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Abstract. Most of the fundamental elements of ecology, ranging from individual be- 
havior to species abundance, diversity, and population dynamics, exhibit spatial variation. 
Partial differential equation models provide a means of melding organism movement with 
population processes and have been used extensively to elucidate the effects of spatial 
variation on populations. While there has been an explosion of theoretical advances in 
partial differential equation models in the past two decades, this work has been generally 
neglected in mathematical ecology textbooks. Our goal in this paper is to make this literature 
accessible to experimental ecologists. 

Partial differential equations are used to model a variety of ecological phenomena; here 
we discuss dispersal, ecological invasions, critical patch size, dispersal-mediated coexis- 
tence, and diffusion-driven spatial patterning. These models emphasize that simple organ- 
ism movement can produce striking large-scale patterns in homogeneous environments, 
and that in heterogeneous environments, movement of multiple species can change the 
outcome of competition or predation. 
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INTRODUCTION 

Ecologists are paying increasing attention to spatial 
processes in a wide variety of practical contexts. For 
example, landscape ecology and conservation biology 
focus on the consequences of habitat fragmentation, 
and geographic information systems have recently made 
available large stores of spatially structured data. Prior 
to this fascination with the spatial dimension by ap- 
plied ecologists, several theoretical community ecol- 
ogists explored the consequences of dispersal and hab- 
itat heterogeneity with respect to patterns of diversity 
(e.g., Levin 1978, Wiens 1986). One of the major math- 
ematical tools for analyzing spatiotemporal processes 
is partial differential equations or PDEs. While math- 
ematical ecology is now richly imbued with theoretical 
insights obtained from PDE models, most experimen- 
tal ecologists have not kept up with these theoretical 
advances. One reason for the weak connection between 
PDE models and experimentation is unfamiliar jargon 
and notation. While ordinary differential equations and 

I For reprints of this Special Feature, see footnote 1, p. 1. 

difference equations are usually described in basic in- 
troductory ecology textbooks, PDEs are often not de- 
scribed even in mathematical ecology texts (see, for 
example, Poole 1974, Vandermeer 1981, Yodzis 1989). 
To help remedy this situation, we present here an in- 
troduction to the major theoretical insights gleaned 
from PDE models in ecology, paying particular atten- 
tion to both the applications and limitations of the 
theory. We do not strive for mathematical rigor, but 
rather try to present the mechanistic underpinnings of 
classical PDE models in a biologically intuitive way. 

While PDEs that are sufficiently realistic to be used 
in ecological models are usually more difficult to solve 
than ordinary differential equations, they are advan- 
tageous because they allow modellers to incorporate 
both temporal and spatial processes simultaneously into 
equations governing population dynamics. Although 
PDE models obviously cannot describe all ecological 
situations (see Discussion), they do lend insight into 
numerous fundamental population processes, five of 
which we emphasize here: dispersal, ecological inva- 
sions, the effect of habitat geometry and size, dispersal- 
mediated coexistence, and the emergence of spatial pat- 
terns. 
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MODELS FOR DISPERSAL 

In the classical applications of PDE models to pop- 
ulation ecology, organisms are assumed to have 
Brownian random motion, the rate of which is in- 
variant in time and space. This assumption leads to 
the diffusion model (Okubo 1980, Edelstein-Keshet 
1986, Murray 1989): 

au (x, y, t) (02U a2U 
_ _ _ _= 

D + 2,'(1) at =DaX2 +ay2) 1 

where u(x, y, t) is the density of organisms at spatial 
coordinates x, y, and time t, and D is the diffusion 
coefficient that measures dispersal rate, with units 
distance 2 

timae .When animals are released at a central point 
time 

and disperse via diffusion in a two-dimensional en- 
vironment, their resulting distribution in space is 
Gaussian with a mean squared displacement (MSD) 
of 4tD. One can also use Eq. 1 to predict the location 
of a single individual at some particular distance from 
a starting point. For example, the average time for an 
organism to travel a distance, L, away from its starting 
position is 

2D ant- 

Thus, the average organism takes a very large time to 
travel long distances via diffusion. On the other hand, 
the diffusion model (Eq. 1) also predicts that there is 
a small finite probability that an individual travels an 
arbitrarily long distance in arbitrarily short time. These 
seemingly contradictory predictions depend upon 
whether we are concerned with the average behavior 
of individuals or with events that are possible, although 
highly improbable. 

Although the diffusion equation is simplistic, it has 
been used to effectively describe the movement of nu- 
merous animals in mark-recapture studies (e.g., Dob- 
zhansky and Wright 1943, Johnston and Heed 1976, 
Taylor 1980, Kareiva 1982). The model works best 
when the environment itself is homogeneous (Kareiva 
1983) and the individuals in the population have sim- 
ilar movement rates. When animals orient toward ex- 
ternal stimuli or are carried by the wind or water cur- 
rents, drift or convection terms are added to Eq. 1, 
resulting in the model (Helland et al. 1984, Banks et 
al. 1988): 

Ou I 2u a2u\ Ou au 
-=-DI- + I _ - -w- (2) 
at \ax2 +y2/ a a 

where w_ and w, are drift velocities. 
A more fundamental departure from simple Brown- 

ian motion derives from the fact that animals do not 
zig-zag back and forth wildly like molecules, but in- 

stead tend to continue forward in the direction of their 
existing path. This process, referred to as a correlated 
random walk, leads to a PDE model known as the 
telegraph equation: 

Ou S2 (2u +2u\ 1 &2u 
_ I ~~+ I3- 

at 2X \0X2 0y2/ 2i (t2 

where 2 is a measure of the correlation between di- 

rections of travel from one step to the next and s is the 
velocity of the organisms (Goldstein 1951, Othmer et 
al. 1988, Holmes 1993). The mean squared displace- 
ment for animals obeying the telegraph model is 

MSD = S2 - 2-2(1 - e-2XA) (4) 

Comparison with the MSD for simple diffusion shows 
that, with time, the Brownian random component dis- 
sipates the effects of the correlated motion and the two 
MSDs converge (with D = s2/2X, see Holmes 1993). 
This model is distinguished from the simple diffusion 
model not only by correlated direction of motion but 
also by finite animal velocity. This leads to a bounded 
distribution of animals because no animal is able to 
go an infinite distance in a finite amount of time. 

