
Bug Assignment: Insights on Methods, Data and Evaluation

by

Ali Sajedi Badashian

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Computing Science

University of Alberta

© Ali Sajedi Badashian, 2018

Abstract

The bug-assignment problem is prevalently defined as ranking developers based on their

competence to fix a given bug. Previous methods in the area used machine-learning or

information-retrieval techniques and considered textual elements of bug reports as evidence

of expertise of developers to give each of the developers a score and sort the developers for

the given bug report.

Despite the importance of the subject and the substantial attention it has received from

researchers during last 15 years, still it is a challenging, time-consuming task in large software

projects. Even there is still no unanimity on how to validate and comparatively evaluate

bug-assignment methods and, often times, methods reported in the literature are not repro-

ducible. In this thesis, we make the following contributions.

1) We investigate the effect of three important experimental-design parameters in the

previous research; the evaluation metric(s) they report, their definition of who the real

assignee is, and the community of developers they consider as candidate assignees. Supported

by our experiment on a comprehensive data set of bugs we collected from Github, we propose

a systematic framework for evaluation of bug-assignment research. Addressing those aspects

supports better evaluation, enables replication of the study and promotes its usage in other

research or industrial applications.

2) We propose a new bug-assignment approach relying on the set of Stack Overflow

tags as the thesaurus of programming keywords. Our approach, called Thesaurus and Time

based Bug Assignment (TTBA), weights the relevance of a developer’s expertise based on

how recently they have fixed a bug with keywords similar to the bug at hand. In spite of its

ii

simplicity, our method predicts the assignee with high accuracy, outperforming state-of-the-

art methods.

3) We extend TTBA to consider a broader record of the developer’s expertise, consid-

ering multiple sources of evidence of expertise. Then we investigate the information value

of these information sources, considering various technical contributions to the project and

contribution to social software platforms. We show that in addition to bug-fixing contribu-

tions, other technical and even social contributions of the developers within version control

system are useful for bug-assignment. We also show that extending the sources of expertise

can improve the accuracy of assignee recommendations.

4) We study the impact and usefulness of the above contributions using a comprehensive

data set of bugs we collected from 13 long-term open-source projects in Github. In addition

to the technical work by developers, this data set includes social contributions of developers

in the version control system. This is one of the biggest data sets made available online for

further studies and research.

iii

Preface

This thesis is an original contribution by Ali Sajedi-Badashian. Parts of this thesis has been

published before or submitted for publication.

Chapter 2 of this thesis has been submitted for publication:

• Ali Sajedi-Badashian and Eleni Stroulia, “A Systematic Framework for Evaluating
Bug-assignment Research”, ACM Computing Surveys (CSUR), 2018 Sajedi-Badashian
and Stroulia 2018a.

Chapter 3 of this thesis has been submitted for publication:

• Ali Sajedi-Badashian and Eleni Stroulia, “TTBA: Thesaurus and Time Based Bug-
Assignment”, Journal of Systems and Software, 2018 Sajedi-Badashian and Stroulia
2018c.

Chapter 4 of this thesis has been submitted for publication:

• Ali Sajedi-Badashian and Eleni Stroulia, “The Information Value of Different Sources
of Evidence of Developers’ Expertise for Bug Assignment”, International Conference
on Computer Science and Software Engineering (CASCON), 2018 Sajedi-Badashian
and Stroulia 2018b.

Chapter 5 of this thesis has been published in:

• Ali Sajedi-Badashian, Abram Hindle and Eleni Stroulia, “Crowdsourced Bug Triag-
ing”, International Conference on Software Maintenance and Evolution (ICSME), 2015
Sajedi-Badashian and Stroulia 2018b.

• Ali Sajedi-Badashian, Abram Hindle and Eleni Stroulia, “Crowdsourced Bug Triaging:
Leveraging Q&A Platforms for Bug Assignment”, Fundamental Aspects of Software
Engineering (FASE), 2016 Sajedi-Badashian and Stroulia 2018b.

There are other research that performed during the development of this thesis but are

not discussed in this manuscript:

iv

• Ali Sajedi-Badashian, Afsaneh Esteki, Ameneh Gholipour, Abram Hindle and Eleni
Stroulia, “Involvement, Contribution and Influence in GitHub and Stack Overflow”,
International Conference on Computer Science and Software Engineering (CASCON),
2014 Sajedi-Badashian et al. 2014.

• Ali Sajedi-Badashian and Eleni Stroulia, “Measuring user influence in github: the mil-
lion follower fallacy”, CrowdSourcing in Software Engineering (CSI-SE), 2016 Sajedi-
Badashian and Stroulia 2016.

• Ali Sajedi-Badashian, Vraj Shah and Eleni Stroulia, “GitHub’s big data adaptor: an
eclipse plugin”, International Conference on Computer Science and Software Engineer-
ing, 2015 Sajedi-Badashian, Shah, et al. 2015.

• Ali Sajedi-Badashian and Eleni Stroulia, “Realistic bug triaging”, Software Engi-
neering Companion (ICSE-C), IEEE/ACM International Conference on, 2016 Sajedi-
Badashian 2016.

v

To my mother

For teaching me “life”,

To my father, who is not between us anymore,

For inspiring me “honesty”,

To my wife, Zahra, and my daughter, Elham,

For their love, patience and dedication in helping me during my studies.

vi

Acknowledgements

I hereby thank Professor Eleni Stroulia for her supervision, advice and support during my

studies.

I also thank the financial supporters. Parts of this work were supported by the following

grants:

• Queen Elizabeth II Graduate Scholarship1 funded by Faculty of Graduate Studies and

Research (FGSR)2 at University of Alberta.

• Graduate Student Scholarship3 funded by Alberta Innovates - Technology Futures

(AITF)4

• Natural Sciences and Engineering Research Council of Canada (NSERC) and the

GRAND NCE.

• European Joint Conferences on Theory and Practice of Software (ETAPS) 2016 student

scholarship (travel award)

• Faculty of Graduate Studies and Research (FGSR) Travel Award

• Two GSA Academic Travel Awards

• GRAND Postgraduate Scholar Award

1https://www.ualberta.ca/graduate-studies/awards-and-funding/scholarships/queen-elizabeth-ii
2https://www.ualberta.ca/graduate-studies
3https://fund.albertainnovates.ca/Fund/BasicResearch/GraduateStudentScholarships.aspx
4https://innotechalberta.ca

vii

Contents

1 Introduction 1
1.1 Problem statement . 2
1.2 Contributions . 4
1.3 Thesis Outline . 6

2 A Systematic Framework for Evaluating Bug Assignment Research 7
2.1 Introduction . 10
2.2 A survey on Bug-assignment Research . 13

2.2.1 Survey protocols and process . 13
2.2.2 Bug-assignment Tasks and Objectives 15
2.2.3 Bug-Assignment Methodologies . 19

2.3 Select Empirical Bug-assignment Studies . 21
2.3.1 Knowledge Assumptions of Bug-assignment Methods 24
2.3.2 Metrics for Evaluation of Bug-assignment Research 25

2.4 A Discussion of Bug-assignment Evaluation Metrics 27
2.5 Dimensions of Variability in Bug-assignment Empirical Studies 31

2.5.1 Ground-truth assignee . 32
2.5.2 Developer community . 37

2.6 Experiment setup and Data Set . 38
2.6.1 The Data Set . 39

2.7 Findings . 41
2.7.1 Comparing Different Types of “Ground-truth Assignee” 41
2.7.2 The effect of “Developer Community” 44

2.8 Discussion . 48
2.8.1 The proposed evaluation framework 49
2.8.2 Threats to validity . 51

2.9 Conclusions . 52

3 TTBA: Thesaurus and Time Based Bug Assignment 54
3.1 Introduction . 57
3.2 Background and Related Research . 58
3.3 Recognizing Developers with Relevant Expertise: The TTBA Metric 61

3.3.1 TF-IDF . 64
3.3.2 Focusing on a Thesaurus of Terms . 65
3.3.3 Recency-aware Term Weighting . 67

viii

3.4 The Data Set . 68
3.5 Evaluation . 69

3.5.1 Evaluation Metrics . 70
3.5.2 Tuning and Optimization . 70

3.6 Results . 72
3.6.1 Comparisons Against Implemented Baseline Methods 72
3.6.2 Comparison Against Results Reported in the Literature 73

3.7 Discussion . 74
3.7.1 Intuitions About Comparison of the Implemented Approaches 76
3.7.2 Intuitions About Comparison of Reported Results 77
3.7.3 Threats to Validity . 78

3.8 Conclusions and Future Work . 82
Appendix 3.A Appendix: Details of mutation experiment for tuning 6 parameters

of our method . 83

4 An Investigation Into the Information Value of Different Sources of Evi-
dence on the Developers’ Expertise for Bug Assignment 89
4.1 Introduction . 92
4.2 Background and Related Research . 94

4.2.1 Knowledge assumptions of Bug-Assignment 94
4.3 Bug Assignment Based on Multiple Sources of Evidence of the Developers’

Expertise . 98
4.3.1 TTBA: A Compositional Similarity Metric for Bug Assignment . . . 98

4.4 Experimental Design . 99
4.4.1 Data set . 100

4.5 Value of Various Sources of Expertise . 101
4.5.1 Considering additional textual information as evidence of expertise . 102
4.5.2 Considering References to the developers’ names 104

4.6 Validating Multisource Approach on the Whole Data Set 106
4.7 Threats to Validity . 109
4.8 Conclusions and Future works . 111

5 Utilizing Beyond-project Sources of Expertise for Bug Assignment 113
5.1 Introduction . 116
5.2 Literature Review . 117
5.3 A Social Bug-Triaging Model . 120

5.3.1 Social Metrics of Expertise . 121
5.3.2 A Bug-Specific Social Metric of Expertise 122

5.4 Evaluation . 125
5.4.1 Experiment Setup . 126
5.4.2 Comparison to State of the Art . 126
5.4.3 Implementation . 128
5.4.4 Performance of Variant Social Metrics of Expertise 128
5.4.5 Performance of the RA SSA Z scoreu,b 130

5.5 Analysis . 131

ix

5.6 Conclusions and Future Work . 133
Appendix 5.A Appendix: A Preliminary study for Usage of External Beyond-

project Sources of Expertise in Isolated Settings 135
5.A.1 Introduction and Background . 137
5.A.2 A Social Bug-Triaging Method . 138
5.A.3 Evaluation . 141
5.A.4 Conclusions and Future Work . 146

Appendix 5.B Appendix: Can External Beyond-project Sources of Expertise be
Useful in General Settings? . 147
5.B.1 Information From Project Families 147
5.B.2 Information from Other Technical Networks 149

6 Conclusions and Future Works 152
6.1 Future Works . 154

References 155

x

List of Tables

2.1 A summary of the methods and techniques used in the literature 16
2.1 A summary of the methods and techniques used in the literature 17
2.2 A review of the used information for bug assignment in selected BA studies 25
2.3 The evaluation metrics and other design choices of the selected research 26
2.4 The types of assignment used in previous studies, varied from T1 to T4 36
2.5 The data set including T1 to T5 bug-assignments in each project 40
2.6 MAP (%) for 13 projects using different assignee types 42

3.1 Obtaining best configurations for the main factors affecting the accuracy of
TTBA . 71

3.2 Comparing TTBA results against TF-IDF and Time-TF-IDF (Shokripour et al.

2015) . 73
3.3 The evaluation measures and other design choices of the selected research 75
3.4 The results of optimizing secondary factors affecting the accuracy of TTBA 87

4.1 A review of the used information for bug assignment in previous research 95
4.2 Data set different evidence of expertise in 13 projects 101
4.3 Determining context weights for additional pieces of information in test projects103
4.4 Statistics of the references to the developers’ names in three test projects . . 104
4.5 Determining whether to prioritize the referenced developers or not 106
4.6 Comparison of the results of our approach against TTBA 107
4.7 Available multi-source data in different projects 108

5.1 An example of scoring regarding the bug shown in Figure 5.1 based on the
users’ activities in Stack Overflow . 121

5.2 Accuracy results for preliminary approaches and tuning 130
5.3 Accuracy results for different simulated approaches compared with ours . . . 131
5.4 Recent Bug-Triaging Methods . 138
5.5 Example of different scores for users . 140
5.6 Results of different simulated approaches compared with ours 144
5.7 Statistics of the shared users with sub-projects or Stack Overflow 148
5.8 Results of using external sources of expertise 149
5.9 Statistics of the answers posted by the developers in Stack Overflow 151

xi

List of Figures

2.1 Methods used for bug-assignment (overall) 18
2.2 Methods used for bug-assignment (details) 19
2.3 An example of use of MAP for bug-assignment over three bugs 32
2.4 A sample bug report (#257) in Travis-ci . 33
2.5 Distribution of MAP over 13 projects using five different assignment types.

T5 has the lowest variance . 43
2.6 The effect of filtering less-active developers, and the bug reports they fixed,

on accuracy of results . 47

3.1 A sample bug report (#92) in www.html5rocks.com 62

4.1 A sample bug report and information sources available around it 97
4.2 The data model of our Github data set . 102

5.1 An example bug report (selected fields) . 120

xii

Nomenclature

abs recency: absolute recency which is obtained by considering the time passed from an
evidence of expertise, . p. 67

A score: the score of answers provided by a Stack Overflow user, p. 122

BA: Bug Assignment, . p. 15

bug: an error, flaw, failure, problem or needed change in the software5, p. 1

Bug Assignment: Ranking developers based on their expertise for fixing a given bug,
p. 10

bug description: the descriptive words of a bug which is written by a developer to explain
that bug, . p. 55

bug report: the report written by a developer regarding an existing bug (might include stack
traces or reproduction steps), . p. 1

context: the “context” or “subject” score related to the type of a sub-document (e.g., ev-
idence of expertise), which is considered as a coefficient in the Multisource scoring
function, . p. 98

cross validation: an out-of-sample testing technique in which the result of a new bug-
assignment method is validated on a data set with known developers as ground-truth
assignees, . p. 12

D: the set of all the bugs –up to a specific point in time when the new query (bug) is
assigned to a developer, . p. 38

d: a developer that might be assigned any number of bugs, . p. 38

developer′s expertise record: the tracks of a developer in the VCS in the form of bug-fix or
other programming-related contributions, . p. 1

developer community: the list of developers who might be considered as assignee for any
new bug in a project (this is a set of developers which is sorted for each bug reports
in evaluation and cross-validation of a method against ground-truth assignees), p. 37

5The actual notation of bug mostly indicates a problem in developer’s code and is more restricted than
issue. The usage of bug in this study is the same as issue.

xiii

distinctiveness in Stack Overflow: the extent that a Stack Overflow tag is specific, notice-
able and explicit; the less common Stack Overflow tags are more specific and distinct
than the common tags, . p. 5

efficiency of BA: the ability to recommend desirable developers for a set of given bugs
so that the bugs can be fixed correctly and there will be no need to toss to other
developers, . p. 27

freq: frequency (number of repeats) of a specific term in a query, p. 64

golden standard: see “ground truth”, . p. 11

ground truth: the real bug-assignment data against which researchers validate their bug-
assignment methods (showing who was the correct assignee for each real bug) and
generally evaluate their methods, . p. 2

ground truth assignee: the developer(s) who actually worked towards fixing a given bug in
the project; the researchers validate their bug-assignment methods by comparing the
developers recommended by their approach against these developers, p. 32

idf : inverse document frequency which measures how important a term is, regarding all
the documents, . p. 64

issue: see “bug”, . p. 1

issue report: see “bug report”, . p. 1

multisource: multi-source variant of TTBA including various sources of expertise, . . p. 98

project member: any developer in the project who can do any type of bug-fix (including
committing and referencing the bug as “fixed”, reviewing and closing the bug or
generally being tagged as assignee at the time of closing the bug), p. 45

q: a query (bug) that needs to be assigned to a developer for fixing, p. 38

Q score: the score of a Stack Overflow user related to the questions he/she asked, . p. 123

RA SSA Z score: recency-aware SSA Z score, . p. 125

recency: a factor injected in our expertise metrics to emphasize on newer evidence, . p. 68

rel recency: relative recency which is obtained by considering the amount of worked after
an evidence of expertise, . p. 67

sd: sub-document, . p. 66

SSA Z score: the social and subject-aware score of a Stack Overflow user obtained from
his/her posts (i.e., questions and answers), . p. 123

technical keyword space: all the Stack Overflow tags, . p. 5

xiv

technicality: the level or state a term is technical regarding programming aspects, . . . p. 3

tf : term frequency (we consider a normalized version by dividing the number of times a
term is mentioned in a document by the document length), p. 64

tf − idf : Term Frequency - Inverse Document Frequency, . p. 38

TTBA: Thesaurus and Time Based Bug-Assignment, . p. 58

u: a Stack Overflow user who is also a Github developer, . p. 123

V CS: Version Control System, . p. 4

w: weight of a term (obtained from its appearance in Stack Overflow), p. 65

Z score: the score of a Stack Overflow user related to the answers he/she provided, p. 123

α: the coefficient for “social” section of RA SSA z score, . p. 125

β: the coefficient for “recent activity” section of RA SSA z score, p. 125

µ: a normalization factor in the SSA Z score to adjust the number of questions with
number of answers, . p. 123

xv

Chapter 1

Introduction

In big software projects, many bugs (issues) are reported every day which need to be

fixed in a reasonable time. One of the main triaging steps, after receiving a bug report

(issue report), is to assign it to an appropriate developer. In big projects, addressing bugs

properly needs effort from the project’s management team, which is too expensive. As a

result, researchers devised semi-automatic solutions to help managers assign bugs to the

developers. Bug assignment is the process of ranking developers in terms of the relevance of

their expertise to fix a new bug report.

The problem has already received substantial attention over the past 15 years (Aljarah

et al. 2011; Bhattacharya and Neamtiu 2010; Jeong et al. 2009; Linares-Vásquez et al. 2012;

Liu et al. 2016; Nguyen et al. 2014; Shokripour et al. 2013). Despite the vast attention of

researchers, bug-assignment is still an expensive, time-consuming task in software projects

(Saha et al. 2015). More than half (and up to 90%) of software development cost is regarding

maintenance (Bhattacharya et al. 2012; Seacord et al. 2003), and a great deal of maintenance

work is dealing with bugs. Large projects receive hundreds of bug reports daily (Tian et al.

2016), which get recorded in their issue-tracking tools. As an example, in Eclipse and Mozilla,

it takes about 40 and 180 days respectively to assign a bug to a developer (Bhattacharya et

al. 2012). In ArgoUML and PostgreSQL, the median time-to-fix for bugs in some projects is

around 200 days (Kim and Whitehead Jr 2006). In Eclipse, 24% of the bugs are re-assigned

to another developer, before getting fixed (Baysal et al. 2009). The reason for re-assignment

can be for determining the ownership of the bug or other reasons (Guo et al. 2011). Even

the fixed bugs, in both Eclipse and Mozilla, have been re-assigned at least once in more than

90% of the cases (Bhattacharya et al. 2012; Jonsson et al. 2016).

1

This indicates the need for more accurate bug-assignment methods for big projects (T.

Zhang et al. 2016; W. Zhang et al. 2016b) to help the project managers pick the right

assignees for each received bug.

In this thesis, we develop a new method for bug-assignment, and validate it through a

series of experiments on a substantial data set.

1.1 Problem statement

To help large software teams like open-source projects handle bugs effectively, it is needed

to enhance the current methods and develop more accurate assignee recommendations. This

includes revisiting the problem and design choices used for experimentation in the field,

developing more accurate methods and utilizing the most practical and useful data. We

review these problems in three categories;

1) Despite the importance of the subject and the substantial attention it has received

from researchers during last 15 years, still it is a challenging, time-consuming task in large

software projects. On the other hand, validation and evaluation of the bug-assignment

methods differs a lot from case to case, and, often times, methods reported in the literature

are not reproducible. Most research in the field involve a number of challenging questions

about how to implement a more accurate bug-assignment method, including “how to find

and relate different pieces of information to a bug report to assign it to a developer”, “how to

utilize similarity measures to match a bug report with a developer?”, “how to use other clues

or heuristics to connect a bug report to a candidate developer as the potential assignee”,

“how to take into account the developers’ workload?” and so on. However, there is no

previous study aiming at addressing the following what questions:

• What is the best metric for evaluating a bug-assignment research? What are the

criteria for choosing evaluation metric in a bug-assignment experiment? Can the choice

of evaluation metric bias the evaluation process?

• What is the best definition of “ground-truth assignee”? What is the best “ground

truth” for evaluation (cross-validation of a developer recommendation against some

real data)? How can we judge if a recommended developer is a good fit for fixing a

given bug or not? And what are the exact criteria for this judgment (to identify the

ground-truth assignees for a given bug) in a project?

2

• What is the best definition for “developer community” from which the bug-assignment

methods recommend appropriate developers? Which developers in the project should

be considered as “developer community” (considered as the pool of candidate as-

signees), in order to have a fair evaluation? And does filtering this community bias

the results?

To the best of our knowledge, there is no previously published survey aiming at discussing

the main objectives, methods, metrics and information used for bug-developer matching.

In addition to addressing the above questions, providing a comprehensive survey helps us

identify the pitfalls and challenges in the field and pinpoint best practices to make future

bug-assignment research more useful and reproducible.

2) Despite all the previous work in the area of bug-assignment, still more accurate devel-

oper recommendation methods are needed to facilitate bug-fix in large projects with hundreds

or even thousands of developers. In order to develop an automated method for assigning a

bug to the developer best qualified to fix it, the first question is to decide on “how to match

the information available on the bug with the information available on the developer’s prior

experience and contributions”.

The most prevalent arrangement used for finding the best developer to fix a given bug

is “matching” between the text of the new bug report and the profile of each developer

(i.e., text of previously fixed bugs or other contributions made by a developer). There are

two important elements affecting this matching.

• The technical terms are very important. Some previous studies considered specificity

of the terms, by measuring the statistics of the terms in the corpus (whole bug reports).

This mitigates the need for emphasizing on technical programming terms. However,

no previous research applied “technicality” of the terms as indication of importance of

the keywords.

• The time of usage is another important aspect of text matching. Developers’ interests

and areas of work change during time. While old evidence of usage of a term by a de-

veloper is still indicating some knowledge for that developer, its importance diminishes

with passage of time. A few previous studies considered the time of evidence but only

as a high-level estimate or decay factor.

The above two cases make the recognition of the needed expertise different from textual-

similarity assessment, which has been the prevalent paradigm for this task to date. So further

3

investigation is needed to obtain a better bug-developer matching.

3) The most prevalent types of data used for bug-developer matching is the text of bug

reports and there are only limited studies on addition of some other information (e.g., text

of commits). However, there are many other technical evidence of expertise of developers in

the open-source projects which can be useful for this matching. Furthermore, the utilization

of social contributions of developers in the project is another possible source of expertise

which should be investigated. Out of all the available sources of expertise in the Version

Control System (VCS), some sources are fruitful in connecting a bug to a developer, while

the others might be noisy. So, an investigation is needed to highlight the proper information

for utilization in further bug-assignment research.

1.2 Contributions

In this thesis, we focus on revisiting the problem and design choices used for experimentation

in the bug-assignment field, developing more accurate methods and identifying and utilizing

the most practical and useful data. This thesis makes the following contributions.

1) A Systematic Framework for Evaluating Bug Assignment Research

We first perform a systematic review of the broad bug-assignment research field, including

methods, evaluation metrics and information used for previous bug-assignment research.

Then, we review three important experimental-design parameters, namely the evaluation

metric(s) they report, their definition of who the ground-truth assignee is, and the community

of developers they consider as candidate assignees. Next, due to the substantial variability on

these criteria, we formulate a systematic experiment to explore the impact of these choices,

and, argue that Mean Average Precision (MAP) is the most informative evaluation metric,

the ground-truth assignee should be defined as “any developer who worked toward fixing a

bug” and the developer community should be defined as “all the project members”.

The comprehensive survey and proposed systematic framework are presented in Chapter

2.

2) A New Bug Assignment Method Relying on Technical Terms and Considering

the Information Recency

We propose a new bug-developer similarity metric which is originally based on TF-IDF.

4

It includes two important enhancements regarding technical aspects of keywords and time

of usage of them by the developers. Our similarity metric is a thesaurus and time-aware

bug-assignment, henceforth TTBA; 1) The metric deals with the relevance of a developer’s

expertise to a given bug by considering the technical-keyword space. Ignoring all words

that do not belong to the technical vocabulary of Stack Overflow tags, which are curated

by the software-engineering community, our method weighs the importance of the keywords

based on their distinctiveness in Stack Overflow. 2) Furthermore, since the developers’

expertise shifts as their tasks evolve over time, our similarity metric takes into account the

recency of the technical-keyword appearance in the developer’s record. It benefits from

high granularity of the time of usage of the terms in previous bug-assignments. We show

that our model notably enhances the assignee recommendation accuracy and outperforms

state-of-the-art methods.

The TTBA approach is presented in Chapter 3.

3) Investigation of Information Value of Social and Technical Contributions of

Developers in Open-source Projects

Finally, we study the utilization of various data in bug-assignment with two goals; first, to

increase the accuracy of our assignee recommendation. Second, to investigate the information

value of different pieces of available data for bug-assignment. This helps further researchers

to focus on appropriate fields of data effectively in their different methods.

We show that using this Multisource approach, the overall accuracy is increased. Also,

we show that most textual bug-related elements (e.g., title and description of bugs as well

as their comments) are effective sources while some other available information are not that

helpful.

We also check the usefulness of external beyond-project sources of expertise. First, we

investigate the isolated settings in which only the developers with external evidence of ex-

pertise (i.e., Stack Overflow) participate. Then, we generalize this to all the developers.

