cool summers exhibited 

by the coastal climate of the perhumid PCTR could dampen seasonal variation in NPP in 

comparison to humid, seasonal temperate rainforest regions with higher summer temperatures 

(DellaSalla et al. 2011), limiting relative soil DOC production in the drier summer months. 

However, this is most likely secondary to the influence of the dryness during the summer (Oliver 

et al. 2017), as soil DOC cannot be input to streams without a transport mechanism. 

 

2.4.3 Seasonal variation in flushing via the FI and C-Q response 

 

Two out of four seasons exhibited chemodynamism (flushing/dilution) in their stream 

DOC dynamics during storm events (Spring and Summer), while two seasons tended towards 

chemostasis (Fall and Winter) (Figure 2.7). Stream chemodynamism occurs when a solute 

concentration is sensitive and responds to changes in discharge, indicating a coupled hydro-

biogeochemical cycle. The mechanism of chemodynamism lies in the lack of pre-existing 

“legacy” solute stores, so that stream solute concentrations during a storm event can increase or 

decrease (flush/dilute) in relation to soil wetness conditions (Bieroza and Heathwaite, 2018). 
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Theoretically, soils could become completely leached if the rate of hydrologic transport 

exceeded the rate of net primary production, and this is seen on a smaller scale in our study 

watersheds as the concentration of DOC dilutes slowly over multi-day and multi-week event 

series (Figure 2.3).  

At the event scale, DOC responses demonstrated dilution (-FI) during storm events in the 

wetter period (Winter, Spring) and exhibited flushing (+FI) during storm events in the drier 

period (Summer) (Figure 2.7). Although these trends are muted when evaluated from a seasonal 

perspective relative to those at the monthly event scale (Figure 2.5); this is primarily due to the 

C-Q plots illustrating the broader aspect of these processes whereas assessment at the event scale 

demonstrates more detail due to a finer temporal resolution. Nevertheless, our C-Q plot findings 

maintain overall support for a model of subsurface hydrology and DOC transport being driven by 

antecedent moisture conditions. Greater wetness extends the contributing network and increases 

subsurface flowpath connectivity and mixing, which dilutes soil DOC during transport into the 

stream; less wetness decreases the contributing area and subsurface flowpath connectivity, 

limiting stream DOC inputs to adjacent stores that are flushed rapidly at the onset of a storm 

event. Similar seasonal effects were observed in the Connecticut River in southern New England, 

USA, where summer dry periods exhibited more flushing and winter wet periods exhibited more 

dilution (Schultz et al. 2018), as well as in a study conducted in agricultural streams, where dry 

conditions and small, frequent storms resulted in greater flushing behaviour than storms during 

wet conditions (Baker et al. 2019). The results of our RDA ordination support this model. 

Temperature is positively correlated with FI, indicating that stream DOC flushing is more likely 

to occur during warmer seasons. Conversely, the FI is negatively correlated with antecedent soil 

moisture, which indicates that stream DOC dilution is more likely to occur during seasons with 
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higher pre-existing moisture levels, such as during the wetter Winter and Spring seasons. These 

correlations explain much of the seasonal variation in the FI throughout our study period and 

provide further support for a hydro-biogeochemical model of aquatic carbon cycling, specifically 

soil DOC mobilization and transport. These results are in alignment with the findings of our 

CART analysis as well.  

Although the FI experiences seasonal chemodynamic flushing/dilution across all 

watersheds due to the accumulation of soil DOC during the summer and consequent flushing, 

averaging this variation creates a weaker, chemostatic signal at seasonal to annual scales when 

compared to the event scale (Figure 2.7). Regardless of streamflow, and thus the amount of water 

flowing through surrounding subsurface flowpaths, a chemostatic stream demonstrates relatively 

stable solute concentrations. This indicates an uncoupled hydro-biogeochemical (H-BGC) cycle 

at annual to seasonal scales, where the influence of subsurface hydrologic connectivity in solute 

transport is overridden by solute concentration.  

This weaker signal at annual and seasonal relative to event timescales could also be 

indicative of a multi-annual “legacy” effect of high SOC stocks across our ecoregion, which 

contribute to the dampening of event-scale chemodynamic flushing/dilution responses (Bieroza 

and Heathwaite 2018). Indeed, recent research has demonstrated very high SOC stocks 

throughout our study region (McNicol et al. 2019). This legacy effect has also been exhibited in 

agricultural soils that have had multi-annual anthropogenic inputs of nitrogen- or phosphorous-

based fertilizers, such that essentially unlimited solute availability nullifies the hydrochemical 

influence of broader catchment characteristics like soil, vegetation and topography (Basu et al. 

2011). There is still uncertainty surrounding the effect of watershed size on stream solute 

behaviour and transport, as studies have found that large watersheds can exhibit both a 
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dampening of hydrochemical effects due to mixing from diverse landscapes resulting in 

chemostasis (Creed et al. 2015), as well as a preservation of hydrochemical effects from 

disparate spatiotemporal hydrologic contributions and heterogeneous precipitation inputs 

(Zimmer et al. 2019). However, there is a decreased likelihood of this mechanism in our 

watersheds due to their small size. Thus, at annual to seasonal timescales, study watersheds in 

the PCTR experience chemostasis, or a predominantly uncoupled H-BGC cycle driven more 

strongly by local biogeochemistry than hydrologic variation. However, chemodynamism is 

evident in the monthly variation between flushing and dilution responses, which demonstrates a 

coupled H-BGC cycle driven by hydrologic conditions at the event timescale.  

 

2.4.4 Seasonal variation in hysteresis via the HI response 

 

 In contrast to the event-scale variability in FI that we observed, the hysteresis direction of 

each storm event (HI) did not exhibit clear seasonal trends. The majority of storm events 

exhibited anticlockwise hysteresis regardless of season or month (Figure 2.4; Figure 2.5), further 

indicating that sources of terrestrially derived stream DOC in our study catchments are widely 

available, transport-limited, and mobilized from a larger subsurface contributing area (Lloyd et 

al. 2016; Rose et al. 2018; Coch et al. 2018). The high prevalence of multi-day precipitation 

events in our catchments increases the overall “ambient wetness” of the soil, which increases 

subsurface flowpath connectivity at the event onset and allows DOC to mobilize from a greater 

contributing area (Tunaley et al., 2016), leading to the prevalent characteristic anticlockwise 

delay of peak DOC following peak discharge. This delay has also been attributed to highly 

concentrated DOC-rich contributions from saturated wetlands or ponds pulsing into the stream 

after their storage is exceeded (Knorr et al. 2013; Fovet et al. 2018). Thus, the predominance of 
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anticlockwise hysteresis on Calvert and Hecate Islands is likely due to delayed contributions as 

ambient soil wetness is flushed out and more concentrated DOC stores are input to streams from 

greater contributing areas, facilitated by wet soil conditions and thus greater hydrologic 

connectivity. 

Although anticlockwise hysteresis dominated event responses across all seasons, there 

were a modest number of events exhibiting clockwise hysteresis throughout the study period 

(Figure 2.4; Table 2.3). Clockwise hysteresis has generally been attributed to the presence of 

limited solute sources that are adjacent or proximal to the stream, and thus require shorter 

transport time (Lloyd et al. 2016; Coch et al. 2018). DOC flushing is often associated with 

clockwise hysteresis due to the proximity of inferred DOC sources: when soils are dry, or when 

solute transport is limited by hydrologic connectivity, inputs are restricted to adjacent sources 

that are rapidly flushed into the stream. Following the FI trends, there were less FC (flushing, 

clockwise hysteresis) than DC (dilution, clockwise hysteresis) events, which was counter to our 

expectations. FC events were clustered in late Summer-early Fall, which was according to our 

expectations, whereas DC events showing a more uniform seasonal distribution. The clustering 

of FC events in the late Summer-early Fall is likely due to the flushing of DOC after OM has 

built up in the soils during the dry summer months. We can infer from the uniform seasonal 

distribution of DC events (clockwise, dilution) that it is common for DOC sources to be near 

streams in our study catchments, and that even proximal DOC sources can become diluted from 

the high antecedent moisture conditions and rainfall characteristic of this coastal, perhumid 

ecoregion. There are occurrences of DC events during the dry summer months however, 

indicating perhaps that storm events during the summer fully mobilize and dilute proximal DOC 

stores.  
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2.4.5 Environmental and Landscape Drivers: RDA and CART analyses  

 

The findings of our RDA and CART models both reinforce the findings that – 

particularly for FI – seasonally-driven variations in moisture conditions drive variations in the 

hysteretic response. Other, recent work has explicitly tied subsurface connectivity to both trends 

in stream DOC concentrations and climatic drivers. For example, one recent study has 

demonstrated that maximum subsurface hydrologic connectivity is positively correlated with 

antecedent rainfall in addition to rainfall during the storm event (Zuecco et al. 2019). Field-

verified models have garnered evidence for the dependence of subsurface hydrologic 

connectivity (i.e. solute transport) on a) storm event precipitation; b) storm event soil moisture; 

and c) antecedent soil moisture (Dick et al. 2015). In this context, our findings that dilution 

responses dominated during wet periods, while flushing was more likely during dry periods is 

coincident with the findings of previous work, and provide further support for considering DOC 

transport models in terms of combined hydro-biogeochemical cycling at sub-annual and sub-

seasonal temporal scales.  

In our RDA analyses, variation in FI was primarily explained by temperature and 

antecedent precipitation. This provides further support for the influence of antecedent wetness, 

and thus seasonality, in driving solute export dynamics. Antecedent moisture was also found to 

be a significant explanatory variable for the FI of nitrate export (Aguilera and Melack 2018), 

while root zone available water capacity has also been found to be a significant predictor of the 

FI for nitrate export (Musolff et al. 2015). The seasonality of FI in our catchments is also implied 

in the importance of temperature as a significant explanatory variable for the FI in this RDA. 

RDA2, which was more strongly associated with HI, explained much less variation in the dataset 
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overall. The influence of predominantly landscape variables on the HI could indicate that DOC 

sources are driven more by watershed-scale spatial rather than environmental factors in this 

region. The low explanatory power of RDA2 could also indicate that DOC sources are primarily 

driven by spatial characteristics on smaller, sub-catchment scales. Waterbody cover (ponds and 

wetlands) and mean watershed elevation were negatively correlated with the HI. This could be 

due to the dominant landscape characteristics across our study catchments and how they affect 

DOC source distribution, where low lying, wetter, boggy areas accumulate more soil C relative 

to areas with higher relief.  

 The percentage of total events accurately classified by our CART analysis was moderate, 

although slightly greater than another study that used CART analysis to predict hysteresis trends 

(Aguilera and Melack, 2018). This suggests that collapsing spatial and temporal predictors into 

models of both solute transport and source dynamics may result in complexity that is not easily 

reducible to sequential pathways of individual predictor variables.  As such, we use the results of 

our CART analysis with caution, and describe broad similarities between our CART model 

results and those found via the analyses described above. Similar to our RDA analysis, pre-

existing API (soil moisture) from 30 days before the storm event onset was a key parameter for 

determining the hysteretic response.  

