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Abstract

Despite its formidable appearance, the study of classical Yang-Mills (YM) fields on
homogeneous cosmologies is amenable to a formal treatment. This dissertation is a
report on a systematic approach to the general construction of invariant YM fields
on homogeneous cosmologies undertaken for the first time in this context. This con-
struction is subsequently followed by the investigation of the behavior of YM field

variables for the most simple of self-gravitating YM fields.

Particularly interesting was a dynamical system analysis and the discovery of
chaotic signature in the axially symmetric Bianchi [-YM cosmology. Homogeneous
YM fields are well studied and are known to have chaotic properties. The chaotic
behavior of YM field variables in homogeneous cosmologies might eventually lead to

an invariant definition of chaos in (general) relativistic cosmological models.

By choosing the gauge fields to be Abelian, the construction and the field
equations presented so far reduce to that of electromagnetic field in homogeneous
cosmologies. A perturbative analysis of gravitationally interacting electromagnetic
and scalar fields in inhomogeneous cosmologies is performed via the Hamilton-Jacobi
formulation of general relativity. An essential feature of this analysis is the spatial

gradient expansion of the generating functional (Hamilton principal function) to solve
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the Hamiltonian constraint. Perturbations of a spatially flat Friedman-Robertson-

Walker cosmology with an exponential potential for the scalar field are presented.
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Chapter 1

Prelude

One of the most remarkable achievements of modern theoretical physics has been the
discovery and a precise formulation of the classical and quantum theory of gauge
fields. Modern theoretical physics is an amalgamation of the various theories of
gauge fields. These theories can be divided into two major groups. In one group there
is a spin-two field, gravity, which is the characteristic interaction field of large scale
structures in the universe, and in the other group there are spin-one Yang-Mills (YM)
fields like electromagnetism or weak and strong interactions which are basically
microscopic phenomena best described by a quantum theory of fields. A. Einstein
presented general relativity in the language of Riemannian geometry. However, a
geometric interpretation of the other gauge fields was put forward by C.N. Yang
and R.L. Mills after their development [1]. The object of chief importance in YM
theories is the YM connection (potential), whereas, in general relativity, all the
relevant information regarding the structure of the space-time is encoded in the
metric!. Many other dissimilarities have surfaced in trying to formulate a quantum
theory of gravity.

Many attempts to reach a unified theory of gravity and YM fields have so far
been unsuccessful. One such attempt was the formulation of Kaluza-Klein theories
in which gravity, electromagnetism and the other gauge and scalar fields are the
different manifestations of a unified theory in higher dimensions that undergoes
the so-called process of dimensional reduction [2]. To achieve charge quantization,

! Ashtekar’s formalism based on Palatini’s formulation of gravity is an attempt to resurrect the
role of connection to its perhaps rightful place.



the dimensional reduction is followed by the spatial compactification of these extra
dimensions. In addition to the absence of any good reason as to why these extra
dimensions have to compactify, a Kaluza-Klein approach to a unification of YM
theories and gravity yields inconsistent results [3].

Despite the apparent lack of success, Kaluza-Klein theories resulted in many
new ideas and concepts. Superstring theory is a progeny of these theories and many
results from differential geometry used in this dissertation were obtained by the
method of dimensional reduction.

Another viewpoint is that, rather than trying to cast either general relativity
or YM theory in a form that resembles the other, one might try to investigate the
properties of the systems that interact via both the YM and gravitational fields.
The simplest of such models are self-gravitating source free homogeneous YM fields.
Given that the gravitational interaction is many orders of magnitude weaker than
the YM interactions, gravitationally interacting YM fields could only be physically
relevant near the Planck regime when the universe was in its infancy. One might
argue that because there is a fundamental length-scale associated with quark con-
finement, non-Abelian YM fields (weak and strong interactions) have no classical
manifestation. Hence, a classical treatment of the YM fields can have no physical
significance. However, the Hubble length is also a fundamental length scale present
in the early universe that could feasibly distort the quark confinement.

Because of the symmetries present in the action
W (W v
I= /\/; (R ~ LF4LF, ) d'z (1.1)

associated with the gauge degrees of freedom, such fields are characterized by con-
served charges (conserved flux). Therefore, one might argue that during the De
Sitter expansion phase of the inflation such fields are diluted away so rapidly that
they can never play any significant role in the subsequent evolution of the universe.
Nevertheless, in the past few years, there have been some efforts to formulate a vec-
tor field driven inflation by adding gauge-breaking potentials to the action (1.1)[4].
Moreover, modified minimally coupled gravitational and YM fields could become
important after inflation during the reheating and particle production. Of course,
one might have to add source terms to (1.1) and treat the space-time metric as a

background field.



This dissertation is mainly a presentation of the construction and study of the
YM fields in homogeneous cosmologies (the so-called mini-superspace cosmologies).
There is a Lie group of isometries associated with every homogeneous cosmology.
The study of YM fields in homogeneous cosmologies involves devising a procedure to
find the YM connections that are invariant under the action of the group of isome-
tries. This procedure utilizes the theory of invariant connections in homogeneous
spaces (the so-called Wang’s theorem [5]) in the same spirit as that of Kaluza-Klein
theories. The last part of the dissertation is a discussion of the gauge fields in
inhomogeneous cosmologies for the simplest gauge field (electromagnetism), which
employs the Einstein-Hamilton-Jacobi formulation of general relativity.

1.1. Overview of the dissertation

We now proceed with an overview of the dissertation. Throughout the dissertation,
the signature of the four-metric (_t‘]) and the three-metric (zl) are +2 and +3 respectively.
The problem at hand is diverse and has many aspects. Consequently, the sign
conventions can be very confusing. The sign conventions are consistent throughout.
However, to serve clarity some of the more important ones are repeated in each

chapter.

Chapter 2

This chapter is a modified version of Ref. [6]. In this chapter we make use of Wang’s
theorem and Wang’s equations to construct the invariant YM connections in the
space-time of Bianchi cosmologies (£ x R where ¥ is a space-like three-manifold and
R is the time) with the isometry Lie algebra & and isotropy Lie subalgebra &. EYM
equations are written in an invariant basis. In doing so we implicitly make the as-
sumption that in a reductive decomposition of the isometry Lie algebra: € =€ +m
such that ¢,Nm = 0 and [, m] C m where m is the tangent space of &, ¥ is a group
manifold. In other words, the space-like hypersurfaces of simultaneity admit a global
frame field. Therefore, the derived equations of motion are valid for all spatially ho-
mogeneous cosmologies except Kantowski-Sachs and locally rotationally symmetric
(LRS) Bianchi III models. However, this is not a severe restriction because the
construction of the equations of motion is completely local and can be generalized



to the equations of motion for non-reductive and non-parallelizable models . In-
deed, the equations of motion given in chapter 4 include the LRS Bianchi III and
Kantowski-Sachs cosmologies. If the bundle of linear frames on ¥ is non-trivial, X is
non-parallelizable. The triviality of a fiber bundle on I is sensitive to the topology
of £. It is known that the non-trivial topology of T affects the number of degrees
of freedom of a mini-superspace cosmology. In this dissertation, we implicitly make
the assumption that ¥ is simply connected. However, for a discussion of the role
of topology on the number of degrees of freedom and equations of motion see Sect.
2.2.1.

We derive the Einstein-YM (EYM) equations for general Bianchi and axially
symmetric Bianchi-I YM cosmology by the ADM reduction of the EYM equations.
The system of ordinary differential equations describes the motion of a point parti-
cle in a certain potential well whose exact form depends on the type of the Bianchi
cosmology. Derivation of the EYM equations is followed by a dynamical system
analysis of the axially symmetric Bianchi I-YM cosmology. The potential well for
this system has moving walls with two open channels (see Fig. 2.4) that are remi-
niscent of the open channels of mixmaster cosmologies. Mixmaster cosmologies are
known to have chaotic properties [7].

An attractive property of Bianchi I cosmologies is that the space-like hyper-
surfaces of simultaneity are flat. Spatial flatness greatly simplifies the equations of
motion. This means that the true dynamical variable is the time derivative of the
metric (extrinsic curvature) not the metric itself. Therefore, many essential features
of the axially symmetric Bianchi I YM cosmology, we suspected, must resemble the
behavior of axially symmetric homogeneous YM fields in flat space. Indeed the
dynamics of homogeneous YM fields, dubbed YM classical mechanics, have similar
features and exhibit chaotic properties.

We numerically computed the Liapunov exponent for axially symmetric ho-
mogeneous YM fields in flat space, axially symmetric Bianchi I cosmology in syn-
chronous time, and axially symmetric Bianchi I cosmology in conformal time. The
numerical computations indicated that the Liapunov exponent is non-vanishing in
the flat space model and in axially symmetric Bianchi I cosmology in conformal time
and is vanishing in the latter model in the synchronous time (see Fig. 2.5). The ap-
parent discrepancy between the two different time parameterizations is not alarming



since the Liapunov exponent is known to be sensitive to time reparametrizations.
However, after observing the apparent similarities between the behavior of the YM
field variables in the flat space and Bianchi I cosmology, we concluded that the
Bianchi I model has chaotic properties and further conjectured that the chaotic
properties are milder than the flat space model. Indeed very recently, J.D. Barrow
and J. Levin have used our equations of motion for axially symmetric Bianchi I-YM
cosmology and the method of fractal basins to show that this system does have

chaotic properties[8].

Chapter 3

This chapter is a modified version of [9]. In this chapter we again employ Wang’s
theorem to obtain the EYM equations for all four-dimensionally homogeneous space-
times (manifolds) (e.g. de Sitter cosmologies) and space-times that are only spatially
homogeneous (e.g. Bianchi cosmologies) and are either spherically symmetric or have
local rotational symmetry. One important difference between the construction of
EYM equations in this chapter and the previous chapter is that the EYM equations
are constructed not on the (left)-invariant basis but on the basis of Killing vector
fields. Consequently, the (left)-invariant quantities no longer have constant compo-
nents in this basis and the field equations are constructed at one point only and are
carried over all the homogeneous manifold by the action of the group.

The use of Wang’s theorem in this context in not completely new[10], [11].
Wang'’s theorem has been used in the past to formulate the EYM systems in Friedmann-
Robertson-Walker (FRW) cosmologies. Nevertheless, our approach has several ad-

vantages and is new in that:
1) We convert Wang’s equation into a very simple linear algebraic equation
Al&:, &r] = [A(&), A(er)), (1.2)

in which &; is a Killing vector field, ér is a Killing vector field that generates
the isotropy subalgebra, and A is a homomorphism from the isotropy group
into the gauge group.

2) We fully utilize the theory of principal fiber bundles on homogeneous mani-
folds to derive the invariant connections for the YM fields and the invariant

5
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curvature of the geometry.

3) Of course, many invariant connections on the homogeneous space are related to
each other by gauge transformations. Wang’s theorem states that the invariant
connections on a principal fiber bundle are in one-to-one correspondence with
the conjugacy classes of homomorphisms. For the first time we relate the
problem of finding such conjugacy classes of homomorphisms in this context
to the representation theory of compact Lie groups (e.g. SU(2) and U(1)). We
present a systematic method to obtain the invariant SU(n) and SO(n) YM
connections in FRW and LRS Bianchi and Kantowski-Sachs cosmologies. The
field equations for FRW-SU (n)-YM for simplest of representations are solved
and the field equations for locally rotationally symmetric (LRS) models are
given.

Chapter 4

Chapter 4 is mainly based on [12]. This is an effort to use the Hamilton-Jacobi
formulation of general relativity to derive a perturbative solution to the Hamiltonian
constraint for inhomogeneous gravitationally interacting electromagnetic and scalar
fields. The author starts with the action for minimally coupled electromagnetic
and scalar fields. The ADM reduction of the action is followed by a Legendre
transformation for fully constrained systems that leads to

Hamiltonian = / (N*H, + AoG) d°z (1.3)

where N, N*, Ag (the lapse, shift, and the temporal component of the electromag-
netic field, respectively) act as Lagrange multipliers and are the “gauge-evolvers”.
H =0,H =0 and G =0 are the Hamiltonian, the momentum and the Gauss law
constraints. The Hamilton-Jacobi formulation of general relativity proceeds simi-
larly to that of the Hamilton-Jacobi theory in classical mechanics where the idea is
finding S, the Hamilton principal function. S is the generating function of a canon-
ical transformation in which the old Hamiltonian H and the new Hamiltonian H'

are related by

repga 95
H' =H+% (1.4)



such that H’ = 0. This canonical transformation is the solution of the equations of
motion. The (Einstein-)Hamilton-Jacobi theory for general relativity proceeds sim-
ilarly to that of the Hamilton-Jacobi theory in classical mechanics. However, there
are two major differences between these two theories. First, since we are dealing with
fields rather than particles, partial derivatives and partial differential equations are
replaced by functional derivatives and functional differential equations. This means
that there is a partial differential equation for every spatial point and therefore, one
has to deal with integrability conditions. Secondly and more importantly, since the
Hamiltonian = 0 on the constraint surface, the canonical transformation generated
by S is a “gauge” transformation®. After a particular choice of the space-like hy-
persurfaces of simultaneity, this “gauge” transformation manifests itself in the time
evolution of the three-geometry.

Diffeomorphism and gauge invariance of S guarantees that S satisfies the
momentum and gauss law constraints, respectively. To solve the Hamiltonian con-
straint, the author uses the spatial gradient expansion of the generating functional
recently developed by Parry, Salopek, and Stewart. The spatial gradient expan-
sion gives rise to an order-by-order solution to the Hamiltonian constraint {13]. A
conformal transformation and functional integral are used to derive the generating
functional up to the terms of fourth order in spatial gradients. The integrability
at each order is guaranteed by the lower order generating functionals satisfying the
momentum constraints. The perturbations of a spatially flat FRW cosmology with
a scalar field are given up to second order in spatial gradients. The application of
this formalism is demonstrated in the specific example of the exponential potential

V= Voexp{—\/§¢}-

Chapter 5

Finally, this chapter is a summary of our work and possible future directions.

2In this context, gauge loosely refers to the diffeomorphisms of the four-geometry. Throughout
this dissertation, we preserve the word gauge only for gauge transformation associated with either
electromagnetism for YM fields.

~J



Chapter 2

Axially Symmetric Bianchi I
Yang-Mills Cosmology as a
Dynamical System

2.1. Introduction

The effects of anisotropy on the dynamics of the early universe have been a point of
interest to cosmologists from time to time. This interest stems from the fact that
by adding more degrees of freedom to any isotropic minisuperspace model one might
hope to gain a better understanding of the behavior of the model generalized to the
full superspace. Bianchi cosmologies with fluid sources are such models. The matter
in these models is either a perfect fluid [14] or consists of massive or massless vector
fields [15],[4].

There has also been interest in the study of homogeneous source-free Yang-
Mills fields as a dynamical system in the hope that a non-perturbative treatment
might yield a better undesstanding of the vacuum state in YM theories, despite the
fact that strong and weak interactions have no classical counterpart. The theory of
these finite dimensional dynamical systems is dubbed Yang-Mills classical mechanics
[16]. Similarly a non-perturbative mini-superspace Einstein-Yang-Mills (EYM) the-
ory might eventually result in a better understanding of the vacuum state of YM
fields in the Planck regime. EYM cosmology is not new. There has been exten-
sive work on various Friedmann-Robertson-Walker (FRW) cosmologies with a YM



field source that has a stress-energy tensor of the form of a tracefree perfect fluid
[17),[18],[19],[20].{10].

In this chapter our aim is to relax the requirement of full isotropy. After
adopting and refining a general scheme developed to construct YM fields on homoge-
neous spaces, we examine, as a specific model, the dynamical properties of the EYM
equations in azially symmetric Bianchi I cosmologies with an SU(2)-YM field. The
organization is as follows: In section 2.2 after introducing the basic notation, we give a
brief account of how invariant YM fields in Bianchi cosmologies with a given isometry
group are constructed. This involves gauge fixing for both the space-time metric and
the YM connection. The general field equations for invariant YM fields in Bianchi
cosmologies are given in section 2.3. Then we use these equations to derive the evolu-
tion equations for axially symmetric YM fields in a Bianchi I cosmology followed by a
brief review of how these equations are related to the known exact solution of axially
symmetric electromagnetic fields in Bianchi I cosmologies and SU(2)-YM fields in
FRW cosmologies. Section 2.5 contains a numerical analysis of the obtained EYM
equations as a dynamical system, computation of the Liapunov exponent and a com-
parison with the flat space behavior. It is shown that, surprisingly, in synchronous
time the EYM system obtained has substantially milder stochastic properties than
the corresponding flat space system. In conformal time, the Liapunov exponent is

non-vanishing and the dynamical system is numerically less stable.

