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Abstract 

This thesis was mainly concerned with improving model-based prediction and forecasting of state 

variables of processes or systems using new, periodically-generated data within the construction 

domain. Some of these data are generated from field tests performed during feasibility studies, 

while other data are acquired during the execution phase of the project. The primary matters that 

are examined in this research relate to prediction of a physical attribute of the environment that is 

interacting with the work face; specifically, ground conditions in tunneling projects. The 

approaches explored include the use of Markov chains and statistical distributions for representing 

uncertainty and stochasticity within simulation models in a dynamic fashion. Parameters for these 

are changed frequently, using Bayesian updating algorithms, as new data are received. The 

simulations and updating were implemented in an automated fashion. The merits of these 

techniques were demonstrated in case studies implemented within the tunnel construction domain. 

Results demonstrate that the proposed method was able to provide more reliable predictions with 

relatively little effort.   
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

Many real-world systems, such as weather, biological processes, and economics, are stochastic 

and dynamic in nature. A stochastic, dynamic process is one that changes randomly or 

unpredictably and in a manner, that is not trivial. This contrasts a deterministic process, which 

displays no randomness and will produce the same result from a given starting point. Due to the 

unpredictability of a stochastic process, such systems are appropriate for analysis using simulation-

based methods. In doing so, the process can be modelled to reproduce the randomness using 

probabilities and distributions. 

There is a subset of these systems that are characterized by sequential features. This is a system 

that proceeds sequentially but remains stochastic and dynamic in nature.  Examples of this type 

are many construction processes, where a process is a sequence of interrelated events that may 

repeat. Envision the construction of a road, which is comprised of many steps and events that each 

takes a certain amount of time. Each event, or step, in the process is completed in sequence, and 

each step may take a variable amount of time to complete thus presenting some randomness. 

Overall, the process is sequential and repetitive in nature, and the outcome of the process, in terms 

of road construction duration, depends on many factors.   

To analyze these complex systems, some of which are existing, others are developed to meet 

special requirements for the system being analyzed. An efficient way of making use of these 

algorithms has involved embedding them within a simulation environment(s).  

The following subsection will introduce the various types of algorithms and simulation component 

techniques that were used to achieve the objectives of this thesis. Simulation models coupled with 

these algorithms were implemented on selected case studies to demonstrate the practical and 

theoretical contributions of these specialized models within the construction domain. 
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1.1.1  Markov Chains and Hidden Markov Models (HMM) 

Hidden Markov models (HMM) can be used to represent a time-based sequence of events, where 

a parameter or characteristic passes through states or nodes (Rabiner, 1989). At each state or node, 

certain observations or signals are experienced. Hidden Markov models attempt to model the 

intricacies of such a system to predict how state transitions and observations will occur as well as 

the probabilities with which these arise based on the current state and information. These 

techniques have been found to be useful when applied to modelling of tunneling ground conditions 

(or geological conditions, which are used interchangeably in this thesis) and were, therefore, used 

in this thesis. 

1.1.2  Statistical Distributions 

A statistical distribution is a way of representing information with the uncertainty that surrounds 

this information. It can be thought of as a set of data, either observed or theoretical, that is 

organized according to frequency of occurrence. Distributions can follow many forms and types, 

and distribution fitting, itself, is a notable research area in the field of statistics. Simulation 

modelling relies heavily on statistical distributions to sample data for the purposes of predicting 

the intricacies of processes and systems. Statistical distributions can be either discrete (integer) or 

continuous (non-integer) in terms of their data. Typically, in the domain of construction, 

continuous distributions are better suited for modelling durations due to their flexibility. 

Statistical distributions were fit from data of past tunnel projects and were used to sample the time 

required to complete various activities in the tunneling process, such as train travel, liner 

loading/unloading, and, most importantly, excavation. When data were absent, we subjectively fit 

distributions using input qualitative information. These distributions were then used as inputs for 

simulation modelling of the tunnel and were used as the prior distributions for Bayesian updating 

techniques. 

1.1.3  Simulation Modelling 

Simulation modelling can be thought of as the development, experimentation, and use of a 

scientific abstraction of a physical system or process (Banks, 2001). A simulation model acts a 

prototype to predict, analyze, and assess an actual physical system in the form of a computer based 
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representation. While the origins of computer simulation modelling date back to the 1940s and 

50s, it was not until the 1980s and 90s that simulation modelling became widely-accepted and 

used. Challenges associated with inadequate computing power, personnel expertise, and cost 

greatly limited the early use of this technique. However, as the commercial availability of powerful 

software, such as GPSS and SLAM developed by Alan Pritsker and associates, arose, simulation 

modeling began to grow in popularity, now becoming widely-utilized. The advantages of a well-

built simulation model are that it can assist in reliably predicting the future performance of real-

world systems, allowing engineers and scientists to make decisions and plan around the results. 

Simulation modelling can be applied to many facets of science, environments, and real-life 

systems.  

1.1.3  Bayesian Updating 

The primary function of Bayesian Updating is to improve the legitimacy and accuracy of 

predictions through the incorporation of newly acquired information. For example, an initial 

prediction or a probability of certain outcomes is known. As additional information is obtained 

about these outcomes, the strength of the predictions and probabilities of such outcomes can be 

improved. Bayesian updating is reliant on collected data of a real system being studied, and the 

data are input into algorithms that improve prediction models being used. As there is sufficient 

time for corrective action, long-term projects lend themselves to this type of updating and will 

benefit the most from this technique. While there are many algorithms and techniques that can be 

used in Bayesian updating, the overarching themes of these is the adjustment of the posterior or 

future probability based on prior probabilities and actual observations. In this thesis, Bayesian 

updating was used specifically to update the statistical distributions and the parameters of a Hidden 

Markov model (HMM). Bayesian updating of normal distributions has been applied, previously, 

in tunneling construction, where it was shown to be effective at improving simulations using actual 

construction data (Chung, 2006). A specific algorithm, named the Baum Welch algorithm (Baum 

and Petrie, 1966), was used to update the transition and observation probabilities of an HMM 

model. This algorithm is a specific type of Bayesian updating process known as an Expectation 

Method or EM method. 
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1.1.4  Case Study 

Case studies were explored in this thesis to demonstrate the merits of the above techniques and 

their use in construction management and simulation. The specific domain of tunneling was 

selected due to the sequential nature of the process and the level of uncertainty surrounding ground 

conditions that is often encountered. Past personal experience in tunneling construction, as well as 

previous papers on the topic, assisted in better understanding the value of improvements in 

predictions and the level of uncertainty around such predictions traditionally. The case studies 

focused on demonstrating how the statistical distributions used for modelling process variables 

were updating using the proposed method as well as on demonstrating the ability of the model to 

improve ground condition prediction in tunneling. For clarity, the term ground condition or 

geological condition is used, interchangeably, in this thesis to refer to the material that is being 

excavated in a tunnel project. 

1.2 Problem Statement 

1.2.1  State of Practice (Industry Practice) 

An overarching problem that is predominant in both academia and practice is the failure to make 

use of simulation models, new data, and updating algorithms in a holistic and harmonious fashion 

to generate more accurate predictions and forecasts. 

Information and data that are available during the planning and early design phase of construction 

are often not representative of the real system. Commonly, data sets are made of data that are 

outdated, inconsistent, or incomplete. Many times, data are assumed from past projects or are 

collected from domain experts, which can lead to issues regarding data accuracy. This is especially 

prevalent in geotechnical investigation. Typically, geotechnical investigations consist of 

intermittent borehole samples taken across the alignment (in the case of tunnel construction). 

While the data obtained directly at the boreholes is relevant, there is no real data for areas between 

boreholes. While increasing borehole sampling frequency may increase the comprehensiveness of 

the data, taking boreholes at distances that would create a complete data set is extremely costly 

and impractical. Rather, the current practice for borehole sampling focuses on providing a general 

overview of the ground conditions that are to be expected and to identify any major geotechnical 
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risks, such as voids, water pockets and unexpected ground conditions. Especially in underground 

construction, the reality of the geotechnical profile is highly uncertain due to the inability to 

observe the entirety of conditions underground on many projects, where only certain portions of 

the project may be investigated.  

Overall, the state of practice in Construction Engineering for developing project plans and designs 

for tunneling projects is often based on assumptions, intuition, personal experience, and 

incomplete data. However, as a project progresses, new information, in particular regarding 

conditions underground, becomes available: if a new geotechnical condition is found, or a better 

understanding of the geotechnical profile is realized, construction operations and plans should 

reflect the new information. A method capable of enhancing the reliability of original predictions 

through the incorporation of newly acquired data from the actual system is necessary. 

1.2.2  State of Art (Academic Practice) 

Current use of Bayesian updating is limited to (1) the updating of Markov chains and (2) the 

updating of statistical distributions. There has been some work using Bayesian updating of Markov 

chains for updating geological conditions for tunneling at MIT (Ioannou, 1989). Other work 

involved similar methods applied to mountain tunneling and excavation work (Guan, 2012). The 

updating of statistical distributions has been done for Normal distributions (2 parameter 

distributions) (Chung, 2006). 

Two gaps are evident: first is the lack of integration of Bayesian updating with an isolated 

simulation model and second is the absence of the application of techniques, such as HMM, in 

construction. 

1.3 Study Objectives 

1.3.1  Main Objective 

Overall/Main Goal and Objective: The overall objective of this work is to use analytical and 

numerical methods, such as Bayesian updating, Markov chains, and discrete event simulation, 

to improve the way tunnel construction processes are modelled.  
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1.3.2  Specific Goals and Objectives  

1) Identify, from past studies, the most efficient algorithm for predicting the state of 

systems/processes that vary sequentially 

2) Develop prototypes for updating the techniques used for predicting the sequential state of 

ground conditions in tunneling 

3) Develop prototypes for updating the techniques used for predicting statistical distributions 

representing specific variables in tunneling construction 

4) Implement case studies to test and demonstrate concepts for the above objectives 

5) Develop more reliable predictions of project durations using the proposed methodology 

1.3.3  Expected Research Contributions 

• Industrial Contributions 

• Effective and proactive use of data collected from site to enhance project delivery 

• Demonstration of how statistical distributions that represent the rate at which different 

TBM machines advance in different ground conditions can be generated and reported 

• Academic Contributions 

• Exploration of various algorithms, from the computing science domain, which are 

capable of solving updating problems that exist in tunnel construction. 

• Integration of Bayesian updating and HMM techniques with simulation 

 

1.4 Organization of Thesis 

The following chapters detail the achievement of the previously stated research objectives and 

contributions.  

Chapter 2 of this thesis presents a literature review into the work previously done in the fields of 

construction simulation, Bayesian updating and applied algorithms, Markov and hidden Markov 

modelling, and the use of statistical distributions in construction. 

Chapter 3 introduces the use of Bayes techniques applied to update parameters of a Markov 

chain for which the geological conditions of a one-meter section of tunnel construction can be 
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updated. Graphical representations are provided to display how predictions of the Markov chain 

change based on new information. 

Chapter 4 details the Baum Welch algorithm, an applied Bayesian updating technique, and tests 

its implementation in the Simphony modelling environment. 

Chapter 5 of this thesis details the implementation of hidden Markov models (HMM) in the 

Simphony modelling environment with dedicated modelling elements allowing training, 

updating of model parameters, and integration of HMM models into a simulation model. 

Chapter 6 presents a tunneling case study demonstrating the effectiveness of the integration of 

Bayesian updating techniques and hidden Markov models (HMMs), their implementation in the 

Simphony simulation modelling environment, and their use for predicting project durations from 

ground condition data. 

Chapter 7 presents the conclusion of this research, listing its contributions as well as its 

limitations. This chapter also offers some suggestions for future work. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction 

This section serves to summarize the background and overview of the techniques used in the 

research of this thesis. A brief history of the techniques is provided, which is followed by high-

level discussion of the theories. 

2.1.1  Statistical Distributions 

In the world of modelling, there are various ways that uncertainty can be represented, including 

probability and statistics or fuzzy logic. The focus of this research uses statistical distributions, 

since most of the simulation applications we employ in the thesis are Monte Carlo-based 

techniques. Statistical distributions can be in the form of discrete distributions, where only integer 

values are represented, or a continuous distribution, where any value can be observed. In modelling 

construction processes, continuous distributions are more commonly used, as the values being 

modelled typically represent continuous parameters such as durations, costs, and rates (e.g., 

production rates, penetration rates, travel rates). Certain distributions, such as the beta, normal, 

exponential, and Weibull distributions, are commonly used for modelling construction operations. 

Between 1700 and 1900, there was significant growth in statistics as it spread from its roots in 

astronomy and geodesy to psychology, biology, and the social sciences. In 1733, De Moivre’s 

work in approximating the term of a binomial expansion yielded the publication that detailed what 

is now known as “the binomial distribution.” Certain approximations and work furthered by Karl 

Pearson in 1926 led to the first description of the normal distribution. (Grinstead, 1997) 

According to Karl Bury, a distribution function can be defined as the uncertainty aspect of a 

random variable. What form the distribution takes is dependent on the parameters of that given 

distribution function. The sampling of distributions provides an assessment of the statistical 

uncertainty for this variable (Serfozo, 2009). 

As mentioned above, statistical distributions come in two primary forms, namely discrete and 

continuous distributions. In a discrete distribution, only integer values are possible. In construction 
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engineering, it is commonly used to describe variables such as quantities of equipment. The 

distribution is built upon the possible outcomes and the respective probabilities of those outcomes. 

Examples of commonly used discrete distributions are the Bernoulli, binomial, geometric, and 

Poisson distributions.  

A continuous distribution cannot be defined based on specific integer outcomes. Rather, it is 

defined based on a range of values. Sampling the distribution can yield any value in this range to 

a certain level of significance. The shape, constraints, and density of the distribution depend, again, 

on the parameters of the distribution (Stamp, 2015). Some examples of commonly used continuous 

distributions in construction are the uniform, triangular, pareto, beta, and exponential distributions. 

The definition of customized statistical distributions is sometimes required and provides notable 

advantages. If an adequate amount of information regarding the variable of choice is available, 

you may be able to define and fit a distribution around a data set, provided that the source of the 

data are legitimate and accurate (i.e., a sufficient volume of data, provided by experts). A value 

can be extracted from a distribution through a technique called sampling. This involves directly 

sampling a value from the given distribution. In the construction simulation application, sampling 

of a distribution provides model inputs for certain variables. For example, during the simulation 

of an earthmoving operation, the duration for excavating a certain amount of material is sampled 

from a distribution. For each iteration of the excavation process, a new duration is sampled. 

A statistical distribution can be represented either mathematically or graphically. A mathematical 

representation defines a function that details the distribution, which contains the statistical 

parameters of that given distribution.  The number and types of such parameters is highly 

dependent on the nature of the distribution. For example, a common and well-known parameter of 

many distributions is the mean, which represents the central tendency of the distribution. Other 

common parameters are shape factors (which define how the distribution is shaped), upper and/or 

lower bounds, standard deviation, or degrees of freedom. In general, the statistical parameters of 

the distribution define the characteristics of the distribution. 

Alternatively, a distribution can be represented graphically. An advantage of this form of 

representation is the ability to visualize the shape and nature of a distribution. There are two 

common graphical representations of a statistical distribution, namely the visualizations of the 
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Probability Density Function (PDF) and the Cumulative Distribution Function (CDF). The PDF is 

the density of probabilities for the given values of the random variable, where probability density 

or likelihood is plotted against the set of values within the bounds of the distribution. The CDF is 

defined as the probability that a value, x, is less than a given percentile, P. The CDF is a plot of 

the cumulative probability versus the variable outcomes. 

The fitting of distributions to a data set is an important technique for representing uncertainty. Four 

primary techniques are used to fit distributions: the regression method or parametric methods 

including the method of moments, method of L-moments, or the maximum likelihood method 

(Law, 2007). 

The method of moments technique matches sample moments with theoretical moments as defined 

by equations for distribution parameters, such as the mean and standard deviation. To solve for the 

equation parameters, the first sample moment is equated to the first theoretical moment. The same 

process is then followed until n equations to solve for n parameters are obtained. These parameters 

then formulate the fitted distribution. The method of L-moments is analogous to the method of 

moments, but uses L-moments. These are defined as linear combinations of order statistics that 

can be used to estimate descriptive statistical parameters, such as standard deviation, mean, and 

skewness. The maximum likelihood method is a technique that attempts to maximize the 

likelihood function for certain parameter values to estimate the parameters of a statistical 

distribution for a data set. It attempts to maximize the probability of data to be under a given 

distribution defined by said parameters. Finally, the regression method estimates a distribution by 

finding a linear relation between the transformation of a cumulative distribution function and the 

data set. 

The use of statistical distributions in construction and simulation modelling is extensive and these 

three topics often work together harmoniously. Many academic papers have demonstrated the use 

of statistical distribution in these field (Chung, 2006; Scheffer, 2014; Dang, 2013; Rahm, 2013; 

Werner, 2015), where system parameters are sampled from statistical distributions that capture the 

uncertainty in key construction variables, such as duration and production rate. 