We show that the approach works in isolated settings, but in general, with existence of

inside-project data, the external evidence cannot make the predictions any better. In either

case, we discuss that the external evidence will be useful in specific situations (e.g., in new

projects).

The basic Multisource approach and the investigation of internal sources are discussed

in Chapter 4. The further investigation of external beyond-project sources is discussed in

5

Chapter 5

4) Data sets for further research

We support our arguments and validate our new proposed methods by several experiments

using an extensive data set of bugs, developers and their technical and social contributions

we have curated from Github as the most popular version control system. Our latest data

set is regarding 13 big open-source projects during +5 years. This data set is one of the most

comprehensive and recent data sets which is publicly available for further bug-assignment

research.

1.3 Thesis Outline

The structure of this thesis is as follows; In Chapter 2, after a survey on bug-assignment

methods and design choices, we propose our bug-assignment evaluation framework. Then,

in Chapter 3, we propose our new bug-assignment method and discuss about its evaluation.

Chapter 4 is devoted to the Multisource approach and its validation and Chapter 5 discusses

the usefulness of external sources. Finally, Chapter 6 concludes the thesis with some avenues

for future work.

6

Chapter 2

A Systematic Framework for

Evaluating Bug Assignment Research

7

Preface

In this chapter, we first perform a systematic review of previous bug-assignment approaches

and discuss three design choices of their experiments; the utilized metrics, the adopted defi-

nition of ground-truth assignee and definition of developer community. Then, we introduce

our evaluation framework which includes guidelines regarding those three aspects.

We show that variability on the above criteria can affect the results of bug-assignment

experiments. We argue that the best evaluation metric is MAP, the developer community

should be defined as “all project members” and that the best definition of ground-truth

assignee should include author of any work toward fixing the bugs.

This section has been submitted to the Journal of Software: Evolution and Process.

8

Abstract

Bug assignment is the task of ranking candidate developers in terms of their potential com-

petence to fix a bug report. Numerous methods have been developed to address this task,

relying on different methodological assumptions and demonstrating their effectiveness with

a variety of empirical studies with numerous data sets and evaluation criteria. Despite the

importance of the subject and the attention it has received from researchers, there is still

no unanimity on how to validate and comparatively evaluate bug-assignment methods and,

often times, methods reported in the literature are not reproducible.

In this chapter, we first report on our systematic review of the broad bug-assignment

research field. Next, we focus on a few key empirical studies and review their choices with

respect to three important experimental-design parameters, namely the evaluation metric(s)

they report, their definition of who the ground-truth assignee is, and the community of

developers they consider as candidate assignees.

The substantial variability on these criteria led us to formulate a systematic experiment

to explore the impact of these choices. We conducted our experiment on a comprehensive

data set of bugs1 we collected from 13 long-term open-source projects, using a simple Tf-IDf

similarity metric. Based on our experiment, we argue that MAP is the most informative

evaluation metric, the developer community should be defined as “all the project members”,

and the ground-truth assignee should be defined as “any developer who worked toward fixing

a bug”.

1 The data set, source code, documentations and detailed output results are available at:
https://github.com/TaskAssignment/MSBA-outline

9

2.1 Introduction

Bug-assignment (BA) is an important problem for the software-engineering industry. As a

key task of software development as well as quality-assurance process, it aims at identifying

the most appropriate developer(s) to fix a given bug. Typically, BA methods consider the

developers’ previous bug assignments and other activities as indicators of their expertise and

rank the developers’ relevance to the bug in question using a variety of heuristics.

Previous BA research involves a number of challenging but well-addressed questions, re-

lated to how to implement a more accurate BA method, including “how to gather evidence

for a developer’s expertise in software projects?”, “how to relate different pieces of infor-

mation to a bug report to assign it to a developer”, “how to utilize similarity measures to

match a bug report with a developer?”, “how to use other clues or heuristics to connect a

bug report to a candidate developer as the potential assignee”, “how to take into account

the developers’ workload?” and so on. These types of questions are addressed in almost all

the previous BA studies (Aljarah et al. 2011; Bhattacharya and Neamtiu 2010; Jeong et al.

2009; Linares-Vásquez et al. 2012; Liu et al. 2016; Nguyen et al. 2014; Shokripour et al.

2013).

Despite the vast attention of researchers, BA is still an expensive, time-consuming task

in software projects (Saha et al. 2015). Between 50% to 90% of software development cost is

regarding maintenance (Bhattacharya et al. 2012; Seacord et al. 2003), and a great deal of

maintenance work is dealing with bugs. Large projects receive hundreds of bug reports daily

(Tian et al. 2016), which get recorded in their issue-tracking tools. In Eclipse and Mozilla, it

takes about 40 and 180 days respectively to assign a bug to a developer (Bhattacharya et al.

2012). In ArgoUML and PostgreSQL, the median time-to-fix for bugs in some projects is

around 200 days (Kim and Whitehead Jr 2006). In Eclipse, 24% of the bugs are re-assigned

to another developer, before getting fixed (Baysal et al. 2009). Even the fixed bugs, in both

Eclipse and Mozilla, have been re-assigned at least once in more than 90% of the cases

(Bhattacharya et al. 2012; Jonsson et al. 2016).

This indicates the need for more accurate BA methods for big projects (T. Zhang et al.

2016; W. Zhang et al. 2016b) to help automate the BA task in the issue-tracking tools.

Currently, no issue-tracking tool automates this task, which is still manual or, at best, semi-

automated. Despite the long record of related research in the field, it is hard to apply the

proposed BA research in practice (Jie et al. 2015). Even it is a question whether the previ-

ously introduced BA approaches can be applied in large proprietary projects with acceptable

10

performance or not (Jonsson et al. 2016). Still the industry needs more practical methods,

with higher standards (Bhattacharya et al. 2012).

A study can be useful in industry if it is assessed using a realistic validation, and, is

reproducible. The term “Reproducible research”, introduced by Jan Claerbout, tries to infuse

standards for publications in computing science (Fomel and Claerbout 2009) to make the

research results more useful. The idea is that the main product of a research is not only the

paper, but also the full contents and materials that may be used to build upon the research

and reproduce the results. These materials include but are not limited to source code and

data sets used in computational science experiments (Fomel and Claerbout 2009; Schwab

et al. 2000). In Science, Roger Peng mentioned the potential of serving as “a minimum

standard for judging scientific claims” an important characteristic of reproducibility (Peng

2011). He indicated the need for data, meta-data and code being linked to each other and to

the corresponding publications as prerequisites for full reproducible research. Posing specific

assumptions, conditions or dependencies in some of the previous researches hinders this.

Regarding BA research, one study may depend on very detailed data or sophisticated

meta-data that rarely are accessible. Or it may pose biased conditions or filtering (e.g., to

remain few number of developers or small number of bug reports) in favor of itself. These

make the publication of future high-quality studies harder since the comparison against those

studies cannot be fair. To summarize, we found the following evaluation-related problems;

1. There is no generally agreed-upon definition of the “ground-truth assignee” (i.e., who

the best developer for a given bug really is) against which to validate BA methods

(i.e., the notion of golden standard). The broader the definition of ground-truth as-

signee is, the easier the prediction will be.

2. The rule of thumb for defining the group of developers who are considered as candidate

assignees differs a lot from case to case. The bigger the community is considered, the

more difficult the BA task becomes.

In addition, there is no unanimity in evaluation and reporting metrics which are used in

assessment of the proposed methods. Needless to say, many of the previously used evaluation

measures do not reflect the effectiveness of the proposed method properly. Compounded by

the fact that many research publications do not share their data or code, and the experi-

mental data sets vary substantially in their size and complexity, the above issues can become

11

critical reproducibility problems. And if these problems are not addressed correctly in a BA

study, the usefulness of the study can be questioned, or even disproved in further research.

In this work, we systematically examine the above-mentioned evaluation-related factors.

We propose a practical framework to be able to fairly evaluate goodness of a method and

compare it against as many methods reported in the literature as possible. Rather than

discussing how to establish a new BA method, we cover two “what questions”. These

questions are the main research questions of this study:

Research Questions:

1. What is the most practical definition of “ground-truth assignee”?

What is the best “ground truth” for evaluation (cross-validating against a developer
recommendation)? How can we judge if a recommended developer is a good fit for
fixing a given bug or not? And what are the exact criteria for this judgment (to
identify the ground-truth assignees for a given bug) in a project?

2. What is the best definition for “developer community” from which the
bug-assignment methods recommend appropriate developers?

Which developers in the project should be considered as “developer community”
(considered as the pool of candidate assignees), in order to have a fair evaluation?
Are the members of this community normally affected by the definition of ground-
truth assignee? Does the definition of this community affect the results (reported
based on evaluation measures)? And does filtering this community bias the results?

Answering the above questions helps to establish a baseline for fair comparison of the

results in further BA research. To answer to the above questions, we have curated an

extensive data set, including bug reports from thirteen open-source projects, their meta-

data and textual information and their assignee(s), according to the different definitions

of assignee discussed in this study. We extracted the information of these projects using

Github APIs. This data set is used for an experiment in support of the arguments we

provide. We also publish this data set online for further research.

The contributions of this study are as follows: First, in a systematic review, we sum-

marize key methods in the literature and discuss them from different aspects. Then, we

investigate the current BA evaluation measures, and provide arguments towards selecting

the best evaluation measure for BA research. After that, we identify two important dimen-

sions of variability in the evaluation of BA methods and put forward a framework that argues

for special choices in these dimensions. We motivate our framework by demonstrating how

these aspects affect the reported results with a study, a big data set and a standard similarity

12

metric, tf-idf.

The remainder of this chapter is organized as follows. We perform the systematic review

in Sections 2.2 and 2.3. Section 2.4 discusses the evaluation metrics used for evaluating BA

research. Section 2.5 introduces the common definitions of the two dimensions or variability,

“ground-truth assignee” and “developer community”. After Section 2.6 which describes

the experiment setup, in Sections 2.7, we discuss the two research questions of the study

regarding those two dimensions of variability. Section 2.8 reflects on some implications and

discussions about the provided framework. Finally, Section 2.9 concludes the chapter.

2.2 A survey on Bug-assignment Research

In the context of our own research in the area of BA, we found that there is no comprehensive

review on the field investigating different aspects of the problem. In this section, we discuss

such a review. We first explain our survey methodology and discuss the main objectives,

methods, metrics and information used for bug-developer matching in previous research.

2.2.1 Survey protocols and process

This section presents the process we followed for doing the survey. We conducted the system-

atic review according to the guidelines mentioned in (Budgen and Brereton 2006; Kitchenham

and Charters 2007; Weidt and Silva 2016).

The first goal is to select all the papers that propose a new BA method to get a proper

intuition about the area and proposed solutions. We study the BA objectives, formulations

and methods. Later, we will focus on a subset of these research and discuss their methods

more in-depth.

We performed a publication search on four research databases; ACM2, IEEE 3, Sciencedi-

rect4 and Springer5. We searched for bug assignment, “bug assignment”, bug triaging and

“bug triaging” in each of the databases. For each search, we captured the top 100 returned

results (which were usually returned in the first 4 or 5 pages). We reviewed all the 100 results

of each search and considered them in our survey if they were introducing a BA approach.

The selection criteria were as follows:

2https://dl.acm.org/dl.cfm
3http://ieeexplore.ieee.org/Xplore/home.jsp
4https://www.sciencedirect.com/
5https://link.springer.com/

13

Inclusion criteria:

1. Papers must be published in peer-reviewed conferences or journals;

2. Papers must describe a new BA-related methodology; and

3. Papers must follow the formulation of “ranking developers for the given bugs”, or

similar formulations.

Exclusion criteria:

1. Papers that are only tool-development or poster papers are excluded;

2. Papers that are about bug-triaging rather than BA are removed6; and

3. Papers that investigate “challenges of bug-assignment and reassignment”, rather than

BA are excluded.

Considering the above criteria, we reviewed all the mentioned results. First, we analyzed

the title and abstract. If we found the paper related to the topic, then, we surveyed the

paper in more detail to make sure it fits with inclusion and exclusion criteria. We did not

consider any filtering on the venue (conference or journal) since all the selected databases

support legitimate scientific conferences and journals.

Examples of the eliminated studies7 included general purpose task-assignment (Helming

et al. 2010), applying BA methods in code reviewer recommendation (Yu et al. 2016), bug

fix time prediction (Akbarinasaji et al. 2017; H. Zhang et al. 2013), tool-development for BA

with no reported accuracy (Bortis and Hoek 2013) and bug-triaging related studies other

than BA, including bug report de-duplication (Banerjee et al. 2016; X. Wang et al. 2008),

bug localization (Chaparro 2017; Lukins et al. 2010), component-assignment (recommending

a component for a given bug report) (Somasundaram and Murphy 2012; Yan et al. 2016) and

qualitative studies investigating problems of assignment and re-assignment of bugs (Baysal

et al. 2012; Cavalcanti et al. 2014a).

Finally, we found 74 BA-related studies, dating from 2004 to the end of 2017, some

of which were extensions or journal versions of the other ones. The 74 extracted papers

6 Note that our exclusion criteria is about the subjects of the papers (as we investigated in their abstract
or even text) not just their keywords. For example, there are some papers called with keyword “bug-triaging”
(or similar), but are in fact bug-assignment (Nasim et al. 2011). So we did not exclude those papers.

7There were tens of those cases, but we did not count the exact number of those eliminated studies.

14

targeted the problem using different wordings; bug-triaging, change request assignment,

anomaly request assignment, issue-assignment, and more prevalently bug-assignment (BA).

We summarized all these papers and extracted the methods each study utilizes.

Table 2.1 shows these papers and the methods they used and Figures 2.1 and 2.2 show

a summary of the number of studies using each method. We categorized the methods in six

groups; First, different Machine Learning (ML) classifiers as well as Stacked Generalization

(which combines several classifiers) are categorized in ML. Then, we put the general Infor-

mation retrieval (IR) methods that consider the notation of query-document for BA problem

as well as IR-based methods like Topic Modeling and Cosine similarity into IR category. The

third category is Natural Language Processing (NLP) including the general NLP techniques

as well as Information Extraction (IE) methods. Then, methods based on Markov chains

(in which a state diagram determines the probability of events), Tossing Graphs (in which a

network of developers represent the probability of substitute assignees) and Social Network

Analysis (SNA) are represented in Network and Graph based category. The Statistical mod-

els including smoothed Unigram Model (in which each bug is represented as an n-dimensional

probability vector for the n terms available in the corpus, and the probabilities are smoothed

based on their occurrence in the whole corpus) and Kullback–Leibler (KL) Divergence (as

a measure of difference between two probability distributions) are shown in the Statistical

Models category. Finally, other methods like Fuzzy, Bug Localization (in which the related

files to the new bug is estimated and the developers related to those files are considered as

possible assignees), Rule-based (in which rules are extracted based on meta-data of the old

bugs and used for deciding about the new bugs), Collaborative Filtering (CF) (substituting

developers and files / bug reports instead of users and items in the regular usages of CF)

and Genetic Algorithm (in which different combinations are built and tested adaptively,

representing different assignment objectives) are categorized in the last category.

2.2.2 Bug-assignment Tasks and Objectives

The most prevalent formulation of BA is as follows: “Given a new bug report, identify a

ranked list of developers, whose expertise (based on their record of contributions to the

project) qualifies them to fix the bug” (Bhattacharya and Neamtiu 2010; Hu et al. 2014;

Khatun and Sakib 2016; Matter et al. 2009; Shokripour et al. 2015); this is the formulation

most researchers used in their studies. In this study, we consider this formulation. However,

there are other formulations that we briefly mention them here.

15

Table 2.1: A summary of the methods and techniques used in the literature

Study

Machine Learning
(ML)

Information
Retrieval (IR)

NLP
Network

and Graph
based

Statistical
models

Other methods

N
ä
ıv
e
B
a
y
es

(N
B
)

B
a
y
es
ia
n
N
et
w
o
rk

(B
N
)

S
u
p
p
o
rt

V
ec
to
r
M
a
ch

in
e
(S

V
M
)

C
4
.5

K
-N

ea
re
st

N
ei
g
h
b
o
r
(K

N
N
)

C
o
n
v
o
lu
te
d
N
eu

ra
l
N
et
w
o
rk

(C
N
N
)

S
ta
ck
ed

G
en

er
a
li
za

ti
o
n
(S

G
)

en
se
m
b
le

le
a
rn

er
IR

(g
en

er
a
l)

L
a
te
n
t
S
em

a
n
ti
c
In
d
ex

in
g
(L

S
I)

L
a
te
n
t
D
ir
ic
h
le
t
A
ll
o
ca

ti
o
n
(L

D
A
)

T
o
p
ic

M
o
d
el
in
g
(g
en

er
a
l)

V
ec
to
r
S
p
a
ce

M
o
d
el

(V
S
M
)

T
er
m

F
re
q
u
en

cy
–
In
v
er
se

D
o
cu

m
en

t
F
re
q
.
(T

F
-I
D
F
)

C
o
si
n
e
si
m
il
a
ri
ty

N
L
P

(g
en

er
a
l)

IE
(I
n
fo
rm

a
ti
o
n
E
x
tr
a
ct
io
n
)

S
o
ci
a
l
N
et
w
o
rk

A
n
a
ly
si
s
(S

N
A
)

T
o
ss
in
g
G
ra
p
h
(T

G
)

M
a
rk
o
v
ch

a
in
s

sm
o
o
th

ed
U
n
ig
ra
m

M
o
d
el

(U
M
)

K
u
ll
b
a
ck

–
L
ei
b
le
r
(K

L
)

D
iv
er
g
en

ce
D
ev

el
o
p
er
s’

v
o
ca

b
u
la
ry

p
ro
fi
le

(a
s
ex

p
er
ti
se

m
a
tr
ix
)

T
er
m

se
le
ct
io
n
/
T
er
m

w
ei
g
h
ti
n
g

F
u
zz
y

B
u
g
lo
ca

li
za

ti
o
n

R
u
le

b
a
se
d

C
o
ll
a
b
o
ra
ti
v
e
F
il
te
ri
n
g
(C

F
)

G
en

et
ic

A
lg
o
ri
th

m
(G

A
)

O
th

er
s

(Čubranić and Murphy 2004) X

(Anvik 2006) X

(Canfora and Cerulo 2006) X X

(Anvik et al. 2006) X

(Kagdi et al. 2008) X X

(Baysal et al. 2009) X

(Lin et al. 2009) X X

(Jeong et al. 2009) X X X X

(Matter et al. 2009) X

(Ahsan et al. 2009) X X X X

(M. M. Rahman et al. 2009) X

(Kagdi and Poshyvanyk 2009) X X X

(Bhattacharya and Neamtiu
2010)

X X X X

(Chen et al. 2010) X X X

(Nasim et al. 2011) X X X

(Park et al. 2011) X X X

(Wu et al. 2011) X X X

(Tamrawi et al. 2011b) X X

(Tamrawi et al. 2011a) X X

(Anvik and Murphy 2011) X X

(Aljarah et al. 2011) X X X

(Kagdi et al. 2012) X X X

(Bhattacharya et al. 2012) X X X X X X

(Shokripour et al. 2012) X X X

(Xuan et al. 2012) X X X

(Xie et al. 2012) X X

(V. Jain et al. 2012) X

(T. Zhang and B. Lee 2012) X X X

(Jonsson et al. 2012) X X X X X

(Linares-Vásquez et al. 2012) X X X

(Servant and Jones 2012) X X

(Rahmana et al. 2012) X X

(Hosseini et al. 2012) X X

(T. Zhang and B. Lee 2013) X X X X

(Shokripour et al. 2013) X X X X X

(Naguib et al. 2013) X X

(Kevic et al. 2013) X X

(Jonsson 2013) X X X X X X

(Banitaan and Alenezi 2013) X X X

(Nguyen et al. 2014) X X X

(Yang et al. 2014) X X X

(Hossen et al. 2014) X X

(Hu et al. 2014) X X

(Cavalcanti et al. 2014b) X X X X

(Borg 2014) X X

continued . . .

16

Table 2.1: A summary of the methods and techniques used in the literaturecontinued . . .

Study

Machine Learning
(ML)

Information
Retrieval (IR)

NLP
Network

and Graph
based

Statistical
models

Other methods

N
ä
ıv
e
B
a
y
es

(N
B
)

B
a
y
es
ia
n
N
et
w
o
rk

(B
N
)

S
u
p
p
o
rt

V
ec
to
r
M
a
ch

in
e
(S

V
M
)

C
4
.5

K
-N

ea
re
st

N
ei
g
h
b
o
r
(K

N
N
)

C
o
n
v
o
lu
te
d
N
eu

ra
l
N
et
w
o
rk

(C
N
N
)

S
ta
ck
ed

G
en

er
a
li
za

ti
o
n
(S

G
)

en
se
m
b
le

le
a
rn

er
IR

(g
en

er
a
l)

L
a
te
n
t
S
em

a
n
ti
c
In
d
ex

in
g
(L

S
I)

L
a
te
n
t
D
ir
ic
h
le
t
A
ll
o
ca

ti
o
n
(L

D
A
)

T
o
p
ic

M
o
d
el
in
g
(g
en

er
a
l)

V
ec
to
r
S
p
a
ce

M
o
d
el

(V
S
M
)

T
er
m

F
re
q
u
en

cy
–
In
v
er
se

D
o
cu

m
en

t
F
re
q
.
(T

F
-I
D
F
)

C
o
si
n
e
si
m
il
a
ri
ty

N
L
P

(g
en

er
a
l)

IE
(I
n
fo
rm

a
ti
o
n
E
x
tr
a
ct
io
n
)

S
o
ci
a
l
N
et
w
o
rk

A
n
a
ly
si
s
(S

N
A
)

T
o
ss
in
g
G
ra
p
h
(T

G
)

M
a
rk
o
v
ch

a
in
s

sm
o
o
th

ed
U
n
ig
ra
m

M
o
d
el

(U
M
)

K
u
ll
b
a
ck

–
L
ei
b
le
r
(K

L
)

D
iv
er
g
en

ce
D
ev

el
o
p
er
s’

v
o
ca

b
u
la
ry

p
ro
fi
le

(a
s
ex

p
er
ti
se

m
a
tr
ix
)

T
er
m

se
le
ct
io
n
/
T
er
m

w
ei
g
h
ti
n
g

F
u
zz
y

B
u
g
lo
ca

li
za

ti
o
n

R
u
le

b
a
se
d

C
o
ll
a
b
o
ra
ti
v
e
F
il
te
ri
n
g
(C

F
)

G
en

et
ic

A
lg
o
ri
th

m
(G

A
)

O
th

er
s

(Song Wang et al. 2014) X

(Shokripour et al. 2014) X X

(Shokripour et al. 2015) X X

(Sharma et al. 2015) X X X

(Sajedi-Badashian et al. 2015) X X

(Zanjani et al. 2015) X X X X

(S. Jain and Wilson 2016) X X

(Ded́ık and Rossi 2016) X X X

(W. Zhang et al. 2016a) X X X

(W. Zhang et al. 2016b) X X X

(Tian et al. 2016) X X X X

(Jonsson et al. 2016) X X X X X

(T. Zhang et al. 2016) X X X X X X X

(Cavalcanti et al. 2016) X X X X

(Anjali et al. 2016) X X

(Zanjani 2016) X X

(Khatun and Sakib 2016) X X

(Sajedi-Badashian et al. 2016) X X

(Park et al. 2016) X X X X X X

(Liu et al. 2016) X X

(Karim et al. 2016) X X

(S. Lee et al. 2017) X X

(T. Zhang et al. 2017) X X X

(Xia et al. 2017) X X X

(Goyal 2017) X X X

(Florea et al. 2017a) X X X

(Florea et al. 2017b) X X X X

(Khalil et al. 2017) X X

(Sun et al. 2017) X X X X X X

Total 15 6 15 2 7 2 4 4 7 11 11 4 14 3 9 1 10 4 4 2 3 7 7 2 12 4 3 3 32

Jonsson et al . (Jonsson 2013; Jonsson et al. 2012) introduced the problem of “team

bug-assignment” in which bugs are redirected to one of several available teams. In this

formulation, teams are typically stable over time, which effectively makes the concept of

“team” very similar to that of a “developer” in other research. In fact, by assigning bugs

to the teams their method makes the BA task easier. In other words, the goal of assigning

bugs to teams is to decrease the number of candidate assignees, which may be quite large in

a large open-source project. Since the members of each team are likely to work on specific

sets of modules over time, their expertise is likely easier to predict, again simplifying the

17

Then other methods like fuzzy (Tamrawi et al. 2011b) and statistical (Aljarah et al. 2011)

approaches appeared. These methods utilized an expertise perspective for the developers

regarding keywords. Based on which developer fixed which bug, they gathered an expertise

profile for the developers to make a decision upon arrival of new bug reports.

Some researchers used deeper file and meta-data information to relate developers to

the new bugs. Examples are location-based techniques like (Hossen et al. 2014; Kagdi

and Poshyvanyk 2009; Shokripour et al. 2013). They first predict or find the location of

bugs (i.e., methods or classes). Then, based on the available relations between developers

and those locations, they predict the best developer who can work on those objects again.

Location-based methods usually require bulky Version Control System (VCS) information

(e.g., all the changed files in all project branches and commits). That can be the reason

why in most methods that use this technique, the authors only run their experiment on a

small number of bugs (e.g., a few bug reports up to a few hundreds). Also social network

(Park et al. 2011; Xuan et al. 2012) and tossing graph (Bhattacharya and Neamtiu 2010;

Jeong et al. 2009) approaches appeared that target more complicated interactions between

development objects (e.g., developers, bugs, commits or a combination of them).