2.2. Invariant fields in Bianchi cosmologies
2.2.1. Invariant metrics in Bianchi cosmologies

We consider Bianchi cosmologies where the space-time manifold is of the form R x £
with a metric that admits an isometry group whose orbits are the space sections
T, = {t} x T where I is a three-dimensional group manifold with a (t-dependent)
invariant metric g. (This excludes the so-called Kantowski-Sachs solutions where ¥ is
not a group but only a homogeneous Riemannian manifold.) The space-time metric
can then always be written in the synchronous form [21]

3) . .
(_&)z -0+ @6+ + g= -t 6+ + 3,-,-(t)0' ¢, (2.1)
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where the lapse and shift satisfy the relations N = 1, N* = 0 respectively, the 6*
(i = 1,2,3) are the components of the (left-invariant) Maurer-Cartan form on the
group £ and 8+ = dt. If {eL,e;} is the (left-invariant) frame field dual to {6+,6°}
then the right-invariant vector fields &; are Killing vector fields of g (and (é)), and they
commute with the e; since L¢e; = [&;, €;].

The question of the most general form of the tensor fields on ¥ invariant under
certain group actions is extensively addressed in [22]. Here we only briefly discuss
a special case. We assume that the space-time admits a four-dimensional isometry
group K whose orbits are the X, so that there is a one-dimensional isotropy subgroup
K, at each point. These so-called locally rotationally symmetric (LRS) cosmologies
have been all been classified (see, for example, [23]). The isotropy group Kj is then
necessarily isomorphic to U(1) (as a one-dimensional subgroup of SO(3)) and the

)
metric 9 (t) can in all cases be chosen diagonal with two equal entries,

(gab(t)) = dia'g(bla bla b3)1 (22)

say. In all cases but one (Bianchi III) it turns out that the action of U(1) on ¥ is
an automorphism (a homomorphism of a Lie group into itself) of the group £ that
leaves the metric at the identity invariant from which it follows that K is a semi-
direct product of U(1) with ¥ (i.e. K = £ x U(1)). The generator & of the isotropy
group at the identity then acts as an infinitesimal orthogonal transformation, and it

follows that the commutation relations are
€61 = —C"i5&ry (61 66] = Ciglr (2.3)
where explicitly

[€1,6] = =&, [62,&s] =&, [&.&s] =0. (24)

Let us denote by g;;(to) the three-metric in (2.1). It is known that not all
different metrics g;;(%o) lead to different three-geometries. All the different invariant
metrics corresponding to the same geometry are related to each other by those dif-
feomorphisms of ¥ that leave the group structure and the identity of ¥ intact. By
definition, such diffeomorphisms are the automorphisms (Aut(X)) of £. The induced
action of these automorphisms on the Lie algebra of £, leaves the structure constants
of the Lie algebra invariant. One can use these automorphisms to cast gi;j(to) in a

10



canonical form. In the canonical form, g;;(to) has the fewest number of variables;
usually g;;(to) is in the diagonal form. These variables are the true dynamical de-
grees of freedom. However, depending on the type of Bianchi cosmology and the
nature of the matter field present, one might have to introduce time-dependent auto-
morphisms (inner automorphisms) to keep g;;(t) diagonal in the time evolution of .
Such time-dependent automorphisms are generated by the shift vectors. For exam-
ple, in a Bianchi IX cosmology where £ = Aut(X) = SU(2), on purely kinematical
grounds (i.e. without using the evolution equations) one can show that N ' generate
spatial rotations that can keep g;;(t) diagonal regardless of the nature of the matter
field present.

The construction of the EYM equations as given in this chapter and chapter 3
is completely local. However, Aut(X) depends on the topology of £, simply because
under the identifications of £, the universal covering group of £, Aut(¥) might no
longer leave the identity of ¥ invariant. Therefore, Aut(X) becomes smaller. Con-
sequently, the number of the dynamical degrees of freedom is altered by the change
in the topology. Heuristically, upon spatial identifications, some degrees of freedom
associated with Aut(i) become dynamical. More precisely, these extra degrees of
freedom are Teichmiiller parameters of £[24]. Teichmiiller parameters parametrize
the space of equivalence classes of the isomorphic imbeddings of m;(Z) (the funda-
mental group of £ into the group of isometries of X.

2.2.2. Invariant YM fields in Bianchi cosmologies

The question of invariance of the YM connection (or potential) in homogeneous spaces
was addressed by Harnad et al. [25]. We give a short account of how such invariant
connections are constructed in the case of Bianchi cosmologies. The complication
is that an invariant YM connection is not necessarily constant in a left-invariant
frame (just as a Riemannian connection depending on the coordinate system does
not necessarily vanish in Euclidean flat space), but any change in the field variables
is merely due to a gauge transformation. However, it can be shown that for the YM

potential

(4)
A= A (z,t)6" + A (2.5)

11



in which A = Aq(z,t)§ is the connection form on the homogeneous 3-space and
Aj(z,t) is a Lie algebra-valued scalar, there is always a gauge such that the A; are
only functions of time in a left invariant frame {6'} provided the 3-space is a group
manifold (otherwise the 8; are the pull back of Maurer-Cartan form components from
the manifold of the isometry group to the homogeneous space). This requires that all
the Lie-algebra-valued fields that transform according to the adjoint representation
(e.g. A,) have constant components in a left-invariant frame. Therefore the YM
connection (2.5) reduces to
U= AL ()0 + Ai(t)6. (2.6)
Several important facts should be mentioned regarding the YM connection
constructed so far.
(1) There is no local gauge freedom left in A; and the remaining gauge freedom

is global, i.e. only transformations of the form
(A7) = 1 (@)(AP)r7' (), (veG) (2.7)

are allowed. (Here we have written 4; = APEp where {E4} is a basis of the Lie
algebra g of the gauge group G.

(2) With A, (t) # 0, one can use the global gauge freedom above to make Af
upper-triangular. For SU(2) gauge group, the remaining six variables represent the
dynamical degrees of freedom of the SU(2)-YM field.

(3) If an additional Killing vector field £, generates an isotropy group U (1),
it has a non-trivial action on the tangent space in view of the commutation relations
(2.3)/(2.4). The invariance of the YM connection requires the induced action of &
on the cotangent space and on the A; to be equivalent to a gauge transformation.

(4)The gauge transformations mentioned in (2) are automorphisms of the
gauge group G which in the light of (3), are sensitive to the toplogy of ¥. Therefore,
similar to g;;, the dynamical degrees of freedom in A; can also be altered by the
non-trivial topology of X.

To classify the possible K-invariant gauge fields systematically the following
approach is needed [25],[5]. The equivalence classes of K-principal bundles P over
T (where K is a Lie group that acts on P and acts via its projection by isometries
on ¥) are in one-to-one correspondence with conjugacy classes of homomorphisms of

12



the isotropy group Kp (= U(1) in our case) into the gauge group G (see [25]). These
equivalence classes are well known from the investigations of spherically symmetric
EYM-fields ([26],[27],[28]) and are for K = U(1) x & and G = SU(2) classified
by (nonnegative) integers n such that the n-th equivalence class is represented, for
example, by

A:U(Q1) = SU(2), €% e (2.8)
where 75 = —iog/2 € su(2) for B = 1,2,3 are used as a basis of su(2). On the
other hand Wang’s theorem (cf.[5]) states that there is a one-to-one correspondence
between the K-invariant G-connections on P and linear maps A : £ — g such that

Ao adz = a'dl(z) oA Vz e Ko. (29)

and the connection components at the group identity can be chosen such that A; =

A(&).
Infinitesimally (2.9) means in our case (K = U(1)x Z, Ko = U(1), G = SU(2))
that A\.(§s) = n73 and

A([&h §¢]) = n[Aia T3] (210)
where we have put A; = A(&;) = AB,7p. Solving (2.10), which becomes more explicitly
AA,.C:-.¢ = TLEAB;;ABi (2.11)

with ¢, as in (2.3) and (2.4), gives forn =0

0 09
A=]00 ¢/, (2.12)
0 0 v
forn=1
a [/ 0
A=|-0 a 0]}, (2.13)
0 0 ~«
and forn > 1
000
A=100 0 (2.14)
0 0 ~

When these parameters o, 3, 7, 4, € are given as functions of ¢ the YM connection

is determined uniquely.
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2.3. Field equations for axially symmetric YM fields in Bianchi

cosmology

We shall use units where 87(Newton’s constant) = (speed of light) = (YM coupling
constant) = 1. The Yang-Mills field determined by A(t) in the gauge A, =0 is then

FA = E29*A0°+1B46° A6, (2.15)
Ef = AZ (2.16)
BA = e*poABAL — Afc, (2.17)
where * = L., and the Lie algebra indices are raised and lowered with (d4) =

diag(1,1,1) = (84p) (the latter representing the invariant metric on su(2)). If
(eL)*(er), = —1, [eL,e&] = 0, the ADM reduction of The Einstein-Yang-Mills equa-
tions is achieved by noting that

@+ b wL @t )8 (e
Py, =L, =C=C=0,T,=Tw=K;, (2.18)
O we @8
Tas = Kabr Toe = Do = 3(Phe + 6% + %), (2.19)
( )"
Vie; = f‘,-jek (2.20)

in which K, = %ga,,. The YM equations are

DHF{, = e*cpAC’EP + ¢ E* =0,  (YM constraint) (2.21)
D'Ff = Ef + K(Ef —2KIE} — ¢, B - Lginc’ (B + € g AP BC, =0,
(2.22)

where D, is the four-dimensional-gauge-covariant derivative D := V. + [AA ] and

V is the covariant derivative on X. Since

« 1
T, = FA Fa,° — ng,Fp';F,';“ (2.23)
the Einstein equations become
(KT)2 — K™K, + (};2) = E?+ B? (scalar constraint), (2.24)
K¢, + KIc; = BAE,, (momentum constraint) (2.25)

K —2KTK.; + K[ Ki; + R,-,- = BA,B,," — EfE4; + 3g;;(E* — B%),  (2.26)

14



where E? = EAET, and B2 = {BAB’ and

)

Rij = ciklcjkl/4 - Ckkl (Cl-jl + Cj'-’) /2 fd clkjclki/2 - ClijkI‘-/z. (2.27)
For the metric (2.2) the YM constraint is trivially satisfied if A has the form (2.14).
For the form (2.12) it yields

b — 8¢ = éy — e = by — 84 = 0 => (const.)e = (const.)é = 7. (2.28)

The YM constraint for (2.13) yields

&B — aff =0 = a = (const.)s. (2.29)

The above equations show that after a time independent gauge transformation, (2.12)
and (2.13) can be written in the following respective forms

A = diag(0,0,7), (2.30)
A = diag(a,a,7). (2.31)

Therefore modulo a gauge transformation, (2.31) is the most general form of an
invariant SU(2)-YM connection in Bianchi cosmologies with a fourth Killing vector
field obeying the commutation relations (2.4). With this choice of the connection
and the metric (2.2) inserting c",.j = 0 implies ?Z);j = 0, i.e. the 3-space for Bianchi I
models is flat.

The evolution equations for axially symmetric YM fields in a Bianchi I cos-
mology (Bianchi I-EYM) are now

&+ 92-2—: + a(%—:- + %13) = 0, (2.32)
i -+ 2T = o, (233
%%4-:—: = %+2—bbl-% (2.35)

ot Pk 18 8 (2.36)

b2  bs EE_Z(E'{HIE)’



in which (2.32),(2.33),(2.35) and (2.36) are the dynamical equations, (2.34) is the
scalar constraint and "= j‘; (where is t is the synchronous time).

We consider first two special cases.
Electromagnetism: With o = 0 the case (2.13) reduces to (2.14). With (d/dt) =
(v/b3/b1)(d/dT), the general solution to the YM equations is v = ¢;7. Subtracting
(2.34) from (2.35) and adding (2.34) to (2.36), respectively, with a time reparametriza-

tion (d/dt) = /b3(d/dr’) gives the solution

b = (a” +vBo), (2.37)
bs 24 __ _ 4 (2.38)
e + VB (co + VBo)?
in which cg, ¢, Bo and Ag are the integration constants. This solution is equivalent
to the known solution of the Einstein-Maxwell equations for an electromagnetic field
in an axially symmetric Bianchi I universe [29]. The energy-momentum tensor in
an orthonormal frame is (T¥) = diag(—p, p, p, —p) in which p is the matter energy
density. Heuristically, the positive principal pressures in directions 1-2 and negative
pressure in direction 3 explain why such a universe evolves as equations (2.37)and
(2.38) indicate. During any expansion in direction 3 energy is transferred from the
gravitational field to the EM field whereas in any expansion in the 1-2 directions,
energy is transferred from the EM field to the gravitational field. However there
is no potential energy associated with the gravitational field. Therefore there is an
expansion in 1-2 directions and any expansion in direction 3 can not be sustained for
a long time. In this model the Ricci tensor uniquely determines the EM field tensor
up to a constant duality transformation.

Isotropic case: Imposing spherical symmetry such that Ky = SU(2) requires
@ = v and b; = b3 in which case the EYM equations reduce to those for a SU(2)-
YM field in a FRW cosmology. In conformal time the EYM equations are given
in [19]. The solution for the YM field variables is given by elliptic integrals. The
energy-momentum tensor is that of a radiation perfect fluid with energy-momentum
tensor (T¥) = diag(—p, p/3,p/3,p/3) and the geometry is that of a Tolman universe
in which the space-like hypersurfaces of homogeneity are flat. In synchronous time
b, = b3 = ct+co where ¢; and ¢, are integration constants. In this particular example,
one can easily show that any axially symmetric YM connection must necessarily be
spherically symmetric. A comprehensive treatment of Einstein-SU(n)-YM system in
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FRW cosmologies is given in the next chapter.

2.4. The qualitative analysis of the dynamical system

To further facilitate the analysis of the Hamiltonian dynamical system (2.32)-(2.36)
one can use the Hamiltonian

b b
= [b3(2PsP, — gP:?) - 5,—3;(P3 +at)— Eia 22)]/vbs  (2.39)

in which P, Ps, P, and P, are the momenta conjugate to by, b3, a and ~y respectively.
The Hamiltonian above is basically G+ — T{. By using Hamilton's equations, the
system (2.32)-(2.36) can be written in the equivalent form

. . P2 4
b = 2V&P, B = _{ge<31+b P+,
1
- . 1 P2 b a?~?
b3 = 2\/b—3.(Pl - —P3 P3 = ——(——— + --:E-Pa2 — __l)’
'\/-E:; 4b3 bl 63 (2 40)
& = -— P, P _ 2a ( 9 + 02b3) ‘
2/_15 * T Ve T Th

: bs : 20y

= P. = —,
— T R

and the constraint H = 0. To ease the dynamical system analysis of (2.40), one can
convert the system above of equations into polynomial form by the time reparametriza-
tion dr = dt/(b, v/b3) and a transformation s; = Pb;, 1 = 1, 3. After defining ' := d—i_-,
the above sytem is transformed into

P2
B, = 2bss, sp = b(F+a*r),
b
5 = 2b3(sy—s3), s3 = —23-(P3+a4), (2.41)
od = _bl;a’ Pc’. = 20(61’72+b302)’
Y = kP, P = 20Mby

) b P2 bP? '
and the copstraint 2s3s; — s2 = —2 + 37 4 23 4 bia?y2. The above system

consists of first order equations which are of the form x = V(x) where x is an eight-
dimensional vector in the eight-dimensional phase space of the dynamical system. A
qualitative analysis of the dynamical system (2.41) is achieved by the study of the
behavior of the trajectories in the vicinity of the critical (equilibrium) points defined

17
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as the solutions of the algebraic equation V(x) = 0. The set of the critical points
of (2.41) in the physical region b; > 0,b3 > 0 is the three-dimensional manifold
sy = s3 = a = P, = P, = 0 that corresponds to vanishing YM fields and the
extrinsic curvature (the flat space-time). By definition, M, an invariant submanifold
of a dynamical system is a submanifold of the phase space such that every trajectory
in M stays entirely in M for —co < 7 < +00. Obviously, the critical points of the
dynamical system are a subset of M. The set of the critical points corresponding
to flat space is an invariant submanifold. There is also a two-dimensional invariant
submanifold associated with (2.37) and (2.38). Another invariant manifold is the
set of trajectories that correspond to Kasner solution P, = P, = a =7 =0. A
comprehensive analysis of Kasner solutions is given in Ref. [30].

It is well known that if the real parts of the eigenvalues of QY—;— do not vanish,
the behavior of the trajectories of any system x = V(x) in some neighborhood of
the critical points xq is qualitatively equivalent to the behavior of the trajectories of
its linear part X' = %(xj —xj). Unfortunately, all the eigenvalues of the Jacobian

matrix %XV—J of (2.41) have vanishing real parts at the critical points. In other words,
the qualitative behavior of this system is given by the higher order parts of x = V(x)
and is highly non-trivial. Elaborate means to analyze the behavior of a dynamical
system in the vicinity of degenerate critical points are available (see Ref. [30] for
example). However, such a treatment of the degenerate critical points of (2.41)
is beyond the scope of the present thesis and would be distracting to the study
of the stochastic properties of axially symmetric Bianchi I Yang-Mills cosmology.
Correspondingly, the dynamical equations of motion in the conformal time dn :=
(b2b3)~1/6dt are derived from the Hamiltonian Heopformal = (01/03) /¥ Vb H.