2.1.2  Markov Processes and Chains 

A Markov process is a mathematical model developed by Russian probability theorist A. A. 
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Markov. Markov processes allow the analysis of certain complex systems that behave randomly 

over time. A Markov Process is a special type of discrete-time stochastic process, whereby the 

probability of going from one state to another at a future time depends only on the current state 

occupied at the current time. This is known as the Markov property and indicates that our ability 

to predict the state of a system at any time cannot be enhanced by the knowledge of values of 

earlier system states (Gillespie, 1992). If the number of states is finite, the process is called an 

absorbing Markov Chain. Moreover, if the transition can occur only at discrete points in time, the 

process is known as a Discrete Markov Chain. 

A system can be classified as a Markovian process, so long as it has the following properties 

(Serfozo, 2009): 

● A finite number of states 

● An initial probability distribution 

● The transition to a new state depends only on the current state (known as the Markov 

property) 

● The transition probability between any two states is constant or does not change over time 

The last property warrants some discussion as to its applicability to construction projects. 

Typically, the transition of a state does, in fact, change over time as a function of progress, 

conditions, materials, et cetera. Since this property would commonly be contravened within a 

construction context, a variation of a Markov process is required. This variation is known as a 

Dynamic Markov Chain, where the transition probabilities vary with time, thereby allowing the 

application of modelling performance forecasting. 

Markov chains belong to a family of graphical models that are used in the analysis of dynamic, 

stochastic systems. They are comprised of states and their associated transition probabilities, with 

states representing possible values that a given state variable of the system can take on. 

Markov chains are typically used for modelling sequential processes where a finite number of 

possible states are repeated. They have been applied in a variety of contexts, such as earth and 

atmospheric sciences (Stamp, 2015), speech recognition (Rabiner, 1989), computing processes 
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(e.g., web searching, performance evaluation) and communication (Von Hingers, 2003), and 

chemical process engineering (Tamir, 1998). 

In the domain of Markov processes and models, events related to a system can be mapped or 

related to the state of the system. The term “state” is preferred to “event” when describing Markov 

processes or models. The transition probability matrix of a process can be configured in such a 

way that the chain can be comprised of only one or a mix of state types. The first kind of Markov 

state is called an absorbing state but is also often referred to as a recurring state. An absorbing state 

is one that, if a Markov chain transitions into, it will never leave. Rather, the state continues to 

recur. States, in a Markov model, which are not absorbing states are referred to as transient states, 

since the chain can transition to all other states. Notably, this includes transitions to absorbing 

states. The state space for Markov processes can also be categorized as either discrete or 

continuous. A discrete state space for a Markov chain is comprised of a finite or countable set of 

possible states, while a continuous state space has infinite possibilities for state values. Markov 

chains are a special case of discrete-valued Markov processes. Consequently, for practical 

purposes, Markov chains will hereafter be regarded as discrete-valued.      

2.1.2.1 Types of Markov Chains 

Markov processes can be categorized based on the nature of the states they can take on, namely as 

a discrete-time Markov processes (DTMP) or continuous-time Markov processes (CTMP). 

Discrete-time Markov processes describe a process that can persist in a state for a predefined 

discrete measure and that has distinct boundaries between states (Norris, 1998). The discrete 

measure could be moments in time, physical distance, or any other appropriate discrete measure. 

In continuous-time Markov processes, changes to the system can occur at any time along a 

continuous interval (Norris, 1998). The persistence within a given state is typically modelled using 

continuous probability distributions. Although it is never regarded as an explicit parameter for a 

Markov process, the parameter used to track the persistence of a Markov process within each state 

is a crucial parameter, as it can be used to classify the process and facilitates Markov computations. 

Markov chain models are a special case of discrete-time Markov processes. 

2.1.2.2 Traditional vs Hidden Markov Chains (HMMs) 
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At a very high-level, Markov chains can be placed in one of two categories: (1) hidden Markov 

chains and (2) non-hidden or traditional Markov chains. While hidden Markov chains are 

comprised of states (referred to as hidden states), transitions, observation symbols, and emissions, 

traditional Markov chains are only comprised of states and transitions. Both types have been 

extensively used for modelling different types of problems. In this thesis, a generic approach that 

involved presenting information and developing a simulation tool that lends itself to both hidden 

and traditional Markov chains was used.   

Hidden and traditional Markov chain models can be represented in both a mathematical and a 

graphical format. The mathematical format makes use of matrices and vectors in the definition of 

the parameters of the Markov chain. The notation used for the Markov parameters, their 

corresponding matrices and vector, and their elements, based on Rabiner and Juang (1986) and 

Rabiner (1989), are summarized in Figure 2.1. 
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Figure 2.1: Markov Parameters and Elements 

The notation presented is for a hidden Markov chain but can be appropriately stripped down and 

applied to traditional Markov chains. Markov chains can be configured in a variety of ways to 

emulate specific behaviors. The differences in configuration can be set in the parameters of the 

Markov chain and translate into the various types of Markov chains that exist today. Various 

Markov chains, specifically traditional Markov chains, are discussed in the following sections.  

There are a few key differences between a Markov chain model and the more complex hidden 

Markov chain model. In a Markov chain, the model is represented by a number of states and is 

limited to only the probabilities of transitioning between these states with no observations or 

relationships to other parameters. In addition, the probability of transition depends only on the 

current state and no insight into previous events. According to statistical theory, a Markov chain 
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can be said to be memoryless (Ines, 2010). On the contrary, a HMM model is defined by a number 

of states. However, these states are hidden, where the occupied state remains unknown. Only the 

observations and outputs that are related to the states detailed above are known. Unlike a traditional 

Markov chain, an HMM predicts transitions based on previous outputs and not based on the current 

state. A simple comparison comparing a traditional Markov chain to a hidden Markov chain is 

provided in Figure 2.2. 

 

Figure 2.2: Comparison of Traditional (left) versus Hidden Markov Chains (right). 

In this example, Student A, who is on a university campus, can be in a classroom, the cafeteria, or 

the gym as modelled in Figure 2.2 (left). In Figure 2.3 (right), another student, Student B, is 

attempting to reach the first student by phone. While Student B knows whether or not Student A 

answers the phone, they do not know whether the student is in class, the cafeteria, or the gym. In 

Figure 2.2 (right), the classroom, cafeteria, and gym are hidden states, where only the observations 

(of whether or not the student picks up the phone) are experienced.  

Another simple example of an HMM can be illustrated using a weather-related example (Stamp, 

2015). The relative temperature of a particular location is in question, and the states and transitions 

that will occur must be assessed. Temperatures can be either hot or cold (i.e., 2 states), and there 

exists a likelihood for all four possible transitions (hot to hot, hot to cold, cold to hot, and cold to 

cold). Suppose a relationship between temperature and plant growth exists, with plant growth 

ranging from low, to medium, and to and high. The growth, in this instance, represents 

observations or signals. Depending on the current state (hot or cold), there are associated 
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probabilities that you will observe one of the three growth potentials (i.e., signals). By combining 

state transition probabilities with observation probabilities, a hidden Markov model begins to be 

formed. 

Since the next state depends on the previous state, this example can be classified as a Markov 

process. Since we cannot observe the temperature, this model is considered a hidden Markov 

model. In this case, observable information, or plant growth, can be used to predict temperature. 

The model is defined based on three key parameters, namely the initial state distribution, the state 

transition matrix, and the observation matrix. Together, these parameters detail all of the transition 

and observation probabilities as well as the initial conditions. 

These methods, when combined, lend themselves best to long-term projects as there is sufficient 

time to make necessary, worthwhile changes. For this method to be effective in practice, 

appropriate data collection practices are a requirement. The mathematical representation of an 

HMM model is depicted by expressing the binary state vector and/or the probability state vector. 

These are vectors of length n, where n represents the number of states. The binary vector is an 

empty zero vector except for the occupied state, which is one. The probability state vector is, again, 

a vector of length n, where all entries represent the probability of state transition to that state. By 

definition, the sum of all entries of the probability vector must be equal to one. 

2.1.2.3 Ergodic Markov Chain 

An ergodic Markov chain is a broad categorization of chains that exhibit the ability to transition 

to other states from each state in one or more steps. Another name used for this type of chain is 

an “irreducible Markov chain.” A reducibility property refers to the ability to move from a state, 

i, to a state, j, directly (in one step) or indirectly (in multiple steps). Ergodic Markov chains may 

be regular (fully connected chain with all transitions having a non-zero probability) or may not 

be regular (for example, a chain with zero diagonal elements in its transition probability second 

order tensor).  

2.1.2.4 Irregular Markov Chain 

In irregular Markov chains, there is absolutely no way of transitioning to all states (including the 

current state) from the current state within a single step. A classic example is a Markov chain that 
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has a transition probability matrix with zeros along its diagonal (i.e., there are no transitions from 

a state to itself). 

2.1.2.5 Regular Markov Chain 

A regular Markov chain is the most frequently encountered type of Markov chain. It is regarded 

by many as the true ergodic Markov chain. A regular Markov chain guarantees the possibility of 

moving from one state to any other state (including the current state) in just one step. To be able 

to fulfill this behavior, the transition probability matrix or its powers must contain elements that 

have values greater than zero. From a behavioral perspective, this can be viewed as the ability of 

the Markov chain to transition to every other state.  

Regular Markov chains also exhibit other behaviors when certain types of computations are 

performed on them. For example, there is either one or multiple probability state vectors that, if 

multiplied by the transition probability matrix, gives the same probability state vector or multiples 

of the initial vector. In linear algebra, these are referred to as eigen vectors. Eigen vectors have 

values associated with them that are referred to as eigen values. Together, eigen values and their 

corresponding vectors form an eigen system. Eigen systems reveal insights into several aspects of 

the model or process depending on the context in which they are used. For example, in geometric 

liner transformation of spaces using tensors, eigen vectors represent the portion of the space that 

does not experience any rotation but that experiences the maximum scaling effect. In essence, the 

eigen value represents the extent to which the space in the direction of the eigen vectors has been 

stretched or compressed. In the analysis of the dynamic behavior of physical systems, eigen vectors 

and values are used to predict the deformation response of structures to dynamic loads, such as 

earth quakes. The state probability distribution vector of a Markov chain that corresponds to an 

eigen value of one is referred to as an equilibrium probability distribution of the regular Markov 

chain. It is also often referred to as the stationary probability distribution. There are a number of 

analytical techniques for computing the parameters of an eigen system; the process of obtaining 

these parameters is not of interest here and are, therefore, not discussed. 

Also important to note is that applying power operations to a Markov chains transition probability 

matrix typically ends in a convergence of the result after a certain number of steps. When this 

happens, the Markov chain is said to have transitioned from a transient state to a state of 
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equilibrium. When the chain has achieved this type of equilibrium, any state probability 

distribution vector that is multiplied with the transition probability tensor results in the same state 

probability vector (see Equation 2.1). In other words, the probability distribution of the current 

step is equal to the probability distribution of all future steps.  

An≈An-1                                                                                                                                          
 (2.1) 

 

2.1.2.6 Absorbing Markov Chain 

Absorbing Markov chains represent a category of Markov models that have more than one 

absorbing state and have a configuration that permits moving from any state to at least one 

absorbing state in a finite number of steps (Grinstead & Snell, 1997; Kemeny & Snell, 1976). All 

non-absorbing states are referred to as transient states. The convention for writing out a transition 

matrix for an absorbing Markov chain is to number the states so that the transient states come first 

and then the absorbing states follow (see Equation 2.2). This arrangement conforms to the famous 

“Canonical Form.” 

 

(2.2) 

 

I is an identity matrix that is of dimension r-by-r, O is a zero matrix that is of dimension r-by-t, R 

is a non-zero t-by-r matrix, while Q is a t-by-t matrix. It has already been mentioned that the 

element aij, in a matrix An is the probability of being in the state si after n steps, when the chain is 

started in state si. As such, the probability that a Markov chain will be absorbed is 1.0, as the 

number steps tends to positive infinity irrespective of the state that the chain started in. Absorbing 

Markov chains are used to model processes that exhibit typical Markov properties but that also 

terminate after a specific state is realized. The famous drunkard’s walk example (see Figure 2.3), 

where the drunkard’s walk is a random walk on a number line where, at each step, the position 

may change by +1 or −1 with equal probability. 
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Figure 2.3: A Graphical Representation of a “Drunkard Man’s Walk” Markov Chain  

2.1.2.7 Markov Chain Behavior 

Markov Chains are a classical example of models that are used to analyze and emulate Markov 

processes. Analysts and modelers have made use of these models by performing simulations or 

analytical algebraic computations (i.e., often referred to as predictions). Both approaches have 

been extensively used to gain insights into behavior of Markov processes as time passes.    

In the present thesis, Markov process and chain behaviors are defined using two different 

terminologies to facilitate the discussion of an important point. Prediction of Markov chain 

behavior refers to the application of liner algebra to the properties of a chain for purposes of 

obtaining probability and statistical values that can be used for making inferences about the general 

behavior of a chain. Simulation, on the other hand, strives for precise emulation of the Markov 

behavior. It also relies on probability theory to achieve randomness that is used to model the actual 

behavior of the chain. Each of these analyses are discussed further in the following sub-sections. 

2.1.2.8 Predicting Markov Chain Behavior 

Analysts who are interested in predicting the evolution of process that can be defined using Markov 

chains often use liner algebra in their computations. For example, an analyst may be interested in 

estimating the likelihood of being in certain states after a specific number of steps or the expected 

number of times that a chain transitioned through a specific state in a certain number of steps. In 

such a case, liner algebra can be applied using the prior state probability vector and the transition 

matrix of the Markov chain (see Equation 2.3).   

   0n nA  ; where: (2.3) 
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The proof of Equation 3 is based on the fact that the state vector for a Markov chain at a specific 

iteration is the product of the state vector in the previous iteration and the transition matrix (i.e., 

an application of the Markov or memoryless property). Generating the probability state vector 

using this principle results in Equation 2.4. 

   1 0
A   (2.4) 

 

The state probability vector for the second iteration would then be computed using Equation 2.5. 

   2 1
A   (2.5) 

 

Substituting Equation 5 into Equation 4 results in Equation 2.6. 

      2 0 0 2A A A     (2.6) 

From Equation 2.6, the equation for computing the state probability vector for the nth iteration 

can be generalized as Equation 2.7, hence the proof.  

   0n nA   (2.7) 

 

Using the formulations presented, it can be realized that there is a point at which the probability 

vector for the chain being in a particular state stabilizes. When this occurs, the chain is said to have 

achieved equilibrium (Grinstead, 1997). Prior to this, the chain is said to be within a transient state. 

The number of steps that are required for a chain to achieve equilibrium is often important to 

Markov analysts. It is possible to use liner algebra to estimate the approximate number of times 

that a Markov chain, with specific parameters, transitioned through a specific state. 

It is also important to note that the results obtained from computations that make use of these 

equations are estimates and may not represent the actual values obtained when the same chain is 

simulated. Accordingly, these predictive computations do not represent precise use of Markov 

chain for the following reasons: 
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• The results of the predictive computations do not preserve the memoryless property of 

Markov chains. This is because the elements of the generated Probability State Vectors 

(PSV) do not match any of the row vectors in the transition probability matrix. Also, the 

computations rely on the previous powered result of the transition probability matrix—

something that is not consistent with the memoryless property of Markov chains. 

• As PSV values are computed at each step, they often quickly decay into a set of values that 

do not fulfill the property that requires all likelihoods of transitions from a state to sum to 

a value of one. This violates the basic principles of probability, thereby introducing errors. 

As a result of these shortfalls, simulation-based approaches are often used as an alternative 

approach for applying Markov chains to study processes. Details on simulation of Markov chains 

are presented in the following section.  

2.2 Specific Researched Papers of Interest 

Probabilistic Simulation Studies for Repetitive Construction Processes (S. AbouRizk, D.W. 

Halpin) - 1990 

The authors demonstrated the use of statistical distributions through input modelling techniques 

applied to simulation modelling. They illustrate that statistical distributions allow the 

representation of random inputs of the system being studied. They also detailed two primary cases 

of input modelling: first, when data is available for fitting, and second, if no data are present. 

Further detailed is input model selection, model parameter estimation, and goodness of fit 

assessment. 

Simulation Input Updating Using Bayesian Techniques (T. Chung, Y. Mohamed, S. AbouRizk) 

- 2006 

Due to the long-term and repetitive nature of tasks in a construction project, using real-time 

progress information to adjust simulation models can lead to real improvements in performance 

prediction. Chung et al. present how Bayesian updating can be applied to enhance the estimation 

quality of a simulation model using real, observed data. Specifically, the authors describe how 

normal distributions of parameters within the Simphony simulation environment, such as TBM 
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penetration rate in tunneling, can be updated using Bayes theorem. The contributions of this work 

allows for the improvement of subjective preliminary assumptions, on which the simulation model 

is based, to be embellished with actual construction data for more accurate forecasting and 

prediction. 

Chung et al. outlined the value of Bayesian updating techniques applied to tunneling construction 

to improve the accuracy of predictions, simulation results, and project outcomes. They also 

discussed the opportunity that tunneling projects present for Bayesian updating improvements due 

to the long-term, repetitive nature of construction. By detailing the inputs in terms of real project 

progress, the simulation model could become updated, resulting in the output of more accurate 

results. These techniques were applied to a case study project in Edmonton, Alberta, to test the 

validity of the theories. A simulation model, which had been developed during the pre-construction 

phase, was updated to include actual data to modify the assumptions and metrics in the model such 

as ground conditions, TBM penetration rates, breakdown information, and other delays using 

Bayesian algorithms applied to update statistical distributions.   