The most prevalent methods were Information Retrieval (IR), and then Machine Learning

(ML) with usage in 34 and 32 studies respectively. Many of recent studies focused on IR based

activity profiling since it usually leads to higher accuracies (Anjali et al. 2016; Shokripour

et al. 2013). In the recent years, most of the studies used at least one IR method.

In recent years, some of the studies combined different methods (e.g., combining machine

learning and tossing graphs (Bhattacharya and Neamtiu 2010) or combining KNN and IR

methods (Zanjani et al. 2015; T. Zhang et al. 2016)). Most recently, the researchers show

a tendency toward social point of view. For example, (Hu et al. 2014), (W. Zhang et

al. 2016b) and (T. Zhang et al. 2016) build a social network of developers to model their

relationship with each other or with bugs or even source code components. Also, in our

previous research, we proposed a model to recommend developers in Github based on their

Stack Overflow contributions and the votes casted by the community (Sajedi-Badashian et

al. 2016).

20

2.3 Select Empirical Bug-assignment Studies

The selected list of 74 papers are all introducing a new methodology for BA. In the next

step, we want to focus on a subset of these studies in more detail –based on dimensions of

variability and reproducibility criteria. The goal is to enable further researchers compare

their results against some reproducible research, as exemplary BA studies. We also elaborate

more on the methods, evaluation metrics, knowledge assumptions and design choices of those

exemplary studies. To select the new subset of BA studies, we apply the following criteria

on those 74 papers:

Inclusion criteria

1. Papers must follow the prevalent formulation of “ranking the developers for the bugs

based on appropriateness of a single developer for each bug”;

2. Papers must be supported by BA experimental evaluation;

3. Papers must report the experiment results based on major evaluation metrics;

4. Papers should report final results on BA effectiveness (e.g., instead of a comparison of

tuning values or data sets);

5. Papers must experiment on full data of developers and bugs (i.e., have no major data

filtering); and

6. Experiments must contain relatively high number of developers (˜20) and bugs (˜500)

in at least one project, to make the experiment more realistic.

Exclusion criteria

1. Papers which their technique relies on external sources (e.g., Stack Overflow) rather

than issue-tracking information are excluded; and

2. Papers that are proposing techniques in other domains with applications in BA are

excluded.

Examples of the removed studies are particular BA studies with focus on specific areas

like multi-objective BA studies (Karim et al. 2016; Khalil et al. 2017; Rahmana et al. 2012),

team BA (Jonsson 2013; Jonsson et al. 2012), market-based bug allocation (Hosseini et al.

21

2012), component-level BA (Song Wang et al. 2014), time/cost enhancement in BA (Nguyen

et al. 2014; Park et al. 2011; Park et al. 2016) and bug report enrichment (T. Zhang et al.

2017) with application in BA. Also we eliminated our previous paper (Sajedi-Badashian et

al. 2016) and other studies that work only on a narrow subset of developers (who are shared

between version control system and a question answering system like Stack Overflow) (Sahu

et al. 2016; X. Zhang et al. 2017).

After considering the above criteria precisely, we obtained 13 papers9. These are great

BA examples regarding evaluation, reproducibility and further comparisons. We will focus

on these studies in the rest of this chapter as “selected BA studies”. Comparing to Table

2.1 that mentions the usage of the techniques by papers in a high level, here, we summarize

the techniques used in the selected BA studies in more detail (in chronological order).

Čubranić and Murphy developed a method that uses a Näıve Bayes classifier to assign

each bug report (a “text document” consisting of the bug summary and description) to a

developer (seen as a topic category or the “class”) who actually fixed the bug (Čubranić

and Murphy 2004). When a new bug report arrives, it uses the textual fields of the bug to

predict the related class (e.g., developer).

Canfora and Cerulo proposed an Information Retrieval (IR) approach (Canfora and

Cerulo 2006). It assumes that the developers who have solved similar bug reports in the past

are the best candidates to solve the new one. So, it considers each developer as a document

by aggregating the textual descriptions of the previous change requests that the developer

has addressed. Given a new bug report, it uses a probabilistic IR model and considers

its textual description as a query to retrieve a candidate from the document (developer)

repository.

Jeong et al . introduced another approach that captures tossing probabilities between

developers from tossing history of the bugs (Jeong et al. 2009). Then, it makes a tossing

graph of developers based on Markov Model. In this graph, the nodes are developers and

the weight of the directed edges show the probability of tossing from one developer to the

other. Finally, for predicting the assignees of a bug, it first produces a list of developers

using a machine learning method. Then, after each developer in this list, adds the neighbor

developer with the most probable tossing weight from the graph.

Matter et al . employed the Vector Space Model (VSM) to create an assignee rec-

9Three studies ((Bhattacharya and Neamtiu 2010), (Tamrawi et al. 2011b) and (Cavalcanti et al. 2014b))
are conference version of other studies by the same authors, so we merged them into one row in the table.

22

ommender (Matter et al. 2009). It considers the source code contributions and the previous

bug fixing as evidence of expertise and builds a vocabulary of “technical terms”. It builds

this vocabulary from the technical terms the developer used in the source code (captured

by diff of the submitted revision) or commit messages. Also adds to this vocabulary the

technical terms mentioned in the previous bug reports assigned to the developer. As a re-

sult, the developer’s expertise is modeled and captured as a term vector. Given a new bug

report, it calculates the cosine distance between the new bug report’s term vector and the

developers’, and sorts them based on this score and reports the top ones.

Tamrawi et al . devised a fuzzy method toward bug assignment (Tamrawi et al. 2011a;

Tamrawi et al. 2011b). It computes a score for each “developer - technical term” based

on the technical terms available in previous bug reports and their fixing history by the

developers. Considering a new bug report, it calculates a score for each developer as a

candidate assignee by combining his/her scores for all the technical terms associated with

the bug report in question. Then sorts the developers based on this score. The newer version,

(Tamrawi et al. 2011a), also applies a term selection method to reduce noise data and speed

up the algorithm. It extracts the top k terms that are most related with each developer.

Then, when calculating the fuzzy score for each developer, just considers those selected terms

and ignores other terms.

Bhattacharya and Neamtiu created a system similar to (Jeong et al. 2009), that improves

the graph by adding labels for each edge (Bhattacharya and Neamtiu 2010; Bhattacharya

et al. 2012). The label of each edge indicates product, component and latest activity date.

Then, it recommends three developers based on a machine learning method. Also, the tosee

ranking uses the graph labels (tossing probability, product, component and last activity date

of the developer) for each of the top two developers in this list to recommend a substitute

(called tosee) and enhance this list to a top-5 recommendation.

Shokripour et al . used bug report localization, Information Extraction (IE) and

Natural Language Processing (NLP) in their BA technique (Shokripour et al. 2012).

It first applies IE and NLP techniques on file-related components (e.g.,, commit messages

and their comments, plus their related source code elements including phrases in methods

and classes) and also the bug reports and elicits their important phrases. When a new bug

arrives, it first estimates the location of the new bug (i.e.,, the files that should be changed

to fix the bug) by comparing the important phrases in the bug report and other file-related

components as mentioned above. Then, recommends the developers with the most activity

23

regarding those files –according the historical data.

Zhang et al . proposed a new approach by combining SNA and machine learning meth-

ods. It builds a heterogeneous social network of developers, bugs and their comments,

components and products (W. Zhang et al. 2016b). Then, it selects the top k similar bug

reports to the given new bug report by using KNN classification, Cosine similarity and

tf-idf. After that, extracts the list of commenters of those k bug reports as the narrowed

list of “candidate developers” and obtains the score of each developer by calculating over-

all heterogeneous proximity of each developer with all other “candidate developers” on

component and product of the new bug report, using the previously built network.

Cavalcanti et al . introduced a semi-automatic approach that combines rule-based expert

system (RBES) with information retrieval (IR) methods (Cavalcanti et al. 2014b; Cavalcanti

et al. 2016). First, it summarizes the previous bug reports and extracts some simple rules

based on meta-data (e.g., component of a bug, or being critical) or keywords in the bug

report, and the ground-truth assignee. These rules can decide on some circumstances which

developer should be assigned to a new bug. In the second phase, if the simple rules cannot

recommend any developer for the new bug report, uses the machine learning SVM classifier

to consider previous assignments to developers and assign a label (developer) to it (e.g., the

developers who fixed similar bug reports are most likely to fix the new one).

Finally, Sun et al . devised another IR method that analyzes and extracts the commits

related to the issue request (Sun et al. 2017). This is done by obtaining cosine similarity

between new bug report and historical commits. Those commits are considered relevant

commits and the changed source code is considered relevant source code. Authors of those

commits are considered as candidate developers to fix the new issue. Finally, it uses Collab-

orative Topic Modeling (CTM) to give a score to each of those developers (based on shared

keywords in their relevant source code and the new issue) and sort and recommend them to

fix the new issue.

2.3.1 Knowledge Assumptions of Bug-assignment Methods

There are a wide range of information that have been used in various BA research. This

information is used in some way to relate a developer to a bug. Table 2.2 shows a summary

of the information used by the selected BA research.

According to this table, older approaches mostly rely on textual information (e.g., ti-

tle and description) of the bug reports as clues for indication of expertise of developers

24

and matching with new bug reports (Canfora and Cerulo 2006; Čubranić and Murphy 2004;

Tamrawi et al. 2011a). Many of the newer research used variety of meta-data fields (e.g., com-

ponent, product, severity and operating system) to address some of the limitations (Bhat-

tacharya et al. 2012; Cavalcanti et al. 2016; W. Zhang et al. 2016b).

As mentioned earlier, in recent years, many researchers tried to combine different methods

to achieve more accurate results. Hence their combined methods need different types of

information –as their various methods demand. For example, (Sun et al. 2017) considers

commit messages and some meta data. In addition, it extracts and deals with source code

and file changes. This sometimes makes a huge demand on the needed data and processing.

Extra information of the meta-data can help obtaining higher accuracies in some cases,

but still text-based methods are the most effective techniques used (Shokripour et al. 2015;

Sun et al. 2014) and those meta-data based approaches are sometimes difficult to setup; for

example, some need to know who maintained different pieces of code in the IDE (Hossen

et al. 2014), or who interacted online with whom in different setups (W. Zhang et al. 2016b).

As a result, the textual elements remain the most prevalent and effective information used

for BA.

2.3.2 Metrics for Evaluation of Bug-assignment Research

We reviewed the 13 selected papers to identify the metrics they used for evaluation, and,

cross-validation of their approaches against real bug data. The metrics they used are top-k

Table 2.2: A review of the used information for bug assignment in selected BA studies

Method

Bugs’ info Developers’ expertise info

Title +
description Meta

Bug fixing;
title /

description

Being a
committer

Tossing
history Meta Changed

code

(Čubranić and Murphy 2004) X X

(Canfora and Cerulo 2006) X X

(Jeong et al. 2009) X X X

(Matter et al. 2009) X X X X

(Tamrawi et al. 2011a;
Tamrawi et al. 2011b)

X X

(Bhattacharya and Neamtiu
2010; Bhattacharya et al. 2012)

X X X X X

(Shokripour et al. 2012) X X X

(W. Zhang et al. 2016b) X X X X X

(Cavalcanti et al. 2014b;
Cavalcanti et al. 2016)

X X X X

(Sun et al. 2017) X X X X X

25

accuracy, precision @k, recall @k (all with k=1, 5 and 10), MRR and MAP. These metrics

(except MAP) were the most frequently used metrics for reporting the results in the whole

74 papers as well. MAP, however, was used only in (W. Zhang et al. 2016b). The reported

results of the selected papers are shown in Table 2.3. We also reported two important

design choices of these studies in the Table; number of developers and number of bugs they

experimented on. Those choices can affect some of the evaluation metrics and are needed to

mention in BA experiments.

Table 2.3: The evaluation metrics and other design choices of the selected research
Method /
Project

#devs #bugs
Top1
(%)

Top5
(%)

Top10
(%)

P@1 / r@1 p@5 / r@5 p@10 / r@10 MRR MAP

(Čubranić and Murphy 2004)
Eclipse 162 15,859 30.00

(Canfora and Cerulo 2006)
Mozilla 637 12,447 - / 0.12 - / 0.21 - / 0.24
KDE 373 14,396 - / 0.50 - / 0.10 - / 0.12

(Jeong et al. 2009)
Eclipse ? 46,426 77.14
Mozilla ? 84,559 70.82

(Matter et al. 2009)
Eclipse 210 130,769 0.34 / ∼0.27 ∼0.16 / ∼0.59 ∼0.10 / 0.71

(Tamrawi et al. 2011a; Tamrawi et al. 2011b)
Firefox 3,014 188,139 32.1 73.9
Eclipse 2,144 177,637 42.6 80.1
Apache 1,695 43,162 39.8 75.0
Net Beans 380 23,522 31.8 60.4
FreeDesktop 374 17,084 51.2 81.1
GCC 293 19,430 48.6 79.2
Jazz 156 34,220 31.3 75.3

(Bhattacharya and Neamtiu 2010; Bhattacharya et al. 2012)
Mozilla ? 549,962 27.67 77.87
Eclipse ? 306,297 32.36 77.43

(Shokripour et al. 2012)
Eclipse ? ? - / ∼0.32 - / ∼0.71
Mozilla ? ? - / ∼0.27 - / ∼0.48
Gnome ? ? - / ∼0.10 - / ∼0.45

(W. Zhang et al. 2016b)
Mozilla ∼874 74,100 0.28 0.44
Eclipse ∼544 42,560 0.28 0.56
Ant ∼203 763 0.35 0.36
TomCat6 ∼79 489 0.35 0.37

(Cavalcanti et al. 2014b; Cavalcanti et al. 2016)
New SIAFI - A 70 781 31.40
New SIAFI - B 70 1031 22.00

(Sun et al. 2017)
JEdit 123 ? 28.0 60.1 79.8
Hadoop 82 ? 8.5 30.1 50.3
JDT-Debug 47 ? 14.4 46.6 66.4
Elastic 661 ? 13.6 43.6 75.2
Libgdx 345 ? 22.0 51.3 69.6

This Table is useful for further comparisons of efficiency of new BA methods against

the previous research for two reasons. First, it gives the researchers flexibility (in terms

of choosing metrics) in comparing their results against some other research. Then, since

26

these studies have met all the inclusion criteria we set for the reproducible research (e.g., the

projects and the number of bug reports they tested on are big enough and they did not do

major filtering on developers or bug reports), the comparison of the results of a new research

against these research would give sufficient feedback.

In the next section, we discuss the suitability of these metrics for reporting efficiency of

BA research experiments.

2.4 A Discussion of Bug-assignment Evaluation Met-

rics

The evaluation metric can affect the outcome of the method; In BA research, to evaluate

their methods, researchers evaluate the results of their approaches with some real BA data.

According to our survey on the 74 papers, the mostly used evaluation metrics are top-k

accuracy, precision @k and recall @k. But those metrics are not representative enough

for evaluating the efficiency of the BA approaches. Elaborating on this statement, in this

section, we investigate about the best “evaluation metric” for bug-assignment research. The

metrics used in the literature are as follows:

Top-k accuracy (k usually is considered 1, 5 or 10) is a metric that considers the

number of ground-truth assignees available in a few top recommended ranks. This metric

does not interpret the behavior of the algorithm for other ground-truth assignees (that are

ranked in locations k+1 and further). In addition, it does not differentiate between the

first and subsequent ranks. Consider the following example; assume that there is only one

assignee per bug and there are 100 bugs to test. Also assume that method A recommends

the ground-truth assignee in the 2nd, 6th and 11th rank in respectively 10, 20 and 70 test

cases (i.e., bug reports). So, the top-1, top-5 and top-10 accuracies will be respectively 0%,

10%, and 30%. Similarly, assume that method B recommends the ground-truth assignee in

the 5th, 10th and 15th rank in respectively 10, 20 and 70 cases. So again the top-1, top-5

and top-10 will be respectively 0%, 10%, and 30%. While method A performs much better

than method B, the top-k metrics show the same accuracy for the two methods. Also, they

both miss 70 test cases that the ground-truth assignee is ranked after the 10th location.

Finally, top-k accuracy is highly affected by average number of ground-truth assignees per

bug. The more ground-truth assignees are assumed for a bug, the chance of finding at least

one of them in the top k recommended list will be higher.

27

Some metrics are coupled with other metrics and may not be interpreted separately. For

example, precision @k needs to be interpreted along with recall @k (again, according to

the summarized studies, k usually is considered 1, 5 or 10). A fair evaluation demands to

compare both factors at a time against the results of other studies, which is not straightfor-

ward. As an example, Anvik et al . 's 0.64 precision @1 (Anvik et al. 2006) in Firefox project

is the highest precision @1 in all the previous studies. At the same time, their recall @1 in

all their projects is too low (not higher than 0.05). In fact, precision needs to be considered

with recall at the same time, when comparing against other methods (note that this makes

the comparison more difficult). In addition, like top-k accuracy, these two metrics are highly

dependent on the average number of ground-truth assignees per bug. As an example, in a

previous study by Anvik, et al ., the average number of assignees per bug is too high (between

10 and 30 for three projects) (Anvik et al. 2006). So, precision is affected by the average

number of ground-truth assignees positively. Finally, like top-k accuracy, precision @k and

recall @k do not consider the ground-truth assignees ranked after location k in the list.

F-measure is equal to harmonic mean of precision and recall. It combines precision

and recall into one metric (Manning et al. 2008; Xu et al. 2010) and is better for comparison

purposes. However, since F-measure –like precision and recall– is a set-based measure (that

is computed by considering unordered set of top k recommendations), it is not suitable for

evaluating ranked retrieval results (Shani and Gunawardana 2011). Since ordering of the

developers is important, we need a metric that reflects ranking of reported ground-truth

assignees. In other words, the BA algorithm recommends a ranked list of developers (to the

project manager), in which higher ranks are more important than the lower ones. F-Measure

does not differentiate between those ranks. Moreover, F-Measure is designed for IR problems

in which there are many relevant documents. Unlike those problems, in BA there are only

a few documents (e.g., the ground-truth assignees) per bug to retrieve. In the big data set

we provided in this study, the average number of assignees per bug is 1.4 (minimum and

maximum are 1 and 11 assignees per bug respectively).

Mean Reciprocal Rank (MRR) of the ground-truth assignee tries to capture the

importance of the higher ranks, which is a positive point. It is equal to the mean of “reciprocal

rank of the highest-ranked assignee of the bug” over all the bugs (or, harmonic mean of the

ranks of the highest-ranked assignee of each bug over all the bugs). It indicates “how far

down the list of recommended developers for a bug one should proceed to find a ground-truth

assignee”? However, it ignores the rank of other assignees for each bug. Also, it is highly

28

affected by the average number of ground-truth assignees per bug; the chance of having

a ground-truth assignee in any recommendation, even a random one, increases when the

average number of ground-truth assignees increases.

Mean Average Precision (MAP) is a standard metric which is widely used in text

retrieval (Manning et al. 2008) but not much in BA. It provides a single-figure quality mea-

sure, representing both precision and recall, with good discrimination and stability properties

(Shi et al. 2012). MAP is calculated across all different recall levels and equals to the aver-

age area under the precision-recall curve (Manning et al. 2008; Shi et al. 2012). It is a good

performance metric when a short list of items is provided to the developer (i.e., the triager)

(Shani and Gunawardana 2011; Shi et al. 2012). MAP is a single effectiveness metric that

measures how all the relevant documents are ranked highly (close to top of the list). It

considers all the ranks of all the relevant items for all the queries. MAP will be equal to

MRR if there is only one correct answer (ground-truth assignee) for each query (new bug

report) (Alipour 2013). Generally, to calculate MAP over all queries, first, we need to cal-

culate Average Precision (AP) for each query: we calculate AP at several points at which

there is a correct recommendation, and then we calculate the mean of AP over all queries.

In bug assignment, each (new) bug is considered a query and each developer in the project is

equivalent to a document. The ground-truth assignees are actually the relevant documents.

The question then becomes “what is the best metric to evaluate BA effectiveness”? We

propose four criteria based on which we should select the most meaningful metric:

1. The interpretation of the evaluation metric should be independent of other

evaluation metrics:

This supports easier comparison of a study against other approaches. MAP, MRR, f-

measure and top-k accuracy are single-figure metrics and can be interpreted separately.

However, precision and recall should be reported and interpreted together (usually

when precision is increased, recall is decreased).

2. The rank of all the ground-truth assignees should be taken into account:

The number of ground-truth assignees can be different from bug to bug but can def-

initely be more than one. Top-k accuracy, precision @k, recall @k and f-measure are

all bound to a chosen threshold, k. In other words, they only count the ground-truth

assignees recommended in the top k ranks and ignore the others. Also, MRR only con-

siders the rank of the first assignee, but MAP considers all of them. In fact, it is the

29

only metric that considers rank of “all” the ground-truth assignees for each bug. Note

that using MAP, there is no need to consider fixed thresholds (e.g., @k). It captures

and considers the rank of all the ground-truth assignees, no matter in which rank they

are recommended.

3. Errors in the higher ranks are worse than errors in the lower ranks:

This is because the triager usually checks the higher ranks in the list and may not

proceed to the last one. Again, in Top-k accuracy, precision @k, recall @k and f-

measure metrics, it does not matter where in the first k ranks the ground-truth assignee

is. MAP and MRR, however, are affected by a hit in the first ranks much more than

the next ranks. In a sense, they penalize the mistakes in the first ranks more than

the next ranks. Note that while MRR stops at the first ground-truth assignee, this

penalization continues for MAP, for every incorrect guess until the last ground-truth

assignee in the list.

4. The evaluation measure should be robust to the number of ground-truth

assignees:

Assume that there are 10 ground-truth assignees (correct answers) per bug. The chance

of having at least one of them in the top-10 accuracy, would be very high, as compared

to the case when there is only one assignee per bug. MAP is affected the least from the

average number of ground-truth assignees in the project –unless the average number of

ground-truth assignees is too big, i.e., close to the number of developers in the project

(developer community).

With the mentioned qualities, MAP is the best metric to report for BA results. It

satisfies all the four above-mentioned criteria. The other metrics cannot reflect the efficiency

of BA regarding at least one of the above aspects. Note that when experimenting on several

projects, in addition to reporting MAP per project, reporting a final MAP over all the bug

reports of all the projects makes the comparison against other methods more straightforward.

MAP is widely used in evaluating methods in IR problems (e.g., document retrieval (Man-

ning et al. 2008)) and other software engineering problems (e.g., bug-report de-duplication

(Aggarwal et al. 2017; Alipour 2013)). Interestingly, it is rarely used for BA evaluation; the

only study out of all the 74 papers of our survey that reported MAP was (W. Zhang et al.

2016b). As a result, although reporting MAP would be convincing enough, for comparison

30

with previous approaches (e.g., meta analysis), it is still recommended to report the mostly

used metrics as well as MAP (top-k accuracy, Precision @k and recall @k for k =1, 5 and

10 as well as MRR). For this reason, we extracted all of these metrics reported in the 13

selected papers, which can be used for further research (see Table 2.3).

Deriving from previous IR notations (Cormack and Lynam 2006; Manning et al. 2008;

Shani and Gunawardana 2011; Shi et al. 2012), having n bug reports, we reformulate the

following definition of MAP considering BA notations:

MAP =

n
∑

i=1

APi

n

APi =

∑

k∈Ri

p@k

of real assignees for bug i

Ri : {ranks of real assignees in the recommended list of developers for bug i}

p@k =
of real assignees in the top k recommended developers

k

(2.1)

APi is the Average Precision for bug i and Ri is the set of all the ranks of the real

assignees in a recommended ranking for bug i. Figure 2.3 shows an example of MAP for

three assignments.

2.5 Dimensions of Variability in Bug-assignment Em-

pirical Studies

In addition to the metrics, there are two dimensions that can affect the measurement and

evaluation of the results. We found that the choices of “ground-truth assignee” and “devel-

oper community” are very important in this regard and they vary a lot in previous work.

To better understand these dimensions, we show an example bug report in Figure 2.4. The

Figure depicts a sample bug report10 in Travis-ci, one of the most popular Github projects

we studied in our previous study (Sajedi-Badashian et al. 2016). On the page of each bug,

Github shows the work around that bug. For example, the bug report in this figure has a

10https://github.com/travis-ci/travis-ci/issues/257

31

 Rank: 1 2 3 4 5 6 7 8 9 10 11 12

Recommended developer ranking
for bug 1 (with 5 real assignees)

 Precision: 1.0 0.5 0.33 0.5 0.4 0.5 0.43 0.38 0.33 0.3 0.36 0.42
 Recall: 0.2 0.2 0.2 0.4 0.4 0.6 0.6 0.6 0.6 0.6 0.8 1.0

 Average precision for bug assignment 1 =
�.���.���.�� �.����.��� = 0.56

Recommended developer ranking
for bug 2 (with 1 real assignees)

 Precision: 0.0 0.0 0.33 0.25 0.2 0.17 0.14 0.13 0.11 0.1 0.09 0.08
 Recall: 0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

 Average precision for bug assignment 2 =
�.��� = 0.33

Recommended developer ranking
for bug 3 (with 4 real assignees)

 Precision: 0.0 0.0 0.0 0.25 0.4 0.33 0.43 0.5 0.44 0.4 0.36 0.33
 Recall: 0.0 0.0 0.0 0.25 0.5 0.5 0.75 1.0 1.0 1.0 1.0 1.0

 Average precision for bug assignment 3 =
�.����.���.����.�� = 0.4

 Mean Average Precision (MAP) =
�.����.����.�� = 0.43

Figure 2.3: An example of use of MAP for bug-assignment over three bugs

title, description, meta-data elements (reporting date, reporter, labels, etc.) and the interac-

tions around the bug –e.g., comments, being assigned or closed. In case the bug is referenced

from a commit or other actions, then an entry will be shown in the list of interactions,

with links to those actions. These types of information are used for extracting developers’

expertise and the ground-truth assignees as we will discuss later.