Flushing events were predominantly explained by low antecedent moisture conditions 

and dilution events by high antecedent moisture conditions. Precipitation was the critical driver 

of whether flushing events were clockwise or anticlockwise (dry antecedent conditions). It is 

interesting to note that the CART pathway that is predictive of FC events combines low 

antecedent moisture conditions and high precipitation. This suggests a requirement for prior dry 

conditions in order to build-up concentrated soil OM stores, yet also the need for a moderate 
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amount of wetness to mobilize soil DOC. In addition to supporting our RDA findings, these 

results highlight the importance of storm events during dry periods for DOC mobilization, 

transport, and export.  

 

2.4.6 Synthesizing a subsurface solute transport model for wet coastal temperate rainforests  

 

 A classic model of solute transport dynamics that directly pairs hydrological and 

biogeochemical cycles is the attribution of a three-component system of hydrologic flowpath 

inputs to different combinations of hysteresis types (anticlockwise, clockwise, and no hysteresis) 

and solute concentration behaviours (flushing or dilution) (Evans and Davies, 1998; Long et al. 

2017). The three hydrologic flowpaths included in this model are surface runoff event water 

(SE), soil groundwater (SO) or interflow, and groundwater (G) comprised of bank or baseflow 

and deep baseflow. The underlying assumption is that solute transport pathways can be identified 

based on the relative concentration of the solute in each contributing flowpath. The relative 

dominance of each hydrologic pathway thus provides a mechanism to explain both solute source 

and transport dynamics (HI and FI) during storm events.  

This three-component model (Evans and Davies 1998) has been used as a reference in 

other studies of solute transport dynamics (Carroll et al. 2007; Long et al. 2017). Although the 

assumptions of this model may not be transferrable between systems (such as groundwater (G) 

having lower solute concentrations than surface runoff event water (SE) or soil groundwater 

(SO), or SE coming from more proximal sources than SO), its underlying principles can be used 

to frame our understanding of solute transport dynamics in the PCTR. By integrating this model 

of seasonal flowpath dominance with our understanding of seasonal solute transport dynamics 
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through the HI and FI, we can develop a first-order, hysteresis-based hydro-biogeochemical 

model of subsurface DOC transport in wet, coastal temperate rainforests.  

For our model, we have divided our full Aug 2015-2016 data period into four distinct 

hydrologic periods based on watershed hydrograph characteristics. We can consider each period 

as composed of a different proportion of SE, SO, and G based on the understanding of PCTR 

solute transport dynamics gained in this study. The four periods include: 1) Re-wetting (late 

August to mid-September); 2) Wet (mid-September to mid-March); 3) Drying (mid-March to 

mid-April); and 4) Dry (mid-April to late August) (Figure 2.3). The Re-wetting and Drying 

periods are short transitions between the longer periods of Wet and Dry and are meant to allow 

for consideration of the rapid shifts in flowpaths that occur during these time periods.  

Solute availability fluctuates seasonally due to differences in rainfall and temperature. 

Without wet conditions to transport soil DOM as DOC during the drier summer period, soil C 

accumulates and rapidly flushes into streams once the rainy fall season begins. During the re-

wetting stage rapid hydrologic and biogeochemical change occurs. SO flowpaths increase, but 

this increase also encounters the majority of the dry period’s accumulated carbon, which enables 

rapid export. Once the re-wetting phase is complete, the accumulated dry summer high carbon 

stores have been exported and DOC concentrations decrease. As the wet period continues DOC 

concentrations further decrease, indicating soil DOC stores are being diluted due to prolonged 

high SO flowpath connectivity and thus transport. During the re-wetting period, the primary 

DOC source transitions from accumulated dry period SOM, to active SOM from ecosystem NPP. 

During the drying period, the DOC source transitions from the active transport of highly 

connected, terrestrially-derived DOC sources, to isolated soil DOC stores which accumulate due 

to drier conditions and a lack of transport. Due to the presence of relatively shallow granodioritic 
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bedrock across our coastal watersheds, the influence of deeper groundwater flowpaths (>1m 

depth) in our site-specific model is assumed to be negligible. The SE flowpath is more likely to 

contribute terrestrial POC than DOC to streams, as surface runoff mobilizes larger, less 

decomposed organic material from the ground surface.  

Based on these assumptions and our results, we propose that SO is the primary solute 

transport flowpath for DOC in wet coastal temperate rainforests with legacy soil organic carbon 

stores. Flowpath dominance can be understood in bedrock-underlain PCTR catchments as a 

seasonal alternation between SO flowpath networks of differing extent, connectivity, and 

density. During wet seasons there is an SO flowpath network of high extent, connectivity, and 

density (SOH), and during dry seasons there is an SO flowpath network of low extent, 

connectivity, and density (SOL). SO flowpaths change seasonally from highly connected, large, 

dense networks in wet periods to isolated, small, sparse networks in dry periods, and seasonal 

trends in solute export follow these hydrologic changes as well. The following relative flowpath 

dynamics for each period are as follows: 1) Re-wetting: SOL = SOH; 2) Wet: SOL < SOH; 3) 

Drying: SOL = SOH; 4) Dry: SOL > SOH. The following relative solute concentration dynamics 

for each period are as follows: 1) Re-wetting: DOCSOH = DOCSOL; 2) Wet: DOCSOL < DOCSOH; 

3) Drying: DOCSOL = DOCSOH; 4) Dry: DOCSOH < DOCSOL. DOC concentrations will be highest 

in the re-wetting period as it immediately follows the dry period and the build-up of DOC; and 

will be lowest at the end of the wet period, as that is when dilution exerts the strongest influence 

on stream DOC response.  

In summary, high stream DOC export is likely to occur in the PCTR during hydrologic 

periods after the accumulation of isolated soil carbon stores during the dry period, and when the 

SO flowpath network is highly connected, large and dense and hasn’t fully diluted soil DOC (Re-
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wetting and late Wet periods, respectively). Soil DOC flux to streams is thus related to longer-

term, seasonal soil moisture trends, where the influence of preceding conditions is key in 

determining subsurface solute sources and transport dynamics. It is necessary to consider DOC 

transport dynamics as being coupled with the seasonal hydrologic cycle, especially in the high-

rainfall, perhumid region of the PCTR. Future work in this ecoregion should focus on validating 

or further developing the first-order subsurface solute transport model proposed in this study. 

This could be done by developing comprehensive carbon and water budgets for streams and their 

surrounding riparian areas, integrating techniques such isotope tracers and subsurface well 

networks in a mass-balance approach.  

 

2.5 Conclusion 

 

Anthropogenic climate change is already affecting global hydro-biogeochemical cycling, 

with many areas of the world either predicted to experience or already experiencing an 

increasing frequency and magnitude of storm events, warmer temperatures, and more frequent 

fluctuations between temperature extremes (IPCC 2015). The PCTR can serve as a global end-

member when predicting stream metabolism and health in regions slated to experience a greater 

percentage of total annual precipitation as rainfall instead of snowfall, for example across much 

of western North America (Fosu et al. 2014; Szeto et al. 2015; Diffenbaugh et al. 2015), and in 

regions predicted to experience an increasing frequency and magnitude of storm events. 

However, the PCTR ecoregion is also expected to experience warmer temperatures and higher 

rainfall under climate change (Shanley et al. 2015). Locally, this could increase the already-high 

DOC yield of these small catchments, which can cause streams to become more heterotrophic, 

affecting in-stream ecology and metabolism. It could also increase the primary productivity and 
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acidification rates of coastal marine ecosystems, and increase the atmospheric efflux of stream 

DOC mineralized as CO₂.  Drier periods in these regions will likely begin to yield higher stream 

DOC exports, especially if summer storms increase in magnitude. More DOC will be flushed to 

streams in winter months with increasing temperatures. Our models suggest that temperature 

plays a secondary role to hydrologic connectivity in stream DOC export, so changes in rainfall 

will affect these wet, temperate ecoregions most heavily with temperature as a moderating effect. 

As such, it is likely that the relative significance of coastal temperate rainforest ecoregions in the 

global carbon cycle will increase as anthropogenic climate change progresses. Due to the 

coupling between hydrologic and biogeochemical cycles in solute transport dynamics, climatic 

changes will undoubtedly affect the timing and amounts of solute transport and mobilization, 

stream biogeochemistry, and terrestrial-marine-atmospheric biogeochemical cycling. It is critical 

we develop quantitative hydro-biogeochemical models of terrestrial-aquatic connections to 

manage, predict and prevent negative ecological and climatic effects from changes in aquatic 

carbon biogeochemistry, especially in organic-rich regions where terrestrial solute export is 

dominated by DOC.  
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2.6 Tables 

 

Table 2.1: Landscape characteristics per study watershed on Calvert Island, British Columbia, 

including watershed area (km2), total discharge yield (mm), flow-weighted mean stream DOC 

concentration (mg L-1), mean organic topsoil depth (cm), and the proportion of surface area 

covered by lakes measured by Oliver et al. (2017); the dominant ecosystem class defined by 

Thompson et al. (2016); and the mean percent slope calculated in GIS mapping software from 

geospatial layers provided by the Hakai Institute.  

 

Parameter 703 708 819 1015 

Q-weighted mean [DOC] (mg L-1)a 9.00 10.90 19.30 12.90 

Total Water yield (mm yr-1)a 3628 2158 1689 1791 

Mean organic topsoil depth (cm)a 

37.30 +/- 

16.50 

36.20 +/- 

19.70 37.90 +/- 19.10 39.50 +/- 17.20 

Dominant ecosystem class 
 

fresh to very 

moist forest 

wetter to 

wetland forest 

wetter to  

wetland forest 

wetter to  

wetland forest 

Land Area (ha) 1255 721 480 303 

Waterbody Cover (%) 1.9 7.5 0.3 9.1 

Mean elevation (m) 325 93 247 132 

Maximum elevation (m) 1012 384 465 432 

Mean slope (%) 40.3 28.5 30.1 34.2 

Mean Vector Ruggedness Metric 

(ha-1) 0.03 0.03 0.03 0.04 

Main Channel Length (km) 7.3 2.5 1.6 1.6 

Total Stream Network Length (km)  113.6 61.4 42.3 31.5 

Drainage Density (km km-2) (DD) 8.88 7.88 8.79 9.48 

Max Flowpath (km) 10.45 6.96 4.87 4.03 

Mean NDVI 0.70 0.66 0.68 0.69 

Mean Gap Fraction (Canopy 

Cover) 0.52 0.63 0.58 0.53 

Wetland Cover (%)  45.8 68.0 84.4 88.8 

a Oliver et al., 2017 
b Thompson et al., 2016 
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Table 2.2: Summary statistics of continuous predictor and response variables per storm event. 