Ground Condition Prediction in Tunneling (H.H Einstein, P.G. Ioannou)- 1987 

Einstein and Ioannou (1987) developed techniques to address geological uncertainty in tunneling 

construction using a discrete-state Markov process. The geological conditions were modelled 

under a set of geological parameters relating to characteristics focusing the model on rock type. 

The development of the probability transition parameters was recommended to be either developed 

through statistical procedures or direct subjective assessment. The statistical procedures depend 

on the amount and reliability of data available. The estimation of these can be performed using a 

variety of analytical forms and projections using whatever information is available.  

Markovian Geology Prediction Approach and Its Application In Mountain Tunnels (Z. 

Guan, T. Deng, S. Du, B. Li, Y. Jiang) - 2012 

A geology prediction approach, based on Markov random process and Bayesian updating 

procedure, is presented in this article. It can dynamically and cost-effectively predict future ground 

conditions in a probabilistic manner as the tunnel face advances and new geological information 

is revealed. The application case study on the Chuangshi Tunnel project demonstrates that the 
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prediction results were representative of real grounds conditions, especially for the immediate area 

ahead of the face. This approach can be regarded as a good complement to the geophysical 

prospecting approach during the construction of mountain tunnels. 

The variability of geological parameters was described with respect to their length of persistence 

and, therefore, were defined as a random process with a state probability being a function of 

location. Transitions were defined under the product of a transition intensity coefficient (ci), which 

relates to condition persistence of state i, and the transition probability (pij) from state i to j (where 

i and j represent the current and future state, respectively). The estimation of transition 

probabilities and intensity coefficients are typically subjective assessment or statistical procedures. 

If there is sufficient information regarding the geological profile of an area on a project, the 

coefficients can be estimated by computing the inverse of the average length of each state i, while 

pij can be estimated by computing the ratio between the number of transitions from states i to j and 

the total number of transitions out of state i.  

Guan et al. also presented a method to dynamically update the transition intensity matrix obtained 

from the geology map as new information or observations are available. The following equation, 

Equation 2.8 was defined to compute these updates: 

𝐿 = [𝑙𝑗𝑘], 𝑤ℎ𝑒𝑟𝑒 𝑙𝑗𝑘 = 𝑃[𝑌(𝑡𝑏) = 𝑘[𝑋(𝑡𝑏)] = 𝑗] (2.8) 

 

Where, 𝑌(𝑡𝑏) is the observation result at location 𝑡𝑏 for the geological parameter 𝑋(𝑡𝑏), and 𝑙𝑗𝑘 is 

the likelihood of observation result k given that the parameter state is j. 

As real time geological information becomes available, the interval transition probability matrix 

can be updated sequentially, as demonstrated by Guan et al., in the following manner. Suppose the 

tunnel face location 𝑡𝑓 is excavated towards the direction of a known boring hole location noted as 

𝑡𝑞. Considering the interval from location 𝑡𝑓  to location 𝑡𝑞., the prior interval transition probability 

matrix V(𝑡𝑞-𝑡𝑓) is calculated by Equation 2.9 using the prior transition intensity A. According to 

Bayes’ theorem, the posterior interval transition probability matrix V0(𝑡𝑞-𝑡𝑓) is updated by this 

equation, when a certain observation result, k, is revealed at location 𝑡𝑓. 

𝑉(𝑡1 − 𝑡0) = 𝑒(𝑡1 − 𝑡0)*A  (2.9) 
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𝑉′ = [𝑣𝑖𝑗
′ ], where 𝑣𝑖𝑗

′ = (
𝑣𝑖𝑗𝑙𝑗𝑘

∑ 𝑣𝑖𝑗𝑙𝑗𝑘
𝑛
𝑗−1

) for a certain observation result, k, at the new location 

 

Then, the posterior transition intensity matrix A’, which reflects the “average” transition 

probability, and the “average” transition intensity coefficient, within the range between location 

𝑡𝑞 and 𝑡𝑓 , can be calculated by Equation 2.10: 

𝐴′ = 𝑙𝑜𝑔 𝑉′
(𝑡𝑞 − 𝑡𝑓)

(𝑡𝑞 − 𝑡𝑓)𝐴′
 (2.10) 

 

Guan et al. also postulated that ground conditions can often be classified into several grades 

according to the simultaneous characteristics of several geological parameters of interest. It is 

suggested that a geology table should be defined to specify which kinds of geological parameter 

combinations belong to which ground conditions. Considering ground conditions as a complex 

combination of geological parameters, when the probabilistic characteristic of each single 

geological parameter is determined by the Markov process presented above, the probabilistic 

characteristic of a ground condition along the tunnel alignment can be determined. 
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Geological Prediction and Updating In Tunneling- A Probabilistic Approach (D.B. Ashley, 

D. Veneziano, H.H. Einstein, M.H. Chan) - 1981 

These authors introduced a potential theory to apply prediction and updating techniques to 

geological conditions. By further defining ground conditions expected to occur, specific 

construction methods and techniques could be customized for the relevant geological state. They 

detailed a probabilistic technique to describe geological conditions, which was implemented 

within a model. With its foundation in Markov-process representation, the method detailed 

attempts to reduce uncertainty as information is collected. Using only existing data and avoiding 

more technological and expensive exploration techniques provides an advantage to the 

construction project through saved time and cost. The technique is based on a discrete-state, 

continuous parameter Markov model, that is updated using Bayes theorem. The overall procedure 

was broken down into three main phases, namely preliminary subjective assessment (existing data, 

and geotechnical reports), secondary explorative data (additional drilling, testing and geotechnical 

investigation prior to construction), and, lastly, the updating of geological condition information 

using excavation data during tunneling. The viability of the discussed model was reviewed in a 

case study of a Power Station discharge tunnel construction project. 

Jobsite Logistic Simulation in Mechanized Tunneling (M. Scheffer, T. Rahm, R. Duhme, M. 

Thewes, M. Konig) - 2014 

Scheffer et al. explored logistic processes, supply chain management, and project setup to explain 

the tendency for mechanized tunneling projects to not meet targeted production rates. A simulation 

approach, which presents the ability to test and compare various setups of jobsite elements, was 

developed to analyze the complex system that is mechanized tunneling. The model implemented 

was based on a process-oriented simulation model created by Rahm et al. (2013), which was 

embellished to include a logistic model within the AnyLogic commercial software. Special focus 

was made to establish a connection between external logistics (non-excavation work, production) 

versus internal logistics or actual tunneling excavation. The use of this model demonstrated the 

ability to support project management by allowing transparent testing of setups and logistics of the 

tunneling project and by enabling the provision of further insight into potential logistics-associated 

project improvements. 
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Assessing Maintenance Strategies for Cutting Tool Replacements in Mechanized Tunneling 

Using Process Simulation (A. Conrads, M. Scheffer, H. Mattern, M. Thewes, M. Konig) - 2016 

Conrads et al. displayed a performance forecast model for tunneling projects that emphasized the 

wear and maintenance requirements of TBM cutting tools. They present the notion that, to 

optimize production rate in tunneling, well-maintained cutting tools are imperative as wear to the 

TBM face cutting apparatus leads to decreased penetration rates. However, there is a challenge in 

the ability to monitor the TBM face through a visual inspection without stopping production 

altogether. If maintenance or repairs are required, there will be even more work stoppage. 

Applying the empirical tool wear prediction formulae of Köppl et al (2015), the model was built 

within the AnyLogic software environment using agent-based modelling, discrete-event, and 

system dynamic simulation techniques. Using a multimethod approach allows the evaluation of 

maintenance strategies to optimize productivity of the tunneling project. The role of the model was 

to generate a maintenance management plan capable of optimizing the number of maintenance 

stops and repairs to the TBM face. 

Process Simulation of Mictrotunneling Operations for Productivity Assessment Depending 

On Ground Conditions (T. Dang, B. Schoesser, M. Thewes) - 2013 

This paper details the factors that affect the productivity of microtunneling and attempts to manage 

the complex interaction of construction processes using process simulation. Using a SysML or 

System Modeling Language and AnyLogic, a simulation model was developed to create a 

representative model and assess the efficiency of microtunneling. The theorized model was 

validated using a real tunneling project for the City of Recklinghausen in Germany. A secondary 

study was completed to assess various soil compositions and their impact on process efficiency. 

Further sensitivity analysis was done to gauge various combinations of resources, highlighting the 

most notable processes that affect productivity. 

Uncertainty Modeling and Simulation of Tool Wear in Mechanized Tunneling (T. Rahm, R. 

Duhme, K. Sadri, M. Thewes, M. Konig) - 2013 

This paper postulates that geotechnical constraint uncertainty can be estimated using Fuzzy Logic 

techniques to predict the relationship between geological condition, cutting tool wear, and, 
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consequently, TBM advance rate. Simulation modelling was done to quantify the influence of tool 

wear on advance rates and to move towards further defining a holistic simulation model of 

mechanized tunneling projects. The results of the study demonstrated that in the artificial example 

used, there is significant correlation between advancement of the TBM and wear of cutting tools. 

Further recommended studies are pursued, and modelling is applied to a real-life case study. 

Integrated Pavement Management System with a Markovian Prediction Model (K.A. Abaza, 

S.A. Ashur, I.A. Al-Khatib) - 2004 

Abaza presented a pavement management system that utilizes a discrete-time Markovian model to 

predict the deterioration to improve scheduling of maintenance and rehabilitation works. Using 

five condition states, the pavement status can be predicted with the use of system modules built 

with the Fortran language. Abaza emphasizes that the success of the system is highly dependent 

on the level of input data and modelling available. 

Simulation Case Study: Modelling Distinct Breakdown Events for a Tunnel Boring Machine 

Excavation (M. Werner, S. AbouRizk) - 2015 

Tunnel Boring Machine (TBM) tunneling projects frequently experience delays, which can cause 

adverse effects, such as extended schedules, which incur additional costs. This paper outlines a 

case study to demonstrate how simulation can be effectively used to analyze the productivity 

performance of a project, with an emphasis on delays resulting from equipment breakdowns and 

unexpected conditions. Data collected from this project under a Method Productivity Delay 

Modelling study, completed by a consulting firm, was collected and prepared to model delays on 

a combined discrete-event, continuous tunneling simulation model. Calibration was done to the 

theoretical tunneling model to ensure the results would be reflective of the actual construction 

project and to measure the effectiveness of the delay modelling. Sensitivity analysis was conducted 

to determine the most unfavourable delays for a tunneling project, allowing further analysis 

regarding the results of the mitigation of these delays on project duration and on hypothetical costs. 

Planning the Handling of Tunnel Excavation Material – A Process of Decision Making Under 

Uncertainty (Ritter, S., Einstein, H., & Galler, R.) - 2013 
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Previous work in predicting geological conditions in tunneling simulation has been performed 

using a technique known as Preliminary Material Classification (Ritter et al., 2013), whereby each 

excavated material is related to a corresponding material class. The preliminary ground class 

profile is determined based on geological parameters such as lithology, water occurrence, and 

overburden. A Monte Carlo procedure is used to simulate the construction process, where one of 

the many defined ground class profiles is computed. As the tunnel progresses, each of the ground 

profiles is simulated using a construction module that defines the tunneling parameters based on 

the given ground profile (Ritter et al., 2013). 

Schedule Risk Analysis for TBM Tunneling Based on Adaptive CYCLONE Simulation in a 

Geologic Uncertainty-Aware Context (Donghai, L., Peng, X., Shuai, L., & Peizhi, H.) - 2015 

A geological prediction model summarized by Donghai Liu (2015) and developed by Ioannou 

(1987), used Bayesian techniques based on a Markov process. This model relies upon expert 

interviews to gauge the accuracy of the transition probabilities of the prediction model. The model 

functions by predicting future states, based on the previous states, and updating the transition 

probabilities accordingly. 

2.3 Forecasting of project performance 

The ability to control and understand performance variances and to predict future project 

performance is vital for project success. Forecasts of the completion variances are typically 

estimated by comparing the baseline values with forecasted values. The ability to forecast 

performance during the project would allow project managers to implement change and take action 

to mitigate issues where applicable. It is important to note that, on a monthly basis, forecasting is 

consistent, analytical, and stable so that performance overruns can be identified as early as 

possible. This document details the work of Nadim Nasser (2005), which focuses on the 

forecasting of project performance from up-to-date performance data using Markov-based 

techniques. 

Accounting for certain factors during a construction project, such as material delays, scope 

changes, productivities, and weather, can make performance forecasting difficult to perfect. 

Typical forecasting methods do not address these variables and do not allow users to input that 
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could improve forecasting. Being able to predict project performance at completion is imperative 

for ensuring project success and for maximizing profitability. With effective forecasting 

techniques in place, the management team can address variances and take corrective action as early 

as possible to remedy overruns. Ultimately, a complete and integrated forecasting method that 

considers the probabilistic nature of construction projects is essential for allowing management to 

actively address variances at any future time and, most importantly, at completion. 

In the industry today, forecasting is typically done using indices that are typically based on expert 

opinion and/or linear trends. Markov Chains have commonly been used in many other domains to 

address stochastic processes; however, this practice is not common in construction performance 

forecasting. The work of Nasser introduces forecasting theories using objectives hierarchy and 

Dynamic Markov Chains.   

2.3.1 Other Forecasting Methods 

Significant work has been done to advance performance prediction. The primary focus of these 

techniques relate to the prediction of estimates at completion relating to cost and schedule. Various 

types of techniques have been used, including, but not limited to, stochastic and probabilistic 

methods, advanced computing methods, earned value methods, deterministic methods, artificial 

intelligence and fuzzy logic, and behavioral and judgmental forecasting. 

2.3.2 Probabilistic Forecasting of Project Performance using Markov Chains 

In general, project performance is a function of current status, future corrective action plans, and 

the incorporation of past performance. The following section details the method formulated by 

Nasser in his work entitled “An Integrated Framework for Evaluation, Forecasting and 

Optimization of Performance of Construction Projects (2005)”, which serves to predict future 

construction performance (at completion and at any interim period) based on a user’s previous 

experience and judgement. Markov chains were proposed to account for the stochastic nature of 

construction and performance.  

Nasser indicated that application of Markov chains to construction are common and have been 

applied across a variety of contexts, including assessing the performance of highway bridges, 

operations of a tunnel-boring machine (Touran, 1997), optimization of maintenance of 
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infrastructure networks (Guignier and Madanat, 1999), structural deterioration of storm water 

pipes (Micevski, 2002), performance of bridge paint systems (Zayed, 2002a), life cycle economic 

analysis by (2002b), deterioration model for concrete bridge decks (Morcous, 2003), and 

deterioration of pavement systems (Abaza, 2004). 
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CHAPTER 3 

1PROPOSED GEOLOGICAL CONDITIONS UPDATING USING BAYES 

THEOREM AND MARKOV CHAIN 

3.1 Introduction 

A major source of uncertainty in tunneling construction is geological uncertainty, which, if 

improperly managed, can lead to additional costs and project delays. Tunneling projects are often 

based on weak or incomplete assumptions, renderings the planning such projects difficult in 

practice (Ioannou, 1987). Increasing the certainty with which ground conditions are predicted 

would allow practitioners to select construction method(s) and develop construction plans that are 

best suited for the soil type.  

However, a complete, and actual profile of the ground conditions, which can be obtained through 

geological borehole investigation, is an expensive, time-consuming process that is often unfeasible 

in practice. Alternatively, uncertainty can be reduced by applying previous project data or expert 

knowledge to estimate the unknown parameters of a project. For example, data from a previous 

project that occurred in close proximity to the new project can be used to inform future construction 

plans. Furthermore, inclusion of data from the current project as it is acquired can also be used to 

reduce project uncertainty (Einstein, 2004). Yet, the following question remains: what is the best 

method to make use of previous and current project data to embellish project plans? 

Based on conditional probabilities, Bayes updating techniques provide a systematic approach for 

combining observed and historical data together to expand existing data sets. Bayes techniques 

allow the modelling of changes over time and can serve to effectively model the evolution of the 

probabilistic dependencies within a system. Bayes updating can considerably improve the quality 

of input data, even when only a small number of data sets have been collected in the early stages 

of a project’s lifecycle. A modeller is then able to easily update predictions as additional 

information or data becomes available (Špačková & Straub, 2013; Zhang et al., 2014). 

                                                           
1A version of this chapter has been published as "Proposed Geological Conditions Updating Using Bayes Theorem And 

Markov Chain” in the Proceedings of the 2015 Winter Simulation Conference. 
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Modelling the real world, in terms of predictions, is a stochastic process, since the process begins 

in one state and transitions to another state in a random manner. To address the stochastic nature 

in real world applications, Markovian chains, named after Andrey Markov, are often used to 

represent this process. (Gilks, 2005). 

This chapter develops a model consisting of Bayes technique and Markov chain, where by the 

geological condition of a one-meter section in a tunnel construction project can be updated in a 

continuous manner from observations of the previous one-meter section over time. A case study 

project in Edmonton, Alberta, the West Edmonton Sanitary Sewer (WESS), was used to 

demonstrate the applicability of the developed methodology. Results of analysis, including 

observations, geological fluctuations, as well as additional geological investigation, are analyzed 

and discussed. The use of the discussed updating techniques demonstrates that prediction quality 

of the model can be considerably improved following the implementation of the proposed 

methodology. 