2.5.1 Ground-truth assignee

In almost all the previous research which proposed a new BA approach, before recommending

the assignees, the authors used some rule of thumb to identify at least one developer for each

bug, as the real/actual assignee (Canfora and Cerulo 2006; Čubranić and Murphy 2004; Jeong

et al. 2009; Matter et al. 2009; Sun et al. 2017; Tamrawi et al. 2011b). Then they compared

their recommendations against these ground-truth assignees to measure the effectiveness of

their approach and report it using some metrics. The definition of “ground-truth assignee”

(ground truth) is critical in validating and understanding the goodness of a method, and,

comparatively analyzing the merits and shortcomings of alternative methods.

32

of ground-truth assignee”. So, the definition of ground-truth assignee adopted by a research

experiment can highly affect its results. Without a clear definition of ground-truth assignee,

fair judgment or reproduction of a research would be problematic.

In our survey on BA research, we found that there are various definitions of ground-

truth assignee in different studies, and that there is no unanimity in using/addressing this

definition. In other words, the definition(s) of “ground-truth assignee” adopted by different

studies is not consistent over those studies. This can make the process of evaluating the

effectiveness of a method more subjective and obstruct reproducibility of the research. We

will show later, that the adopted definition of ground-truth assignee can affect or even bias

the reported results.

We surveyed BA studies, and, based on interactions between the developers and devel-

opment objects (e.g., bugs or commits) extracted the following definitions of ground-truth

assignee:

• Type 1 (T1); AUTHOR: The author of a commit referencing a bug number as resolved.

In this case, the author, who is the original developer of the code includes in the commit

message a mention that the newly contributed code fixes a specific bug in the project.

In the Github page for the bug report, this reference is shown as an event of type

commit in the bug’s life cycle.

• Type 2 (T2); COAUTHOR: A developer (other than the original author of the commit-

ted code), who actually commits the code and references a bug as resolved. In this case,

the coauthor is different than the author. Typically, the coauthor has some higher-level

permissions. In some cases, it indicates an additional code reviewer role examining and

confirming that a piece of code fixes a bug. For example, the project maintainer who

merges the patch or last applies it (approves it), the one who accepts a pull request,

or the one who does the rebase is called coauthor. In all these examples, this person is

different from the one who actually writes the code (i.e., the author).

Note that this type of assignee has not been explicitly studied before. Previous research

either ignored T2 assignees or considered them under T1. The fact is, however, that

this is a different indication of bug-fixing contribution. Therefore, we believe that it is

worth examining it separately.

Again, like T1, in the Github page for the bug report, this type of reference / fix the

bug is shown as an event.

34

• Type 3 (T3); ADMIN CLOSER: The developer who closes the bug. If a developer

decides to close a bug, one can assume that they know enough about that bug and

may be competent to fix it. In some projects, any developer can close a bug –or re-

open it later; however, in many big projects, this privilege is reserved for higher-level

or administrative roles that usually the core developers have. In some cases, these

developers review the code and the proposed bug as soon as it is reported, and then

bring the bug to the attention of appropriate programmers in the team. In the sample

bug report in Figure 2.4, developer “michaelklishin” closes the bug and is a T3 assignee.

Note that a bug may be re-opened, worked on by a few developers, and closed again

several times. This is happened in the example of Figure 2.4; somebody opened the

bug again, and developer “joshk” closed it again. In these cases, any developer who

closes the bug is considered as a T3 assignee.

• Type 4 (T4); DRAFTED ASSIGNEE: The developer tagged as “assignee” when the

bug is closed. In Figure 2.4, developer “chrisharper” is assigned to the bug and is

considered a T4 assignee. This developer is shown in the “Assignees” section, at the

top of the right panel for each bug. At each point in time, several people can be

assigned/unassigned/reassigned to a bug, either by their own initiative or by other

project members. The developer who is tagged assignee at the time when the bug is

closed is assumed to be the T4 assignee of the bug. Note that just being tagged as an

“assignee” should not be considered as evidence of relevant expertise. For example, if

a developer is assigned to a bug, but finds that cannot fix it, then they may opt out

or may be un-assigned. As another example, a developer may be the tagged assignee

while the bug remains open forever; we do not consider these cases useful and simply

ignore them.

• Type 5 (T5); ALL TYPES: The union of all the above four types including all sorts

of work toward fixing the bug. This definition is useful in that it leads to a broad and

realistic formulation of the BA problem. It includes code authorship and co-authorship,

administrative bug manipulation and being drafted as assignee.

Most previous research used the definitions of T1, T212, T3 and T4 or a limited com-

bination of them for the ground-truth assignee. No previous research, however, used the

12In some of the previous research it is not clear if they are using just T1 or a combination of T1 and T2.
Due to lack of a clear separation in these cases, we assumed they considered both T1 and T2 in Table 2.4

35

Table 2.4: The types of assignment used in previous studies, varied from T1 to T4

Method
Assignee
types

Developer community

(Čubranić and Murphy 2004) T3, T4
The ground-truth assignees of the selected bugs for the exper-
iment (162 developers) are considered members of “developer
community”.

(Canfora and Cerulo 2006) T1, T2
The ground-truth assignees of the selected bugs for the ex-
periment (373 and 637 developers in two projects)

(Jeong et al. 2009) T4
The ground-truth assignees of the selected bugs for the ex-
periment (number of developers is not mentioned)

(Matter et al. 2009)
T1, T2,

T4
The ground-truth assignees of all the bug reports (210 devel-
opers)

(Tamrawi et al. 2011a;
Tamrawi et al. 2011b)

T4
The ground-truth assignees of the selected bugs for the ex-
periment (between 156 and 3,014 developers in 7 projects)

(Bhattacharya and Neamtiu
2010; Bhattacharya et al. 2012)

T3
The ground-truth assignees of all the bug reports (number of
developers is not mentioned)

(Shokripour et al. 2012) T1, T2
The ground-truth assignees of the selected bugs for the ex-
periment (number of developers is not mentioned)

(W. Zhang et al. 2016b) T3
The ground-truth assignees of all the bug reports except the
developers who were assigned to only one bug (In total, be-
tween 70 and 874 developers in four projects)

(Cavalcanti et al. 2014b;
Cavalcanti et al. 2016)

T1, T2
The ground-truth assignees of the selected bugs for the ex-
periment (70 developers)

(Sun et al. 2017) T3, T413
The ground-truth assignees of all the bug reports (between
47 and 667 developers in 5 projects)

comprehensive combination of them, i.e., T5 (see Table 2.4). Note that these categories are

inclusive of similar definitions across the existing literature which use other bug-tracking and

version-control systems rather than Github. But no previous research has used the union of

those types (e.g., T5 as we defined above).

Note that ideally, there can be another type of ground-truth assignee. The project

manager can determine a list of candidates who would be proper developers to fix each bug.

These developers might never have worked toward fixing that bug (due to high workload,

unavailability or other reasons), but still would be included in the ground truth. Although

this definition would be the ideal ground truth, it is very expensive to produce such a list

for thousands of bugs in a big project. So, we just ignore it and only consider the five main

types of assignee (e.g., T1 to T5) as we discussed above. These five types of assignee can be

extracted from the issue-tracking system directly and easily.

13The type of assignee in this paper was not directly mentioned in the text, but it is conceived indirectly
from the text.

36

2.5.2 Developer community

We define the developer community as the set of developers who are considered potential

assignees in a project at any time. BA researchers try to sort and recommend the top

developers in this set, based on their competence to fix a given bug. Just like how adopting

a narrowed “ground truth” can impact the reported results, the size of this community affects

the accuracy of the proposed BA methods. The more limited (and smaller) the developer

community becomes, the easier the prediction of actual ground-truth assignee will be. For

example, predicting the ground-truth assignee from a set of 10 developers is easier than a

set of 500 candidates.

It is hard to obtain a unanimous definition for developer community. Github, through

its comprehensive APIs, gives a list of collaborators to the project (Github 2017b). Some of

them are outside collaborators, who make contributions through pull requests (that should

be reviewed before being approved as project contribution). These people do not have

access to the organization but can have controlled contribution towards the project. Direct

collaborators are appointed by the project managers and can have limited or full write access

to the repository or organization. Also, there are organization members who have access to

all the projects of the organization through team membership or other default organization

permissions (note that in Github each organization is a virtual organization and can include

several projects in it). Finally, there are the project managers and organization owners.

The project and organization managers can give different access levels to people regarding

type of their collaboration. Even if a developer who is appointed by the managers as a project

member (collaborator), does not contribute in the project (i.e., does not do any commits),

he still is a project member. The fact is that the project managers found this developer a

good candidate for contributing in the project. So, he should be considered as a possible

assignee.

Some previous research considered all the project members as their developer community

(Khatun and Sakib 2016; Sajedi-Badashian et al. 2015; Sajedi-Badashian et al. 2016). This

is the most comprehensive definition for developer community. Some others took a subset

of the developers in the project (e.g., the committers) as the developer community (Hossen

et al. 2014; Kagdi et al. 2008). Many others considered the set of previous assignees as

developer community (Anvik et al. 2006; Bhattacharya et al. 2012; Čubranić and Murphy

2004; Tamrawi et al. 2011a). Also, there are many others that did not have a clear definition

for it (M. M. Rahman et al. 2009).

37

Regardless of the general definition for developer community, many of previous research

have been filtering the community, to remove less-active developers and subtle bugs assigned

to them. This is another restriction on the developer community in the data set and we

discuss it later, along with the effect of developer community on the evaluation of the results.

2.6 Experiment setup and Data Set

To investigate the effect of adopted definition of “ground-truth assignee” and “Developer

community” on the evaluation of BA research, we perform a set of experiments. We use the

findings of those experiments to answer the research questions of our study.

In our experiments, we use the IR notation where the description of the new bug is the

query and the developers’ profiles (concatenated text of all the previously fixed bug reports

by each developer) are the documents. We use the tf-idf composite weighting for giving a

score to each document (developer) for the given, new query (bug report). This method or

its variations were used previously to emphasize on specific keywords and de-emphasize the

common terms, and shown to work well on textual data (Khatun and Sakib 2016; Shokripour

et al. 2015; T. Zhang et al. 2016; W. Zhang et al. 2016b).

We applied the baseline tf-idf method to sort the developers for the given bug report. At

each point in time, we considered each developer a document including the textual elements

of all the bug reports assigned to that developer up to that time. We considered the bug

report’s title and description, plus the main languages of the project (after removing stop-

words) as the contents of these documents. We assumed main language of a project as any

programming language that contains at least 15% of the lines of code of that project.

Tf-idf (Cavalcanti et al. 2014a; Manning et al. 2008; Shokripour et al. 2015) is a weighting

technique which produces a composite weight for a term in each document. It is used for

measuring the similarity between a query and a document (having several documents, the

document with highest similarity score with the given query is considered the document most

similar to the given query). Having a query (bug) “q”, we use the following equation to

calculate the score for document (developer) “d” in the corpus “D” (previous bugs):

score(q, d) =
∑

t∈q

tf(t, d) · idf(t,D) (2.2)

In the above formula, tf (term frequency) is the number of occurrences of term t in

38

document d. On the other hand, idf (inverse document frequency) measures the importance

of a term with regard to all documents in the corpus D (Manning et al. 2008).

We use Equation 2.2 to evaluate the similarity of a bug and a developer. It assigns a

score for each developer, regarding a given bug. Then we sort the developers in the potential-

assignees community based on this relevance score from high to low. We implemented the

above metric and the experiment using Java. Then, we ran our code and evaluate our

recommendations by comparing them against the ground-truth assignees in our data set.

Based on the position of all the ground-truth assignees in our recommended ranked list, we

calculate a MAP for each project and an overall MAP. We made the source code of our

experiments available online1.

2.6.1 The Data Set

In our previous research, we studied “several Github projects” (Sajedi-Badashian et al. 2016),

chosen due to their popularity in Github. In this study, we used the new data for the same

projects. There were 20 projects in our previous study, out of which we could extract the

information of bug reports of 13 projects14. The other 7 projects stopped publishing their

issues publicly (e.g., switched to private issue tracking systems).

We extracted data of those 13 projects from their beginning (2009-04-28 or later, based

on project start dates) to 2016-10-31. This data set is inclusive of the old data set and

includes several times more bug reports. Another limitation that we resolved is that in our

previous data set (Sajedi-Badashian et al. 2016), we limited the developers to only the shared

ones between Stack Overflow and Github (which was around 10% of the total developers).

Here, we do not have such a dependency. So, we do not filter the data set. We extracted

and stored information of all the project members in Github as developer community. To

obtain the data, we wrote a set of JavaScript programs to extract the data of those projects

online using Github APIs. The source code of this program is accessible online15.

Table 2.5 shows statistics of our data set, including different assignment types and the

number of bug reports based on each definition. The important aspect of this data set is

14The link to the 13 projects we studied are: http://github.com/lift/framework,
http://github.com/html5rocks/www.html5rocks.com, http://github.com/yui/yui3,
http://github.com/khan/khan-exercises, http://github.com/tryghost/ghost, http://github.com/fog/fog,
http://github.com/julialang/julia, http://github.com/adobe/brackets, http://github.com/travis-
ci/travis-ci, http://github.com/elastic/elasticsearch, http://github.com/saltstack/salt,
http://github.com/angular/angular.js and http://github.com/rails/rails

15https://github.com/TaskAssignment/software-expertise

39

that we also reported the number of members in the developer community who have ever

fixed any bugs during the captured lifetime of project. The minimum, average and median

of this number are 38, 583 and 541 respectively, which shows the assignee prediction on this

data set is not trivial. We made the data set available online1 for further BA research.

Table 2.5: The data set including T1 to T5 bug-assignments in each project

Project

#of members
in Developer
Community

(DC)

#of members
in DC who

have ever fixed
any bugs

of
bugs

of bug-assignments

T1:
AUTHOR

T2:
CO-

AUTHOR

T3:
ADMIN
CLOSER

T4:
DRAFTED
ASSIGNEE

T5:
ALL

TYPES
Framework 75 38 325 129 97 225 115 566
Html5rocks 159 47 627 90 1 638 269 998

Yui3 175 77 526 122 4 541 235 902
Khan-exercises 206 82 624 19 5 654 179 857

Ghost 473 357 3,578 1,371 113 3,713 945 6,142
Fog 770 208 1,124 91 27 1,146 63 1,327
Julia 831 541 9,086 1,759 54 9,590 1,345 12,748

Brackets 864 646 6,255 171 6 6,554 3,731 10,462
Travis-ci 1,159 1,096 5,473 13 2 5,716 603 6,334

Elasticsearch 1,262 758 10,423 2,192 498 10,362 3,132 16,184
Salt 2,283 1,227 10,237 2,344 233 10,682 2,274 15,533

Angular.js 2,386 1,069 7,402 503 196 7,671 1,288 9,658
Rails 4,079 1,431 8,794 857 138 9,366 944 11,305

Total Average: 1,132
Median: 831

Average: 583
Median: 541

64,474 9,661 1,374 66,858 15,123 93,016

In order to capture different types of assignees, we used the definitions of T1 to T5

(Section 2.5.1) precisely. For the two assignee types related to the commits (i.e., T1 and

T2), we needed to check the commit messages. In Github projects, the fixers reference the

bugs from commit messages with one of the following specific keywords (or the capital cases

of any of the keywords), followed by an optional space, followed by a number sign (#) and

one or more bug number(s)16 (Github 2017a):

• “fix”, “fixes”, “fixing”, “fixed”

• “close”, “closes”, “closing”, “closed”

• “resolve”, “resolves”, “resolving”, “resolved”

We cross-referenced this with issue events17 (which were also extracted by our code using

Github APIs) to avoid capturing of communications between developers or typos as bug

resolving. For T2, we captured the referencing developer as a second assignee of this type

16Bug numbers are iterative numbers, usually starting from 1. Pull requests also share this numbering
system with bug reports in a manner that a number is considered only for a pull request or a bug report
(called issue in Github).

17Issue events include every interaction about bugs including opening, closing, referencing, subscribing,
assigning and reopening.

40

only if the committer was different than the author. Otherwise we just considered one

assignee as T1.

For T3 and T4 assignment types, we did not need commit messages, but we examined

the issue events precisely (especially the events closed, assigned and unassigned) to extract

those two types of assignment correctly. We also paid enough attention to the possible

complications in which there are more than one assignee –e.g., a bug report is closed and

opened again several times, each time assigned to a developer who does some work.

Our data set is one of the most complete data sets currently available for BA regarding

size, number of bug reports and community members, duration of projects and selection

of projects (i.e., based on popularity in Github). In terms of number of bug reports and

especially size of developer community, it is one of the most extensive data sets, comparing

with the respective values in other research in the field (even comparing the 13 selected BA

studies).

We use the above experiment setup and data set for inspecting the research questions in

next section. Our source code, data set, input and output files (as well as documentation

for running the code in simple steps) are available online1.

2.7 Findings

In this section, we investigate the two dimensions of variability (mentioned in Section 2.5),

and the effect they can have on the evaluation. Then we discuss the best choices regarding

them.

2.7.1 Comparing Different Types of “Ground-truth Assignee”

In the previous sections, we discussed T1 through T4, the main types of “ground-truth

assignees” used in the BA literature. We also proposed T5 as the union of the four. Here,

we investigate which definition is better to be adopted as the ground truth in BA experiments.

In other words, we address the following research question:

RQ1: What is the best definition of “ground-truth assignee”?

In order to study different types of ground-truth assignee and analyze their qualities, we

implemented the baseline tf-idf method. We run this method using 5 different versions of

the same data set related to T1 to T5 (see Table 2.5). Then we compare the results of this

method on them and perform some statistical analyses.

41

Table 2.6 shows the results of the baseline method over 13 projects considering five

different assignee types. The average overall MAP is shown in the last row. It starts from

34% for T1 and goes to 46% for T2 (around 35 percent difference, which is a big difference).

The overall MAP regarding T5 is in a moderate level (comparing against the other four

types). This makes more sense since T5 is inclusive of all the extreme cases of other four

definitions together. So, when using T5, those extreme cases would not easily bias the results,

but will be considered along with other cases in a more reasonable way.

Table 2.6: MAP (%) for 13 projects using different assignee types
`
`
`
`
`
`
`
`
`
`

`
`

Project
Assignee Type

T1 T2 T3 T4 T5

Framework 56.41 83.02 51.24 44.19 49.13
Html5rocks 69.73 1.82 70.29 37.99 59.85

Yui3 48.69 13.75 40.24 47.40 53.13
Khan-exercises 28.06 1.70 39.32 48.84 41.80

Ghost 32.99 76.64 77.02 42.44 58.33
Fog 44.74 55.66 63.54 42.71 60.58
Julia 37.41 37.85 44.12 62.34 45.32

Brackets 38.36 42.08 32.71 37.17 34.70
Travis-ci 23.21 50.71 50.93 61.08 52.63

Elasticsearch 37.80 31.59 44.63 29.84 37.95
Salt 31.29 68.64 36.00 39.24 35.22

Angular.js 35.67 42.93 36.49 40.72 37.21
Rails 17.40 19.83 34.56 38.76 32.21

Total (13 proj) 34.27 46.25 42.51 40.28 40.52

We also studied how the results based on each assignee type are distributed over the

projects. Figure 2.5 reports the distribution of project-based MAP values, using different

assignee types over 13 projects; T2 exhibits the highest variance over different projects. Also,

T1, T3 and T4 have outliers, which shows the unexpected difference for different projects. On

the other hand, T5 have low variance and no outliers. Overall, considering these differences

with the fact that T5 produces a moderate average MAP (comparing against the four other

types), we can say that T5 gives the results in a more acceptable and robust range (without

much tolerance over different projects). Note that in Table 2.5, some projects have only a

small number of bug-assignments (e.g., less than 50) regarding T1 or T2. To verify that this

high variance is not specific to those projects, we excluded those projects and re-generated

the box plot (not shown here). Interestingly, again, T2 has the highest variance and T5

shows the most robust behavior over different projects.

A quick look over the results of each project regarding T1 to T4 in Table 2.6 shows their

high disparity. As the reported results based on those four ground-truths would vary a lot

42

l

l

l
l

T1 T2 T3 T4 T5

0
2
0

4
0

6
0

8
0

Assignment type

M
A

P
 (

P
e
rc

e
n
t)

Figure 2.5: Distribution of MAP over 13 projects using five different assignment types. T5
has the lowest variance

for a project, we see that those narrow definitions can lead to biased or extreme results

in different projects. Hence, picking any of them for evaluation of a research can make

subjective results.

In addition, we believe that each definition, from T1 to T4, is targeting only a specific

aspect of bug fix. So, considering the results based on any of them as ground truth measures

how good the proposed approach is regarding that specific aspect. The nature of T1, for

example, is targeting whoever commits the code as the regular programmer. T3, however,

indicates a developer with some higher-level status in the project (e.g., a core developer),

who reviews the code and closes the bug. In some cases, this developer brings the bug to

the attention of appropriate programmers in the team. The “regular developer” nature of

T1 is not comparable with the “authoritative developer” nature of T3. In fact, each of the

assignment types are targeting different ground truths, without having major coverage with

other ones.

Since narrowed types of assignee just capture a limited type of work towards fixing a bug,

evaluation or making inferences, based on these narrowed definitions may lead to subjective

judgments and would bias the evaluation process. Software development is a collaborative

work; many bugs are fixed by a group of developers, who can have different roles in the

project. So, all the developers who perform any type of development work towards fixing a

43

bug should count as proper assignees of that bug.

Considering from another point of view, the adopted definition for ground-truth assignee

should not be impractically broad or narrow ; Too broad definitions of ground-truth assignee

can cause superficially high precisions because many developers would be assumed bug fixers

of the bug (as mentioned in the above example). On the other hand, too narrow definition

of ground-truth assignee can limit the total number and diversity of assignees. This fact can

then be utilized by any insignificant approach to obtain high accuracies only by prioritizing

the previous assignees at any point in time. Even we see later that it can restrict the developer

community (if the developer community is not defined correctly) and bias in precision, recall,

or accuracies.

When dealing with industrial projects, considering T5 –as the union of T1 to T4– reduces

the bias in the single definitions and makes a richer data set including various types of work

(towards bug-fix). T5 covers different indications of bug-fix on which we can fairly validate

a BA approach. Since the assignees of all those types have done some useful work toward

fixing a given bug, suggestion of any of those developers to the project manager would be

some help towards fixing the bug.

Based on all the above analyses, we can conclude that:

The most comprehensive definition of “ground-truth assignee” is T5 (ALL TYPES).
While it is essential to consider different types of work towards fixing a bug as in-
dication of assignee, T5 enables us to capture this variety of assignees. This set of
assignees is a proper ground truth for evaluating goodness of an assignee recommen-
dation approach.

In the next sections, we perform the rest of our analyses based on this ground truth (T5).

2.7.2 The effect of “Developer Community”

The size of developer community is another important factor in evaluation of BA research.

The bigger the developer community becomes, the more difficult the prediction of actual

ground-truth assignee will be. In the previous sections, we discussed that “all the project

members”, “committers” and “set of all the developers who have assigned any bugs during

lifetime of project” are the mostly used options in previous research regarding developer

community.

Regardless of the definition of developer community, many of the previous research tried

to filter the members of this community in their data set (i.e., remove developers who have

44

fixed less than a threshold number of bugs), which results in removing a number of bugs as

well.

We would like to investigate which definition is more appropriate for evaluation of the

results. Also, we want to understand if there is any side effect (e.g., bias in the results) in

filtering this community or not. We address the following research question:

RQ2: What is the best definition for “developer community” from which the

bug-assignment methods recommend appropriate developers? And what is the

effect of filtering this community?

The assumptions of BA experiments should be realistic, to be useful in industrial applica-

tions. The definition of “developer community” determines a set of developers from which a

BA approach recommends somebody to fix a bug. So, restricting this set to limited subsets

of project members (e.g., the previous assignees, or the committers) eliminates the usage

of the proposed BA method. Most open-source software companies cannot differentiate be-

tween their developers or restrict their bug-fixers to a subset of their developers. Note that

in reality, even we do not know which developers would commit or fix a bug in advance, to

limit our list to those developers 18.

Hence, we choose “all the project members” as the practical definition of developer com-

munity. It is comprehensive enough to contain any developer who works in the project and

would step in to fix a new bug report. In open-source projects in Github, the list of project

members is easily accessible19.

Also note that when considering previous assignees (instead of all developers in the

project) as the developer community, this community would be sensitive to the adopted def-

inition of ground-truth assignee (e.g., T1 to T5; narrower definition of ground-truth assignee

makes the community smaller). This might itself lead to more subjective judgments. Espe-

cially some evaluation metrics (e.g., top-10 accuracy and precision @10) are highly affected

by a narrow definition of developer community. Suppose that a developer community is

narrowly defined to contain 15 developers and each bug report has a single ground-truth

assignee. Then, even a random selection of developers would superficially give high accuracy

(i.e., 66.67% top-10).

Filtering the data set is another adverse restriction. In our survey, we saw many examples

18Another factor is “time”; this includes the time each developer starts and stops working in the project
and can have realistic effects in industrial projects. Since considering “time” poses some real-time filtering
in the developer community, we ignored this factor and just considered all the developers at all the time.

