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Abstract

We present a novel system for recognizing a polyhedral object in a robot hand using
vision and touch. The system consists of three stages: screening, hypothesis gener-
ation and hypothesis verification. The purpose of the screening stage is to quickly
eliminate many invalid model objects from further consideration, early in the recog-
nition process. The next stage generates hypotheses about the identity and pose of
the scene object. considering only model objects that have passed the screening test.
Each generated hypothesis is then passed to the hypothesis-verification stage in order
to determine its validity.

Screening is generally performed by applying an approximate test to determine
whether model-object features can be consistent with relevant scene ones. In order
to integrate visual and tactile features in the context of screening, we formulate the
recognition problem as a Constraint-Satisfaction problem (CSP). A novel method is
developed for efficiently constructing a CSP corresponding to a combination of visual
and tactile features. Model/scene consistency is determined in low-order polynomial
time by enforcing local consistency, in particular arc consistency.

In general. hypotheses are generated by matching a small subset of scene features
with corresponding model ones. In some situations. visual and tactile features. indi-
vidually. do not provide sufficient information about the object pose. To overcome
this problem, we present a technique for generating hypotheses using a hybrid set of
visual and tactile features.

For touch-based verification. we present a highly-discriminative data-driven in-
dexing scheme. Such a scheme can determine the consistency of a hypothesis with a
tactile feature in a constant time, which is independent of the number of model fea-
tures. The proposed index is superior to similar ones in that it incorporates almost

all the constraints provided by a tactile feature, thus leading to an index with higher



discriminative power.

Finally. we present a pixel-based technique for vision-based verification. In such
a technique. a hypothesis is verified by synthesizing the corresponding edge image.
and comparing it. pixel wise, with the scene edge image. The main advantage of the
proposed technique. over similar pixel-based ones. is its capability of accommodating
the uncertainties of both scene data and estimated object pose. This is achieved
through dilation of the scene edge image. An analytical method is presented for

determining the extent of dilation assuming some bounded-error on the object pose.
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Chapter 1

Introduction

There has been a growing interest in the development of flexible-manufacturing envi-
ronments. in order to reduce production cost. improve product quality. and shorten
new product cycle time. Sensor-based robots play a key role in this area. For example.
in order for a robot to manipulate objects. it must determine identities and locations
of these objects in the workspace. In most of today's manufacturing environments.
special devices (e.g.. part feeders) are used to position and orient objects before he-
ing manipulated by a “blind” robot. Being object-specific. these devices are often
replaced upon switching to a new task. involving a different set of objects. Equipping
robots with the capability of identifying and localizing 3-D objects, from sensory data.
will eliminate or reduce the need for those positioning/orienting devices. Thus. the
capability of 3-D object recognition (3DOR)) holds the potential for reducing the cost
of production. especially for small-volume manufacturing. Furthermore, by reducing
the time required to setup a robot workcell for a new task, we can also expect shorter
cycle times for new products.

Most existing 3DOR systems rely on a single type of sensory data. which can be of
2-D nature such as visual data. or 3-D nature such as tactile or range data. [n some
situations, however, both 2-D and 3-D sensory data can be available simultaneously.

Examples of such situations are:

e The object of interest is grasped or touched by a robot hand. In this case.
tactile sensors mounted on the hand provide tactile data. while a visual sensor

monitoring the robot workspace provides visual data.
¢ The workspace is monitored by an intensity camera, providing 2-D data, along

1



| _Aspect [ Visual Data | Tactile Data |

Scope global local
Dimension 2-D 3-D
Occlusion applicable n/a
Pertinence | not guaranteed | guaranteed

Table 1.1: A comparison between visual and tactile data.

with a range finder, providing 3-D data.

o The sensor used is a stereo camera. In stereo vision, 3-D features are recon-
structed by establishing correspondence between 2-D features extracted from
each of the stereo images. However, 3-D data can not be reconstructed if a 2-D
feature in one image does not have a unique matching one in the other image.
Accordingly. the output of the correspondence process can be viewed as a com-
bination of 2-D and 3-D features. where the 2-D features are those unmatched

ones (in both images).

e The object is constrained to lie on a table. In this case. the 2-D data provided
by a visual sensor are complemented by an “implicit” piece of 3-D data provided

through knowledge of the table’s location with respect to the visual sensor.

Using systems that utilize only a single type of data (either 2-D or 3-D) in such
situations can be inefficient. or at least “non-optimal” in the sense that not all the
available sensory data are utilized in order to improve system performance.

To demonstrate the usefulness of sensor integration, let us consider the case of an
object in a robot hand. Data obtained from visual and tactile sensors have different
characteristics. Visual data are relatively global; i.e., they capture the visible part
of the object as seen from the visual-sensor viewpoint. However, visual data provide
only a 2-D projection of the 3-D world. Thus. there is a substantial loss of 3-D
information. Tactile data. on the other hand, have dissimilar characteristics. They
provide 3-D information about the object. but unfortunately these data are local and
in many cases insufficient to completely recognize the object. In addition, visual data
are sensitive to occlusion of the object by visual obstacles such as the robot hand.

This problem is not applicable to tactile data. In fact. the tactile data can provide

8]



information about some visually occluded parts of the object. Finally. it is generally
not guaranteed whether a given visual feature (e.g., an edge or a junction) belongs to
the object of interest. This is not the case with tactile features. since they come from
direct contact with the object. A summary of this comparison between visual and
tactile data is shown in Table 1.1. Observing the complementary characteristics of
visual and tactile data, we can see that integrating both of them would vield robust
and efficient 3DOR. more than what would be achieved using either vision or touch
alone.

The main thrust of this dissertation is to develop techniques for 3DOR by inte-
grating 2-D and 3-D data. We will consider the task of recognizing, or just localizing.
a polyhedral object in a robot hand. Applicability of the proposed techniques to other
recognition tasks involving 2-D and 3-D sensory data is quite straightforward.

The remainder of this chapter is organized as follows. The next section defines the
problem of 3DOR. The general architecture of 3DOR systems is presented in Section
L.2. Section 1.3 reviews the few vision/touch-based 3DOR systems reported in the

literature. Finally. Section 1.4 provides an overview of the proposed system.

1.1 Problem Definition

Scene-analysis tasks can be classified according to whether each of the scene and the

sensor is static or dynamic. Thus. we have four categories:

L. Static Scene/Static Sensor (SSSS)

[CV]

. Static Scene/Dynamic Sensor (SSDS)
3. Dynamic Scene/Static Sensor (DSSS)
4. Dynamic Scene/Dynamic Sensor (DS DS)

Our problem of 3DOR falls under the SSSS category. Tasks of the SSDS category
include autonomous exploration (e.g.. [60. 69. 72]). An example of the DSSS tasks is
motion tracking (e.g., [6. 71]). Finally, DSDS tasks include autonomous observation
(e.g.. [68]), and active motion tracking (e.g.. [62]).

The problem of 3DOR can be defined as follows:



e /nput: A set of sensory data. S. corresponding to an arbitrary scene. and a

model object set. M = {O}.

® Desired Output: A set, £ = {(O;, T;)}, where {O:} C M is a set of objects in
the scene that are captured by S. and T is a description of the pose of ©; with
respect to some global coordinate frame. In 3-D, T; can be represented by six

transformation parameters. three translational and three rotational.

® In case of ambiguity in the sensory data S, a set {L:}. should be produced.

where each £; represents a scene interpretation that is consistent with S.

¢ [n some tasks such as bin picking. the output is desired in the form of a directed
graph, where nodes represent recognized objects. L. while edges depict occlusion

relationships between them (e.g.. [12]).

[t is important to distinguish the 3DOR problem considered in this work from the

following related ones:

e 2-D and 2.5-D Object Recognition: these problems are concerned with recog-

nizing objects from a limited range of viewpoints (e.g.. survey [24]).

o Active 3DOR: this problem focuses on the development of sensor-control strate-
gies in order to actively gather data that are needed for successful recognition

(e.g-. [L. 2. 30. 44. 54. 67]).

® Qualitative 3DOR: this problem is concerned with identifying 3-D objects with-

out localizing them (e.g.. [3. 29]).

1.2 Architecture of 3DOR Systems

Fig. 1.1 shows a general architecture of 3DOR. systems. As shown in this figure. there
are three main modules:

1) Model Descriptor (off-line module): The purpose of this module is to build a
description of model objects. Choice of a representation to describe model objects is
crucial to the performance of 3DOR systems. In most cases, the object representation

is augmented with auxiliary data structures. in the form of indexes or hash tables. in
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Figure 1.1: General architecture of 3DOR systems.

order to enable fast access to selected model features. Object representation schemes
that have been used in 3DOR systems include polyhedral approximation [32. 39. 40].
attributed surface graph [34. 51. 73], generalized cones [18], extended Gaussian image
[43. 50]. multi-view representation (or aspect graphs) [29. 42, 64, 76]. More details
about object representation schemes can be found in [4, 10. 11].

2) Scene Descriptor: Since direct interpretation of raw sensory data is difficult.
a high-level scene description is important to narrow down the gap between scene
data and model-object description. An important criterion in selecting scene and
model representation schemes is to make the matching process (described below) as
simple and efficient as possible. For this reason, many 3DOR systems choose the
same representation scheme for describing both model objects and scene data (e.g..
[31.32. 34, 38. 51, 73]). In some cases, however, it might be difficult or even impossible
to build a scene description that is similar to the model one. Examples of these cases

are:

. The sensory data are two-dimensional. In such a case, the scene is usually
described by a set of contours (straight or curved). A perceptual organiza-
tion process is often applied to group the extracted contours into perceptual

structures. where each structure is likely to belong to the same object. Percep-
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Figure 1.2: Main stages of matching (it is assumed here, for simplicity, that there is
only one object to be recognized).

tual structures are constructed based on contour relationships that are invariant
over a wide range of viewpoints such as connectivity, collinearity and parallelism

(e.g.. [49. 56. 74]).

2. The scene is too noisy or cluttered or both. In such a case, only sparse primitive

features. such as edges or surfaces. can be extracted from the scene (e.g.. [12]).

3) Matcher: The matching process can be viewed as the establishment of a con-
sistent correspondence between scene and model features. That is. given two sets of
scene and model features, {F} and {F™}, respectively, the function of the matcher
Is to assign to each scene feature, F?. a model one, F™, or null, such that the global
interpretation of the scene is consistent with the scene data. Notice that the null
label is needed to accommodate scene features which belong to alien scene objects.
[t can be seen that. in principle. the problem is of exponential complexity. However.
as will be shown shortly. this complexity can be very much controlled by utilizing the
object-rigidity constraint.

The matching process, in the context of vision/touch-based 3DOR. is the focus
of this dissertation. Reviewing 3DOR systems in the literature, we can characterize

three main stages in the matching process (see Fig. 1.2):



I. Screening: The purpose of this stage is to quickly eliminate many invalid model
objects from further consideration. early in the matching process. Screening
is usually performed by comparing a model object with a perceptual structure
(a group of scene features that are perceived to belong to the same object).
Thus. the effectiveness. and sometimes the feasibility, of screening depend on

the reliability of extracting those structures.

[SV]

Hypothesis Generation: As mentioned. the strongest constraint that can limit
the combinatorial explosion in scene/model matching is the object-rigidity con-
straint. For this reason, the majority of 3DOR systems first try to establish
partial correspondence between scene and model features. in order to gener-
ate hypotheses about the pose of the object under consideration. Only very
few features are sufficient to generate a hypothesis (e.g.. three non-parallel 3-D

surfaces, or three 2-D edges).

3. Hypothesis Verification: Each of the generated hypotheses is verified. and pos-
sibly refined. by performing extensive comparison between scene and model
features. A hypothesis is considered valid, if there is a sufficient number of

consistent features.

1.3 Vision/Touch-Based 3DOR.

Surprisingly. despite the considerable amount of research done in the areas of vision-
based and touch-based 3DOR, we have been able to find only few systems that at-
tempt to integrate both sensing modalities. Luo and Tsai [57] use a pre-compiled
decision tree to recognize 3-D objects on a plane. The first level of this tree utilizes
moment invariants of a scene-object’s silhouette to reduce the uncertainty about the
identity of the object. The later levels of the tree identify the scene object using
tactile data, which are actively acquired from two tactile sensors on the jaws of a
parallel-jaw gripper. Allen [1] uses passive stereo vision to guide a tactile sensor.
mounted on a robot arm, to explore the scene object and construct a partial 3-D de-
scription of it. This description is then matched with model objects to recognize the

scene object. Ambiguity in determining the object’s identity is resolved by further



tactile exploration.

The above two approaches address the problem of active 3DOR using tactile
sensors mounted on a robot hand (an SSDS task), where the object of interest is not
grasped by the hand. Obviously, this problem is different from the one considered in
this work. that of recognizing an object in a robot hand using vision and touch (an
S585 task). Furthermore, notice that in those systems, vision sensing is used in the
initial stage only, followed by touch sensing in later stages: i.e., visual and tactile data
are combined sequentially. Accordingly. the techniques developed in those systems are
unsuitable in our case, which requires simultaneous integration of vision and touch.

The work of Browse and Rodger [19] is among the few efforts that integrate
vision and touch simultaneously in the context of 3DOR. They present a system to
recognize objects of uniform cross section. which are constrained to lie on a table.
Thus. there are only three degrees of freedom to be determined. For each match
between a visual or tactile feature and a model one, a set of consistent discretized
hypotheses is generated. These sets are then intersected to identify the object and
obtain an estimate of its pose. There are several limitations in this system: |) scope
of objects is limited to those with uniform cross section. 2) objects are assumed to
have only three degrees of freedom. 3) the estimated pose is only a rough estimate
of the true one. depending on the quantization levels of the three transformation
parameters. and 4) relationships between scene features are not utilized to improve

run-time performance.

1.4 Overview of the Thesis

We propose a novel system that performs 3DOR by integrating visual and tactile
data. The model objects are assumed to be polyhedral. We believe that studying
this class of objects provides a good starting point for handling more complex object

classes. A polyhedral model object. ©, can be represented by the triple
S™={S"}. V" ={Vm}, £m = {Er)

where S™. V™ and £™ are the sets of model surfaces, vertices and edges. respectively.

Each element in those sets. 571" or ET*. consists of its parametric description. in



Figure 1.3: A tactile surface patch.

addition to pointers to the other elements that define it. For example. the parametric

description of a model surface. S™, is
n'x = d=» (1.1)

where n7* is the outward normal of S™. and d" is the distance from the origin to
5™ in the direction of n™. In addition. S™ contains pointers to edges in €™ and
vertices in V™ that define its boundary. The coordinates of each model vertex. [
are represented by vector v*. Finally. each edge. ET. is represented by a tuple of
vertices (V.[*. VoY),

The scene data are described as follows. Features extracted from the scene are

represented by the sets:
S*=A{Sth Vv ={17}, & ={E7}

where §°. V* and £° are the sets of tactile features. visual vertices and visual edges.
respectively. The parametric description of each piece of tactile data depends on its
type. For example, if S¥ is a point-like tactile surface patch. then it can be represented

by the following equation:

n;x = nlp: (1.2)
where n{ is the inward normal of the patch, and P; is its center with respect to a world
frame (see Fig. 1.3). The coordinates of each visual vertex. V2. are represented by
vector v{. Finally, each visual edge. E?, is represented by a tuple of vertices (V}1, 133)

The matching process consists of the three stages that have been outlined in

Section 1.2: screening. hypothesis generation and hypothesis verification. The tech-
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niques developed for each of those stages. in the context of vision/touch-based 3DOR.
constitute the contribution of this dissertation. They can be outlined as follows.

In the screening stage, presented in Chapter 2. we formulate the 3DOR problem as
a Constraint-Satisfaction problem (CSP), in order to provide a unified framework for
integrating different types of sensory data. A novel method is presented for efficiently
constructing a CSP corresponding to a match between a scene perceptual structure
and a model object. Local consistency, in particular arc consistency. is enforced on
the CSP. in order to determine whether to further consider the model object.

For the hypothesis-generation stage. we discuss a method for generating hypothe-
ses using a hybrid set of visual and tactile features. This method, described in Chapter
3. is essential in situations when the visual and tactile features. individually. do not
provide sufficient information about the object pose. Furthermore, we will demon-
strate its superiority over vision-based methods in the generation of a smaller number
of hypotheses and the production of 2 more accurate object-depth estimate.

For touch-based hypothesis verification, Chapter 4, a highly-discriminative index-
ing scheme for data-driven verification is presented. Such a scheme can determine
whether a tactile feature supports a given hypothesis in a constant time. independent
of the number of model features.

For vision-based hypothesis verification. Chapter 5. a pixel-based approach is
adopted. In such an approach. a hypothesis is verified by synthesizing the corre-
sponding edge image. and comparing it. pixel wise. with the scene edge image. The
main advantage of the proposed technique, over similar pixel-based ones, is its capa-
bility of accommodating the uncertainties of both scene data and estimated object
pose. which is achieved through dilating the scene edge image. An analytical method
is presented for determining the extent of dilation assuming some bounded-error on
the object pose.

Each of the developed techniques can be regarded as an independent module which
can be plugged in any 3DOR system that uses a similar type of data. For example.
the touch-based and vision-based verification techniques are applicable to anv 3DOR
task involving 3-D or 2-D data, respectively. For this reason. we have decided to focus
on evaluating the performance of each stage independently, rather than evaluating the

system as a whole.
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Chapter 2

Vision/Touch-Based Screening

2.1 Introduction

In this chapter. we present a technique for screening model objects by integrating
visual and tactile data. Despite being critical to the system performance. we have
been able to find only few 3DOR systems that address the screening issue.

Flynn and Jain [34] suggest a simple screening scheme which uses intrinsic at-
tributes of scene features (e.g.. radius of a cylinder. angle between surface orienta-
tions) to quickly eliminate inconsistent model objects.

In the system developed by Fan et al. [31], surface graphs are used to represent
both input range data and model objects (each model object is represented by several
2.5-D surface graphs). The scene graph is first segmented into a set a subgraphs, where
each subgraph consists of surfaces that are likely to correspond to the same object.
Screening is then performed by comparing attribute values of a scene subgraph with
those of a model graph. The attributes used in the comparison process include number
of nodes. number of planar nodes and visible area of largest node. The model graph
is considered for detailed matching with the scene subgraph, only if the difference
between each pair of scene and model attribute values is less than some threshold.
Thresholds are needed to cope with errors in scene segmentation, as well as occlusion.

The screening scheme presented by Kim and Kak [51] is composed of three stages.
called filters. which are arranged in ascending order of their computational complexity.
The first filter compares coarse attribute values of a scene graph, which is assumed
to correspond to a single object. and each model-object graph. The chosen attributes

include total number of nodes. total number of arcs. maximum degree of a node.
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and number of surfaces of each type (e.g.. planar, cylindrical). A model object is
accepted by the first filter, only if each scene attribute value is not more than the
corresponding model one. The second filter verifies that each node in the scene graph
has a consistent one in the model graph. The third filter applies a polynomial-time
bipartite matching algorithm to check for the existence of an injective mapping from
scene nodes to consistent model ones. Each model object that is accepted by the
above filters is then passed to a pruning module. This module applies a discrete-
relaxation approach, by utilizing several types of local constraints. in order to reduce
the uncertainty in the correspondence between scene and model nodes. This reduction
in correspondence uncertainty can considerably decrease the number of scene/model
feature comparisons in subsequent matching stages. If a scene node does not have
any consistent model one. then the considered model object can not correspond to
the scene graph and so it is rejected. Thus. the pruning module can be thought of as
a fourth screening filter.

The above approaches use only a single type of sensory data (3-D data). and so
they are unsuitable in our case. which involves both 2-D data (visual) and 3-D data
(tactile). We present a technique for vision/touch-based screening of model objects.
This technique. which is analogous to the pruning module in [51] described above. can
be outlined as follows. The 3DOR problem is formulated as a Constraint-Satisfaction
problem (CSP) in order to provide a unified framework for integrating different types
of sensory data. A novel method is presented for efficiently constructing a CSP
corresponding to a combination of 2-D and 3-D scene features. Screening is performed
by enforcing local consistency on the CSP. In addition to eliminating many erroneous
objects. the step of local-consistency enforcement (LCE) can significantly reduce the
uncertainty in the correspondence between scene and model features. Thus, when
passing the locally-consistent CSP to the hypothesis generation module. we can expect
a significant reduction in the number of scene/model matches. and accordingly the
number of generated hypotheses. This will, in turn. reduce the computational load
on the hypothesis verification module.