There are several PDE models of movement that 
can be derived by including much more behavioral 
detail than is implicit in the diffusion or telegraph equa- 
tions. These models, which can be traced back to work 
by Patlak (1953), incorporate the precise distributions 
of turning angles, pauses in motion, changes in velocity 
and step length, and drift in a particular direction (Oku- 
bo 1980, Doucet and Wilschut 1987, Turchin 1989b, 
1991). Such details of animal movement are much 
more likely to be important if behaviors of interest 
occur during short times after movement commences, 
such as for pollen dispersal (Morris 1993). 

It is straightforward to alter these PDE models so 
that they also encompass interactions between con- 
specifics. For example, if animals are either attracted 
to one another or repelled from one another, then the 
simple diffusion model can be replaced by a biased 
random motion model (Gurney and Nisbet 1975): 

au 82u 07 au - = D + - ku-i (5) at ax2 ax ax( 

where u is population density, and k is a measure of 
the tendency to move away from conspecifics when k 
> 0 and is a measure of the tendency to move towards 
conspecifics when k < 0. The strength of attraction (or 
avoidance) is ku and thus is a linear function of density. 
This model leads to clumping of organisms if the ag- 
gregation component dominates the random compo- 
nent and a distribution of animals that is bounded, 
implying that animals spread at a finite speed. The 
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microscale animal motion that produces this model is 
movement preferentially toward neighboring areas of 
more favorable density or movement merely in re- 
sponse to density at the animal's current location (Gur- 
ney and Nisbet 1975, Shigesada et al. 1979, Okubo 
1986). Because k is a constant in Eq. 5, this model 
describes animals that aggregate toward (or avoid) con- 
specifics at all population densities. In reality, organ- 
isms often aggregate at low densities and avoid one 
another at high densities. Such a density-dependent 
response can be modelled by replacing Eq. 5 with 
(Aronson 1980, Turchin 1989a) 

au a2u a 24(U) 
= D + , (6) a t ax2 ax2 

where 4(u) is a function that is negative at low density 
and positive at high densities. In particular, {(u) allows 
for a much more general relationship between aggre- 
gation tendency and density. 

In addition to modifying their movement in re- 
sponse to conspecifics, many organisms also alter their 
movement in response to environmental heterogene- 
ity. This complication leads to a suite of models anal- 
ogous to Eqs. 5 and 6, except with some feature of the 
physical environment driving the movement. In par- 
ticular, a PDE model of animals that assess and move 
to higher quality neighboring areas or move based on 
quality at their current location is 

au _a [d 1E 7 
at ax [A dx ?(E)], (7) 

where E is the environmental potential that increases 
as habitat quality decreases, and the function ?(E) de- 
scribes how environment alters movement behavior 
(Shigesada et al. 1979, Shigesada 1980, Okubo 1986, 
Brew 1987). This model leads to a distribution of an- 
imals that is aggregated where E is lowest, i.e., where 
habitat quality is greatest. Another, perhaps intuitive, 
model of animals that vary their movement rate in 
response to habitat quality is 

au _a F aul 
d := - D(E) ] (8) at ax[- axj 

It is important to note, however, that Eq. 8 mecha- 
nistically models animals that move according to the 
average quality between their current location and 
neighboring sites and produces a homogeneous distri- 
bution of animals. It can be argued that this type of 
spatial averaging movement is an accurate model for 
many animals. One method for modelling animals that 
have such averaging movement, yet still aggregate on 
high quality areas, is to describe the population as two 
subpopulations, one that is moving and the other that 
is permanently or temporarily not moving (Morris and 
Kareiva 1991). In this case, the probability of changing 

from the moving into nonmoving class or vice versa 
is dependent on environmental quality. 

In summary, these permutations on simple diffusion 
models emphasize that although most applications of 
PDEs to spatial processes assume diffusion, there is a 
rich theoretical framework for addressing more com- 
plex movement behavior. To a certain extent, however, 
models of movement alone are of limited interest. In 
the following sections, we discuss reaction-diffusion 
models in which movement is combined with popu- 
lation dynamics and multispecies interactions. It is via 
these types of models that PDEs have produced many 
salient results concerning the dynamics arising from 
the interplay of movement and population interac- 
tions. Reaction-diffusion models take the form: 

au a FD( aula + a 
ulD(u) 

a 
+f(u) (9) 

where the first two terms represent diffusive movement 
and the last term, f(u), is the reaction term and de- 
scribes population growth dynamics. Although this 
theory typically assumes that dispersal takes the form 
of Brownian random motion, many of the same results 
discussed below still emerge if diffusion is modified to 
include less simple behavior (as in Eqs. 3, 5, 6, and 7). 