3.2 Objective of the Study 

The tunnel boring machine (TBM) advancement rate is stochastic and depends on the type of soil 

or ground condition being excavated (AbouRizk & Mohamed, 2000), which, in turn, impacts the 

productivity level of the excavation and the project. Typically, in previous tunnel simulation 

research, the distribution of ground conditions is fixed to certain ranges along the alignment. For 

example, for a 600m tunnel, it may be assumed that the first half of the tunnel is sand and, after 

300m, the remainder of the soil is clay (Ruwanpura et al., 2001). However, geological conditions 

can change at any time and often do not follow these predefined ranges (Einstein et al, 1999; Haas 

& Einstein, 2002). 

The objective of this chapter was to formally represent the uncertainty of ground conditions for a 

tunneling project to more reliably predict the actual distribution of geological conditions. Specific 

objectives of this research included: 

1) Modeling the random evolution of the probabilistic dependencies on the distribution of 

geological conditions 

2) Updating the prediction of geological conditions over time when the observed information 

is available. 

http://en.wikipedia.org/wiki/Andrey_Markov
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3.3 Methodology 

By definition, an updating process functions uses new information to improve or update a prior 

state or set of information. In the case of a Markov model, the goal of an update is to improve 

predictions. Each probabilistic input is a prediction of an individual parameter that is attempted to 

be improved during the updating process. As a result, this will also improve the output of the 

model, leading to a reduction in the level of uncertainty. A proposed framework was developed as 

shown in Figure 3.1, to visualize the Markov updating process. This framework consists of two 

steps: 

 

 

 

 

 

 

Figure 3.1: A General Simulation Framework 

3.3.1 Bayes Updating Process 

Under the assumption that a prediction has already been made and that new information has 

become available since the initial prediction was made, the updating process then leads to an 

updated prediction. The proposed mathematical model that completes the updating of the 

probabilistic inputs is Bayes theorem. Bayes theorem is based on the Bayes conditional probability 

theorem, which is well known in the fields of mathematics and statistics. This theorem allows the 

modelling of the changes in the probabilistic values within a random system and, in the case of 

Markov modelling, can allow users to easily update the predictions as new information is known. 

In other words, Bayes theorem states that the posterior prediction is a function of the prior 

prediction and the new information. 
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In a tunneling project, new information can be obtained by performing preliminary testing 

(borehole sampling), through excavation, or through exploratory testing during excavation. Bayes 

theorem relates the posterior probability to the prior probability and new information, as shown in 

Equation 3.1. 

 𝑃′′(𝑍 = 𝑧𝑖|𝑋 = 𝑥𝑖) = 𝑁 ∗ 𝑃′(𝑍 = 𝑧𝑖) ∗ 𝑃(𝑋 = 𝑥𝑖|𝑍 = 𝑧𝑖) (3.1) 

 

Where,  𝑃′′(𝑍 = 𝑧𝑖|𝑋 = 𝑥𝑖)  represents the posterior probability 𝑧𝑖, given that the outcome of the 

test X is 𝑥𝑖; 𝑃
′(𝑍 = 𝑧𝑖) represents the prior probability of 𝑧𝑖; and 𝑃(𝑋 = 𝑥𝑖|𝑍 = 𝑧𝑖) represents the 

probability of the outcome being 𝑥𝑖 if the true state of Z is zi. 

3.3.2 Markov Chain Process 

The Markov process is a stochastic process that involves both a random variable and a “time” 

parameter that monotonically increases during the process. The latter representing the state 

transitions of the random variable as time progresses. The Markov process is characterized by a 

single-step memory, where only the current state is known. To determine the next step, all previous 

steps, except for the most recent one, are neglected. When applied to tunneling, this parameter 

indicates that the material behind the tunnel face depends only on the parameter state at the tunnel 

face. 

A discrete-time Markov chain is a mathematical system that simulates transitions from one state 

to another in the real-world. Based on the Markov chain process defined in Equation 3.2, the model 

is a probability distribution function of the sequence of T hidden-state variables X = {x0, . . ., xT-

1} and the sequence of T observations Y = {y0, . . ., yT-1} that has the following factorization, 

which satisfies the requirements that state 𝑥𝑡 depends only on state 𝑥𝑡−1. 

Pr(𝑋1:  𝑇|𝑌1: 𝑇) = ∏ Pr (𝑥𝑡|𝑥𝑡−1) × ∏ Pr (𝑦𝑡|𝑥𝑡) × Pr (𝑥0)

𝑇−1

𝑡=0

𝑇−1

𝑡=1

 
(3.2) 

Where, 𝑃𝑟(𝑥𝑡|𝑥𝑡−1) is the state transition probability density function, 𝑃𝑟(𝑦𝑡|𝑥𝑡) is the observation 

probability density function, and 𝑃𝑟(𝑥0) is the initial state distribution. 
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3.4 Case Study 

A tunnel case was used to assess the feasibility of the proposed Markovian model and, specifically, 

Bayesian updating. In tunneling construction, concrete liner is usually installed in one-meter 

lengths. To conveniently analyze the tunnel project and its production rate, this model divides the 

tunnel into one-meter sections, which are considered as separate units during excavation. 

3.4.1 Background 

The WESS was a sanitary servicing project, performed in anticipation of future growth, that 

initiated west of the City of Edmonton to prevent negative impacts on the downstream sewer 

system. This project consisted of approximately 1.2 kilometers of underground tunnel construction 

(Figure 3.2). 

 

2Figure 3.2: Location of the WESS W13 Project 

The production of tunnel construction projects is very sensitive to geological conditions due to 

complex tunnel-soil interactions. Certain ground conditions, such as very loose sand, may cause 

hazardous tunnel operations or catastrophic failures of a tunnel boring machine (TBM). To 

determine the underground geological profile of the WESS project, six preliminary boreholes were 

drilled to depths of approximately 35 and 40 meters below ground surface (mBGS). Standard 

                                                           
2Figure provided by SMA Consulting Ltd. as part of geological investigation reports. 
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penetration tests (SPT) were performed at regular intervals in the boreholes and SPT soil samples 

were collected and visually classified in the field according to the Modified Unified Classification 

System for soils. Figure 3.3 illustrates the result of the geological investigation of each cross 

section for the WESS W13 project. 

 

3Figure 3.3: Geological Investigation of Cross Section for the WESS W13 Project 

3.4.2 Model Construction 

As previously discussed, ground conditions are a major variable that dictates excavation and, 

consequently, TBM productivity. Knowledge of ground conditions are important for planning and 

optimization of tunneling projects, as specific TBM characteristics, such as specific cutting teeth, 

can be tailored to certain ground conditions. 

In engineering and construction, geotechnical engineers will commonly classify soils or geological 

conditions based on their engineering properties pertaining to their structural properties for use as 

foundational support or as a component of building material. In North America, standardized soil 

classification typically follows the Unified Soil Classification System (USCS). The USCS defines 

three major classifications: highly organic soil (e.g., peat), fine-grained soils (e.g., silts and clays) 

                                                           
3Figure provided by SMA Consulting Ltd. as part of geological investigation reports.  
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or coarse-grained soils (e.g., sands and gravels). The following analysis in this chapter follows the 

proposed classification used by Einstein et al., (1999), which use three classifications, namely 

“little,” “medium,” and “intense,” which represent the three USCS groups noted above, 

respectively. 

The objective of the following work is to update the geological conditions using new observations 

over time. To determine the geological condition in a detailed and precise manner, the entire tunnel 

length is divided into shorter cross sections, such as one-meter sections, that are almost equal to 

the width of a segment (see Figure 3.4).  

4Figure 3.4: Segments for the WESS W13 Project: (a) Segments to the Site and (B) Segments in the Tunnel 

We assume that each one-meter section only has one specific soil type, rather than a combination 

of various soil types. For simplicity, the construction layout of the cross section is abstracted into 

a rectangle with 1192 one-meter sections, as shown in Figure 3.5.  

 

Figure 3.5: Layout of 1192, Nine-Meter Sections on the Construction Site for the WESS W13 Project 

                                                           
4Figure provided by SMA Consulting Ltd. as part of geological investigation reports.  
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The dotted box shown in left part of Figure 3.5 represents the section that has been excavated at 

T=0. The solid boxes as shown in the right part of Figure 3.5 represent the sections that will be 

excavated at T=1~1191, respectively. The observed geologic conditions at the previous time slice 

provide new information that is used to update the geologic conditions of the subsequent slice. 

To analytically make use of the interactions between neighboring one-meter sections throughout 

the continuous excavation process (i.e., transitions between soil conditions), the updating chain for 

the prediction of soil conditions, based on the Markov chain and Bayes theorem, is established and 

shown in Figure 3.6. The established model consists of a series of sub-models (see Figure 3.1). 

The virtual arrow lines that connect neighboring sub-models indicate that the posterior probability 

distribution of the ith section at T=ti can provide soft evidence information for the observation of 

the ith section at T=ti-1 in cases where no observation information is available. With regard to the 

ith specific submodel (1≤i≤1091), two nodes that are involved in the updating process, predition_i 

and observation_i, exist. Specifically, the node of prediction_i stores the predicted probability 

distribution, while observation_i stores the observed information from the previous time point. In 

this study, since the geologic conditions are classified into three types, each node, therefore, has 

three states. 

According to the geological condition profile for the WESS W13 project (see Figure 3.3), the 

tunnel alignment is mainly located in a layer of clay-till and sand. The surrounding soil tends to 

be classified as “medium” throughout the entire cross section, albeit with slight fluctuations. Thus, 

the conditional and transition probability distributions between Bayes nodes remains consistent in 

each submodel. Table 3.1 illustrates the conditional probability table (CPT) between prediction_i 

and observation_i. Table 3.2 illustrates the transition probability table (TPT) of prediction_i. Table 

3.3 illustrates the prior probability distribution of prediction_i at time T=i. 

 

Figure 3.6: Updating Chain for the Prediction of Soil Conditions 
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Table 3.1: Conditional probability table (CPT) between prediction_i and observation_i. 

Observation_i states 
Predition_i states 

Little Medium Intense 

Little 0.7 0.15 0.1 

Medium 0.2 0.7 0.2 

Intense 0.1 0.15 0.7 

 

Table 3.2: Transition probability table (TPT) of prediction_i. 

Prediction_i states 

(T=t) 

Predition_i states (T=t-1) 

Little Medium Intense 

Little 0.8 0.1 0.05 

Medium 0.15 0.8 0.15 

Intense 0.05 0.1 0.8 

 

Table 3.3: Prior probability distribution of prediction_i. 

Prediction_i states Prior Probability 

Little 0.1 

Medium 0.8 

Intense 0.1 

 

As shown in Figure 3.3, the geologic conditions are investigated by means of a few distributed 

boreholes and, therefore, the geologic conditions are not known prior to excavation. Using the 

proposed methodology, real-time information collection throughout the excavation process can be 

used to update the posterior probability distribution for future soil time slice predictions. The direct 

result of this analysis is that engineers or construction personnel can apply this methodology to 

reduce the uncertainty that is traditionally associated with soil conditions ahead of the current 

excavation face. To verify the applicability of the proposed approach, the impacts of given 

observations, geological fluctuations, as well as additional geological investigation, were tested 

for 12 different scenarios. 
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3.4.3 Results 

Observations at the current time slice should have an impact on the posterior probability 

distribution of the predicted node. To test the degree of impact, an experiment with four different 

scenarios was conducted. Results of the posterior probability distribution of the predicted node 

over time for various observations at T=0 are presented in Figure 3.7. For Scenario 1, no given 

observations are provided at T=0; in Scenario 2, the type of “little” is observed for the section_0 

at T=0; in Scenario 3, the type of “medium” is observed for the section_0 at T=0; and in Scenario 

4, the type of “intense” is observed for the section_0 at T=0. The first 30 one-meter sections (see 

Figure 3.5) were chosen to demonstrate the impact of various observations on the posterior 

probability distribution.  

 

Figure 3.7: Results of the posterior probability distribution of the predicted node over time in case of different 

observations at T=0: (a) Scenario 1 (no given observations are provided at T=0); (b) Scenario 2 (the type of 

“little” is observed for the section_0 at T=0); (c) Scenario 3 (the type of “medium” is observed for the section_0 

at T=0); and (d) Scenario 4 (the type of “intense” is observed for the section_0 at T=0). 

The results indicate that the posterior probabilities vary distinctly depending on the observations 

at T=0. The posterior probability distribution is very sensitive to the observed observations, 

indicating the established model is valid to some extent. Alternatively, the impact of given 

observations at one specific time segment drops gradually in the subsequent time segments, and 
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tends to be very modest after approximately ten-time segments. This updating technique is only a 

brief window into the overall picture, and the range is limited. Therefore, a series of continuous 

observations are very meaningful for reducing future underlying uncertainties. 

As previously shown in Figure 3.3, the tunnel for the WESS W13 is mainly located in a layer of 

clay-till and sand. Thus, the prior probability regarding the type of “medium” is set to 0.8, and 

those of “little” and “intense” are set to 0.1 for all prediction nodes in the updating chain (see Table 

3.4). However, geological fluctuations are common in construction practice due to uncertainties 

underlying complex underground environments. To analyze the impact of geological fluctuations 

on the posterior probability distribution of the predicted node over time, an experiment with two 

different scenarios is detailed below. Figure 3.8 illustrates the evolution of the posterior probability 

distribution of the predicted node over time in Scenarios 5 and 6. In Scenario 5, the type of 

“medium” is observed at T=0~5, and the type of “little” is observed at T=6~8; in Scenario 6, the 

type of “medium” is observed at T=0~5, and the type of “intense” is observed at T=6~8. The first 

30 one-meter sections (see Figure 3.7) are chosen to model the impact of geological fluctuations 

on probability updating. 

 

Figure 3.8: Results of the posterior probability distribution of the predicted node over time in case of a 

geological fluctuation: (a) Scenario 5 (the type of “medium” is observed at T=0~5, and the type of “little” is 

observed at T=6~8); and (b) Scenario 6 (the type of “medium” is observed at T=0~5, and the type of “intense” 

is observed at T=6~8). 

The results in Figure 3.8 indicate that the observation of the geological fluctuation can lead to a 

sudden fluctuation of the posterior probability distribution. In Scenario 5, the probability for the 

type of “little” experiences a spike and subsequent fall through T=6~12 based on a geological 

fluctuation from the type of “medium” to “little.” In Scenario 6, the type of “intense” experiences 
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a spike and fall at T=6~12 in case of a geological fluctuation from the type of “medium” to 

“intense.” In both scenarios, it is notable that the influence of the geological fluctuations on 

probability are seen to be extended to the subsequent 16 time slices. Effects beyond this point 

appear modest. 

During actual tunnel construction, when an undiscovered geological condition is observed, such 

as a sudden geological fluctuation, additional geological investigations are often performed to 

estimate the length of the newly discovered condition. To analyze the impact of such additional 

geological investigations on the posterior probability distribution of the predicted node over time, 

an experiment with six additional scenarios was performed. Figure 3.9 illustrates results of the 

posterior probability distribution of the predicted node over time in Scenarios 7 to 12. Here, in 

Scenario 7, the type of “medium” is observed at T=0~5, the type of “little” is observed at T=6~8, 

and the type of “little” is observed at T=18~20; in Scenario 8, the type of “medium” is observed 

at T=0~5, the type of “little” is observed at T=6~8, and the type of “medium” is observed at 

T=18~20; in Scenario 9, the type of “medium” is observed at T=0~5, the type of “little” is observed 

at T=6~8, and the type of “intense” is observed at T=18~20; in Scenario 10, the type of “medium” 

is observed at T=0~5, the type of “intense” is observed at T=6~8, and the type of “little” is 

observed at T=18~20; in Scenario 11, the type of “medium” is observed at T=0~5, the type of 

“intense” is observed at T=6~8, and the type of “medium” is observed at T=18~20; and in Scenario 

12, the type of “medium” is observed at T=0~5, the type of “intense” is observed at T=6~8, and 

the type of “intense” is observed at T=18~20. The first 30 one-meter sections are chosen to 

demonstrate the impact of additional geological investigations on probability updating. 