It is interesting to compare the adopted CSP approach. outlined above, with some
object recognition systems that apply tree search (e.g.. [39. 40]). In those systems.

the recognition task is implicitly formulated as a CSP that is solved directly through

12



searching the solution space. a problem of exponential complexity in general. In our

work. the exponential complexity is avoided as follows:

L. Local consistency is enforced in low-order polynomial time. This process is
typically considered by CSP researchers as a preprocessing stage to tree search.

with the purpose of reducing the size of the solutjon space at a reasonable cost

(e'g'v [53])

[§V]

Searching the reduced solution space. of the locally-consistent CSP, is still of
exponential complexity. To overcome this problem. we adopt the polynomial-

time hypothesis generation/verification approach outlined in Section 1.2.

[t should be noted, however, that LCE is not applicable, if the process of extracting
perceptual structures is unreliable. This because, in such a case, “null” labels would
have to be added in order to accommodate extraneous scene features. Those null
labels would prevent LCE from reducing the size of the solution space (this is because
null labels would result in the absence of zero rows/columns in constraint matrices:
this point will become clear in the next section when presenting the LCE algorithm).

The remainder of the chapter is organized as follows. Section 2.2 defines the
problem. and presents the LCE algorithm. Construction of the CSP is discussed in

Section 2.3. Section 2.4 presents experimental results. Finally, conclusions are drawn

in Section 2.5!.

2.2 Formulation of the Problem

2.2.1 Definition of a CSP

A CSP is represented by a hypergraph. called a constraint network (CN). A CN
consists of a set of n nodes. X = {z,....,1,}, representing the problem'’s variables.
and a set of m hyperedges. C = {C,.... :Cm }. representing the problem’s constraints.

Each variable, z;. can take values from a domain, Y. i.e..

r; €Y 1 <1 <n.

YA preliminary version of this work was published in Proc. [EEE/RSJ Int. Conf. Intelligent
Robots and Systems. Pittsburgh, Pennsylvania. 1995 [18].

13



Each constraint. C;, defines a set of valid combinations of values for a subset of

variables. X; = {z)..... Ti(ni)) }» Where X; C X. and n(i) is the order of C:. Thus.
Ci € Viny X ==+ X Yintiy) l1<i1<m.

Constraint C; can be viewed as an n(:)-dimensional binary array. where the value of
each entry, e. is 1, if e € C,, and 0 otherwise. Thus, a unary constraint (order 1) can
be viewed as a binary list. while a binary constraint {order 2) can be viewed as a
binary matrix.

An instantiation of the variables in X. T = {zi=wy1,.... 20 = yo} where y; € ).
is said to be a solution of the CSP. if T satisfies all the constraints in C. Solving a
general CSP involves searching the solution space at an exponential time complexity

(see. for example. [25. 53]).

2.2.2 Local-Counsistency Enforcement

A CSP is said to be locally-consistent of order i. if every solution to any subnetwork
of size i — 1 nodes, .V;_,. can be extended to a solution of any subnetwork of size i. .V,.
that contains .V,_;. Local consistencies of order 1. 2 and 3 are commonly known as
node. arc and path consistencies. respectively [538]. Since enforcing local consistency
of order / is exponential in i [26], we have chosen to enforce local consistency of order
2 (arc consistency). As will be demonstrated by the experimental results in Section
2.4. we have found that the enforcement of arc consistency is very effective in both
eliminating erroneous model objects and reducing the correspondence uncertainty
between scene and model features.

The chosen LCE algorithm. which enforces arc consistency. can be written as

follows (see [58]):

L. If any constraint, C;, is null, then stop (a null constraint implies that there is

no solution to the CSP).

(8]

For each constraint C;. we check each node/label pair. (z;;, y;;). involved in C;.
If there is no element of C; that contains Yij, then label y;; can not be part of
any solution to the CSP (because constraint C; will not be satisfied). Thus. we

delete y;; from the domain of I,
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Figure 2.1: An illustration of LCE: (a) a CSP. (b) the CSP after one iteration of
LCE.

3. For each deleted node/label pair (zij.yij). we propagate the deletion to other
constraints, Cx, that involve node z;;. This is done by deleting all entries that

contain y;; from C,.
Yi;

4. If no labels are deleted in step 2. then stop. Otherwise. repeat steps 1 — 3.

considering only those constraints that have changed in the current iteration.

As a demonstration of the above steps. Fig. 2.1 shows a CSP before and after the
first LCE iteration.

The LCE algorithm is implemented using data structures similar to that presented
in [61]. Such an implementation has an optimal time complexity of order O(cy?).
where ¢ is the average of | C; |. and y is the average of | J; |. It can also be shown
that the number of iterations is bounded by cy? [61].

The CSP corresponding to our problem is represented by a scene constraint net-

work (SCN). which can be defined as follows:

e The set of SCN nodes is composed of tactile and visual features. i.e...¥ = S°UE?.
where £7 C £ is a set of visual edges in a perceptual structure (refer to Sections
1.2 and 1.4). We will sometimes refer to the nodes in S° as tactile nodes, and
those in £ as visual nodes. To simplify the presentation, we will consider only
one type of tactile features: a point-like surface patch (see Fig. 1.3). Other
types can be handled in a similar fashion. Since the scene features are matched
with each model object. O, in turn, the domains of the tactile and visual nodes

are 8™ and €™ of O. respectively (refer to Section 1.4).
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o The SCN constraints. C. can be classified according to the types of nodes in-

volved in each constraint. The following types of constraints are selected:

l. Visual constraints (of different orders),

[SV]

. Unary tactile constraints.

3. Binary tactile constraints, and

LN

. Binary visual/tactile constraints.

Other types (e.g., ternary tactile constraints) can be incorporated as well. How-
ever. as will be shown in Section 2.4. we have found that the chosen tvpes of

constraints are satisfactory for our purposes.

2.3 Construction of SCN Constraints

[n this section, we present the methods used to construct the various tvpes of SCN

constraints. outlined at the end of the previous section.

2.3.1 Visual Constraints

Visual constraints are obtained by analyzing the perceptual structure of the sensory

data. We have chosen the following types of visual constraints:

L. Same-Junction Constraint (SJC): Visual edges of a junction are covered by a
same-junction hyperedge. Thus. the SJC of a two-edge junction is a binary
constraint, while that of a three-edge junction is a ternary one. Vertices of
two- and three-edge junctions are likely to correspond to model ones, and so we
refer to them as true vertices. On the other hand, free vertices are unlikely to

correspond to model ones. and so we refer to them as false vertices.

2. Parallel-Edge Constraint (PEC): Nodes corresponding to edges that are almost

parallel and non-collinear are covered by a parallel-edge hyperedge.

3. Collinear-Edge Constraint (CEC): Nodes corresponding to collinear edges are

covered by a collinear-edge hyperedge.
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Figure 2.2: An example of an SCN: (a) a scene of a robot finger (the shaded object) in
P g J

contact with a rectangular polyhedron. (b) corresponding SCN showing some visual
constraints.

Other types of visual constraints (e.g.. “same-surface™ constraints) can also be incor-
porated into the SCN. As an example, Fig. 2.2(a) shows a scene of a robot finger
(the shaded object) in contact with a rectangular polyhedron. In addition, a tactile
sensor is assumed to be mounted on the robot finger. The SCN corresponding to this
scene. showing some of the visual constraints, is depicted in Fig. 2.2(b).

To simplify the implementation. we replace constraints of order higher than two.
by binary constraints between every pair of nodes involved in the original one. For
our types of constraints, there is no loss of constraint tightness in this conversion.
The binary matrix corresponding to each type is obtained through knowledge of the

model object under consideration.

2.3.2 Binary Tactile Constraints

We construct a binary constraint between two tactile nodes. (57.57). as follows:

* A number of attribute bounds are computed for the scene pair (57.57). The

chosen attributes are (refer to equation (1.2)):

l. Angle between patch normals: arccos(n; - nj)

2. Distance between the two patches: || p; ~pill

3. Projection of (p? — p?) on n?: (p; ~ p§) - n;

J t

4. Projection of (p? — p;) on n¥: (p{ ~ pj) - n}

i



o For each model pair (S*. SJ*). we compute bounds on the previous attributes.
[f scene and model attribute bounds are consistent, then we set entry (k./) in

the constraint matrix to 1: otherwise, we set it to 0.

More details about the above process can be found in (39].

2.3.3 Continuous Visual/Tactile Constraints

In this section. we introduce a number of approximate visual/tactile constraints that
are of continuous nature. In the next two sections. we will discuss how to utilize
these constraints in order to construct discrete unary tactile and binary visual/tactile
constraints for the SCN. The chosen constraints are conditional: each constraint in-
volving a tactile patch. S°. is obtained by assuming that some model surface. S™. of
an object. O. corresponds to S* (in this section. we will drop the subscripts associ-
ated with scene and model features to simplify the notation). As will be seen later.
this assumption is needed to partially compensate for the lack of depth information

inherent in the visual data. The chosen constraints are:

L. Object-Occupancy Constraint (OOC): An QOC(S™) of an object. O, provides
an approximate bound on the 3-D space occupied by O. given that S™ corre-
sponds to 5° (S* is dropped from the parameter lists of all continuous constraints
to simplify the notation). Constraint OO0C(S™) is constructed as follows. A
match between model surface S™ and tactile patch S° restricts the location of
model object @ as follows: 1) Object O can translate along the plane of S*
such that S° remains inside S™. and 2) it can rotate freely about the normal
of 5%. n*. Thus, a possible simple approximation of the space occupied by O.
given that S™ corresponds to S*, is a cylinder whose axis is parallel to n* (see
Fig. 2.3). Dimensions of such a cylinder. which can be computed off-line. are

presented in Appendix A.l.

[\

Vertez-Depth Constraint (VDC): V DC(S™, V'*) provides a bound on the depth
of a model vertex that projects to V'*. This bound, [a™" a™7], is obtained by
computing the intersection of 0OC(S™) with the line of sight of V*, L(V*). The
values a™" and a™** represent the minimum and maximum distances. respec-

tively. between the camera viewpoint and the section of L(V*) inside QOC(S™)

l
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Figure 2.3: (a) Vertex-depth constraint VDC(S™,V*) = [a™™, a™7], (b) Edge-depth
constraint EDC(S™, E°%) = ([a]™. o7], [, ajre®]).

Figure 2.4: An illustration of an edge-angle constraint, EAC(S™. E°) = [gmn, gmes),

(see Fig. 2.3(a)). If OOC(S™) does not intersect L(V*). then VDC(S™, 17)
is a null interval. Notice how OOC(S™) is utilized to partially compensate for

the lack of depth information in the visual data.

3. Edge-Depth Constraint (EDC): EDC(S™. E*) provides a bound on the depth
of a model edge that projects to £°. This constraint is obtained by computing
the intersection of OOC(S™) with the plane of sight of E*, P(E*®). An example
of the intersection process is shown in Fig. 2.3(b). Constraint EDC(S™. E*)
is simply the vertex-depth constraints corresponding to the two end vertices of

E* (VA VE) fe..

EDC(S™.E") = (VDC(S™.V}).VDC(S™V3)).
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4. Edge-Angle Constraint (EAC): EAC(S™. E*) provides a bound on the angle
between a model edge that projects to £ and line of sight L(V{). Anillustration
of EAC(S™. E®) is shown in Fig. 2.4. The equations used to determine this

constraint are presented in Appendix A.2.

Edge-Length Constraint (ELC): ELC(S™, E*) provides a bound on the length

of a model edge whose vertices project to those of £°. The equations used to

(1}

determine this constraint are presented in Appendix A.3.

2.3.4 Unary Tactile Constraints

The unary tactile constraint associated with a tactile node. S*, is obtained as follows.
For each model surface S™. we examine V DC(S™, V') for all scene vertices V5. If
VDC(S™. V*) is null for any one of the scene vertices V’*. then we can conclude
that the hypothesis 5™ corresponds to S*7 is inconsistent with the assumption *V°*
belongs to the model object under consideration”. Accordingly. we can eliminate 5™
from the domain of S*.

Notice that although this constraint is defined on a tactile node, it is obtained by
utilizing visual data. In addition. notice how global data are utilized to reach a local

decision.

2.3.5 Binary Visual/Tactile Constraints

In this section. we present a method for constructing a binary constraint defined on
a pair of tactile and visual nodes. (S*. £*). The straightforward construction method
examines each model surface/edge pair (S™. E™). If (S™. E™) is consistent with the
scene pair (5°. E*). then the corresponding entry in the constraint matrix is set to 1:
otherwise. it is set to 0. The model pair (5™, E™) is said to be consistent with the

scene one (S°, £°), if the following conditions can be satisfied simultaneously:

I. The inward normal of the tactile patch §* is aligned with the outward normal

of the model surface S™.

2. The tactile patch S° lies inside polygon S™.



3. The model edge E™ lies inside plane of sight P(E?). such that its projection on

the image plane covers E*.

4. Each vertex of E™, V™ ({ = 1.2). lies along line of sight L(V*). if V;* is a true

vertex (defined in Section 2.3.1).

Checking the validity of the above conditions is computationally expensive. es-
pecially when the uncertainty of the scene features is taken into consideration. To
handle such a problem. we propose an alternative method which is approximate but
much more efficient; only very few comparison operations are needed to determine
the value of each entry in the constraint matrix defined on (S, £¢). This method.
which utilizes the approximate constraints presented in Section 2.3.3. can be outlined

as follows:

L. A number of transformation-invariant attributes of a model surface/edge pair
are selected. Values (or bounds) of these attributes are computed for all possible
combinations of model surface/edge pairs. (S™. £™). This process is performed

off-line.

2. At run-time. we use (S°. £7) to derive approximate bounds on the attributes of

the model pair (S™. E™) that corresponds to (S°. E?).

3. Each possible model pair (S™. £™) is examined. If the attribute values/bounds
of (5™, E™) are consistent with those of (5*, E*), then the entry corresponding

to (S™. E™) in the constraint matrix is set to 1: otherwise. it is set to 0.
The above stages are described in detail in the following three sections.

1. Model Surface/Edge Attributes

We have chosen the following transformation-invariant attributes of a model sur-

face/edge pair. (S™. E™) (see Fig. 2.5):
l. Edge Length (L™): length of edge E™

2. Edge Angle (A™): angle between edge E™ and the normal of surface S™. n™.

Note that. in our system. model edges are considered as directed entities. Thus.
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Figure 2.5: A model surface/edge pair (S™. E™).

an edge represented by a tuple (V;™, V2") is considered different from that rep-

resented by (V. V™).

3. Vertez/Surface Perpendicular Distance (P™): the perpendicular distance be-

tween vertex V™ ({ = 1.2) and surface S™

1. Bound on Vertex/Surface Distance (DB™): the range of distances hetween

vertex V™ ([ = 1.2) and surface S™

Thus. the total number of model attributes of (S™.E™) is six. Mathematical
definitions of those attributes are presented in Appendix B.1.

We have tried an additional number of attributes (e.g.. range of angles between
n™ and the set of vectors from V,™ to $™). However. experimentally. we have found
that those attributes are marginally useful when used in conjunction with the chosen

ones. Accordingly, they have been discarded.

2. Scene Surface/Edge Attribute Bounds

Scene surface/edge attribute bounds, which correspond to the model attributes. are
obtained by assuming that a model surface, S™, corresponds to S°. As shown in
Section 2.3.3, this assumption is needed to partially compensate for the lack of depth
information inherent in the visual data. Thus, the scene attribute bounds are reeval-
uated for every possible model surface §™. The attribute bounds of a scene pair

(§°. E*) are (refer to Fig. 2.6):

[N
()



Figure 2.6: A scene surface/edge pair (5°. E¥).

L. Bound on Edge Length (LB*(S™)): provides a bound on the length of £™. the
model edge that projects to E°. It is easy to see that LB*(S™) is the same as

edge-length constraint ELC(S™. E¥).

2. Bound on Edge Angle (AB*(S™)): provides a bound on the angle between
E™. and the normal of S*. n®. This bound is obtained by utilizing edge-angle

constraint EAC(S™, E7).

3. Bound on Vertezx/Surface Perpendicular Distance (PB;(S™)): provides a bound
on the perpendicular distance between. V;™, the model vertex that projects to
Vi* ({ = 1.2) and S*. This bound is obtained by utilizing vertex-depth constraint
VDC(S™. Vp2).

4. Bound on Vertezr/Surface Distance (DBj(S™)): provides a bound on the dis-
tance between 57, and V™ (I = 1.2). This bound is also obtained by utilizing

the vertex-depth constraint VDC(S™.V;%).

Thus. the total number of scene attribute bounds is six. Mathematical definitions of

the above attributes are presented in Appendix B.2.

3. Consistency Checking

Define the following functions:



inside(p. b) returns true if point p is inside interval b: otherwise it returns false.

overlapping(b,. b;) returns ¢rue if bounds b; and b, are overlapping; otherwise

it returns false.

true_vertex(V*) returns true if V* is a true vertex (defined in Section 2.3.1):

otherwise it returns false.

A model pair (S™, E™) is considered consistent with a scene one (5. E*), only if all

the following conditions hold:

L.

(V]
.

if true_vertex(V}*) and true_vertex(V;') then inside(L™, LB*(S™))

else L™ > lower bound of LB*(S™)

inside(A™. AB*(S™))

. for !l =1.2.

if true_vertex(V;*) then inside( P™. PB;(S™))

for [ = 1.2,

if true_vertex(V}°) then overlapping(DB™. DB;(S™))

[t is easy to see that our approximate method is very efficient: only very few

comparison operations are needed to determine the value of each constraint entry. In

the next section. we will demonstrate that the proposed set of constraints. although

approximate. is still discriminative enough to eliminate many erroneous model objects

and achieve significant reduction in scene/model correspondence uncertainty.

2.3.6 Extraction of Perceptual Structures

Perceptual structures are extracted from the visual data as follows:

L.

2.

Straight edges are extracted from the image.

Edges that belong to the robot hand are discarded. since they can be determined
easily through knowledge of the hand’s geometric description and the robot

kinematics.



3. For each edge vertex. we look for neighboring edge vertices. Visual nodes cor-
responding to edges with mutually adjacent vertices are covered by a same-

Junction constraint (SJC).

4. Two visual nodes are assumed to belong to the same perceptual structure. iff
there is path of SJC’s between the two nodes. This is an equivalence relation.

and so it partitions the visual nodes into disjoint subsets.

5. For each edge. we look for parallel and collinear ones in the same perceptual
structure. Nodes corresponding to parallel and collinear edges are covered by

parallel-edge and collinear-edge constraints (PEC and CEC). respectively.

Since it is generally difficult to determine which perceptual structure belongs to
the object of interest. each structure. along with the tactile data. is considered in
turn.

[t should be noted that the above method does not guarantee that the extracted
perceptual structures are valid. due to the possibilities of special object configurations.
special viewpoints. and imperfections of feature extraction. Error recovery techniques
are needed to handle the possibility of erroneous perceptual structures. This issue.

although very important. is not considered in this work.

2.4 Experimental Results

In this section, we present a number of simulated and real experiments to demonstrate
the performance of the proposed screening technique. To estimate the reduction in
scene/model correspondence uncertainty. achieved by LCE. we define the following

performance measure:

ny — Ny
p=—_"° (2.1)
ny

where n;y and n, are the sum of all the one entries in the SCN constraints. hefore
and after LCE. respectively. Thus. p lies in the range [0.1]. Maximum uncertainty
reduction occurs when p = 1, in which case. we can directly conclude that the object
is erroneous and so it can be discarded. On the other hand. no reduction occurs when

p = 0. Notice that if p # 1. then we cannot directly reach a conclusion on whether
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Figure 2.7: Model database.

the object is valid and so further investigation would be required through generation
and verification of pose hypotheses.
Finally. we have chosen a model database consisting of ten objects. Those objects

are shown in Fig. 2.7.