INVASION MODELS 

The first formal mathematical attempts to model 
ecological invasions via reaction-diffusion equations 
were made by Skellam (1951) who modelled the ex- 
pansion of muskrat populations in Europe. His model 
of invading animals with diffusion movement and Mal- 
thusian growth predicts that the area occupied by an 
invader will increase linearly with time (cf. Okubo 
1980). This model has been used successfully to de- 
scribe the historical range expansion of European Star- 
ling, English Sparrow, and House Finch (Okubo 1988), 
the Collared Turtle Dove (Hengeveld 1989), the Hima- 
layan thar (Caughley 1970), the grey squirrel in England 
(Okubo et al. 1989), and the California sea otter (Lu- 
bina and Levin 1988). 

Reaction-diffusion invasion models exhibit more 
striking behavior when population growth is not ex- 
ponential but instead is regulated by density-dependent 
mortality. These models produce travelling waves of 
invaders that spread out from their "beachhead" at a 
constant velocity and shape (Fig. 1). Travelling waves 
are a common feature of many reaction-diffusion mod- 
els. The classic reaction-diffusion model of ecological 
import is the Fisher model (Fisher 1937), which rep- 
resents logistic population growth plus Brownian ran- 
dom dispersal (Skellam 1951): 

au ( l (a2U a2Ud = rul- + D + 0y,' (10) 
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where r is a population's intrinsic rate of growth and 
K is the carrying capacity. This model produces waves 
of invaders that travel at a velocity c(t), which ap- 
proaches 4rD as the invasion progresses (Kolmo- 
goroff et al. 1937, Uchiyama 1978). The invasion ve- 
locity quickly approaches this asymptotic speed; at time 

t, after the release, c(t) 4rD - b(- In t), where b 
t 

is some constant (Bramson 1978). 
If the Fisher model (Eq. 10) is analyzed in two di- 

mensions, circular waves form and spread outward (Fig. 
1). The asymptotic travelling wave speed calculated in 
the one-dimensional case is also the asymptotic wave 
speed in the two-dimensional case. Opposite to the 
one-dimensional case, the wave speed is slower shortly 
after the release of the organisms and increases toward 
the asymptotic velocity as the invasion progresses. For 
a refined version of Fisher's model in which an Allee 
effect is added to the growth function (see below), wave 
speed has been shown to be a function of the shape of 
the wavefront. For segments of the front with higher 
curvature and that thus protrude ahead, the wave speed 
is slower. For segments with lower curvature and that 
thus lag behind, the wave speed is greater. This effect 
drives noncircular wavefronts toward circularity (Lew- 
is and Kareiva 1993). Fisher's model has been used to 
make predictions of range expansion using microscale 
data on individual movement for a variety of animals: 
working well with cabbage butterflies, muskrats, grey 
squirrels, and neolithic farmers (Ammerman and Cav- 
alli-Sforza 1984, Okubo et al. 1989, Andow et al. 1990) 
and underestimating speeds for cereal leaf beetles (An- 
dow et al. 1990). 

Surprisingly, the simple equation for the asymptotic 
invasion velocity for the Fisher model is not restricted 
to logistic population growth, but more generally aris- 
es as 

asymptotic velocity = (0), (11) 

wheref(u) is a general class of population growth func- 
tions of which the logistic equation is only one specific 
example. f'(0), the rate of population growth at very 
low population density, is the first derivative of the 
population growth function evaluated at zero popu- 
lation density, u = 0. Loosely speaking, Eq. 11 holds 
as long as the population growth function satisfies two 
criteria: (1) the growth rate is positive when the pop- 
ulation is below the carrying capacity and (2) the max- 
imum per capita growth rate is found when the pop- 
ulation is small (Hadeler and Rothe 1975, Fife 1979). 

A formula similar to Eq. 11 for the wave speed of 
an invasion has been obtained in models for invasions 
into a heterogeneous environment. The analysis was 
done by examining the dynamics associated with Eq. 
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FIG. 1. Examples of travelling waves. Populations that 
disperse outward and reproduce can spread as a wave into 
previously unoccupied areas. (A) shows successive snapshots 
of such a wave moving in one dimension, for example, along 
a coastline or river. Organisms are released at the asterisk and 
each line is a snapshot of the population density along the x 
axis. The lines that are farther from the release point are later 
in time. (B) is similar to (A) but represents spread in two 
dimensions. The circles represent the extent of the organisms' 
range at successive times. Note that in the strict mathematical 
sense, these are not travelling waves because the shape (i.e., 
curvature) changes with time. 

10 in a one-dimensional environment, and allowing 
both r and D to vary periodically in space (Shigesada 
et al. 1986). A travelling wave of invasion is still ob- 
tained, but its asymptotic velocity is 

where ra is the arithmetic mean for intrinsic rate of 
increase and Dh is the harmonic mean for the diffusion 
coefficient. Two interesting points emerge from this 
analysis. First, the invasion velocity is determined by 
the rates of population growth and diffusion. Second, 
the presence of the harmonic mean for diffusion in- 
dicates that spatial variation in dispersal can greatly 
deter spread, since harmonic means are much lower 
than arithmetic means when variability is substantial. 
Although Shigesada et al.'s (1986) results pertain to a 
specific model and specific form of heterogeneity, they 
suggest it is possible to obtain general guidelines for 
summarizing the effects of heterogeneity on spatial pro- 
cesses such as invasions. 