19As an example of list of project members in open source projects, Github has APIs for returning members
of a project; https://developer.github.com/v3/repos/collaborators/

45

of BA research that suffer from filtering data sets (Ahsan et al. 2009; Aljarah et al. 2011;

Anvik et al. 2006); this might bias the results and make the reproduction of the research

difficult (note that different data sets react differently against filtering). We would like to

investigate the effect of this filtering on the evaluation results in a high level. The studies

that perform a data filtering, usually remove less active developers. Some mention that

they removed bug reports assigned to developers who fixed less than a threshold number

of bugs. These two cases have the same result; they eliminate both developers and bug

reports and get rid of the challenging bug reports. In fact, those bug reports were specific

bug reports that need more in-depth investigation to be connected (and assigned) to some

specific developers, both of which are removed from the data set for simplicity.

Filtering less active developers can cause flimsily high precision, recall, or accuracies by

artificially shrinking the community of developers considered. This was verified before by

Lee et al . (S. Lee et al. 2017). They compared their method on two versions of the data

set, for three open-source projects; a version including all the developers, and another one

including only the developers who fixed at least 10 bug reports. Interestingly, they obtained

much better results in the second case. Similarly, Tamrawi, et al . (Tamrawi et al. 2011a)

reported increases in their accuracy, and, Anvik and Murphy (Anvik and Murphy 2011)

reported increases in their recall by filtering the less active developers. In another study,

Canfora and Cerulo (Canfora and Cerulo 2006) showed that filtering the developers to 100

(out of around 400 to 600 developers in Mozilla and KDE projects), multiplies the recall by

around 3 and 4 respectively.

To have a deeper understanding of the effect of filtering developers on the accuracy of bug

assignment, we ran an experiment using the baseline tf-idf approach as we discussed before

(again, we made the source code of this experiment available online1). We considered T5 as

the definition of assignee and used MAP for evaluation. We ran the program several times

and each time, applied a different filtering on the developer community and bug reports

fixed by them. Then we captured the overall MAP. The results are shown in Figure 2.6.

Moving from top to bottom, the number of bug reports decreases (˜5% in each row). The

first row is the complete data set. In the next rows, the less-active developers and the bugs

they fixed are filtered. The cut-offs are selected so that in each row, the number of bugs

is decreased around 5% of the total bugs, with respect to the higher row. In each row, the

remaining bug reports are those that were handled by the most active developers. In the

last row, only 20% of the bugs are considered. It is remarkable that the MAP increases up

46

Number Percentage
1 (no filter) 7577 (all) 93016 (all) 100 40.52

2 1956 87,395 95 42.68
6 568 83,794 90 44.30

40 236 79,125 85 46.46
88 186 74,506 80 48.52

145 156 69,832 75 50.55
202 113 65,208 70 53.32
321 67 60,274 65 55.62
415 55 55,978 60 59.00
532 44 50,981 55 62.02
613 36 46,431 50 65.50
656 29 42,021 45 68.22
872 22 36,979 40 74.13

1090 17 32,205 35 79.57
1269 13 27,673 30 86.26
1435 10 23,735 25 92.31
1919 7 19,185 20 95.66

 Correlation: -0.98 negative (almost) linear relationship

Considered bug reports Overall
MAP

Least number of
bugs fixed by

each developer

Considered
developers

Figure 2.6: The effect of filtering less-active developers, and the bug reports they fixed, on
accuracy of results

to 95%. In other words, a simple filtering on the developer community and their fixed bugs

can increase the overall MAP by a factor of 150% (make it 2.5 times the original value) and

make the overall MAP close to 100%. We also obtained the correlation between “percentage

of remaining bugs that we run the algorithm on”, and “overall MAP”. They have a negative

linear correlation (-0.98) which shows how the filtering can manipulate the results. Note that

this is only an example with tf-idf as a baseline method. One could envision manipulating

the utilized method to gain more benefit from the narrowed list (i.e., considering the time of

activity of developers as well) and enhance results after filtering. Also note that this effect

can be different (higher or lower) in another data set, based on the dynamics of that data

set.

So, developer filtering can cause to obtain higher (biased) results than would be obtained

in real cases. In industrial projects, the project managers need realistic solutions that con-

sider all the developers; even the less active developers may fix some bugs and the project

managers need to take them into account. According to several previous research (Sean et

al. n.d.; Song Wang et al. 2014; M. Zhang and Hurley 2008), filtering less active developers

reduces the diversity of developer recommendation, which results in diminishing practicality

47

of the proposed BA approach.

We conclude that the size of developer community should be reported clearly. In addition,

the number of members of developer community who have ever fixed any bugs during lifetime

of the project is also important. It is another useful indicator of the broadness of the project

and should be reported. It gives us an indication of difficulty of predictions. Failing to do

so makes it harder to compare against other research. In general, regarding the proposed

research question, we conclude that:

The best definition to adopt as developer community is “all the project members”. It
is the most comprehensive option to contain any developer who works in the project
and may step in to fix a given bug. Filtering this set might produce biased results and
mislead the evaluation.

2.8 Discussion

In our comprehensive survey on BA, we found that the field suffers from lack of a systematic

framework for evaluation. Many of previous research are using small projects (or filtering

the data of big projects and obtain limited circumstances) in which the assignee prediction is

straightforward. Many of them implement another previously published method, to validate

their approach through comparison. But again, the reporting may be skewed. Note that we

are not criticizing the valuable amount of work toward research in the field. We identified

lack of a systematic framework to facilitate (and standardize) the evaluation and reporting

of scientific claims in BA domain, which needs more attention from software engineering

community. In order to validate a new BA method and show that it works better than

the previous approaches, we need to compare it against one or more previously published

methods. Generally, there are three ways to do this: (1) to run the code of the previous

approach and test it on our data, (2) to test the code of our approach on the data of the

previous research, and (3) to compare the two approaches considering the reported evaluation

metrics (e.g., meta analysis).

Initially, the first option above seems the best solution. Many research publications

utilized their comparisons this way. However, in our survey, we found that most previous

research did not publish their code. On the other hand, it is almost impossible to take

into account all the details of a previous approach and re-implement it (note that usu-

ally the implementation details are not mentioned in the papers). Re-implementation of a

48

generic version of their approach is possible but less efficient. Moreover, many of them have

no comprehensive source code and are, in fact, just a series of commands or transactions

(e.g., interactions with Weka) which are almost impossible to replicate. Even if the previous

researchers published their code or exact instructions of the needed transactions, our data

might be inefficient for their approach. Finally, a research might have a data cleaning, that

is a critical part and have important effects on its results.

The second option is a better solution, since we do not judge about the previous approach

unless from their reported results. However, as we encountered in our survey, most previous

research in the field did not publish their data, or if they did, the link to their data is broken.

Even having their data, it might not be compatible with our approach (e.g., assume that our

method needs component information which is not available in the data set of a previous

research).

To the best of our knowledge, meta-analysis (the third above-mentioned option) is not

used before in the field. However, it is a proper choice and can provide appropriate com-

parison against the previous research. It is not dependent on the data or code of previous

research. Then, it is feasible to compare against many previous research (e.g., the ones

mentioned in Table 2.3). Doing so, excelling a bunch of approaches is more persuasive

than outperforming only one or two implementations. However, the project conditions and

characteristics might affect the comparisons in this option and make the comparison unfair.

In either case, validation of a new approach needs fair comparison against state-of-the-

art methods. In this way, observing several points as mentioned in the next sub-section are

essential.

2.8.1 The proposed evaluation framework

We provide our evaluation framework based on the discussed research questions of this study,

and regardless of how we compare a new approach against state-of-the-art methods (above

three options). It contains guidelines for maintaining a reproducible BA research, with

standards for judgment of scientific claims (Peng 2011) and replicating the study (Fomel and

Claerbout 2009). They cover important aspects about evaluation, reporting and comparison

against state-of-the-art methods:

1. It is recommended to evaluate and report based on MAP as the most stable and

inclusive evaluation metric. MAP is a single measure, representative of both precision

49

and recall. It bundles the rank of all the assignees for each bug report, with emphasis on

higher ranks. When there are several projects, an overall MAP for all the bug reports

over all the projects is extremely useful. This helps to compare fairly when project-

based comparison of two methods is difficult. In addition to MAP, we recommend to

calculate and report the other widely used metrics (see Table 2.3), to enable meta-

analysis and comparison against the previous approaches that reported other metrics.

2. It is recommended to use the most comprehensive definition of ground-truth assignee,

T5, for evaluation. It includes every development work towards fixing the bugs. Using

this as the ground truth, the results would be less sensitive to specific types of work

(e.g., commit history) or other parameters in the project (e.g., number of bug reports

in the project).

3. “All the project members” is the best choice for the developer community in evaluation

of BA approaches. This generalization makes the proposed BA approach more com-

prehensive and useful for industrial projects, in which all the developers may step in

to fix a bug. This list, like ground-truth assignees, can be extracted from open-source

projects easily. The important point is not to use any filtering (on bugs or developers).

Filtering would eliminate the developer community, reduce the challenging bug reports

and make an isolated evaluation which might not be representative of real situations.

4. It is recommended to perform the evaluation on relatively large number of bug reports,

number of bug-assignments (since a bug can be assigned several times), size of developer

community and number of developer community members who have ever fixed any

bugs. If this last number is too small (e.g., roughly around 20 or less) in a project,

then that project is not a good case for evaluation, since it is not challenging enough

to reflect the goodness of different methods. Also, to avoid judgments based on limited

data, it is recommended to test on fairly large number of bug-assignments (e.g., roughly

around 500 or more). After all, it is needed to report all these details per project.

To publish reproducible BA research, we recommend the above baselines to be estab-

lished. This makes the reporting, review, judgment, comparison and replication of the study

easier.

50

2.8.2 Threats to validity

Construct validity:

Most reasonings of this study were based on intuitions obtained from our survey (e.g., the

metrics used, and the dynamics and settings used in various BA studies, as well as their data

sets). In the second step of our survey, we removed studies that have major data-filtering.

While this reduces bias in general, it might eliminate some good prior work with assumptions

useful for industrial projects. We argue that we considered the general case to simplify the

problem and end up with a list of publications that have the highest level of reproducibility.

The more general case needs more investigation and can be considered as a future work.

Internal validity:

To capture the ground-truth assignees (i.e., the ground truth to validate our approach), we

used projects that use Github’s issue tracker. We looked for bugs in Github projects and

their certain links to the commits and issue (bug) events, to find the ground-truth assignees.

Although it is a common practice to mention and preserve those links in Github’s open-source

projects (Github 2017a), there might be some missing links (Bachmann et al. 2010) that we

did not consider. This can potentially affect our validations. However, note that validation

of these cases and inclusion of the full links between commits and bug reports is a tedious

task, that must be done manually (Bachmann et al. 2010). To the best of our knowledge,

no previous research has done this manual process. All the previous BA research in the field

evaluated their approach against heuristic-based ground-truth extracted automatically from

available data of software projects.

External validity:

A threat to validity is that we supported our arguments based on some experiments on

our data set. These arguments might do differently in other data sets and settings. While

we admit this as a threat, we argue that first, the experiments, data set and settings we

considered is one of the most comprehensive cases in the whole literature. It includes 13

big projects, thousands of active developers and near 100k of bug-assignments which is non-

trivial. Moreover, the experiments we established are not the only basis for our statements.

This study is also supported by the findings from the comprehensive survey we proposed,

the arguments we provided, and some evidence from the literature.

51

2.9 Conclusions

In this study, we accomplished three main contributions;

1. We comprehensively surveyed the previous research in BA, and reviewed the different

BA objectives, methods, used data and dimensions of variability. This survey can be

highly useful for further researchers planning to explore and research in the field.

2. We proposed a framework for evaluation of BA research; We investigated the mostly

used evaluation metrics in BA studies. We argued that MAP is the best evaluation

metric. It can be independently (from other metrics) interpreted and considers rank

of all the ground-truth assignees. It emphasizes the higher ranks and is not highly

affected by number of ground-truth assignees. Despite all these benefits, and its wide

usage in evaluation of ranked retrieval results (Manning et al. 2008), it is rarely used in

BA. We hope that this study highlights its benefits for evaluation of further research.

Then, we demonstrated the impact of two important dimensions of variability and pro-

vided arguments for establishing a realistic evaluation; first, definition of ground-truth

assignee, which is used as the ground truth in BA research, should comprehensively in-

clude every bug-fix effort by developers. Second, the developer community, who are the

potential assignees used to validate a BA approach, should be inclusive of all project

members.

All in all, validating a new BA approach needs some spirit of equity and fairness. In our

proposed framework, we mentioned the important aspects of evaluation and reporting

BA research. Addressing those aspects enables replication of the study and promotes

its usage in other research or industrial applications.

3. Finally, the data set we extracted from popular Github projects contains the full set

of assignees based on the comprehensive definitions of ground-truth assignee and de-

veloper community. We made it available online1 for further research. This data set is

one of the most comprehensive and recent data sets available for further BA research.

52

Acknowledgements

The work is supported by Graduate Student Scholarship20 funded by Alberta Innovates -

Technology Futures (AITF)21 and Queen Elizabeth II Graduate Scholarship 22 funded by

Faculty of Graduate Studies and Research (FGSR)23 at University of Alberta.

20https://fund.albertainnovates.ca/Fund/BasicResearch/GraduateStudentScholarships.aspx
21https://innotechalberta.ca
22https://www.ualberta.ca/graduate-studies/awards-and-funding/scholarships/queen-elizabeth-ii
23https://www.ualberta.ca/graduate-studies

53

Chapter 3

TTBA: Thesaurus and Time Based

Bug Assignment

54

Preface

In this chapter, we describe our new method called TTBA, which only relies on bug de-

scriptions as the most prevalent source of expertise of developers in previous approaches.

TTBA benefits from two key intuitions. First, considering the time of evidence of expertise

of developers, TTBA uses the recency of sources of expertise to emphasize on newer evidence

and neglect the older ones. It benefits from a high granularity of time of usage of the key-

words in previous bug-assignment instances. Second, using Stack Overflow as a thesaurus of

technical programming keywords, TTBA highlights technical terms and also considers their

specificity. We show that using these two key points, TTBA outperforms state-of-the-art

methods.

This section has been submitted to the Journal of Systems and Software (JSS).

55

Abstract

Bug-assignment, the task of ranking developers in terms of the relevance of their expertise

to fix a new bug report is time consuming, which is why substantial attention has been paid

to developing methods for automating it.

In this chapter, we describe a new bug-assignment approach that relies on two key intu-

itions. Similar to traditional bug-assignment methods, our method constructs the expertise

profile of project developers, based on the textual elements of the bugs they have fixed in

the past; unlike traditional methods, however, our method considers only the programming

keywords in these bug descriptions, relying on Stack Overflow as the thesaurus for these

keywords. The second key intuition of our method is that recent expertise is more relevant

than past expertise, which is why our method weighs the relevance of a developer’s expertise

based on how recently they have fixed a bug with keywords similar to the bug at hand.

We evaluated our BAmethod using a data set of 93k bug-report assignments from thirteen

popular Github projects.1. In spite of its simplicity, our method predicts the assignee with

high accuracy, outperforming state-of-the-art methods.

1The data set as well as source code, documentations and detailed output results are available at:
https://github.com/TaskAssignment/TTBA-Outline

56

3.1 Introduction

As a key task of software quality-assurance process, bug-assignment (BA) aims at identify-

ing the most appropriate developer(s) to fix a given bug. Typically, BA methods consider

the developers’ previous development activities as indicators of their expertise and rank the

developers’ relevance to the bug in question using a variety of heuristics. BA is an impor-

tant problem for the software-engineering industry, and it involves a number of challenging

questions, including what project data to consider as evidence for a developer’s expertise,

and how to utilize developers’ expertise to recommend the best developers to fix new bugs.

Because of its importance, the problem has already received substantial attention over

the past decade (Aljarah et al. 2011; Bhattacharya and Neamtiu 2010; Jeong et al. 2009;

Linares-Vásquez et al. 2012; Liu et al. 2016; Nguyen et al. 2014; Shokripour et al. 2012).

Nevertheless, BA is still a time-consuming task in software development (Akbarinasaji et

al. 2017; Saha et al. 2015). Large projects receive hundreds of bug reports daily (Tian et

al. 2016), which get recorded in their issue-tracking tools, which typically support flexible

searching and, in some cases, duplicate detection. No issue-tracking tool, however, automates

the BA task, which is still manual or, at best, semi-automated. Especially for big projects,

a valid and accurate BA tool would be extremely desirable (T. Zhang et al. 2016; W. Zhang

et al. 2016b) since it can automate the BA process and save project managers’ time and

effort which is currently spent on assigning bugs to developers.

The first key question in developing an automated method for assigning a bug to the

developer best qualified to fix it is to decide on “how to match the information available

on the bug with the information available on the developer’s prior experience and contri-

butions”. The methodological assumption of our work is that technical terms and their

time of usage are critical in this “matching”. Even though much of the information about

bugs and developers is textual, recognizing expertise relevant to a bug is very different from

textual-similarity assessment, which has been the prevalent paradigm for this task to date.

This is why some previous research used the traditional TF-IDF (Manning et al. 2008) to

differentiate between specific and common keywords (Banerjee et al. 2016; Shokripour et al.

2015; T. Zhang et al. 2016; W. Zhang et al. 2016b). Shokripour et al . used a time-based

variant of the original TF-IDF method as the main similarity metric between bug reports

and developers (Shokripour et al. 2015). It used the document-length and frequency of the

keywords (as the requirements of the TF-IDF method), plus the “last” time of usage of the

keywords. However, it ignores other usages of the keywords and their times.

57

In this study, we propose a new similarity metric originally based on TF-IDF, but with

two important enhancements. 1) The metric deals with the relevance of a developer’s exper-

tise to a given bug by considering the technical-keyword space. We ignore all words that

do not belong to the technical vocabulary of Stack Overflow tags, which are curated by the

software-engineering community. Our method weighs the importance of the keywords based

on their distinctiveness in Stack Overflow. 2) Furthermore, the developers’ expertise shifts

as their tasks evolve over time. So, our similarity metric takes into account the recency of

the technical-keyword appearance in the developer’s record. It benefits high granularity

of the time 2 of usage of the terms in previous BAs. In effect, our similarity metric is

a thesaurus and time-aware bug-assignment, henceforth TTBA3. We show that our model

notably enhances the assignee recommendation accuracy.

To evaluate this metric and to examine the relative importance of its two constituent

intuitions, we have curated an extensive data set, including bug reports from thirteen open-

source projects, their meta-data and textual information and their assignee(s). This data

set contains 93k bug-assignments and we will publish it, as well as all the source code and

instructions for our experiment, for further research and investigations. Using this data set,

we demonstrate that TTBA outperforms current state-of-the-art methods.

The remainder of this chapter is organized as follows. Section 3.2 places our work in

the context of the recent relevant literature. Section 3.3 describes the new metric we have

developed for estimating the relevance of a developer’s expertise for a given bug. Sections

3.4 and 3.5 describe our data set and details of the experiment we performed. Sections

3.6 and 3.7 report our results and discuss their implications. Finally, Section 3.8 concludes

with a review of the lessons we learned from this work and outlines some avenues for future

research.

3.2 Background and Related Research

The most prevalent formulation of the BA task is as follows: “Given a new bug report,

identify a ranked list of developers, whose expertise (based on their record of contributions

to the project) qualifies them to fix the bug” (Bhattacharya and Neamtiu 2010; Hu et al.

2The high granularity of the time is provided by the fine-grained usage of sub-documents (i.e., previously
assigned bugs) and their assignment time.

3In this thesis, we do not use the full synonym-related potentials of the thesauruses, but it is possible to
extend our work to use this feature for word inferences as well (e.g., for expanding the queries).

58

2014; Matter et al. 2009; Shokripour et al. 2015); this is the formulation we try to solve by

our BA method –ignoring other formulations like “team BA” (Jonsson 2013; Jonsson et al.

2016) and “multi-objective BA” (Karim et al. 2016; Khalil et al. 2017; Liu et al. 2016) 4.

As we saw before in Section 2.3 in our survey, recent studies mostly focused on IR based

activity profiling since it usually leads to higher accuracies (Shokripour et al. 2013). While

some of those approaches mostly rely on textual information (e.g., title and description) of

the –new and old– bug reports as clues for indication of expertise of developers and matching

with new bug reports (Čubranić and Murphy 2004; Tamrawi et al. 2011b), others used variety

of meta-data fields (e.g., component, product, severity and operating system) (Matter et al.

2009) to address some of the limitations. But still text-based methods are the most effective

techniques used (Shokripour et al. 2015; Sun et al. 2014).

In recent years, some of the studies combined two or more different methods (e.g., ML,

tossing graphs, Information Extraction, NLP and IR) (Bhattacharya and Neamtiu 2010;

Bhattacharya et al. 2012; Cavalcanti et al. 2014b; Cavalcanti et al. 2016; Jeong et al. 2009;

Shokripour et al. 2012; Sun et al. 2017; W. Zhang et al. 2016b). Some of these studies

(W. Zhang et al. 2016b) showed a tendency towards social point of view, combined with the

other methods. Some other examples (not shown in the above table) are building a social

network of developers to model their relationship with each others or with bugs or even

source code components (Hu et al. 2014; T. Zhang et al. 2016) or combining KNN and IR

methods (Zanjani et al. 2015).

Conceptually closer to our work are BA methods that consider the timeline of developers’

activities and the importance of keywords:

First, previous research considered the time of previous evidence of expertise of developers

as indication of relevance to the new bug report. The old evidence are outdated and have

less effect on appropriateness of the developer for the new tasks. Having a new bug report at

hand, they considered the time of “last” usage of its keywords by a developer, to obtain the

recency factor of that keyword for the mentioned developer. Then, they apply this factor in

the developer’s score (Shokripour et al. 2015; Tian et al. 2016); the former considered last

usage time in a custom expertise formula and the later embedded it in the TF-IDF formula.

However, we believe that a fine-grained view over the usage of “all” the keywords by

developers is needed; in fact, higher granularity over time, helps providing a more precise

4“Multi-objective BA” is when there are more than one factor (e.g., assignment accuracy, total cost and
time-to-fix) as objectives of the assignment problem.

59

weighting for all the times a keyword have been used by a developer and gain more practical

scoring scheme. Our similarity metric considers all the times of the usage of a term by a

developer.

Second, the importance of the keywords is captured by some previous research. A number

of previous BA studies used TF-IDF as a term-weighting technique (Manning et al. 2008) to

emphasize on some keywords (T. Zhang et al. 2016; W. Zhang et al. 2016b). The motivating

assumptions behind such term weighting are that some keywords are more important than

the others because they are more specific and/or distinctive, or because they better capture

specific interests of developers. There are other studies that tried to deal with different words

differently. Aljarah et al . (Aljarah et al. 2011) uses Log-Odds-Ratio as a term-selection

technique to identify the discriminating terms (i.e., those that are frequently used in the

bugs assigned to a developer, but not frequently used by the others) and removed the rest of

the terms. This way, it emphasizes on specific keywords that each developer uses or responds

explicitly –by fixing the bugs containing those keywords.

The problem with these methods is that they just use the frequencies of the terms in

the corpus, to determine importance of the keywords. It is true that less-frequently used

keywords might be more important to focus (rather than widely used, general-purpose key-

words), but there is no indication of the “technicality” of those keywords. We believe that

capturing less-frequently used ‘“technical” terms can help obtain the similarity of a bug re-

port to a developer more precisely. Our approach uses Stack Overflow for inferencing about

the technicality of the terms and obtaining term-weights consequently. Stack Overflow, as

the leading question answering platform, is the first choice of most developers in the world,

for seeking their programming answers (Meldrum et al. 2017; Ponzanelli et al. 2015). With

more than 15 millions of questions as of now, it covers every important programming topic

(Li et al. 2015; Meldrum et al. 2017). In our previous research, we proposed a model to rec-

ommend developers in Github solely based on their posted questions and answers in Stack

Overflow (Sajedi-Badashian et al. 2016). We used neither term-weights nor Github contri-

butions in that study. Also, unlike our previous research, in the current study, we do not

use information (i.e., textual elements) of questions and answers. In fact, the neat structure

of the tags and their usage in more than 15 million questions inspired us to use them as

a rich set of software-programming keywords. So, in this study, we use the set of Stack

Overflow tags as a thesaurus to obtain general weights for the technical terms5.

5Note that this is the only usage of Stack Overflow in the current study. There is no overlap with our

60

We add these two factors (time of usage and importance of the keywords) to the well-

known TF-IDF metric, and obtain a fine-grained method, called TTBA.

3.3 Recognizing Developers with Relevant Expertise:

The TTBA Metric

In the IR formulation of BA, the profiles of developers (including the text of previously

fixed bugs and other contributions) correspond to the documents and the description of the

new bug report is considered as the query. Using this notation, Shokripour et al . combined

TF-IDF (as the main scoring function for developers regarding a new bug report) with time

(Shokripour et al. 2015)6. Their approach added a recency factor based on the last time

of usage of keywords by the developers. It only considers the time of last usage of the

terms, but we believe considering “all” usage times of the keywords enhances the predictions

(since the usage of the terms is scattered over time). In fact, more granularity is needed

to capture the time of usage of a keyword by a developer precisely. Second, these methods

infer the term weights based on raw counts of how many times they appear in the project.

They do not consider which of these terms are part of the technical -keywords of software-

programming vocabulary, which is likely to be more important than regular words in English.

Third, weights inferred from small projects (or at the early stages of bigger projects) are

bound to be inaccurate, since there are not enough documents available. Finally, due to the

dynamic nature of term weights calculated over the history of the project lifecycle and/or the

developers’ contributions, these methods need to re-calculate the term weights by proceeding

with new bug reports. Although this is mitigated by exploiting inverted indices, it still can

be time-consuming since some bug reports include considerable number of generic keywords.