2.4.1 Uncertainty Handling

Uncertainty of the sensory data has been ignored so far in the discussions. mainly for
the sake of presentation clarity. In practice. however. uncertainty has to be dealt with
in a formal way. The following bounded-error model is used to model the uncertainty

of visual and tactile features:

L. Tactile Patch: The actual location of the patch is assumed to be within some
distance. Ar‘. of the estimated one. The actual patch normal is assumed to be

within some angle. \@". of the estimated one.

2. Visual Verter: The actual visual vertex is assumed to be within some pixel

distance, ArY. of the estimated one.

Thresholds which are used throughout the system are automatically determined based
on the above error model. In addition. the object-occupancy constraints are appro-

priately dilated to handle the uncertainty of the tactile patches.

2.4.2 A Detailed Experiment

Fig. 2.8(a) shows a synthetic scene of a three-fingered robot hand grasping model

object SLICE. I[n this experiment. as well as the rest of the experiments in this
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(a) (b)

Figure 2.8: A synthetic scene of a robot hand grasping model object SLICE: (a) scene.
(b) extracted edges.

Visual Nodes ~——————— same-junction constraints

parallel-edge constraints

visual/tactile constraints

— = — — . lactile constraints
0 SO
Tactile Nodes ) - 7\
Front ; \ Back
Finger ~ Finger

Top
Finger

Figure 2.9: The SCN associated with the scene shown in Fig. 2.8.
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work. the grasp configuration is chosen empirically. A tactile sensor is assumed to be
mounted on each of the robot fingers to provide a point-like surface patch. [n this
experiment. as well as the simulation ones presented in the next section. uncertainty
is introduced in the tactile data by randomly perturbing the position and the normal
of each tactile patch, assuming Ar* = 5 mm, and A#* = 5°. The visual image is
processed to extract a number of straight edges which are shown in Fig. 2.3(b).
Edges that belong to the robot hand are then eliminated. The remaining edges. the
five labelled ones in Fig. 2.8(b). are perceived to belong to the same perceptual
structure. The SCN corresponding to such a scene. shown in Fig. 2.9. consists of
eight nodes, five of them are visual and three are tactile. In addition. from Fig. 2.9.
we can see that the number of SCN constraints is 25 (4 visual. 15 visual/tactile. 3
unary tactile. and 3 binary tactile). Node domains and constraint matrices of the
('SP are reconstructed for each model object, as explained in the previous section.
For example. let us consider the valid model object, SLICE. From the shape of such
an object (see Fig. 2.7), we can see that it consists of five surfaces. and nine edges.
Thus. the domains of tactile and visual nodes. S™ and £™. are of sizes 5 and LS.
respectively (recall that each actual model edge is represented as two directed ones).
A sample of five constraint matrices corresponding to object SLICE is shown in Fig.
2.10.

The LCE algorithm., outlined in Section 2.2.2. is applied to each constructed CSP.
Fig. 2.10 shows five constraints before and after LCE. when object SLICE is con-
sidered. Notice how knowledge of inconsistent constraint labels (those corresponding
to zero rows or columns) is propagated to neighboring constraints through LCE. For
example. in constraint (8.2). we can see that four model edges (columns 9. 10. 13 and
[4) are inconsistent with scene edge 2. This knowledge is propagated to neighboring
constraints that involve node 2 by zeroing the corresponding rows or columns (see. for
example. the four corresponding columns of constraint (1,2) before and after LCE).

Results obtained by running our system are shown in Table 2.1. Columns in this

table are:

L. Model Object: the model object under consideration

2. ny (n,): number of 1's in the SCN before (after) LCE
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Table 2.1: Summary of the experimental results for the scene shown in Fig. 2.38.
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e

. p: the performance criterion defined in (2.1)

Touch: an indication of whether tactile data alone can determine the invalidity

Ut

of the object under consideration

From Table 2.1. we can observe the following:

e LCE is robust in eliminating erroneous objects without either generating or
verifying pose hypotheses. In this experiment, all the erroneous objects are
eliminated by LCE. Furthermore. except for model object BLOCK., all erroneous
objects are eliminated without any LCE iterations. This occurs when one or

more of the SCN constraints is a zero matrix.

e LCE is robust in reducing the correspondence uncertainty. In this experiment.
we see that the average of p is almost 1. Thus. we can expect a drastic reduction
in the computational load on subsequent hypothesis generation and verification
modules. Furthermore. for the valid model object (SLICE). the value of p is
about 0.92. Thus. we can also expect significant improvement in performance.
even if the task is localizing a known object. As an illustration, notice how LCE

reduces the number of I's in the constraint matrices shown in Fig. 2.10.

e LCE is computationally very efficient. Only very few LCE iterations are re-
quired to enforce consistency (3 for SLICE. 1 for CUBE, and none for the
remaining objects). This is despite the fact that the theoretical upper bound is

high (see Section 2.2.2).

e Integration of visual and tactile data is useful in screening objects. All erroneous
objects (nine) are eliminated using vision and touch, as opposed to only four

when using touch alone (see the last column in Table 2.1).

e Although approximate, the CSP visual/tactile constraints are very satisfactory

for our purposes. This is clearly demonstrated by the previous observations.
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Figure 2.11: Three synthetic scenes along with extracted perceptual structures.
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Figure 2.12: Two real scenes along with extracted perceptual structures.

Perceptual Valid Valid Object Erroneous Objects Average

Structure | Structure | p [ ] Total | Eliminated | Touch | p | 1
Fig. 2.11(a)-3 Yes 0.93 4 9 9 T 0.99 ] 0.3
Fig. 2.11(b)-3 0.75 2 8 3 0.96 | 0.9
Fig. 2.11(c)-1 088 | 6 9 9 109906
Fig. 2.12(a)-2 0.43 2 n T 0.87 | 1.1
Fig. 2.12(b)-2 0.77 4 8 7 097 1.0
Fig. 2.11(a)-1 No N/A | N/A 10 8 T 0.95 | 1.2
Fig. 2.11(a)-2 10 7 110000
Fig. 2.11(b)-1 10 3 |1.00 0.0
Fig. 2.11(b)-2 10 3 1.00 | 0.0
Fig. 2.11(c)-2 10 9 1.00 { 0.0
Fig. 2.11(c)-3 10 9 1.00 | 0.0
Fig. 2.12(a)-1 7 T 1090038
Fig. 2.12(b)-1 10 7| 1.00 | 0.0
Fig. 2.12(b)-3 10 T | 1.00]00

Table 2.2: Summary of the experimental results for the scenes shown in Figs. 2.11
and 2.12.




2.4.3 Summarized Experiments

To reinforce the conclusions obtained above. we have performed a number of simulated
and real experiments.

Fig. 2.11 shows three synthetic scenes of a robot hand grasping an object. We
have added erroneous objects, at random poses. to those scenes in order to test the
performance of the technique when applied to erroneous perceptual structures.

The setup of the real experiments can be described as follows. A Schunk parallel-
Jaw gripper, mounted on a PUMA 260 robot arm, is used for object manipulation. The
robot workspace is monitored by an NEC CCD camera. which provides visual images
of dimensions 480 x 512. Tactile patches are provided by tactile sensors mounted on
the gripper jaws. We have used an Interlink piezo-resistive tactile sensor. which is
a 16 x 16 planar array of dimensions 25.4 mm x 25.4 mm. The position of a tactile
patch provided by such a sensor is assumed to be the center of the factile polygon
formed through contact with the object. Fig. 2.12 shows a couple of real scenes of
model object BLOCK being grasped by the parallel-jaw gripper.

Results obtained by feeding the above five scenes to our svstem are summarized

in Table 2.2. Columns in this table are:
L. Perceptual Structure: the perceptual structure under consideration

2. Valid Structure: an indication of whether the perceptual structure is valid (i.c..

belongs to the object that is grasped by the hand)
3. Valid Object (p.I): p and number of LCE iterations for the valid object
4. Erroneous Objects (Total): total number of erroneous objects
5. Erroneous Objects (Eliminated): number of eliminated objects

6. Erroneous Objects (Touch): number of objects that can be eliminated using

touch alone

. Average (p,I): averages of p and LCE iterations for all objects

It

From Table 2.2, we can derive similar conclusions to those obtained earlier. Fur-

thermore. notice the robustness of the technique when applied to invalid structures.
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In seven of the nine invalid structures. all objects are eliminated without any LCE
iterations. In the remaining two scenes. only very few erroneous objects pass the
LCE test (two and three objects for structures Fig. 2.11(a)-1 and Fig. 2.12(a)-1.

respectively).

2.5 Conclusions

We have presented a vision/touch-based technique for screening model objects. The
3DOR problem is formulated as a CSP to provide a unified framework for integrating
different types of sensory data. A novel method is presented for efficiently constructing
a CSP corresponding to a combination of visual and tactile features. Efficiency is
achieved by developing a number of approximate visual/tactile constraints. which
enable determining the value of each entry in visual/tactile constraints using very few
comparison operations. The consistency of the scene data with the model object under
consideration is determined by enforcing arc consistency. This step has the advantage
of efficiently utilizing all the relevant scene data. early in the recognition process. in
order to reduce the correspondence uncertainty between scene and model features.
Furthermore. it eliminates many erroneous model objects and perceptual structures
efficiently without either generating or verifying any object/pose hypotheses. Thus.
by passing the arc-consistent CSP to subsequent recognition modules. we can expect
significant reduction in the computational load on them. Performance of the proposed

technique has been demonstrated using simulated and real experiments.
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Chapter 3

Vision/Touch-Based Hypothesis
Generation

3.1 Introduction

There are several approaches reported in the literature for generating object/pose
hypotheses. These approaches can be classified into the following three categories.

) Tree Search: A tree search is used to explore all the correspondence possibilities
between a subset of scene features and model ones. This approach has been taken by
many researchers (e.g.. [31, 32. 34. 39. 40. 73]). The tree is usually constructed in a
data-driven fashion: i.e., for a given scene feature. all model features are examined for
consistency with the scene one. If the relevant scene data can not be 1solated. then
a null match is needed to handle extraneous scene features (e.g.. [34, 40]). The tree
is pruned by utilizing unary and binary viewpoint-invariant constraints. Examples
of unary constraints are surface type, surface area. edge length and intrinsic feature
parameters (e.g.. radius of a sphere). Binary constraints include angle between surface
orientations. and connectivity information.

Although only few features are sufficient to generate hypotheses, some systems
extend the search to include many scene features. without computing pose transfor-
mation (e.g., [39. 40, 73]) . This kind of extended search might be needed. if the scene
features are too noisy to generate reliable pose estimates.

2) Local Feature-Set Matching: In this approach. a set of local scene features s
selected and matched with a corresponding model one to generate one or more pose

hypotheses. Scene feature sets that have been used for hypothesis generation include:
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. A three-edge 2-D junction where one of the edges is completely visible [49. 4.

—

75).

S

. A set of three 2-D edges [23. 28],

3. A pair of adjacent 3-D surfaces [27],

4. A set of three 3-D surfaces [46],

5. A 2-D ellipse [65], and

6. A supersegment. which is a set of connected 3-D line segments [70].

An advantage of such an approach over tree search is that it permits fast access to
model feature sets that are consistent with a given scene one. This can be achieved by
building an index (or a hash table) that is based on viewpoint-invariant attributes of
the scene set (e.g., [21. 70]). Furthermore, indexing schemes enable fast identification
of erroneous scene feature sets. since they are unlikely to correspond to any model
one. It should be noted. however. that tree-search hypothesis generation might still
be more suitable if the scene features are too noisy to generate reliable hypotheses
using a minimal number of features.

3) Off-line Recognition Strategies: This approach involves analyzing each model
object off-line. in order to tailor a strategy. often called a strategy tree, for localizing
the object from scene data. The existing off-line recognition strategies can be classified

into two categories:

L. Matching is organized as a tree search. However. the search is mainly model-
driven: i.e., for a given model feature, scene features are examined for consis-
tency with the model one. The off-line strategy determines the order of model
features to be considered for matching in every stage of the search. Model fea-
tures are ordered based on several criteria such as covisibility with previously
matched features (which can be determined by aid of aspect graphs). constrain-
ing power (how many degrees of freedom are constrained by the feature). and
detectability in the scene data. The recognition strategy might also include
information on where to search for a given model feature in the scene data.

Such information can be obtained by utilizing partial knowledge of the object

36



Figure 3.1: The selected tactile features and associated frames: (a) surface patch: 1)
origin: center of the patch. 2) z axis: outward normal of the model surface in contact
with the patch. 3) z and y axes: placed arbitrarily in the tactile-patch plane. (b)
surface-edge patch: 1) origin: mid point of the edge, 2) : axis: outward normal of
the model surface in contact with the patch. 3) y axis: normal to the edge towards
the interior of the patch. 4) z axis: along the edge such that the right-hand rule is
satisfied.

(8]

pose, which is gathered through previous scene/model matches. If there is no
matching scene feature. then the feature extraction module can be invoked to
closely re-examine the search area (e.g.. [12]). Thus. an important advantage
of this approach is capability of handling imperfections of feature extraction.
Most existing off-line strategies belong to this category (e.g.. {3. 12. 36. 42]).
This approach appears more suitable than data-driven tree search. if the object
to be recognized is placed in a cluttered scene. This is because data-driven
tree search would generate too many null matches. compared to model-driven

search.

Model objects are represented as aspect graphs. A decision tree is used to
determine the aspect corresponding to the scene object. Once this is done.
predetermined 2.5-D matching procedures are used to estimate the object’s pose
for every possible aspect. An example of this category is the work presented
by Gremban and I[keuchi [38]. A limitation of this approach is incapability of

handling occluded objects.

In our work, we have chosen to generate hypotheses by matching a local set of

scene features, in order to enable fast access of relevant model ones. This local set

consists of a visual junction, of any number of edges, and a tactile feature. For the

sake of presentation, we will focus on only two types of tactile features. The first

type is a polygonal surface patch. which is formed when the object surface in contact
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with a polygonal tactile sensor totally covers it (Fig. 3.1(a)). The second one is
also a polygonal surface patch. with an edge that is known to correspond to a model
one. This type of tactile data is formed when the contact surface partially covers the
sensor and only one edge appears in the sensor array (Fig. 3.1(b)). Henceforth. we
will refer to surface and surface-edge patches as S-patch and SE-patch. respectively.
Those features correspond to model surface and model surface-edge pair. which we
will refer to as S-surface and SE-surface, respectively.

The proposed pose generation technique can be outlined as follows. First. a subset
of the object’s degrees of freedom (DOF’s) is determined by matching the tactile
feature with a corresponding model one. The remaining DOF’s, which cannot be
determined from the tactile feature. are then obtained by matching the visual one. In
addition. we develop a couple of filtering techniques in order to reduce the number of
scene/model matches. Those techniques utilize some of the continuous visual/tactile
constraints presented in the previous chapter. In particular. one of them utilizes the
object-occupancy constraint. while the other uses the edge-angle constraint to derive
bounds on model transformation-invariant attributes (refer to Section 2.3.3).

As will be experimentally demonstrated in Section 3.4. the advantages of the

proposed vision/touch-based localization technique over vision-based ones are:

L. It is capable of determining the object pose in heavily occluded visual images

that are problematic to vision-based methods.

[CV]
.

The average number of generated hypotheses, per scene feature set, is consid-
erably less than the number of those generated visually. This advantage can
greatly reduce the computational load on the subsequent hypothesis verification

stage.

3. The accuracy of estimating the object depth (with respect to the visual sensor)

can be significantly better when vision is integrated with touch.

The rest of the chapter is organized as follows. In the next section, we describe the
pose generation technique in detail. The filtering techniques are presented in Section

3.3. In Section 3.4, we present experimental results using simulated and real data.



and finally. in Section 3.5. we provide conclusions!.

3.2 Pose Generation

In this section. we present the technique used to generate pose hypotheses by inte-

grating visual and tactile data.

3.2.1 Overview

As mentioned. the scene feature set used to generate pose hypotheses consists of a
visual junction and a tactile feature, which is either an S- or SE-patch in our case.

The six object DOF's are determined as follows:

L. The tactile S- or SE-patch is matched with a model S- or SE-surface, respec-
tively. to determine a subset of the object’s six DOF’s. The number of these

DOF’s is three and five. for S- and SE-patches. respectively.

2. The remaining DOF’s are obtained by matching the visual junction with a

model one.

A tactile-feature frame is chosen as the reference frame (see Fig. 3.1). As will be
seen later, this choice simplifies the computation of the object DOF’s. Furthermore.
it enables the determination of the touch-based DOF's off-line, thereby reducing the
on-line computational requirements.

The matching process can be outlined as follows:

L. A set of partial pose hypotheses. T, is generated off-line. Each partial hypothe-
sis, “T € T, is obtained by matching the tactile patch with the ith corresponding

model feature. Thus. 7 corresponds to the touch-based DOF’s.

o

Junctions of the model object. J™. are transformed off-line by multiplying
them with each partial hypothesis ‘T to form ‘7™. The set of the partially-

transformed junction sets. {{7™}, is stored in a Junction database.

'A preliminary version of this work was published in Proc. [EEE/RSJ/GI Int. Conf. Intelligent
Robots and Systems, Munchen, Germany, 1994 [15]).
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3. At run-time. the two filtering techniques. presented in Section 3.3. are applied to
reduce the number of model junctions. in the junction database. that are used in
matching. Each model junction accepted by the filtering process, ‘.J™ € *T™. is
then matched with the visual junction to determine the remaining DOF’s that

complement the partial hypothesis ‘T.

We have chosen to represent the 3-D pose of an object, O, with respect to a frame. I
by three rotations about the principal axes of frame W. followed by three translations
along the same axes. The transformation matrix. "To. corresponding to the 3-D pose

of object O with respect to frame W can be written as follows [63]:

VYo = Trans(z.t;)Trans(y. ty)Trans(z,t.)Rot(=.8.)Rot(y. 0,)Rot(r.0.)
ct.cl, ¢6.50,50, — s0.cl, ch.s0,c0, + s6.50,. t,
s0.c0, 50.350,50, + cf.cl, $8.50,c0, — cf.s0. ty

—s6, cl,s0. cd,cl; ¢,
0 0 0 |

(3.1)

where Rot(w.f,) is the rotation matrix of angle 0, about w axis. Trans(w.t,) is the
translation matrix of ¢, along w axis. cf = cos(8). and s0 = sin(9).

By our choice of the tactile-feature frame (Fig. 3.1). matching a tactile S-patch
with a model S-surface determines three DOF’s. 0:. 8, and t., while matching an
SE-patch with an SE-surface determines additional two DOF's. 6. and t,. Thus. at
run-time. the vision-based matcher has to determine f..t: and ¢, for an S-patch. and
only ¢, for an SE-patch. It is interesting to observe that the original vision/touch-
based 3DOR problem is essentially reduced to vision-based 2-D and 1-D recognition

problems for S- and SE-patch cases. respectively.

3.2.2 Determination of Touch-Based DOF’s

In this section. we outline the procedure which determines the DOF’s that can be
obtained by matching a tactile feature with a corresponding model one.
The partial hypothesis *T, which transforms the ith model feature so as to match

the tactile patch. can be written as follows:

i - ‘T, Trans(z,t;.)Rot(y, 0:;y)Rot(z,0;.) for S-surface Sm
| 'Tse = Trans(y. tiy)Rot(z.6;.)’T, for SE-surface (ST EM)?
(3.2)

i
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Figure 3.2: Transformation of model S-surface S™ to the tactile S-patch: (a) after
rotation about the r and y axes. (b) after translation along the = axis.

That is, ‘T, and ‘T, are the transformation matrices that transform S-surface S™
and SE-surface (S7*. ET) from the object frame to the tactile-feature frame. respec-
tively.