A final refinement in invasion theory involves the 
relaxation of restrictions on population growth func- 
tions, in particular, by the addition of an Allee effect 

http://www.jstor.org/page/info/about/policies/terms.jsp


January 1994 SPATIAL THEORY 21 

_ ~~~~~~~a 

0 
CL 

a-X 
x 

FIG. 2. Comparison of the travelling wave fronts produced 
by a Fisher invasion model (front a) with density-independent 
dispersal and that produced by an invasion model with den- 
sity-dependent dispersal via the directed random motion model 
(front b). 

(Allee 1931), whereby at low densities population 
growth is negative. Models involving population growth 
with an Allee effect plus diffusive dispersal also produce 
travelling waves of invaders (Aronson and Weinberger 
1975, Fife and McLeod 1977, Lewis and Kareiva 1993). 
The key differences that arise with an Allee effect are 
threefold: (1) some threshold density must be exceeded 
before an invasion takes hold, (2) the initial spatial 
arrangement of invaders influences the fate of an in- 
vasion, and (3) assuming the threshold density has been 
exceeded, the velocity of spread is reduced in propor- 
tion to the Allee effect. 

Earlier we mentioned that although most reaction- 
diffusion models assume simple diffusion, some of the 
key ideas would emerge without restricting dispersal 
to Brownian random motion. Invasion theory offers a 
good example. If the Fisher model (Eq. 10) is modified 
such that the assumption of diffusive movement is 
replaced by a correlated random walk (i.e., telegraph 
equation), travelling waves of invaders still result, but 
the waves travel at the slower asymptotic wave speed of 

8rX 
S X2 

(r + 2X)2 

This wave speed departs from the classical wave speed 
in proportion to the product of the intrinsic rate of 
population growth and the correlation between direc- 
tions of travel (Holmes 1993). Estimation of the two 
parameters for organisms as varied as bacteria, but- 
terflies, and muskrats suggests that the actual magni- 
tude of differences between wave speed predictions from 
diffusive as opposed to correlated walk movement typ- 
ically are < 50%. 

Other "nondiffusive" extensions of invasion models 
have examined convective movement (Lewis and Ka- 

reiva 1993) and density-dependent dispersal, such as 
in Eq. 5 with k > 0. In the latter case, travelling waves 
are also obtained with an asymptotic velocity of 2rk 
(Aronson 1980). Here, k represents the degree to which 
high density increases avoidance. As might be expect- 
ed, increasing avoidance, k, increases the invasion wave 
velocity. However, the shape of the travelling wave is 
strikingly different when animals disperse via density- 
dependent motion (Fig. 2). 

Species invasions have also been modelled in more 
complex settings that include interactions between spe- 
cies. To date such extensions generally have been re- 
stricted to pairwise interactions. For instance, consider 
the spread of two competing species using the coupled 
PDEs: 

au &2u 
d = D XaX2 + (ru-auu -aUVV)u 

av O2v 
= Dv2 + (r,, av- aV u)v, (12) 
Ot X2 

where u and v are the densities of the two species, Du 
and Dv are species-specific diffusion rates, r,, and r, are 
species-specific intrinsic rates of increase, and the a's 
represent interspecific and intraspecific competition 
coefficients (rescaled so that carrying capacity does not 
appear in the equation). According to the model, if the 
two species are introduced into unoccupied habitat, 
they can spread across the environment as two trav- 
elling waves with the wave of the faster reproducer 
moving ahead of the slower (Bramson 1988). A more 
biologically plausible example corresponds to an exotic 
species, v, invading an area completely occupied by a 
native competitor, u. In this case, species v invades 
with a wave speed less than its maximum possible 
speed since it spreads into territory already occupied 
by species u. The wave speed of species v is denoted 
by c, and is given by (Bramson 1988) 

2 (r, - av -fu Dv ? cc , < 2 r,,D, 

where (r.- vu - a represents the population growth 

rate of species v in the presence of species u when u is 
at carrying capacity. The term 2 r-D, is the maximum 
wave speed of species v and this speed occurs when the 
species spreads into empty territory. Okubo et al. 1989 
used the same ideas to model the invasion of grey 
squirrels across the habitat occupied by red squirrels 
in Britain. 

Similar analyses have been applied to predator-prey 
interactions using a Lotka-Volterra predator-prey 
model with diffusion (Murray 1975, Dunbar 1983, 
Murray 1989): 
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au a2u u - = D - + ru -J- UV 
at OX2 aU 

Ov a2v 
d =: D,,d 2- V + a,,,,uv, (13) at OX2 

where ,u is the per capita mortality rate of predators in 
the absence of prey, a,,, represents the rate at which 
predators consume prey, and a,,u represents the rate at 
which predators convert prey into new predators. If 
both predator and prey colonize an environment that 
is initially empty, their spread cannot be mathemati- 
cally represented by a travelling wave. The spread in 
this case does form wave-like patterns (which even- 
tually damp out), resembling those found in some zoo- 
plankton-phytoplankton interactions (Dubois 1975). 
If the prey already exists uniformly across the envi- 
ronment and a predator is released, the situation is 
analogous to the spread of disease through susceptible 
hosts, and travelling waves of predator and prey will 
ensue (Fig. 3b). Again the asymptotic wave speed of 
the predators (as they eat the prey) is determined by 
the predator population growth rate and diffusion rate. 

Reaction-diffusion models have also been used to 
investigate the spatial spread of diseases (Kendall 1948, 
1965, Bailey 1967, Mollison 1972, Atkinson and Reu- 
ter 1976, Aronson 1984, Killen et al. 1985; Fig. 3). 
Epidemiological models that investigate the spatial in- 
vasion of a disease have been applied to cholera, plague 
(Noble 1974), rabies (Murray et al. 1986, Murray and 
Seward 1992), and moth viruses (Dwyer 1993). 