Predictor variables include maximum discharge (max Q), maximum dissolved organic carbon 

(max DOC), stream temperature, precipitation, and the antecedent precipitation index (API) for 3 

days, 7 days, and 30 days prior to the beginning of each storm event as a indicator of antecedent 

soil moisture. Response variables include the flushing index (FI) and the hysteresis index (HI).  

 

 

Max Q 

(m3 s-1) 

 
 

Max 

DOC  

(mg L-1) 

Stream 

Temperature 

(°C) 

Precipitation 

(mm 5min-1) 

 
 

API 3 

days 

(mm) 

API 7 

days 

(mm) 

API 30 

days 

(mm) 

FI 

 

 
 

HI 

 

 
 

Minimum 0.236 3.005 0 0 0 0 0 -1.000 -0.683 

Maximum 29.74 25.54 20.5 183.2 143.5 221.6 360.6 0.965 0.672 

Median 2.551 10.74 8.9 23.70 12.60 42.17 97.43 -0.310 -0.205 

Mean 3.723 11.43 8.9 32.64 20.66 50.32 111.2 -0.235 -0.182 

Mean SE 0.209 0.241 0.203 1.657 1.262 2.367 3.794 2.494 0.014 

Mean CI (0.95) 0.411 0.474 0.399 3.259 2.481 4.655 7.462 4.906 0.029 

Std Dev 3.916 4.528 3.80 30.64 23.67 44.41 71.19 46.80 0.274 
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Table 2.3: Matrix of storm event counts per event type. Events are classified based on threshold 

values of the flushing index (FI) and the hysteresis index (HI) and their associated combinations.   

 

 Flushing (F) Dilution (D) Chemostasis (ch) Total (HI) 

Anticlockwise (A)  67 142 33 242 

Clockwise (C) 12 52 2 66 

No hysteresis (N) 4 39 2 45 

Total (FI) 83 233 37 353 
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2.7 Figures 

 

 

Figure 2.1: Map of the study watersheds, their stream networks, and installed sensors on Calvert 

and Hecate Islands, British Columbia, Canada. The inset indicates the location on the Pacific 

coast. The fDOM, turbidity, temperature, and water level sensors used in this study are located at 

the stream sensor nodes at the mainstem outlet of each study watershed. Precipitation gauges are 

located adjacent to each stream sensor node and at each weather station.  
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Figure 2.2: Final sensor DOC (DOCsensor) corrected for the influence of temperature, turbidity, 

and inner-filter effects plotted against lab-processed stream DOC grab samples (DOC) for each 

of the four study watersheds during the 2015-2016 period.  
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Figure 2.3: Time series of sensor DOC (DOCsensor), stream discharge, precipitation, and lab-processed DOC grab samples for each 

study watershed during the 2015-2016 study period. Precipitation data was collected from rain gauges at proximal meteorological 

stations on Calvert Island, discharge was developed from a Lowess rating curve produced by the salt-dump dilution method and 

stream water level data (Korver et al., 2019) and sensor DOC was produced by fDOM sensors corrected for temperature, turbidity, and 

inner filter effects. The blue horizontal line in WS 703 indicates an absence of precipitation data. The labels for each coloured, shaded 

region of the timeseries indicate hydrological periods that coincide with our proposed conceptual model: 1) RW=Re-wetting; 2) 

W=Wet; 3) DY=Drying; and 4) D=Dry. 
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Figure 2.4: Event-scale distribution of FI and HI for each study watershed coloured by season. 

The four quadrats indicate the combination of FI and HI across various threshold values (see 

Figure 1 for details). The top-right quadrat (+FI, +HI) for each watershed is classified as FC 

(flushing, clockwise), the top-left quadrat (+FI, -HI) is FA (flushing, anticlockwise), the bottom-

left quadrat (-FI, -HI) is DA (dilution, anticlockwise), and the bottom-right quadrat (-FI, +HI) is 

DC (dilution, clockwise). The red shaded regions indicate FN (flushing, no hysteresis), DN 

(dilution, no hysteresis); and the blue shaded regions indicate chA (chemostasis, anticlockwise); 

chC (chemostasis, clockwise), and the shaded square in the centre indicates chN (chemostasis, no 

hysteresis), where -0.05 < HI < 0.05 and/or -0.1 < FI < 0.1, respectively.     
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Figure 2.5: Monthly proportion of events that are classified as each quadrat-based event type (see 

Figure 2.4). The black points in each month indicate the monthly total event count. The 

categorical FI/HI combination types are as follows: FC=flushing, clockwise; FA=flushing, 

anticlockwise; FN=flushing, no hysteresis; DA=dilution, anticlockwise; DC=dilution, clockwise; 

DN=dilution, no hysteresis; chA=chemostasis, anticlockwise; chC=chemostasis, clockwise; and 

chN=chemostasis, no hysteresis.  
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Figure 2.6: Solute concentration-discharge (C-Q) plots for each study watershed during the 

period 2015-2016, coloured by season between sensor DOC and discharge, with a threshold cut-

off below 3 mgL-1 DOC.  
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Figure 2.7: Annual and seasonal slope coefficients with 95% confidence intervals of the C-Q 

linear regression model between log10(DOC) and log10(discharge). Points above 0.1 indicate a 

positive C-Q slope and stream DOC flushing during storm events, and points below -0.1 indicate 

a negative C-Q slope and stream DOC dilution during storm events. Points within -0.1 to 0.1 

represent a chemostatic stream response.  
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Figure 2.8: Boxplots indicating the median (horizontal line), range, and outliers of continuous 

predictor variables that were calculated for each storm event. Predictor variables include rainfall 

API 3d, API 7d, API 30d, maximum discharge, maximum sensor DOC, and mean temperature.  
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Figure 2.9: RDA of the constrained variance of response variables (FI and HI, in blue) explained 

by non-redundant predictor variables, including both climatic and watershed-scale spatial factors.  
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Figure 2.10: CART model output of significant predictors for the different categorical classes of 

quadrat-based event types from combinations of FI and HI. Inner nodes are indicated by circles, 

while final outer nodes are indicated by squares. Numbers in the lines between nodes indicate 

significant threshold values of predictor variables, which bin response variables into an event 

type category.  
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3.0 Sub-basin scale attributes drive dissolved stream CO₂ and CH₄ flux in northern pacific 

coastal temperate rainforest watersheds   

 

3.1 Introduction 

 

An important component of the global carbon cycle is the flux of carbon from inland 

freshwaters to the atmosphere, estimated at an annual rate of 3.9 Pg C yr-1 (Drake et al. 2017). 

These atmospheric freshwater emissions are a function of the lateral carbon fluxes from 

terrestrial to freshwater environments (Tank et al. 2017), and it has been estimated that the scale 

of these lateral fluxes are comparable to the residual terrestrial soil carbon sink (3.1 Pg C yr-1; Le 

Quére et al. 2016). Sinks of stream C include autochthonous uptake by photosynthetic organisms 

(Jones and Mulholland, 1998), which has been estimated to decrease total freshwater C 

emissions by 0.3 Pg C yr-1 (Regnier et al. 2013). Freshwater C emission sources include root 

respiration and in-stream DOC mineralization via bacterial respiration, as well as in the adjacent 

riparian soil pore water, which both contribute to freshwater CO₂ (Mayorga et al., 2005; 

Waterloo et al., 2006; Berggren and del Giorgio, 2015).  

In this project, our objective was to identify potential environmental controls on 

variability in two key greenhouse gases that are emitted from streams stream in the Pacific 

Coastal Temperate Rainforest (PCTR) ecoregion. We measured and assessed environmental 

drivers on CO₂ and CH₄ partial pressure and efflux to provide insight on watershed and sub-

watershed carbon cycling, and to support future carbon budget calculations. Efflux here is 

defined as the outward flow of gases from the freshwater stream to the atmospheric environment. 

Partial pressure is a term that refers to the amount of pressure each gas in a gas mixture exerts 

against its container, which in this case is the stream’s atmospheric boundary.  

The PCTR ecoregion has been identified as a potential global “hotspot” for inland 

freshwater CO₂ evasion due to its wet climate and high amounts of organic material contained in 
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catchment soils (Mayorga et al., 2010; Raymond et al. 2013). This classification as a potentially 

globally significant component of the carbon cycle highlights the need for further quantification 

of the controls on temporal variability in dissolved CO₂ flux. We conducted a spatial field survey 

across three hypermaritime watersheds on Hecate and Calvert Islands along central Pacific coast 

of British Columbia, Canada (Figure 3.1), to identify the primary sources of spatial and temporal 

variation in stream CO₂ and CH₄. We hypothesized that discharge (a proxy for turbulence) and 

flow type (a visual assessment of turbulence) would explain most variation in dissolved stream 

greenhouse gas (CO₂ and CH₄) partial pressure and efflux in our study watersheds. High 

turbulence increases the exposure of dissolved stream gases with the atmosphere, facilitating a 

more rapid efflux rate (Kling et al., 1998). As such, we hypothesized that sites with higher 

discharge and riffle flow types would positively related with CO₂ and CH₄ efflux, and negatively 

related with pCO₂ and pCH₄. Streams in this hypermaritime coastal environment also have very 

high concentrations of dissolved organic carbon (DOC) (Oliver et al., 2017). Although we expect 

stream DOC and CO₂ to be generally uncoupled in our study watersheds due to the influence of 

turbulence on gas evasion (Aufdenkampfe et al., 2011; Smits et al. 2017), the predominance of 

thick folisol soils and a carbon-rich landscape indicates that stream CO₂ partial pressure and 

efflux rates may be influenced by landscape characteristics to a certain extent (Section 2). Across 

watersheds, we expect stream CO₂ to have similar seasonal and hydrologic controls, such as 

stream temperature and rainfall. 

It is increasingly critical to identify controls on atmospheric evasion of dissolved CO₂ 

and CH₄ as climatic and hydrologic patterns transform due to global climate change. Quantifying 

stream CO₂ and CH₄ efflux in this carbon-rich temperate rainforest ecoregion can support future 
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climate modelling efforts and provide upscaled estimates of the cumulative impact of these 

ecoregions on global climate feedback systems.  

 

3.2 Methods 

 

3.2.1 Study Site  

 

The North Pacific Coastal Temperate Rainforest (NPCTR) ecoregion (50°N - 58°N) 

spans from California to Alaska and is the largest contiguous stretch of coastal temperate 

rainforest in the world (Kellogg et al., 1995). This study took place in the NPCTR on the central 

coast of British Columbia, Canada, across three small watersheds on Calvert and Hecate Islands. 