The system above is invariant under the group of scale transformations a —
ca,y =+ ¢y, Pa = Ps, Py = APy, Py = cP, Py = cP3,b — 2b;, b3 — c2b3. One
can use this symmetry to reduce the order of the above system frorn2 eight to six by

b b a? &
—-1-,33=—§-,A1=—,A2=—,G1=Z—,a.ndG2=1.
b1 b3 b1 «a b3 Y
However, due to the singular nature of this transformation, the resulting system is

not suitable for numerical analysis.

the transformations B; =

To gain a better understanding of the long-time behavior of the system, we

note that the energy-momentum tensor in an orthonormal frame is (7)) = diag(—A-
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B,B,B, A — B) where

2.2 2
P2 4
B S-"—;bi%f—). (2.43)

Contrary to the electromagnetic and fully isotropic cases, the principal pressure in di-
rection 3 does not have a definite sign. As will be seen from numerical investigations,
the numerators of both expressions (2.42)and (2.43) have the same order of magni-
tude. However, any decrease in bz will cause the positive term in T3 to dominate and
(note the discussion after (2.38)) b3 starts to increase. Hence, generally speaking, one
would expect both b, and b3 to be increasing functions of time. In fact, we used a

400 /
300 by
8
5200.-
100 |
M
0‘. i ' N ] Y
0 200 400 600 800 1000

Figure 2.1: The behavior of metric variables for initial conditions b, = 0.50,b3 =
11.12,P; = 0.03,a = v = 0.1, P, = —0.67, P, = 0.03. The inserted figure covers
0 <t <100 and indicates an initial decrease in b3 which quickly reverses direction.

fifth order Runge-Kutta integrator to integrate the system (2.40) and computed the
Hamiltonian constraint to check the accuracy of the numerical integration.

As figure 2 and the YM equations indicate, the general behavior of the YM
fields is that of two coupled anharmonic oscillators with time-dependent frequencies.

19



-
5

o 2000 4000 6000 8000 1104

Figure 2.2: The behavior of YM field variables in axially symmetric Bianchi [[EYM
cosmology for the initial conditions b; = 2,b3 = 1, =a =7 = F, = 0.1, P, =0.2.
The oscillations of v are characterized by higher amplitudes and lower frequencies.

The behavior of the YM field variables in the above system resembles the dynamical
properties of homogeneous YM fields in flat space known as Yang-Mills Classical

Mechanics (YMCM) [31].

2.5. Axially symmetric YM fields in flat space and regular-
izing effects of gravitational self-interaction

A full analysis of the dynamical system (2.40) is an insurmountable task. Therefore
we decided to start our analysis from the simpler system of axially symmetric YM
fields in flat space. Fortunately, the procedure described in section 2.2 encompasses
the gauge fixing for homogeneous YM fields in flat space. It is well known that YMCM
has stochastic properties [31],[16],[32],{33]. In these models the reduction from the
full space of dynamical variables to lower dimensions to make the dynamical evolution
tractable is via some ansatz. In our model, the reduction is an inevitable consequence
of the space-time symmetry.

The two dimensional flat system Al # 0, A2 # 0 and the three dimensional flat
system Al # 0,A2 # 0,A3 # 0, all other components vanishing, have been extensively
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covered in [16] and [32]. The stochastic character of these systems is demonstrated
by numerically computing the Liapunov exponent. Such numerical computations are
achieved by the simultaneous integration of the first order system x = V(x) and the
linearized first order system

w=Mx)w (2.44)

in which w is the perturbation vector connecting two nearby trajectories and M (x)
is the Jacobian matrix of V(z) [34]. The Liapunov exponent is defined as

oy 1o [w(E)]
o= Hlm 3l o) (245)

Fig. 2.3 is a schematic diagram of two nearby trajectories connected by the vector

Figure 2.3: Two nearby initial conditions that are separated by w(0) initially are
separated by w(t) as time evolves. For a stochastic system, w(t) grows exponentially.

w(t). A positive Liapunov exponent corresponds to the exponential divergence of two
nearby trajectories. More specifically, the Liapunov exponent is the mean exponential
rate of the divergence of two nearby trajectories. Heuristically, a positive Liapunov
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exponent is an indication of extreme sensitivity of the time evolution to the initial
conditions. This means that due to the finite randomness in the choice of initial
conditions in any stochastic (chaotic) physical system, predictability is lost in a time
scale that is inversely proportional to the Liapunov exponent.

It can be shown that, for completely integrable Hamiltonian systems (i.e.
systems for which there are as many integrals as the degrees of freedom) 0 = 0. In
principle, there can be more than one positive Liapunov exponent corresponding to
positive eigenvalues 0 < A; < --- < A, of M(z). But, due to the exponential growth
in w(t), unless w(t) points exactly in the direction of the eigenvectors corresponding
t0 Aicm, (2.45) yields the maximal Liapunov exponent. In other words, growth in
the direction of the eigenvector corresponding to A, dominates in the subsequent
evolution of w(t).

In practice, numerical computation of (2.45) is marred by the overflow as a

[w ()]

consequence of the exponential growth in the ratio W (O)] We follow the procedure

explained in appendix A to compute the Liapunov exponent for axially symmetric
YM fields first in flat space and later in a Bianchi I cosmology.

The dynamics of axially symmetric YM fields in flat space is governed by the
system

a+a(y*+a?) = 0, (2.46)

4¥+2%y = 0, (2.47)

which correspond to a set of two strongly coupled oscillators with varying frequencies
and amplitudes. These equations are derived from the Hamiltonian

H= -;-(72 + 202 + 20272 + o). (2.48)

The system describes the motion of a point particle moving in a potential well U =
a?y? + o*/2 with two open channels in the directions of positive and negative v
(figure 2.4)!. In these channels the term quartic in « in U is much smaller than the
term quadratic in a. Therefore the behavior of the point particle in each channel is
basically the same as that of the point particle in the two dimensional Hamiltonian

system

H= %(c'ﬁ + 42 + a?+?) (2.49)

!These channels resemble the open channels in mixmaster cosmologies.
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treated in [31]. The potential barrier in this system has open channels in both the
a and 7 directions and such systems have been extensively studied because of their
relation to the plasma confinement problem. Unless @ = 0 or v = 0, as the particle
moves deeper and deeper into the 7y channel, say, the frequency of oscillations in «
increases while the amplitude decreases. However, at a finite value of v, v = 0 at
which point the particle returns to the a ~ - region. In this system, the stochastic
regions occupy a significant portion of the phase space and the part of the regular
region found so far is limited to a very small region of the phase space [35].

Y

)\ a

%;

Figure 2.4: The behavior of a particle in potential well U = a2y2 + a*/2.

The behavior of a particle in a system with potential barrier U is basically
the same. However, because of the lack of the existing channels in directions a,
oscillations of v are characterized by larger amplitudes and smaller frequencies.

Following [36] we numerically computed the Liapunov exponent for the system
(2.46) and (2.47) for randomly selected initial conditions satisfying (2.48) with H = 1.
It turns out that the Liapunov exponent for this system is positive and is of the
same order of magnitude as the one for the system (2.49)(see figure 2.5). Numerical
investigations for randomly selected initial conditions indicate that in this system, the
stochastic regions occupy a large portion of the phase space also. The author is not
aware of any systematic search to find regular regions in the phase space associated
with this potential.
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Figure 2.5: ln of the Liapunov exponent vs. In of the evolution parameter for axi-
ally symmetric YM fields in flat space and in Bianchi I-EYM cosmology for initial
conditions as in Fig. 2.2. This was a typical bebavior for randomly selected initial
conditions. (s) and (c) refer to synchronous and conformal time respectively.

As the potential term in (2.39) reveals, in a Bianchi I Yang-Mills system, the
walls of the potential well in Fig. 2.4 move inwards for the initial conditions chosen
in Fig. 2.1. There are at least two problems associated with generalizing the study of
the stochastic properties of the flat space model to axially symmetric Bianchi [-EYM
model represented by the system (2.40). One is related to the strongly coupled nature
of the ODE system and the higher number of degrees of freedom which are known
to cause sophisticated stochastic phase space properties like Arnold diffusion [34].
Numerical investigations (see figure 2.1) point to a non-compact phase space. Thus
we can say that axially symmetric Bianchi I-EYM systems are not globally ergodic.
However, we do not rule out the existence of ergodic components.

The other problem is related to the inherent gauge dependence in the definition
of the Liapunov exponent and the non-existence of a satisfactory gauge-covariant
definition of chaos in general relativity. It is known that in mixmaster models the
positivity of Liapunov exponents depends on the choice of time reparametrization
[7]. However, in a mixmaster cosmology, the stochasticity is associated with the
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behavior of the metric variables in the vicinity of the cosmological singularity where
cosmological time is not well defined. In Bianchi I-EYM, ergodicity, if there is any,
is mainly in the YM field variables, far away from the cosmological singularity.

Similar to the flat space scenario, we calculated the Liapunov exponents in
both synchronous and conformal time of Bianchi I-EYM system for randomly selected
initial values (see figure 2.5). The vanishing of Liapunov exponents in synchronous
time points to a dynamical system in which the stochastic regions, if there are any,
occupy a much smaller portion of the phase space. However , it also underlines the
known fact that the Liapunov exponent is sensitive to time reparametrization. The
Liapunov exponent is non-vanishing in conformal time with a value smaller than the
corresponding flat space model. At this point we would like to add that it is more
difficult to preserve the constraint in the conformal time and the numerical stability
of the dynamical system is substantially enhanced in the synchronous time.

We also tried to use the notion of correlation between various YM field vari-
ables at different times during the evolution. The correlation coefficient for two
random variables X and Y is defined as:

<(X —<X>)(Y —<Y>)>

- : 2.50
g [(<X2> — <X >2)(<Y2> — <Y >2)|H/? (2.50)

where <X > refers to the expectation value of X. Following [37] we computed the
correlation between the initial and final values of YM field variables as an indication of
a particular statistical independence in the dynamical evolution of the field variables.
As figure 2.6 demonstrates, after a large time evolution, there is a loss of correlation
between v; and 7y (respectively o; and ay). Therefore vi(a;) and vs(ay) can be
regarded as two stochastically independent random variables. One should note that
the loss of correlation between these two variables is an indication of only a very
specific kind of statistical independence. It is possible to find two variables X and
Y with a very simple functional dependence ¥ = Y'(X) such that p(X,Y) =0in a

particular range?.

2For example, Y = X2, for —1 < X > 1 is such a function.
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Figure 2.6: The correlation between v, and - in terms of time for the initial con-
ditions b; = b3 = 1,P, = 2,P3 = 1,P, = —.28. In the left figure « = 0.1,0.15 <
4 < 17.25 and in the right figure v = 0.1,0.15 < a < 1.56. The large time behavior
indicates that there is no clear correlation between v¢(ay) and ¥:(a:).

2.6. Conclusion

We systematically derived the most general form of the YM connection and the
EYM field equations in Bianchi cosmologies with a four-dimensional isometry group
in which the Killing vector fields obey the commutation relations (2.4). For the sim-
plest of Bianchi cosmologies, namely Bianchi I, we investigated the resulting dynam-
ical system. In doing so, one realizes that there is little hope of finding a non-trivial
exact solution. Numerical integration suggests a non-compact phase space and oscil-
latory behavior for the YM field variables. However, one can easily use the scheme
mentioned to construct invariant YM connections in flat space. There has been ex-
tensive work on the dynamical properties of homogeneous YM fields in flat space
(YMCM) which are known to have stochastic properties. We used some methods to
investigate chaos in YMCM (i.e numerical computation of Liapunov exponent) to see
how gravitational self-interaction can affect the stochastic behavior. It turned out
that the system with gravitational self-interaction has milder stochastic properties.
We hope to extend this work to other Bianchi cosmologies.
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Chapter 3

Cosmological Einstein-Yang-Mills

equations

3.1. Introduction

There has been extensive work on Einstein-Yang-Mills (EYM) cosmological models
in the last decade. This work was partly motivated by the successes of inflationary
models driven by scalar fields in solving flatness and (to a large extent) horizon prob-
lems in cosmology. The interest in inflationary models driven by fields other than
scalar fields is a consequence of less attractive features of the latter among which
one could mention the lack of any concrete experimental evidence on the support of
the existence of fundamental scalar fields [4]. Mini-superspace EYM cosmology is a
natural extension of a non-perturbative treatment of self-gravitating scalar fields. It
has been realized that despite a large phase space associated with seemingly redun-
dant extra gauge degrees of freedom, there already exists a systematic mathematical
method (based on Wang’s theorem [38]) for the construction of invariant connections
over homogeneous spaces in the same spirit as that of Kaluza-Klein theories. As
will be seen in section 3.2, such invariant connections are related to the representa-
tion theory of compact Lie algebras. For some of the most easily constructed cases of
SO(n)-YM fields the solutions were obtained on closed Friedmann-Robertson-Walker
(FRW) cosmologies [10],[39},{40]. SU(2)-YM fields on open FRW cosmologies have
also been of some interest [19],[17]. In this particular representation there is one
degree of freedom associated with the YM fields.

27



Conformal invariance of the YM field equations (due to the fact that they are
zero-rest-mass fields) results for the homogeneous and isotropic case in a decoupling
of the gravitational and YM degrees of freedom in the conformal time. The energy
momentum tensor is that of a radiation perfect fluid and the geometry is that of a
Tolman universe.

Despite the fact that it is known that the construction of invariant YM con-
nections could be generalized — at least in principle — to other compact gauge
groups and cosmological models with compact and non-compact spatial sections, a
systematic attempt to study models based on more complicated representations in
FRW and anisotropic homogeneous cosmologies has not been conducted.

In the present chapter we derive the EYM equations for SU(n)-FRW and
SU(n) locally rotationally symmetric (LRS) cosmologies.

Section 3.2 is an exposition of a general but rather explicit construction of
the Riemann and YM curvatures based on the theory of connections invariant under
symmetry groups that act transitively on the base manifold. It turns out that the
resulting purely algebraic Yang-Mills equations do not require any explicit choice
of gauge. Such space-time homogeneous models are not considered to be realistic
physically and we make no attempt in this paper to find any exact solutions.

In section 3.3 we derive the EYM equations for spatially homogeneous cos-
mological models. The result is a system of ordinary differential equations where
again the YM gauge needs to be fixed only mildly, for example, by setting the tem-
poral component of the potential to zero. The spatially homogeneous and isotropic
models are discussed in section 3.4. Although the space-time geometry is completely
determined independently of the YM fields, the latter satisfy in general some compli-
cated coupled system of evolution equations. We derive here a few general facts for
arbitrary gauge groups and some more explicit equations corresponding to different
possible YM fields for the gauge groups SU(n) and SO(n).

Finally, in section 3.5 we consider, in a unified way, all LRS cosmological mod-
els with a SU(n) Yang-Mills source. In such models, after solving for the constraints,
there are 2(n — 1) degrees of freedom associated with the YM fields. Here we just
concentrate on what we consider the simplest YM-connections that contain a ‘mag-
netic’ part and derive the full evolution equations of the EYM-system. An analysis
of the solutions of this quite complicated system is beyond the scope of this paper.
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Even the system for homogeneous YM fields in two-dimensional flat space is known
to be non-integrable. A dynamical system analysis of LRS Bianchi I models with
SU(2)-YM fields was given in [6].

3.2. Einstein-Yang-Mills equations on homogeneous space-

time

Following the conventions of [5] we let (M, g) be a connected pseudo-Riemannian
manifold with its Levi-Civita connection, and K its isometry group. Its (left) action,

v:KXM—M:(a,z) - Yoz (3.1)
has the following properties:
1.
be(z) = (3.2)

where e is the identity element of K.

'Z':a(lza’(x)) = 1Zaa’(x) (33)
therefore, the transformations Ja form a group isomorphic with K.
3. The transformation is transitive on M (i.e.

Vz,z' € M, Ja€ K : =’ = ¢,(z)). (3.4)

Fixing a point £y € M (to be called the origin) the isotropy subgroup Kj of K is
defined by

Ky = {a € K | .%o = Zo}. (3.5)

If the isotropy group at z; = a4, To is denoted by Kj, and a € Kj, then

YaZo = Zo = batp-r (T1) = g1 (71) = Yo, Bat (T1) = Vg a7 (1) = 71 = 1007 € K.

(3.6)
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In other words, the isotropy groups at different points of M are conjugate.