POPULATION DYNAMICS IN "ISLAND" HABITATS 

PDEs provide a natural framework for investigating 
the influence of patch size and geometry on the pop- 
ulation dynamics of organisms living within habitat 
patches (McMurtrie 1978, Okubo 1984). Primarily, 
PDE models have been used to look for critical patch 
sizes, that is, the smallest patch that can (minimally) 
sustain a population. It exists because as the patch 
decreases in size, the ratio of perimeter to interior area 
increases and the relative impact of the edge increases 
until at some critical patch size the patch is too small 
to sustain the population. As expected, the critical patch 
size depends on a number of factors, including the 
population dynamics in the patch, the rate at which 
organisms leave the patch, the degree to which the 
region outside the patch is lethal, and patch geometry. 

The basic critical patch model is known as the KISS 
model after Kierstead and Slobodkin (1953) and Skel- 
lam (1951) and was originally developed to investigate 
the size of nutrient patches needed to sustain phyto- 
plankton blooms. The model assumes an exponentially 
growing population that disperses randomly within and 
out of a patch into lethal habitat: 
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CL 
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FIG. 3. Examples of travelling wave fronts produced by 
an SIR disease model and a Lotka-Volterra predator-prey 
model. The waves move through space with constant shape 
and velocity in the direction shown by the arrows. In the 
disease model, an infection (I) spreads spatially through a 
population of susceptible (S) individuals. The infected indi- 
viduals eventually die or become immune (R). In the pred- 
ator-prey model, predators invade a region occupied by prey. 

au (&u 02U\ 
-=DI + -i- ) + ru. (14) 
at \8X2 0y2 

The KISS model predicts a critical patch area given by 

critical patch area =cor2(2) (15) 

where c0 = 1.84 for a circular patch and c0 = 2 for a 
square patch (Okubo 1984, Murray 1989). A natural 
extension of these models is to incorporate population 
growth that is depressed by high population densities. 
However, although such density-dependent effects de- 
press population growth rates compared to exponential 
growth, the density-dependent population growth is 
irrelevant to critical patch size because near the critical 
patch size, the patch sustains a very low population 
density and density-dependent effects are minimal. On 
the other hand, density-dependent population growth 
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does dramatically influence the size of the population 
in the patch. For example, a population with logistic 
growth will have a maximum population density close 
to zero when the patch is slightly larger than the critical 
size given by Eq. 15. The maximum population density 
will approach the population's carrying capacity as the 
patch approaches infinite size. In general, for popula- 
tions that (1) are within patches with lethal boundaries, 
(2) have reaction-diffusion dynamics, and (3) have 
convex growth functions, i.e., f(u) > 0 for 0 < u < 
carrying capacity, f(u) < 0 for u > carrying capacity, 
and f'(u) at a maximum at u = 0, the critical patch 
area is given by 

Acr = c07r2 [D/f '()], (16) 

where c0 is a constant determined by the shape of the 
patch (Skellam 1951, Landahl 1959, Okubo 1984; see 
Platt and Denman 1975 for an application). In general, 
the critical patch area is smallest for circular areas and 
increases as the area deviates from circularity (Ludwig 
et al. 1979, Cantrell and Cosner 1989, 199 la, b). 

Much research has focused on similar analyses ap- 
plied to less restrictive idealizations of habitat islands 
and organism growth and movement. In particular, 
relaxing the restriction of a completely hostile patch 
boundary results in a smaller critical patch size. For 
example, if the zone outside the patch is only partially 
hostile or organisms avoid leaving the patch, then as 
expected, the critical patch size is diminished so that 
a smaller patch can sustain a population (Ludwig et al. 
1979, see also Okubo 1984). Partially hostile bound- 
aries are represented by so-called mixed boundary con- 
ditions, and model situations where some individuals 
will cross the boundary but others won't, situations 
where organisms will cross the boundary sometimes 
but not at other times, situations where organisms 
readily cross the boundary but the region outside the 
patch is only partially hostile, or any combination of 
the above. In lieu of distinct boundaries, it is also pos- 
sible to analyze a situation in which habitat quality is 
positive in some central region and becomes more and 
more hostile away from the center. In this circum- 
stance, the population will have a peak density in the 
region where the growth rate is positive and the pop- 
ulation density falls away from the positive region. The 
results for this case with random diffusion are not dra- 
matically different from the case of a patch with lethal 
boundaries, i.e., critical area oc D/max[f'(0)] (Gurney 
and Nisbet 1975). 

Nonrandom movement has varied effects on the crit- 
ical patch size. Organisms may be convectively carried 
out of the patch by the wind or water currents and, in 
this case, will require larger patch sizes to compensate 
for increased migration from the patch. A curious spa- 
tial patterning can occur if there is convection and the 

boundaries of the patch are only slightly hostile. In this 
case, multiple peaks of population density are possible 
(Murray and Sperb 1983). Alternatively, dispersal rates 
may be a function of organism density. In particular, 
if organisms move via biased random motion (Eq. 5), 
then the critical patch size is determined by the density- 
independent (Brownian) component of movement and 
specified by Eq. 16 (Gurney and Nisbet 1975). The 
density-dependent movement is irrelevant to the crit- 
ical patch size, since near the critical patch size the 
population density in the patch is very low. While den- 
sity-dependent movement does not affect population 
sustainability in small patches, it does have a strong 
effect on the density in large patches. In particular, 
density-dependent movement will tend to regulate 
population sizes in large patches by increasing dispersal 
as crowding intensifies. A more substantial modifica- 
tion in the critical patch size is produced by alternate 
growth dynamics. In particular, for Allee growth dy- 
namics (i.e., negative growth rate at low densities), a 
patch must exceed a larger critical patch size in order 
to ensure that the minimum population density nec- 
essary for a positive growth rate is attained (Bradford 
and Philip 1970a, b, Okubo 1980, Murray 1989). 