Coastal temperate rainforest ecosystems are characterized by ocean proximity, coastal 

mountains, cool summer temperatures, and high precipitation across all seasons with either 

perhumid, or humid and seasonally dry climates (Weigand, 1990; Thornthwaite, 1948; Alaback, 

1996). The NPCTR specifically has some of the highest biomass accumulations and rates of 

productivity of forest ecosystems in the world (Barbour and Billings, 2000), as well as extremely 

large stocks of soil organic carbon (SOC; McNicol et al. 2019). The study watersheds (WS) used 

for this research include WS 703, WS 708, and WS 819, as described in Chapter 2. Watershed 

1015 was omitted from this sampling effort. Further details on the study region, as well as the 

distinct ecology, hydrology, and geology of our watersheds are presented in Table 2.2. 

3.2.2 Data Collection 

 

Field surveys were conducted in June 2017 and May 2018 to collect dissolved gas 

samples of CO₂ and CH₄ across our three study watersheds (Figure 3.1). Our gas collection 

method followed the headspace equilibration method outlined in Tank et al. (2009), whereby 60 
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mL of headspace was created in a sealed, 1L polyethylene bottle containing stream water, and 

the headspace was sampled following 3 minutes of equilibration between headspace and water 

sample via vigorous shaking. Duplicate samples were collected at each sampling location. In 

2017, gas samples were collected in adjacent pool and riffle stream reaches along the stream 

mainstem to assess the effect of turbulence on dissolved gas concentration. We integrated a 

broader catchment approach into the sampling method in 2018 with the goal of capturing a wide 

selection of discharge and other model input parameters. Another objective was to sample at sub-

basin outflows to pair sub-basin scale landscape data with gas concentrations, and where 

possible, to sample in the adjacent watershed mainstem for a direct comparison of gas levels and 

potential off-gassing. At the reach scale, sites were selected to maximize a range of streambed 

slopes, because of the importance of slope for regulating gas flux gradients (Raymond et al. 

2012). Gas samples were processed for CO₂ and CH₄ concentrations with a Varian CP3800 gas 

chromatograph in the Biogeochemical Analytical Services Laboratory (BASL) at the University 

of Alberta, Edmonton. 

At each site, measurements were taken for stream width, depth, velocity, bed substrate, 

flow type, discharge, slope, DOC concentration, and absorbance at 254cm⁻¹ (A254). All water 

chemistry samples (DOC and A254) were filtered in the field (Millipore Millex-HP Hydrophilic 

PES 0.45 μm) and kept on ice, isolated from light sources, until their analysis at the BC Ministry 

of the Environment Technical Services Laboratory (Victoria, BC, Canada; DOC), or onsite 

(absorbance). DOC samples were preserved with 7.5M H3PO4 after being filtered into 60mL 

amber glass bottles. Stream width was measured with measuring tape, stream depth was 

calculated as the average of 10 measurements taken at equal intervals across the stream, stream 

velocity was taken from a single FlowTracker measurement at the site of gas sample collection, 
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and stream substrate was visually assessed from within the stream. Substrates were defined on a 

scale from 0 to 6 based on grain size and texture, where 0=bedrock, 1=boulders, 2=cobbles, 

3=pebbles, 4=gravel, 5=sand, 6=muck.  A substrate was considered a “mix” if it was equal parts 

of two distinct materials. Flow type was assessed visually in the location of each gas sample as 

being a pool, riffle, or steady flow area. Discharge was assessed at a subset of sample sites due to 

time constraints, and was measured with a Sontek FlowTracker using the velocity-area 

relationship and five measurements taken at equal distances across the channel. Slope was 

determined for each sample site using two clinometers positioned at the same height above the 

streambed, at a distance of approximately 5m apart along the reach length. These parameters 

were sampled to accurately calculate the gas exchange velocity (k) which is a component of the 

gas efflux calculation (Raymond et. al 2012), and to explore environmental controls on spatial 

variation in stream pCO₂, pCH₄, and CO₂ and CH₄ efflux. Stream water temperature was 

measured using a YSI multimeter probe.  

 Measurements were also collected from the Hakai Institute’s pre-existing telemetry 

watershed and meteorological monitoring network to assist in partial pressure and efflux 

calculations and in statistical modelling. Air temperature and sea level air pressure data were 

used from meteorological stations near the outlet of each study watershed, and stream 

temperature was collected from watershed sensor network monitoring sites near each outlet. 

Spatial data from Hakai’s LiDAR watershed metric dataset (Gonzalez et al., 2015) was extracted 

from every sampled sub-basin in each study watershed to assess the influence of broader, sub-

basin scale attributes on our response variables, the partial pressure and efflux of dissolved 

stream CO₂ and CH₄. These parameters include sub-basin perimeter, sub-basin area, waterbody 

percent cover, mean elevation, maximum elevation, mean slope, mean vector ruggedness matrix 



 

58 

 

(VRM), mainstem length (Lm), total stream network length (Lt), maximum flowpath length 

(MxFlwpth), and drainage density (DD). Sampled sub-basins were delineated in ArcGIS 10.4 

(ESRI, 2013) by a visual assessment of hydrologic and topographic vector layers provided by the 

Hakai Institute. As such, the spatial data associated with each sub-basin is an approximation, yet 

it is suitable for a first-order estimate and exploratory analysis. 

 

3.2.3 CO₂ and CH₄ Efflux Calculations 

 

To calculate the rate of gas efflux from the streams to the atmosphere, the difference in 

concentration between water and air is multiplied by the gas transfer velocity (k), a coefficient 

with a unit of length per unit of time that accounts for the transfer speed between the two 

environments (Raymond et al. 2012; Equation 1):   

F(g) = k * (Cwater – Cair)    (1) 

Where F(g) is the air-water flux of a gas, C indicates concentration, and k is the gas transfer 

velocity of that gas from a stream to the atmosphere. The gas transfer velocity (k) is primarily 

dependent on the turbulent dissipation rate at the air-water interface. As such, previous efforts to 

determine accurate stream gas efflux measurements have focused on the reaeration coefficient (K 

or k2), which is similar to k but not corrected for depth. To determine the gas transfer velocity (k) 

normalized to a Schmidt number of 600 (k600) for CH₄, we employed an empirical, logarithmic 

relationship developed from 493 k2 values derived from tracer-gas studies in 166 streams by the 

US Geological Survey (USGS). This relationship was verified using 127 k2 values on 24 streams 

(Melching and Flores, 1999). Firstly, we calculated the oxygen reaeration coefficient (k2) using 

Equation 10 from Melching and Flores (1999). Due to the fact that we conducted field sampling 

primarily during low flow conditions, and because our streams are small and experience pools 

and riffles, we chose the relationship for pool and riffle streams experiencing low flows (Q <  
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0.556 m3 s-1) (Melching and Flores 1999, Equation 10). This k2 equation incorporates an 

empirical relationship developed through logarithmic regression modelling between physically 

related stream hydraulic characteristics: water-surface slope, discharge, velocity, depth, and 

width. After calculating k2, we converted it to the oxygen gas transfer velocity (kO2) following 

Raymond et al. 2012 and determined the Schmidt number for kO2 (ScO₂) (Wanninkohf et al. 

1992). This was then used to determine the Schmidt number for CH₄ (Raymond et al. 2012, 

Table 2), and from this the reaeration coefficient for CH₄ (kCH₄; Raymond et al. 2012, Equation 

3). 

We relied on predetermined relationships between k600 and stream morphology 

characteristics to calculate dissolved stream CO₂ efflux (Raymond et al. 2012; Table 2; Equation 

1). The k models in Raymond et al. (2012) were developed with the same dataset as Melching 

and Flores (1999). 

 

3.2.4 Statistical Methods and Analysis 

 

In this study our aim was to assess the influence of various continuous and categorical 

environmental parameters on both the partial pressure and efflux of two dissolved stream 

greenhouse gases, CO₂ and CH₄. We assessed continuous predictors through a multivariate 

ordination analysis (RDA) and a univariate linear regression on ordination outputs. The effect of 

categorical predictor variables were assessed visually through the use of bar plots. We conducted 

our RDA and univariate regression analyses using all sample sites at the reach scale, as well as 

on the subset of sample sites that corresponded to specific, independent sub-basins within the 

larger watershed (sub-basin scale) to investigate the influence of local and broader watershed 

characteristics on dissolved stream CO₂ and CH₄ dynamics. Reach-scale continuous predictors 
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included DOC concentration, absorbance at 254 cm⁻¹ (A254; which is correlated to DOC), 

absolute slope, stream wetted width, stream depth, stream temperature and air temperature. 

Reach-scale categorical predictors included flow type (pool, riffle, and steady) and substrate. In 

addition to our reach-scale parameters, our sub-basin scale continuous predictors include sub-

basin perimeter, area, waterbody percent cover, mean elevation, maximum elevation, mean 

slope, mean vector ruggedness matrix (VRM), mainstem length (Lm), total stream network 

length (Lt), maximum flowpath length (MxFlwpth), and drainage density (DD).   

We calculated summary statistics of our continuous predictor and response variables with 

the package pastecs and the function stat.desc in R (R Core Team, 2013) at the reach (Table 3.1) 

and sub-basin (Table 3.2) scales. We calculated descriptive statistics of our categorical predictor 

variables with the summary function from base R (R Core Team, 2013) (Table 3.3). Summary 

statistics included the minimum, maximum, and mean. Normality was assessed with the 

Pearson’s coefficient of skewness and a Shapiro-Wilks test. The skewness coefficient is an 

assessment of the symmetry of a data set’s deviation around the mean. Significance of this 

statistic is assessed using the value of the skewness coefficient normalized to two standard errors 

following the z-distribution (Table 3.1; Table 3.2; Pskew 2SE), where an absolute value greater 

than 1 indicates significant non-normality. The Shapiro-Wilk’s test is a more formal test for 

normality with the null hypothesis that the data is normally distributed. Any parameters that 

exhibit a p-value less than the alpha value (0.05) indicate a significant deviation from the normal 

distribution and thus skewness (Shapiro and Wilk, 1965; Table 3.1; Table 3.2; Shapiro-Wilks p 

value). 

We input our continuous reach-scale and sub-basin scale predictor variables into distinct 

Redundancy Analyses (RDAs) using the function rda from the R package vegan (R Core Team, 
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2013). An RDA is a type of ordination for non-parametric multivariate regression models, which 

includes the response variables in the analysis and ordination plot output (unlike PCAs). We 

assessed the strength and direction of the univariate relationship between every RDA-selected 

predictor variable and our response variables using the function lm from base R (R Core Team, 

2013). We visually assessed the influence of our categorical predictors on our response variables 

through the use of bar plots and the ggplot package in R (R Core Team, 2013). 