An equivalence relation in K is defined with respect to the action of Ko on K
from the right. Therefore, two elements k;, k; € K are in the same equivalence class
(i.e.[k1] = kg)) if ky = kako for some kg € Ko. The manifold M is diffeomorphic to
the set of equivalence classes (left cosets) of K with respect to Ko, i.e. M = K /K.

3.2.1. Invariant metrics on homogeneous space-times

The classification of all geometries on M invariant under the left action of K (K-
invariant pseudo-Riemannian metrics) started with the pioneering work of L.P. Eisen-
hart [41] and was later completed by A.Z. Petrov [42]. The action of K on M is
generated by a set of vector fields {€¢ | = 1...m}, (m < dim K) on M. Since
dim M <dim K, at each point on M, say zo, one can choose a set of vector
fields {€,]a = 1...n} (n = dim M) such that the & are linear combinations of
& and span the tangent space T;,M at zo. One can also choose a set of vec-
tor fields {&r|' = n + 1...m} such that the & are linear combinations of € and
vanish (in general only) at zo (this is always possible if K is not a normal sub-
group of K). The &r are the generators of the action of Ko on M. A subtlety
here requires further attention:  is the Lie algebra of left-invariant vector fields
on K. These vector fields do not project unambiguously under the projection map
m:K — K/Kg ~ M, ky € K  [ki] on which the equivalence is defined by the
action of the elements of Kp from the right !. To find the commutation relations
among &, which are the generators of the left action of K on M, one notes that
the left action of K on itself is generated by the right-invariant vector fields on K
with commutation relations opposite to those of the basis of & and are related to the
left-invariant vector fields by the adjoint action. The right-invariant vector fields on &
project unambiguously under w. Therefore, [&.,&] = —[eq,es] Where e, are a basis
of &. In other words, the Lie algebra of the generators &, is anti-isomorphic to &.
The invariance of any metric g is given by the Killing equations Ls, g = 0 where
L is the Lie derivative. If the action of K on M is simply transitive (i.e. & = 0,
K is a normal subgroup of K), an invariant metric at any point z € M is obtained
simply by Lie dragging any symmetric bilinear form at zo to z. However, since er

'This is simply because the left-invariant vector fields do not stay invariant under the right action
of Ko on K.
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vanishes only at zg, it has a non-trivial action on T,,M. This action translates into
Larg = Lar (gabéa Q&)= ér.(g“”)éa €, + gab[éf"éa] @&+ gabéa ® [érv éb] (3.7)

which is equivalent to adg,-invariance of g. Therefore there is a one-to-one corre-
spondence between K-invariant pseudo-Riemannian metrics on M and adk,-invariant
non-degenerate symmetric bilinear forms g on the quotient space €/ of the corre-
sponding Lie algebras.

Not all different symmetric bilinear forms g give rise to non-equivalent metrics.
It is known that if Ky = e, all the equivalent metrics are related by the automorphism
group of K, Aut(K) where by definition Aut(K) C Diff(K) is a subgroup of the
diffeomorphism group of M that leaves the group structure of M invariant [43)].

3.2.2. Invariant Yang-Mills fields on homogeneous space-times

We wish to describe Yang-Mills connections that have as many symmetries as the
metric of space-time and therefore assume that the full isometry group also acts by
principal bundle automorphisms

V:KxP—>P (3.8)
on the principal bundle P that projects onto isometries on M thus satisfying
moy=von and Y,0R;=Ryo0¥, Va€KVgeG (3.9)

where 7 is the projection, G the structure (gauge) group, and R the right action of
G on P (see Fig. 3.1). A principal fiber bundle automorphism is a fiber preserving
map of a principal fiber bundle into itself that, when restricted to M, is an isometry
on M 2. If the gauge potential is invariant under this action, i.e. if the connection
form & on P is invariant, &;dz = @ for all a € K, then so is the curvature form Q,
JJ;Q — 0. This is because the exterior derivative and the action of ¥ commute. It

follows that

Lz;o=0 and LzQ=0 VXE€Et (3.10)

2The definition of a principal fiber bundle automorphism given here is a restricted version of a
more general definition in which ¢ is a fiber preserving map of a principal fiber bundle that 1) is a
homomorphism of the structure group when restricted to the fibers and 2) is a diffeomorphism of
the base manifold M when restricted to M.
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Figure 3.1: An automorphism of a principal fiber bundle commutes with R, and
projects to the isometry 1 when restricted to M.

where X is the infinitesimal generator of the action 15 on P corresponding to X € &.
If  : P — P is a principal fiber bundle isomorphism, one can define an

equivalence relation among different Y-invariant principal fiber bundles. Two U-
invariant and ¢/-invariant principal fiber bundles are equivalent if the commutative

diagram
P 3P
" iy
P AP

is valid. Now it is known (see, for example, [25]) that the equivalence classes of such
Y-invariant principal fiber bundles P over M are in one-to-one correspondence with
the conjugacy classes of homomorphisms A : Ky — G. Here A and ¥ are related by

IZG(UO) = R,\(G)UO YVae Ko (3.11)
where ug is any fixed element of n~1(zo).
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Moreover, Wang’s theorem ([38], see also [5]) states that (for fixed A) the set
of Y-invariant connections on P is in one-to-one correspondence with the set of linear

maps A : ¢ = g that satisfy

AK) = AX)  (Xew),
Acady = adygyoA (k€ Ky) (3.12)

where )\ now also denotes the induced Lie algebra homomorphism. The second con-
dition in (3.12) is similar to (3.7). The difference in appearance is due to the gauge
degrees of freedom associated with the Yang-Mills connection. This equation states
that to have Kjp-invariant physical quantities, any action of Ko on tensors that are
valued in the gauge Lie algebra g (the adjoint action adg,) must be compensated by
a gauge transformation (the action of ady(x,) on the fibers). The invariant connection

and curvature on P are then given by
<X,o> = AX) (X €8), (3.13)
<X AY/O> 2 [AX),AY)]-A(X.Y]) (X,Y €¥). (3.14)

The symbol £ indicates that these equations only hold at the fixed point ug € P.
The second equation of (3.12) becomes infinitesimally

A(X,Y]) = [MX),A(Y)] VX €t VY €t (3.15)

Let us, as before, choose {e | = 1...m} to be a basis of the Lie algebra &
such that the corresponding generators {€,|a = 1...n} span the tangent space Tz, M
at zo while {er[l = n + 1...m} span the Lie subalgebra &. Note that the vector
fields introduced in Sec. 3.2.1 are the projections of these vector fields on M. If the

structure constants ¢* are introduced by
[e ,e ]=c" ey, (3.16)
then
s =0, (3.17)

which simply means that Kj is a (closed) subalgebra. The infinitesimal generators &,
on M corresponding to e, form a frame field in a neighborhood of zy, but this will,
in general, only be global on M if M admits a simply transitive isometry subgroup
and is thus a group manifold. Let {#°} be the local 1-form field dual to {&.}.
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A pseudo-Riemannian metric g on M can now be written in the form
9= 90" Q8. (3.18)

From here on the symbol = denotes equality at zg only. The components 5‘,5:: Jab(To)
satisfy
) oc(b a)
Lo Jap=—29 cp.=0 (3.19)
The coefficients of the Levi-Civita connection and the curvature tensor with respect

to this frame at zo are then given by

Fgc = —%C:c + garc:(bgc)a (3.20)
Ry 2 Tolpy—Tilh — il + cipct (3.21)

Note that none of the components of g, ', nor R are constant on M, in general.

Equation (3.20) is easily derived from the commutation relations
{64 = Ve,éc — Ve & = [&,&] = —c? &y (3.22)

for the right-invariant vector fields for a torsion-free metric and Vg, gpe = 0 for a
metric connection. Equation (3.21) is obtained most conveniently from Wang’s the-
orem applied to the bundle of pseudo-orthogonal frames over M. Here, however, the
principal bundle and the connection on it are already fixed as well as the action of
K on the bundle, which is the natural lift of the action on M. @ in (3.13) and the

the connection components in (3.21) are related by
wy(€.) =Ty (3.23)

in which &, is the natural lift of €. to the bundle of pseudo-orthonormal frames.
Thus (3.13) fixes the Wang map together with the requirement of zero torsion (i.e..
(3.22)) and (3.14) then leads to (3.21) (cf. [5], Ch. X). In a systematic study of EYM-
systems from a Kaluza-Klein perspective in [44], the Riemann tensor for metrics on
homogeneous spaces is also calculated in a very explicit form in terms of the structure
constants of the symmetry group by calculating (Vis, Ve, — Vis. a) € = R%. 584
which leads to an equivalent expression.

The gauge fields being invariant under a transitive symmetry group are also
determined by their values at just one point of M which we take to be the origin zo.
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Their derivatives which occur in the Yang-Mills equations can be computed using
again Wang’s theorem so that the field equations are reduced to a purely algebraic
form. Let o be a local section of P, thus satisfying m o ¢ = idy, and introduce
the local gauge potential A and the gauge field F by the pull back of the invariant
connection and curvature on the principal fiber bundle P and the base manifold M
respectively. If the contraction of X and A is denoted by ¢ A= <X,A> and

A=0"0, F=01Q, (3.24)
then we have

Lemma 1 Under the assumptions above, the Lie derivative of the gauge curvature
F at xo € M can be written in the form

LzF Z[A(X),F]—[<X,A>,F]. (3.25)

Proof:
Since X = 7. 0 0.X = m.X the vector field X = 0.X — X is vertical on
P (a vector field is vertical if it is tangent to the fibers). Now LzF = Lgo™Q) =
oL, 2= o’(L,-(H-(Q) = 0"L;( in view of (3.10). But
Li0=03d0+digQ=—3[@AQ] = ~[<X, 5>, +[@ A Q] = —[<X,5>,9).
(3.26)
The first identity L4 = [t%,d] gives the Lie derivative with respect to X in terms of
the contraction with X and the exterior differentiation. The second equality holds in
view of the Bianchi identities, dQ + [@ A )] = 0, and the fact that :zQ = 0 for any
vertical vector field Z. In the third equality the contraction has propagated through
the wedge product according to the Leibniz rule. In the fourth equality, we have used

L)'{Q=O.

Pulling back (3.26) to M by o, LgF = 0L = —o"[< X, 5>, = —[o"<X,&>. F].

But 0" <X,o> = a'L,,.xEJ-—a'<)Z',GJ> = an‘&}—a'<)2,d}> Z g A—A(X) by (3.13)
and 0" <X,> = 0"A(X) = A(X). O

We choose now for the vector field X the local space-time frame vectors &,

and frame forms 6% and let

A=Al, F=LF,8nE (3.27)
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Then, introducing the (space-time) covariant derivatives Foy/c = (La F)ab + 2Fral'y.,
together with (3.25) we have

Fubje 2 [Ac — Acy Fup] + 2FaTye. (3.28)

where A, := A(ec).
Since the gauge-covariant derivative of F is defined by

D,Fp, = Fgy/a + [Aa, Fg,) (3.29)
we now find, interestingly, that the Yang-Mills equations, DAF,, = 0 can be written
in these frame components without involving the gauge potentials,

[AT, Fo] + T4 F," + Fult g™ = 0. (3.30)
In view of (3.14), the frame components Fy; of the Yang-Mills field are given by
Fap 2 [Aa, Ay] — CopAr — o5 (3.31)
Einstein’s equations are also easily formulated in these frame components,
Rap = &1 (3.32)
where k = 87(Newton's constant), the velocity of light is set to unity,
Top = Xap — 1 X798, Xab := <Far, F,"> (3.33)

and <, > represents a bi-invariant scalar product on the gauge group Lie algebra g.
The stress energy tensor T has zero trace, and the Ricci tensor components are
obtained from (3.21).

All these equations hold only at the origin zo € M and they form a complicated
algebraic system. For a given isometry group K of space-time and a chosen basis of ¢
the structure constants can be considered fixed. The homomorphism A can be chosen
arbitrarily and then fixed. Possible choices are found by considering the subgroups of
the gauge group G onto which there are homomorphisms from the isotropy group Ko,
in particular, imbeddings of Kj in G. This classification is discussed (for semisimple
Kj and semisimple G) in [45],[46]. After the choice of a particular homomorphism,
equations (3.12) or, infinitesimally, (3.15), i.e.

[Aas Ar] + €irAr = —c5)e (3.34)
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must be solved for A which is then substituted into (3.30), (3.31) and into Einstein’s
equations (3.32).

In the (most important) case of a reductive homogeneous space c =0 and
(3.34) is a homogeneous linear system. Then A can also be regarded as an intertwining
operator between two linear representations of the isotropy group Kj in the following
way. We have & = & @m as a vector space and the map A in (3.12) is fully determined
by the linear map A : m — g that satisfies

Aop=19oA (3.35)

where ¢ : Ko xm =+ m: (a,X) = ad, X and ¥ : Ko x g = g : (a,Z) = ady)Z.
Then A is an intertwining operator between these representations of Ky, namely the
adjoint representation ¢ on m and the representation ¥ on g

Also the g, are arbitrary, subject to (3.19). But not all choices need lead to
nonisometric space-times. One can reduce the number of free parameters by bringing
Jas into a canonical form using basis transformations by automorphisms of K that

leave the subgroup K invariant.

3.3. EYM equations in spatially homogeneous cosmological

models

Let (M, g) now be an n + 1-dimensional space-time manifold with an isometry group
K whose orbits are n-dimensional space-like hypersurfaces so that M = £ x R with
K acting transitively on ¥ and K the isotropy subgroup at zo € ¥. We choose to
describe the metric by a coordinate time ¢ and a frame field {&;} of Killing vector

fields on %,
g = —dt @dt + g.,0° ® . (3.36)

Assume also that the & (I' = n+ 1...m) vanish at a fixed point o € £. It then
follows that the ¥,-coordinate components of the frame vectors &, do not depend on
the time ¢ so that

[0, ]=0 V =1...m. (3.37)
The connection and curvature components with respect to the local space-time
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frame field {& = 8,8,} can then be calculated in the standard fashion. If
Kab = 30ab (3.38)

is the extrinsic curvature of the hypersurfaces and a dot denotes the time derivative,

we have for the Ricci tensor components

Ryw % —¢"K..+ KK, (3.39)
Ry 2 Kjc,+KIch, (3.40)
Rab =2 Kab + K:Kab - 2KarKl: + ﬁab- (341)

£ £?
Here Ra = R ,,, is the Ricci tensor on ¥ and is given, according to (3.21), by

>4
Rep =7, I, — D5 ln, — Dopcy + s Ch- (3.42)

F

The gas and K, depend on t, the ¢ are constant (on {zo} x R) and the I', are still
given by (3.20).

The calculation of the Yang-Mills equations for a gauge connection invariant
under a symmetry group with orbits on surfaces of constant ¢ is analogous to the
one on spherically symmetric static space-times and is done as first outlined in [25]
(see also [27]). Locally one can introduce a gauge potential A = Agdt + A where A
is the potential of a (t-dependent) invariant connection on ¥ and Ag is a g-valued
scalar, invariant under Adyk,)- In practice (unless there are incompatible boundary
conditions in the time evolution) A¢ can be gauged away. This is because a time-
dependent gauge transformation to achieve such a result needs to satisfy an ordinary
differential equation on the gauge group that can always be solved, at least locally in
t.

In terms of the space-time co-frame {#° = dt,#°} we now write for the Yang-
Mills field

F = E,dt A§® + }By8° A G (3.43)
Then the Lie derivative of F in the time direction is
L5 F = Eqdt AG* + LBa,6° NG (3.44)
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and those along ¥ are still given by (3.25). Just as in section 3.2 we can then compute

the frame components of the covariant derivatives and find

Fab/e
Fob/e
Fapo
Fosso

The Yang-Mills equations thus become

where

Z [Ac— Ac, Fap] + 2Bral'yy + 2E(o Ky, (3.45)
Z [Ac— Ac, Ey] — E.Th. + B K¢, (3.46)
2 Ba + 2B Ky, (3.47)
2 E,~E.K]. (3.48)

[ET,A,] — ¢ E* 20, (3.49)
E, + Ao, EJ) + KT E, — 2KE, — [Bar, A" + B’} — $9arcf B =0,  (3.50)

o

Bap =
o

E, =

[Aa, As] = GpAr — Az, (3.51)
OrAa + [Ao, Ad] (3.52)

and we may choose the gauge such that Ag = 0.