To mediate these shortcomings, we propose a term-weighting method that (a) has the

ability to consider the timestamps of the (sub-)documents that contain these keywords; (b)

emphasizes specific, technical (programming-related) keywords rather than general ones; (c)

has a fixed term-weighting which is independent of the corpus; and (d) reduces the search

space by filtering the text of bug reports and making them shorter.

previous work.
6Here, the usage of TF-IDF as the main scoring function regarding a developer (document) for a new bug

(query) is regarded. There are some other studies that used TF-IDF for simple term-weighting (Cavalcanti
et al. 2016; T. Zhang et al. 2016; W. Zhang et al. 2016b) within another main method and are excluded
here.

61

Figure 3.1: A sample bug report (#92) in www.html5rocks.com

To set the context for a better understanding of the dynamics of bug and their assignment,

we use the example in Figure 3.1. The figure depicts a sample bug report7 in one of projects8

we studied in our experiments.

On the page of each bug, Github shows the title, description, meta-data elements (re-

porting date, reporter, labels, etc.), and the work around that bug. The bug report depicted

in this example is reported on Jul 31th, 2012 and closed on Oct 28th, 2013. During this time

period, the interactions around the bug –comments, being assigned or closed– are shown

in the page of the bug report. If the bug is referenced from a commit or other actions,

then an entry will be shown in the interactions section (bottom section of the bug). In this

figure, the keywords in the bug’s title and description that are also a Stack Overflow tag are

highlighted.

A developer who fixed a bug report, is considered knowledgeable regarding the keywords

mentioned in that bug report (e.g., title and description). This fact is usually taken into

account by BA approaches. However, some of these keywords are general terms to describe

7https://github.com/html5rocks/www.html5rocks.com/issues/92
8The title of project is “www.html5rocks.com” and its Github page is

https://github.com/www.html5rocks.com

62

the case and do not contain information value for BA. For example, the bug report #92 shown

in Figure 3.1 is reported by ebidel and is assigned to two different developers –mikewest as

the indicated assignee, and paulirish as the closer, which are both indications of bug-fix

(Sajedi-Badashian and Stroulia 2018a). The terms priority-p2, original and description, for

example, are used by the reporter to give some high-level instructions rather than technical

information about the bug. The same author used the same keywords in several other bug

reports. Most of these keywords do not contain technical information about the bug and can

be rather misleading when calculating the TF-IDF score for developers. Idf only addresses

the case if the terms appear as a boilerplate for all (or many) bug reports. But if this is

repeated in a small number of bugs (e.g., this reporter used these keywords as his signature or

partial standard, as it is here), idf just slightly reduces the weight of those terms. Stop-word

removal cannot solve the problem. It just removes some of those misleading keywords, not

all of them. The same problem exists for other non-technical keywords (e.g., words issue,

context and update) that are rather generic terms used for communication purposes. Finally,

there might be specific terms which do not appear a lot in the bug reports, but still do not

have technical value for the triager. In all the above cases, some domain-specific reasoning

is needed to remove non-technical terms.

As a specific solution to target the important keywords, we perform a simple filtering; we

use Stack Overflow as a thesaurus of programming terms including more than 46,000 tags.

The tags are defined to describe the questions. Each question should have between one to

five tags. Tags cover all the important details of programming topics in any programming

language. They are high level enough to be used as subjects when searching for questions,

and low level enough to contain technical keywords. A tag can be as high level as the name

of a programming language, framework, library, technology or method, or as low level as the

name of an exception (in a specific programming language), error, web service, layout, plugin,

widget, or any other programming topic. Stack Overflow tags are very reliable references

because they are authentic keywords generated by the community of developers and curated

by them during time.

We remove any term that is not an Stack Overflow tag. So, there is no need to do

the stop-words removal, stemming and so on (since it is somehow included in the process).

Considering Figure 3.1 again, the highlighted terms are the Stack Overflow tags. Removing

the non Stack Overflow tags not only gets rid of those misleading terms, but also removes

the stop-words, etc.

63

We consider each developer a document consisting of one or more sub-documents. Each

sub-document includes the textual elements of one of the bug reports assigned to that de-

veloper in the past. Later, we will use the time of each sub-document as a decay factor for

evidence of expertise of that developer regarding the keywords in that sub-document. Each

sub-document consists of a bug report’s title and description, plus the main languages of the

project (after removing non-Stack Overflow tags). We assumed main language of a project

as any programming language that contains at least 15% of the lines of code of that project.

We propose our similarity metric that is obtained from TF-IDF, but is time-aware and

relies on fixed term weights, to give a score to each developer.

3.3.1 TF-IDF

The traditional TF-IDF was described in the previous Section in Equation 2.2. The provided

definition was assuming that each term appears only once in q. To generalize this to include

repeats of the terms, the measure becomes as follows:

score(q, d) =
∑

t∈q

freq(t, q) · tf(t, d) · idf(t,D) (3.1)

In the above formula, t is a distinct term in q, and, freq(t, q) is the frequency of the term

t in query q. The promises of TF-IDF is to differentiate between general and specific terms

by calculating two main components tf and idf ; tf (term frequency)9 measures number of

times a term, t, appears in document d, normalized by document length:

tf(t, d) =
of times t is mentioned in d

total # of terms in d
(3.2)

On the other hand, idf (inverse document frequency) measures the importance of a term

with regard to all documents in the corpus D:

idf(t,D) = log10

(

total # of documents in the corpus

of documents containing t

)

(3.3)

9Note that the definition provided here includes normalization and is one of the alternatives of tf which
we found more effective. The main definition of tf according to (Manning et al. 2008) is equal to “number
of occurrences of term t in document d”.

64

Regarding occurrence of a term “more than once” in the query or a document, there are

alternatives for the relative factors –i.e., freq(t, q) and tf(t, d). For this purpose, different

weighting schemes are used to normalize these two factors (Manning et al. 2008; Manning,

Schütze, et al. 1999). For example, occurrence of a term twice may or may not double the

value related to that term. We will embed a few of these normalization factors later in our

enhanced version for tuning.

With the original TF-IDF metric, the documents in a corpus can be ranked based on

their similarity with a given query. However, since a document (developer) contains several

sub-documents (e.g., the text of previously fixed bug reports) related to different times, we

adapt the formula in two steps to be applicable for our problem as mentioned in the following

sub-sections.

3.3.2 Focusing on a Thesaurus of Terms

We make two changes to the TF-IDF (one for each part; idf and tf), to make it more

suitable for our problem.

In addition to emphasizing on specific keywords, we would like to highlight “technical”

terms (i.e., important software programming keywords). So, we use a bigger thesaurus (than

the increasing set of documents as the corpus) to decide about technical value, specificity or

generality of a term. Instead of inferring idf from the corpus D; we replace idf(t,D) in the

Equation 3.1 by w(t), and calculate the score of document (developer) d for query (bug) q,

containing several distinct terms (t ∈ q) as follows:

score(q, d) =
∑

t∈q

freq(t, q) · tf(t, d) · w(t) (3.4)

In the above formula, w(t) is a generic term weight, independent of any particular project

(one time definition) obtained based on frequency of the tag t in all Stack Overflow questions.

For the term t, we define w(t) in the similar way idf(t,D) was defined in Equation 3.3:

w(t) = log10(
total # of SO questions

of questions tagged with t
) (3.5)

The idea is that the more a tag is repeated in different questions, the less specific the

keyword is (because it appears in many situations and becomes a common term). In other

words, tags that appear in a small number of questions are specific keywords which can infer

65

a specific problem and are more useful in keyword matching between query q and document

d (i.e., the new bug report and a developer).

Stack Overflow covers the used terminology in open-source projects. All the tags are

technical, programming keywords curated by expert programmers10. So the above formula

identifies the technical terms, and, among them, weights the general keywords (that appear

frequently in different documents and are not much informative) lower than the specific

ones. The keywords that are not a Stack Overflow tag are filtered and removed from the bug

reports. In other words, the set of tags of Stack Overflow is considered as the thesaurus of

technical terms and the rest of the words are not considered. In addition, our weighting is

constant and there is no need to re-calculate it after processing each bug report, unlike the

idf values (note that the tf value still needs to be calculated for each new bug report)11. In

addition to other technical benefits, the above points lead to speeding up the computations

in the assignment process as we will see later.

The second amendment to the original TF-IDF is regarding the tf formula. Since each

document (i.e., developer) consists of several sub-documents (i.e., text of their previously

fixed bugs), we calculate the tf value in each of its sub-documents separately, and then

aggregate them over all the sub-documents. This, allows considerations (e.g., normalization)

based on sub-document length to preserve the effect of all the sub-documents equally. So,

the tf will be as follows:

tf(t, d) =

nd
∑

j=1

tf(t, sdj) (3.6)

In the above equation, sd represents a sub-document and nd is the number of sub-

documents of d (i.e., the different assigned bugs to a developer in our problem, or generally,

any other work evidence of that developer). This will replace the tf(t, d) factor of the scoring

function in Equation 3.4. This granularity in sub-document (previously assigned bug) level

rather than document (developer) level also allows considering time of each sub-document

in the next step.

10Only top Stack Overflow developers with a minimum reputation of 1,500 can create new tags or manage
them

11Note that for higher performance, the term weights, w(t), can be re-calculated once every while (e.g., ev-
ery few months), to consider the new Stack Overflow tags that might emerge.

66

3.3.3 Recency-aware Term Weighting

We consider a developer’s expertise as a sequence of evidence (constructed from a variety

of tasks that the developer has contributed to the project), called sub-documents (e.g., the

textual elements of previous bugs assigned to a developer). The sub-documents belong to

different times (from years ago to a previous moment). Over time, developers’ interest, their

expertise and even their assigned module change. In fact, there is decay in expertise and

change in interest areas of developers (Matter et al. 2009; Sajedi-Badashian et al. 2015;

Servant and Jones 2012; Shokripour et al. 2015). Evidence of expertise for developer d1

about subject matter x that occurred last week is more important than other evidence for

developer d2 about x that occurred last year.

In order to capture the time of usage of the keywords in calculating the tf in Equation 3.6,

which affects the total score of Equation 3.4, we inject a recency factor. The idea is to weigh

the recent sub-documents of document (developer) d higher than the old ones. Intuitively,

expertise of people decays over time exponentially (Carlson 2015). However, according to

the literature (ElSalamouny et al. 2009), the decay principle can be implemented in many

ways, including time-based and event or activity based. We try two recency options for

sub-documents based on the previous research. First, we just consider the timestamp of

the sub-document, according to (Servant and Jones 2012). We calculate the recency of a

sub-document as the portion of time up to the time of occurrence of the sub-document to

the total time –which is between zero and one. For sdj, the j
th sub-document of d, we define

the “absolute time-based” recency, abs recency(sdj) as shown below:

abs recency(sdj) =
date(sdj)− beginning date of project

today − beginning date of project
(3.7)

Alternatively, the recency of a document can be estimated based on the amount of work

(e.g., bug fixes) that has been done after a specific evidence of expertise (or interest), as a

decay factor of that expertise (Sajedi-Badashian et al. 2015). We calculate the recency as the

inverse of the number of sub-documents occurred between this sub-document and the bug.

The value of this recency factor is again between zero and one. The “relative activity-based”

recency factor for sdj, the jth sub-document of d, is calculated as shown below:

rel recency(sdj) =
1

1 + number of other sub-documents occurred after sdj
(3.8)

67

In the above two definitions, since the older documents (i.e., evidence) are out-dated,

their weight decreases. On the contrary, the weight for the new documents increases. We

will test both these factors in the tuning of our algorithm and compare their efficiency. With

the injection of recency factor in Equation 3.6, the tf(t, d) for term t in document d will be

as follows:

tf(t, d) =

nd
∑

j=1

tf(t, sdj) · recency(sdj) (3.9)

Finally, substituting this new definition of tf(t, d) in the score function of Equation 3.4,

we obtain score(q, d) as our final similarity metric between query (bug) q and document

(developer) d:

score(q, d) =
∑

t∈q

freq(t, q) · w(t) ·

(

nd
∑

j=1

tf(t, sdj) · recency(sdj)

)

(3.10)

In the above equation, t is any distinct term in q, nd is the number of sub-documents

of d (e.g., the number of previous assignments of any bugs to the developer d) and w(t) is

the weight of the term t. We use the above scoring function for assessing the suitability of a

developer for a given (new) bug report. We calculate the above score for each member in the

developer community. Then sort and rank them based on their obtained score. We call our

approach TTBA (Thesaurus and Time based Bug-Assignment). We evaluate TTBA using

real BA data from several open source projects regarding different evaluation measures as

described in the next sections.

3.4 The Data Set

We use the same data set of 13 projects as described in Section 2.6.1. We choose T5 as the

definition of ground-truth assignee. This notion includes anyone who worked towards fixing

the bug in any of the four manners; 1) the author of a commit referencing a bug as resolved,

2) the committer (co-author) of a commit referencing a bug as resolved, 3) the developer

who closes the bug and 4) the developer who is tagged as “assignee” when the bug is closed.

So practically, a bug report can have several real-assignees at different points in time (e.g., a

bug report is closed and opened again several times, each time assigned to a developer who

does some work), all of which are proper fixers to be considered as ground truth (Anvik et al.

2006; Sajedi-Badashian and Stroulia 2018a).

68

Regarding community of developers that could be considered as assignees, we extracted

and stored information of all the project members in Github12. In each project, we run the

algorithm for all its members, rank them for each bug report and recommend the top ones.

Regarding the Stack Overflow data, we used the Stack Exchange Data Dump (I. Stack

Exchange 2017) provided by Internet Archive. We only used the tags and posts information,

in order to obtain the weights as mentioned before in Equation 3.5.

Our source code, data set, input and output files (as well as documentation for running

the code in simple steps) are available online1. It is one of the most comprehensive data

sets currently available for bug-assignment regarding selection of projects (i.e., based on

popularity in Github), duration of projects, number of bug reports and community members.

3.5 Evaluation

To investigate the effectiveness of our approach, we evaluate the recommendations of our

method by comparing them against the ground-truth assignees in the above data set. For

each bug in the projects, we use the metric defined in Equation 3.10 to assign a relevance

score to each developer member of the potential-assignees community, and then sort them

based on this score from high to low to recommend a ranked list of developers. Once a bug

is processed, we update the list of ground-truth assignees associated with this bug in all

future assignments, to include all past assignees. Based on the position of the ground-truth

assignee(s) in our recommended ranked list, we evaluate and report the effectiveness of our

approach.

Note that there is no need to divide the data set to training and test sets. In fact, our

approach is on-line; at each point in time, for predicting the assignee of a given bug, we use

all the evidence from beginning up to previous bug. The first few assignments would be less

accurate, but while it proceeds with any new assignment, it updates the documents (technical

terms in bug reports fixed by each developer) as the expertise profiles of developers.

We perform two types of evaluation; first, we compare TTBA against other methods we

implemented; TF-IDF and Time-TF-IDF (Section 3.6.1). Then, we compare our results

against the reported results of 13 other studies in the literature (Section 3.6.2). Before doing

so, in the rest of this section, we introduce the metrics we used for evaluation, and evaluate

the impact of parameters in the formulation of TTBA.

12Github has APIs for returning members of a project; https://developer.github.com/v3/repos/collaborators/

69

3.5.1 Evaluation Metrics

As we mentioned in previous chapter (in our survey on BA), the best evaluation measure for

BA is Mean Average Precision (MAP). After MAP, there are 10 other widely used metrics

in the literature that are recommended for reporting the results. These measures are Mean

Average Precision (MAP), top-k accuracy (k = 1, 5 and 10), Precision @k (k = 1, 5 and 10),

Recall @k (k = 1, 5 and 10) and Mean Reciprocal Rank (MRR).

In order to enable the reproducibility of our work, we report our results based on all these

metrics (11 metrics in total) for our experiments including a comprehensive set of projects

and bug reports. In addition to implementing two other methods and comparing our results

against them on the same data, we report a meta-analysis by comparing our results against

previous studies, using their reported results on any of these 11 metrics.

3.5.2 Tuning and Optimization

There are a number of factors about how to run the algorithm that can affect the outcome

of our approach. We considered a number of these factors in an optimization experiment on

three test projects13 to obtain the best configuration for our evaluation metric. We mention

the main ones called primary factors here (the full list of considered factors as well as the

detailed process of tuning is available in Appendix 3.A). To optimize our approach regarding

these factors, we selected a few possible values for each of those factors –based on literature

and also our previous experience in optimizing assignment problems (Manning et al. 2008;

Sajedi-Badashian et al. 2016; Servant and Jones 2012):

• Weighting: The term-weighting provided by w(t) provides an option to emphasize

on specific keywords in our main scoring function. This factor has two options; “do

not use term-weighting” and “use term-weighting”. The former includes the constant

value of “one” for all the terms. In the later case, we consider the term weighting

obtained from Stack Overflow as a thesaurus to emphasize on specific keywords.

• Recency: The recency factor provided by recency(sdj) enables emphasis on recent

usage of keywords in our main scoring function. It has three options; “no recency”,

13We divided the projects into three categories; projects with 1k-, 1k to 10k and 10k+ bug-assignments.
There are 4, 4 and 5 projects respectively in small, medium and large categories. Then, we selected the
smallest of each category for tuning. The idea was to optimize on relatively low number of bugs and
leave more bug reports for the main experiment. The selected projects are: lift/framework, fog/fog and
adobe/brackets. The percentage of bug reports used for optimization is ∼13%.

70

“abs recency” and “rel recency”. The first option disregards the time of usage of the

keywords and applies a constant value of “1” for the recency(sdj) factor in our scoring

function. The next two options are as described before in Equations 3.7 and 3.8.

We used three projects (one from each category; small, medium and large) for optimizing

the above parameters, using extensive 2d exploration (Blanco and Lioma 2012; Craswell

et al. 2005). We performed a mutation experiment –also called grid search (Tatsis and Par-

sopoulos 2016) or exhaustive parameter search (Zhai and Lafferty 2002)– to obtain the best

configuration for the above parameters. We considered all the possibilities of the parameters

and obtained the results for the three test projects on all those combinations. The optimiza-

tion took two hours in total14. The best obtained case is as follows; “use term-weighting”

and “rel recency” (see Table 3.1 for their optimization results). The best configuration for

primary factors is shown in bold and grayed cells in the table. In addition of those factors,

there are other less-important factors, which we call secondary factors. These factors only

have minor effect on MAP and for brevity we omitted them from this table (see Appendix

3.A for details of this mutation experiment as well as the minor effects of secondary factors).

Table 3.1: Obtaining best configurations for the main factors affecting the accuracy of TTBA
Weighting Recency MAP

do not use
term-weighting

no recency 0.3685
abs recency 0.3865
rel recency 0.5405
no recency 0.3728
abs recency 0.3933

use
term-weighting

rel recency 0.5447

The recency makes the most difference in the results. Especially rel recency which is

based on relative amount of work is more effective than abs recency, which is solely based

on time. Using either of rel recency or abs recency is better than having no recency. The

other effective parameter is term-weighting. Having term-weighting increases the MAP in

all combinations of the other parameter.

We just used the three test projects in the above steps and did not tune our method on

other projects since it is a time-consuming task. Also, it would be unfair to optimize on the

whole data set. However, doing so, even better overall results might be obtained. In the

14This time includes optimization for primary factors (as shown here) and secondary factors (as shown in
the Appendix). All the experiments and optimizations are done on a machine with Core i7 CPU and 16GB
of RAM.

71

next section, we use the obtained values from the optimization step as the final experiment

configuration. In order to avoid bias, we exclude the three test projects, and run the main

experiment on the remaining 10 projects.

3.6 Results

In this section, we compare the performance of our method (a) against two baseline methods

on the same data set, and (b) against the performance of other methods as reported in the

literature, as a quick meta-analysis.

3.6.1 Comparisons Against Implemented Baseline Methods

We implemented the baseline TF-IDF method as well as Time-TF-IDF method (Shokripour

et al. 2015) and compare our results against them. The final project-based results as well as

overall results are shown in Table 3.2. To avoid bias, we excluded the three test projects in

this step. The overall MAP over the other 10 projects is even (around 3%) better than the

MAP over three test (tuning) projects. Our MAP ranges between 0.51 and 0.71 in different

projects with an overall value of 0.57. Full details of all 93k bug-assignments as well as Java

source code of the implementation of the three methods are available in our repository1.

Considering overall results (over 10 projects) regarding all the 11 metrics, our approach,

TTBA, outperforms the two other implemented methods.

TTBA thoroughly outperforms the baseline TF-IDF ; regarding all the metrics (i.e.,MAP,

top-k accuracy, precision @k, recall @k and MRR), in all single projects as well as overall

values, TTBA obtained better results. The per-project MAP values for the baseline TF-

IDF method are between 0.32 and 0.60 (which are between 6% to 25% lower than the MAP

values of TTBA in the same projects) and the overall MAP is 0.41 (16% lower than TTBA).

Also, TTBA outperforms Time-TF-IDF (Shokripour et al. 2015), regarding most metrics,

and most projects. The project-specific MAP values in Time-TF-IDF range from 0.42 to

0.66 (which in 9 projects are between 3% to 12% lower than MAP values of TTBA and in

one small project 5% higher) and the overall MAP is 0.49 (8% lower than TTBA).

Generally, TTBA works much better in bigger projects. Excluding Yui3 and a small

number of project-specific results, TTBA works better regarding all the other metrics. We

will discuss more about these results in the Discussions (Section 3.7).

72

Table 3.2: Comparing TTBA results against TF-IDF and Time-TF-IDF (Shokripour et al. 2015)

Project Method
Top1
(%)

Top5
(%)

Top10
(%)

p@1 / r@1 p@5 / r@5 p@10 / r@10 MRR MAP

Khan-
exercises

TF-IDF 25.79 68.26 85.06 0.26 / 0.22 0.16 / 0.66 0.10 / 0.84 0.43 0.42
Time-TF-IDF 39.56 81.68 87.98 0.40 / 0.35 0.19 / 0.80 0.10 / 0.88 0.57 0.55

TTBA 57.18 85.41 89.26 0.57 / 0.52 0.20 / 0.84 0.10 / 0.89 0.69 0.67

Yui3
TF-IDF 42.35 73.17 83.15 0.42 / 0.37 0.16 / 0.70 0.10 / 0.81 0.56 0.53

Time-TF-IDF 56.76 78.71 86.25 0.57 / 0.50 0.18 / 0.76 0.10 / 0.85 0.66 0.64
TTBA 50.11 75.83 84.81 0.50 / 0.44 0.17 / 0.73 0.10 / 0.83 0.62 0.59

Html5
rocks

TF-IDF 46.29 83.07 91.88 0.46 / 0.39 0.20 / 0.79 0.12 / 0.91 0.63 0.60
Time-TF-IDF 55.21 86.77 93.09 0.55 / 0.47 0.21 / 0.84 0.12 / 0.93 0.69 0.66

TTBA 66.63 87.17 92.69 0.67 / 0.57 0.20 / 0.82 0.11 / 0.91 0.76 0.71

Ghost
TF-IDF 55.42 75.27 86.84 0.55 / 0.43 0.18 / 0.68 0.11 / 0.83 0.65 0.58

Time-TF-IDF 55.45 83.00 90.90 0.55 / 0.43 0.22 / 0.79 0.12 / 0.90 0.68 0.64
TTBA 59.39 85.27 91.66 0.59 / 0.46 0.22 / 0.82 0.12 / 0.91 0.70 0.67

Travis-
ci

TF-IDF 41.35 71.20 77.23 0.41 / 0.40 0.15 / 0.70 0.08 / 0.76 0.54 0.53
Time-TF-IDF 51.83 75.54 79.54 0.52 / 0.50 0.16 / 0.74 0.08 / 0.79 0.62 0.61

TTBA 57.47 74.74 0.78 0.57 / 0.55 0.16 / 0.73 0.08 / 0.77 0.65 0.64

Angular
.js

TF-IDF 22.05 60.32 81.10 0.22 / 0.20 0.13 / 0.57 0.09 / 0.79 0.39 0.37
Time-TF-IDF 34.50 73.84 85.72 0.35 / 0.31 0.16 / 0.71 0.10 / 0.84 0.51 0.49

TTBA 46.47 79.87 86.19 0.46 / 0.42 0.17 / 0.76 0.10 / 0.85 0.60 0.58

Rails
TF-IDF 21.80 47.00 62.29 0.22 / 0.20 0.10 / 0.43 0.07 / 0.58 0.35 0.32

Time-TF-IDF 29.73 62.62 75.04 0.30 / 0.26 0.13 / 0.58 0.08 / 0.71 0.44 0.42
TTBA 41.42 69.91 78.69 0.41 / 0.36 0.15 / 0.66 0.09 / 0.76 0.54 0.51

Julia
TF-IDF 33.79 62.18 76.36 0.34 / 0.31 0.13 / 0.59 0.08 / 0.73 0.47 0.45

Time-TF-IDF 34.21 68.61 80.29 0.34 / 0.31 0.15 / 0.65 0.09 / 0.78 0.49 0.48
TTBA 45.67 71.80 81.02 0.46 / 0.41 0.16 / 0.69 0.09 / 0.80 0.57 0.55

Salt
TF-IDF 20.88 58.91 76.06 0.21 / 0.17 0.13 / 0.54 0.09 / 0.72 0.38 0.35

Time-TF-IDF 29.26 66.06 79.64 0.29 / 0.24 0.15 / 0.61 0.10 / 0.77 0.46 0.43
TTBA 43.28 72.63 81.14 0.43 / 0.36 0.17 / 0.69 0.10 / 0.79 0.56 0.53

Elastic
search

TF-IDF 25.28 55.70 72.97 0.25 / 0.23 0.12 / 0.53 0.08 / 0.70 0.40 0.38
Time-TF-IDF 32.04 67.71 82.19 0.32 / 0.29 0.14 / 0.65 0.09 / 0.80 0.48 0.46

TTBA 47.61 73.97 84.71 0.48 / 0.44 0.16 / 0.71 0.09 / 0.82 0.59 0.57

Total
(13 proj)

TF-IDF 28.92 60.05 75.44 0.29 / 0.25 0.13 / 0.56 0.08 / 0.72 0.43 0.41
Time-TF-IDF 35.80 69.84 81.52 0.36 / 0.31 0.15 / 0.66 0.09 / 0.79 0.51 0.49

TTBA 47.50 74.73 82.93 0.48 / 0.42 0.17 / 0.72 0.10 / 0.81 0.59 0.57

Max (13
proj)

TF-IDF 55.42 83.07 91.88 0.55 / 0.43 0.20 / 0.79 0.12 / 0.91 0.65 0.60
Time-TF-IDF 56.76 86.77 93.09 0.57 / 0.50 0.22 / 0.84 0.12 / 0.93 0.69 0.66

TTBA 66.63 87.17 92.69 0.67 / 0.57 0.22 / 0.84 0.12 / 0.91 0.76 0.71

3.6.2 Comparison Against Results Reported in the Literature

Different bug-assignment studies reported the performance of their methods on different

metrics. Moreover, the assumptions and settings of various studies differ a lot (e.g., definition

of ground-truth assignee and developer community and filtering inactive developers). These

differences make it is hard to compare a new method against previous approaches. In our

previous research (Sajedi-Badashian and Stroulia 2018a), we reported 13 exemplary BA

studies (the 13 state-of-the-art approaches, mentioned in Section 2.3) as good candidates for

73

further comparison and meta-analysis. They have fairly good number of bugs and developers

in their projects and did not have major data filtering. Here, we compare our results against

their published results.