 

3.3 Results  

 

Field surveys resulted in a total of 74 dissolved stream CO₂ and CH₄ gas samples across 

our three study watersheds: WS 703 (n=23), WS 708 (n=21), and WS 819 (n=30). In addition to 

samples along the mainstem of each river, field samples were collected at the outlets of 21 sub-

catchment basins of various sizes: eight basins in WS 703, six basins in WS 708, and seven 

basins in WS 819 (Figure 3.1). Summary statistics of these measurements are presented in Table 

3.1. Across all sites, values for pCO₂ ranged from 325 – 4275 μatm, while values for pCH₄ 

ranged from 0.73 – 887 μatm (Figure 3.2, Table 3.1). The distributions of both pCO₂ and pCH₄ 

were positively skewed based on normalized skewness coefficients, indicating the presence of a 

small number of samples with relatively high values. The Shapiro-Wilks test output also 

demonstrates general data skewness across the majority of results, with p-values below 0.05 for 

all continuous predictor variables except DOC and A254.  

 

3.3.1 RDA Output  

 

 Overall, our sub-basin scale RDA models performed better than our reach scale models, 

accounting for over half of the total variation in each dataset (Table 3.4, Figure 3.3, Figure 3.4). 

Our RDA model output for partial pressures of CO₂ and CH₄ at the reach scale (n=53) explained 
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16% of variance over the first two RDA axes (11% RDA1; 6% RDA2), indicating distinct 

environmental controls for each dissolved gas: pCO₂ was negatively related to A254 and DOC, 

and positively related to air temperature; whereas pCH₄ was negatively related to site slope and 

riffles, and positively related to stream temperature (Figure 3.3). This low explanatory power 

also indicates that some key variables may be missing from this initial model, such as turbulence 

or substrate, or some broader scale hydrologic and topographic parameters. RDA model 

performance at the sub-basin scale (n=10) (Figure 3.3) showed pCO₂ and pCH₄ to be driven by 

distinct landscape attributes, with pCO₂ negatively correlated with sub-basin area, and pCH₄ 

strongly positively related to maximum stream flowpath length, total stream network length, and 

stream mainstem length, and to a lesser extent positively correlated with mean slope and mean 

VRM. RDA1 explained 82% and RDA2 explained 14% of total variation in this second sub-

basin scale RDA model, while total constrained variance explained was at 97% (Figure 3.3); 

which is substantially higher than the variation explained by our reach scale RDA output.  

The total constrained variance explained by our RDA model for stream CO₂ and CH₄ 

efflux at the reach scale (n=22) (0.43) was far higher than the constrained variance explained in 

our reach scale pCO₂ and pCH₄ model (Table 3.4). RDA1 explained 39% and RDA2 explained 

4% of the total variation (Figure 3.4). CO₂ efflux was negatively related to stream temperature 

and positively related to air temperature and riffles, while CH₄ efflux was negatively correlated 

with DOC, as well as moderately positively related to air temperature and steady flow (Figure 

3.4). Although the sample sizes were reduced when including sub-basin scale data, the amount of 

constrained variance explained (i.e. related to our response variables) of our sub-basin scale 

RDA efflux model was the highest of any model (0.93; Table 3.4). RDA1 explained 78% of the 

variation in response variables and RDA2 explained 22% (Figure 3.4).  CO₂ efflux at the sub-
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basin scale was primarily positively related to waterbody percent coverage, and negatively 

related to mean VRM and area. CH₄ efflux was dominated by the influence of hydrologic 

attributes at the sub-basin scale, such as maximum flowpath, total network length, and mainstem 

length, and sub-basin slope to a lesser extent (Figure 3.4).  

 

3.3.2 Effect of Flow and Substrate (Categorical)  

A visual assessment of our bar plot results suggest that pCO₂ does not vary consistently 

with flow type, while pCH₄ does (Figures 3.5, 3.6) (n=53). While pCO₂ did not visibly differ 

across flow types, pCH₄ was higher in pools than in steady or riffle flows. Relative to pCO₂ and 

pCH₄, flow type also appeared to have less influence on CO₂ and CH₄ efflux (Figure 3.7 and 

Figure 3.8, respectively) (n=23). Riffles accounted for the highest CO₂ efflux yet exhibited a 

high standard error. Steady flows accounted for slightly more CH₄ efflux than riffles.  

Partial pressures of CO₂ were highest in sample sites with cobble and muck substrate, 

followed by gravel (Figure 3.7). A single sample site with a pebble-gravel substrate mix 

demonstrated relatively high levels of pCO₂. pCH₄ levels were highest at sites with muck 

substrate, followed by cobbles (Figure 3.8) (n=53). CO₂ efflux was also highest at sites with 

cobble substrate followed by sand, although the standard error for the cobble measurements was 

large (Figure 3.5) (n=23). CH₄ efflux was high in muck, sand, and cobbles (Figure 3.6) (n=23).  

 

3.3.3 Univariate Linear Regression Models 

 We conducted univariate linear regression modelling on the output parameters of each 

RDA model to determine significant univariate relationships with partial pressures and efflux 

(Table 3.5). There were no significant predictors for pCO₂ or pCH₄ at the reach scale, while 
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pCO₂ at the sub-basin scale exhibited significant correlations with several attributes, including 

mainstem length, network length, and maximum flowpath (R2 0.48-0.91; p<0.05) (Figure 3.9). 

pCH₄ was significantly correlated with the same variables at the sub-basin scale (R2 0.77-0.91; 

p<0.001) (Figure 3.9). 

Univariate regression results for CO₂ and CH₄ efflux were similar at the sub-basin scale, 

however at the reach scale they were more strongly explained by DOC than pCO₂ and pCH₄. 

CO₂ and CH₄ efflux were both significantly correlated with DOC at the reach scale (R2=0.29, 

0.19; p<0.05) (Figure 3.10). At the sub-basin scale, CO₂ efflux was significantly correlated with 

maximum flowpath length (R2=0.37; p<0.05) (Figure 3.11). CH₄ efflux was significantly 

correlated with mainstem length, network length, and maximum flowpath length at the sub-basin 

scale (R2 0.87-0.91; p<0.0001) (Figure 3.11). Across our study watersheds WS 703 had the 

highest partial pressure levels and efflux rates, whereas WS 708 and WS 819 were lower 

(Figures 3.9 - 3.11). 

 

3.4 Discussion  

 

The overall higher performance of our sub-basin scale models in comparison to the 

reach-scale model output suggests that broad-scale hydrologic and topographic attributes may 

have more of an influence on stream CO₂ and CH₄ than variables that are specific to the local 

reach. The influence of sub-basin and catchment-scale hydrologic and topographic attributes on 

stream CO₂ flux has been demonstrated elsewhere (Fellman et al. 2016; Bertuzzo et al. 2017).  

This could also indicate that a strong, reach-scale driver of pCO₂ and pCH₄, for example a 

quantitative measurement of turbulence, was missing from our RDA model parameters. 

Although substrate was excluded from our multivariate RDA ordinations, the visual correlation 
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between both categorical predictors with pCO₂ and pCH₄ (Figures 3.5 - 3.8), as well as the 

inclusion of flow type in our RDA model output, implies that further work to capture these 

variables with continuous data may enhance the predictive power of stream C flux models in this 

ecoregion.  

The negative relationship between pCO₂ and DOC at the reach scale is counter to the 

expectation that dissolved CO₂ levels have a generally positive relationship with DOC, where as 

DOC increases, in-stream mineralization also increases. This negative relationship could suggest 

that the influence of DOC on pCO2 is negligible relative to other factors such as turbulence. It 

could also indicate that there may be a contraindicative dynamic between the type of carbon 

(highly aromatic; Oliver et al. 2017) being transported from soils to streams in this ecoregion and 

the metabolic ability of in-stream microbes that would otherwise mineralize the input carbon. 

Further work is needed to determine the influence of in-stream microbial DOC mineralization in 

these highly allochthonous streams, as well as the influence of terrestrially derived soil CO₂ from 

root respiration relative to in-stream DOC mineralization on total dissolved stream pCO₂.  

Reach scale slope and stream temperature primarily explained stream pCH₄ levels, where 

reach slope was negatively and stream temperature positively related to pCH₄. Low slope can 

function as a proxy for the presence of wetland ecosystems in stream DOC models (D’Amore et 

al. 2015), as carbon accumulation in the form of peat is hindered on steep slopes (Smits et al. 

2017). Stream temperatures can also be higher near wetlands due to the influx of shallow, 

warmed waters. These model outputs suggest that methane inputs to streams in our northern 

PCTR study catchments are driven by the proximity of wetland ecosystems. This is counter to 

the primary drivers of two of the world’s largest tropical rivers, the Amazon and the Congo, 

where wetlands exerted strong control on pCO₂ yet not pCH₄ (Borges et al. 2015). 
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At the sub-basin scale, pCO₂ and pCH₄ were positively associated with several 

hydrologic attributes including the total stream network length, maximum flowpath length, 

waterbody % coverage, and mainstem length. This likely indicates stream CO₂ and CH4 

accumulation due to increasing subsurface soil inputs as one moves further downstream in the 

sub-basin. This is also in alignment with the River Continuum Concept, namely that stream 

reaches are dynamic in both space and time, and that they reflect the integrated processes of the 

upstream watershed (Vannote et al. 1980). Sub-basin area and the topographic Vector 

Ruggedness Metric (VRM) were also moderately positively related with pCH₄ in our RDA 

model output. The positive relation of sub-basin area with pCH₄ and the influence of the VRM 

could be indicative of the ubiquitous nature of wetlands in our ecoregion. Finally, after 

conducting linear regression between each individual RDA model response and predictor 

variable, we found that regression output reflected the RDAs and thus the evidence of the 

aforementioned potential drivers, as pCO₂ and pCH₄ were significantly correlated with sub-basin 

hydrologic attributes (mainstem length, R2=0.48, 0.91; total network length, R2=0.91, 0.82; 

maximum flowpath length, 0.54; 0.77, respectively) (Table 3.5).   