For the stress-energy tensor components we find (if we now restrict to n = 3)

Too =
TOa
Tab =

L(E*+ B?), (3.53)
= ¢,"<E,,B,>, (3.54)
~<Eq, Ey> — <Ba, By> + L(E? + B?)gas (3.55)

where B, = 1¢,"B,,, E? := <E, E™> and B? := <B,,B™>. Here, <, > isa
biinvariant inner product on g (see the discussion before (3.92)). Einstein’s equations

(3.32) can now be brought into the form

R+ (K2 -K K, =
Kic, + Kic, =

p]
Kap — 2KarKl’; + K:Kab + Rab =

x(E? + B?), Hamiltonian constraint (3.56)
ke,"<FE,, B,>, momentum constraint
(3.57)

KJTab . (358)

If we choose the gauge such that Ag = 0 then, after a basis of the symmetry
Lie algebra ¢ and the homomorphism A : Ko = G are chosen and a point zo € T
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is fixed, we have as dynamical variables the functions gas(t), subject to (3.19), and
the g-valued functions A,(t), subject to (3.34). Equations (3.56) and (3.57) can
be considered the Hamiltonian and the momentum constraints, respectively. They
restrict somewhat the choice of initial values for an initial time but will afterwards
be preserved by the time evolution. This follows as a special case from the general
analysis of the Cauchy problem in EYM theory.

Only a time-independent basis transformation in ¢ by automorphisms leaving
¢, invariant can now be used to possibly eliminate some variables. The algebraic
problem of finding the possible homomorphisms A and solving for A is similar to the
one mentioned in section 3.2 but a little simpler. The isotropy group Kp is now a
subgroup of SO(3) and thus compact so that the homogeneous space is reductive (see
Sec. 3.5 for a full discussion). Moreover, on the three-dimensional space-like space
sections the isotropy group can only be either SO(3) or U(1) (or trivial). We will
consider in the following sections some of these cases that can be handled without
recourse to the more advanced techniques of the theory of Lie algebra representations.

3.4. Isotropic cosmological models

The isotropy subgroup Kj of a space-time transitive isometry group must be a sub-
group of the Lorentz group and a classification of all homomorphisms of such a
subgroup into any compact gauge group G is a nontrivial algebraic problem. For a
cosmological model with three-dimensional homogeneous spatial sections the situa-
tion is much simpler, since Ky must be a subgroup of SO(3) which leaves only SO(3),
U(1) or the trivial subgroup. In this section we consider the “physically isotropic”
models where K is SO(3). There are still many possible conjugacy classes of homo-
morphisms A and a complete classification for arbitrary compact groups G may not
be known. We will here mainly consider the case when G is either SU(n) or a real
orthogonal group.

When SO(3) is the isotropy group of an isometric action on the three-dimensional
maximally symmetric manifold £ the (X, (537)) must be of constant curvature k and its
isometry group K is SO(4), E(3) or SO(3,1), respectively, depending on whether k
is positive, zero or negative. The Lie algebra has a basis {e;, fi} (i = 1...3) with
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commutators

[ei9ej] = keijrfrv (359)
[e:, fi] = €5 e (3.60)
[f fil = & f- (3.61)

where the f; span the Lie algebra of the isotropy group. We can choose k to be +1
or 0 and the ¢;;” in this section now refers to the Euclidean metric in R3.

The geometry of these isotropic models is then already determined, namely
the one of the well known Friedmann-Robertson-Walker space-times. We have in the

terminology of section 3.3
b

Gap = a(t)&ab, Ka = %d&ab, Ry = 2ké,s (3.62)

where the bar was dropped and {6‘} is the co-frame dual to {e;}. In terms of the

conformal time T the metric is
g = R(1)*(—d7? + 66" ® 6°) (3.63)

so that a = R? and ¢ = d¢/dt = R~'d¢/dT = R~'¢' for any function ¢. The stress

tensor, being isotrepic, is of the form

Tay = pGab (3.64)

where p is the pressure and, since the source will be a zero-rest-mass Yang-Mills field,
the mass-energy density is u = 3p. Einstein’s equations are now equivalent to

i=-2k and kp=1a"%®+ka (3.65)
or, in terms of the conformal time,
R'"+kR=0 and kp=R*R®+kR %= (const.)R™* (3.66)

The complete time evolution of the geometry and thus the stress-energy tensor is
therefore easily obtained explicitly. It remains to formulate the equations for the

Yang-Mills field.
If we use again the notation A; = A(e;) and now A; = A(fi) then equations
(3.34) become

[Ai, AJ] = GijrA,-. (3-67)
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They represent a system of linear equations for the A; once the )\, i.e. the homomor-
phism is chosen. We have from (3.51) and (3.52)

E:=A;=R™'A, and Bi =R (3”[Ar,Ad] — kN:) (3.68)

for the Yang-Mills fields (where the indices on A and A are raised and lowered with
respect to 6;;) so that

E? = R™4™ <AL A> (3.69)
B? = LR (<[Ar, A], [A7, A°]> — 4k<A,, A™> + 2K7<0,, A7) (3.70)

The YM field equations become

A” = 2kA; — [[Ai, A, AT = 0 (3.71)
[AL,AT] = 0. (3.72)

From (3.56), (3.57) and (3.64) we have, moreover,

<A A> =0 (3.73)
<E;, Ej) + <B;, Bj) = 2pg,-j. (374)

To derive these expressions we have used, whenever convenient, (3.67) as well as the
invariance of the inner product <,> on g.

We can go a little further before we need to specify the gauge group G, but the
specific structure of the isotropy group and its action on ¥ incorporated in equations
(3.67) are essential. Equations (3.67) are a system of linear equations for the (g-
valued) A;. Let A; = AX¢x(t) and {AX,K =0,...,r — 1} be a basis of the solution
space where A? = ); since ); is always a solution and is nonzero except if A is the
trivial homomorphism. The following lemma is needed to write the YM equations in

a more simple form.

Lemma 2 The basis vectors {AX,K =0,... ,r—1} of the solution space of Wang's
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conditions (3.67) satisfy the following relations

e [AK, AL = vEEAP (3.75)

(A AP = JeivEEAT (3.76)
=T (3.77)

LXE = 5 [AK, Al = - L (3.78)
<AF AL> = oFts;  with off =ob¥ (3.79)
5L M = oS ygM (3.80)

VK = 26K and L% =0 (3.81)

Proof: To prove (3.75) let L; and M; be solutions of (3.67) and N; = ¢"[L,, M,].
Then we can show that [A;, Nj] = €; N, by a simple calculation using the Jacobi
identity and the identities satisfied by the Levi-Civita symbol €;;x. Thus NV; is also a
solution of (3.67). (However, the full solution space need not be a Lie subalgebra of
g, in general.)

Equations (3.76) and (3.78) follow immediately from the antisymmetry of the Lie
bracket and (3.77) is a consequence of either (3.75) or (3.76).

To prove (3.79) we let ak% := <AX,AF> and use (3.67) and the invariance of the
scalar product <, >,

e o = <€ AK AE> = <, AR AfE> = —<AX, i, AE]>
= —'<AJ’-(,6,-krA£’> = —eikrajKrLs

from which the result easily follows.
Finally, (3.80) follows directly from the invariance of the scalar product and (3.81) is
an immediate consequence of (3.67) since A? = \;. O

The only time dependent quantities are now the amplitudes ®x(7) which
satisfy the Yang-Mills equations in the form

LXLe, &, =0, (3.82)
& — 2k®y + IvEMYi 28, 8pBg = 0. (3.83)

Here (LKXL), defined in (3.78), is an array of skewsymmetric matrices one for each
dimension of the Lie algebra g. From (3.68) we have

E;=R'®AK and B:=R"'(17Kl®xd, — k63) AM (3.84)
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and, in view of (3.79), Einstein’s equations (3.73) and (3.74) reduce to (3.66) and the
following expression for the mass-energy density

p = L(E*+ B?) (3.85)

where now
E? = 3R~ %"t @, (3.86)
B*=3R™* (k2a°° — kM KL ® 1 ® ) + iy,’{LaRSyg’%K@L@p@Q) : (3.87)

Using the relations of Lemma 2 it can be verified that yR* is constant as it should
be.

The quantities o%, y5* and LXL depend only on the Lie algebra g and the
homomorphism A : su{2) — g. Hence, to find all possible isotropic EYM equations
one has to find all su(2) subalgebras of g (up to inner isomorphism), thus choosing
the homomorphism A (see Ref. [46]) and then solve the equation (3.35) for the
intertwining operator A = (AX). This can be done in a systematic way using a
Cartan-Weyl basis of g by the methods given in [45]. Here we will only consider
those examples which can be dealt with in a more elementary way, without involving

the theory of Lie algebra root systems.

We know that all (connected) compact gauge groups can be imbedded as sub-
groups of GL(n,R) or GL(n,C) (in fact in SO(n)) for some n. Moreover, all finite
dimensional complex (real) representations of SU(2) are equivalent to unitary (real
orthogonal) ones and decompose orthogonally into irreducible parts. Thus at least
for the unitary and the real orthogonal groups we can determine the possible homo-
morphisms directly from the well known representation theory. If, for example, X is
a n X n-unitary representation of Ky, i.e. X:a+— U, Vae Ky where U, is a unitary
matrix, then A : a = (detU,)~'/"U, is a homomorphism into SU(n). Moreover, it
is easily seen that equivalent representations define conjugate homomorphisms and
that, in fact, conjugacy classes of homomorphisms of Ky into SU(n) are in one-to-
one correspondence with equivalence classes of n-dimensional unitary representations
of Ky. Similarly, any real n-dimensional orthogonal representation of Ky immediately
defines a homomorphism into SO(n).

If now Ko = SU(2)® then any n-dimensional unitary (or real orthogonal)
representation is a direct sum of irreducible unitary (real orthogonal) representations,

3Perhaps one should take SO(3) rather than SU(2) as the isotropy group. But it is clear that
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i.e. any homomorphism X : SU(2) = SU(n) is conjugate to one that maps into block

matrices

Dkl (a)
Aa) = - (3.88)
Dy, (a)

where each Dy, is an irreducible k;-dimensional representation and where k; + - -- +
k., = n. As is well known, the Lie algebra representation corresponding to an n-
dimensional irreducible representation can be written as follows. If {7, 72, 73} is the
standard basis of su(2) in terms of anti-Hermitian matrices and Ax = A(7) are the

images in su(n) then the latter can be represented by the matrices

At)em = Vm(n—m)dgmi1, A-= 2\H (3.89)

. . n+1
’\l = —%(A*, + A_), /\2 = _%(/\-{- - ’\-)1 (’\3)lm = —1( 2 - m)5¢m(3.90)

where m,! < n. Consider first a homomorphism class from SU(2) to SU(n), that
arises from an irreducible unitary representation in C*. Then the ); in (3.67) can be
chosen as the matrices (3.90) and the system (3.67) can be explicitly solved (this also
follows the from more general results of representation theory) for the A; which can
now be taken to be (n x n) skew-Hermitian matrices. It follows that

Ai = &\ (3.91)

i.e. the solution space is one-dimensional. In this case the YM-potential is thus
determined by a single function ®(7). For a simple Lie algebra like su(n) the invariant
product <,> must be a multiple of the Killing form,

<X, Y> = —ck(X,Y) xx trace (XY) (3.92)

for some constants ¢, > 0 which we will choose to be 1. It follows from (3.75) and
(3.76) that v$° = 2 and o = n?(n% —1)/6 so that the Yang-Mills equations become

" —2(k—-92)P® =0 (3.93)

a covering group of an isometry group of a Riemannian manifold M will also act in a well defined
way via projections at least if M is also simply connected. We will not consider these topological
questions here.
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whence

dd

NPT T =dt (3.94)

where the constant 2 = 4uR*/(n%?(n%2—1)). Thus ®(7) is periodic in the cosmological
time 7 and can be expressed in terms of an inverse elliptic integral. It is easily seen
that the “electric” and “magnetic” contributions to the emergy density u oscillate
in the time 7. These equations (for G = SU(2)) have previously been derived and
analyzed by Gal’'tsov and Volkov [19].

If the homomorphism class is not induced by an irreducible representation, the
gauge field may be more complicated. However, since the evolution of the geometry
of space-time is already determined, only the evolution of the gauge fields can be
affected. Table 3.1 shows the dimensions d of the solution space of (3.67) for some
homomorphisms A : su(2) = su(n). Here 1 @ 2, for example, means that A is
obtained from a representation in C? that decomposes into a (trivial) one-dimensional
one Dy, and an irreducible two-dimensional one Di,. In these cases, according to
(3.83), the YM field depends on d independent amplitudes () which each satisfy
a second order equation. However, at least for n < 6, the c¢ constraint conditions
(3.82)(which are not linearly independent in general) simply imply that many of the
& are proportional to each other so that the remaining number nq of second order

equations that must be solved is much smaller.

To give one example, for an SU(5)-theory with the homomorphism A corre-
sponding to a representation of the type 1@ 1 ® 3 we find the Yang-Mills equations

3" +28(9%+392-k) =0 (3.95)
0" 4+ 20(30% + U2 —k) =0 (3.96)

and
E? = 20R™* (@'2 + \1:'2) and B?=20R™* [(q»? +02-k)+ 4@2\1:2] . (3.97)

The contribution of the electric and the magnetic part to the mass-energy density
changes in time similarly as in the ‘irreducible’ case, but the gauge fields now ‘rotate’

in the Lie algebra in more dimensions.
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If the gauge group is SO(n) we can similarly classify the A by considering
all n-dimensional real orthogonal representations of su(2). These decompose into
irreducible blocks of dimensions 2k + 1 or 4k for integer k, but not 2k + 2 (see, e.g.
[47]). It does not seem to be simple to write down formulae for these representations
for arbitrary n as in (3.89) and (3.90). But there exists an algorithm to construct
them explicitly. First note that an irreducible complex representation of su(2) leaves
invariant a bilinear form 8 on C*. For the choice of A in (3.89) and (3.90) we find
that B = (—1)*84,n+1—k Which is symmetric for odd n and skew for even n.

Thus if n is odd then ) is of real type, i.e. the representation is unitarily
equivalent to one by real orthogonal matrices. In fact,

M =UHMNU where UPU=id and UTBU =id (3.98)

are the generators of the orthogonal representation. The matrices U can be easily
computed by diagonalizing § by congruence. For a A : su(2) — so(2k + 1) that
corresponds to an irreducible representation it now follows easily from the complex
case that the solutions of (3.67) are again of the form (3.91) and the single time
dependent amplitude & satisfies (3.93).

For n = 4k the explicit irreducible representations are obtained via the Lie

algebra homomorphism

p:gl(6,C) = gl(2,R): A= A; +idy — A = (A‘ "Az) (3.99)

A2 A
which maps su(€) into so(2¢). For £ = 2k the image of the matrices A, generate an
irreducible 4k-dimensional real orthogonal representation of su(2). Thus, one finds
a 4k-dimensional representation of su(2) via its representation on su(2k). Again,
it can be verified explicitly that (3.67) has only the solutions (3.91) and that the
only amplitude satisfies (3.93). For I = 2k + 1, one obtains a 2k 4+ 2-dimensional

representation which is always reducible.

The remaining equivalence classes of homomorphisms A into so(n) can now
be obtained from reducible orthogonal representations in the same way as those for
su(n). Some examples are tabulated in Table 3.2. The corresponding equations and
expressions for E2 and B? are very similar to (3.4) and (3.97).



3.5. Locally rotationally symmetric cosmological models

Spatially homogeneous cosmological models with Ko = U(1) have been extensively
studied and are known as locally rotationally symmetric (LRS) models. Our con-
struction of four-dimensional isometry groups of LRS models is along the lines with
[23]. If K is compact, one can use an arbitrary inner product (, ) on K to define a

new ad(k,)-invariant inner product given by

(X,Y)= . (adko (X), 2dx, (Y))' dk (3.100)
o

where dk is the Haar measure on Ky. If M is the complement of Kj in K with respect
to this inner product, namely, M = {m € Ko : (m,ko) = 0, Vko € K} then there
exists a reductive decomposition of &. At the Lie algebra. level this means that there
is a subspace m such that &€ = & + m and [, m] C m and & N m = 0. The choice of
such a reductive decomposition is not unique and depends on the choice of the inner
product. As it will be seen shortly, a judicious choice of a reductive decomposition,
greatly simplifies the EYM equations. It is interesting to note that for all Bianchi
cosmologies except Bianchi III, there is a reductive decomposition in which m is a Lie
subalgebra . In a suitable basis ey, - - - ,e4 such that e;, s, e3 span m and e4 span &,

—E,=cy=1,c,=0 (a=1,2,3). (3.101)

The ad(Kj)-invariance of the metric expressed via (3.19) then restricts the space-
metric to the form diag(f2, f?, f20%) where f and o are functions of ¢. Given an
invariant basis on a homogeneous space, one can start from this metric and, after
integrating the Killing equations, find out which spatially homogeneous space-times
admit the action of a four-dimensional isotropy group (cf. Table 3.3 and [48]). Kramer
et al. [23] have classified all such space-times with two integers £ and k (Bianchi V
(BV) does not fall into this category and is treated separately). All homogeneous
spaces which have the same four-dimensional isometry group, belong to the group
manifolds (Bianchi cosmologies). Such group manifolds correspond to different three-
dimensional subgroups of the isometry group which act simply transitively on the

4Such a decomposition for BIII would require SU(1,1) to be solvable which contradicts the
simplicity of SU(1,1). A Lie group is solvable if the commutator subalgebra (the algebra of all the
commutations of the Lie algebra elements) of the corresponding Lie algebra at each step leads to
smaller and smaller subalgebras until only the identity element of the algebra survives.
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hypersurfaces of homogeneity. Kramer et al.’s classification (cf. [23] section 11.1) is
based on the metric

g = f2C~%(dz? + dy?) + jo?d2® — Lo*C (ydz — zdy)dz

+ 202C~2(ydz — zdy)?),
where C := 1+ 1/2k(z? + y?) (3.102)

or, for Bianchi V,

g = fYe*(dy® + dz?) + 02d2?).
These metrics all have (generically) four-dimensional isometry groups. We must now

select a frame field of Killing vectors in such a way as to let e, generate the isotropy
group and the structure constants to satisfy (3.101). The following choice achieves

this.