In general, the many different versions of critical 
patch size theory share three key points: (1) factors that 
increase movement out of a patch (drift or repulsion) 
lead to larger critical patch sizes, while (2) factors that 
decrease movement out of the patch (attraction or den- 
sity-dependent dispersal) lead to smaller critical patch 
sizes. Finally, (3) density-dependent growth rates reg- 
ulate the population size within the patch but do not 
affect the critical patch size unless the population has 
Allee growth dynamics. 

DISPERSAL-MEDIATED COEXISTENCE 

Identifying mechanisms that promote the coexis- 
tence of competitors is one of the major challenges 
before ecologists. Naturalists have often noted that the 
interplay of dispersal and the spatial dimension some- 
how seem to facilitate coexistence, but the details of 
how this happens can be complex and varied. In the 
context of reaction-diffusion models, if the environ- 
ment is uniform and dispersal is via simple diffusion, 
then dispersal has no effect on coexistence (Pao 1981, 
Brown 1984). When these assumptions are altered, dis- 
persal can enhance coexistence. For example, Mimura 
et al. (1991) showed if two competing species live on 
two islands connected by a small corridor then the two 
species may coexist by segregating onto different is- 
lands. In the absence of dispersal, either could out- 
compete the other depending on initial densities (cf. 
Levin 1974). 

However, multiple patches are not necessary for dis- 
persal-mediated coexistence to occur. Indeed, dispers- 
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al-mediated coexistence will occur in a homogeneous, 
one-patch environment when the two species exhibit 
dispersal behaviors that are more complex than simple 
diffusion. In particular, aggregation behaviors have been 
modelled that promote coexistence primarily by the 
aggregation of conspecifics, which causes intraspecific 
competition to greatly exceed interspecific competition 
(Britton 1989). Similarly, aggregation promotes dis- 
persal-mediated coexistence in heterogeneous environ- 
ments when competitors have differential dispersal 
rates, growth rates, or response to increased density of 
conspecifics (Shigesada et al. 1979, Shigesada and 
Roughgarden 1982, Bertsch et al. 1984, 1985). On the 
other hand, simple avoidance behaviors will also foster 
coexistence. In particular, the cross-diffusion model, 

Ou _ 2u 
--= D1d -[auu + auuv] +fl(u) Ot OX2 

Ov 02U 
= D ,-[a'e .vv + a,,uv] +,f,(v), Ot X2 

describes organisms that avoid each other by increasing 
their dispersal rate in response to both conspecifics and 
nonconspecifics. The model predicts competitive co- 
existence of two species if intraspecific avoidance has 
a greater impact on population density than interspe- 
cific avoidance (Namba 1989). 

Given the intuition of naturalists regarding niche 
partitioning and coexistence, it is probably not sur- 
prising that many different reaction-diffusion forma- 
tions indicate mechanisms for coexistence when het- 
erogeneous environments are considered. For example, 
if regions vary immensely in quality and the "better 
competitor" squanders more individuals through dis- 
persal than does an inferior competitor, then the com- 
bination of dispersal and heterogeneity can ensure a 
coexistence that would otherwise be impossible (Pacala 
and Roughgarden 1982). Taken to the extreme, this 
example could be viewed as a variation on the "critical 
patch size" formulation, with the question of interest 
being the critical patch size for coexistence. In partic- 
ular, if a competitively inferior species is less sensitive 
to patch size via a lower ratio of dispersal to growth 
rate, then it may coexist with superior competitors at 
intermediate patch sizes and, in fact, can dominate at 
small patch sizes (Cantrell and Lazer 1984; C. Cosner, 
personal communication). It is important to note that 
PDE examinations of dispersal-mediated coexistence 
focus on very different mechanisms than do cellular 
automata or metapopulation models (Molofsky 1994, 
Tilman 1994). In particular, PDE models tend to iden- 
tify coexistence scenarios that depend on either differ- 
ential sensitivities of competing species to heteroge- 
neous environments or nonrandom movement of 

competitors. In contrast, most field ecologists would 
probably argue that dispersal is important to coexis- 
tence because it allows inferior competitors to colonize 
recently disturbed vacant space, a scenario best em- 
bodied in metapopulation theory (Tilman 1994). 

PATTERN FORMATION IN 

HOMOGENEOUS ENVIRONMENTS 

An aspect of reaction-diffusion theory that has ex- 
cited numerous applied mathematicians is the realiza- 
tion that simply adding diffusion to certain types of 
multispecies interactions will cause striking spatial pat- 
terns to emerge even in homogeneous environments 
(see Murray 1989). In an ecological setting, the key 
idea is that the interaction of dispersal and certain types 
of population kinetics can amplify perturbations into 
predictable spatial patterns. These dispersal-driven 
patterns are currently gaining attention as a result readily 
generated in cellular automata models (Hassell et al. 
1991, Comins et al. 1992). Dispersal-driven patterns 
are equally readily generated in PDE models. An eco- 
logical appreciation of these patterns, known in the 
PDE literature as diffusion-driven instabilities, origi- 
nated from studies of predator-prey dynamics that 
might generate the patchy plankton distributions ob- 
served in a seemingly homogeneous environment (Se- 
gel and Jackson 1972, Levin and Segel 1976). Subse- 
quently, a large amount of research (Conway 1984, 
Edelstein-Keshet 1986, Murray 1989) has established 
the general conditions under which spatial patterns are 
generated in predator-prey systems of the form: 

t =u(u) - a vg(u) + Dl, (- +4?) 