Our reach scale RDA model output for CO₂ and CH₄ efflux was similar to the output for 

reach scale pCO₂ and pCH₄, however its overall performance doubled in terms of the cumulative 

constrained variance explained (Figure 3.3; Figure 3.4). DOC exhibited strong negative 

correlations with CH₄ efflux and CO₂ efflux, which reflects similar mechanisms with pCO₂ and 

pCH₄ described above. DOC was the only significant reach-scale predictor of CO₂ (R2=0.29) 

and CH₄ efflux (R2=0.19) determined by univariate linear regression between each individual 

model response variable and input parameter (Figure 3.10).    
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At the sub-basin scale, CH₄ efflux was more strongly correlated with the broader 

hydrologic attributes of maximum flowpath, maximum stream network length, and mainstem 

length than CO₂ efflux, indicating the possibility of divergent drivers between the emissions of 

both greenhouse gases. It also suggests a cumulative increase in CH₄ inflows throughout the 

watershed, again likely due to increasing wetland inputs. The positive relation of waterbody % 

cover with CO₂ efflux also supports the notion of cumulative C inflows due to wetlands as one 

moves further downstream in the watershed. The significant regression predictors of CO₂ efflux 

at the sub-basin scale was maximum flowpath (R2=0.37), while for CH₄ efflux the significant 

predictors included mainstem length (R2=0.91), network length (R2=0.89), and maximum 

flowpath (R2=0.87). These higher univariate coefficients of determination at the sub-basin scale 

relative to the reach scale suggest that broader hydrologic and topographic attributes may 

influence stream CO₂ and CH₄ flux more strongly than attributes at the site or stream reach level. 

pCO₂ was highest in sites with pool conditions, and CO₂ efflux was highest at sites with 

riffle flow type. This supports our initial model of CO₂ efflux being driven by turbulence due to 

the more rapid exposure of in-stream dissolved gas to the atmosphere in turbulent, or riffle, 

areas. The high CO₂ emissions associated with cobble substrate could point to more groundwater 

influx through a coarse streambed medium, and the emissions associated with muck could be due 

to a proximity of wetlands and CO₂ produced via anaerobic methane oxidation. pCH₄ was also 

highest in pool stream sites, however CH₄ efflux was highest in sites with steady flows, rather 

than in riffles where CO₂ efflux was highest. This could point towards the influence of external 

methane sources in areas with slower flows, such as in bogs or other wetland ecosystems where 

stream water is forced through lower slopes, winding paths and shallower beds. Our substrate 

data also supports this, as pCH₄ is far higher in sites where the stream bed is partially 



 

68 

 

decomposed muck, and thus where anaerobic methanogensis is more likely to take place (Figure 

3.8).  

 

3.5 Conclusion and Significance 

 

This project provides evidence that supports the influence of broader, sub-basin scale 

hydrologic and topographic attributes on stream CO₂ and CH₄ fluxes. As stream networks are 

fundamentally connected both temporally and spatially, a dynamic approach that integrates both 

reach-scale and sub-basin scale data is necessary for moving forwards with research on the 

drivers of these dissolved stream greenhouse gases. Further investigation into the effect of flow 

and substrate type on stream CO₂ and CH₄ flux is warranted, as well as work on autochthonous 

CO₂ and CH₄ uptake/mineralization in perhumid, coastal PCTR watersheds. There is recent 

evidence that large stocks of SOC in the northern PCTR are driven primarily by precipitation and 

topographic characteristics, and that the high amounts of SOC are caused by and depend on high 

soil moisture (McNicol et al. 2019). Following this, northern coastal temperate rainforests should 

be considered as SOC storage hotspots on the scale of the global carbon cycle. However, shifting 

moisture regimes due to global anthropogenic climate change are predicted to affect the cycling 

of carbon in this ecoregion. Specifically, coastal perhumid regions of the PCTR are projected to 

experience increasing precipitation (DellaSalla et al. 2015). Based on the evidence presented by 

this research project, it is likely that increasing precipitation will increase the rate of transport of 

terrestrial SOC to streams in the form of DOC, CO₂ and CH₄, and as such will increase the 

emissions rate of greenhouse gases like CO₂ and CH₄ from streams to the atmosphere. Some 

evidence already indicates increasing soil DOC export with warming temperatures (D’Amore et 

al. 2015). Our results provide further support for evidence of a terrestrial-hydrologic carbon 
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positive feedback loop in this ecoregion, which has implications for the global carbon cycle 

(Oliver et al. 2017). Left unaddressed and unincorporated into regional and global models, this 

feedback has the potential to increase greenhouse gas emissions to the atmosphere, exacerbating 

current anthropogenic climate warming and its effects.   
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Table 3.1: Summary statistics of continuous predictor, response, and site variables measured at 

each sample site or at proximal sensors. The skewness coefficient is an assessment of the 

symmetry of a data set’s deviation around the mean. Significance of the skewness coefficient is 

assessed using the value of the skewness coefficient normalized to 2 standard errors following 

the z-distribution (Pskew 2SE), where an absolute value greater than 1 indicates significant non-

normality. The Shapiro-Wilk’s test also tests for skewness with a null hypothesis of normality. 

Any parameters that exhibit a p-value less than the alpha value (0.05) indicate a significant 

deviation from the normal distribution. 

 

 

 

Min 

 

  

Max 

 

  

Mean 

 

  

Pskew 

2SE 

  

Shapiro-Wilks 

p value 

 

DOC (mg L-1) 5.20 20.81 12.24 0.27 0.1717 

A254 (cm⁻¹) 0.00 0.87 0.53 -0.14 0.2859 

Velocity (m s-1) 0.00 0.89 0.22 1.75 <0.001 

Absolute slope (m/m) 0.00 0.25 0.04 3.80 <0.001 

Stream width (m) 0.08 11.80 2.73 1.79 0.0002 

Stream depth (m) 0.07 0.88 0.29 1.41 0.0040 

Water T (˚C)  9.20 21.60 13.21 1.00 0.0020 

Air T (˚C)  8.41 16.62 11.66 0.55 0.0088 

Atm CO₂ (ppm) 438.63 481.60 463.48 -0.85 <0.001 

Atm CH₄ (ppm) 1.46 2.79 1.73 2.91 <0.001 

pCO₂ (μatm) 325.40 4275.30 950.35 4.99 <0.001 

pCH₄ (μatm) 0.73 887.17 59.81 8.41 <0.001 

CO₂ flux (mg m-2 s-1) 0.78 4540.03 0.59 3.01 <0.001 

CH₄ flux (mg m-2 s-1) -0.02 2.10 495.14 0.28 <0.001 
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Table 3.2 Summary statistics of sub-basin basin scale predictor variables. Sub-catchment basins 

and accompanying spatial datasets were delineated in ArcGIS 10.4 (ESRI, 2013) from the Hakai 

Institute’s LiDAR Watershed dataset (Gonzalez et al. 2015).  

 

 
n min max mean Pskew 2SE Shapiro-Wilks p value 

Area (ha) 21 4878.38 2445288 508102.20 1.478 <0.001 

Waterbody coverage (%) 21 0.17 7.51 2.18 1.069 0.016 

Mean elevation (m) 21 69.00 325.39 211.96 -0.195 0.229 

Max elevation (m) 21 196.92 1012.37 572.80 0.566 0.012 

Mean slope (%) 21 28.05 40.85 34.32 0.111 0.040 

Mean VRM (ha-1) 21 0.02 0.04 0.03 0.701 0.116 

Mainstem length (km) 21 0.91 7.31 3.43 0.591 0.002 

Total network length (km) 21 21.07 113.59 59.78 0.481 0.005 

Maximum flowpath (km) 21 2.80 10.45 6.27 0.407 0.007 
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Table 3.3: Categorical predictor variables, their class IDs and definitions, and the total number of 

freshwater gas field survey sites per class.  

 

Categorical Predictor Variable (2017-2018) Class ID Class Total sites per class 

Flow Type P pool 18 

 S steady 33 

 R riffle 43 

Substrate 0 bedrock 4 

 1 boulder 10 

 2 cobble 12 

 3 pebble 0 

 4 gravel 11 

 5 sand 4 

 6 

0-1 mix 

muck 

bedrock-cobble 

3 

1 

 1-2 mix boulder-cobble 1 

 1-4 mix 

2-4 mix 

boulder-gravel 

cobble-gravel 

1 

1 

 3-4 mix pebble-gravel 1 

 4-5 mix 

4-6 mix 

gravel-sand 

gravel-muck 

2 

1 
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Table 3.4: RDA multivariate model parameters and outputs. Predictor variables are comprised of 

reach scale sample site and proximal sensor data, and sub-basin scale spatial data pulled from 

regional LiDAR layers in ArcGIS. Values are rounded to the second decimal place (0.01).  

 

Response  

Variables 

Predictor  

Scale 

Predictor 

Variables 

Prop. 

Constrained 

Variance 

Explained  

Prop. 

Unconstrained 

Variance 

Explained  

Prop. 

Total 

Variance 

Explained 

RDA1 

Prop. 

Total 

Variance 

Explained 

RDA2 

Significant  

Predictors 

(ANOVA) 

(p < 0.05) 

n Total 

Adj. 

R2 

pCO₂ 
and  

pCH₄  

reach slope, DOC, 

A254,  

stream temp, 

air temp 

0.16 0.83 0.11 0.06 none 53 0.04 

pCO₂ 
and 

pCH₄  

sub-

basin 

area, 

waterbody % 

cover, 

mainstem 

length, 

network 

length, max 

flowpath, 

mean slope, 

mean VRM 

0.97 0.03 0.82 0.14 mainstem 

length 

10 0.86 

CO₂ 

efflux 

and  

CH₄ 
efflux 

reach slope, DOC, 

A254,  

stream temp, 

air temp 

0.43 0.57 0.39 0.04 DOC 22 0.20 

CO₂ 

efflux 

and  

CH₄ 
efflux 

sub-

basin 

area, 

waterbody % 

cover, 

mainstem 

length, 

network 

length, max 

flowpath, 

mean slope, 

mean VRM 

0.99 0.00 0.78 0.22 mainstem 

length, 

waterbody 

cover (%) 

10 0.99 
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Table 3.5: Univariate linear regression models parameters and significant outputs (p<0.05). 

Predictor variables are comprised of reach scale sample site and proximal sensor data, and sub-

basin scale spatial data pulled from regional LiDAR layers in ArcGIS.  