As shown in Figure 3.9, the results indicate that the observations obtained from additional 

geological investigations can provide new observations for probability updating from the zone of 

the currently excavated section to the additionally investigated section, as well as the zone ahead 

of the additionally investigated section. Specifically, in the zone from the currently excavated 

section to the additionally investigated section, a “U” type shape (see Figure 3.9 (a) and (f)) 

develops where the geological condition of the above sections remains consistent, and an “X” 

shape of “X” (see Figure 3.9 (b) ~ (e)). In the region ahead of the sub investigated section, the 

posterior probability of the observed soil type in the additionally investigated section drops 

gradually in the subsequent time slices, and again, it is shown that the influence desensitizes over 

time. 
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Figure 3.9: Results of the posterior probability distribution of the predicted node over time in the case of 

additional geological investigations: (a) Scenario 7 (the type of “medium” is observed at T=0~5, the type of 

“little” is observed at T=6~8, and the type of “little” is observed at T=18~20); (b) Scenario 8 (the type of 

“medium” is observed at T=0~5, the type of “little” is observed at T=6~8, and the type of “medium” is observed 

at T=18~20); (c) Scenario 9 (the type of “medium” is observed at T=0~5, the type of “little” is observed at 

T=6~8, and the type of “intense” is observed at T=18~20); (d) Scenario 10 (the type of “medium” is observed 

at T=0~5, the type of “intense” is observed at T=6~8, and the type of “little” is observed at T=18~20); (e) 

Scenario 11 (the type of “medium” is observed at T=0~5, the type of “intense” is observed at T=6~8, and the 

type of “medium” is observed at T=18~20); and (f) Scenario 12 (the type of “medium” is observed at T=0~5, 

the type of “intense” is observed at T=6~8, and the type of “intense” is observed at T=18~20). 
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3.5 Conclusion 

The geological prediction and updating model detailed presents a means for explicitly making use 

of new information as well as data customarily used by engineers and geologists to assess the 

geologic conditions of a tunneling project. The developed model, consisting of Bayes technique 

and Markovian modeling, is able to incorporate newly acquired information to model the 

uncertainty around geological conditions over time. It was found that the prediction of geological 

conditions of one-meter sections in tunnel construction can be updated in a continuous manner 

from the geological condition of the previous one-meter section that is observed as the construction 

progresses. A real project of the WESS was used to verify the applicability of the developed model. 

The model test results demonstrate that continuously updating data sets during construction can 

significantly improve the prediction of the project performance by eliminating the uncertainty 

contained in the original assumption. The models updating procedure can be easily expanded to 

predict the results of future geological exploration programs, as well as project productivity and 

quality, as a function of the reliability of the observation methods employed. The model discussed 

presents the potential for integration of Markovian and Bayesian techniques and provides 

advocacy for additional research and work in the subject are. 
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CHAPTER FOUR 

PROTOTYPING AN HMM BAYESIAN UPDATING ALGORITHM FOR 

DEPLOYMENT IN A SIMULATION ENVIRONMENT 

4.1 Background 

Markov models are the most appropriate method to use for situations that require the analysis of 

processes that can be represented by sequential data. A hidden Markov model (HMM) is a special 

type of Markov model that assumes that the states of the system or process being modelled are not 

visible to the analyst. Details of these states are assumed and modelled based on observable 

sequences. There are a number of assumptions that are carried over from the traditional Markov 

models to HMMs, including the assumption that (1) the next state (i.e. the ith hidden state) is 

dependent on only the previous state (i.e. the (i-1)th hidden state) and (2) the current observation 

variable is only dependent on the current hidden state. 

The set of observations in the case of HMMs is a sequence of various observable outcomes. Unlike 

other Bayesian updating methods, both the unique instances in the data sequence and the transition 

from one outcome to the next, impact HMM updating. The transition-associated information and 

specific instances serve as inputs for the updating step. Training of HMMs is not as straightforward 

as that for statistical distributions. Consequently, analytic methods cannot be applied for this 

purpose, and numeric methods are a more suitable option for such situations (Rabiner, 1989). 

Several numerical methods have been proposed for updating the parameters of HMMs, such as 

Genetic Algorithms (Manabe et al., 2006), Particle Swarm Optimization (Novak & Macas, 2008), 

and Baum-Welch (Rabiner, 1989). This chapter discusses the Baum-Welch algorithm for the 

purpose of training HMMs. The Baum-Welch method was selected for implementation in this 

version of the prototype because it has the most transparent process or steps compared to the other 

methods. 

4.2 Baum-Welch Algorithm for Training HMMS 

According to Rabiner (1989), determining a method to adjust HMM parameters (i.e. A, B, π) to 

maximize the probability of the observation sequence from a given model is difficult, as there is 
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no way to analytically solve this problem. Rather, Rabiner (1989) has suggested the use of iterative 

numeric methods, such as the expectation modification method (Dempster et al., 1977) and 

gradient techniques (Levinson et al., 1983). 

Here, the Baum-Welch is the specific EM method adopted. This algorithm is numeric in nature 

and was first proposed by Leonard E. Baum and Lloyd R. Welch in the late 1960s (Baum & Petrie, 

1966; Baum & Eagon, 1967; Baum & Sell, 1968; Baum et al., 1970; Baum, 1972). Their work 

was based on the forward-backward procedure described by Rusian Stratonovich (1960).   

The Baum-Welch algorithm involves utilizing a set of observed outcomes to update the parameters 

of an HMM. These observed outcomes may be a simple set containing one array of observations 

or may be complex with a series of observation arrays. 

In the development work presented in this chapter, it is assumed that the algorithm will take the 

case of a simple observation set as its input. However, there is a ‘work around’ with this algorithm 

that a modeller may deploy to deal observation complexity, which involves using each array of 

observations as a simple set and updating the HMM accordingly. In the first case, the original 

HMM is updated. This updated HMM is then utilized as the original HMM in the next array of 

observations. This is repeated until all the arrays are utilized. The updated HMM from the last 

array of observations is then taken as the final output. 

Figure 4.1 summarizes the topology of the different types of observation sets likely to be 

encountered in HMM updating situations. 

 

Figure 4.1: Type of Observable Data Sequences 
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The algorithm utilizes the set of observations to generate parameters that, in this chapter, are 

referred to as updating parameters. These updating parameters represent probability values and are 

used to update the parameters of the HMM. The updating parameters output by the algorithm 

include: (1) alpha values (α), (2) beta values (β), (3) zeta values (ξ), and (4) gamma values (ϒ). 

Gamma and zeta updating parameters are computed based on alpha and beta parameters. These 

two parameters (i.e., gamma and zeta) are the only ones used in the final updating step. 

4.2.1 Computing Updating Parameters Using Baum-Welch Algorithm 

To simplify the interpretation of the updating parameters, a Trellis diagram is presented (See 

Figure 4.2). This diagram illustrates the states that the HMM transitions through as observations 

are being made. 

 

Figure 4.2: Trellis Graphical Representation of Observed Sequence from an HMM 

4.2.2  Calculating Alpha Updating Parameters (Forward Algorithm/Procedure) 

The process of computing alpha parameters in the Baum-Welch is known as a forward algorithm. 

It is sub-divided into two phases, namely a base phase and an induction phase. The base phase 

involves computing the alpha value of the first iteration (see Equation 4.1), while the induction 

phase computes the alpha values from the second iteration through to the last (see Equation 4.2). 

It is for this reason that the operation involving the computation of alpha values is referred to as a 

forward procedure. 
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It is evident from Equation 4.2, that computing an alpha value for a given iteration in the induction 

phase makes use of the alpha value of the previous iteration, which is why the Baum-Welch 

algorithm is categorized as a dynamic programming algorithm. This same trend is applied in the 

computation of Beta parameters. 

 

 

Figure 4.3: Interpretation of Alpha Parameter from a Trellis Diagram 

In other words, alpha represents the probability of making observations up to the current iteration 

given that the active state of the HMM is set to a certain value (see Figure 4.3). The mathematical 

expression to illustrate this is presented in Equation 4.3. 

   1 2, ,......, ; |t t t jj P O O O q S    (4.3) 

 

4.2.3  Calculating Beta Updating Parameters (Backward Algorithm) 

Computation of beta parameters is often referred to as the backward procedure. The two 

procedures (forward and backward) are independent of each other. While it is often implemented 

second, there is no specific reason for implementing the backward procedure as a second step aside 

from the convenience that is associated with this order. 

The backward procedure is similar to the forward procedure in that it also has a base phase and an 

induction phase. The base phase involves setting the beta value of the last iteration, while the 
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induction involves computing beta values from the second last iteration to the first (hence the term 

backward procedure). Equation 4.4 is invoked in the base phase of the backward procedure, while 

Equation 4.5 is invoked within the induction phase. 

  1.0T j   (4.4) 

     1 1

1

N

t t ji i t

i

j i a b O   



  (4.5) 

 

Figure 4.4: Interpretation of Beta Parameters from a Trellis Diagram 

In essence, beta parameters represent the probability of having observations made after the current 

iteration that match actual observed outcomes, given that the activated state of the HMM is 

assumed to be one of the possible hidden states (see Figure 4.4). Equation 4.6 represents this 

description in mathematical terms. 

  1 2( , ,......, ; | )t t t T t jj P O O O q S     (4.6) 

 

4.2.4  Probability of Observations given HMM Parameters 

Sometimes, a modeller is interested in knowing the probability of having the HMM in a given 

hidden state and being able to see the observations made. This value can be obtained for any 

iteration using computed alpha and beta values. Alpha represents the chance of making 

observations up to the current iteration, while beta represents the probability of having the 

observations after the index of the current iteration. Therefore, alpha represents one part of what 

is required, and beta represents the other—both the alpha and beta values are required for an 

iteration. This “AND” operator in probability theory translates into a product, generating Equation 

4.7. 
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Equation 4.7 assumes that the HMM has an active state of j. Equation 4.7 transforms into Equation 

4.8 if it is assumed that the HMM can take on any of the possible hidden states in iteration t. The 

possibility of the HMM having any of the possible hidden states as the active state introduces an 

“OR” probability operation, which, in turn, translates into a summation mathematical operator. 

This explains the introduction of the summation in Equation 4.8, which is an addition to Equation 

4.7. 
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At termination (i.e., the last iteration), the probability of obtaining the observations of the given 

the HMM parameters are computed using Equation 4.9. 
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It has been stated that the value of beta in the last iteration is always equal to one for all possible 

hidden states (see Equation 4.4), implying that Equation 4.10 holds true. 

  1.0T i   (4.10) 

 

Substituting Equation 4.10 into Equation 4.9 gives Equation 4.11. Equation 4.11 computes the 

probability of seeing all of the observed outcomes from the assumed HMM parameters. This value 

is computed at the end of the forward procedure in the Baum-Welch algorithm for use in 

subsequent steps. 
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Values obtained from Equation 4.1, 4.2, 4.4, 4.5, and 4.11 are utilized in the computation of zeta 

and gamma parameters. 
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4.2.5  Calculating Zeta Updating Parameters 

The zeta parameter represents the probability of the HMM transitioning from state i to state j in 

iteration t. Equation 4.12 summarizes this description mathematically. 

   1, , | ,t t i t ji j P q S q S O     (4.12) 

 

As mentioned earlier, zeta parameters are derived from values obtained from the forward and 

backward procedures of the Baum-Welch algorithm. Equation 4.12 can be transformed into 

Equation 4.13 to summarize the math formula used for computing zeta values. 
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Equation 4.13 represents the math formula for computing zeta values for updating the HMM. 

4.2.6  Calculating Gamma Updating Parameters 

Gamma values can either be derived from alpha and beta values or from computed zeta values. 

Equation 4.14 summarizes the mathematical equation for this. 
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Gamma values represent the probability of the HMM having its active state as state i when in 

iteration t. This is a useful metric in the updating of HMMs. 

4.2.7  Updating HMM Parameters 

The HMM parameters are updated using zeta and gamma values computed from the previous 

sections. The summation of gamma values for a specific iteration and state indicate the total 

number of transitions away from that state in that iteration. Note that this count includes transitions 

to the same state. 
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Equation 4.15 summarize the mathematical formulations used to perform these updates. 

   *

1 1j j   (4.15) 

 

Elements of matrix A are computed using the number of transitions from state i to state j divided 

by the total number of transitions from state i (including a transition that returns back to state i). 

Equation 4.16 summarizes this formulation concisely using values previously computed. 
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Elements of matrix B are computed by comparing the total transitions from state i when the 

observation related to the element being updated was the same as the observation made in that 

iteration to the total number of transitions from state i. Equation 4.17 summarizes this 

mathematically. 
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4.2.8  Initializing of HMM Parameters 

The convergence of the Baum-Welch algorithm is dependent on both the training data set used and 

the initial guess of the HMM parameters. It has been shown experimentally that uniform or random 

values for matrix A produce desirable results (Rabiner & Juang, 1993). Carefully selecting 

information related to the elements of the observation matrix B has also been found to improve the 

learning of HMMs (Rabiner & Juang, 1993). Implementing these two strategies improves the 

chance of the Baum-Welch algorithm converging at the global maxima. 
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4.2.9  Process Logic for Bayesian Updating 

The entire process of updating HMM parameters has been described in the previous section as an 

iterative process that involves computation of parameters and using those for updating in an 

iterative fashion until the convergence criteria is met. This process is illustrated in Figure 4.5. 

 

Figure 4.5: Flow Chart for Markov Chain Updating Process 

4.3     Development and Deployment of the Bayesian Updating HMM Prototype 

4.3.1  Overview of the Whole Process 

The implementation of the Baum-Welch algorithm was guided by the sequence summarized in the 

flow chart in Figure 4.6. 

Literature was reviewed to identify the state-of-the-art related to this algorithm. A number of peer-

reviewed journal papers and tutorials or lecture materials, especially within the computing science 

domain, were collected and examined. Common authentic elements from the information obtained 

from these sources were summarized into pseudo code. This was then translated into a computer 



 53 

program by implementing C# code in Microsoft Visual Studio development environment. This 

code was implemented as a dynamic link library project and later deployed within the 

Simphony.NET General Purpose Template (GPT) for testing. 

Initial tests did not generate desired results because of errors that existed with the math formulas 

cited from literature. Further investigation and review of additional literature confirmed this. 

Correct formulae were identified and used to embellish the template. Tests subsequent to this 

demonstrated reasonable results. Details summarizing the testing in Simphony.NET and the results 

obtained are summarized in the following sections. 

 

Figure 4.6: Concept Layout of the Entire Development and Deployment Process for the Prototype 

 

4.3.2  Design Specifications for the Prototype 

The Baum-Welch algorithm was implemented as a dynamic link library to facilitate its 

implementation within other applications using the .NET framework. The core class is that which 

relates to the library, while the other classes (e.g., alpha, beta, gamma , and zeta) facilitate the 

storage of information and implementation of procedures within the library. The library, used to 

perform the Bayesian updating, was designed and implemented in such a way that it is not 

constrained in the number of hidden states and possible observable outcomes it can process. 

4.4  Case Study: A Chicken-Egg Problem 

Markov models are best suited for modelling systems that have a finite number of states and 

possible outcomes. Each state or outcome typically repeats after a variable number of iterations. 

To test implementations of Bayesian updating of hidden Markov models, a system that possesses 

these inherent processes and characteristics (i.e. generates sequential data) must be identified. The 
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famous chicken-egg example is selected for this purpose because of its simplicity and relatability. 

Also, it is a low dimensionality problem (i.e., it involves 2D vectors and 2x2 matrices) that is 

suitable for illustrative purposes. The following example has been adapted from Frazzoli (2013). 

4.4.1  Chicken-Egg HMM 

In this problem, observations are made at the same time for a series of days to determine whether 

or not a specific chicken has laid an egg. This implies that there are only two possible observable 

outcomes (see Equation 4.18). 

 ,
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Where

E Egg observed chicken laid an egg

N No egg observed chicken did not lay an egg







 
(4.18) 

 

Based on the identified possible outcomes, common practice is to leave the decision of the number 

of possible hidden states (i.e. states that the chicken transitions through that are not visible) to the 

discretion of the analyst. For convenience, it can be assumed that the chicken transitions between 

two states: state 1 (S1) and state 2 (S2). If a chicken is in either S1 or S2, there is a probability that 

is can either lay and egg or not. Figure 4.8 illustrates the hidden states for the chicken and their 

relation to the possible observed outcome. 

 

Figure 4.7: Graphical Representation of the HMM for the Chicken-Egg Problem 

The notation used in the diagram of the Markov model can be interpreted as follows:  

• PE/S1 and PN/S1 represent the likelihood of the chicken laying an egg and not laying an egg 

respectively, given that it is in hidden state S1.  
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• PE/S2 and PN/S2 represent the likelihood of the chicken laying an egg and not laying an egg 

respectively, given that it is in hidden state S2.  

These arrows and notation are summarized in a concise mathematical form using an observation 

matrix. 

• PS1/S1 and PS2/S1 indicate the chance of the chicken’s hidden state returning to S1 and 

transitioning to S2, respectively, given that its current hidden state is S1.  

• PS2/S2 and PS1/S2 indicate the chance of the chicken’s hidden state returning to S2 and 

transitioning into S1, respectively, given that its current hidden state is S2.  

These four notations indicated on the arrows are summarized concisely into a transition matrix. 

For this problem, it is assumed that we observe the egg laying habits of the chicken for 2 weeks 

(14 calendar days) and make the following observations: {N, N, E, N, N, E, N, N, E, N, N, E, N, 

N}. The objective is to use the implemented developments of the Bayesian updating hidden 

Markov model within the Simphony General Purpose template to estimate the hidden Markov 

model that matches the observed data best. 