t= fvg(u) - f,(v) + D, ( + (17) 

where u is the prey density and v the predator density, 
f, is the population growth function for prey in the 
absence of predators, f is the population decline func- 
tion for predators in the absence of prey, g(u) is the 
functional response that describes how rates of pre- 
dation vary with prey density, and the coefficients a 
and d scale prey losses or predator gains by some con- 
stant proportion that reflects conversion of prey into 
predators, instances of unsuccessful predation at- 
tempts, and so forth. The formation of diffusion-driven 
patterns can be understood in terms of an activator- 
inhibitor system, in which increases in prey induce 
(activate) the production of more prey and more pred- 
ators, whereas increases in predators reduce (inhibit) 
further predator and prey production. In the absence 
of dispersal, the prey and predator arrive at a stable 
equilibrium so that any increase in prey is consumed 
by the predator, and any increase in predator is reduced 

http://www.jstor.org/page/info/about/policies/terms.jsp


January 1994 SPATIAL THEORY 25 

o u s~~~~~~~~~1 

0~ 
y 

0c 
y 

FIG. 4. An aerial view illustrating the type of patterns that 
can be formed by diffusion-driven instabilities. These are typ- 
ical patterns for a predator-prey model in which both the 
predator and prey are moving via a diffusion process. These 
patterns are generated purely by the dynamics of the inter- 
actions between the predator and prey and not by any un- 
derlying heterogeneity in the environment. The specific pat- 
tern formed, that is, strips or a checkerboard pattern, depends 
on the size and shape of the patch in which predator and prey 
live and on the specifics of the population growth rates and 
diffusion rates. 

by self-limitation. When diffusion is added and the 
diffusion rate of the predator is sufficiently greater than 
the diffusion of the prey, then the stabilizing influence 
of the predator may be dissipated by diffusion, yielding 
regular peaks and troughs of prey and predator den- 
sities (Fig. 4). 

For a wide variety of biologically plausible growth 
functions, f, and f, and predator functional responses, 
g(u), this predator-prey system easily produces these 
periodic spatial patterns. The key ingredients for pat- 
tern formation are (1) the predator disperses faster than 
the prey, (2) at low densities, an increase in prey density 

tends to increase the net rate of prey population growth, 
and (3) an increase in predator densities decreases both 
prey and predator population growth. Criterion (3) is 
almost always satisfied for predator-prey systems, 
whereas criterion (2) requires more specifically either 
that prey population growth is by itself autocatalytic 
or prey are consumed according to a saturating func- 
tional response such that increases in prey density im- 
ply reduced per capita predation risk. Thus, two par- 
ticular cases under which pattern is readily formed are 
(a) if prey have Allee growth dynamics (Mimura and 
Murray 1978, Conway 1984) and (b) if predators ex- 
perience density-dependent mortality and exhibit a 
Type II functional response (Levin 1977, Okubo 1980). 

The striking aspect of this result is that these spatially 
periodic patterns are formed despite Brownian random 
motion of both predator and prey in a homogeneous 
environment. More realistic predator movement, as in 
predator aggregation toward prey (preytaxis), can either 
promote or prevent the formation of spatial patterns; 
the effect depends on the strength of preytaxis response 
(Kareiva and Odell 1987, Wollkind et al. 1991). Strong 
preytaxis tends to homogenize prey spatial distribu- 
tions because unless the predator diffusion rate is very 
high, the predator is able to aggregate sufficiently to 
control the prey population. At the same time, some 
degree of predator increase in response to prey, such 
as preytaxis, is necessary for spatial patterning. Partic- 
ularly in the absence of a sufficient numerical response 
of predators to prey, preytaxis will promote spatial 
patterning by providing a mechanism for predator in- 
crease in response to prey. 

In contrast to predator-prey systems in which 
diffusion-driven patterns are readily formed, these 
patterns are not formed in two-species competitive 
systems, such as in Eq. 12 (Jorne and Carmi 1977, 
Hastings 1978) unless the two competitors avoid each 
other (Mimura and Kawasaki 1980). Multispecies 
competition systems will produce patterns if indirect 
interactions occur such that the increase of one species 
indirectly increases the growth of another (Mimura 
1984, Mimura and Fife 1986) but, in general, simple 
multispecies competition systems do not produce pat- 
terns (Rosen 1975, Chow and Tamm 1976). Similarly, 
spatial patterning does not occur when a single species 
moves via Brownian random motion throughout a ho- 
mogeneous environment. However, with some types 
of aggregation behavior, single species can form spatial 
patterns with a characteristic wavelength, in much the 
same way as a characteristic wavelength arises via dif- 
fusion-driven instabilities (Fig. 4). These patterns are 
produced by nonlocal aggregation, which assumes that 
individuals can respond by moving towards conspe- 
cifics that are some distance away (Cohen and Murray 
1981). In contrast, local aggregation (e.g., the biased 
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random motion model), in which individuals aggregate 
by moving up density gradients of neighboring con- 
specifics (Alt 1985, Okubo 1986, Turchin 1989a, b), 
will not produce these patterns. Single-species spatial 
patterning will also arise if crowding is locally advan- 
tageous, but at the same time, organisms are negatively 
impacted by high densities in surrounding sites (Britton 
1989, Furter and Grinfeld 1989). Recently, theoreti- 
cians have broadened their examination of dispersal- 
mediated pattern formation in ecology to include: age- 
structured single-species dynamics (Hastings 1992), 
plant-herbivore interactions (Lewis 1993), and tem- 
porally and spatially varying environments (Kawasaki 
and Teramoto 1979, McLaughlin and Roughgarden 
1991, Timm and Okubo 1992). The general impression 
obtained from this theory is that numerous ecological 
interactions should promote pattern formation; how- 
ever it will be difficult to show experimentally that such 
phenomena play a major role in the distributional pat- 
terns for plants and animals in natural settings. 