Let us first determine the DOF’s of 'T,. According to our choice of the tactile-

feature frame (Fig. 3.1(a)), the equation of ST after the final transformation is
Zzx =0 (3.3)

where Z. the direction vector along the positive direction of the = axis. is the outward
normal of the surface after transformation. From (1.1) and (3.3), we observe that
the outward nermals of ST before and after the final transformation are n and Z.

respectively. From (3.1), these normals are related by

2 = Rot(z.0;.)Rot(y.6;,) Rot(z. 8;;)n™. (3.4)

Pre-multiplying both sides of (3.4) by Rot='(z,0;.) and considering that Rot~!(2.0,.)z =
Z. we get

% = Rot(y,0;,) Rot(z,0:;)n™. (3.5)

Expanding (3.5). we get the following equation:

0 cbiy,  s0;y30;, s8iyclir ni
0 = 0 cl;, —30;; n:’z : (3.6)
1 —s0;y  cliysbiz  cbiycl;, i

2To simplify the notation. we assume here that index i uniquely identifies SE-surface features.
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Figure 3.3: Transformation of model SE-surface (S™. ET") to the tactile SE-patch:
(a) after rotation about the z axis. (b) after translation along the y axis.

From (3.6). we obtain §;, and 0;, as follows:

m

0 —_ n‘y 3 -
ir = arctan(—m—). (3.7)
1 2~
0, = —arctan2(nl.. sﬂirn‘-'; + cf;.nl). (3.8)
[f n}y = n]} = 0. when n is parallel to the r axis. then there will be an infinite

number of solutions for 8,,. In this case. we arbitrarily set 6,, to zero.

After the rotation of S™ by 0;, and 0iy about the z and y axes. respectively. the
surface is now parallel to the r—y plane. with the outward normal in the direction of
z (see Fig. 3.2(a)). Since rotation of a plane does not change its distance from the
origin. a translation of —d™ along the = axis will translate ST to the r—y plane (see
Fig. 3.2(b))3. That is

ti. = —d™. (3.9)

Next. let us determine the two edge-dependent DOF’s of 'Tse, 0, and t;,. After
transformation by the three parameters determined above in equations (3.7)-(3.9).
edge ET* of surface ST, chosen to match the tactile edge, lies in the z—y plane. Thus.

it can be represented by the following 2-D equation:

I'l;~'1)(=([7-'1 (3.10)

J

3Notice that we have computed ¢;. without computing 6;; since the terms Rot(z,6.) and
Trans(z,t.) can be interchanged in (3.1) without affecting the whole transformation.



where n" is the normal of edge ET" that points to the interior of surface S™. and d7
is the distance from the origin to the edge in the direction of n" (see Fig. 3.3(a)).
According to our choice of the tactile-feature frame (see Fig. 3.1(b)). the 2-D equation

of EJ"‘ after the final transformation is
yx=0 (3.11)

where . the direction vector along the positive direction of the y axis, is the edge
normal that points to the interior of the surface. From (3.10) and (3.11), the normals

of edge ET* before and after rotation about the = axis are n’ and ¥, respectively.

That is
0\ _ [ cb: —sb;. nw. 2 19
( L ) B ( s0j:  cfs ) ( ny ) ’ (5-12)

From (3.12). 6,. is obtained as follows:

0;- = arctan2(n}, . n7 ). (3.13)

After rotating edge EJ’»" by 8;. about the = axis, the edge is now parallel to the r axis

at distance dT* from it (see Fig. 3.3(b)). Thus. a translation of —d™ along the y axis

will align edge ET* with the tactile edge. That is
tiy = —d™. (3.14)

3.2.3 Determination of Vision-Based DOF’s

Given a partially-transformed model Junction from the junction database. :.J™. and
a visual junction, J*, the objective of the vision-based matcher is to compute the
undetermined DOF’s that transform {J™ so as to match J°. These DOF’s are 4., ¢,

and ¢, for the S-patch case, and ¢, for the SE-patch one. Define the following:

1. Functions:
dir(u.v) = direction vector from u to v
angle(u.v) = angle between u and v

2. Camera:
c = camera viewpoint

f = camera focal length



3. Line of Sight:

L(v) = 3-D line from c through image point v

L(v.a) = point on L(v) at a distance « from c

L(v,.a) = w component of L(v,a) (« = T, yorz)
4. Partially-Transformed Model Junction J™:

iym = junction vertex

‘el = direction of the kth junction edge

. Visual Junction .J*:

(1]

v* = junction vertex

u; = end vertex of the kth junction edge

ep = direction of the kth junction edge (e} = dir(v®. u;))
|./*] = number of junction edges

w = direction of line of sight L(v®) (w = dir(e, v®))

P = half plane formed by w and e}

my = normal of half plane P, (m; = w x et)

The equation of half plane P, is

m;x = 0. (3.15)
Line of sight L(v*) can be represented as

X = Cc+ aw. (3.16)

where a is the distance from ¢ to x in the direction of w.
Model junction ‘.J™ is said to match visual Junction J*, if it can be transformed
by the undetermined DOF’s. to form /.J™. so that the following necessary conditions

are satisfied (refer to Fig. 3.4):
I. The direction of each model edge, /e, lies inside half plane P.*.

2. The model vertex, {v™, lies on line of sight L(v®), and the distance from the

camera viewpoint ¢ to /v™ is greater than the camera focal length f.

‘For /e to lie inside Pi. my -fef should be approximately 0, and w x /e should be in the
same direction of my.
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Figure 3.4: A visual junction and a matching model one.

The matching steps for S- and SE-patches are presented in the next two subsec-

tions.

A. The S-Patch Case

[n this case. the only unknown rotation angle is §.. Thus, fepr, the direction of model
edge ‘e’ after the final transformation. is confined to a cone that embeds ‘el and

whose axis coincides with the = axis. This cone, Cy., is parametrized by . as follows:

cd. —s0. 0 '
x=| s0. cf. 0 ‘er. (3.17)
0 0 l

Also. /e is confined to lie inside half plane P.. Thus. /el is determined by the
intersection of C'y and P, as shown in Fig. 3.5(a). Solving (3.15) and (3.17). we

obtain an equation of the form:

asin(f.) + bcos(8.) = ¢ (3.18)
where

a = -—mk,"el."y + mky‘.eZ‘I

b = mk,ie,'c"r + mkyie,g

¢ = —mglep..
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Figure 3.5: Matching in the S-patch case: (a) computing rotation. (b) computing
translation.

Solving (3.18). we obtain the following expressions for 6.:
0. = { arcsin (\/;—%——b,—)— arctan2(b, a) . (3.19)
T — arcsin { == | — arctan2(b. a)
Notice that there is a solution. only if | 7o |$ L. Also. notice that there is a
singularity when « = b = 0. This occurs when either m; or ‘e is parallel to the =
axis. To avoid this case. we select the scene junction edge with the largest (a? + b?)
for computing §..

Each generated 0. is then verified by utilizing the remaining scene edges as follows.
The direction of each remaining edge. ‘e]. is rotated by 8. about the the : axis to
form /ej*. The first matching condition, discussed above, is then applied to determine
whether to accept 6..

For an accepted 6., matching continues by computing the translation parameters
tr and ¢, as follows: The position of model vertex ‘v™ after the final transformation.
fv™_ is confined to a plane. Q. that passes through ‘v™ and is parallel to the r—y

plane (see [ig. 3.5(b)). Plane Q is represented by the following equation:
2x = ‘o™, (3.20)

[t is easy to see that /v™ is determined by the intersection of plane @ with line of

sight L(v*) (Fig. 3.5(b)). Solving (3.16) and (3.20). we obtain a. the distance from

ap = (ii) (3.21)

w,

cto fvm:
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Figure 3.6: Matching in the SE-patch case.

Substituting (3.21) into (3.16). we get fvm:

m

Ivm = e+ arw. (3.22)

Notice that /v™ has to satisfy the second matching condition, for matching to con-

tinue. The relationship between ‘v™ and fv™ is

cd. —s6. 0 tz
fvm=1 s0. 0. 0 |ivm + | ¢ (3.23)
0 0 l 0

From (3.23). we obtain ¢, and ¢, as follows:

e = ol = (cf.' 0] — 500 (3.24)
ty = Tl —(s0.50m + b uT). (3.25)

Notice that there is a singularity if w. = 0 (see (3.21)). This occurs when L(v*)
is parallel to the z—y plane. In this case. matching fails, and another visual junction

should be examined.
From (3.1). (3.2), (3.19), (3.24) and (3.25), we obtain TTp, a complete pose

hypothesis of the model object with respect to the tactile-feature frame:
Ty = Trans(z.t;)Trans(y,t,)Rot(z.0.)'T,.

B. The SE-Patch Case

In this case. the only DOF that needs to be determined on-line is the translation
along the r axis. t;. Since direction vectors do not change with translation, we have

fep = ‘e, for all k. If any e’ is not accepted by the frst matching condition. then
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matching fails. Otherwise. it proceeds by examining model vertex ‘v™. It is easy to
see that the position of ‘v™ after the final transformation. fv™. is confined to a line.
M. that passes through ‘v™ and is parallel to the r axis (see Fig. 3.6). Line M is
represented as

X ='v™ + a% (3.26)
where X is the direction vector along the positive direction of the r axis. Thus. fv™
is determined by the intersection of lines M and L(v®). if such intersection exists. To
test for intersection in the presence of uncertainty, we compute the distance between
lines W and L(v*). i.e., length of the common normal. If this distance is less than
some threshold. then intersection is assumed to exist: otherwise matching fails. [f
there is an intersection. then /v™ is approximated as follows. Let the common normal
of L(v®) and M intersect them at x; and Xy, respectively, and let ar and ay; be
their corresponding a’s (see Fig. 3.6). The position of {v™ can be approximated by

substituting ays into (3.26). That is.

m

fym™ =™ 1 ayk. (3.27)

The relationship between ‘v™ and fv™ js represented as

From (3.27) and (3.28), we directly obtain teo:
t: = ayr. (3.29)

Note that /v™ has to be accepted by the second matching condition for matching to
succeed. It should also be noted that there is a singularity if line L(v*®) is parallel to
the r axis, since the pair (xr.Xar) will not be unique. In this case, another visual
junction should be examined.

From (3.1). (3.2) and (3.29). we obtain TTo. a complete pose hyvpothesis of the

model object with respect to the tactile-feature frame:

Ty = Trans(z,t;)' Tse.



Figure 3.7: Application of object-occupancy constraint OOC(F™): (a) OOC(F™) is
inconsistent with junction .J*, (b) OOC(F™) is consistent with junction .J°.

3.3 Filtering Techniques

[n this section. we describe a couple of filtering techniques for reducing the number
of model junctions that are actually matched with a scene one. Those techniques are
especially important since the size of the junction database can be large. For a poly-
hedron with S surfaces. and Es edges per surface, the total number of junctions in the
Junction database is of order O(S2Es) and O(S?E?%) for S- and SE-patch cases. respec-
tively. Section 3.3.1 presents a filtering technique which uses the object-occupancy
constraint. [n Section 3.3.2. we present the other technique, which derives bounds on

transformation-invariant model attributes by utilizing the edge-angle constraint.

3.3.1 Object-Occupancy Constraint

For each match between a tactile feature, F*, and a corresponding model one. F™. we
construct volume OOC(F™) off-line. This volume provides an approximate bound
on the space occupied by O given that F™ corresponds to F'* (refer to Section 2.3.3).
The set of all object-occupancy constraints V = {OOC(F™)} is stored in a volume
database. At run-time, we compute the intersection between the lines of sight of
junction J°. L(v®) and L(u}). and each volume OOC(F™). If any of those lines
of sight does not intersect OOC(F™) (eg.. see Fig. 3.7(a)). then model feature
Fm

the set ‘7™ are excluded from matching. On the other hand. if all lines of sight

is inconsistent with the scene feature set. Accordingly, all model junctions in
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Figure 3.8: Object-occupancy constraints: (a) S-patch case. (b) SE-patch case.

intersect OOC(FT") (e.g.. see Fig. 3.7(b)). then model junctions in ‘7™ are considered
for matching. This filtering technique is very useful in eliminating erroneous scene
Junctions that are distant from the tactile sensor.

Let O be a model object, and let !© be the object after transformation by T (refer
to (3.2)). In the S-patch case. the partially-transformed object ‘O is constrained to
move freely in the r—y plane such that S-surface S™. assumed to be in contact
with the tactile sensor. totally covers the sensor. Since f. is unknown off-line. the
uncertainty about the volume occupied by {© can be approximated by a cylinder along
the : axis. OOC(S™). as shown in Fig. 3.8(a). Dimensions of such a cylinder are
derived in Appendix C.1. In the SE-patch case, the partially-transformed object '@ is
constrained to move along the r axis such that model edge E™. of model surface ST
totally covers the tactile edge. Hence, the uncertainty about the volume occupied by
‘O can be approximated by a cuboid, OOC((ST*, E™)), that is parallel to the principal
axes (see Fig. 3.8(b)). Derivation of the dimensions of cuboijd Q0C((ST. E™)) is

presented in Appendix C.2.

3.3.2 Constraints on Model Attributes

[n this technique, transformation-invariant model attributes are utilized in order to
reduce the number of scene/model matches. A model feature (a partially-transformed
model junction in the junction database) is considered for matching with a given scene
one (a visual junction). only if its attribute values lie within the respective scene

bounds. Thus, an incompatible model junction can be eliminated from matching

50



Figure 3.9: Extreme bounds on angle(p. wy(8)): (a) [90°.90°]. (b) EAC(F™. EY).

using very few comparison operations®. Notice that the tactile polygon is implicitly
included in the process by choosing the tactile-feature frame as the reference one.

The invariant attributes of a model junction can be determined as follows. For
an S-patch. since only 4.. ¢, and ty need to be determined on-line. it is easy to show
that angle(z.‘ef*) and ‘v™ are invariant attributes. Similarly, for an SE-patch. since
the only DOF that needs to be determined on-line is tr. it can be easily shown that
angle(X.'ef). angle(y.‘eg). angle(.'el). ‘e and ‘v™ are invariant attributes. Thus.
for a scene junction .J*. the number of corresponding attribute bounds is (14 | .J; |)
and (24 3| .J, |) for S- and SE-patch cases. respectively.

Now. let us determine scene bounds on the above model attributes. For angu-
lar attributes. we first compute the edge-angle constraint EAC(F™. Ef). for each
model feature F7" and junction edge E} (refer to Section 2.3.3). Let us assume
that model features F™ and 'EJ* match the corresponding scene ones. In such a
case. we can represent the direction of / Ef* by vector wi(f). defined in (B.1). where
8 € EAC(F™, E$). Bounds on angle(p, wi(8)), where p is substituted by X. ¥ or Z.
are obtained by determining the minimum and maximum values of angle(p. wi(0)).
subject to the constraint § € EAC(F™, E}). Details of such a process are presented
in Appendix D.

It is interesting to note that the tightness. and accordingly the robustness. of the
bounds on angle(p. w(8)) vary considerably depending on the direction of p relative

to my and w. For example, those bounds are [90°,90°] if p is aligned with m, (Fig.

51t is also possible to index the invariant model attributes, thereby significantly improving speed
by enabling direct access to compatible model Jjunctions.



3.9(a)). but EAC(F™. ER). if p is aligned with w (Fig. 3.9(b)).
Bounds on the distance attributes can be determined as follows. From (3.16). it

is easy to obtain bounds on attribute iv,j," (w is substituted by either y or z):
minmax( L(v?, a™"), L(v?, a™7))

where minmax({z}) = [min({z}). max({z})], and V DC(S™. Ve) = [a@mn amer),

3.4 Experimental Results

In this section. we present a number of simulation and real experiments to demon-

strate the performance of the proposed vision/touch-based pose-generation technique.

3.4.1 Uncertainty Handling

Thresholds which are used throughout the system are automatically determined based

on the following error model:

I. Tactile-Sensor Frame: The actual origin of the frame is assumed to he within
some distance. Ar/. of the estimated one. The actual principal axes are assumed
to be obtained from the estimated ones by rotating them about an arbitrary

axis. where the rotation angle is between 0 and some threshold, Ag/.

2. Tactile Verter: The actual tactile vertex. of a tactile edge, is assumed to be

within some distance. Art. of the estimated one.

3. Visual Verter: The actual visual vertex is assumed to be within some pixel

distance. Ar?, of the estimated one.

3.4.2 Simulation Experiments

Fig. 3.10(a) shows a scene of a three-fingered robot hand inserting a peg to a slot.
Fig. 3.10(b) shows results of the feature extraction process. Nine three-edge and 21
two-edge junctions are extracted from such a scene. Since it is hard to determine
whether a given junction belongs to the model object. we use all of those junctions
for matching. A tactile sensor of dimensions 10 mm x 10 mm is assumed to exist on

the middle finger of the robot hand. Fig. 3.11 shows the tactile images obtained by
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(a) (b)

Figure 3.10: A synthetic scene of a peg being inserted to a slot: (a) scene. (b)
extracted edges.

[

(a) (b)

Figure 3.11: Positions of the tactile sensor: (a) surface contact, (b) surface-edge
contact.



Feature Scene Model Features Generated
Set Features | Total | Filtered 1 | Filtered 2 Hypos.
J-leature 25 60 N/A N/A 40.3
S-patch + junction 30 420 280.2 124.1 17.4
SE-patch + junction 30 1800 780.0 10.6 2.2

Table 3.1: Peg-to-a-slot scene: Generated hypotheses.

assuming that the tactile sensor is mounted at two different positions on the middle
finger.

To perform a quantitative comparison between vision/touch-based and vision-
based localization. we use a technique similar to that presented by Kanatani [49] and
Wong and Kittler [74] to visually generate pose hypotheses. In their techniques. the
visual feature used for matching is a three-edge junction. where one of the junction
edges is fully visible. This feature will be referred to as a J-feature. A junction edge
is considered fully visible if the other end is also a junction. Thus. for n three-edge
scene junctions. the total number of .J-features can be up to 3n.

For each type of scene feature sets (./-feature, S-patch (Fig. 3.11(a)) + junction.
SE-patch (Fig. 3.11(b)) + Junction). localization is performed 100 times. In each
run. the sensory data are randomly perturbed, according to the bounded-error model
outlined above. assuming N9/ = 5°, Ar/ = 5 mm, Arf = 0.75 mm. and Ar* =
I pixel. The results obtained in all runs. for each type of scene sets, are averaged and

summarized in Table 3.1. Columns in this table are:
l. Feature Set: the scene feature set used to generate hypotheses
2. Scene Features: number of scene feature sets

3. Model Features (Total): total number of model feature sets that correspond to

the scene set

4. Model Features (Filtered [): average number of model sets, per scene set, that

are accepted by the object-occupancy constraints

5. Model Features (Filtered 2): average number of model sets, per scene set. that

are accepted by both the object-occupancy constraints and the constraints on
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model transformation-invariant attributes

Generated Hypotheses: average number of generated hypotheses. per scene set

Table 3.1. we can observe the following:

. The two filtering techniques. individually. succeed in eliminating a large num-

ber of model junctions. On the average, 33% and 57% of the model junctions
are eliminated by the object-occupancy constraints for S- and SE-patches. re-
spectively. On the other hand. the constraints on invariant model attributes
succeed in eliminating many of the model junctions that have passed the object-
occupancy-constraint test (on the average, 56% and 99% of the model junctions
are eliminated for S- and SE-patch cases, respectively). Clearly. the filtering
techniques are more powerful in the SE-patch case. due to the presence of extra

3-D information provided by the tactile edge.

Combined together. the two filtering techniques are effective in reducing the
number of model junctions that are passed to the matcher. On the average.
only 30% and 0.6% of the model junctions are passed to the matcher for S-
and SE-patches. respectively. This makes the number of model sets that are
actually used in matching comparable to the case when only visual features are
used (124.1 and 10.6 model sets for S- and SE-patches, respectively, compared
to 60 model sets in the vision-only case). This is despite the fact that the total
number of model sets is much higher when a tactile feature is included in the
scene set (420 and 1800 for S- and SE-patches, respectively, but only 60 for

J-features).

Not all matches between model and scene Junctions are successful in generat-
ing pose hypotheses. This is because the constraints utilized by the filtering
techniques are rather “loose™; i.e., they do not guarantee that a model junction
that is accepted by them will be consistent with the scene junction. An inter-
esting research problem would be to develop tighter constraints that can still

be computed efficiently, as the ones developed here.