The first step in estimating a Markov model using a Bayesian approach involves determining the 

inputs. In this case, initialized parameters (e.g., prior state density matrix, observation matrix, and 

the transition matrix) represent the inputs to the process. Rabiner & Juang (1993) suggested using 

uniformly distributed probabilities for initializing the prior state density matrix and the transition 

matrix. Since these values are unknown, and adopting this approach assumes that every possibility 

is equally likely to occur. However, Rabiner & Juang (1993) have also suggested making 

reasonable assumptions during the initialization of the observation matrix. In this particular case, 

and assumption is made that the chicken has a higher tendency to lay eggs when it is in S1 and a 

high tendency not to lay eggs when it is in S2.  These assumptions result in parameters of the 

hidden Markov model that have initial values summarized in Equation 4.19. 
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4.2    Simphony GPT Discrete Event Simulation Model 

The next set involves creating a Simphony simulation model using the General Purpose Template 

that encapsulated the developed Bayesian Markov Updating algorithm. This was accomplished 

using a “create,” an “execute,” a “counter,” and a “destroy” modelling element. These elements 

were connected in sequence using directional arrows (see Figure 4.8). 

 

Figure 4.8: Simphony Model Layout for creating and updating HMM 

The Bayesian Updating library was then encapsulated within the “execute” modelling element. C# 

code was then written within the formula editor of the “Expression” property for the “execute” 

element.  Details of the code snippet embedded within the “execute” element is summarized in 

Appendix B. 

After building the simulation model, it is reviewed for integrity. Then, the model is executed. No 

duration was set within the model, and the create element was setup to fire out one entity at time 

zero. This entity is created when simulation commences and flows into the “execute” modelling 

element. When this entity is transferred into this “execute” element, it triggers the execution of the 

code snippet within this element (see Appendix B). 
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This prompts Simphony to create instances of the initial parameters of the hidden Markov model 

using matrix classes in Simphony. A collection of the observed outcomes for the chicken’s egg 

laying pattern is also created. These are all passed as arguments to a constructor for a hidden 

Markov model defined within the Bayesian updating library. Procedures defined within the library 

are then invoked, which trigger the Baum-Welch forward algorithm, backward algorithm, 

computation of marginal parameters, and updating of the hidden Markov parameters in each 

iteration. These procedures are invoked iteratively until the updated hidden Markov model 

converges. Once this occurs, the library stores the final results and returns control to the “execute” 

element at the point at which it had left off.  At this point, Simphony retrieves and writes the final 

results from the library to its trace window. A screen shot of the final result displayed within 

Simphony’s trace window is shown in Appendix A. 

4.3    Discussion of the Results Obtained 

The sequential data observed in two weeks’ time contains information that can be used to assess 

the validity of the Markov hidden model Bayesian updating results. The sequence was setup such 

that, on the first day, the chicken was observed as having not laid an egg (N). Thereafter, it was 

observed to lay an egg (E) every two days at indices 2, 5, 8, and 11, assuming that the sequence 

indices are zero-based. In total, it was noted that there were four instances that the chicken laid an 

egg and ten instances that the chicken did not lay an egg. Information about the hidden states of 

the chicken can be inferred by intuition from the sequence because the dataset is small in size and 

has low dimensionality. 

First, the chicken seems to have laid eggs on fewer days within the two weeks of observation. 

Examination of the initial observation matrix entries reveals that the chicken spent more time in 

S2 because the first column of the observation matrix, which relates to the likelihoods of observing 

the chicken not laying an egg, has a higher probability (i.e. 0.7) of the chicken not laying an egg 

when in S2. This should translate in the estimated or updated state prior density matrix having a 

higher probability value associated with S2 compared to S1 (see Equation 4.20). 

*
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 (4.20) 
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Likewise, we can assume that the initial estimates for the observation matrix are representative of 

the true behavior of the chicken by tracking the transitions between hidden states. Observing no 

egg laid likely maps to the hidden state, S2, while observing an egg likely maps to the hidden state, 

S1. The transitions in the observed data are summarized in Table 4.1. 

Table 4.1: Statistics of Transitions Observed in the Data Sequence for the Chicken-Egg Problem 

 

Current Observation 

N E 

Next 

Observation 

N 5 4 

E 4 0 

N = No egg was laid on that specific day  

E = An egg was laid on that specific day 

From the numbers summarized in the Table 4.1, it can be inferred that when the chicken is in 

hidden state S2, there is a slightly higher chance for it to transition back into S2 compared to 

transitioning into S1. Also, when the chicken is in hidden state S1, it will almost always transition 

to S2 rather than returning to the same state (S1). This translates in the updated transition matrix 

with an S2-S2 element having only a slightly higher value than the S2-S1 element. On the other 

hand, the S1-S2 element would be expected have a higher value compared to the S1-S1 element. 

This trend is evident in the updated transition matrix result shown in Equation 4.21. 

 

*
0.339 0.661

0.444 0.556
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 (4.21) 

 

The results obtained from running the simulation model coincide with our expectations derived 

from a manual analysis of the data. This confirms the validity of the Bayesian updating method 

and its implementation as described in this chapter. 
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4.4    Conclusion 

The first iteration for prototyping an HMM Bayesian updating algorithm was successfully 

developed and deployed within a discrete-event simulation environment (i.e. Simphony.NET). 

This version of the prototype generates reliable results as demonstrated with the chicken-egg 

example provided in the chapter. Using a data set that was small in size allowed a manual intuitive 

approach was used to demonstrate the validity of the result produced by the prototype. More 

extensive validation tests of the prototype should be performed using more complex, large-scale 

datasets within robust applications, such as MATLAB, in which this algorithm has been 

implemented. 

After these limitations have been overcome and extensive testing has been performed on the 

prototype, it is recommended that the procedures encapsulated within the dynamic link library can 

be migrated into the math libraries of the Simphony simulation system. Thereafter, modelling 

constructs can be developed within the General Purpose Template, based on these procedures, to 

allow modellers to embed Markov models within their models. It is envisioned that modelling and 

analysis of construction processes or phenomena that generate sequential data may benefit the 

most from these Markov procedures and from the modelling constructs embedded within 

simulation environments such as Simphony. Examples of such processes or phenomena include 

geological condition prediction for sub-surface or underground construction work (e.g. tunneling 

and road construction) and weather generation. Successfully incorporating the full version of the 

Baum-welch algorithm implementation would be a first step in enabling simulation studies to make 

use of machine learning algorithms. 
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CHAPTER 5 

A SPECIAL PURPOSE SIMULATION TEMPLATE IN SIMPHONY.NET TO 

FACILITATE MARKOV-BASED SIMULATION MODELING WITH A TUNNEL 

SIMULATION 

5.1 Introduction 

Markov chain models have been used for the analysis of systems, operations, and processes across 

a variety of different domains. Satisfactory results have been produced when Markov chains have 

been applied to the right type of problems. This can be attributed to their ability to explicitly 

represent different possible states of a system or process and provide stochastic variation between 

these states. Providing an implementation of Markov chain models within a simulation 

environment enriches computational analysis that can be done from both a simulation and Markov 

perspective. While such work has been done, it has been completed from a computational stand-

point rather than a simulation modeling perspective. This chapter presents a special purpose 

simulation template developed within Simphony.NET that facilitates Markov chain modelling 

together with other types of simulation. The work extends the state-of-the-art in the use of Markov 

models together with simulation models by providing both an integrated template within the 

Simphony modelling environment with dedicated modelling elements and a user interface for 

defining and modifying Markov chains. The developed Markovian template was then implemented 

within a tunneling simulation project to predict the excavation production rate for certain ground 

conditions.  

5.2 Simulating Markov Chain Behavior 

Simulating a Markov chain involves following the transitions and emissions using the current state 

and a randomly generated number at every step that the Markov chain is executed. When doing 

this, one has to make use of the prior state probability vector and the transition probability matrix, 

just as is the case in predicting its behavior. However, the manner in which each of these Markov 

parameters is used differs. In predictive analysis, both the prior state probability vector and the 

transition probability matrix are used in the computations at every step. However, in the simulation 

of the chain behavior, the prior state probability vector is only utilized in the first step (i.e., chain 

initialization) to determine the starting state of the chain. It is subsequently removed, and the 
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transition probability matrix used in subsequent steps. When a Markov chain is in a given state, 

Si, its next state is only dependent on its state. In other words, the random transition of the chain 

into the next state will depend on the probability values in the ith row of the transition probability 

matrix. Following this process fulfills the requirements of the Markov property (i.e., memoryless 

property). As such, it is extremely difficult to determine beforehand in which state the chain will 

be in during a particular step, hence the need for simulation.  It should also be noted that since, at 

every step of the chain, the state probability vector will be a row vector that corresponds to the 

current state of the chain, state probability vectors at any step will always be one of the row 

probability vectors that make up the transition probability matrix. This is summarized in Figure 

5.1. 

 

Figure 5.1: Logic for Simulating Markov Chains 

5.2.1  Metrics for Characterizing Markov Chain Behavior 

When predictions or simulations are performed on a Markov chain model, there is a significant 

amount of data that are generated, which can be used to make inferences about the process being 

studied using these chains and that can facilitate the characterization of chain behavior. A metric 

that is often used in literature in relation to Markov chain simulated behavior is the number of 

times each state was active. 

5.2.1.1 State Activations 

A measure that is important in Markov chains is the number of times that each state is active for a 

given simulation experiment. This count is based on the total number of steps used for simulating 

or predicting the Markov chain. It has been stated that the central limit theorem holds true for 
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Markov chain computations. Accordingly, the expected number of times that a state is likely to be 

active in a given experiment can be estimated as a product of the number of steps and the initial 

prior probability value for that state.    

5.2.2  Summary on the Literature of Markov Chains 

The subject of Markov processes and Markov chains has been studied and documented extensively 

in literature. Manual analytical computation and simulation of Markov processes and Markov 

chain models is a cumbersome process that is prone to error. Consequently, a number computer 

programs and computer-based tools have been developed to simplify computations of these 

processes or models. While their integration into traditional simulation environments would 

improve and facilitate modelling capabilities, many of these tools are not easily integrated into 

existing traditional simulation environments. The work presented in this chapter was an effort to 

address this challenge by implementing modelling elements and user interfaces that allow simple 

integration into the Simphony modelling environment. This template provides graphical modelling 

constructs that simulation modellers can use to define the parameters of a Markov chain in 

Simphony.NET and during simulation models at runtime.  

5.3 Markov Chain Simulation Template and Elements 

The majority of simulation environments that are available today provide graphical modelling 

constructs to facilitate modellers’ efforts to visually represent the flow logic of the systems, 

operations, and processes that they have abstracted for purposes of simulation-based analysis. 

As such, specific Markov chain elements were developed for use in the Simphony modelling 

environment general template allowing flexibility in the types of models that can be constructed.  

This provided the ability to define and emulate Markov chains in the Simphony.NET environment. 

The Markov elements were designed to have a one-to-one mapping between the constructs that 

appear in a graphical layout of a Markov chain model on paper and one developed using the 

envisioned Simphony.NET environment. This meant that Markov chain states would have to be 

represented by state modelling visualizations and, for the case of hidden Markov chains, would 

have to be represented by observations. Also, the transitions between states and emissions from 

states to observation symbols would have to be represented using directional arrows (i.e., 
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relationships) with a probability value assigned to each. In addition, there was a need to have a 

higher-level modelling element, referred to here as the MarkovModel element, that would control 

and track Markov chain model parameters during model layout and simulation. Finally, there was 

a need to have a modelling element that would facilitate the modeller to trigger the Markov chain 

during the simulation. A modelling element, referred to as a MarkovTransition, was created for 

this purpose. 

5.3.1  MarkovTransition Modelling Element 

The MarkovTransition modelling element was implemented as a flow modelling element with one 

input and output port. One input property was provided to facilitate its association with a 

MarkovModel element. Each MarkovTransition element was setup to permit association with only 

one element. This ensures that every time a simulation entity arrives at its input port, it is 

transferred into the element causing it to trigger the Markov chain defined within the 

MarkovModel element to be stepped. Thereafter, the simulation entity is routed out of the element 

without delay. The visual appearance of the MarkovTransition modeling element is shown in 

Figure 5.2.   

 

Figure 5.2: Graphical Appearance of the MarkovTransition Modelling Element in Simphony 

Restrictions were embedded within this modelling element to prevent its insertion into a 

MarkovModel element. The MarkovTransition modelling element can be placed anywhere on the 

modelling surface at the scenario level and can be connected to any other general purpose 

modelling element in Simphony.NET. 

5.3.2  MarkovModel Element 

The MarkovModel element was implemented as a modeling element with no input or output ports 

(see Figure 5.3). It permits use only at the scenario-level together with a MarkovTransition 

modelling element and other general purpose template modelling elements. Nesting of 
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MarkovModel is not permitted, although multiple instances of this modelling element can be used 

within a simulation model to facilitate representation of multiple Markov chains in the process 

being simulated. 

 

Figure 5.3: Graphical Appearance of the MarkovModel Element in Simphony 

5.3.3  Stepping Markov Chain Using Code Snippets 

When the MarkovModel element was being written, the method that implements all of the 

computations associated with stepping a chain were made public. In essence, they were exposed 

so that other general purpose template modelling elements, which are used within a model layout 

and in which code snippets can be embedded, could access the MarkovModel element and invoke 

this method. This provision was made for those that are comfortable and competent enough in 

writing code to advance simulation behavior. 

5.3.4  Stepping Markov Chain Using Simulation Entities   

Another option was provided for modellers that are not proficient in writing code to achieve certain 

desired behavior within their simulation models. This option involved writing a modelling element 

with one function: when a simulation entity is routed into it, the entity triggers the stepping of the 

Markov chain and is then routed out of the modelling element without delay. A property was 

included in this modelling element that allows a modeller to specify the MarkovModel element 

that it would be acting on. Besides inducing the Markov chain model to step, the 

“MarkovTransition” modelling element also keeps track of important statistics, such as the number 

of times that the Markov chain was stepped. 

To summarize, the functions of MarkovModel element can be summarized as: 

• Reading Markov chain parameters from the model layout encapsulated within it. 

• Instantiating a Markov chain object at the beginning of each simulation run, which is made 

use of during the simulation run. 
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• The simulation modeller invokes the stepping of the Markov Chain through the 

MarkovTransition element.  

• Invokes methods on the state and symbol modelling elements every step of the Markov chain, 

which triggers a collection of statistics that summarize their behavior during simulation. 

5.3.5  Hidden States 

The graphical construct used for the Hidden State modeling element is shown in Figure 5.4. An 

elliptical shape was used for this element. This element was setup to render the probability value 

of the element transitioning back to the same state on the graphical surface of the element. The 

state name is the same as the name of the modelling element and is displayed at the bottom of the 

element. This element also has an input port to which incoming transition relations are connected. 

The output port allow for connection of transitions and emissions leaving the state. 

 

Figure 5.4: Graphical Appearance of the Hidden State (HS) Modelling Element 

5.3.6  Observation Symbols 

The Output modelling element was included in the MarkovModel to facilitate modelling of hidden 

Markov chains. Traditional Markov chains can also be created by developing a model layout that 

does not include observation symbols. A rectangular-shaped modelling element that has one input 

port and no output ports was used to represent the Output. The name of the symbol is displayed on 

the graphical display for the element rather than at the bottom of the element. 

 

Figure 5.5: Graphical Appearance of the Output 

5.4 Model Validation and Integrity Checks 

The Simphony.NET simulation environment has a number of in-built validation or integrity 

checking services that a template developer can make use of to display guiding messages to the 

model developer. In the Markov chain special purpose template, checks enumerated provide for: 



 66 

• Hierarchical modelling and element location: All modeling elements created were 

configured in such a way that they could only be used within the General Purpose 

Template. Another related restriction is that nesting of MarkovModel elements was not 

permitted.   

• Custom relationships: Transitions and emissions were represented using a custom 

relationship. This relationship was written with one property—a probability value. A 

constraint was implemented at this property to ensure that only valid probability values can 

be entered by modellers (i.e., values from zero to one).   

• Markov chain model layout: For Markov model layout to be considered valid, there should 

be at least two states and transitions from each of these states. An integrity check, which is 

initiated prior to the commencement of simulation, was used to ensure modeller 

compliance.      

The described restrictions are especially useful for novices that are making use of the simulation 

environment and templates for their own modelling purposes. 

5.5 Hypothetical Case Study 

A hidden Markov chain model was used to demonstrate the functionality of the special purpose 

template that was created. A hypothetical chain comprised of two hidden states (HS1 and HS2) 

and two observable states (OS1 and OS2) was chosen. A graphical representation of the Markov 

chain is shown in Figure 5.6. 
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Figure 5.6: Graphical Layout of a Hidden Markov Chain Model 

The equations in Figure 5.7 define the mathematical notation and values that were used for the 

prior state distribution and the transition and emission relation between the hidden states and 

observation symbols. 
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Figure 5.7: Hidden Markov Chain Model Matrices 

 

5.5.1  Simulation Setup 

The Markov chain parameters used as inputs in the simulation model were based on the matrices 

and vector presented in the previous section. Parameters used to configure the simulation for 

experimentation are summarized in Table 5.1. 

 

 

Table 5.1: Simulation Parameters Used in the Model 

Parameter Value 

Seed Value 0 

Run Count 100 

Maximum Number of Steps @ Run 100 

Stopping Criteria 100 simulation runs completed 
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5.5.2  Layouts of Simulation Model 

The sketched graphical model and summarized parameter values of the Markov chain were 

transcribed into a simulation model in Simphony.NET using the modelling elements described. 

The simulation model layout was placed within the MarkovModel composite element labelled 

“MarkovModel1.” Figure 5.8 graphically illustrates the Markov model layout of the MarkovModel 

element. 