 

 

 

 

 

 

 

Response Variable Predictor Scale Significant  

Predictor(s) 

R2 p  n 

pCO₂ reach none none none 53 

pCO₂ sub-basin mainstem length  

network length 

max flowpath 

0.48 

0.91 

0.54 

0.0152 

1.04 x 10-5 

0.0096 

10 

pCH₄  reach none none none 53 

pCH₄  sub-basin mainstem length 

 network length 

max flowpath 

0.91 

0.82 

0.77 

1.04 x 10-5  

0.0002 

0.0005 

10 

CO₂ efflux reach DOC 

air temperature 

0.29 

0.29 

0.006 

0.006 

23 

CO₂ efflux sub-basin max flowpath 0.37 0.0362 10 

CH₄ efflux reach DOC 0.19 0.022 23 

CH₄ efflux sub-basin mainstem length, 

network length, 

max flowpath, 

0.91 

0.89 

0.87 

1.04 x 10-5 

2.91 x 10-5 

4.62 x 10-5 

10 
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3.7 Figures 

 

 
 

Figure 3.1: Map of our study watersheds (WS 819, WS 703, WS 708) and delineated sub-basins 

on Hecate and Calvert Islands, British Columbia, Canada.  
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Figure 3.2: The range, median, and outliers of measured pCO₂, pCH₄, CO₂ efflux, and CH₄ 
efflux on Hecate and Calvert Islands in the coastal temperate rainforest of British Columbia, 

Canada.  
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Figure 3.3: RDA model output for pCO₂ and pCH₄ at the reach (n=53) and sub-basin scale 

(n=10). 
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Figure 3.4: RDA model for CO₂ and CH₄ efflux at the reach (n=22) and sub-basin scale (n=10). 
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Figure 3.5: Stream pCO₂ per watershed according to flow type: pool (P), riffle (R), and steady 

(S); and substrate type: bedrock (0), boulders (1), cobbles (2), pebbles (3), gravel (4), sand (5), 

and muck (6) (n=94).  
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Figure 3.6: Stream pCH₄ per watershed according to flow type: pool (P), riffle (R), and steady 

(S) (n=94); and substrate type: and substrate type: bedrock (0), boulders (1), cobbles (2), pebbles 

(3), gravel (4), sand (5), and muck (6) (n=53).  
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Figure 3.7: Stream CO₂ efflux per watershed according to flow type: pool (P), riffle (R), and 

steady (S) (n=53). and substrate type: bedrock (0), boulders (1), cobbles (2), pebbles (3), gravel 

(4), sand (5), and muck (6) (n=53). 
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Figure 3.8: CH₄ efflux per watershed according to flow type: pool (P), riffle (R), and steady (S) 

(n=53); and substrate type: bedrock (0), boulders (1), cobbles (2), pebbles (3), gravel (4), sand 

(5), and muck (6) (n=53). A lack of data for a specific flow type indicates there were no sample 

site measurements taken for that type.  
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Figure 3.9: Linear regression model output for predictors (p≤0.05) of pCO₂ and pCH₄ (μatm) as 

response variables at the sub-basin scale. 
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Figure 3.10: Linear regression model output for predictors (p≤0.05) CO₂ and CH₄ efflux at the 

reach scale.  
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Figure 3.11: Linear regression model output for predictors (p≤0.05) CO₂ and CH₄ efflux (mg m-2 

s-1) as response variables at the sub-basin scale.  
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4.0 General Conclusions 

 

On Calvert Island, the PCTR ecoregion exports a large annual carbon load of terrestrial 

DOC (Oliver et al., 2017), which coincides with the identification of the PCTR ecoregion as a 

global DOC export hotspot in Mayorga et al. (2010). Cumulatively, stream waters in PCTR 

watersheds had a mean annual DOC yield of 52.3 MgC km-² (52.3 gC m-²) (Oliver et al., 2017), 

which is higher than the annual DOC yields of the top 30 rivers ranked by discharge in the world 

(Raymond and Spencer, 2015). In addition, the PCTR ecoregion has been identified as an area 

with significantly high freshwater atmospheric CO₂ evasion (Raymond et al. 2013). These 

studies suggest that the PCTR ecoregion plays a significant role in the global carbon cycle. As 

such, understanding how the PCTR both affects and is affected by global carbon dynamics is 

imperative in the context of climate change. Specifically, stream DOC, CO₂, and CH₄ outflows 

add to carbon pools in the atmosphere and ocean (Ridgwell and Arndt, 2015), which can increase 

ocean acidification (Bernhardt and Schlesinger, 2013), affect microbial/plankton community 

structure and function (Loginova et al., 2016; Traving et al., 2017), and the addition of the 

greenhouse gas CH₄ can accelerate predicted climate scenarios, which involve an increasing 

frequency and intensity of extreme weather events (Pachauri et al., 2014). It is evident from this 

research that growing carbon pools in the atmosphere and oceans will have social and ecological 

ramifications, thus it is critical to determine controls on temporal variability in stream DOC 

export and CO₂ emissions to predict how future global changes in climate might affect, and in 

turn be affected by, regional PCTR carbon export and emissions. Although the study by Oliver et 

al. (2017) was the first to quantify, characterize, and propose controls for DOC export from this 

data-poor region of British Columbia’s central coast, there have been no studies that 

quantitatively assess the drivers of stream DOC or dissolved CO₂ and CH₄ partial pressures and 
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efflux. At a broader scale, this study will add to the small but growing body of literature 

employing high-frequency, in situ sensors and spatial sampling to analyze freshwater DOC, CO₂, 

and CH₄ flux.  

 This bulk of this research project contributes to a growing field of hysteresis analyses on 

DOC and discharge within temperate streams. In Chapter 2 we present the first hysteresis 

analysis to be conducted within the NPCTR, which provides new insight into temporal variation 

in lateral, subsurface DOC transport, and soluble C flow in general, in this perhumid ecoregion. 

In addition, our analysis provides a mechanistic foundation that allows for general predictions to 

be made about the quantity and timing of DOC transport and stream DOC pulses in this 

ecoregion under the effects of global climate change. Chapter 2 also integrated multiple 

diagnostic tools that are often used separately, i.e. the HI/FI and C-Q plots, to allow for a 

comprehensive study of the hydro-biogeochemical processes occurring in this ecoregion. In 

Chapter 3, we deliver stream CO₂ and CH₄ partial pressure and efflux measurements for this 

understudied high-carbon region. In addition, the comparison of environmental influences on 

CO₂ and CH₄ partial pressure and efflux at different spatial scales is a relatively novel approach, 

and our results provide unique contributions to developing knowledge on the integrated effects 

of the larger spatiotemporal watershed network on stream reach carbon dynamics. This provides 

a first step towards using watershed network properties as predictors of reach carbon dynamics, 

for example, in work done by Bertuzzo et al. (2017). Both Chapters contain important 

contributions to furthering our understanding of C cycling in the NPCTR, and the role of 

temperate rainforest streams in the global carbon cycle and their potential feedback with global 

climate change.  
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This project has provided a thorough, mechanistic investigation into lateral, subsurface 

DOC transport dynamics and their temporal variation in a region where this type of hysteresis 

analysis has not been done before, and where the temporal variation in stream DOC at various 

timescales has not been well understood. It has also provided measurements of stream CO₂ and 

CH₄ partial pressure and efflux, allowing for a greater understanding of the role of coastal 

temperate rainforest streams in the global carbon cycle. In summary, this project presents 

valuable contributions to furthering knowledge of temporal variation in stream DOC and drivers 

of lateral DOC transport; as well as CO₂ and CH₄ partial pressure and efflux and their drivers at 

multiple spatial scales in the NPCTR. Future work to advance the research conducted in this 

project should focus on verifying the lateral DOC transport model presented by our hysteresis 

analysis, employing methods such as isotope tracers to define subsurface flowpath inputs, soil 

pore water sampling and analysis, and direct assessments of soil moisture. A full carbon budget 

should also be developed for the region, as it would integrate the current disparate C 

measurements of DOC concentration (export and yield), CO₂ and CH₄ partial pressure, and CO₂ 

and CH₄ efflux into a comprehensive biogeochemical model, to make quantitative predictions of 

regional C cycling under different future climate change emissions scenarios in the NPCTR.   
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Appendix 1 

 

Introduction  

 

In situ fluorescence sensors (Turner Designs Cyclops 7) detect the fluorophoric 

component of stream DOM (fDOM) through optical measures and are thus sensitive to 

parameters that affect the measurement of fluoresced light within streamwater. These parameters 

include temperature, turbidity, and inner filter effects (absorbance). The chromophoric 

component of stream DOM dampens the fluoresced signal through absorbance in a non-linear 

relationship, which is termed the “inner filter effect” (Downing et al., 2012). If there are high 

turbidity levels in the stream, suspended particles scatter the sensor’s emission and dampen the 

return signal in a linear relationship (Downing et al., 2012). Finally, decreasing temperature 

dampens DOM fluorescence, and thus the fDOM sensor’s millivolt signal, in a linear process 

known as thermal quenching by radiationless decay (Watras et al., 2011). As part of the standard 

operating protocol for in situ fDOM sensors, adjustments must be made on the raw data output to 

correct for the influence of these parameters.  

 

fDOM Sensor Calibrations 

fDOM, temperature, and turbidity sensors were deployed in four study watersheds on 

Calvert and Hecate Islands (WS 703, WS 708, WS 819, and WS 1015). fDOM sensors (Turner 

Designs Cyclops 7, excitation/emission wavelengths = 370/425nm) were each paired with a 

turbidity sensor (Cyclops Submersible Sensor) and were installed in proximity to previously 

installed water temperature sensors (OTT Hydromet Pressure Level Sensor). Each fDOM sensor 

was equipped with a wiper to prevent biofilm accumulation. fDOM and turbidity sensors were 

installed in WS 708 in July 2014, and installed in WS 1015, 819, and 703 in July 2015. 

Measurements for fDOM sensor corrections were undertaken annually in July 2015 and 2016, 
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using stream water from the deployment watersheds. Corrections were based on procedures 

developed by Watras et al. (2011) and Downing et al. (2012) and were applied in a stepwise 

fashion. Calibrations were conducted with support from the Hakai Institute and the Hakai 

Watersheds Research Program on Calvert Island, British Columbia, Canada.  

 

Temperature Correction 

 

 De-ionized Milli-Q (DI) water was added to stream water from each study watershed 

(WS 703, 708, 819, 1015) to create a series of 3L dilution standards of 100%, 75%, 25%, and 0% 

stream water. Stream water samples were additionally processed and measured for DOC 

concentration and absorbance at 254nm. Dilution standards were chilled to ~4°C in pre-leached, 

non-reflective, black, high density 4L polyethylene (HDPE) polycarbonate pails and slowly 

warmed to 25-30°C in the dark while the fDOM sensor recorded measurements every five 

seconds, producing a 5minute average (mV). An OTT Hydromet Pressure Level Sensor was 

additionally used to record temperature concurrent with the fDOM measurements. The resulting 

relationship between temperature and raw fDOM sensor output was used to calculate the 

temperature coefficient, rho (ρ), for each dilution in the series, as defined in Watras et al. (2011):  

ρ = m(c)/fDOMr(c)      (1) 

Where m(c) is the slope, and fDOMr(c) is the intercept of the linear equation between 

temperature (x) and raw fDOM sensor output (y). Within each watershed, values of ρ for each 

streamwater-containing member of the dilution series were averaged to arrive at the final value 

for ρ. The calculated ρ was then used to correct to a constant temperature of 20°C following 

Downing et al. (2012):  

fDOM20 = fDOMraw + ρ(Tmeas – 20)    (2)  
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Where fDOM20 is the fDOM sensor output corrected for temperature at 20°C, fDOMraw is the 

uncorrected fDOM sensor output, and Tmeas is the measured temperature in degrees Celsius. 

Corrected outputs for 2015 are shown in Figure A1.1. The corrected fDOM20 was then input to 

the turbidity corrections described below. 