Incorporating a tactile feature in the scene feature set results in a considerably

smaller number of generated hypotheses. per scene set. than when only visual
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Feature Error
Set Rotational | Translational | Depth
J-feature 2.3° 34.3 mm 33.1 mm
S-patch + junction 1.3° 4.5 mm 3.0 mm
SE-patch + junction 1.9° 6.6 mm 4.1 mm

Table 3.2: Peg-to-a-slot scene: Errors in estimating the object pose.

features are used. The extent of reduction is 57% and 95% for S- and SE-
patches. respectively. This is because the tactile feature provides more explicit
information about the object pose. This enables the development of filtering
techniques that limit model sets which are passed to the matcher. Furthermore.
the presence of 3-D data in the scene feature set reduces the number of success{ul
scene/model matches. Notice that 67% of the matches are successful when only
visual features, .J-features. are used. compared to 14% and 21% success rate for

S- and SE-patches. respectively®.

Next. we compare the accuracy of the poses generated visually with those gener-

ated by integrating visual and tactile data. Table 3.2 shows such a comparison. which

is also obtained by running the vision- and vision/touch-based localization systems

100 times under different perturbation values and averaging. Columns in this table

are:

[

. Rotational Error: average angle between the quaternion representing actual

rotation and those of the estimated ones

Translational Error: average distance between the origin of actual object frame

and those of the estimated ones

Depth Error: average absolute error in estimating the object depth with respect

to the visual sensor (translation along the optical axis)

From Table 3.2, we observe that the error in rotation is quite similar in all cases.

We also observe that the rotational error in the SE-patch case is slightly larger than

that in the S-patch one. This is because the amount of uncertainty in the tactile

®Notice that the success rate in the vision/touch case would be even lower if no filtering is applied.

-

56



edge is relatively high compared to that of the visual edges. Recall that one of the
rotational DOF’s (f.. see Section 3.2) is determined by matching visual and tactile
edges in the S- and SE-patch cases. respectively. This observation is quite realistic
since the resolution of tactile sensors is usually much lower than that of visual ones.
For example. in our lab, the resolution of the tactile sensor is two orders of magnitude
lower than that of the visual one. If the tactile edge is too noisy, then it should be
ignored: i.e., the SE-patch should be considered as an S-patch. However, the price is
paid in the generation of a larger number of hypotheses that need to be verified.
For translational error. we observe that it is an order of magnitude worse when
only visual features are used. Observing the Depth-Error column in Table 3.2. we
can see that, in the vision-only case, most of the translational error is due to poor
object-depth estimation. This observation can be explained as follows. Visually. the
object depth is determined by matching a fully-visible scene edge with a model one
[49. 74]. It can be shown that the accuracy of such a process is proportional to the
actual object depth. along with the relative error in determining the edge length.
Thus. we can expect poorer depth estimation for short fully-visible edges. and for
objects that are not close to the image plane (in this experiment. the depth of the
peg is 925.0 mm). On the other hand. in the vision/touch case. depth is estimated
by determining the intersection of the tactile plane (or the tactile edge) with a line
of sight corresponding to a junction vertex. The error in estimating the location of

the intersection point depends on the following factors:

l. Rotational and translational uncertainties of the tactile-feature frame

o

Distance between the tactile-feature frame and the line of sight (notice that the
error component due to the rotational uncertainty of the tactile-feature frame

is proportional to the above distance)

3. Uncertainty of the line of sight

The accuracy of the intersection point, and accordingly that of depth estimation. is

weakly dependent on the object depth because of the following reasons:

l. The uncertainties of the tactile-feature frame are independent of the object

depth.
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Figure 3.12: First real scene: (a) scene. (b) extracted edges.

2. The distance between the tactile-feature frame and the line of sight is bounded

by the object size.

3. The uncertainty of the line of sight is relatively very small, which makes its error
contribution insignificant. To illustrate this observation. let us represent this
uncertainty by a cone whose axis is the line of sight and angle is determined
by the uncertainty of the corresponding vertex. Ar? (see Section 3.4.1). Ex-
perimentally. we have found that such an angle is very small. which makes the
divergence rate of the cone very slow. For example. assuming Ar? = 1 pixel. we

have found that the cone radius at the peg depth (925.0 mm) is about 0.7 mm".

[t should be noted that we are not trying to draw general conclusions about the
accuracy of pose estimates generated visually compared to those generated by inte-
grating visual and tactile data. Obviously. this depends on many factors including
amount of uncertainty in both visual and tactile data, geometric relationships be-
tween features. and object depth. Qur objective is simply to highlight some common
situations (in particular, when the object is not close to the image plane) in which
vision/touch-based depth estimation can be much more accurate than vision-based

estimation.
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Figure 3.13: First real scene: tactile image: (a) original. (b) thresholded.

Feature Scene Model Features Generated
Set Features | Total | Filtered 1 | Filtered 2 Hypos. |
J-feature 7 48 N/A N/A 48
S-patch + junction i 288 271.1 73.4 24
SE-patch + junction 17 1152 768.0 1.65 1.65

Table 3.3: First real scene

: Generated hypotheses.

Figure 3.14: Valid hypotheses for the: (a) S-patch case {four hypotheses). (b) SE-

patch case (four hypotheses). (c) vision-only case (six hypotheses)
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Figure 3.15: Second real scene: (a) scene. (b) extracted edges.

3.4.3 Real Experiments

The proposed technique has also been tested using real data. The experimental
setting is that described in Section 2.4.3. Fig. 3.12(a) shows a scene of a parallel-jaw
gripper grasping a rectangular polyhedron. Results of the feature extraction process
are shown in Fig. 3.12(b). Three three-edge junctions and 14 two-edge ones are
extracted from such a scene. Fig. 3.13(a) shows the original tactile image. The
darkness of each tactile element (tactel) in this image is proportional to the pressure
on it. The tactile image is filtered and thresholded to form the binary image shown
in Fig. 3.13(b). This binary image is analyzed to detect an SE-patch. To test the
system performance in the S-patch case. we also consider the center of the sensor
as an S-patch of negligible dimensions (notice that the sensor center lies inside the
tactile polygon). Pose-generation results are shown in Table 3.3. From this table.
similar conclusions can be drawn as in the simulation experiments. Fig. 3.14 shows
wireframes of the valid generated hypotheses (i.e.. those generated from valid scene
sets), for each of the three scene feature sets. Notice the variance in the accuracy
of the visually-generated poses, compared to those that are generated by integrating
vision and touch. As explained before. this variance is mainly due to poor depth
estimation.

Our second real scene, Figs. 3.15. is quite similar to the first one, except that the

object is heavily occluded. In such a scene. there is insufficient visual information

“The assumed camera model is that of an NEC CCD camera. This camera is the one used in the
real experiments. which are presented in the next section.
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Figure 3.16: Second real scene: tactile image: (a) original. (b) thresholded.

Feature Scene Model Features Generated
Set Features | Total | Filtered 1 | Filtered 2 Hypos.
J-feature 11 48 N/A N/A 30.5
S-patch + junction 34 288 251.2 63.5 23.5
SE-patch + junction 34 1152 700.2 8.8 4.2

Table 3.4: Second real scene: Generated hypotheses (all visually-generated hypotheses

are erroneous).

Figure 3.17: Valid hypothesis for: (a) S-patch case .
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(b) SE-patch case.




to determine the object pose (only one valid two-edge junction is extracted). Fig.
3.16 shows the obtained tactile data, from which an SE-patch is extracted. As in
the previous scene. the sensor center is selected as an S-patch of negligible dimen-
sions to test the system performance in the S-patch case. Results are summarized
in Table 3.4. The obtained results further enforces the conclusions drawn earlier.
Figs. 3.17(a) and 3.17(b) show the valid generated hypothesis for S- and SE-patch
cases. respectively. This experiment demonstrates the capability of the proposed

vision/touch-based technique to determine object pose under heavy occlusion.

3.5 Conclusions

A novel technique has been presented for generating hypotheses by integrating visual
and tactile data. A hybrid set of visual and tactile features (a visual junction and
a tactile polygon) is used to generate pose hypotheses. The matching process first
determines a subset of the object’s DOF’s using the tactile feature. The remaining
DOF’s. which cannot be determined from the tactile feature. are then obtained from
the visual one. A couple of filtering techniques are developed to reduce the number
of model feature sets that are actually compared with a given scene set. Superiority
of the proposed technique over vision-based pose generation has been demonstrated
in its capability of determining the object pose under heavy occlusion, its generation
of a smaller number of pose hypotheses. and its accuracy in estimating object depth.

Although only two cases of tactile contact are considered here. other cases can bhe
handled in a similar fashion. For example, assume that we have an edge contact. Four
DOF’s can be determined form the tactile edge (rotation about, and translation along
the edge can not be determined). The remaining two DOF’s can then be obtained by
matching a visual feature such as a junction. for example.

The proposed approach can be extended to handle non-polyhedral objects as well.
For example, assume that we are given a cylindrical model object. A tactile edge
generated through contact between the cylinder and the tactile sensor constrains all
of the cylinder’s DOF’s except for translation along the edge. This parameter can
then be determined from the visual data by matching the cylinder’s circular ends

with corresponding visual features.



Chapter 4

Touch-Based Hypothesis
Verification

4.1 Introduction

A hypothesis is verified by performing exhaustive comparison between scene and

model features. This can be done in either of two fashions:
o Model-Driven: For each model feature. we look for a compatible scene one.
® Data-Driven: For each scene feature, we look for a compatible model one.

A naive implementation of either model- or data-driven verification would have time
complexity of order O(| F* || F™ |). where F* and F™ are sets of scene and model
features, respectively. The choice of either model- or data-driven verification seems to
be arbitrary. However. there are situations in which data-driven verification is more

efficient:

o A subset of sensory data is known to belong to the object of interest (e.g.. the
tactile data in the task of recognizing an object in a hand). In such a case.
hypotheses which are inconsistent with any piece of the sensory data can be

eliminated immediately, without any further scene/model comparisons.

o [t is possible to extract perceptual structures from the sensory data (i.e.. de-
termine groups of scene features that are likely to belong to the same object).
Hypotheses generated by matching features in some perceptual structure are

expected to be consistent with the rest of features in the structure. Hypotheses
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inconsistent with any of those features can be eliminated. or at least given a

lower priority than the consistent ones.

Performance of model-driven verification can be improved by indexing the scene
features [56]. Similarly, indexing of model features can improve data-driven verifica-
tion. For example. Chen and Kak [22] associate with each model feature a principal
direction. which can represent a characteristic position or orientation of the feature.
Those principal directions. expressed with respect to an object coordinate frame (Fp).
are indexed by mapping them onto a tesselated sphere, called feature sphere. At run-
time, the principal direction of the scene feature under consideration is computed.
transformed from a world frame (Fy) to Fo, and mapped to the feature sphere.
The scene feature is then compared with only those model features whose principal
directions are mapped to the same feature-sphere cell. Neighboring cells can also be
considered to handle the uncertainties in computing both the pose hypothesis and
the principal direction of the scene feature. The main limitation of feature-sphere
indexing is that it partially utilizes the constraints provided by the scene feature:
constraints on only two of the object’s six DOF’s are utilized. Constraints on the
remaining DOF’s. as well as viewpoint-invariant attributes (e.g.. dihedral angle of an
edge. radius of a cylinder) are not utilized in order to give the index more discrimi-
native power.

[n this chapter. we present an indexing scheme for touch-based data-driven veri-
fication. This scheme attempts to utilize a/l constraints provided by a tactile feature
in order to build a robust index with high discriminative power. A set of standard
tactile features is considered for verification (e.g.. surface patch, edge segment). For
each considered feature type, we construct a set of constraints that bounds the object
poses which are supported by the tactile feature. A pose constraint (or a filter) is
simply a group of numeric bounds on each of the six pose parameters. The filters are
made invariant to the location of the tactile feature in the world frame by expressing
them with respect to a tactile-feature frame, Fp. This enables us to construct the
filters, as well as index them off-line. Each filter corresponds to a bound on the object
poses that lead to a match between a model feature. F™, and the tactile feature Fs.

Since. generally. we do not have q priori knowledge about which model feature F™
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corresponds to F°. a filter is constructed for every possible F™. For example. if the

scene feature is a surface patch and the model object is a rectangular polyvhedron.

then there will be six filters, one for every mode] surface. At run-time, we determine

the consistency of hypothesis H with feature F* by first transforming H from Fyy to

Fp. The index. called filter index, corresponding to the type of F'* is then traversed

using the pose parameters of H as keys. Based on this traversal. a small, possibly

empty. subset of filters is retrieved. For hypothesis & to be supported by feature F's.

it must be accepted by at least one of the retrieved filters; i.e., each pose parameter

of H must lie within the respective bound of a filter.

Main characteristics of the proposed indexing scheme are:

L.

(8]

Almost all the constraints provided by a scene feature are utilized to build a
robust index with high discriminative power. As will become clear later. this is
quite easily achieved by selecting Fp as the reference frame rather than Fo. as

in [22].

The scheme can handle more complex feature primitives than the ones in [22].
For example. as will be shown later, a polygonal surface patch along with one
of its edges (an SE-patch) can be considered a single primitive in our scheme.

This capability further improves the discriminative power of indexing.

The filter index is designed to index ranges and not values. This makes it capable
of handling cases when we only have loose bounds on a pose parameter (e.g..
the translation along the r axis lies between —10 mm and 5 mm). This also
makes it capable of explicitly handling uncertainty in estimating a parameter

(e.g.. the rotation about the z axis = 45° + 3°).

The filter index consists of several levels. where each level corresponds to a
DOF. The use of a multi-level index has the advantage of requiring a space
of polynomial complexity. In addition. viewpoint-invariant attributes can be

incorporated into the index by simply adding more levels.

The remainder of the chapter is organized as follows. The next section presents

a detailed description of the proposed indexing scheme. As in the previous chapter.

65



S- and SE-patches will be considered as representative tactile features. Computa-
tional complexity of the scheme is analyzed in Section 4.3. Section 4.4 shows some
experimental results using simulated and real data. Finally. Section 4.5 provides the

conclusions!.

4.2 Proposed Indexing Scheme

4.2.1 Overview

The consistency of scene feature F* with hvpothesis WTo is determined as follows:
) yp

l. In the off-line stage. filters are constructed by matching S- and SE-patches
with corresponding model features (Sections 4.2.3 and 4.2.4, respectively). The

constructed filters are then indexed (Section 4.2.5).

2. Hypothesis WTo is transformed from Fw to the tactile-feature frame associated

with feature F*, Fp. to form P To.
3. The six pose parameters of ?Ty are extracted (Section 4.2.2).

4. The extracted parameters of T are used to navigate the filter index to retrieve

a set of filters.

5. If the set selected by the filter index is empty, then P Ty is considered inconsis-

tent with F: otherwise. it is compared with each filter in the retrieved set.

6. If PTo is not accepted by any filter, then the hypothesis is considered incon-
sistent with feature F°. Otherwise, for each accepting filter, a fine matching
step takes place by comparing F* with the model feature corresponding to the

accepting filter in order to decide whether F* supports ?To (Section 4.2.6).

4.2.2 Extraction of Pose Parameters

As in the previous chapter. a 3-D pose of an object. O. with respect to a frame. I}, is

expressed by three rotations about the principal axes, followed by three translations

'A preliminary version of this work was published in Proc. IEEE Int. Conf. Multisensor Fusion
and Integ. for Intell. Sys.. Las Vegas. Nevada. October 1994 [14].

66



along the same axes. Given a pose. K. in the form of a transformation matrix.

kll l':l'..’ le kH

ka1 koo ko3 koy

K = . 4.1
kay ki ksz  kay ' ( )
0 0 0 1

a unique interpretation is obtained as follows: Comparing (3.1) and (4.1). we obtain
8, = arcsin(—ks;).

We choose the solution of 8, that lies in the range [—~90°.90°]. Assuming | 8, |# 90°.
6. and 6. are given by

0: = arctan2(ks,, kas)

6. = arctan2(ky. k).

On the other hand, if §, = +90°, we get
0: F 0. = arctan2(+k,,, +k3). (4.2)

respectively. Equation (4.2) implies that if | 0, |=90°. then 6, and 4. are dependent.
To get a unique interpretation. we set §, = 0. and then solve for 6. from (4.2). The

translation parameters are directly obtained as follows:
(tz ty t:) = (km k24 l’»’34)-

4.2.3 Filters of an S-patch

In this section and the next one, we will present how ideal filters are computed for each
of the two considered feature types. Uncertainty in the sensory data is handled by
dilating the ideal-filter bounds (in the current implementation, the extent of dilation
is determined empirically). Notice that since the filter index is constructed off-line.
worst-case uncertainty should be considered.

For the S-patch feature. filters are constructed by matching each model surface.
S{". with the scene S-patch (recall that the reference frame is Fp). This matching
process determines ., §, and ¢, exactly and obtains bounds on ¢, and t,, but cannot

determine or find a bound on 4..
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Figure 4.1: Computing bounds on ¢, and ty.

Derivation of 6;,., i, and ¢,. is presented in Section 3.2.2 (equations (3.7)-(3.9)).
After the transformation of surface S™ by those parameters, the problem is reduced
to a 2-D localization problem in the r—y plane. Although there is insufficient infor-
mation to compute ¢;; and {;, exactly. it is still possible to obtain bounds on those
parameters. In order to simplify this process. we approximate the tactile polygon
by a circle of radius r inside it. The partially transformed surface S™ in the r—y
plane can be represented by a binary function P(z,y) which is 1 if point (r.y) lies
inside the surface polygon. and 0 otherwise. Define P (z.y) as the polygon formed
by “shrinking™ P(z.y) by r (see Fig. 4.1). Assuming 6;. = 0, it can be shown that
the range of possible translations (¢,,. tiy) such that the sensor circle is entirely inside
P(z.y) is any point inside P.(—r, —y). Since the rotation of the object by 6;.. which
is unknown off-line. about the = axis results in the same rotation of P.(z.y). we obtain

the following bounds on ¢, and ¢,,:
[ tiz || tiy | € [0. dimaz]

where dpm,. is the maximum distance between the vertices of P.(x,y) and the origin.
/t?. + t?,, instead of ¢,,

A tighter constraint can be obtained. if we use bounds on vt-z

and t;, separately:

V ti.’!.'2 + tiyz € [dmina dma.r] (43)

where dy,;, is the minimum distance between P.(z.y) and the origin (notice that d,,;,

is 0. if the origin is inside P.(r.y)).
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Figure 4.2: A rectangular polyvhedron.

Surface 0, 9, t. A/trz +¢,2
A |(=90.-90) ¥ 30,] (0,0) 7 00, (0.0) Tof.  [(7.07,82.76) T oL,
B (0.0) F 88, |(—90,~90) F 80, | (80, 80) F 6z, | (.07, 33.08) F 6.,
C | (90.90)F 86, | (0.0)F66, |(—20,-20)F b2, |(7.07,82.76)  ot..
D (0.0) F 86 | (90,90) F66, | (0.0)F6t. |(7.07.35.08) F ot..
E | (180.180) T 66, | (0.0)7 59, (0.0) Fdt.  |(7.07.76.49) F ¢,
F (0,0) T 66, (0.0) F 80, |(—40,-40) F 6t. |(7.07,76.49) T ot..

Table 4.1: Filters associated with the model object shown in Fig. 4.2. assuming a
10 mm x 10 mm square S-patch (46,, 6,. dt. and §t,, are thresholds to cope with
the uncertainty in the sensory data).
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Figure 4.3: Translation of model edge E; along the r axis.

Equations (3.7)-(3.9) and (4.3) are the set of bounds that constitute the ideal
filter associated with surface S™. As an illustration of the above procedure, consider
the rectangular polyhedron shown in Fig. 4.2, and a2 10 mm x 10 mm square S-
patch. Filters associated with this object are shown in Table 4.1. Each row in this
table represents the filter corresponding to the match between the surface in the first

column of the table and the S-patch.

4.2.4 Filters of an SE-patch

Filters of an SE-patch are constructed by matching each model SE-surface. (STOET).
with the scene SE-patch. This matching process determines 0:. 8,. 8.. ¢, and ¢,
exactly. and obtains a bound on ¢,.