 

Figure 5.8: Markov Chain Model Layout Encapsulated in the Markov Chain Model Element 

To make use of this Markov chain in a classical, discrete-event simulation model, the 

MarkovModel element, together with the MarkovTransition modeling element, were embedded in 

a general purpose template model (see Figure 5.9). 
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Figure 5.9: Markov Chain Elements together with General Purpose Template (GPT) Elements in 

Simphony.NET 

In this model layout, the MarkovModel element contains the defined Markov model, while the 

MarkovTransition element steps (i.e., executes) the Markov chain every time that an entity flows 

through it. The model layout was configured in such a way that it causes the Markov chain to step 

every 10 time units for 100 steps before the simulation terminates. To achieve this behavior, one 

simulation entity is created at time zero by the element labelled “Create.” The simulation entity is 

routed into the element labelled “Markov Transition,” causing it to capture the “Markov Chain 

Model” element and step the Markov chain model encapsulated within it. The entity then flows 

through a Counter element and then into a Trace element, which captures the step number, 

simulation time, the active state, and the observed output. Thereafter, the simulation entity is 

routed into the Branch element, labelled “100 Steps Completed?” This checks to see if all 100 

steps have been completed. If so, the element routes the simulation entity through the “True” 

branch and then into a “Destroy” element, where it is destroyed and terminating the simulation. 

Otherwise, if all 100 steps have not been performed, the simulation entity is routed through the 

“False” branch of the Branch element into a Task element labeled “Delay entity (10 units).” The 
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simulation entity is delayed before it is routed back to the MarkovTransition element labelled 

“Markov Transition.” The cyclic loop that involves the entity traversing the “Markov Transition,” 

“100 Steps Completed?,” “Counter,” and “Delay entity (10 units)” proceeds until the Markov chain 

has been stepped 100 times.  

The code snippet embedded within the Branch modelling element to perform the logical check that 

determines whether or not the stepping of the chain has been completed is summarized below: 

return Count("Counter") == 100; 

During the execution of the simulation model, certain information is generated, with certain 

information being tracked at the State, Output, and MarkovModel element level. The first type of 

result generated by the special purpose template is a trace log. The MarkovModel traces the 

parameters of the chain encapsulated within it together with logical time, active state, and symbol 

observed at each step (see Figure 5.10).  

 

Figure 5.10: A Sample Trace Log in Simphony.NET Generated by the Trace Element 

Each MarkovModel element creates a unique trace log, which is categorized based on its name to 

avoid mixing trace output in situations where there are multiple MarkovModel elements used in 

the same simulation model. 
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5.5.3  Simulation Results (Probability Stave Vector-PSV) 

One of the results generated by the GPT simulating the hypothetical Markov chain model is the 

number of times that each state was active. Stacked charts were created for purposes of graphing 

this result. The result shows variation between simulation runs and always totals the total number 

of steps that the GPT was setup to execute. Altogether, these results demonstrate that this aspect 

of the Markov chain has been implemented accurately. 

Figure 5.11: Number of State and Observation Activations Simulated for the Hypothetical Markov Chain 

Simulation computations of a Markov chain are meant to strictly adhere to the memoryless 

property that is exhibited by all Markov processes. For this to hold true, the probability state vector 

of the Markov chain at each simulation step will always be one of the row vectors of the transition 

probability matrix. For the hypothetical example presented, the possibilities include: {0.3, 0.7}, 

and {0.9, 0.1}. From a visual inspection of the charts in Figure 16.0, PSV values plotted appear to 

coincide with the elements in the set of possible vectors.   

5.6 Applications of Markov Chain Template in Simphony: Tunneling Project with  

Markov Prediction of Ground Conditions 

5.6.1  Model Background and Details 

The Markov chain special purpose simulation template was written to support the definition, 

prediction, and simulation of various types of Markov chains. As such, it can be applied as tool for 
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automating the modelling and analysis of processes, operations, or systems for which Markov 

chain models are a best fit. Typical examples of such processes in construction include modelling 

geological conditions in tunneling, weather generation, modelling equipment breakdowns, and 

earned value analysis. 

This case study displays the functionality of the developed Markov chain template and elements 

applied to a construction process. In tunneling projects, a key parameter that affects productivity 

is the excavation rate of tunneling. This excavation rate is depends on the ground condition 

encountered. The model below presents a hypothetical model that is based on the train cycle. First, 

it travels out to the Tunnel Boring Machine (TBM), where the liners are unloaded and the muck 

cars are loaded with spoils. Then, the train returns to the undercut, where the spoil is unloaded by 

the crane, and a new set of liners is loaded. Finally, the train waits to begin its next trip to the TBM. 

The Markov elements in this model function to predict the ground conditions of the tunnel, which 

act as the outputs of the hidden Markov model. Each ground condition has an associated 

productivity that informs the amount of time it takes for each meter of excavation to occur. The 

model schematic is provided below: 

 

 

Figure 5.12: Tunneling Project Model Schematic with Markov Model Applied 
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Figure 5.13: Markov Model Chain Visual Representation 

As the entity approaches the excavation task, the geotechnical condition is determined based on 

the Markov chain in Figure 5.13. Depending on the ground condition expected, excavation 

productivity rate is sampled from the relevant distribution as per the details of the code below. The 

productivity rates provided are in minutes required to excavate 1 meter of material. Based on this, 

clay has a higher productivity rate compared to silt. 

 If GetMarkovOutput("Ground Condition HMM")="Clay" 

  Return SampleBeta(2,2,45,130) 

 Else If GetMarkovOutput("Ground Condition HMM")="Clay Silt" 

  Return SampleBeta(2,2,80,200) 

 Else If GetMarkovOutput("Ground Condition HMM")="Silt" 

  Return SampleBeta(2,2,120,300) 

The overall productivity in this case study model is highly dependent on ground conditions during 

excavation. It is important to note that the productivity rates provided are only used to illustrate 

the application of the Markov model to a tunneling simulation. They are not intended to be 

representative of actual data. To collect sufficient information for the tunneling case, 100 

simulation runs were perfomed, each with a limit of 1000 meters of excavation. 
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5.6.2  Simulation Results 

 

Figure 5.14: Results of Modelling Displaying the Histogram of Project Durations (top) and a Summary of the 

Observations of the Ground Conditions Activations. 

 

0 %

2 %

4 %

6 %

8 %

10 %

12 %

R
e

la
tiv

e
 F

re
q

u
e

n
c

y

lllllllllll
171800 173720 175640 177560 179480 181400

Finish Time (minutes)

10.0 % 80.0 % 10.0 %

+174161.626 +179850.976

0 %

20 %

40 %

60 %

80 %

100 %

R
e

la
tiv

e
 F

re
q

u
e

n
c

y

10 20 30 40 50 60 70 80 90 100

Run Index

Clay Clay Silt Silt



 75 

5.7 Conclusions and Recommendations 

A Markovian modelling system was implemented in the Simphony modelling environment and 

was successfully tested. The implementation has the capabilities to facilitate the definition of a 

Markov chain, perform simulations and predictions from the defined Markov chain, and track step-

based data generated from computations performed on the defined Markov chain. The elements 

support modelling of both hidden Markov models and non-hidden Markov models (i.e., traditional 

Markov chains). The objective and benefits of automating Markov chain definition, computations, 

and related generated data tracking were achieved through this approach.  

Five custom graphical modelling constructs (i.e., elements) were written within the 

Simphony.NET simulation environment to form a Markov template. The details and functions of 

these elements were discussed with assumptions and limitations noted. Simphony.NET’s 

environment also provides features that were used by the template for visualizing the data 

generated from Markov computations. The modelling elements were tested using a simple model 

to illustrate how the chain steps throughout the simulation from Trace element outputs. Finally, 

the Markov template was integrated into a sample tunneling project model to demonstrate the ease 

of use and viability in predicting ground conditions in tunneling simulation. 
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CHAPTER 6 

IMPLEMENTATION OF HMM AND BAYESIAN UPDATING IN A 

TUNNELING CASE STUDY 

6.1 Introduction 

Typically, the inputs for a simulation model are obtained from industry experts’ best estimates in 

the form of deterministic values or, at best, a statistical distribution. For example, the productivity 

of excavation in tunneling simulation is often represented by a distribution, as there is a high-level 

of uncertainty for the duration required for each meter of tunneling. Inputs can be enhanced by 

obtaining actual data from previous, similar construction projects or as construction commences 

and using this information to improve the base data for the project. However, incorporating actual 

data into an existing tunneling model requires additional techniques. Ultimately, it would be 

beneficial to have the ability to take new information and data and use it to improve already 

developed models. 

The basis of Bayesian updating is to improve the legitimacy and accuracy of predictions through 

the incorporation of newly acquired information. Bayesian updating is reliant on data collected in 

the real system being studied. These data are input into algorithms that can then improve the 

prediction models being used. In HMMs, the set of observations are a sequence of various 

outcomes, and traditional Bayesian updating techniques are not particularly amendable to this type 

of observation. With HMMs, both the unique instances in the data sequence and the transition from 

one outcome to the next must be accounted for while updating the model or chain. The 

observations and transition information become required inputs in the updating process. It has been 

shown that, although analytic methods cannot be applied for updating and training of HMMs, 

many numerical techniques can be applied to develop reasonable updates to HMMs, including the 

Baum-Welch Algorithm (Rabiner, 1989). This chapter demonstrates the use of the Baum-Welch 

algorithm for the purposes of training HMMs. The Baum-Welch method was selected for 

implementation in this study due to ease of application and to its ability to be implemented into 

the Simphony modelling environment. 
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6.2 Objective 

The objective of this chapter is to use a project as the basis for planning the next phase of a project. 

Data from project A (107th/111th) acts as the historical, similar project with which the planning 

model for Project B is trained. Real construction data from Project B acts to update the simulation 

model for 100m increments of excavation. At each point the model is updated with construction 

data from Project A as well as real construction data from Project B to predict the remaining 

excavation. These updated models are then compared to the results of the original model, which is 

comprised of data from only Project A as well as the actual construction durations for 500m of 

Project B. 

6.3 Case Study 

6.3.1  Background 

The case study project used in this study was the Downtown Intensification project, which is a 

three-phase, drainage improvement project in downtown Edmonton, Alberta, with work conducted 

by the City of Edmonton Drainage Group. This study focuses on two of these phases, consisting 

of two tunnels: a 1km-long tunnel along 107th Street from 111th to 105th Avenue (Project A) and 

a 500m-long tunnel along 105th Street from 105th to 100th Avenue (Project B). Each tunnel was 

a 2340mm diameter storm tunnel, to be completed using Tunnel Boring Machine (TBM) 

excavation. Both tunnels were constructed using a shielded TBM (M100) with a one-pass, pre-cast 

concrete segmental liner system for both temporary and permanent support. The M100 cuts a 

nominal tunnel diameter of 2540 mm, and pre-cast segmental liners are placed as the TBM 

advances. The construction method involves advancing the tunnel by jacking against the installed 

concrete liner and erecting and expanding/jacking a ring of four, pre-cast segments tightly against 

the exposed soil approximately every 1m of advance along the excavated tunnel. Based on the 

boreholes data that was completely prior to construction, the majority of tunneling is expected to 

be in clay till (with inter-till sand zones), a mix of sandy clay, and the possibility of pockets of 

sand. 
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6.3.2  Data Preparation and Model Inputs 

Beginning in September 2015, TBM excavation took place for 978m of tunnel along 107th street, 

completing this distance at the end of August 2016. Through this phase, geotechnical conditions 

were monitored on a daily basis along with daily excavation progress and shift length. The project 

data including details of the geotechnical conditions encountered are summarized in Table 6.1. 

Table 6.1: Project Data from Project A (978m) 

 

The effective duration statistics were calculated based on the shift time divided by the meters 

excavated each day. For an 8-hour shift where 4m were excavated, the effective duration per meter 

of excavation would be 2 hours. Calculating the duration for the excavation of one meter was 

required for modelling the tunneling construction. The most commonly encouraged ground 

condition was clay sand with 712m of excavation length categorized as such. It should be noted 

that, while all ground conditions have very similar average durations, the level of variance of each 

conditions was quite variable. 

Data for Project B are summarized in Table 6.2. No sand was observed for Project B through the 

excavation of 521m. The dominant ground condition for this phase of the project was clay with a 

section of clay sand for 66m. This data set displays the difference in ground conditions that can be 

found for very similar projects that are in close proximity to the previous project. 

 

 

 

Table 6.2: Project data from Project B (521m) 

Average Min Max Average
Standard 

Deviation

Clay
207 13.8 3 44 2.16 0.16

Clay Sand
712 37.5 3 174 2.10 1.45

Sand
59 6.6 2 10 2.34 2.07

Count (m)Ground Conditions

Length of Persistance (m) Effective Duration (hr/m)
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Table 6.3 summarizes actual project duration data for Project B at 100m intervals. This will 

serve as the baseline for comparing the effectiveness of simulation runs. 

Table 6.3: Summary of Project B Actual Data 

 

6.3.3  Model and Assumptions 

A tunneling construction Simphony model was developed based on a proposed model that was 

detailed in “Construction Simulation-An Introduction Using SIMPHONY” (AbouRizk, 

Ekyalimpa, Hague, 2016). The baseline model used in the textbook was originally created to model 

a sanitary sewer being constructed in Edmonton. Due to the similar nature of the case study in this 

chapter, the proposed model was used as a baseline to provide a validated model with which to 

conduct tests. This model was then embellished with the Markov Chain elements and updated 

project parameters for the case study. The functionality of all modelling elements used from the 

Simphony modelling environment are provided in Appendix 6.C. The model schematic used for 

the case study is provided in Figure 6.1. 

The model begins with two trains being created by the Create element. Both train entities move 

into the Capture Track element, where the resource is captured for one train entity while the other 

Average Min Max Average
Standard 

Deviation

Clay
455 226 187 265 2.41 1.07

Clay Sand
66 66 66 66 2.35 0.59

Sand
0 0 0 0 0.00 0.00

Count (m)

Length of Persistance (m) Effective Duration (hr/m)

Ground Conditions
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waits in the Track file element. The train entity, which has captured the track, moves to the Travel 

task where the travel of the train is modelled to the tunnel face taking a duration of 5 minutes. The 

TBM resource is then captured, and the entity moves into the Markov transition element where the 

ground condition is predicted. Once the Markov model has transitioned and produces an output, 

which does not have a duration, the Counter counts the transition of the chain. The entity then 

moves into the Excavate element, which models the excavation of 1m of tunnel construction. The 

excavation duration is dependent on the ground condition (i.e., output) of the HMM chain. The 

pseudo code sample below provides the details of how the excavation duration is determined: 

If Ground Condition HMM has an output of “clay” 

 Duration = Sample of Normal Distribution for clay (Average duration for clay, standard 

deviation for clay) 

If Ground Condition HMM has an output of “clay sand” 

 Duration = Sample of Normal Distribution for clay sand (Average duration for clay 

sand, standard deviation for clay sand) 

If Ground Condition HMM has an output of “sand” 

 Duration = Sample of Normal Distribution for sand (Average duration for sand, 

standard deviation for sand) 

After excavation, the Chainage Counter element counts that 1m has been excavated. The TBM is 

then then released, and the train then returns to the working shaft where the track is released (the 

second train entity currently waiting in the Track file then claims the track. The crane is captured, 

and spoils are unloaded and liners are loaded, which have durations of 6 and 15 minutes, 

respectively. At this point, the entity flows back to the beginning, and the process begins again. 

The Task elements shown on the right side of the model schematic are used to store the 

distributions for the durations of each ground condition. These tasks are where the Bayesian 

Updating occurs through the distribution fitting interface provided within Simphony. 
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Figure 6.1: Case Study Tunneling Model Schematic 

The Baum-Welch algorithm implementation into Simphony was developed in the previous 

chapter. The Bayesian updating functionality integration into Simphony was a feature that was 

already within the software. However, the user interface in Figure 6.2 was added into the 

distribution fitting interface for ease of use .  

 

Figure 6.2: User interface for Bayesian Updating 
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The above window allows the viewing of the current distribution that is selected for a task’s 

duration and, most importantly, allows the Bayesian updating of the distribution using imported 

data. The data is selected under the “Bayesian Update” tab and must be stored in a comma 

separated values (csv) file. The resulting distribution is then provided in the same window with 

updated parameters shown on the right. All Bayesian updates for the case study runs were done 

using this functionality. 

Certain assumptions were made in modelling the tunneling construction for the case study project 

to allow for clear implementation of the updating and prediction techniques. Applying Bayesian 

updating to other distributions, such as beta distributions or triangular distributions, is much more 

complex and requires advanced analytical techniques that are outside of the scope of the 

contributions of this thesis. For this reason, all duration data used was assumed to be normally 

distributed, as the Simphony modelling environment has existing capabilities to handle this type 

of distribution. As previously discussed, additional user interface functionality was added to allow 

for straightforward Bayesian updating with effective visualization. 

Other assumptions made to improve the transparency of the effects of the changing ground 

conditions in the simulation model were to assume constant train travel times to and from the 

tunnel face. This assumption is reasonable as the duration used would be overestimated at the 

beginning of the tunnel and underestimated for the tail end of the tunnel. Overall, the train travel 

time would be unlikely to dictate major changes to the project duration. Keeping the train travelling 

constant allowed for a more detailed focus on the effects of ground conditions on duration. The 

final assumption made during modelling is that the installation of liners is inherent in the excavate 

element, occurs in parallel with the described tunneling process, and, therefore, does not delay 

excavation. 