Since we obtained our results based on various metrics in addition to MAP (i.e., top-k

accuracy, precision @k, recall @k and MRR), we are able to compare the performance of our

method against all those studies (regarding one or more metrics for each study). Each of

these studies reported their results on their chosen projects, without providing average results

over all bug reports in all their projects. Thus, it is hard to make a pairwise comparison

between any two studies. So, we compare our final, overall values (which is obtained over all

bug reports of all our projects) against results of each project in those baseline approaches.

Table 3.3 shows this comparison.

On all the metrics, the highest values are related to one of projects in TTBA. Regard-

ing the overall (total) values, TTBA surpasses the results of all the projects of 8 stud-

ies; (Čubranić and Murphy 2004), (Canfora and Cerulo 2006), (Tamrawi et al. 2011b),

(Shokripour et al. 2012), (W. Zhang et al. 2016b), (Cavalcanti et al. 2014b; Cavalcanti et al.

2016) and (Sun et al. 2017). There are a few cases in other 5 studies that they work partially

better than TTBA:

(Jeong et al. 2009) obtained around 2% higher top-5 accuracy than our average in Eclipse,

but 4% lower in Mozilla. (Matter et al. 2009) has almost the same precision @5 and @10

comparing to TTBA, but at least 10% below our average results regarding precision @1,

and recall @1, @5 and @10). (Tamrawi et al. 2011a) evaluated their results over 7 projects.

Their top-1 accuracy in two projects and top-5 accuracy in four projects are slightly better

than our average. TTBA outperforms their reported results in the rest of the projects.

The maximum and average of their values over all projects are lower than our maximum

and average. (Bhattacharya and Neamtiu 2010; Bhattacharya et al. 2012) has slightly (2%)

better top-5 accuracy than our average, but our top-1 is around 15% higher than their results

in both projects.

3.7 Discussion

We tuned our approach on three projects in our data set and then tested it on the remaining

10 projects. The final results on the 10 projects were even better than the tuning results.

The improvement in the final results (over the results of tuning phase) shows that the

74

optimization is general and robust enough. On average, our method (TTBA) has overall

MAP of 0.57. The high obtained MAP in our experiment shows that in most cases the

ground-truth assignees are successfully retrieved and ranked at the top few ranks of the

recommended list. This is also proved by the high values on the other reported metrics. For

example, in 47.5% of the cases, TTBA recommends one of the ground-truth assignees in the

first rank, in 74.73% of the cases in the first 5, and, in 82.93% of the cases in the top 10

ranks.

Table 3.3: The evaluation measures and other design choices of the selected research
Method /
Project

#devs #bugs
Top1
(%)

Top5
(%)

Top10
(%)

P@1 / r@1 p@5 / r@5 p@10 / r@10 MRR MAP

TTBA(our approach)
Total (13 proj)

75-4,079 566-16,184
47.50 74.73 82.93 0.48/0.42 0.17/0.72 0.10/0.81 0.59 0.57

Max (13 proj) 66.63 87.17 92.69 0.67/0.57 0.22/0.84 0.12 / 0.91 0.76 0.71

(Čubranić and Murphy 2004)
Eclipse 162 15,859 30.00

(Canfora and Cerulo 2006)
Mozilla 637 12,447 - / 0.12 - / 0.21 - / 0.24
KDE 373 14,396 - / 0.05 - / 0.10 - / 0.12

(Jeong et al. 2009)
Eclipse 1,200 46,426 77.14
Mozilla 2,400 84,559 70.82

(Matter et al. 2009)
Eclipse 210 130,769 0.33 / 0.27 0.16 / 0.59 0.10 / 0.71

(Tamrawi et al. 2011a; Tamrawi et al. 2011b)
Firefox 3,014 188,139 32.1 73.9
Eclipse 2,144 177,637 42.6 80.1
Apache 1,695 43,162 39.8 75.0

Net Beans 380 23,522 31.8 60.4
FreeDesktop 374 17,084 51.2 81.1

GCC 293 19,430 48.6 79.2
Jazz 156 34,220 31.3 75.3

(Bhattacharya and Neamtiu 2010; Bhattacharya et al. 2012)
Mozilla ? 549,962 27.48 77.87
Eclipse ? 306,297 32.99 77.43

(Shokripour et al. 2012)
Eclipse ? ? - / 0.32 - / 0.71
Mozilla ? ? - / 0.27 - / 0.48
Gnome ? ? - / 0.10 - / 0.45

(W. Zhang et al. 2016b)
Mozilla ∼874 74,100 0.28 0.44
Eclipse ∼544 42,560 0.28 0.56
Ant ∼203 763 0.35 0.36

TomCat6 ∼79 489 0.35 0.37

(Cavalcanti et al. 2014b; Cavalcanti et al. 2016)
New SIAFI - A 70 781 31.40
New SIAFI - B 70 1031 22.00

(Sun et al. 2017)
JEdit 123 ? 28.0 60.1 79.8

Hadoop 82 ? 8.5 30.1 50.3
JDT-Debug 47 ? 14.4 46.6 66.4

Elastic 661 ? 13.6 43.6 75.2
Libgdx 345 ? 22.0 51.3 69.6

75

3.7.1 Intuitions About Comparison of the Implemented Approaches

Regarding overall results in all the 11 metrics, our approach, outperforms the two other

implemented methods (TF-IDF and Time-TF-IDF). Considering project-specific results,

our approach outperforms TF-IDF and Time-TF-IDF in almost all projects. In 7 projects

(Khan-exercises, Ghost, Julia, Elasticsearch, Salt Angular and Rails), our approach com-

prehensively works better than the two other methods. In two projects (Html5rocks as a

small project, and Travis-ci as a medium project), regarding some of the metrics, Time-

TF-IDF works better, but still in MAP and other evaluation measures our approach works

better. Note that between available BA evaluation metrics, only MAP is comprehensive

enough to include all the assignments of each bug report (Sajedi-Badashian and Stroulia

2018a). For example, in Html5rocks Time-TF-IDF is ∼1% higher than TTBA regarding

precision @5. However, this metric only considers first 5 recommendations and ignores the

rest, but regarding MAP, TTBA’s results are ∼5% higher. So again, in these two projects

(Html5rocks and Travis-ci), our approach outperforms the other two methods. The only

exception is Yui3 in which Time-TF-IDF has 5% higher MAP than TTBA. The reason can

be regarding its size and duration; Yui3 is the second smallest project, with the smallest

duration, i.e., ∼38 months (while the average and median over all projects are 61 and 67

months respectively). So TTBA’s high granularity of expertise of developers over time did

not work in this project as good as the other projects.

This fine-grained usage of data is especially evident in bigger projects; In four large

projects with 10k+ bug-assignments (Rails, Salt, Elasticsearch and Julia), our approach

obtained ∼10% and ∼20%15 better results than Time-TF-IDF and TF-IDF respectively.

The reason can be that in big projects, there are more bug-assignment data available, which

are scattered over various dates. It enables our fine-grained scoring function to utilize them as

various evidence of expertise distributed over time. On the other hand, in small projects, lack

of enough bug reports might bring uncertainty in making decision. Yui3, as the only project

in which Time-TF-IDF works better than our approach, is a small project. Html5rocks and

Travis-ci, in which in some measures (excluding MAP) Time-TF-IDF competes against our

approach are respectively small and medium projects.

We captured the details of the system we ran our experiments on. On a computer with

Core i7 CPU and 16GB of RAM, it took between 1 to 26 seconds to run for each project

(average = 12s), depending the number of bugs to be assigned. We found that it is quite fast;

15Note that in all the comparisons of this study, the absolute difference is mentioned, not relative difference.

76

the average time for assigning developers to each bug, considering the data of all projects, is

1.7 milliseconds. In total, it took 138 seconds for doing all the 93k bug-assignments. The two

other approaches, TF-IDF and Time-TF-IDF, took 413 and 465 seconds respectively. There

are two reasons for this speed up in TTBA. First, TTBA does not re-calculate the idf values

after processing each bug report (which includes updating indexes and statistics related to

frequency of the terms in the corpus); instead, it replaces it by w(t) which is calculated once

over the Stack Overflow data as pre-processing (although this does not need to be calculated

every time, we measured its time; the pre-processing on Stack Overflow data took 63 seconds,

which is again quite fast). Note that our approach still needs to calculate the tf values for all

sub-documents (i.e., previously assigned bug reports to a developer). Second, TTBA filters

the non-technical terms (i.e., any term except the Stack Overflow tags), and in fact, shortens

the bug reports. As a result of these two enhancements, TTBA works more than three times

faster than the other two compared methods.

3.7.2 Intuitions About Comparison of Reported Results

From a higher perspective, we compared the TTBA results against the reported meta-data of

13 best studies in the field. We showed that TTBA completely outperforms 8 studies. Five

studies obtained better results regarding some metrics in a few projects, but we achieved

much better results regarding several other metrics / projects. Note that over all the metrics,

the highest values are obtained in one of our projects.

Regarding the dimensions of variability of the data sets (number of projects, bug reports

and developers), our data set includes more challenging situations. It includes abundant

of bug reports, more than most previous research in the area. With respect to number of

developers per project (which is a key factor in the difficulty of assignee recommendation in

a project), our data set includes the most populated projects (in average, 1,132 developers

per project). So, the overall situations of our data set is more difficult than most mentioned

studies in Table 3.3. Also the data we use is the simplest form of data used for BA (only

bug reports’ title and descriptions). As a result, competing against the meta-data reported

by them as mentioned in the above table is fair and reasonable.

Regarding limitations, unlike some other studies mentioned in Table 3.3 (Matter et al.

2009; Shokripour et al. 2012; Sun et al. 2017), there is no dependency on specific information

(e.g., interaction histories between developers, heavy historical changes on the source code

files, the component and severity of the bug, etc.), other than title and description of the

77

bug reports, which are easily accessible in any open-source repository.

Unlike most previous research that we reported their results in Table 3.3(Bhattacharya

and Neamtiu 2010; Bhattacharya et al. 2012; Cavalcanti et al. 2014b; Cavalcanti et al.

2016; Čubranić and Murphy 2004; Jeong et al. 2009; Matter et al. 2009; Tamrawi et al.

2011a; Tamrawi et al. 2011b), our approach does not need big training data sets. Most

those approaches utilize ML algorithms and require big training steps, which make their

approach incapable of recommending assignees –with high accuracy– for the first portion of

their data set. We tested our approach from the first bug, to the last one, with no training

data. In fact, the training data of our approach includes every bug report is being processed

for assignment in our main experiment. For predicting assignee for bug report #n, the

information of n-1 previous bug reports were considered. Starting from the first bug report,

every bug it processes, it builds the sub-documents (i.e., the text of the bug reports fixed

by each developer up to that point in time) as the expertise profiles of developers and uses

them in the next ones. Considering the first part of the data set as training set (like those

studies), would even increase our accuracy.

Considering the fact that the above research were the most reproducible research se-

lected for comparison and meta-analysis (Sajedi-Badashian and Stroulia 2018a), and aggre-

gating with the obtained results regarding superiority of our approach against two other

implemented methods (TF-IDF and Time-TF-IDF), we argue that TTBA outperforms the

state-of-the-art methods and is capable of precise assignee recommendation.

3.7.3 Threats to Validity

Like any other research, there are some possible challenges and threats to validity;

Construct validity:

A validity threat is about the definition of ground-truth assignee –e.g., “the developer who

is tagged as assignee at the closing time, the developer who closes the bug, or any other

developer who works towards fixing the bug” (Sajedi-Badashian and Stroulia 2018c). One

can argue that in reality, this might not be the best person to fix the bug and there are other

developers in the project who may be better choices. To address this issue, we argue that

the best way to identify “all” the (possible) ground-truth assignees of a bug would be to

discuss it with a project manager and tag all the appropriate developers as right assignees.

Unfortunately, this plan needs a lot of effort and is too expensive. So, we defined the “right

78

assignee” based on the combination of the definitions used in the literature (Sajedi-Badashian

and Stroulia 2018c). This is the most comprehensive definition of assignee that has been

used up to now.

Internal validity:

In order to capture the ground-truth assignees (i.e., the ground truth to validate our ap-

proach), we used projects that use Github’s issue tracker. We looked for bugs in Github projects

and their certain links to the commits and issue (bug) events, to find the ground-truth as-

signees. Although it is a common practice to mention and preserve those links in Github’s

open-source projects (Github 2017a), there might be some missing links (Bachmann et al.

2010) that are not considered here. This can lightly affect the validation of our approach.

Note that validation of these cases and inclusion of the full links between commits and bug

reports is a tedious task, that needs to be done manually (Bachmann et al. 2010). To the

best of our knowledge, no previous research has done this manual process. All the previous

research in the field evaluated their approach by comparing their results against heuristic-

based ground-truth extracted automatically from available data of software projects.

We found that there are some bug reports that have no, or only a few, Stack Overflow tags.

If there are many such bugs in a project, the effectiveness of our approach will suffer. To

address this issue, we programmatically counted the tags in each bug report. The bug reports

of each project have 20 tags in average (between 11 to 32 tags in average in each project,

with median 19). This number of tags is more than enough to convey the idea of a bug

report. Only around 1% of the bugs have fewer than three tags and 5% have fewer than five

tags. 75% of the bug reports have ten or more tags. For extreme cases where not enough

tags are included in the text of the bug reports, we outline some potential means to expand

the keywords in Section 3.8 as a future work.

There may be very short tags that are usually used along with other tags (e.g., “r” that

usually is used with “rstudio”, “plot”, “sentiment-analysis”, etc). In Stack Overflow, they

are also explained by the question description. Their use may be problematic (e.g., the

developer may mean the name of a simple variable, not the meaning indicated by the tag).

In addition, some tags are generic words that have specific meanings (like the term “this”,

which is also a Java keyword) and may be misrepresenting. To address this issue, first, we

checked the length of all the tags; there are in total 46,278 tags. Among those, 11 and 152

tags are one- and two-letter tags that usually come with other tags and it is hard to use

79

them as indication of meaning outside of Stack Overflow. To avoid false positives, these tags

can simply be ignored since their number is low. The rest of them, 46,115 tags in total, are

considered to filter the bug reports’ textual elements (1,730 of them have three letters and

the rest have four or more letters). Note that, as mentioned in the previous issue, usually

(in 99% of the cases) there are enough tags in the text of the bug report. Moreover, in the

case of misleading tags, again, we refer to the above statistics; since there are enough tags in

each bug report, the combination of remaining terms usually is enough to converge toward

the general idea of the bug report and usually cover the possible false positives. So, some

of them may be eliminated through a stop-word removal step, as we mention in the future

works.

Some tags have synonyms in Stack Overflow which are identified by the expert developers.

We did not merge those synonyms. For example, “crypto” is a synonym for “cryptography”.

Merging the two includes changing all occurrences of “crypto” in the textual elements of

all the bug reports to “cryptography”. Also, it needs to merge the statistics of usages of

the two terms into one term in Stack Overflow. In addition, synonym suggestion techniques

(Beyer and Pinzger 2015) can be used for even enhancing the accuracy. These updates might

change the weights and may lead to better accuracy but needs extra effort. While we agree

that this can be considered as future work, we anticipate minor effect on the outcome since

the number of synonym pairs in Stack Overflow is quite low, compared to the total number

of tags (Beyer and Pinzger 2015).

Some of the tags are combinations of several keywords –e.g., “pull-request”, “active-

record-query”, “for-loop”, “http-status-code-403”, “elasticsearch-java-api” and “jdk1.8.0”,

but they are not consistently used by everyone. The developers may combine these keywords

the same way Stack Overflow does, or in a different manner (e.g., with capitalization, space,

underscore and so on). Consider the tag “jdk1.8.0” as an example; it may be found as “jdk

1.8.0”, “jdk 1.8.0”, or “jdk 1 8 0”. To address this issue, we did a cleaning step before

running our approach; considering the textual elements of the bug reports, we applied a set

of heuristics that concatenate consequent keywords with/without valid connections (i.e., “.”

and “-”) to build possible composite tags. To avoid false positives, we have put limitations

for the length of the combined terms. At the end, we have made joint tags from two, three

and four consecutive keywords in the bug reports (respectively 11,999, 1,008 and 51 Stack

Overflow tags with 236,905, 5,746 and 228 total occurrences in the bug reports).

One aspect that can diminish the performance of our approach is the changes during

80

time. For example, the set of developers change and new Stack Overflow tags appears. We

answer that this can only have a negative effect on the accuracy of our approach in long term.

For example, it takes long time (e.g., several months) to appear a set of new programming

concepts and keywords, being adopted by Stack Overflow users as tags, and being used by

the developers in the description of bug reports. Moreover, to address this issue in long

term, we can re-calculate the term weights once every few months, based on new set of tags

in Stack Overflow. Also, if new developers join the project, they will not be assigned any

bugs for a short time. However, they will be assigned to new bugs after showing their level

of expertise in a few bug reports (e.g., fixing some bugs). Also if a developer is removed from

the project, our expertise metric gradually lowers their position in the list since they do not

have any recent activity. Besides all these arguments, these changes (to developers or tags)

can be considered and applied in our metrics by the project managers to obtain even higher

accuracy than we showed in this study.

External validity:

We showed that use of Stack Overflow tags as a rich thesaurus to obtain term weights is

efficient and straightforward. There is no doubt about this usefulness in open-source topics

and projects. However, one may argue that it might not be as useful in some specific

contexts. There may be some terminology in certain pieces of technology (e.g., related to

proprietary software) that are not covered much by Stack Overflow tags. We argue that

in these cases, the term weighting can be obtained using the alternative networks or Q&A

systems (e.g., the developer network of the proprietary software). In fact, the main idea

remains the same; utilization of a thesaurus from a developer network to extract a set of

mostly referred keywords (referred to as the thesaurus) can help to obtain the required

domain-specific term weights.

One may mention that TTBA does not assign any bugs to the newcomers since they

have no previously assigned bugs, hence they have no sub-documents. So, they are given a

score of zero. We argue that this is true for any bug-assignment method, because at each

point in time, they only assign bugs to the developers who have some evidence of expertise

in the system, up to that point in time. When predicting the assignee for a bug that is

assigned to a newcomer, d1, like any other bug-assignment method, TTBA fails to predict

the correct assignee since there is no previous evidence for d1. It gives the score of zero to

d1. However, after this point in time, there will be one evidence for d1, and TTBA calculates

81

a positive score for d1. With processing more bugs having d1 as the ground-truth assignee,

more sub-documents are stored in the data set as his evidence of expertise, and his chance

of being recommended increases.

3.8 Conclusions and Future Work

In this study, we described TTBA, a new BA approach based on developers’ previous con-

tributions in project. We used Stack Overflow as a thesaurus of technical terms to identify

the importance and specificity of keywords and utilized it along with recency of developers’

work in a scoring function for BA. We demonstrated that our method outperforms most

state-of-the-art methods. TTBA does not require training; at each point in time it uses only

the previous bug fixes. It might not produce very good results for the first few bug reports

of each project but improves quickly by obtaining some BA data and using them as evidence

of expertise.

Our BA metric considers previous bug fixing as evidence of expertise of developers,

but our preliminary investigations and results (not included in this study) show that it is

expandable to other sources of expertise in the repository like commits. We plan to consider

it as a future work.

Our data set is the most comprehensive data set used in this field, to our knowledge.

Our data set as well as our code in Github are available online1 for further researchers to

compare their method against our approach on our data set. As an extensive data set of

bugs and developers, it can also be used for any other BA experiment.

In the future, we plan to expand the tags in a bug report to infer new keywords with

query expansion or graph-based methodologies. This way, we may eliminate the limited

number of tags in a few percentage of the bug reports and enhance the method’s accuracy.

Finally, some additional stop-words removal (e.g., removing generic Stack Overflow tags like

this, for or while) may increase the quality of the tags and enhance the accuracy of our

approach.

Currently, for each tag, we considered weights based on appearance in Stack Overflow.

Then used these weights constantly for all the projects. This can change to obtain a better

accuracy. One would envision using more specific weighted keywords for each domain or

project. This can be done by altering the weights we obtained from Stack Overflow using

the information from domain or project. Alternatively, the weights can be obtained using a

82

completely different schema (e.g., based on occurrence of those terms in that specific domain

or project). The promises of this study, however, was to utilize the Stack Overflow as the

thesaurus, in addition to a fine-grained utilization of time in the usage of keywords, and we

showed that it works for the purpose of BA.

Acknowledgements

The work is supported by Graduate Student Scholarship16 funded by Alberta Innovates -

Technology Futures (AITF)17 and Queen Elizabeth II Graduate Scholarship 18 funded by

Faculty of Graduate Studies and Research (FGSR)19 at University of Alberta.

3.A Appendix: Details of mutation experiment for tun-

ing 6 parameters of our method

There are a number of factors that can affect the quality of our assignment. We introduce

them here, and consider their effect in a small experiment on a few test projects:

• Weighting: The term-weighting provided by w(t) provides an option to emphasize

on specific keywords in our main scoring function. This factor has two options; “do

not use term-weighting” and “use term-weighting”. The former includes the constant

value of “one” for all the terms. In the later case, we consider the term weighting

obtained from Stack Overflow as a thesaurus to emphasize on specific keywords.

• recency: The recency factor provided by recency(sdj) enables emphasis on recent

usage of keywords in our main scoring function. It has three options; “no recency”,

“abs recency” and “rel recency”. The first option disregards the time of usage of the

keywords and applies a constant value of “1” for the recency(sdj) factor in our scoring

function. The next two options are as described before in Equations 3.7 and 3.8.

• tf(t, sdj): having the text of the sub-document sdj, term-frequency can be measured

in a number of ways (Manning et al. 2008). We chose to test four simple definitions:

16https://fund.albertainnovates.ca/Fund/BasicResearch/GraduateStudentScholarships.aspx
17https://innotechalberta.ca
18https://www.ualberta.ca/graduate-studies/awards-and-funding/scholarships/queen-elizabeth-ii
19https://www.ualberta.ca/graduate-studies

83

◦ 1: “one” is the constant number considered when a term appears at least once

in the text. In this case the tf does not depend on the number of repeats of the

term in the text.

◦ freq: this is the frequency of the term in the text.

◦ freq/#ofTerms: this option normalizes the frequency of the term by dividing it

to the #ofTerms which is the length of the text (shown as textLength). Now, the

textLength can be itself considered in two cases as mentioned below.

◦ log: another normalization option that is increased logarithmically with increases

in the frequency of the term and is equal to 1 + log10(freq).

• textLength: in case we need to count#ofTerms in a piece of text (e.g., the freq/#ofTerms

option above), we have two options:

◦ before (b): in this case, the length of the original text (i.e., the text before remov-

ing any other keyword that is not Stack Overflow tag) is measured as #ofTerms.

◦ after (a): in this case, the length of the remaining text (that just includes Stack

Overflow tags) is measured.

• freq(t, q): we consider the four options similar to the tf mentioned above, except that

this is measuring the counts of the words for the query q. Like tf, in its third option

(freq/#ofTerms), the two cases for textLength will take effect as mentioned above.

• prioritizing previous assignees: As an enhancement in our overall assignment pro-

cess, we can consider a priority for the developers who have fixed at least one bug

before, over the rest of developers (i.e., at each point in time, first, rank the developers

who have fixed at least one bug up to that point, then rank the other members in the

developer community randomly (since they all have the score of zero). Note that this

way it gives a chance to the developers who did not have a common keyword with the

new bug and so obtained score of zero, but were active regarding other keywords, over

the other developers who were completely inactive). The options are “yes” and “no”.

Note that the data set is not filtered in any case and at each point in time, only the

previous evidence is used.

We used three projects for tuning. In order to select the projects for optimization,

we divided the projects into three categories; projects with 1k-, 1k to 10k and 10k+ bug-

assignments for small (4 projects), medium (4 projects) and large (5 projects) respectively.