The parameters 6,., 8,,. ¢;.. ;. and tjy are derived in Section 3.2.2 (see equations
(3.7)-(3.9). and (3.13)-(3.14)). After transformation by the above parameters. it can
be shown that surface S™ becomes coincident with z—y plane, and edge ET* becomes
aligned with the z axis. Although there is insufficient information to determine ¢;,
exactly, we can still obtain bounds on it. Translation along the r axis can be split
into two steps: the first to translate the center of ET to the origin, and the second
to further translate E™ so that the scene edge remains fully inside it. Let (c;;.0) he
the center of edge £7*. m; the length of ET. and 4 the length of the scene edge (see

Fig. 4.3). The second translation component is bounded by | (—'"J# |. Therefore. we



[Edge | 7 T3 L
I (90.90) ¥40. | (0.0)Faot, | (0.40) For.
2| (180.130) F 46, | (40.40) Fot, | (0.80) F o¢,
3 | (~90.-90) ¥ 80. | (30,80) F 6t, | (—40.0) F 6¢,
4 (0.0) F 66. (0.0) F 6, | (~80.0) T &¢,

Table 4.2: Filters associated with surface 4 of the rectangular polyhedron in Fig.
4.2, for the SE-patch case, and assuming l; = 0. The bounds on 6,. 8, and ¢. are
given by the first row of Table 4.1 (66.. 8¢, and 6¢t, are thresholds to cope with the
uncertainty in the sensory data).

have

(m; — L4 (m; —la)
;.)L,_CjIJrJT],

< <

tjl- € [—-CJ',_- — (4.4)

[t can be seen that the bounds on ¢, in (4.4), apart from all the other ones, depend
on a parameter that is only known at run-time, {;. To overcome this difficulty. we
compute these bounds off-line assuming /; is equal to 0. or the minimum possible
length of an extracted edge. Then. at run-time. it is possible to update the lower
and upper bounds of ¢;, at a negligible cost by adding :t[—g". respectively. Note that if
ly > m;. then SE-surface (S™. ET") can not match the scene SE-patch. and accordingly
the corresponding filter is eliminated.

Equations (3.7)-(3.9), (3.13)-(3.14) and (4.4) are the set of bounds that constitute
the ideal filter associated with SE-surface (ST E™). As an illustration of the above
procedure. Table 4.2 shows four of the 24 filters of the rectangular polyhedron shown

in Fig. 4.2 (only those associated with the edges of surface 4).

4.2.5 The Filter Index

For a polyhedron with S surfaces, and an average of E's edges per surface. the number
of model filters is S and SEs for S- and SE-patches, respectively. Being invariant to
the location of the scene feature in Fyy. these filters can be indexed off-line. Indexing
greatly reduces the number of filters that are actually compared with a given pose
hypothesis, hence achieving significant improvement in performance.

Assume that we have a set of filters. 7", on a set of pose parameters. R, where

R = { {0:.0,.t../t.% + t,%} for an S-patch, and

{0:.0,.t..0..¢,.t.} for an SE-patch.
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Given the set of filters T". our objective is to build a multi-level index on the parame-
ters of R. to efficiently reduce the filter uncertainty of an input pose hypothesis. The
filter uncertainty of a hypothesis. H. is defined as the minimal subset of 7~ known
to contain the filter that accepts H, if such a filter exists. Clearly. the initial filter
uncertainty of any hypothesis is 7.

The proposed index can be viewed as a tree of depth m — 1. where

® m =4 and 6 for S- and SE-patches, respectively,

Each node in the tree is an array of pointers,

e Each pointer in a non-leaf node is either pointing to a child node or nil. and

e Each pointer in a leaf node is either pointing to a set of filters or nil.

For each tree node. .V. there is an associated set of filters. &/ C T. representing
the filter uncertainty of any hypothesis mapped to that node. The function of .V is to
reduce this input filter uncertainty by utilizing the bounds of ¢ on a pose parameter.
r; € R. where j — 1 € [0.m — 1] is the depth of V. A filter Ui € U can be represented

as
U,’ = {(lb,L ub,-k) k= 1m}

where (/b;. ub;) are the lower and upper bounds of U; on rr. Reduction of filter

uncertainty is performed by node .V as follows:

e The range of the bounds of I on rj. (ming({b;;), max;(ub;;)). is uniformly mapped
to the entries of V. For example. let us assume that I is the set of filters shown
in Table 4.1. The range of the bounds on 8- is [—180°, 180°]. If we allocate an
array of 36 entries to V, then each node entry, Vi, will correspond to the range
[—180° 4 10°(k — 1), ~180° + 10°k], and N will be the root node shown in Fig.
4.4,

e For each entry, Vi, in V. there is an associated set of filters. V.. representing
the output filter uncertainty of this entry. Set Vy is the subset of filters in U

with the bound on r; overlapping with the range mapped to Vi. An example of
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Figure 4.4: A filter index on the filters shown in Table 4.1 (only two levels are shown
for the sake of clarity). [t is assumed that 860, = 36, = 5°. Arrows are labelled with
sets representing the filter uncertainty at the different stages of the index.
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Figure 4.5: Reduction of filter uncertainty by a tree node of depth j — 1.



this process is shown in Fig. 4.5. [t can seen that the filters are ~dilated” when

indexed. where the extent of dilation depends on the resolution of the index

arrays.

o If Vi = &, then V. is set to nil. Otherwise, if Vi # ® and N is a non-leaf node.
then Vi points to a child node that is constructed by assuming that Vi is its
input uncertainty. Finally, if Vi # ® and N is a leaf node, then Vi points to
Vi. Entries of N with the same output filter uncertainty point to the same child

node.

An example of a filter index is shown in Fig. 4.4.

At run-time, the initial filter uncertainty 7~ of a hypothesis H is successively
reduced by traversing the filter index. Index traversal is performed by mapping the
pose parameters of H into the corresponding index entries. If the traversal encounters
a nil pointer. then A is considered inconsistent with the scene feature. Otherwise.
H is compared with the retrieved set of filters. associated with a leaf-node entry. in

order to decide whether it is inconsistent with the scene feature.

4.2.6 Fine Matching

Since model filters provide gross bounds on the object pose. especially in the S-patch
case. an extra verification step is needed to perform fine matching between the scene
feature and the hypothesized model object. Fine matching is performed as follows.
Model feature F™ assumed to correspond to scene feature F* is transformed from Fo
to Fp. Identity of F™ is directly given by the filter that has accepted the hypothesis
(recall that each filter is constructed by matching F** with some corresponding model
feature). The hypothesis is accepted only if the scene patch is entirely covered by
the model surface and the scene edge, in the SE-patch case, is entirely covered by a
model one. Notice that the identity of this model edge is also directly determined
by the accepting filter. To perform this check, we compute the minimum distance
between the scene-patch vertices and the model surface. Furthermore. in the SE-
patch case, we compute the minimum distance between the scene edge vertices and
the corresponding model edge. The hypothesis is accepted only if the maximum of

those distances is less than some threshold.
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Figure 4.6: A polyhedral model object.

Note that there may be more than one filter accepting a hypothesis. if there exists
overlapping between filters. For example, suppose that a model object has several
surfaces with the same equation. In such a case. the S-patch filters corresponding to
those surfaces will have identical bounds on 0z. 0, and t.. and possible overlapping
between the bounds on \/m [f there is more than one filter accepting the hy-
pothesis. then the verification process described above is repeated for each accepting

filter.

4.3 Complexity Analysis: A Practical Approach

[n this section. we investigate the computational complexity of the proposed verifica-
tion scheme. In order to obtain practical results. we will base the following analysis
on a number of assumptions, stated below. that are expected to be valid in a wide
range of applications.

Assume that the model object is a polyhedron with S surfaces and an average
of Es edges per surface. A possible naive verification technique would be as follows.
The equation of the scene patch is first compared with those of the model surfaces.
This stage has a time complexity of order O(S). For each model surface that has
the same equation as that of the scene patch, the model surface and the scene patch
are compared. The hypothesis is accepted only if the scene patch is inside the model
surface and the scene edge. for SE-patches only, is inside a model one. This pro-
cess has a worst-case time complexity of order O(pEsEp), where p is the maximum
number of model surfaces having the same equation, and Ep is the number of edges

in the scene patch. Thus. the whole verification process has a time complexity that
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ranges from O(S) to O(S + pEsEp). In contrast., we will show below that. under

reasonable assumptions. our verification scheme has a complexity that ranges from

O(1) (i.e.. constant time independent of the number of model features) to O(pEsEp)

and O(EsEp). for S- and SE-patches. respectively.

For the filtering step. the sequential comparison of a given pose hypothesis with

model filters has a time complexity of order O(S) for an S-patch. and O(SEs) for an

SE-patch. To estimate the reduction in time complexity achieved by filter indexing.

we make the following reasonable assumptions (refer to the model object in Fig. 4.6):

L.

(S
.

Non-similar model surface equations (e.g.. equations of surfaces 4 and B in
Fig. 4.6) are sufficiently different so as not to cause overlapping between the
corresponding sub-filters on §,. §, and ¢. (a sub-filter is simply a subset of filter
bounds). This assumption implies that the application of the sub-filters on
f:. 8, and ¢. will reduce the surface uncertainty (uncertainty about the model
surface corresponding to the scene patch) to at most those surfaces that have

the same equation (e.g.. surfaces C' and D).

For SE-surfaces having the same surface equation, non-similar edge equations
(e.g.. equations of edges C, and () are sufficiently different so as not to cause
overlapping between the corresponding sub-filters on 6. and ty. Notice that
the edge equation is the one defined in (3.10). This assumption together with
the previous one implies that the application of the sub-flters on 0. 0,.¢..0.
and ¢, in the SE-patch case will reduce the surface-edge uncertainty to at most
those pairs that have the same surface and edge equations (e.g.. the SE-surfaces

(C'. Cg) and (D, Dg)).

For SE-surfaces having the same surface and edge equations. the edges are
sufficiently far from each other so as not to cause overlapping between the
corresponding bounds on ¢;. This assumption together with the previous ones
implies that the application of the filters in the SE-patch case will reduce the

surface-edge uncertainty to at most a single SE-surface.

The resolution of the filter-index arrays is sufficient to separate between non-

overlapping bounds. This assumption ensures that the flter index is able to
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capture the discriminative power of the filters.

Let us obtain an upper limit on the size of flter uncertainty (number of filters).
For an S-patch. assumptions 1 and 4, imply that a three-level index on 6,, 0, and ¢.
will reduce the filter-uncertainty size to at most p- Extending the index to include the
bounds on /.2 + ¢, will not help in reducing the upper limit on the uncertainty size.
due to the possible overlapping between these bounds. For an SE-patch. assumptions
I -4 imply that a six-level index. on all the pose parameters, will reduce the filter
uncertainty size to at most one. Thus. filter indexing reduces the time complexity of
filtering from O($) and O(SEs) to O(p) and O(1), for S- and SE-patches, respectively.

Having a priori knowledge about the model object can help in reducing the space
complexity of the filter index, while keeping the same upper limit on the filter-
uncertainty size. For example, assume that the model object is a convex polyhedron.
Since all surfaces of a convex polyhedron have different orientations. it can be easily
shown that, under the abovementioned assumptions. a two-level index on ¢, and 4,
will reduce the filter-uncertainty size in the S-patch case to at most one. In addition.
since edges that belong to the same surface have different orientations along the sur-
face plane?. it can be easily shown that a three-level index on 0:. 0, and 6. in the
SE-patch case will also reduce the uncertainty size to at most one.

For the fine-matching step. the cost of comparing a model surface with a scene
patch has a time complexity of order O(EsEp). Thus, under the abovementioned
assumptions. the proposed verification scheme has a complexity that ranges from
O(1) to O(pEsEp) and O(EsEp), for S- and SE-patches, respectively.

It is interesting to compare the complexity bounds of our scheme with those of
the feature-sphere indexing scheme, described in Section 4.1. It can be easily shown
that the complexity of feature-sphere indexing ranges from O(1) to O(qEsEp). for
both S- and SE-patches, where q is the maximum number of model surfaces having
the same orientation. Notice that the complexity of verification is the same for both
S- and SE-patches, since feature-sphere indexing can not utilize the knowledge of a
surface patch along with one of its edges simultaneously. Since ¢ > p. we can see that

our verification scheme has better complexity bounds. In the next section. we will

*Notice that surfaces of a convex polyhedron are convex polygons.
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Figure 4.8: A mouse-like object.

demonstrate its superiority with respect to the discriminative power of indexing.

4.4 Experimental Results

The proposed verification scheme has been tested using simulation and real exper-
iments. To demonstrate the performance of the scheme. we use vision to generate
hypotheses. while touch to verify them. The technique used for vision-based hy-
pothesis generation is the same as the one used in the previous chapter (see Section

3.4.2).

4.4.1 Simulation Experiments

Fig. 4.7(a) shows a scene of a three-fingered robot hand holding a computer mouse-
like object (see Fig. 4.8). Fig. 4.7(b) shows results of the feature extraction process.
Seven three-edge junctions are extracted. From those junctions. 18 J-features are

used to generate pose hypotheses. A 10 mm x 10 mm planar-array tactile sensor is

-1
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Figure 4.9: A top view of the mouse showing the tactile sensor mounted on the middle
finger: (a) first position. (b) second position.

assumed to be mounted on the middle finger. Fig. 4.9 shows a top view of the mouse
and the tactile images obtained by assuming that the tactile sensor is mounted at two
different positions. Uncertainty is introduced into the tactile data in a manner similar
to that presented in the previous chapter (see Section 3.4.2), assuming Arf =5 mm.
A6/ = 5° and Art = 0.5 mm. The error thresholds for the filter index are empirically
chosen to be 7° for rotational DOF’s. and 13 mm for translational ones. The array
resolution for each stage of the filter index is set to half the corresponding error

threshold.

Results of verifying the visually-generated hypotheses are summarized in Table

4.3. Columns in this table are:

L. Sensor Position: the assumed sensor position as shown in Fig. 4.9
2. Data Type: type of extracted tactile data (S- or SE-patch)
3. Initial Hypotheses: number of visually-generated hypotheses

4. Hypotheses Accepted by Inder: number of hypotheses for which navigation of

the filter index retrieves one or more filters

5. Hypotheses Accepted by Filtering: number of hypotheses that are accepted by a
filter

6. Hypotheses Accepted by Fine Matching: number of hypotheses that pass the

fine-matching test

7. Valid Hypotheses: number of valid hypotheses among those that have passed

-

the fine-matching test



Sensor Data [nitial Hypos. Accepted by Valid

Position Type Hypos. | Index | Filtering | Fine Matching | Hypos.
Fig. 4.9(a) | S-patch 830 50 24 12 10
Fig. 4.9(b) | SE-patch | 880 22 11 11 10

Table 4.3: Results of the simulation experiments.
The following can be observed from the table:

o The filter index is very efficient in eliminating hypotheses that are inconsis-
tent with the tactile data in a constant time, without any comparison with
filters. Out of the 868 (869) hypotheses that are inconsistent with the S-patch
(SE-patch). only 33 (11) are accepted by the index (notice that number of in-
consistent hypotheses = total number of hypotheses - number of hypotheses
accepted by the fine matcher). Thus. the filter index succeeds in eliminating
96% and 99% of the inconsistent hypotheses for S- and SE-patches. respectively.
As explained in Section 4.2. this robustness is due to the fact that the filter in-
dex captures the constraints provided by the tactile feature. In addition. notice
that the filter index is slightly more robust in the SE-patch case. because of the

extra constraints on 4.. ¢, and ty.

¢ There are a few hypotheses that are accepted by the filter index. but not by the
filters (26 and 11 for S- and SE-patches, respectively). This is because of the

slight dilation of the filters when indexed (see Section 4.2.5).

¢ A very small number of the inconsistent hypotheses are passed to the compu-
tationally expensive fine matcher (12 and none for the two contact positions.
respectively). In addition. notice that the fine matcher does not eliminate any
hypotheses in the SE-patch case (Fig. 4.9(b)). However. this should not mis-
lead the reader that the fine-matching stage is redundant in the SE-patch case.
This is simply because the filters do not fully capture the shape of the tactile

polygon.

o Very few erroneous hypotheses are found consistent with the tactile data (two

and one hypotheses for the two contact positions, respectively). Further verifi-
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First Position Second Position
Hypothesis | Valid || Filtering | Fine Matching || Filtering | Fine Matching
a no rejected rejected
b no rejected rejected
c no accepted | rejected rejected
d no accepted | accepted rejected
e no accepted | accepted accepted | accepted
f yes | accepted | accepted accepted | accepted

Table 4.4: Results of verifying the pose hypotheses shown in Fig. 4.10.

cation can be done by utilizing other available tactile features. as well as visual

data.

To demonstrate the robustness of the filter index compared to that of the feature
sphere [22], we compare the discriminative power of both. Since §, and 4, represent
the orientation of a surface patch. a two-level filter index on f: and 6, would have a
very similar discriminative power to that of the feature sphere. Using this two-level
index in verification, we have found that. on the average, only about 62% of the
inconsistent hypotheses are rejected by the index. for both contact positions. This is
considerably lower than the discriminative power of the proposed filter index (recall
that 96% and 99% of the inconsistent hypotheses are eliminated. for the two contact
positions. respectively). In addition. notice that an SE-patch would be treated as
two independent features, an S-patch and an edge, in the feature-sphere scheme.
Thus, determining the consistency of an SE-patch with a hypothesis would involve
traversing two indices of relatively low discriminative power. not just one index of
high discriminative power, as in our case.

[t is interesting to visualize what hypotheses are accepted or rejected by the two
verification stages (filtering and fine matching). Fig. 4.10 shows a sample of six
visually-generated hypotheses. Results of verifying those hypotheses are shown in
Table 4.4. Notice that the hypothesis shown in Fig. 4.10(c) is accepted by the
filtering process in the S-patch case (see Fig. 4.9(a)), although there is no model
surface in contact with the tactile sensor. This is because the filters of an S-patch
provide only loose constraints on ¢, and ty. and no constraint on 8, (refer to Section

4.2.3).



Figure 4.10: A sample of six visually-generated pose hypotheses.

Data [nitial Hypos. Accepted by Valid
Type | Hypos. | Index | Filtering | Fine Matching | Hypos.
| SE-patch | 36 | 2 T 2 1 2 [ 2]

4.4.2 Real Experiments

Fig. 4.11(a) shows a scene of a parallel-jaw gripper grasping a rectangular polyhedron.
Three three-edge junctions are extracted. from which five J-features are used to
generate pose hypotheses. To avoid the generation of equivalent hypotheses due
to the symmetry of the model object3, we only use any two adjacent model junctions
for matching, instead of using the eight junctions. Fig. 4.12(a) shows the original
tactile image. This image is filtered and thresholded to form the binary image shown
in Fig. 4.12(b). An SE-patch is detected in this image. The error thresholds for

the filter index are empirically chosen to be 5° for rotational DOF’s. and 7 mm for

3Each pose of a rectangular polyhedron with three differe

different transformation matrices.

Table 4.5: Results of the real experiment.
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Figure 4.11: A real scene: (a) scene. (b) extracted junctions.

(b)

Figure 4.12: A real tactile image: (a) original, (b) thresholded.
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translational ones. As in the simulation experiments. the array resolution for each
stage of the filter index is set to half the corresponding error threshold.

The obtained results are summarized in Table 4.5. From these results. similar
conclusions can be drawn as in the simulation experiments. In addition. we have
used a two-level filter index. on 4, and 8. for verification. in order to estimate the
performance of feature-sphere indexing. We have found that the two-level filter index
is only capable of eliminating 53% of the inconsistent hypotheses, as opposed to 100%
for the six-level filter index in our case. This further demonstrates the robustness of
the proposed filter index.

The flexibility of multi-level indexing in utilizing the available constraints can be
seen in the task considered here (localizing an object in a parallel-jaw gripper). A
constraint that can be utilized in such a task is the distance between the parallel
jaws. Djy. This can be done by simply adding an extra level to the filter index.
corresponding to D;. In this case, the output filter uncertainty (refer to Section +.3)
for a particular D; is the set of filters associated with surfaces that have parallel ones

at distance Dj.