€1 = "\—%xyay - %(1 + K)a:: + \/ifyaz, (a: ’
e = %xy@, + \—}5(1 — K)d, + V2¢z0,, (8,

e3 = —208,, (—z8r — yo, + 0.

k]

)
),
) (3.103)
)

€4 = zay - yata (yaz - xay :

where K := (k/2)(z? — y?) and the entries of the right column are the Killing vector
fields of BV. The above Killing vector fields and non-vanishing structure constants
(3.101) and

A,=¢ ch=k or cjj=d;=—1for BV, (3.104)

determine the isometry group, embeddings of the isotropy group in the isometry group
up to conjugacy class, and identify the three-dimensional homogeneous spaces which
admit an action of a four-dimensional isometry group. Here ¥ is simply connected. It
is known that the number of degrees of freedom in mini-superspace models depends

on the choice of topology [49].

Our aim is to construct the invariant SU(n)-YM connections for homogeneous
spaces listed in the table 3.3. In doing so, we have to find all the conjugacy classes of
homomorphisms A : U(1) = SU(n). Such conjugacy classes of homomorphisms are
well understood for spherically symmetric solutions of the EYM equations (cf. [27]).
These classes of homomorphisms are basically of the same form as (3.88). However,
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since the irreducible representations of U(1) are one-dimensional, D, have only one
entry. Therefore if U(1) = {z € C: |2| = 1}, then

A : z — diag(2h,--- ,27*) (Zj.- = 0, j; = an integer) (3.105)
i=1

is clearly a homomorphism of U(1) into SU(n). The set of integers j, (p = 1,--- ,n)
such that j, > j, for p < g, yields all conjugacy classes of homomorphisms A : U(1) —
SU(n).Denoting D := (i/2)diag(j1," - - ,Ja) We have

A[e4, e,-] = [/\(e4), A.] = [D, A‘] = CZ‘-A,- = [D A,] (3106)

in which A; are traceless antihermitian matrices as in section 3.4. These equations
and (3.101) give

Ay ==[D,A)], AL =[D,Ag], [D,A3]=0, (3.107)
which in turn yield
(A)pold = Up — 7)1 =0, 1=(L,2). (3.108)
The solution to the equations above is
Al =i/2(Ay —A), Aa=—1/2(Ay+A2), Ay=—(A)" (3.109)

where j, > j, for p < g and therefore A, (A-) is a strictly upper (lower) triangular
matrix. Moreover, (A4 )y # 0 only if j, = j; + 2. The general solution of the above
equations is in the root space corresponding to D C (Cartan subalgebra of su(n))
and in principle could be obtained for any compact group. However, such a general
treatment is out of the scope of the present paper (cf. [28]). Some interesting special

cases to consider are

(a) jp=0,Vpe€ {1, -+ ,n}, (trivial homomorphism) requires A; = Az = 0 and A3
is completely undetermined.

(b) If |jp — jol # 2V p,q € {1,...,n} then A; = A, = 0 and Aj is a diagonal
traceless anti-hermitian matrix. In this case the gauge group reduces to its
maximal torus (i.e. U(1)®--- @ U(1) C SU(n)).
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) £j,=jpr1+2,Vp€{l,--- ,n—1} = D = (i/2)diag(n—1,n—3,--- ,—n+1).
Then (3.107) and (3.108) respectively imply that A3 is an anti-hermitian trace-
less diagonal matrix and (A4)pp+1 = —(AH)p41, are the only non-vanishing
entries of Ax.

In (b) the EYM equations for SU(2)-YM fields reduce to that of axially symmetric
electromagnetic fields and one can show that (a) and (b) are gauge equivalent [6]. We
consider (c) the simplest non-Abelian YM field in which the entries of D correspond
to the magnetic quantum numbers in the n-dimensional unitary representation of
SU(2). Up to a gauge transformation, this representation yields the only possible
non-Abelian connection for SU(2)-YM fields. Therefore we derive the EYM equations
for this particular example starting with

(At)ppt1 = “’pei7’, pef{l,---,n—1} (3.110)
A3 = idiag (ay,...,ap—ap_y,..- y —Qn—1)-

The YM constraints (3.49) in terms of these variables are as follows

0
w§7p+2d,,a-2{ ! } =0. (3.111)

Terms in the upper (lower) part of the braces refer to ‘general’ (BV) case. The YM
dynamical equations (3.50) consist of

Gy + (fVf + 0716)p + 2wy (a +iW, - f? 3—{ i—z }) =0,
+ 20wyt + fHf 4+ 0716) Y, + 2(f0) 2, { (IJ } =0,

+(ff —0716)a, + f‘2o"zpw§ ~ Lo f-2[W, + p(n — p)k] { (1) } =0

(3.112)
and Einstein equations (3.56-3.58) are, respectively,
: : 1@y
3f2f2 4 2f Vfo~lo + f2 g 4 = kfT) +To),
-30
. . . _ lpg2
f+2f1f2+ folg+ f! 20_2_2 = kfIlTy, (3.113)

ko f~2(T, — 2T).

&+3f‘1f&—f‘2(ka—£203){ (1) }
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with the only non-trivial momentum constraint given by
P S ) Gyl - 24 0 (3.114
c~o L (= Knf 2 GpYpp zp:wpwp 1 . .114)

Here we have used the abbreviations

a, = 20p—0p-) — Qpti,
W, = wﬁ _ 28y ,
0 (3.115)
- 4k
Wy = 2Wo—Wort = Wpr 44 " 0.
and
. - = 1
T, = n [a‘zgapap +1f2 ZP:WPWP + (1/3)n(n% — 1)k? { 0 :
. . o -~ 0
T, = n; [w§+w§73+w§(fa) 2 (a§+{ ! })] ,
(3.116)

and it is understood that all subscripted quantities are zero when the index is outside
the range {1,... ,n —1}.

At this point, we do not intend to give a complete analysis of the above system
of differential equations. However, a few points are in order. For the general case, if
wp # 0 Vp, ¥, = 0 and the first equation in (3.113), the Hamiltonian constraint, is the
only constraint of the system. The dynamical evolution is expected to preserve the
constraint H = 0. Indeed, as a check on the consistency of the above equations, one
can show, for example for G = SU(2), that H = -(6f/f + 26 /a)H. One observes
that there are 2(n — 1) degrees of freedom associated with YM fields. Such an explicit
integration is very complicated for the Bianchi V case, but as mentioned at the end
of section 3.3 we would expect the constraints to be conserved in view of the general

consistency of the Cauchy problem.

The system above is the set of SU(n)-EYM equations for the particular homo-
morphism from U(1) to SU(n) chosen above for all spatially homogeneous cosmologies
with isotropy group U(1). These equations are mildly gauge dependent (A, was set
to 0). Nevertheless, the gauge-invariant quantities, like the various components of
the energy-momentum tensor, are easily expressible in terms of ap, v,, and wp.
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Table 3.1: This table gives for different homomorphisms A : su(2) — su(n) the number d of
dimensions of the solution space of (3.67), the number c of nonzero constraint conditions (3.82)
and the number n.q of independent amplitudes that satify second order equations in time. (Trivial
homomorphisms and those arising from irreducible representations are not included.)

n A d| c | ne
3 12 1101
4 l1ol1e2 11041
13 31| 2

262 413 | 2

5| lelsle®2 |110]1
lele3 516 2

14 1101
1202 4|1 4| 2

263 20| 2
6lildlolold2|1| 0|1
lel®ele®3d |7|11]| 2
lelo4 1101
lole202 |4)4 | 2
le263 413 3

1®5 1101
20202 9|11 2

284 4141 3

363 415 | 2
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Table 3.2: Values d, ¢ and neq for the equivalence classes of homomorphisms A : su(2) —+ so(n) for
small n. Trivial homomorphisms and those arising from irreducible representations are not included.
The question marks indicate cases where the constraint equations do not simply imply that some
amplitudes are proportional to others.

n A
193
5 lel13
194
6 1910103
1914
185
303
l1o19lel3
1eolol4
19165
1933
34
Sllelolelaldl
l1olololo4d
1910185
leale3a3
17
35
404
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Table 3.3: The three-homogeneous cosmologies with a four-dimensional isometry group. WH

refers to Weyl-Heisenberg group.

Class | Homogeneous cosmology | Isometry group | [ | &
A BI E(2) @ U(1) 00
A BVII,

B BV BVII,®@U(1) |-} -
B BVII,

B BIII SU(1,1)@U(1) [0 ]| -1
A BVIII 1]-~1
A BII WH®U(1) 1[0
A BIX SU(2)®U(1) 111
- Kantowski-Sachs SU(2Q)®R 0|1

()]
(3]




Chapter 4

Solving the Hamilton-Jacobi
equation for gravitationally
interacting electromagnetic and

scalar fields

4.1. Introduction

Hamilton-Jacobi (HJ) theory has many applications in the perturbative and non-
perturbative analysis of dynamical systems in classical mechanics. Peres developed
an Einstein-Hamilton-Jacobi (EHJ) formulation of general relativity in which a gener-
ating functional has to satisfy the momentum and Hamiltonian constraints of general
relativity [50]. In the framework of quantum cosmology, it was known that the mo-
mentum constraints require any wave functional to be diffeomorphism invariant [51].
In a WKB approximation, such a requirement translates into the diffeomorphism
invariance of the generating functional. The Hamiltonian constraint is a non-linear
functional partial differential equation that governs the time evolution of the gener-
ating functional.

Based on the formalism developed by Peres, Parry, Salopek and Stewart used
a series expansion of the generating functional in spatial gradients of the fields to
derive an order-by-order solution of the Hamiltonian constraint for general relativity
with matter fields (see Ref. [13] from now on referred to as PSS). Such a generating

56



Rdiathd e ) SEUEEEEE DA L ERE AL e L L B T ol

functional is diffeomorphism invariant in each order of the expansion. Salopek and
Bond used this formalism to show how non-linear effects of the metric and scalar fields
may be included in stochastic inflationary models. The main advantage of this anal-
ysis is that the lapse function and shift vectors do not appear in the EHJ equations.
Therefore, one obtains a coordinate free approach to cosmological perturbations. In
the above models, matter fields consist of self-interacting scalar and dust fields.

In this chapter the formalism above is extended to minimally coupled grav-
itationally interacting scalar and electromagnetic fields. Such minimally coupled
electromagnetic fields give rise to conformally invariant field equations. Hence, the
électromagnetic field energy density is proportional to 1/a* where a is the scale fac-
tor. Consequently, the electromagnetic field is diluted away during the de Sitter
expansion phase of the inflationary cosmologies. To brezak the conformal invariance,
a direct coupling of gravity to electromagnetism [52] or corrections due to the quan-
tum conformal anomaly have been considered [53]. A coordinate free approach to
the perturbative analysis of cosmological models with electromagnetic fields could
eventually lead to a better understanding of the primordial magnetic fields. The gen-
erating functional up to the third order in the spatial gradient expansion is given in
section 4.2. Following PSS, section 4.3 is a demonstration of how a recursion relation
and a functional integral in superspace can be used to derive the higher order terms in
the spatial gradient expansion from the previous terms. Section 4.4 is an exhibition
of the gauge fixing and the solution of the field equations. The perturbations of a
flat Friedmann-Robertson-Walker cosmology with a scalar field, up to second order
in spatial gradients are given. The application of this formalism is demonstrated in

the specific examplé of the exponential potential V' = Voexp{-\/gcj)}.

4.2. ADM reduction and the EHJ equations

The action for minimally coupled gravitationally interacting neutral scalar and elec-
tromagnetic fields can be written as

4) . (4)
I= / VI B ~1g,6% —V(6) — LE, F*|d'z, u=(0,1,2,3). (4.1)

where F,, = Ay, — A, is the electromagnetic field strength and V() is the scalar
field potential. ADM reduction of the above action is achieved by defining the 3-
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metric Yy, := gu» + nun, and the vector potential A = Ay + A, such that (A), =
Ay, (AL)y = —(n” A,)n,, where n, is the unit vector field normal to space-like
hypersurfaces of simultaneity parametrized by ¢. In the basis (&, 3:),7 = 1,2, 3, such
that n#(3;), = 0 and n* = (8, ~N*8;)/N (no sum), the following relations hold:
(Ay)i = YA, Ao = NA| + NiA;, and

ds? = —~N2dt? + v,;;(dz’ + N'dt)(dz’ + Nidt). (4.2)

Then one proceeds with the procedure outlined in Ref. [54] to derive the Lagrangian
L for gravitationally intera.cting electromagnetic and scalar fields. With the momenta
. 0L X L . .
7l = —, 1% = —, E' = —— where ":= d/dt, after a Legendre transformation,
6% 8¢ 0A;

the Hamiltonian is
Hamiltonian = /(N“’H,‘ + AoG)d’z, (4.3)

where

Ho = 720978 2vavie — Vi) + vV(¢) — R/2+ FFa/4 + ¢79,/2)

+ y~Y2[E'E; + (n*)?]/2 = 0, Hamiltonian constraint,
Hi = —2ml;+ F4E'+ n%¢; = 0, momentum constraint,
G = —FE%; =0, Gauss law constraint.

(4.4)

i is the 3-covariant derivative (for covariant derivatives of tensor densities and sign
conventions see [55]). Utilizing Hamilton’s equations, the evolution equations for the

fields are as follows:

¢ = Ny ¢4 Nig,, (4.5)
Yii = N2’7-1/27rkl(2'7i17jk — YijYkt) + 2N, (4.6)
A; = Ny '2E; 4+ NiFj; + Ao, (4.7)
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The evolution equations for the momenta are considerably more complicated. They

are given by

o o N71/2% ~ 372 (Nmp™ + N¥) = (N™1%) (4.8)
= Ny Y2 {37 [1™ mn — 3(7)?] — 4n"™ncf, + 20 m

+ LyE'E — LE'E + 1y (n%)?} — INy/2{RY ~ LyR

— FYF* 4 Ly FnF™ + 798,19 — ¢°¢7 + 717V (4)}

+ (N9 = Nyly) 4 (N9) , = 207N, (49)
E' = 42 (NuF™+ NF™y) + (NE = N'E™) . (4.10)

Instead of solving the evolution equations for the fields and momenta, one can
try to solve the EHJ equations. The EHJ equations are derived by the substitutions

4S 0S . oS
¢ = P = .
S i1 55’ E A, (4.11)

in H, and G. S = S[vij, ¢, Ai] is the generating functional (Hamilton’s principal func-
tion) [56]. The Hamiltonian constraint is a hyperbolic functional partial differential
equation for S. After solving the EHJ equations, (4.5-4.7) and (4.11) yield the full

set of the evolution equations.

4.3. The spatial gradient expansion and the order-by-order
solution of the EHJ equations

The momentum constraint implies that the generating functional is diffeomorphism
invariant [50]-[51].  One such diffeomorphism invariant quantity is S =
[ fl#,7j, Aily"/*d3z. More generally, a diffeomorphism invariant S can be a multiple
integral of some multi-point functions. The contribution of such highly non-local
terms could be important, for example, if the spatial inhomogeneities are correlated.
However, at least in the lowest orders, the contribution of such terms to the gener-
ating functional are expected to be insignificant. Likewise, the Gauss law constraint
implies that S is gauge-invariant, e.g. S = S[F;j]. Other gauge-invariant quantities
like f A;dz' could also be included in S. However, if the space-like surfaces of simul-
taneity are simply connected, one can write all such quantities in terms of F;; using
Stokes theorem. Non-simply connected three-manifolds are not considered here. The
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Hamiltonian constraint determines the time evolution of the fields. Following PSS,
an order-by-order solution of the Hamiltonian constraint is achieved by the expansion

of the generating functional in spatial gradients:

o0
S=3 A5, (4.12)

n=0
where n denotes the number of spatial gradients in S™. It turns out that in the
limit R — 0, in the absence of electromagnetism, the zeroth order solution is exact.