A total of 6 simulation runs were completed to assess the effectiveness of the implementation of 

HMM techniques and Bayesian updating in the tunneling model. The tunnel model above was 

trained using the Project A data provided in Table 6.1 to develop the baseline HMM using the 

implemented Baum-Welch algorithm as illustrated in Figure 6.3.  
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Figure 6.3: Baum-Welch training step of HMM 

The code snippet below provides a summary of the ground condition excavation rates used from 

Project A data as per Table 6.1. 

If GetMarkovOutput("Ground Condition HMM")="clay" 

   X = SampleNormal(2.156585613, 0.162328535) 

  Else If GetMarkovOutput("Ground Condition HMM")="clay sand" 

   X = SampleNormal(2.097527995,1.447476952) 

  Else If GetMarkovOutput("Ground Condition HMM")="sand" 

   X = SampleNormal(2.339795918,2.070096921) 

  Else 

   Throw New NotSupportedException("Unknown Ground Condition!") 

  End If 

6.3.4  Simulation Runs and Processes 

A simulation run was completed to represent actual project updates at 100m intervals along the 

500m project length. The basis of the modelling effort was to mirror how the actual construction 

Train the HMM with Project A 

Data (Baum Welch Algorithm) 
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project planning and control would occur. Prior to project commencement (Project B), a model is 

created with basic assumptions and best guesses as to what types of productions and durations may 

occur. This model can be further improved using similar past projects or expert knowledge. For 

this case study, Project A data were used to “train” the Project B model as explained above. At 

this stage, the first run (Run #1) was completed to simulate the tunneling of 500m to predict the 

duration of Project B. At this point, actual construction would begin, and real data would be 

collected. After 100m of tunnel was completed, further modelling would be completed to predict 

the duration for the remaining 400m of tunnel. Data obtained during the first 100m of actual 

tunneling, including ground conditions encountered, excavation rates, and shift hours, would be 

used to update the model using the techniques described here. Once the HMM chain and respective 

production rates for each ground condition are updated, as previously described, the model is ready 

to predict the remaining 400m of the project in the second run (Run #2). This process is repeated 

for each 100m interval using all previous Project A data together with the up-to-date actual 

construction data for Project B until all tunneling construction is complete. For every 100m of 

actual construction completed, the model should become more accurate. Indeed, the predictions 

should, ideally, converge to actual construction duration. Each run is analyzed by taking the actual 

duration to date and adding the mean predicted duration for the remaining tunnel length as shown 

below. Each run number was performed 1000 times to develop a meaningful sample of results. 

 

Table 6.4: Simulation model run details 

 

As presented above, the final run (Run #6) provides a good indication of how effective the model 

and updating process is by simulating the entire project using all 500m of actual construction data. 

This can be thought of in the case of predicting another 500m of tunnel or simply a comparison of 

the model to the actual construction duration achieved. 

Run 

Number
Simulated Length

Actual Data 

Length

Run #1 500m 0m

Run #2 400m 100m

Run #3 300m 200m

Run #4 200m 300m

Run #5 100m 400m

Run #6 500m 0
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6.3.5 Results 

The results of all six runs completed are summarized in this section. Simulation outputs are 

provided to display the HMM chain, ground conditions predicted, and distribution of total run 

durations for each run. Figure 6.4 illustrates the evolution of the HMM from Runs 1-6. 

1 2 
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Figure 6.4: Evolution of the HMM Chain for Runs 1-6 

Beginning with Run 1, hidden state A1 dominates the chain with a very low likelihood of 

transitioning to either A2 or A3. As is typically seen in HMM chains, each hidden state is, 

generally, more likely to be associated with a specific observation, which, in this case, is a certain 

ground condition. For example, A1 is generally associated with clay sand and has a self-transition 

probability of 97.6%. This approaches what is known as an absorbing state, which dominates the 

HMM chain. As the HMM is updated, the likelihood of observing clay increases for all hidden 

states. This behavior is expected as the previous project data was predominantly clay sand, whereas 

the Project B data used to update the HMM was most clay, especially through the first 200m of 

excavation. Sand was not seen at all during Project B excavation; this is also reflected in the 

evolution of the HMM with decreasing likelihoods from all states. The graphs in Figure 6.5 show 

a visual representation of what ground conditions were encountered in each simulation run. 
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Figure 6.5: Ground conditions encountered for Runs 1-6 

In Figure 6.5, ground conditions that were encountered can be determined in each run. Runs 1, 2, 

and 3 are still dominated by Project A data, where clay sand is the most encountered ground 

condition. In runs 4 and 5, actual construction data for Project B begins influencing the model. 

0 %

20 %

40 %

60 %

80 %

100 %

R
e

la
tiv

e
 F

re
q

u
e

n
c

y

100 200 300 400 500 600 700 800 900 1000

Run Index

sand clay clay sand

0 %

20 %

40 %

60 %

80 %

100 %

R
e

la
tiv

e
 F

re
q

u
e

n
c

y

100 200 300 400 500 600 700 800 900 1000

Run Index

sand clay clay sand

0 %

20 %

40 %

60 %

80 %

100 %

R
e

la
tiv

e
 F

re
q

u
e

n
c

y

100 200 300 400 500 600 700 800 900 1000

Run Index

sand clay clay sand

0 %

20 %

40 %

60 %

80 %

100 %

R
e

la
tiv

e
 F

re
q

u
e

n
c

y

100 200 300 400 500 600 700 800 900 1000

Run Index

clay sand clay sand

0 %

20 %

40 %

60 %

80 %

100 %

R
e

la
tiv

e
 F

re
q

u
e

n
c

y

100 200 300 400 500 600 700 800 900 1000

Run Index

sand clay clay sand

0 %

20 %

40 %

60 %

80 %

100 %

R
e

la
tiv

e
 F

re
q

u
e

n
c

y

100 200 300 400 500 600 700 800 900 1000

Run Index

sand clay clay sand



 87 

The effects of the updating can be seen as the reduction in the number of observations of sand in 

runs 4 and 5. Run 6, for 500m of tunnel, yields the expected results: a higher and ;lower frequency 

of clay and sand, respectively, compared to Project A only data. 

The project durations for each run are summarized in Table 6.5, with additional histograms and 

statistics provided in Appendix 6.B. It is important to note that each sequential run is 100m less 

than the previous, as the total project duration is based on the actual duration for data up to that 

point plus the simulation of the remaining chainage to 500m. 

Table 6.5: Summary of run durations 

 

Actual excavation duration for Project B was 1152 hours or 144 days of construction. This serves 

as the baseline comparison to evaluate the effectiveness of the updating procedures and completed 

simulation modelling. The results above indicate that performance vastly improved after each 

100m of actual data was used to update the model. Beginning with Run #1, the predicted mean 

duration was 1491 hours or 186 days of construction. This estimate, based only on prior project 

data from Project A, serves as reasonable starting point for prediction. With Run #2, the prediction 

was reduced, based on 100m of actual data and ground condition information, to 1396 hours or 

175 days. Run #3 resulted in a total estimated duration of 1210 work hours or 151 days. Runs #4, 

1179 hours or 147 days, and Run #5, 1146 hours or 143 days, with information from 300m and 

400m of actual data, respectively, began to accurately predict the actual project duration. These 

two runs in particular demonstrate that the simulation model and updating processes proposed 

resulted in marked improvements for predicting the duration of the project, which improved with 

the incorporation of additional data as expected. Achieving these reasonable results provides 

Run Number
Simulated Mean 

Duration (hours)

Actual Duration 

(hours)

Total Duration 

(hours)

Run #1 (500m) 1491 0 1491

Run #2 (400m) 1185 211 1396

Run #3 (300m) 790 420 1210

Run #4 (200m) 527 652 1179

Run #5 (100m) 264 882 1146

Run #6 (500m) 1331 0 1331
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confidence that the methods used for updating provide a significant advantage that can enhance 

the planning and execution of a project.  

The final completed Run #6 improves the initial estimate with only Project A data (Run #1). While 

the predicted duration of 1331 hours or 166 days was within the range of actual construction 

duration (144 days), these results demonstrate that the model is not perfectly calibrated to mirror 

the specific project. Notably, this is not the goal of the model. The important conclusion to draw 

from Run #6 is the marked improvement and convergence towards the actual duration in 

comparison to Run #1. Improvements in prediction, using the updating and Markov techniques, 

were shown to considerably improve the reliability of project duration predictions. 

6.4 Conclusion 

Being able to predict when a project will be completed is fundamental to project management in 

construction. The more accurate a project manager can be in predicting when a project will be 

completed, the better they can plan resources and materials to inform stakeholders and budgets. 

A case study was reviewed to test the effectiveness and validity of proposed techniques in this 

thesis related to Bayesian updating of statistical distributions and Markov chains, specifically the 

Baum-Welch algorithm, to an actual construction project. The Downtown Intensification tunneling 

project in the city of Edmonton, Alberta, was used. Data was collected on a daily basis with respect 

to ground conditions encountered and production rates. Project A data were organized to develop 

baseline excavation rates for each ground condition as well as to train the HMM model based on 

the ground conditions and their persistence. A simulation was completed in the Simphony 

modelling environment with only the Project A data as an estimate for the 500m Project B. Four 

additional runs were completed to mimic the actual construction of 500m, and subsequent updates 

to the model were made at 100m increments. Each run was compared to the actual duration of the 

project. Each subsequent run demonstrated increasingly meaningful improvements, consecutively 

converging towards the actual duration. Visualizations were provided to display how the HMM 

model evolved through each update to demonstrate a visual summary of the predicted ground 

conditions. 
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The model runs demonstrate considerable improvements for each cycle of updates. Indeed, 

prediction, based on 400m of data, of the final actual duration was within one day of the actual 

duration. With further calibration and additional data analysis, the prediction could be improved 

as to converge towards the actual duration with less data, resulting in reduced uncertainty earlier 

in the project. 
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CHAPTER SEVEN 

CONCLUSIONS 

7.1 Summary of Thesis and Contributions 

This thesis developed improvements in model-based predictions for construction projects with the 

use of Bayesian updating techniques and Markov chain modelling with integration into simulation 

modelling, specifically applied to geological conditions in tunneling. The background of the above 

techniques was reviewed with a summary of their origins, previous work done in construction, and 

a brief overview of how they function in Chapters 1 and 2. 

In the third chapter, a model was proposed to apply Bayes technique to the updating of probabilistic 

transitions and observations for Markov chains. The effects of new data on predictions of ground 

conditions were visualized. It was shown that, based on a real sanitary sewer project, geological 

conditions of one-meter sections in tunnel construction can be predicted based on the geological 

condition of the previous one-meter section. The simulation results show that continuous updates 

during construction can improve project performance prediction by eliminating the uncertainty 

intrinsic to the original assumption. 

The fourth chapter reviewed a specific algorithm for updating parameters of a Markov chain under 

the Baum-Welch algorithm—an applied Bayes technique. This algorithm was detailed and 

implemented into the Simphony modelling environment and was found to be accurate in recreating 

the results of previous works in Markovian modelling. 

Chapter five of this thesis detailed the implementation of hidden Markov models (HMM) in the 

Simphony modelling environment with dedicated modelling elements for training, updating of 

model parameters, and integration of HMM models into a simulation model. A sample tunnel 

project was prepared with an integration of tunneling simulation together with the prediction of 

ground conditions via the Markov model. 

The sixth chapter presented a real tunneling case study demonstrating the effectiveness of the 

integration of Bayesian updating techniques and hidden Markov models implemented in the 

Simphony simulation modelling environment that was applied to ground conditions for predicting 
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project durations. Real construction data from a previous phase of a project was used to train an 

HMM. Actual data from the case study project was incrementally incorporated to update the HMM 

model, and Bayes techniques were applied to update the statistical distribution for excavation rates 

for the 500m project chainage. The results demonstrated that predictions were improved as 

additional, actual construction data were incorporated. This chapter demonstrated how project 

planners can make use of previous projects data as well as current, actual data to improve 

simulation model predictions. 

Through the integration of well-established analytical techniques, this thesis presented how 

construction management and project planning can be improved by the innovative use of real 

construction data. Specifically applied to tunneling construction, the uncertainty of ground 

conditions was concentrated on to attempt to better model how ground conditions can change and 

how to better predict what conditions, and associated productivity, can be expected. The value of 

more accurate insight into a tunneling projects productivity is apparent and paramount in planning 

a project. Costs savings, stakeholder satisfaction, and better resource and equipment planning are 

all expected consequences of further understanding productivity. The straightforward 

implementation of the suggested techniques into models provides great potential for not only 

tunneling construction but for many other fields of construction where there is uncertainty 

surrounding production and the variables that drive it. 

7.2 Recommendations for Future Work 

To further develop the work in this thesis, a few key topics could be investigated. Additional model 

calibration for specific projects could be done to further improve the predictions and simulation of 

tunneling construction. Individual projects have various configuration and setups, and time studies 

into each facet of tunneling construction, such as other delays or activities in the process, could 

produce meaningful information. As a key driving force of productivity, ground conditions were 

the focus of Markovian modelling in this thesis, but modellers could expand the scope of Markov 

modelling to include other variables in construction, such as weather or crew size. 

Further research could be done investigating how to weigh past and current project data to best 

model future performance of the project. Another topic of further research would be to investigate 

other techniques and algorithms for updating HMM parameters, outside of Bayes theorem and the 



 92 

Baum Welch algorithm, to find the most accurate techniques. However, it should be considered 

that implementation into a modelling environment could be more complex for more robust 

algorithms.  

In this thesis, the updating of statistical distributions was limited to normal distributions. In the 

future, it would be beneficial to expand updating to other types of statistical distributions that may 

better represent certain variables. There are certain limitations of sampling normal distributions, 

in particular, due to the range of the distributions that had to be explicitly prevented in this thesis, 

such as sampling of negative numbers. 
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APPENDICES 

APPENDIX 4.A: Tracelog of Results from the Bayesian Updating Procedure in Simphony 

GPT: 
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APPENDIX 4.B: C# Code Snippet within the “Execute” Element in the Simphony for 

Updating HMM         

  

 



 102 

 



 103 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 104 

APPENDIX 6.A: Excavation Element Code 

Excavate element code: 

 

Dim X As Double 

  

 Do 

  If GetMarkovOutput("Ground Condition HMM")="clay" 

   X = SampleNormal(2.34374827466158, 0.0827868300285651) 

  Else If GetMarkovOutput("Ground Condition HMM")="clay sand" 

   X = SampleNormal(2.34962480328052, 0.13553242570418) 

  Else If GetMarkovOutput("Ground Condition HMM")="sand" 

   X = SampleNormal(2.340,2.070) 

  Else 

   Throw New NotSupportedException("Unknown Ground Condition!") 

  End If 

  

 Loop While X < 1 

   

 Return X 
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APPENDIX 6.B: Simulation Run Histograms 

Run 1- 500m with Project A Trained Data 

Run 2- 400m Updated with Project B-100m Actual Data 
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Run 3- 300m Updated with Project B-200m Actual Data  

 

Run 4- 200m Updated with Project B-300m Actual Data  

Run 5- 100m Updated with Project B-400m Actual Data 

Run 6- 500m Updated with Project B compared to Actual Duration 

APPENDIX 6.C: Simphony Modeling Elements 

The following details of the SIMPHONY Modelling elements provided are excerpts Construction 

Simulation-An Introduction Using SIMPHONY. 
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A Create element is responsible for creating entities and introducing them into the model. It has the 

capability of introducing a number of entities all at once at the start of simulation, or it can introduce 

single entities at random intervals during simulation. 

 

A Task element is responsible for modelling an activity. It 

achieves this by holding the entity for a period of time, as specified in its duration 

property. 

 

A Counter element is used to record important milestones in the lifecycle of an entity. It 

simply counts the number of entities passing though and the simulation time at which they 

are observed. Normally, it is used to record production in the model and should be 

strategically positioned to reflect the completion of a unit of production. 

A Resource element is responsible for defining a shared resource. Although it has an 

output point, entities do not flow out of it. Rather, the output point is used to connect the 

Resource to one or more File elements. These File elements define the queues in which 

entities may be waiting for the Resource. 

A File element is responsible for defining a queue in which entities wait for a shared resource. 

Although it has an input point, entities do not flow into it. Rather, the input point is used to 

connect the File to one or more Resource elements. These Resource elements define the 

resources that queued entities may be waiting for. 

The Capture element is responsible for granting the exclusive use of one or more servers of 

a Resource to an entity. When an entity arrives at a Capture element, a check is made to see 

if the servers it requires are available. If so, the servers are granted to the entity and it exits 

the Capture element without delay; if not, the entity will be queued in a File element where 

it will wait for the servers to become available. 

The Release element allows an entity to return servers it has previously captured to the 

pool of available servers. 
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The Markov Model element defines the Markov Chain and holds state and output 

information. No entities flow through the element, and it provides a user interface for the 

modeler to create a Markov Chain. 

 

The Markov Transition element prompts a transition of the Markov Chain associated with it 

as well as an output. One transition and output will occur when an entity flows through the 

element. 