4.5 Conclusions

[n this chapter, we have presented a robust indexing scheme for data-driven touch-
based hypothesis verification. Robustness is achieved by utilizing almost all the con-
straints provided by tactile features. thus leading to an index with higher discrimina-
tive power than previous approaches. Utilization of these constraints is made feasible
by selecting a tactile-feature frame as the reference frame. Such a selection enables
the construction and indexing of an invariant set of constraints on object poses that
are supported by the tactile feature. At run-time, the consistency of a hypothesis
with the scene feature is efficiently determined by traversing the filter index corre-
sponding to the feature type, using pose parameters of the hypothesis as keys. For
the two types of tactile features considered in this work. S- and SE-patches. it has
been shown that our scheme has a better time complexity than previous ones. The
superiority of its discriminative power has been demonstrated using simulated and

real experiments.
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Although only two types of features are considered in this work, other types of

3-D features (e.g.. edges. corners. cylinders) can be handled in a similar fashion.
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Chapter 5

Vision-Based Hypothesis
Verification

5.1 Introduction

Hypothesis verification techniques can be classified into two categories: feature-based
and pixel-based. In feature-based verification. which is the more common approach.
a hypothesis is validated by comparing model and scene features (e.g.. [28. 41. 74]).
A problem with this type of verification is that the feature-comparison step can be
relatively complex. because of the large number of involved parameters. For example.
suppose that we are comparing straight edges. In such a case. the parameters involved
are edge equation. edge end points. and an indication of whether each edge end is
true or false. An edge end is said to be either true or false, depending upon if it is
likely to correspond to a model vertex or not. respectively. An example of true and

false edge ends is shown in Fig. 5.1. Furthermore, the uncertainty in estimating each

T T

Figure 5.1: An example of true and false edge ends.
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of the above parameters should be considered in the matching step as well. Another
problem with feature-based techniques is that they are unsuitable for implementation
on parallel graphics/vision hardware, since this type of hardware is geared towards
pixel-based operations.

In pixel-based verification, the approach adopted in this chapter, an object hy-
pothesis is verified by synthesizing an image of it, and comparing it. pixel wise. with
the input image or a direct derivative of it (e.g.. the edge image). This type of
verification has several advantages over feature-based verification. Firstly, the imple-
mentation is much simpler. Secondly. the time complexity of verifying a hypothesis is
independent of the scene complexity (number and types of scene features). Thirdly. it
is insensitive to imperfections of the feature extraction process (e.g., missing or bro-
ken edges). Finally. the technique is suitable for parallel implementation on parallel
graphics/vision hardware. This can be performed by using the graphics hardware to
synthesize an image of the hypothesized object, and then using the vision hardware
to compare scene and model images.

Pixel-based verification has been commonly used in systems that interpret range
images (e.g.. [12. 34]). The difficulty in vision-based 3DOR, in contrast to range-
based 3DOR. is the complexity of forming realistic images of model objects. This
difficulty is due to the large number of parameters involved in forming an intensity
image (e.g.. surface geometry. surface reflectance, and illumination [10]). For this
reason. the few vision-based systems reported in the literature that perform pixel-
based verification operate on the edge image instead of the intensity one. Most
of these methods precompute a “distance” image, where the value of each pixel is
its distance from the nearest edge pixel (e.g.. [5. 13]). This distance image is then
compared with the model edge image, a process that is commonly known as Chamfer
matching. The goodness of the match is evaluated by computing the average distance
between model and scene edges. Safranek et al. [66] use an approach that is based
on Dempster-Shafer theory. For each model edge pixel. evidence for the hypothesis is
gathered depending on two factors: the magnitude of the corresponding scene edge
pixel, and the angle between the direction of the model pixel and that of the scene
one. Evidence from all model pixels is then combined using Dempster-Shafer theory.

in order to decide whether to accept the hypothesis.
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There is a couple of problems with the above approaches. Firstly. thev do not
consider the uncertainty of model edge pixels. which is due to the error in object-pose
estimation. As a consequence. a valid but noisy object hypothesis might be classified
as invalid by the matching process. In order to build a robust matcher. it is important
to accommodate object-pose uncertainty. Secondly. the chosen hypothesis-selection
criteria can be misleading in some cases. For example. suppose that the object to be
recognized is partially occluded. In such a case, an erroneous hypothesis of a small
narrow object that is located along an edge (e.g., the hypothesis in Fig. 5.7(b)) might
be selected as the valid one.

[n this chapter. we present a pixel-based verification technique that attempts to
overcome the above problems. Knowledge about the uncertainties of both scene and
model edge pixels is utilized by appropriately dilating the scene edge image. An
analytical method is presented to determine the extent of dilation. assuming some
bounded error on the object pose. The dilated edge image can be viewed as a binary
distance image. where the value of each pixel is either zero or one, depending on
whether or not it corresponds to an edge, respectively. To overcome the inadequacy
of the above hypothesis-selection criteria. we use one that depends on both average
edge distance and hypothesized-object size.

The remainder of the chapter is organized as follows. The next section presents
the verification technique in detail. Experimental results on real data are presented

in Section 5.3. Finally. conclusions are drawn in Section 5.4!.

5.2 Pixel-Based Verification

In this section, we first present an overview of the verification technique. This will be
followed by a discussion on the uncertainties of scene and model edge pixels. Finally.
we present an analytical method for estimating the extent of dilation of the scene

edge image. given an error bound on the object pose.

'A preliminary version of this work was published in Proc. [EEE Int. Conf. Robotics and
Automation. Minneapolis. Minnesota, April 1996 [17].
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5.2.1 Overview
The verification algorithm can be written as follows:

Construct edge image. [°. from the input scene image.
Dilate /* to accommodate scene and model uncertainties.
for each generated object hypothesis do
Construct edge image, ™, of the hypothesis.
Set hit_count, miss_count and total_count to 0.
for each edge pixel in /™ do
total count = total_count + 1
if corresponding pixel in [° is an edge then
hit_count = hit_count + 1
else
miss_count = miss_count + 1.

Accept the hypothesis with maximum p = vistbility ratio * size_ratio . where

hit_count
total _count *

visibility ratio = and

hit_count
max{hit_count} "

sizeratio =

From the above algorithm. we observe that verification is merely a simple pixel-
comparison process. [n such a process. each model edge pixel that matches a scene
one votes in favor of the hypothesis; otherwise. it votes against it. We define a

hypothesis-selection criterion. p. that depends on two factors:

L. Size of the visible-part of the object (i.e., number of matched pixels) relative to

the total object size (visibility ratio).

2. Size of the visible-part relative to the largest visible-part of all object hypotheses

(size_ratio).

Thus. the criterion favors less occluded and larger object hypotheses. It is easy to
see that hypothesis validity is directly proportional to p. which lies in the range [0. 1].
Notice that (1 — visibility ratio) can be interpreted as the average edge distance. if.
as mentioned in the previous section. the dilated edge image is viewed as a distance

image.



9.2.2 Scene and Model Uncertainties

Assume that we have a scene edge point. e®. that is the projection of some model
edge point. e™. I[deally. we should have

e’ = proj(e™) (5.1)

where proj(e) = ( fz ff"_‘ )t and f is the camera focal length. Practically. however.
we only have estimates of e* and e™, which we will denote by €° and e™, respectively.
The discrepancy between &° and e° is referred to as scene uncertainty. while that
between proj(€™) and proj(e™) is referred to as model uncertainty. There are several
factors that contribute to scene uncertainty such as image quantization. and imper-
fections of the edge-extraction process. Approaches for modeling and analyzing scene
uncertainty can be found in [9. 47. 52]. Model uncertainty. a main focus of this chap-

ter. is due to the error in object-pose estimation. The relationship between €™ and

e™ can be expressed as
e" = Ee™ (5.2)

where E is a transformation matrix that represents the error in estimating the object

pose. Assuming small rotational error. we can represent E as follows (see [63]):
I —-d86. 46, ét.d

a0, I -0, ét,d

—46, 40, I ét.d
0 0 0 l

where 66, is the rotational error about w axis. dt,, is the scale of the translational error

E= (5.3)

along w axis (w = r,y, z), and d is the object depth (translation of the object center
along the optical axis). The translational error is chosen to be linearly proportional to
the object depth. since this is the general case in vision-based hypothesis generation
(e.g.. [49, 74]).

Assuming that the pose error is bounded. we can represent both scene and model
uncertainties by uncertainty regions, R*(e*) and R™(&°), respectively. in the image
plane. These regions provide spatial bounds on the locations of e® and proj(é™).

respectively, under some error assumptions. Formally,

R°(e°) = {e°:e"is a possible location of e’}

R™ (&%)

il

{proj(é™) : &™ € Ee™ where proj(e™) = e’}
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Our objective is to dilate the scene edge image so as to accommodate both scene
and model uncertainties. This can be done by replacing each scene edge pixel &° by

region F2(€°). This region is defined as
R(e’) = R™ (&%) = R°(e&°) (5.4)
where A % B is the dilation of region 4 by region B (see (37])%.

9.2.3 Determination of Model Uncertainty

[n this section, we present an analytical method to determine the model uncertainty
region R™(&°). The method starts by computing V™(e™). a spatial bound on the 3-D
location of é™. Region R™(&*) is then determined by simply projecting V™ (e™) onto
the image plane.

Assuming that the variation in the object depth is small relative to the actual
depth. we can reasonably approximate d by e in the expression for £, defined in

(5.3). Having done so. we get the following error equation from (3.2) and (5.3):

de™ = Adp (5.3)
where
de™ = &m —e™
Y]
°p = (5t>
0 e —e e’ 0 0
A = —el 0 el 0 e 0 (5.6)
e, —el' 0 0 0 €T

The pose-error vector, dp, is assumed to be bounded within a 6-D ellipsoid. This

ellipsoid is represented by the equation

Jt
-]
~—

Sp'AJtép =1 (5.
where A, is the diagonal matrix:

Ap = diag((687%)2. (8672%)2, (§™2%)2, (§™2x)2, (81572%)2, (5¢max)2), (5.8)

*There is a slight approximation in (5.4) because it implicitly assumes that the shape of R™(é&*)
is the same for any point in R*(6*). As will be shown later. this is not the case. However. we
consider this assumption to be reasonable since R*(&’) is expected to be very small.
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The error-bound vectors 3™ and §t™* can be determined through knowledge of the
hypothesis-generation algorithm. In some cases. the hypothesis generator produces
hypotheses with no predetermined error bound. In such cases. the error bound in
(5.8) can be interpreted as a “threshold” that differentiates between a valid noisy

hypothesis and an invalid one.
From (5.5) and (5.7), it can be shown (see [33]) that Se™ lies within a 3-D ellipsoid

defined by
(de™) A ge™ =1 (5.9)
where
A, = AANAS (5.10)
Thus, the equation of ellipsoid V"™ (e™), which bounds &™. is
(x—e™)A] (x—e™)=1. (5.11)

Projecting V'™ (e™) onto the image plane. we get an ellipse, which defines the model
uncertainty region B™(&°). The boundary of R™(&%) is the projection of those points
on ¥"™(e™), x. whose normals, 2A7!(x — e™). are perpendicular to the corresponding

line of sight. Thus, these points are determined by the following equation:

x' AT (x—e™) = 0. (5.12)

e

Subtracting (5.12) from (5.11), we get the following plane equation:

(e™)A'x = (e™)'ATle™ — . (5.13)

e

Thus. R™(&°%) is the projection of the 3-D ellipse defined by the intersection of the
above plane with V"™(e™). The equation of the conic, A™(e™), that passes through

such an ellipse is determined as follows. Squaring both sides of (5.13), we get
x'(aA]e™(e™) AT a)x = 1 (5.14)

. - L o = : = :
where a = ea-Temy Substituting from (5.13) into (5.11) and rearranging, we get

(1}
—
Ut

-~

x(eA[)x = 1. (5.
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Subtracting (5.14) from (5.15). we get the equation of A™(e™):
X'Af'x =0 (5.16)
where
A=A I - e™(e™)A ). (3.17)
The 2-D equation of ellipse R™(&°) in the image plane is then obtained by substituting
x=(r y f ) in(5.16), toget a 2-D equation of the following form:
(x—c)AY (x~c)=1 (5.18)
where c is the center of R™(&*) in the image plane, and AZ! is a 2 x 2 symmetric

matrix. Note that R™(&°) is independent of the length of e™, || e™ ||, which is

unknown @ priori. This fact can be proved by observing the following:

L. Matrix A in (5.6) can be represented as the product of ﬁelTll and a matrix whose
elements are dependent on only the direction of e™. Accordingly. by observing
(3.10) and (5.17), we can see that each of the matrices AU and A7 is the

product of “—e-,—},—“—z and a matrix that is independent of || e™ [f.

[SV]

Equation of conic A™(e™). (5.16). is independent of the scale of A;! since it
is homogeneous. Accordingly. the equation of ellipse R™(&°), (5.18). is also
independent of the scale of AL

From the above two observations. we can conclude that R™ (&%) depends on only the

direction of e™. which is the same as that of €. and so it can be determined off-line.

5.2.4 Practical Considerations

[t is quite complex to implement R™(&°) as ellipses of various sizes and orientations.
especially because, in general, the center of ellipse R™(e*) does not coincide with
€°. For this reason, we approximate R™(&°) by the smallest circle, C™(&°%), that is

centered at & and covers R™(&°) (see Fig. 5.2). Define the following:

d» = resolution of the image in the w direction (w = z.y), and

A = diag(d;,d,).
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Figure 5.2: Approximation of R™ (&%) by a circle.

The equation of R™(&°) with respect to the image coordinates can be expressed as

follows:
(x=-d)'A7'(x~d)=1 (5.19)

where Ag' = A'AZ'A and d = A-'c. Without loss of generality, we can assume
that Aq = diag(a®.6?). and d = 0. A point on such an ellipse can be parametrized

by 4 as

__ [ acos(d) =y
x(4) = < bsin(f) ) (5.20)
The radius of C™(&%) is obtained by maximizing the distance between x(6) and é°.
That is,
F(8) = (x(8) - &°)!(x(8) — &°). (5.21)
Substituting from (5.20) in (5.21) and differentiating F(6), we get
g
-(-l% = aélsin(d) + (b - a?)sin(8) cos(8) — be; cos(). (5.22)
Functions sin(#) and cos(8) can be represented as follows:
2t 1 —¢?
sin(8) T cos(8) T (5.23)

where t = tan(%). Substituting from (5.23) in (5.22) and setting 20 — 0 we get
2 g 8 I

the following quartic equation:
(&b)t" +2(ela — b2 + a®)f° + 2(&%a + b° — a’)t — &b = 0. (5.24)
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Figure 5.3: The chosen model database.

Solving (3.24). we get four values of 4. Substituting those values in (5.21). we get the

radius of C'™(&°):

r™(&%) = [max{y/F(8)}]. (5.25)

The above process can be computed off-line to construct a radius tmage. I[n this

image. the value of each pixel &° is
r(€’) =r"(&) +ro(e°) (5.26)

where r*(&°) is the uncertainty radius of R°(€°) (refer to (5.4)). At run time. each
pixel & of the scene edge image is examined. If it is an edge pixel. then it gets

replaced by a circle centered at 6 and of radius r(e®).

5.3 Experimental Results

In this section. we present a couple of experiments using real images to demonstrate
the effectiveness of the proposed verification technique. An NEC CCD camera is
used in the experiments. This camera provides images of dimensions 480 x 512. with
resolution 0.01 mm x 0.01255 mm in the r and y directions, respectively. The focal
length of the camera is 16 mm.

Edges are extracted from an input image as follows. First, the image is smoothed
by applying Gaussian operator of size 7 x T. Edges are then detected by applying
Sobel operators [37]. Pixels of gradient magnitude greater than some threshold are
considered edges. Using such a technique, an actual edge is detected as a “thick”

band of edges along the actual one. Since scene uncertainty is not formally analyzed
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Figure 5.4: First scene: (a) scene. (b) edge image. (c) dilated edge image, (d) ex-
tracted straight edges.

in this work, we have assumed that the resulting thickened edge image accommodates
scene uncertainty. Accordingly, r*(&*) is set to 0, when dilating the thickened edge
image (refer to (5.26)). This would not have been the case. had we chosen another
edge-detection technique such as zero-crossings, for example.

For the experimental results presented in this section, the model error parame-
ters are empirically chosen as follows: §gmax — ( 0.1° 0.1° 0.05° )t and §tMmax =
( 0.00125 0.00125 0.02 )t. For those parameters, r™(&°) ranges from four pixels.
at the image center, to eight pixels, at any of the four image corners. The technique
used in vision-based hypothesis generation is the same as the one described in Section
3.4.2. Finally. we have chosen a model database consisting of four simple polyhedral

objects: PRISM. ROD, MOUSE and PEG (see Fig. 5.3).
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(a) (b)

Figure 5.5: First scene: (a) valid hypothesis, (b) selected hypothesis when p =
size_ratio.

5.3.1 An Unoccluded-Object Scene

Our first scene includes an unoccluded model object. PRISM (see Fig. 5.4(a)). The
corresponding edge and dilated-edge images are shown in Figs. 5.4(b) and 5.4(c).
respectively. The extracted straight edges are shown in Fig. 5.4(d). Five three-edge
junctions are extracted, four of which belong to PRISM (see Fig. 5.4(d)). Out of the
15 junction edges, 12 are considered fully visible. Thus. we have 12 J-features for
hypothesis generation. all of which are found to belong to PRISM. Since it is difficult.
in general. to decide which junction belongs to the scene object of interest. we match
all .J-features with corresponding mode! ones. The generated hypotheses are then
passed to the pixel-based verifier. Histograms of the hypothesis-selection criterion
p for all model objects are shown in Table 5.1. From the resuits obtained, we have
found that the 11 hypotheses in the highest non-empty slot, p € [0.7,0.8], are valid.
one of which is shown in Fig. 5.5(a). Thus. in this case, the verification algorithm
successfully determines the valid hypotheses. The remaining valid one (notice that we
have 12 valid J-features of scene object PRISM) is not as accurate as the others. and
so it is mapped to the next slot. p € [0.6.0.7]. Notice that, although the scene object
is not occluded. p’s corresponding to the valid hypotheses are considerably less than
I. As will be seen below, this is because of the existence of an erroneous hypothesis
with more raw number of votes, hit_count, than the valid hypotheses, thus reducing
their size ratio, size_ratio, and accordingly p (refer to Section 5.2.1).

To demonstrate the importance of using both visibility and size ratios in the
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hypothesis-selection criterion p. we have run the experiment twice considering only
one factor at a time. [t has been found that the criterion p = vistbility ratio selects
the right hypotheses, whereas p = size_ratio chooses an erroneous one which is shown
in Fig. 5.5(b). This demonstrates the insufficiency of using the size ratio as the only

selection criterion.

Object [ 0 [ T [ 2 [3]4[5]6]7]3]9 Total |
ROD 168 | 1441 92 1281 0 [0]JOJ O JO[O] 432
PRISM | 41 [ 96 | 99 {43 |18 |3 (1|11]|0]0{ 312
MOUSE || 96 | 151 {131 (53|23 (20| 0 |00 456
PEG 100 | 1441105 [37]22|0]0]| 0 |0|0] 408

Table 5.1: Histograms of p corresponding to each model object (first scene). Column
¢ corresponds to p € [0.12,0.1(i + 1)].

3.3.2 An Occluded-Object Scene

We have also tested the performance of the system under occlusion. Fig. 35.6(a)
shows a scene of an occluded object. ROD. The corresponding edge image, dilated
edge image and extracted straight edges are shown in Figs. 5.6(b)-(d). respectively.
Five three-edge junctions are extracted. only one of which belongs to object ROD.
Out of the 15 junction edges, only four are considered fully visible. Thus. there are
four J-features for hypothesis generation, two of which are found to belong to ROD.
Histograms of p are shown in Table 5.2. Eight hypotheses are found in the highest
non-empty slot, p € [0.8,0.9], all of them are valid (notice that, due to the symmetry
of ROD. each object pose is described by four equivalent hypotheses). Fig. 5.7(a)
shows one of the valid hypotheses. This experiment demonstrates the robustness of
the system under object occlusion.

As in the first experiment, we have run the system twice considering one selection
factor, size_ratio and vistbility ratio, at a time. Contrary to the first experiment.
we have found that the criterion p = size_ratio selects the right hypotheses, whereas
p = wvisibility ratio chooses an erroneous one which is shown in Fig. 5.7(b). This
demonstrates the insufficiency of using the visibility ratio as the only criterion. Fur-

thermore. this observation along with the one obtained in the first experiment support
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Figure 5.6: Second scene: (a) scene. (b) edge image. (c) dilated edge image. (d)
extracted straight edges.