This suggests that the expansion parameter should be A := --@— where R is an

V(e)

appropriate combination of the curvature invariants of dimension L2 such that in
the flat space limit where the three-curvature is vanishing, R = 0. V/(¢) represents the
energy density of the scalar field. Therefore, the scalar field is indispensable in this
model. As it will be seen, the scalar field dominates the dynamics of the space-time.
The convergence of the above series is an unsolved problem [57]. An order-by-order
solution of the EHJ equation is achieved by substituting (4.12) in the first equation
in (4.4) and the subsequent expansion of H, in spatial gradients:

oo
Ho =D _A"H™ (4.13)
n=0
and requiring the EHJ equation to vanish at each order. In the equation above

6S©
¢

One can easily obtain the first few terms in (4.12) by an ansatz. For the zeroth order

_1/268©® 65©
412

=0 4.14
5’)’:‘,‘ Oy ) ( )

HO = (2virvie — Yijv) + 72V (@) + 2y A (——

term
SO = _2 / v\2H (¢)d3z, (4.15)

called the long-wavelength approximation (LWA) which is the same as in PSS for
some function H(#). Inserting S@ in (4.14) yields

—3H?2+V(¢) + 2(5‘%)2 =0 (4.16)

which determines H(¢) up to some arbitrary integration constant. Electromagnetism
has no dynamical degrees of freedom at this order. The LWA is very important in
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structure formation after inflation. Therefore, it is unlikely that electromagnetic fields
play a significant role in structure formation in this model. For n > 0

55O §Sn) T2 5S@) §Sn—p)
H® = Yyt — Yii 2
v ( YitYik 717"1) 6"/,'_1' 6’7]:1 s 5’7{:’ 671:[

1 55®) §5(n—p) 55(0) 55(n) nolsse) 55(n—p)
-1/2 -1/2

+ 3 7p_6,4 A T e e T Z

+ V(n),

v = yV2A—R+ ¢, + FaF?"[2)/2,
U(") = 0, for n # 2.

At each order, H™ = 0 is a linear hyperbolic functional differential equation in the
unknown functional S™).

S@ is the next non-vanishing term given by
5@ - / Y2(J($)R + K($)8,:¢" + L(¢)F;;F¥)dz. (4.17)

The terms above are not the only terms quadratic in spatial gradients in S®. How-
ever, the remaining terms are either equal to the above terms modulo surface integrals
or vanish identically. For example, [ v/2F7e;d*d3z = — [y1/2(Filken¢)d3z = 0

due to the Maxwell equations Fj;jjy = 0. It is easy to verify that S (@) gatisfies the
5@

0A;
spatial derivatives and does not appear in the second order EHJ equation H® = 0.

After inserting S@ in the second order EHJ equation and grouping together the
coefficients of R, ¢|,", ¢'¢,, and Fy F* one respectively has

momentum and Gauss law constraints. One notices that is already quadratic in

dHdJ 1 d?J dek 1
=HJ - 25%—5—0, s3:=HK — 4Jd¢2 d,-d—¢5+-2-—0,
dJ H dHdL 1

At first sight, (4.18) seems to be an over-determined system for three unknown func-
tions, J, K, and L. However, by solving 52 = 0 for K, one can show that s3 is not

ds 1 (dH )
independent and obeys the relation s3 = 2 —-s51+—H
P Yy 1 3 d ¢ dé o

In the spatial gradient expansion of the generating functional S for the scalar
fields in the absence of electromagnetism, there is no contribution from odd order

61



terms. Electromagnetism makes non-trivial contributions to odd orders. The only

non-vanishing term in S® is
5(3) = /71/2M(¢)Fijlj€.'k1F“d3.’B. (4.19)

All other third order terms like FY|;¢;, F™ F'Peqnn¢,, F'};; either vanish or are
total divergences. Because of €, provided that M(¢) is a scalar, (4.19) is not
invariant under parity transformations. Therefore it is not invariant under the large
group of diffeomorphisms and should vanish if invariance under such transformations
is required.

To solve the third-order EHJ equation H® = 0 one has to use the relation
I'i; = v~ /%(y!/?);. The solution yields

dM dH
MH + =5 =0, (4.20)

S®) non-trivially satisfies the momentum and Gauss law constraints. To show this,
one frequently uses the identity Vie;jx = Viegjr + Vj€isk + Vieijs for any vector field
V:, achieved from 3;5; (e7F) = E’%; (79 ™+* € ma) and multiplication of both sides
by V.. Equations (4.16), (4.18) and (4.20) form a set of differential equations, easily
solvable for most relevant potentials. Nevertheless, the full set of differential equa-
tions becomes increésingly complicated at higher orders. As in PSS one can use the

expression for S® and the conformal transformation

dH a2
= )2 = —_ _1 _=
fii = 7105 (u), u: /( 2d. do, o HQ, (4.21)

to solve the EHJ equations #(®). The EHJ equations transforms into

St

61!(1' |fuv = _ﬁ(") (4'22)
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where

n-1
i §S® §S(n-7)
R = f12Q0732fufiu — fijfkl)z

0fi;  Ofu
fu2 ~2n-1 S(p) 55®) s(n-
5 §n—p) f-1/2 n-l 53@) 5S(m=1)
— 2 [ H) + o fii ) + )
) f e 7 o 0A; 0A;
5@ = f‘”{;R + E(Hﬂ)u,iua-f"' - fﬁmkﬂmf“f*’"}, ) = 0, for n # 2.

(4.23)

R is the conformal curvature and all indices are raised and lowered with the conformal
metric f;;.

The proof of the integrability of (4.22) for gravitationally interacting electro-
magnetic and scalar fields proceeds similarly to what was outlined in [58]. By using
the expression for #(? from (4.23), a functional integration of (4.22) gives rise to the

following expression for S@:

5@ = /f1/2 (j(u)fl + k(u)uu’ + l(u)f‘,-kF"k) d’z, (4.24)
where

) Q) , , /‘ v odu
u) = du' + D, l(u) .= = | ———+D', k(u HQQ. 4.25
iwe= [ W)= [ g+ D kW) == (4.25)
The complementary functionals D and D’ are constants of integration. In the next

(3)

order 85 = 0, therefore S® = [ fY2F4 ;eyqF¥d3z is the most general form of

S®) in Wthh and €;;x are the covariant derivative and Levi-Civita tensor associated
with f;;, respectively. Conformal transformation of this expression gives rise to

5(3) = /71/292F‘jljegle“d3z (4.26)
Functional integration of (4.22) in the next order gives rise to

S® = [dz fl/?{-e(u )R R;; — (36(u)/8 + m(u))R? — n(u)(RY — fiR/2)uu;
r(u)u u*JuJ + 5(u) (FimF'™)? + t(u)u puP Fi F'™ + v(w)u mu™ F™ Fy;
w(u)u, F™iFn o+ 2(w) F™ o F + y(u) Fem " FF F', + 2(u)RF F'™
a(u)fZHF’""F’m}.

+ + +

(4.27)
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In the above expression ¢(u),--- ,a(u) are defined as

942

) = o

S
wsg

(5 '-"H)
m(w) = =y,
shwm]mm)

r(u) = ~ 0@
&(u) = Q3 ~1112/4 + (%)-2(0-1 /4 + HI)2/8), (4.28)
a'(u) = 851073,
Z(u) = Q-3 (—gjl + i(%)*(l /8+ HIQ/2 — HjQ™1 /4 — szl)) ,

r'(u) = —812Q7,

v (u) = Q72(~4lH + 3071/2),
v (u) = 812073,

w'(u) = 4UQY20H + Q7Y),

v = a2~ 50,

in which ' := d/du.

4.4. The evolution equations of the fields

Once the EHJ equations are solved, the evolution equations for the fields are obtained
from (4.5-4.7) and (4.11). A judicious choice of gauge greatly simplifies the field
equations. In the almost synchronous gauge (N* = 0) if u is the time parameter,
from (4.5) it follows that in the LWA (i.e § = S®) the lapse obeys N) = 1. The
superscript (n) means that the right hand side of the equation contains terms up to
(n — 1)th order in spatial gradients.

The choice of u as the time parameter is valid as long as the geometry is
sufficiently close to that of the homogeneous models (for a relevant discussion see
Ref. [59]). Then it is useful to replace (4.6) with the equivalent evolution equation

1/2-‘—5-5;(2f,-kfa — fijfu) — 2Hf;j (4.29)

i =2NQ3 -
k / 0 fki
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for the conformal metric f;; which is related to v;; via

dH , _,
= exp{ /(Ea Hdd’} fij- (4.30)
In LWA f(l) = f(l) is the seed metric that contains no dynamical degrees of

freedom. The first non—tmna.l evolution equation for A, in the temporal gauge Ag = 0,
is obtained from the conformal transformation of (4.7):

A® = Nf12q f,, = —4Q7'F™ . (4.31)
I

Since d/du and ; commute, the evolution equation for F;; is easily derived from the

equations above to be
FY = 807 1(u) F™ jigm, (4.32)
with the solution
I",-(f) = exp {— ( /du Q- lI(u)) 66 ]VkV’"} Fenl (4.33)

In the equation above and what follows, F;; is an arbitrary antisymmetric tensor
field, V refers to the covariant derivative with respect to the seed metric and the
indices are raised with the seed metric. The exponential of the matrix differential

operator is defined as:
exp{---} = {5;"5;.- (s / QU (u) du) 858V (4.34)
2
+ :?1—' (8/0‘11(11) du) 6f’6"V V'6 ,]VkV”‘ + - }fmz.(4-35)

Once the evolution equations for the fields are solved, the evolution equations for the
momenta are easily derived from (4.11). In particular, the electric field obeys the
equation
2)
E® = —— = —4fYAUu)F™ , (4.36)
In higher orders (4.5) shows that N(™ # 1. For example,

-2
N® =108 [R(” (g- - ]H) + FryFma fOVem fL)in (1H+ j’ )] (—2%)

(4.37)
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where R() is the three-curvature associated with the seed metric f‘-(jl). Obviously, the
higher order evolution equations are more complicated. The third order evolution of
the conformal metric is derived from (4.29) and (4.37) to obey

- H, dH, _,,. dj
f(3) = 0 S{R(l)f(l)[2(d¢) 2(]H— -7) ] 4]R(1)
H dH

(1)Ykm £(1)in (l)
— 8lFuFimfO™"}.

)2 + ——) + 31]

(4.38)

As a demonstration of an application of the formalism developed so far, one

could compute f,.(js) for an arbitrary magnetic field Fi; and seed metric ',-(jl) with a

2
scalar potential V' = Vpexp {—\/—I-:¢}. The general solution of (4.16) for p # 1/3 is
given in [60]. The general parametric solution of (4.16) for p = 1/3 with H and ¢ as

functions of an independent variable v is,

H= [—] exp{— ¢\/‘} cosh v, (4.39)
¢ = ¢m + \/; (:t; + ei:v) (4.40)

where ¢, is the integration constant. A special solution of (4.16) for p # 1/3 is

Vo
H = 441
[ l/p] ™75 \/_ b (41)
that corresponds to the Halliwell attractor [61]. By using (4.21), (4.38), (4.41) and
with a choice of time parameter such that lim,_,q ¢ = ~o0, the contribution of spatial
gradients to the evolution of the conformal metric at this order is

—2c2 Vi -p .
f(3) 0 ~2p+1 (1)
I = @+1)pr—n] w Ry
c? Vo IR n (1) n
M) [p(3p— 1)] u P (AF PP 4 2F R Fy) £ 1,
(4.42)
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where ¢ is the integration constant and the seed metric is absorbed to raise indices.

Integration of the equation above yields

9 = ™ [ Y ]_2,, u—4P+2 ( L FmaF™ D + fnf~n)
Y (1-p)1—2p) lp(Bp—1) ’
* pZC“jl [p(s:)/b - 1)]—p“-2p+2R‘f+ff(fl)- (4.43)
After taking (4.30) and (4.42) into account, the three-metric is given by
= o ) v I 707
+ 5 —— -u?RY +J [———(3:_ 1)] uP . (4.44)

Two points regarding the equation above are in order. First, as a perturbation of
a spatially flat Friedmann-Robertson-Walker (FRW) model, the growth of inhomo-
geneities from terms second order in spatial gradients is encoded in v, J) One notices
that with the choice of u as the time parameter, such a growth resulting from the
curvature is insensitive to the exact form of the exponential potential. In other words,
deviations from a flat FRW cosmology resulting from a magnetic field evolve quite
differently from that of the inhomogeneities due to space-time geometry. In partic-
ular, one notices that if p > 1, the contribution of a primordial magnetic field to
spatial inhomogeneities decays rapidly.

Secondly, the reader is cautioned against a mini-superspace perturbation of a
flat FRW model, namely, a perturbation within a mini-superspace cosmology. For
example, for a vanishing magnetic field in a Bianchi I cosmology in which é,-j =0,
one would get the result 'y,(J P = 7,(]1 Vforn # 1. However, this result can not be correct.
This is because in a Bianchi [ cosmology with a homogeneous scalar field, the time
evolution of the three-metric is not a conformal transformation of an initial three-
metric. This problem also exists in the dust model treated in PSS which has been
quite successful in deriving the contribution of short wavelength fields to structure

formation and the anisotropies of microwave background radiation.

4.5. Conclusion

The spatial gradient expansion of the generating functional was developed by PSS to
solve the Hamiltonian constraint in EHJ formulation of general relativity for grav-
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itationally interacting dust and scalar fields. The spatial gradient expansion could
be consistently applied to solve the Hamiltonian constraint for gravitationally inter-
acting electromagnetic and scalar fields. At each order, the EHJ equation is a linear
functional partial differential equation in the unknown functional S which after a
conformal transformation could be integrated to yield S™. S® and S® were cal-
culated in detail and S was given. Such an order-by-order solution of the EHJ
equation gives rise to order-by-order corrections to the fields evolving in a flat FRW
model. The corrections are due the presence of spatial inhomogeneities and mag-
netic field. Not surprisingly, such corrections start with terms second order in spatial
gradients. The formalism was applied to the specific example of a scalar field with

2
potential V = Vgpexp{—,/=¢}. Contributions of all the terms second order in spatial

gradients to the metric were derived.
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Chapter 5
Epilogue

We have presented a rather formal approach to the study of YM fields in homogeneous
cosmologies based on the theory of invariant connections on principal fiber bundles
that admit the transitive action of a Lie group. When projected on the base manifold,
this action is by isometries of the space-time. Basically, there is a way of finding the
YM potentials that give rise to the gauge invariant quantities like Fi Fi” or the
energy momentum tensor that respect the symmetries of the space-time geometry.
Whether such connections exhaust the set of all the YM connections that give rise

to gauge invariant quantities, is an open question that awaits further research.
In general, if there is no isotropy, in the temporal gauge, the SO(n)-YM and
3
SU(n)-YM connections have -é-n(n— 1) and 3(n?— 1) degrees of freedom, respectively.

However, n_(n_-_}l components of the SO(n)-YM potential and n? — 1 components

of the SU(n)-YM potential are gauge degrees of freedom which are eliminated if the
Gauss law constraints are not satisfied trivially. We showed that if the space-time
is axially or spherically symmetric, one can utilize a theorem regarding the invariant
connections on homogeneous spaces to restrict the YM connection by solving an al-
gebraic equation. The solution to this algebraic equation depends, first on how the
isotropy group is embedded in the isometry group of the space-time and, secondly,
on how the isotropy group can be homomorphically embedded in the gauge group.
The first problem was tackled in various papers in the literature, although not in
a systematic fashion. We showed that the answer to the latter part is related to
the representation theory of compact Lie groups. For SU(n) gauge groups and for
isotropic (Ky = SU(2)) spatially homogeneous cosmologies, we gave the solution to
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the field equations for the simplest of such representations, namely, irreducible rep-
resentations. For Ky = SU(2) and for reducible representations, the field equations
reduce to that of the coupled irreducible ones that have to satisfy the YM constraints.
The question of finding all non-equivalent spherically symmetric YM potentials for
an arbitrary gauge group g is equivalent to finding all embeddings of SU(2) in g that
are not related by gauge transformations (the adjoint action). This is done by using
a Cartan-Weyl basis of g and for the g-YM potential. To the best of our knowledge,
this is an open problem that deserves further investigation.

The question of finding all the equivalence classes of SU(n)-YM connections
for the LRS cosmologies (when the isotropy group is U(1)) was partly answered
during the investigations of SU(n)-YM potentials for static spherically symmetric
solutions of the EYM equations where the isotropy group is also U(1). We derived
the field equations for all the LRS cosmologies and proved the consistency of the
Cauchy problem (except for Bianchi V).

We analyzed the LRS Bianchi I cosmology with SU(2)-YM matter field, as
a dynamical system. Some of the invariant submanifolds were determined. Not
surprisingly, one of the invariant submanifolds has turned out to be the flat space.
The investigation of the stability of the flat space as a solution of the field equations
was marred by the vanishing of the real parts of the eigenvalues of the corresponding
linearized system. A stability analysis of the other solutions that correspond to the
LRS electromagnetic fields in Bianchi I cosmology and spatially flat FRW cosmologies
was not carried out.