 

Turbidity Correction 

 

Standard solutions containing streamwater, a manufactured AMCO Clear 100 NTU 

turbidity standard (E223-86861), and DI water were created to enable a dilution series that 

contained a constant (50%) concentration of streamwater, and turbidity concentrations ranging 

from 0 to 50 NTU. Measurements of fDOM across this turbidity gradient were used to correct 

for in situ turbidity effects following:  

fDOM20tb = fDOM20 * (m(Turbrecip) + Intrecip)     (3) 

Where m(Turbrecip) is the slope of the equation of the reciprocal of the percent loss in raw fDOM 

sensor output with increasing turbidity, Intrecip is the intercept of the same equation, fDOM20 is 

the fDOM sensor output corrected for temperature, and fDOM20tb is the fDOM sensor output 

corrected for temperature and turbidity (Figure A1.3). The corrected fDOM20tb is the input for the 

subsequent absorbance correction. 

 

Inner Filter Effects Correction (Absorbance) 

 

To allow for a correction of inner filter effects beyond the concentrations measured at the 

time of sensor calibration, a standard dissolved organic matter (DOM) series was created to 

model equivalent DOC concentration. The series was created with DI water and stock Suwanee 

River DOM from the International Humic Substances Society (IHSS reference aquatic NOM # 
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2R101N; ihss.humicsubstances.org/) at 4, 10, 20, 30, 40, 50, 60, and 65 mg L-1 DOM, which 

corresponds to an approximate DOC concentration range of 2 – 32.5 mg L-1 (“Source Materials 

for IHSS Samples”, n.d., para. 2). Weighed aliquots of Suwannee DOM were combined with DI 

water in volumetric flasks, and then transferred to 1L HDPE pails to control for further optical 

influence (Downing et al., 2012). All measurements were conducted in a dark room with solution 

and ambient temperatures of ~20°C.   

Because the relationship between DOC concentration and absorbance varies across study 

systems, we calculated an equivalent DOC concentration for each of the NOM standards specific 

to our study streams. Equivalent DOC was calculated for each watershed using the per-watershed 

relationship between DOC concentration (mg L-1) and absorbance at 254nm (A254) (R2 > 0.99 in 

all cases) (Figure A1.5):  

WS 703: DOClab = 22.1 * A254            (4)  

WS 708: DOClab = 22.6 * A254            (5)  

WS 819: DOClab = 21.4 * A254             (6) 

WS 1015: DOClab = 21.1 * A254            (7)    

Where both DOC concentration and A254 are taken from grab samples collected as part of the 

HWRP’s long-term monitoring program 2015-2016, and the intercept is forced through zero 

(Figure A1.5).  

This relationship was then input to the standard calibration rating curve between NOM 

and lab-measured sensor fDOM, with NOM converted to equivalent DOC based on the A254 

NOM sample measurements and the previously established relationship between lab A254 and 

lab DOC, where:  

fDOMsensor.l = a* DOCeq
 2 + b* DOCeq + c         (8) 
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Where a is the first coefficient of the negative quadratic model, b is the second, c is the third, and 

d is the intercept. DOCeq is the equivalent concentration of the Suwannee reference NOM 

standard based on the relationship between grab sample A254 and grab sample DOC, and 

fDOMsensor.l is the lab-measured sensor output from the Suwannee standard series. The inverse of 

this relationship was modeled to a polynomial order 3 relationship rather than a quadratic, as the 

R2 was higher (R2 = 0.99) (Figure A1.6). The regression model was applied to fDOM20tb to 

apply an inner filter effect correction to each watershed:  

fDOM20tbIFE = a*fDOM20tb
 3 + b*fDOM20tb

 2 + c* fDOM20tb + d (9) 

Where fDOM20tbIFE is the sensor output corrected for temperature, turbidity, and inner 

filter effects (Figure A1.7). We then plotted the paired available in situ measurements of 

fDOM20tbIFE and grab sample DOC concentrations to result in a final linear regression model 

between fDOM sensor output and stream DOC, where each relationship was modeled as a 1:1 

ratio (Figure A1.7):  

DOCsensor = (fDOM20tbIFE – Intgrb) / mgrb    (10) 

Where mgrb is the slope of the regression between fDOM20tbIFE and grab sample DOC 

concentration, Intgrb is the intercept, and DOCsensor is the fDOM sensor output fully corrected for 

temperature, turbidity, and inner filter effects at a 1:1 ratio (Figure A1.8). Sensor DOC was 

visually quality-controlled for technical errors.  

 

Turbidity Sensor Calibrations 

 

 Manufactured AMCO Clear turbidity standards at 100 NTU (E223-86861) and 20 NTU 

(E223-86924) were used to calibrate turbidity sensors in each study watershed. Turbidity sensors 

were placed in 1L black HDPE buckets containing DI water (0 NTU), 20 NTU standard, and 100 
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NTU standard in a darkened room. Turbidity was recorded at 5 second intervals for 5 minutes, 

and a standard curve was generated to relate sensor mV output to turbidity. This process was 

conducted in 2015 and 2016 (Figure A1.2). 

 

Hysteresis Analysis  

  

Hysteresis Index (HI) 

 

Calculating HI is a multi-step process that begins with determining the normalized 

discharge value (Qi) at every 5% (0.05) interval (Lloyd et al. 2016b) on the rising and falling 

discharge limb of the hysteresis loop for each event. Qi was calculated using the formula 

developed by Lawler et al. (2006): 

Qi = k(Qmax – Qmin) + Qmin     (11) 

Where k is the interval length, Qmax is the normalized maximum discharge, and Qmin is the 

normalized minimum discharge. Qi was calculated for each interval k on the rising and falling 

limb (before and after Qmax) of the hysteresis loop at 0.05, 0.1, 0.15, 0.2, 0.25 … up to 1. The 

corresponding normalized sensor DOC value (DOCi) was calculated for every Qi at each k 

interval level using the formula for linear interpolation (Lawler et al., 2006).  

The calculation of HI  is the difference between DOCi on the rising limb of the loop 

(DOCi_RL) and DOCi on the falling limb (DOCi_FL ), which has been argued more accurately 

represents change in hysteresis amplitude over the HI ratio method introduced in Lawler et al. 

(2006), especially for complex loops (Lloyd et al. 2016b): 

HI = DOCi_RL - DOCi_FL     (12) 
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 The final HI for the entire hysteresis loop is the mean of each individual HI at each 5% 

interval. The resulting HI produces a value between -1 and 1, where the magnitude indicates the 

size of the loop, and the sign of the value indicates the type of hysteresis: clockwise (>0), 

anticlockwise (<0), or no hysteresis (0) (Lloyd et al. 2016b).  

Flushing Index (FI) 

 

The second quantitative index calculated for each storm event was the flushing index FI, 

weighted by maximum DOC concentration (from Butturini et al. 2008; similar to Vaughan et al. 

2017). FI classifies intra-event DOC concentration dynamics and assesses their trends over the 

study period. 

    FI = (Cpeak – Ci) / Cmax      (13) 

 Where Cpeak is DOC concentration at peak discharge, Ci is the initial DOC concentration 

at the event start, and Cmax is the maximum DOC concentration exhibited during the storm event. 

We have used the term Ci instead of Cb, which refers to solute concentration at baseflow prior to 

or just at the beginning of event start (Butturini et al. 2008; Vaughan et al. 2017). Inherent in the 

use of Cb is the assumption that discharge will always return to baseflow levels between storm 

events, which is an inaccurate assumption in this high-precipitation region with “flashy” 

watershed response patterns. Most storm events are composed of multiple consecutive 

hydrograph peaks and discharge does not immediately return to baseflow levels before the 

hydrograph begins to rise again. We have used Ci instead of Cb due to the predominance of 

multi-peak event series. If an event is composed of a series of consecutive peaks the Ci will be 

above the DOC concentration at baseflow, yet if an event is isolated, there is a higher probability 

that the initial DOC concentration is at baseflow level.   
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Figures 

 

 

Figure A1.1: From the 2015 temperature calibration process for each study watershed, the 

relationship between temperature and raw fDOM sensor output (fDOM raw) and fDOM 

corrected for the influence of temperature set at a control of 20°C (fDOM20), using ρ = 

m(c)/fDOMr(c) (Watras et al. 2011) and fDOMcorrT = fDOMraw + ρ(Tmeas – 20) (Downing et al. 

2012).  
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Figure A1.2: Turbidity sensor calibration process from 2015: linear regression between raw 

turbidity sensor output (mV) and standard turbidity series (NTU).  

 

 

 



110 

 

 

 
 

Figure A1.3: From the 2015 turbidity calibration process, the percent loss in fDOM sensor output 

with increasing turbidity and the reciprocal of the percent loss in fDOM sensor output with 

increasing turbidity (correction offset). The turbidity correction offset was calculated with 

fDOMcorrTtb = fDOMcorrT * (m(Turbrecip) + Intrecip), and the turbidity correction offset was 

calculated with fDOMcorrTtb = fDOMcorrT * (m(Turbrecip) + Intrecip). 
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Figure A1.4: The relationship between absorbance at 254nm and DOC concentration from the 

Freshwater Grab Sampling program (FGS) taken at each study watershed outlet during 2015-

2016 by Hakai Watersheds Program Staff.  
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Figure A1.5: The relationship between absorbance at 254nm and DOC concentration per 

watershed from the Freshwater Grab Sampling program (FGS) taken at each study watershed 

outlet during 2015-2016 by Hakai Watersheds Program Staff.  
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Figure A1.6: Non-linear, polynomial (order 3) regression between sensor fDOM corrected for 

temperature and turbidity, and the standard DOM series converted to DOC concentration through 

a linear regression with A254. Sensor fDOM was corrected for absorbance with the equation: 

fDOMcorrTtbIFE = (aabs*(fDOMcorrTtb)
2) + (babs*fDOMcorrTtb) + cabs. 
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Figure A1.7: Linear regression between fDOM sensor output corrected for temperature, 

turbidity, and absorbance, and grab sample lab-processed DOC collected by Hakai Watersheds 

Program Staff. Sensor DOC was visually quality-controlled.  
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Figure A1.8: Final corrected sensor DOC fit to watershed-specific stream DOC from lab-

processed grab samples, collected by Hakai Watersheds Program Staff. Sensor DOC was 

visually quality-controlled.  
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Appendix 2 

 

Tables 

  

Table A2.1: Significantly different pairs of response variables (FI & HI Combination, FI, HI) per 

different categorical groups (seasons, watersheds) assessed using the Kruskal-Wallis test.  

 

Response Variable(s) Groups with significant 

differences (p < 0.05) 

(seasons, watersheds) 

χ2 df p value 

FI & HI Combination Winter, Summer 12.20 3 p=0.006 

FI & HI Combination WS 703, WS 708 13.65 3 p=0.003 

FI  Winter, Summer 31.00 3 p<0.001 

FI Fall, Summer 31.00 3 p<0.001 

FI WS 819, WS 1015 11.04 3 p=0.011 

HI WS 703, WS 708 37.53 3 p<0.001 

HI WS 703, WS 819 37.53 3 p<0.001 

 

 

 

 

 

 

 

 