Figure 5.7: Second scene: (a) valid hypothesis, (b) selected hypothesis when p =
vistbility ratio.
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the importance of combining both factors in the hypothesis-selection criterion.

[Object TOT1T2[3[4]5]6][7]8]09] Total
ROD 36 /28(1214|0[8[0[0[S]O] 96
PRISM |6 |25[13|/0|0f0]0|0f0]|0] 44
MOUSE |16 165|255/ 1[0f0|0[0]0] 112
PEG 12/60 14 |8[0]|2{0j0]0!0 96

Table 5.2: Histograms of p corresponding to each model object (second scene). Col-
umn ¢ corresponds to p € [0.1:.0.1(i + 1)].

[t should be pointed out that it is not guaranteed that the valid hypotheses will
always be found in the highest non-empty histogram slot (as in the presented two
scenes). A further verification step might be needed to verify those hypotheses in
the highest slot. One possibility is applying a feature-based verification technique.
which utilizes the perceptual structures of the scene data. In case of failure, the same
process should be applied to the hypotheses in the next highest slot, and so on. This

situation can occur, for example. if the object of interest is heavily occluded.

5.4 Conclusions

A novel pixel-based technique has been presented for visually verifying 3-D object
hypotheses. The visible-edge image of each hypothesized object is synthesized and
compared. pixel wise, with the scene edge image. Hypotheses are then verified based
on a criterion that favors less occluded and larger objects. Uncertainties in estimating
the locations of both scene and model edges are handled by dilating the scene edge
image. An analytical method is presented for determining the extent of dilation.
assuming some error bound on the object pose.

In contrast to the common feature-based approaches. the proposed technique
is very simple to implement, and is suitable for parallel implementation on graph-
ics/vision hardware. Another important advantage is that the scene/model compari-
son step, being at the pixel level, is independent of both scene and model complexity
(i.e.. number and types of features). This makes the technique capable of handling
arbitrarily complex scenes and model objects. Compared to existing pixel-based tech-

niques, the proposed one has the advantage of being capable of handling uncertainties
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in both scene data and model pose.

An interesting point that is not covered in this chapter is performing experimen-
tal comparison between the proposed technique and similar pixel-based ones. This
comparison. which is a subject of future work, is important to clearly demonstrate

the performance of the proposed technique.
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Chapter 6

Conclusions

[n this chapter. we present the contributions of this dissertation in Section 6.1. In Sec-
tion 6.2. we outline possible improvements to the developed work. Finally. directions

for future work are presented in Section 6.3.

6.1 Contributions

The main thrust of this dissertation is the integration of 2-D and 3-D sensory data in
the context of 3DOR. A vision/touch-based 3DOR system has been developed. This

system consists of the following stages:

L. Vision/Touch-Based Screening: We have developed a screening technique that
efficiently utilizes all the relevant visual and tactile data. This is achieved by
employing a CSP framework which enables the integration of different types
of sensory data. A novel method is presented for efficiently constructing a
CSP corresponding to a combination of visual and tactile features. Efficiency
is achieved by developing a number of approximate visual/tactile constraints.
which enable the construction of visual/tactile binary constraints using very few
comparison operations per constraint entry. The consistency of a model object
with scene data is determined by first constructing the corresponding CSP. and
then enforcing arc consistency. a low-order polynomial time process. We have
shown that this process has a couple of advantages. Firstly, in case of arc-
consistency failure, it can eliminate many erroneous model objects efficiently

without either generating or verifying any pose hypotheses. Secondly, in case of
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success. it can dramatically reduce the scene/model correspondence uncertainty.

thus greatly reducing the computational load on subsequent recognition stages.

Vision/Touch-Based Hypothesis Generation: A novel technique is developed for
generating pose hypotheses using a combination of visual and tactile features.
in particular, a visual junction and a tactile polygon. The technique first de-
termines a subset of the object DOF’s from the tactile feature. The remaining
DOF’s, which cannot be determined from the tactile feature, are then obtained
from the visual one. A couple of filtering techniques are developed to reduce the
number of model feature sets that are actually compared with a given scene set.
The proposed hypothesis-generation technique is essential in situations when
visual and tactile data. individually, do not provide sufficient pose informa-
tion. Experimentally. we have demonstrated its superiority over vision-based
techniques in the following aspects: capability of determining the object pose
under heavy occlusion, generation of a smaller number of pose hypotheses. and

accuracy of estimating the object depth.

Touch-Based Hypothesis Verification: A highly-discriminative indexing scheme
has been presented for touch-based data-driven verification. Selecting a tactile-
feature frame as the reference frame. we have been able to obtain a tight and
tnvariant set of constraints on object poses that are supported by the tactile
feature. These constraints are indexed using a multi-level index. At run-time.
pose parameters of the hypothesis to be verified are used as keys to traverse the
index. The hypothesis is supported by the tactile feature only if the traversal is
successful. Incorporating almost all the constraints provided a tactile feature.
the proposed index has a higher discriminative power than similar indexing
schemes. Experimentally, we have demonstrated its capability of eliminating
the majority of inconsistent hypotheses in a constant time that is independent

of the number of model features.

. Vision-Based Hypothesis Verification: A pixel-based technique has been devel-

oped for visual hypothesis verification. The visible-edge image of a hypothe-

sized object is synthesized and compared, pixel wise, with the scene edge image.
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Based on this comparison. hypotheses are evaluated using a criterion that favors
less occluded and larger objects. Uncertainties in estimating the locations of
both scene and model edges are handled by dilating the scene edge image. An
analytical method is presented for determining the extent of dilation, assuming
some error bound on the object pose. The main advantage of this technique
over similar pixel-based ones is its capability of accommodating the uncertainty

of object-pose estimation.

6.2 Possible Improvements

The presented system can be improved in a number of ways.

L.

(V]
.

Vision/Touch-Based Screening: The screening technique is totally dependent
on the reliability of the perceptual-organization process, that of segmenting the
visual features into structures that are perceived to belong to the same object.
One way of improving this reliability is to utilize the tactile data, which are
known to belong to the object of interest. This process. which can be called
“touch-guided perceptual organization”. would eliminate every visual feature
that can not be consistent with al/ tactile features. Passing only the consistent
visual features to the original perceptual-organization process would. hopefully.

vield a more reliable output.

Vision/Touch-Based Hypothesis Generation: The filtering techniques used to
reduce the number of scene/model matches are ad hoe. Although they are
effective, more rigorous approaches are needed. A possible approach is to index
model sets using vision/touch-based viewpoint-invariant attributes. Invariants
are abound for 3-D feature sets. and scarce for 2-D sets. In fact, it is known that
invariants do not exist for general 2-D feature sets [20], but only for special ones
(e.g.. four coplanar lines intersecting at a point [55]. a pair of coplanar conics
[35]). An interesting research problem is investigating whether invariants exist

for sets that are composed of 2-D and 3-D features, as in our case.

Touch-Based Hypothesis Verification: Uncertainty in the touch-based indexing

scheme is handled by dilating the pose constraints (filters). In the developed
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work. the extent of dilation is determined empirically. A more formal approach
is needed to determine the extent of dilation considering the two sources of
uncertainty involved in the process: the tactile feature (scene uncertainty), and
the estimated object pose (model uncertainty). A more robust approach would
be to dilate the pose constraints considering only scene uncertainty. Model
uncertainty can then be handled using the pose parameters along with their
uncertainty parameters as keys into a more sophisticated index. This would
give the index a dynamic discriminative power depending on the amount of

uncertainty in the hypothesis to be verified.

1. Vision-Based Hypothesis Verification: The discriminative power of the vision-

based verification scheme can be improved as follows. Rather than using a
bounded-error model. we can use a probabilistic one by assigning probability
distributions to the uncertainties of both scene and model edge pixels. In such a
scheme. the value of each pixel in the scene edge image would be the probability
that it corresponds to an edge. Another improvement to the matching process
can be achieved by incorporating the difference between the estimated direction
of the scene edge pixel and that of the corresponding model one. Obviously.
these improvements would come at the expense of increasing the implementation

complexity.

6.3 Directions for Future Work

First. let us analyze the 3DOR architecture adopted in this work, that of screerning

candidate model objects followed by generating and verifying object/pose hypotheses.

As mentioned, this screening-based architecture has the advantage of utilizing the

scene perceptual structures, early in the recognition process, in order to reduce the

number of scene/model matches. However, it has the important limitation of being

heavily dependent on the reliability of the perceptual-organization process. Reliable

extraction of perceptual structures can be extremely difficult depending on the extent

of noise and clutter in the scene data. Furthermore, since model objects are considered

in turn, the best-case time complexity is linearly proportional to the number of model

objects. This can be a problem for large model databases.
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Next. let us consider the effect of eliminating the screening stage. and. instead.
employing an indexing scheme for fast retrieval of model feature sets that are likely to
be consistent with a particular local scene set (e-g.. [7, 21. 45, 59, 70]). Paradoxically.
this indexing-based architecture would not only considerably reduce the dependency
on the validity of the perceptual structures. but also improve the best-case time

complexity. This best case would take place in the following scenario:
¢ A selected set of local scene features belongs to the object of interest.
e The scene set is inconsistent with all model feature sets except for the valid one.

e I[ndexing into the model database. using viewpoint-invariant attributes. retrieves

only the valid model set.

e Matching scene and model sets generates a hypothesis that is subsequently

validated by the hypothesis verifier.

[t can be easily seen that. thanks to indexing, an object can be recognized in a time
that is independent of the model-database size. However. the fact that local features
are used in indexing can make the actual complexity much worse than that of the
screening-based architecture. This is especially true if we have a large number of
model objects with similar local features.

An interesting research problem is to develop a 3DOR architecture that combines
the advantages of the previous ones. In particular. it is interesting to develop an
architecture that utilizes both the information provided by a perceptual structure
(as in the screening-based one) and the power of indexing (as in the indexing-based
one). This can be achieved as follows. Given a perceptual structure, we can extract a
set of attribute values whose number is proportional to the structure size. Ordering
those values according to some perceptual rule (e.g., adjacency), we can use them
as a key into a robust index that can accept variable-length keys. Such a capability
can be achieved by constructing a multi-level index, similar to the one presented in
Chapter 4, whose number of levels is equal to the maximum possible key length.
Every entry in the index, internal or external, points to a number of model-feature

sets whose attribute values are similar to those corresponding to the entry. This
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indexing scheme is a major derivation from most existing ones that can only accept
keys of fixed length.

The proposed indexing scheme has several advantages. Firstly, the richness of a
perceptual structure is utilized in order to make a more discriminat;ve query. where
the extent of discrimination depends on the amount of information provided by the
structure. Secondly, erroneous perceptual structures are expected to be discovered
very quickly. since indexing would likely retrieve no, or very few, model sets. Thirdly.
the lower bound of the time complexity is no longer linearly dependent on the model-
database size. as in the screening-based architecture. Finally, the average-case com-
plexity can be expected to be very weakly dependent. or even independent. on the
model-database size. This is a property that is not possessed by any 3DOR system
to the best of my knowledge.

The obvious problem with the above scheme is the space complexity of the index.
which appears to be combinatorial in the number of model-object features. One
way of controlling this complexity is to stop expanding an index node when the
number of model feature sets that are mapped to such a node becomes less than some
threshold (such a threshold determines the upper bound of generated hypotheses).
Thus, leaf nodes of the proposed index would be of variable depth, where shallower
nodes correspond to rare model feature sets. while deeper ones correspond to common
sets.

Another important issue is the choice of scene attributes. The most common
attributes that are used in indexing are viewpoint-invariant ones. This type of at-
tributes provides constraints which are not as tight as the object-rigidity constraint.
Worse yet. as mentioned in the previous section. invariants do not exist for general
2-D feature sets. It is also possible that this is the case for a combination of 2-D
and 3-D features. Direct incorporation of the rigidity constraint will overcome the
above problems. This can be accomplished by dedicating the first few index levels
to viewpoint-variant scene attributes that suffice to estimate the object pose with
respect to a viewer-centered frame, Fy. Given such an estimate, the next index lev-
els can then freely incorporate both viewpoint-invariant as well as viewpoint-variant
attributes. thus leading to an index of high discriminative power.

The obvious problem with the above approach is that the “pose-estimation” index
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levels would have to implicitly discretize the six object DOF’s. This is prohibitively
expensive in terms of space requirements. We can handle this problem by selecting
a data-centered frame, Fp, as the reference frame. Such a selection can considerably
reduce the DOF’s that need to be discretized. This can be demonstrated by the

following examples:

e It can be shown that an Fp that is defined with respect to (w.r.t.) a tactile patch
and a visual junction constrains four DOF’s. An additional DOF is required in
order to determine the location of Fp w.r.t. Fy. Accordingly. only three DOF’s

would need to be discretized.

o In case of range data, it is easy to find an Fp that constrains all DOF’s of the
scene object (e.g.. a frame that is defined w.r.t. three non-parallel surfaces).
However. two DOF’s will still be required to determine the orientation of Fp

w.r.t. Fy: those are the only ones that need to be discretized.

¢ In case of visual data. an Fp that is defined w.r.t. a visual junction constrains
three DOF’s. Selecting the origin of Fp to be the same as that of Fyv. and
considering that feature visibility is not affected by the rotation of Fv [48]. we
can assume that Fp is the same as Fy. Thus. we would have to discretize only

three DOF's.
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Appendix A

Determination of Continuous
Visual/Tactile Constraints

A.1 Cylinder OOC(S™)

Let £, be the distance between model vertex V™ and model surface S™ in the direction
of n™: i.e..
hjzn?‘v;”—df". (A.1)
[t can be shown that the dimensions of cylinder 00C(S™) are
[T he"] = (min(h,). max(h,)) (A.2)

ri = max(|| (v} = hnf') = v || (A3

where [A[*" h7%7] are the cylinder’s heights measured from the plane of §* along
n®. r; is the cylinder’s radius. and V™ is a vertex of surface S™. Notice that the
dimensions of the cylinder do not depend on the location of S*. and so they can be

computed off-line.

A.2 [Edge-Angle Constraint EAC S EY)
The equation of line of sight L(V?) can be represented as

L(Vi.e) = c+adir(vi-c) (A4)

7

where c is the camera viewpoint. dir(x) = ”—;nx, and « is the distance from ¢ to

L(V}.«a) in the direction of dir(v? —¢c).
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[t can be shown that the bounds of EAC(SM. E?), [6™™.0m27]. are

gmn = angle(v}, —c. L(V}3. 7%%) ~ L(V}.a™™))
gmer = angle(v}; — c. L(V3, 7™) — L(V}], a*s)).

where EDC(S". E3) = ([a]*", %], [af™. aP*%]). and angle(u, v) is the angle be-

tween vectors u and v.

A.3 Edge-Length Constraint ELC(S™. E?)
[t can be shown that the bounds of ELC(S™, E?), [d™, d™93), are

e min( dis(a'l‘,aé’),dis(ai",a;"i"),dis(a’l"i".aj))
u.y=min.mar

d™** = max( U dis(af, a3))

u.v=min.mar

where
® EDC(5™. E}) = ([al*™. a]*7], [af™". aper]),
o dis(ar. a2) =[| L(V}}.a1) = L(V}5. ) ||, and

o L(Vi.ar). k = 1.2, is the perpendicular projection of L(Vji;_,).af %) on

L(VE).

Note that the term that contains ap in the expression for d™" is only included if

ot € [ap™. ]



Appendix B

Mathematical Definitions of Scene
and Model Attributes

B.1 Attributes of Model Pair (S™. E™)
L L™ =[] vI* = vT' ||, where (v".v]?) are the end vertices of £™
2. A™ = angle(v}* — v[*.n™)
3. B™ =n™v* — d™

L DB ={J]lu—v*||: ue s™}

B.2  Attributes of Scene Pair (S*, E?)
l. LB*(S™) = ELC(S™, E?)

2. AB*(S™): The direction of E™, w(0), can be represented by a rotation of vector

(V] -c¢)

Figure B.1: Representation of vectors that lie inside P(E*) .

119



dir(v{ — c) about the normal of plane of sight P(E*). m* (see Fig. B.1). That

is.

w(8) = rot(m’, 8)dir(v: — c) (B.1)
where 6 is the rotation angle, m* = dir((vi —¢) x (v§ — v¥)) and (V. V) are
the end vertices of E°. The rotation matrix. rot(m. §), is defined as [63]

2)

mem vl +cd  mymovl —m.s0 m.m v+ m, s
rot(m,8) = m.myvl + m.sf mym, vl +cd m.myud —m.s0 | (B
mem.v0 —mysd mym.v0 +m.s0 m.m.vl + cf
where cf = cos(0), s§ = sin(f) and vf = | — cf. [n our case, § is restricted to

lie in the range EAC(S™. E®). Thus. AB®(8™), is defined as

AB*(S™) = {angle(w(8).n%):0 € EAC(S™. E®)}.

3. PB(S™) = {n°L(V.a)-np* :a € VDC(5™.V*)}. where L(V®. a) is defined
in (A.4).

4. DB{(S™) = {[| p* ~ L(V;".a) ||: @ € VDC(S™ V)



Appendix C

Determination of the Dimensions
of Volume OOC(F™)

C.1 Cylinder OOC(S™)

[t can be easily shown that the heights of cylinder OOC(S™) are the same as in the
point-like surface patch case (see (A.2)). To compute the radius of cylinder OOC(5™).
ri. we approximate the tactile polygon by a circle inside it of radius ¢ (e.g..a 2t < 2
tactile square can be approximated by a circle of radius t). The radius of OOC'(S™) is
the maximum distance between the vertices of © and the = axis such that the tactile
circle remains inside S7. It can be shown that this maximum distance occurs when a
vertex in (", the polygon obtained by “shrinking” S§™ by ¢. translates to the center

of the tactile circle. Thus.
ri = max(|| (v} — h;nl*) —uf ||)

where uf* € U™ and h; is as defined in (A.1).

C.2  Cuboid OOC((S*, E™))

It can be easily shown that the range of translations along the r axis that keep the

tactile edge inside model edge E™ is

l; =1 li -1
[—px—-( . T)’_pr_*_( .T)]

- £

where {7 is the length of the tactile edge, /; is the length of edge £, and p is the

center of £ after transforming it by ‘T (notice that Py = p: = 0). Dimensions of
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cuboid OOC((ST*. ET*)) are determined as follows:

. . l,‘ -~ - li — 7]
€z dz] = [minCor) = pe — B maxgio) - p, 4 L=l
[a’};i". i = minmaxy (‘o )

[d7™.d7°F] = minmax(‘ok:)

where [d7,", d72*%] is the range of the cuboid along w axis (w=1z.,y,z), and ‘o € *O.

[t can be seen that one can compute all the dimensions of OOC((S™, ET*)) off-
line except for [d72™. d™%], since they depend on 7 that is only known at run-time.
However. [d7", d™*%] can be computed off-line assuming [t = 0. and then updated

on-line at a negligible cost by adding :ti.zt to d7'™ and d7°%, respectively.



Appendix D

Determination of the Bounds on
angle(p, w(6))

Define

3(8) = angle(p.w(6))
= arccos(p - wi(6d)) (D.1)

where § € EAC(F™. E}). p is a unit vector. and w(0) is as defined in (B.1). Sub-

stituting from (B.1) and (B.2) into (D.1), we get
3(0) = arccos(asin(8) + bcos(8))

where a = p.(m xw) and b=p - w.

It can be easily shown that the extreme point of 3(0) occurs at . where
a
0 = arctan —.
b

We choose the solution of 8¢ that falls in the range [0°, 180°]. The bounds on 3(0) are

min_gmaz) _ | minmax(8(6°), 3(6™), 8(6™)) if §° € EAC(F™. E})
[8™,, = minxnax(ﬁ(ﬂ’"‘"),ﬂ(a"'“’)) otherwise )

Notice that the value of tan(6°) is undefined if both a and b are zero. This occurs

when p is perpendicular to plane P;. In this case. we have B(0) € [90°.90°].