We computed the Liapunov exponent for the LRS SU(2)-YM field equations
in Bianchi I cosmological models in both synchronous time (the coordinate system
of non-accelerating observers) and the conformal time. The Liapunov exponent is
vanishing in synchronous time and non-vanishing in conformal time. This apparent
discrepancy was not surprising since the Liapunov exponent is known to depend on
the time reparametrizations and a satisfactory invariant definition of chaos in general
relativity has yet to be found. By the study of the behavior of the YM field variables,
we made the statement that SU(2)-YM fields in the LRS Bianchi cosmology have
milder stochastic properties than that of the flat space homogeneous YM fields that
are known to have chaotic properties. We computed the (two point) correlation
function between the initial and final values of the YM field variables and showed
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that it is a decreasing function of time. Although this is a very weak indication of
any existing statistical independence as a result of the time evolution, it could be
developed into a more powerful indicator of chaos in cosmological models, perhaps
by the use of multi-point correlation functions.

Recently, by using the method of fractal basin boundaries, J.D. Barrow and
J. Levin showed that the LRS Bianchi I-YM system is indeed chaotic. The method
of fractal basins is basically used for dynamical systems that have repellors. A more
thorough investigation of this approach to a definition of chaotic behavior in rela-
tivistic cosmological models is needed.

Up to this point in the dissertation, the study of gravitationally interacting
YM fields has been restricted to mini-superspace (spatially homogeneous) models.
However, mini-superspace cosmologies are the singular points of the superspace of
the field configurations. In other words, the mini-superspace models are exactly those
points in the superspace where the moduli space of gauge connections fails to be a
manifold!. Therefore, the behavior of the YM fields in mini-superspace models might
pot be an indicative of the behavior of the YM fields in the whole mini-superspace
(non-homogeneous models).

One can use the (Einstein-)Hamilton-Jacobi formulation of general relativity
to formulate a perturbative approach to the effects of inhomogeneities in cosmological
models. In this approach the recently developed spatial gradient expansion of the
generating functional is used to derive an order-by-order solution of the Hamiltonian
constraint. In doing so, one has to derive all the diffeomorphism and gauge invariant
terms that can contribute to the generating functional at a given order either by
ansatz or by a functional integration in superspace. Construction of all such gauge
and diffeomorphism invariant terms for non-Abelian YM fields turned out to be a
formidable task. Therefore, the study of YM fields in inhomogeneous cosmologies
was restricted to electromagnetism.

In this dissertation, the EHJ formulation of general relativity was used to solve
the dynamical constraints for gravitationally interacting electromagnetic and scalar
fields. The generating functional up to terms fourth order in spatial gradients was

The moduli space of gauge connections is the set that is obtained by factoring out the space
of diffeomorphically equivalent field configurations from the superspace. Here gauge loosely refers
not only to the gauge transformation of the gauge fields, but also to the diffeomorphisms of the

space-like hypersurfaces of homogeneity.
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given. The perturbations of the metric and electromagnetic field tensor for a spatially
flat FRW cosmology were given. The equations were solved for the specific example
of an exponential potential. It turns out that one can not use these equations to
investigate minisuperspace perturbations of a flat FRW model. For example, using
these equations to add anisotropies to the FRW model, yields contradictory results.
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Appendix A

The numerical computation of

Liapunov exponent

To avoid the numerical overflow in the computation of Liapunov exponents, instead
of computing In for a very large number, one divides the evolution time ¢ into n steps

such that ¢ = n7 and defines

1. wmr) 1.y _wmr) 1 w(mr)
Tn=r i =t ]:[ w[(m —1)1] ~ nr X:lln w[(m —1)7]’ (A-1)

m=1 m=

where w := |w| and w := w*d, is the perturbation vector connecting two nearby
trajectories. The right hand side of (A.1) still involves the ratios of large numbers and

therefore the problem with the overflow is not resolved yet. Let us set wo(0) := w(0),
wo(T) wi(7)

w1(0) = w(0)——, w2(0) = w(0
10) = w(O) T2 T w(0) = w(O) LD
obtained by normalizing the magnitude of Wy,—1(7) to be w(0). Here, wy,(7) is the

vector that is obtained by integrating

, and in general by w,(0) the vector

W= M(x).w (A.2)

Wm—l(T)

wm—l(T)
(see (2.44) and Fig. A.l). Note that according to these definitions wn(0) = w(0).

One can prove that the following relation holds:

from x(m7) to x[(m +1)7] with the initial condition w(0) := wn,(0) = w(0)

w(m7) _ W (T)
w[(m—1)r]  w(0)

(A.3)
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Proof: The above relation is proved by induction: w(7) = wo(7) bolds by definition.
If the dragging of the vector w*(0) from x(0) to x(7) is denoted by w*(0)3,z"(r)
az” (1)
dz#(0)’

w(r) w03, (@r) 1 W)Y 5 ooy 2 By s _ W20
w0 = w@ - @) (’”‘O)wo(r))a“z ) = 2 %= @ = S
(A.4)

where 8,z(T) = then the following string of identities hold:

a

Now the right hand side of (A.3) involves the ratios of small quantities. Then
one can use (A.1) and (A.3) to obtain the following relation for the Lyapunov expo-

nent.

o= lim o,. (A.5)

n—400

It is known that the Lyapunov exponent is independent of x(0) and w(0) as long as
the integration is performed in the stochastic region.
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w(t)

Figure A.1: Successive renormalizations of the perturbation vector prevents the nu-
merical overflow.
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Appendix B

The ADM reduction of the action
and Hamiltonian formalism

B.1. ADM reduction

Canonical gravity starts with the assumption that the space-time admits a congruence
of non-singular vector field T (which we assume to be time-like for convenience)
parametrized by ¢. One can always choose ¢ such that for at least some open interval
t € (a,b), surfaces of t = const., T are space-like. Choosingt to be the time parameter
is equivalent to choosing T to be the surfaces of simultaneity. Given a metric (-’})#v-
the foliation of the space-time with the surfaces T defines a time-like vector field
n* such that n*n, = —1 and nY is orthogonal to £ !. One can use n” to define a
projection operator v# = 6% +n#n,. Any form field A or vector field B can be written
as A=A+ A, and B = B + B such that (A = 1A (AL)y = —(n"Ay)n,,
(By)* = v£B¥, and (B)* = —(n,B")n*. One can show that v,, = "/;f'yf (!:7)0,3. In
this sense, 7,, is the three-metric of . In the basis (9;,é;), i = 1,2,3 such that
n*(é)u=0,0,=T,and

n* = (8 — N'8;)/N, (B.1)

Here I have used the conventions of Ref. [62] where n” and n, represent a vector field and its
associated form field. Latin indices refer to the components of the spatial coordinates.
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the following relations hold:

(Ap)i = 1A, Ag=NAL +N'A; (B.2)
ds® = —N2dt? + v;j(dz’ + N'dt)(dz’ + N’dt), (B.3)

where 7;; is the pull back of g,, to £. One can easily show that in the above basis,
rvi=8 1%=N i and 72 = 0. In the present context, we are only concerned with
projection of forms to ¥. This means that (A); = v¥ A, = A;. The relation between
these basis is shown in the following figure:

t+5t

Tat Nn

Nig

Figure B.1: The lapse and shift as related to the evolution of space-like hypersurfaces.

é; is referred to as a triad of vector basis field. If 72 := n¥, the choice of (7, &)
as a basis is referred to the synchronous gauge. If dfi := —n, = Ndt, the basis dual
to (8;,é) and (#,&;) are (dt,6°) and (d#,wf) respectively. Utilizing (B.1), one can
show w' = Nidt+6. If &; satisfy the integrability conditions [é;, é;] = 0, then e; = 4.

B.2. Hamiltonian formulation of gravitationally interacting

electromagnetic and scalar fields

P.A.M. Dirac presented a systematic study of the Hamiltonian formulation of con-
strained systems in 1950 [63]. It was not until 1960 that ADM developed a consistent
Hamiltonian formulation of general relativity [64]. One difficulty is that Einstein’s
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theory of general relativity is a fully covariant theory and the splitting of the four-
geometry into a dynamical three-geometry and time is not unique. In other words,
the solution is a four-geometry. There is some arbitrariness in the choice of the time
and introducing dynamics into the system at the beginning is done via ADM reduc-
tion explained in Sec. B.1 and is somewhat artificial. A more elaborate notion of
time like many-fingered-time requires a more detailed investigation of the properties
of superspace which is outside of the scope of the present thesis. For a good review
of this notion see [65]. Intertwined with the freedom in ihe choice of a time param-
eter is the freedom associated with the choice of a coordinate system on ¥. Time
reparametrizations and coordinate transformations are the gauge freedoms of general
relativity. Such gauge transformations are generated by the constraints of the the-
ory. In a consistent Hamiltonian formulation of a dynamical system, the algebra of
constraints is necessarily closed under the Poisson brackets.

To obtain a Hamiltonian formulation for gravitationally interacting scalar and
electromagnetic fields, I followed the following steps [54]: One starts with the action

4 4)
/ NG [;‘R _1g,6% —V(g) = SELF¥| d's

= ZTEinstein-Hilbert + Lscalar field + IMaxwell, (B.4)

I

where F,, = A, — A, is the electromagnetic field tensor and V/(9) is the potential
of the scalar field. The reduction of the above action is achieved by the embedding
relations of Gauss-Godazzi that relate the 4-curvature (}‘2) to the intrinsic curvature R
and the extrinsic curvature kqp = 7#1{n,;, of T. A semi-colon denotes the 4-covariant
derivative. Utilizing Gauss-Godazzi relations, one has

@ 2 i_o@ 2 i _ya =
R=R+K —K.'jK -2R .La_L':R'_K +K.'jK -V;a (Ba)

in which K := v7K;; and V* = 2(nﬂn —nn ﬂ) The last term is a total divergence
and does not affect the equations of motions. The ADM reduction of the action can
be written as T = [ Ldt = [ Ld3z dt where

L = H? [ (R- K24 Kin;j) + _2_1__¢2 _ E—qﬁqb,.-
. N‘
+ Lo - ¢ 65—~ NV($) + o (A Aj+ Ao iAoy ~ 2AiAo )
N.. 7 NJNk M N ik
- 5‘&'(7’ N )(Aj_AO.j)Rk—‘Z'FikF ],
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= —d—, and all indices are raised and lowered with -;;. One can show that

dt

. 1 1 ,.
Kij = nuw = _§‘Cﬁ’7ij ~T3N (e — 2Ni) (B.6)

where |; is the three-covariant derivative and L; is the Lie derivative with respect to
fi. To perform a Legendre transformation, one defines the momenta

= JE.L_ = 4% (YK ~ KY) (B.7)
ij
1
) S§L 3¢ ../ o
E' = EZ- = %— ["/"7 (AJ—'AQJ) —NJ'YJF}'I:] s (Bs)
1
oL 2 7. .

" = 7= = (6-Ngs), (B.9)
0 - %=0, (B.10)
AN = 35]_5_ =0, (B.11)
rlfo) = %:0. (B.12)

0

The canonical Hamiltonian is given by the Legendre transformation
H.= / (71"""3/.-,- +E'A; + % + AMN + 7N, + 70 44 — [,) diz. (B.13)

(B.10-B.12) are the primary first class constraints of the system [66] and one has to
modify the Hamiltonian by

Hamiltonian = H, + vy7™ + va(N‘) + vgmio), (B.14)

The closure of the algebra of constraints under the Poisson brackets
{Ha.miltonian, (VN ""0)} gives rise to secondary first class constraints. However,
from the beginning, before performing a Legendre transformation, one can impose
the primary first class constraints and treat N, N‘, and A, as Lagrange multipliers.
After subtracting the surface term 2 § 7% Nyd? one arrives at the Hamiltonian

Hamiltonian = /(N“'H,, + AoG) d’z (B.15)
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in a fully constrained form in which

Ho = v 209 (2virvjx — Tij1m) +YV(9) — R/2+ F'Fa/4 + ¢7°.:/2)

+ v VE'E; + (7*)?/2 = 0, Hamiltonian constraint, (B.16)
H;, = —2m) i+ FyE' 4+ 1%°¢; = 0, momentum constraint, (B.17)
G = —FE‘; =0, Gauss law constraint. (B.18)

For any coordinate ¢* and its conjugate momentum p;, § = -(S—-(Ha.xmltoma.n) and p; =

—-(%(Hamiltonja.n) subject to (B.16-B.18) yield the full set of evolution equations of

13
motion. In doing so, one frequently uses the relation

1/2
§(v'/*R) = 7_2‘ [=R"™6%im + 7Y™ 1" (6Vptimn — EVpmiim)] - (B.19)

The closure of the algebra of constraints under the Poisson brackets is guaranteed for
all Hamiltonians of the form (B.14) which are in a fully constrained form [54].

B.3. Hamilton-Jacobi theory for general relativity

The object of chief importance in the Hamilton-Jacobi theory for a dynamical system
with the Hamiltonian H in classical mechanics is the Hamilton principal function S

that satisfies the differential equation

Hg) + 55 =0, 5= 5o (B.20)
S = S(q¢',p) could be regarded as the generator of a canonical transformation
(¢',p:) = (@', P;) such that Hye,, = 0. Therefore, P = —aH"f.w
menta are the constants of integration. In other words, all new coordinates are cyclic
[56]. Further insight into the nature of S is gained from the simple consideration that

dS _9S ., 095 . .
-c—it——gq—iq+at~p.q H=1L, (B.21)

= (Q and the new mo-

where L is the Lagrangian of the dynamical system. Therefore, p;(t), ¢*(¢), the classi-
cal trajectories, are the characteristics of the Hamilton-Jacobi equation. Modulo an
additive constant, S is the extremized action of the dynamical system and, hence,

S = S(qgnih'alv Piinitials Qj’inal Y pifinal) .

86



- ewm e

R T TR e A

In the Einstein-Hamilton-Jacobi formulation of general relativity, S is a func-
tional of the fields on Zinitiar and Efina. Moreover, as was mentioned in the previous
section, general relativity with any matter field that enters the action in a covariant
form, is a fully parametrized system that obeys the constraints (B.16- B.18). The
classical trajectories lie on the constraint surface of the vanishing Hamiltonian and
any functional change in the extremized action S due to a change in the final values
of the fields on X jina for gravitationally interacting electromagnetic and scalar fields

is given by
6S = / (76v;; + EP6A; + n*6¢) d°z. (B.22)

Under any infinitesimal coordinate transformation z‘ — z‘ + &' generated by the
vector field £, the following relations hold:
0vij = Lavi; = & +&io
8A; = LaAi = Ay + A;8, (B.23)
5¢ = ‘Cf‘¢ = ¢,i€i’

where L is the Lie derivative with respect to the vector field €. After integration

by parts and substitutions
0§ 4, &S = 6S

g 25 —_—— = — W25
- 6’)’,‘1" T 5¢, (SA{, (B 24)
one obtains
_ (58 6S . 85 | s i3
65—/ [ 29k (5’7kj)|j + JAJ-F"+ 6¢¢"} dz = /'H,Ed . (B.25)

Invariance of S under infinitesimal coordinate transformations would require S =0
which in turn due to the arbitrariness of £ translates into H; = 0. Hence, if S
is invariant under the coordinate transformations generated by a vector field, the
diffeomorphism constraint (B.17) is satisfied. Likewise, by a similar procedure, one
can easily show that the invariance of S under gauge transformations 4; = A;+A; =
8A; = A; would require S to satisfy the Gauss law constraint (B.18).

What is shown so far gives clues on how to construct a Hamilton-Jacobi formu-
lation for any field theory in general and general relativity in particular. Substitutions
(B.24) in (B.16-B.18) give rise to a system of functional partial differential equations

87



T

AT A T T A TR TR A PTIR pe s me ©

that the Hamilton principal function has to satisfy. Of course, solving such a system
of coupled non-linear equations is a non-trivial task. Fortunately, the diffeomor-
phism and Gauss law constraints have clear geometrical meanings and are solved by
a functional S that is both diffeomorphism and gauge-invariant.

More effort is required to find a solution for the Hamiltonian constraint. Due
to the functional nature of the constraint equation, one has to prove some integrability
conditions. Borrowing some terminology from differential geometry, one has to prove

) .
that 35'- where ¢ stand for generalized field variables, are “exact”. Moncrief and
6S
Teitelboim proved the “exactness” of 5_q‘ by showing that they are “closed” provided
that the momentum constraints are satisfied [67]2. The Hamiltonian constraint is
the generator of the time evolution. Chapter 4 is basically an exposition of a scheme
called the spatial gradient expansion to derive an order-by-order solution for the

Hamiltonian constraint [13].

2The conditions for a closed form to be exact is given by the Poincare lemma [68].
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