DISCUSSION 

It should be clear that PDEs can portray a great 
variety of ecological processes and interactions. Less 
clear is whether or not PDEs generate useful insights 
or predictions of relevance to a field ecologist. We think 
that certain spatial questions are ideally studied in the 
context of a PDE framework, whereas other spatial 
questions merit alternative mathematical formulation. 
Implicit to the formulation of a PDE model is the 
assumption that the rates of birth, death, and move- 
ment can take on a continuous range of values in both 
space and time; when this continuity assumption is not 
met, alternative mathematical models are more ap- 
propriate. For example, situations in which organisms 
reproduce continually and move between discrete 
patches may be better modelled by a system of coupled 
ordinary differential equations (see Levin 1974, Til- 
man 1994). Seasonal birth and death can be modelled 
by difference equations with spatial dispersal incor- 
porated either by using an integral formulation (Kot 
and Schaffer 1986) or by spatially coupling the differ- 
ence equations (Hastings 1992). If space, time, and 
population levels are best represented as discrete vari- 
ables, then cellular automata models are the ideal tool 
(Wolfram 1984, Molofsky 1994). Additionally, a key 
feature in many dispersal-mediated coexistence sce- 
narios is random disturbance, which is a process not 
conveniently represented in the PDE framework. For 
this reason, questions pertaining to biodiversity and 
the coexistence of species are probably best examined 
with the sorts of models outlined by Tilman (1994) or 
Molofsky (1994). However, PDEs are useful for ex- 
amining the interaction between habitat geometry and 
competitive coexistence. In particular, PDE models 

emphasize that environments that are fragmented into 
a variety of habitat patch sizes will also promote co- 
existence via the differential ability of competitors to 
survive and compete in small vs. large patches. 

On the other hand, for questions relating to invasions 
or to spatial patterning, PDEs are ideal. For instance, 
by applying a wide variety of PDE models to the pro- 
cess of invasion, we see that rates of invasion consis- 
tently are proportional to rates of population growth 
at low density and dispersal distances per generation. 
The robustness of this result provides compelling guid- 
ance to a field worker interested in ecological invasions; 
if he or she wants to predict the dynamics of an in- 
vasion, data on low density population growth and the 
frequency distribution of dispersal distances are essen- 
tial. Likewise, PDEs are ideal for investigating spatial 
patterning because they provide a mathematical tool 
that naturally depicts a continuous, homogeneous space 
as the "null model." Any patterning that develops is 
thus clearly due to the interplay of population inter- 
actions and dispersal, and not the environment itself. 
The practical-minded ecologist might wonder why 
anyone would attempt to explain spatial patterning 
without environmental heterogeneity when all envi- 
ronments are so obviously heterogeneous. This is the 
same as asking why anyone would want to explain 
population fluctuations in terms of species interactions 
when the environment so obviously fluctuates in time. 
The point is not to claim that diffusive instabilities 
explain whatever patterns we see in nature, but to rec- 
ognize that heterogeneous spatial environments are not 
necessarily needed to produce striking spatial irregu- 
larities in population densities. The other major eco- 
logical application of PDEs involves studies regarding 
population dynamics and sustainability within habitat 
patches of varying size or shape. Many of the results 
concerning single-species population dynamics in hab- 
itat patches are self-evident without any models. How- 
ever, PDEs make predictions about population den- 
sities and diversity as a function of habitat geometry 
in the absence of stochastic extinctions (Cantrell and 
Cosner 1993). It is certainly useful to determine and 
explain what patterns of species distribution might arise 
due to habitat geometry without stochastic extinction, 
even though the colonization/extinction balance of is- 
land biogeographic theory has become the dominant 
explanation for "island size" effects. 

Much work needs to be done before PDEs realize 
their full potential as a tool for illuminating ecological 
processes. First, more attention should be paid to in- 
vestigating transient dynamics, how rapidly are as- 
ymptotic rates of invasion obtained, and departures 
from simple idealized portraits of habitat shape or dis- 
persal behavior. Second, careful comparison of the 
many different mathematical tools available for rep- 

http://www.jstor.org/page/info/about/policies/terms.jsp


January 1994 SPATIAL THEORY 27 

resenting spatial processes is needed; for example, it 
would be very useful to identify similarities in the cri- 
teria for pattern formation in PDEs, cellular automata, 
and integrodifferential equation models. Finally, ap- 
proaches for coupling the analytical power of PDEs 
with the realism of spatially explicit individual-based 
models are worth developing. Specifically, PDEs pro- 
vide a concise understanding of the connections be- 
tween individual behavior and population-level spatial 
effects and thus can guide the analysis and construction 
of individual-based computer simulations in conser- 
vation biology and landscape ecology. In general, PDEs 
are much more practical than most empiricists realize 
as a tool for exploring the interplay of dispersal and 
population dynamics. 
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