84

Then, we selected one project per category; we selected the smallest of each category for

tuning: lift/framework, fog/fog and adobe/brackets. The idea was to leave the biggest

projects with more bug assignments for the main experiment.

We used extensive 2d exploration (Blanco and Lioma 2012; Craswell et al. 2005) and

performed a mutation experiment –also called grid search (Tatsis and Parsopoulos 2016)

or exhaustive parameter search (Zhai and Lafferty 2002)– for optimizing the parameters

and obtaining the best configuration. We considered all the possibilities of the different

parameters to create different configurations and obtained the results for the three test

projects in each case. In total, there are 276 different cases for our 6 factors to tune the

algorithm. So, we ran the program in a loop generating the above 276 cases. We obtained

the results of each run, and sorted them (descending) based on MAP, calculated over all the

bug reports of all the three projects. We looked the top 10% in the results, and observed

that we can decide for two of the parameters which we call primary factors. The primary

factors are those that frequently appear with fixed value in those top 10% records and it

is obvious that they have high effect on the output; weighting = “use term-weighting” and

recency = “rel recency”. The rest of parameters (“TF”, “prioritizing previous assignees”,

“freq(t, q)” and “textLength”) are called secondary factors for which we cannot conclude

anything at this step. For brevity, since the produced output contains too many results, we

do not report the detailed results of this step. The 276 configurations are as follows:

(A) Primary factors; Weighting and recency :

Weighting has 2 cases (“do not use term-weighting” and “use term-weighting”) and

recency has 3 cases (“no recency”, “abs recency” and “rel recency”).

This makes:

2 (two cases of weighting) × 3 (three cases of recency) = 6 cases .

(B) Secondary factors; tf(t, sdj), prioritizing previous assignees, textLength and freq(t, q):

tf(t, sdj) has four cases, and, in each case, ‘prioritizing previous assignees has two

cases (“yes” and “no”).

In three cases of tf(t, sdj) (“1”, “freq” and “log”), for each case of prioritizing previous

assignees, there are 5 cases for freq(t, q):

“1”,

“freq”,

85

“freq/#ofTerms” + textLength=“before”,

“freq/#ofTerms” + textLength=“after” and

“log”.

This makes:

3 (three out of four cases of tf(t, sdj)) × 2 (two cases of prioritizing previous

assignees) × 5 (five cases for freq(t, q)) = 30 cases.

In the other case of tf(t, sdj) (i.e., “freq/#ofTerms”), regarding each prioritizing pre-

vious assignees, there are 8 cases for freq(t, q) (four original cases for “freq”, times two

for the two cases of textLength; “before” and “after”).

This also makes:

1 (the last case of tf(t, sdj)) × 2 (2 cases of prioritizing previous assignees)

× 8 (four cases for freq, times two for the two cases of textLength; “before”

and “after”) = 16 cases.

So for the secondary factors there are 30 + 16 = 46 cases.

(C) Combining the above two sets (multiplying primary and secondary factors), in total,

there are:

6 (primary cases) × 46 (secondary cases) = 276 cases .

These cases took 2 hours in total to run on a machine with Core i7 CPU and 16GB of

RAM. After that, we set the primary factors to those values obtained from the previous

step (although we still do not know the exact effect of each primary factor and will examine

it at the end of this step). Then, run the code with 46 unique cases including all possible

combinations of the secondary factors. We obtained the best combination as shown in Table

3.4. The best configuration is shown in bold (and grayed cells) in the table.

It seems that the obtained MAP values are too close to each other. To check if there is a

significant difference between the result of different configurations of secondary factors, we

calculated the Coefficient of Variation (CV) of the MAP values mentioned in Table 3.4. The

CV is too low (0.0005). This indicates that these (secondary) factors have only minor effect

on the final MAP and they can be neglected. However, as a systematic way of 2d exploration

(Blanco and Lioma 2012; Craswell et al. 2005), we choose the best result because it may

86

Table 3.4: The results of optimizing secondary factors affecting the accuracy of TTBA

tf(t, sdj)
Prioritizing previous

assignees
freq(t, q) MAP

1

yes

1 0.5443
freq 0.5447

freq/#ofTerms
tL = b 0.5447
tL = a 0.5447

log 0.5442

no

1 0.5441
freq 0.5446

freq/#ofTerms
tL = b 0.5446
tL = a 0.5446

log 0.5440

freq

yes

1 0.5443
freq 0.5447

freq/#ofTerms
tL = b 0.5447
tL = a 0.5447

log 0.5442

no

1 0.5441
freq 0.5446

freq/#ofTerms
tL = b 0.5446
tL = a 0.5446

log 0.5440

1
tL = b 0.5443
tL = a 0.5443
tL = b 0.5448

freq
tL = a 0.5447

freq/#ofTerms
tL = b 0.5447
tL = a 0.5447

log
tL = b 0.5442

yes

tL = a 0.5442

no

1
tL = b 0.5441
tL = a 0.5441

freq
tL = b 0.5446
tL = a 0.5446

freq/#ofTerms
tL = b 0.5446
tL = a 0.5446

log
tL = b 0.5441

freq/#ofTerms

tL = a 0.5441

log

yes

1 0.5443
freq 0.5447

freq/#ofTerms
tL = b 0.5447
tL = a 0.5447

log 0.5442

no

1 0.5441
freq 0.5446

freq/#ofTerms
tL = b 0.5446
tL = a 0.5446

log 0.5441

87

make a higher difference when we run the code for the main experiment (10 remaining

projects) with several times more bug reports. The best results were obtained by setting

the secondary factors as: “tf(t, sdj)=freq/#ofTerms”, “prioritizing previous assignees=yes”,

“freq(t, q)=freq” and “textLength=before(b)”. By setting the secondary factors to those

best obtained values, the effect of different combinations of primary factors as shown in Table

3.1 can be compared (12 cases as discussed in part “A” above).

88

Chapter 4

An Investigation Into the Information

Value of Different Sources of Evidence

on the Developers’ Expertise for Bug

Assignment

89

Preface

In this chapter, we investigate the effectiveness of various sources of evidence of the devel-

opers’ expertise in the context of TTBA, including the trace of different activities in the

context of a project, as well as the developers’ contribution to social software platforms.

We extend TTBA to consider these multiple sources of expertise, each one with a differ-

ent weight. Next, we examine the performance of this Multisource variant of TTBA, and

demonstrate that some technical (e.g., text of previous bugs or commit messages) and social

(e.g., bug comments) contributions of developers are more important than the others.

This section is prepared for submission to IET Software journal.

90

Abstract

Bug assignment (BA), the process of ranking developers according to their potential abil-

ity to fix a given bug, is an important software-engineering task, which requires two key

pre-requisites: (a) the development of an expertise profile for each developer, and (b) the

formulation of a similarity metric, based on which to estimate the relevance of a developer to

the bug in question. Developers make different types of contributions to their projects, and

each of them typically leaves a trace in the team repository, which then raises the following

question: ”what is the information value of these various traces towards developing an ac-

curate profile for the developers’ expertise?” In this chapter, we report on a study designed

to address this question. This study makes the following contributions. 1) We investigate

the information value of different pieces of information in open-source repositories for BA.

We show that in addition to bug-fixing contributions, other technical and even social contri-

butions of the developers within the version-control system are useful information for BA.

2) We provide a curated, up-to-date data set1 including multiple types of information, all

relevant evidence of developers’ expertise, for 13 popular open-source projects in Github. To

the best of our knowledge, this data set is the most comprehensive one, currently available

for bug-assignment research. 3) We demonstrate how the effectiveness of the bug-assignment

process may be improved with this comprehensive expertise information, using our TTBA

similarity metric on the above data set.

1The data set, source code, documentations and detailed output results are available at:
https://github.com/TaskAssignment/MSBA-outline
This data set includes more than 93k BAs as well as other technical and social contributions of 30k developers.

91

4.1 Introduction

Bug assignment (BA) aims at identifying the most appropriate developers to fix a given bug.

The problem is usually formulated as ranking a number of available developers to fix the bug

(Bhattacharya and Neamtiu 2010; Matter et al. 2009; Tamrawi et al. 2011b). This was pre-

viously done by applying computing methods (like machine learning or similarity methods)

on a set of evidence of expertise of developers to recommend the proper developers to fix the

available bug. At a high level, two set of factors are important in BA research and can affect

the quality of the assignee recommendations: (a) the method for estimating developer-to-bug

relevance, and (b) the data elements considered for formulating the developers’ expertise.

Methods: Previously, researchers used machine learning, Information Retrieval (IR),

Fuzzy, Social Network Analysis and other methods to solve this problem (Bhattacharya and

Neamtiu 2010; Matter et al. 2009; Shokripour et al. 2012; Tamrawi et al. 2011b; Xie et

al. 2012; T. Zhang et al. 2016). During time, researchers tried to enhance the assignment

process by improving the technical methods (Aljarah et al. 2011; Khatun and Sakib 2016;

Tamrawi et al. 2011a). The methods became more intelligent and precise by providing more

accurate features, better filters, more explicit separation between elements of data (e.g., parts

of speech in an NLP method) and so on. Recently, some research appeared to combine two

or more of those methods to propose more efficient methods (T. Zhang et al. 2016; W. Zhang

et al. 2016b).

Data: Regarding the developers’ expertise, almost all the previous researchers used

the previous bug fixing history (Anvik et al. 2006; Khatun and Sakib 2016; Matter et al.

2009; Tamrawi et al. 2011b; Xie et al. 2012; W. Zhang et al. 2016b). Some researchers

considered more evidence like developers’ code (Hossen et al. 2014; Hu et al. 2014), meta

data –e.g., product and component– of previously fixed bugs (Aljarah et al. 2011; Anjali et

al. 2016) and tossing history of the previous bugs (Bhattacharya and Neamtiu 2010; Jeong

et al. 2009). Again, recently some studies combined several sources of data to obtain better

results (T. Zhang et al. 2016; W. Zhang et al. 2016b).

As most previous research in this area focused on improving the methods (and yet more

efficient methods are needed), enhancing upon the usage of data still has not been addressed

much, although it is not less important in terms of capability of enhancing the quality

of assignee recommendations. The previous BA research only addressed some of the basic

elements of data –mostly the previously fixed bugs or code commits. There is a huge potential

about what data to utilize and how, in order to improve the performance of bug-assignments.

92

To the best of our knowledge, no major effort has been done in previous research to investigate

the effectiveness of different pieces of information in BA.

In our previous research, we devised a new method, called Thesaurus and Time Based

Bug-assignment (TTBA) (Sajedi-Badashian and Stroulia 2018c). TTBA relies on two key

intuitions. First, instead on analyzing the complete text of bug descriptions and developers’

bug-fixing comments, it only examines a thesaurus of software-engineering terms, obtained

from the keywords in Stack Overflow. Second, instead of analyzing a developer’s record as a

whole, it analyzes it as a time-stamped sequence of sub-documents, each one corresponding

to a developer contribution to the project; in this manner, it weighs recent expertise more

than past expertise. In a previous study, we demonstrated TTBA’s effectiveness and showed

that it outperforms state-of-the-art methods. In its original formulation, TTBA only con-

siders bug-fixing contributions of developers. In this study, we extend the original TTBA

formulation to take into account more types of evidence of expertise, in order to investigate

the following research questions:

1. How can we combine various sources of expertise of developers to obtain an accurate

bug-fixer recommendation?

2. What is the information value of different sources of expertise of developers in open-

source projects for bug-assignment? How useful are social and technical contributions of

developers (other than previous bug fixing history)?

The answers to the above questions are useful for future research aiming to extend previ-

ous approaches around those grounds and to utilize more effective methods of assigning bugs

to developers. While it is impossible to consider all different types of data and combinations,

we address the above questions in some simplified settings. In a nutshell, in this study, we

make the following contributions:

1. We extend the TTBA method, to include multiple sources of expertise of developers.

We show that extending the sources of expertise can improve automatic BA and the

obtained enhancement is non-trivial.

2. Using our extended method, we investigate the information value of different pieces of

information available in social and technical contributions of developers in open-source

projects in Github. We show that while using pull requests’ information have minor

93

improvement over the accuracy of BA, commits, bug comments and their traces to the

developers’ names have major improvements.

In order to validate the effectiveness of our approach (first part) and to investigate the

effect of each piece of information in BA (second part), we provide a data set including

social and technical contributions of developers in 13 open-source projects in Github during

7 years. We publish this data set for further researchers to replicate our study, or to be used

for other BA studies as a rich data set.

4.2 Background and Related Research

During last decades, software engineering community has performed plenty of research ad-

dressing bugs and triaging problems. One of these problems is Bug Assignment (BA); Given

a new bug report, identify a ranked list of developers, whose expertise (based on their record

of contributions to the project) qualifies them to fix the bug (Bhattacharya and Neamtiu

2010; Hu et al. 2014; Khatun and Sakib 2016; Matter et al. 2009; Shokripour et al. 2015);

This is the most prevalent formulation of the BA task, which we address in our BA approach

–ignoring other BA-related scenarios and formulations; “team BA” (Jonsson 2013; Jonsson

et al. 2016), resolution-time minimization (Nguyen et al. 2014; Park et al. 2011; Park et al.

2016) and multi-objective BA (i.e., maximizing expertise while minimizing time, effort and

cost) (Karim et al. 2016; Liu et al. 2016).

As we discussed before in Section 2.3, previous research addressed this problem using

different approaches, from machine learning to social network analysis and natural language

processing methods. Since most previous studies tried to enhance the methods, less effort

been dedicated for expanding the sources of expertise, and –to the best of our knowledge– no

previous research tried to investigate the effectiveness of various pieces of information which

are easily available in the open-source repositories. In the rest of this section, we summarize

the types of information used in the literature.

4.2.1 Knowledge assumptions of Bug-Assignment

Almost all the previous approaches try to somehow match between the needed expertise

(i.e., the new bug report) and the developers’ expertise (i.e., their previous records), in

order to find the best fit. Table 4.1 shows a survey of the information used for obtaining

94

developers’ expertise for this matching in the same 13 studies of Section 2.3. There is a

“meta” field which is representative of a wide range of meta-data elements like product and

component of the handled bug or other details. Although most of the previous studies used

the title and description of new bug (as the needed expertise) and previously fixed bugs (as

developers’ evidence of expertise), the extent to rely on these textual elements highly differs

from method to method.

Table 4.1: A review of the used information for bug assignment in previous research

Method
Developers’ expertise info

Bug fixing;
title /

description

Being a
committer

Tossing
history Meta Changed

code

(Čubranić and Murphy 2004) X

(Canfora and Cerulo 2006) X

(Jeong et al. 2009) X X

(Matter et al. 2009) X X X

(Bhattacharya and Neamtiu
2010; Bhattacharya et al. 2012)

X X X

(Tamrawi et al. 2011a;
Tamrawi et al. 2011b)

X

(Shokripour et al. 2012) X X

(Cavalcanti et al. 2014b;
Cavalcanti et al. 2016)

X X

(W. Zhang et al. 2016b) X X X

(Sun et al. 2017) X X X

For example, text-based approaches mostly rely on bug reports’ direct information. The

Näıve Bayes classifier of NB1 (Čubranić and Murphy 2004), Vector Space Model (VSM) of

Develect (Matter et al. 2009) and Fuzzy model of Bugzie (Tamrawi et al. 2011a; Tamrawi

et al. 2011b) are examples of these approaches. Albeit they may count on limited meta-data

(e.g., component and product of each bug report) to make their decisions more local, the

main determinant part of the data is the bug reports’ textual information (mostly title and

description).

On the other hand, there are approaches that use various information other than bugs’

textual elements. Tossing-graph based approach of TG1 (Bhattacharya et al. 2012), social-

network based model of KSAP (W. Zhang et al. 2016b) and the source code analysis method

of iMacPro (Hossen et al. 2014) are examples of those approaches. Those are dependent

on a great deal of non-textual information. Even in some cases, like Visheshagya (Anjali

95

et al. 2016), they do not use the bug reports’ textual information at all, but just meta-data

information. In all the cases, they utilize that information to localize the bug or to connect

it to developers as possible fixers.

Admitting the fact that the second category can be very varied in dependence on those

meta-data, we focus on the first category, i.e., text-based approaches. We investigate the

textual elements available in bug reports in open-source projects in Github as the most

popular version control system (VCS). We consider the textual descriptions of bug reports

as evidence of expertise of developers who fixed them. We also consider several other text-

based sources of expertise which are available in the VCS.

Figure 4.1 shows a sample bug report and some of its data resources. Each bug has a

short title and a longer description. In the page of each bug in Github, the developers can

comment and discuss about the bug. Sometimes they mention each other’s login names to

take a look at the bug. In addition to bug reports, commits and pull requests also contain

textual elements that can be representative of expertise of their author. Furthermore, the

developers can comment on bug reports, commits and pull requests. All these sources contain

useful information that guide us about expertise and interests of developers. Interestingly,

there were only a few studies that made a limited use of only some of those elements –

e.g., commit messages in IE1 (Shokripour et al. 2012) and number of comments in REPtopic

(T. Zhang et al. 2016). We hypothesize that some of those sources can be valuable in

indicating expertise for their author and investigate their usefulness in BA.

Since the scope of available sources of expertise are too ample, and the usefulness of each

piece highly depends on the utilized method, addressing the above problem needs a simplified

version of data on a more controlled method. So, we narrow down the “method” to our

previous method (Sajedi-Badashian and Stroulia 2018c), called TTBA, and consider it as

the baseline method –since it was the latest text-based IR model for BA and outperformed

previous state-of-the-art approaches. We further revise it to handle multiple sources of

expertise and show that the improvement is non-trivial. We also narrow the “data” to

developers’ previous bug fixing histories, commit and pull request messages and various social

contributions (e.g., commenting and linking to developers) inside an open-source project.

Then we investigate the information value of each piece by examining their effectiveness in

the mentioned method, and how they can enhance the quality of BA.

96

4.3 Bug Assignment Based on Multiple Sources of Ev-

idence of the Developers’ Expertise

In this section, we expand our method introduced in the previous section, “thesaurus and

time-based BA” (TTBA), to include multiple sources of evidence of developers’ expertise.

This expansion is the answer to our first research question.

4.3.1 TTBA: A Compositional Similarity Metric for Bug Assign-

ment

In the previous chapter, we proposed a new method called TTBA which is based on original

TF-IDF and showed that it outperforms many other recent approaches. The premises of

TTBA is that the expertise of a developer is represented as a document, constructed through

the concatenation of several different sub-documents. Each of these sub-documents corre-

sponds to a previous bug-fix by the developer. We considered the title and description of

bug reports as the text of these sub-documents. Then, for each of the new bug reports, we

used Equation 3.10 to calculate the TTBA score of each document (developer’s expertise)

and sort them from high to low.

Despite TTBA’s satisfying job towards reflecting developers’ bug fixing history in recom-

mending developers to fix a new bug, it is only capable of capturing bug description as the

only source of developers’ expertise. While there are abundant of other evidence of expertise

in developers’ tracks in Version Control Systems (VCS) and other technical social networks,

as we mentioned before, it is desired to know the information value and importance of each

piece of those information in BA research and also to utilize them in our assignment methods.

In order to achieve this, we adapt TTBA to be able to consider multiple sources of

expertise. We inject the factor context(sdj) into our previous scoring function:

score(q, d) =
∑

t∈q

freq(t, q) · w(t)·

(

nd
∑

j=1

tf(t, sdj) · recency(sdj) · context(sdj)

) (4.1)

The above formula is also called Multisource (multi-source version of TTBA). In the

above equation, d is the document (developer’s expertise), t is any distinct term in q

(i.e., query or description of new bug), nd is the number of sub-documents in d (e.g., the

98

number of previous assignments of any bugs to the developer d) and w(t) is the weight of

the term t (which is a fixed value for that term and is between zero and one). Sdj is the

jth sub-document of document d (jth evidence of expertise of developer d). Freq(t, q) is a

parameter that indicates the frequency of the technical term being considered in the query.

It is obtained by dividing the frequency of the term in the query by the length of the query.

Tf(t, sdj), term frequency, measures the number of times a term, t, is appeared in the sub-

document sdj, normalized by sub-document length. The factor indicating “time” of sdj is

recency(sdj). Again, it is between zero and one; it gets close to one for the recent evidence

and close to zero for old ones. Recency is applied in order to take into account the change

in developers’ interest and expertise during time, as well as their effective engagement in the

project.

Finally, context(sdj) reflects the importance of sub-document sdj based on its type (bug

description, commit message, pull request message, bug comment message, etc.) and is fixed

for all sub-documents of each type. It can be between 0 and 1 based on the importance of

the sub-document. It gets higher values for the important sources of expertise and lower for

the minor document types. We will obtain proper context weights in the Section 4.5.1. Our

approach uses this equation for giving a score to each developer regarding a given bug. For

simplicity, we call our approach Multisource.

4.4 Experimental Design

We used our Multisource approach –as the expansion of our previous method TTBA– and

ran experiments with two goals: 1) to inspect the information value of various sources of

expertise available in open-source projects and 2) to validate the usefulness of this adjustment

–as a practical enhancement. We used a big Github data set including thousands of bug

reports, developers and their various types of evidence of expertise for this purpose.

In order to rely on realistic results, we separated the first part (which also includes

tuning) from the second part (which is our main validation). We selected three projects as

tuning / test projects (one from each category; small, medium and large)2 and performed

all the tunings using those projects. To avoid bias, later, we excluded these projects from

2We divided the projects into three categories; projects with 1k-, 1k to 10k and 10k+ bug-assignments.
There are 4, 4 and 5 projects respectively in small, medium and large categories. Then, we selected the
smallest of each category for the first part (including tuning). The idea was to tune on relatively low number
of bugs and leave more bug reports for the main experiment. The selected projects are: lift/framework,
fog/fog and adobe/brackets. The percentage of bug reports used for the first part is ∼13%.

99

our second experiment. For both experiments, we used our Multisource scoring function

(Equation 4.1) to calculate a score for each developer and ranked them for each bug report.

The two experiments are as follows;

1) First, we investigated the usefulness of different pieces of information. Since our

scoring function can consider several types of sources of expertise of each developer for a bug

report, in each step of this experiment, we added one piece of information (i.e., considered

one more evidence of expertise) to see if adding the new resource improves the accuracy and

if so to what extent. we used extensive 2d exploration (Blanco and Lioma 2012; Craswell

et al. 2005) to obtain the order and importance of various sources of information and the

best context scores for each type of evidence. We considered the evidence of expertise in two

categories; first, we investigated additional textual information –i.e., “previous bug fixing

history”, committing, submitting pull request and three commenting evidence (on bugs,

commits and pull requests). Then, we considered links to developers’ Github login names

from any source that is related to a bug as an additional source of expertise regarding that

bug. As the result of this first experiment, we obtained the most important sources of

information for BA, and their weights which are used in the next part.

2) In the second experiment, we validated our approach using all the projects (to avoid

bias, we eliminated the test projects for this experiment). We used the same similarity

metric, but the best obtained settings (i.e., context scores) from the first experiment to

calculate the score of each developer for each bug report. Then, we ranked the developers

based on this score, calculated the final evaluation metrics and compared the results against

our previous approach, TTBA. All the results are available online1.

4.4.1 Data set

We used a data set for Stack Overflow tags and a main data set for various sources of evidence

of expertise of developers.

For obtaining a list of Stack Overflow tags and their weights to be used in our main

Multisource formula (as the term weights), we used a recent Stack Overflow data set (ap-

proximately 100 GB) (I. Stack Exchange 2017) including information of the tags, users and

their contributions (e.g., posts). Out of the total 46,278 available technical terms (tags), we

excluded the tags with one or two letters (to avoid misleading) and obtained 46,115 tags

with three letters or more. Then, using Equation 3.5, calculated their weights based on their

recent usage statistics in around 32 million posts.

100

Our main data set is the extension of the data set we mentioned in Chapter 2. It is

obtained from Github and is used for evaluating our multi-source BA method and comparing

its results against real data. It includes the same set of projects as in Chapter 2. Figure

4.2 shows the data model for this data set. Details of number of different items related

to developers’ expertise (including bugs, commits, pull requests and their comments) are

shown in Table 4.2. References to developers’ login names are contained in bugs, commits

and their comments (we will show some statistics about those references in Table 4.4). In

terms of number of bug reports, number of developers in the projects and inclusion of variety

of sources of expertise, our data set is one of the most extensive data sets used for BA.

We made the preliminary data set (final list of tags and their weights) as well as the

above “expertise” data set available online1 for further processing and usage.

Table 4.2: Data set different evidence of expertise in 13 projects

Project #of
devs

of
bugs

of as-
signments

of
commits

of pull
requests

of bug
comments

of
commit

comments

of pull
request

comments
framework 75 325 566 3,315 405 3,782 175 1,695
html5rocks 159 627 998 4,056 797 1,167 41 750

yui3 175 526 902 25,381 1,154 1,977 344 4,272
khan-exercises 206 624 857 7,148 1,246 1,228 474 58,751

ghost 473 3,578 6,142 6,974 3,912 14,927 129 8,859
fog 770 1,124 1,327 12,183 2,686 7,003 335 10,789
julia 831 9,086 12,748 34,095 8,482 79,165 10,848 56,364

brackets 864 6,255 10,462 17,099 4,921 39,179 365 20,929
travis-ci 1,159 5,473 6,334 3,607 210 32,035 162 517

elasticsearch 1,262 10,423 16,184 24,798 9,366 41,379 690 33,526
salt 2,283 10,237 15,533 74,805 23,076 52,407 1,831 27,591

Angular.js 2,386 7,402 9,658 8,117 7,124 41,356 1,581 30,793
Rails 4,079 8,794 11,305 59,758 17,424 36,335 13,180 43,743

Total union:
7,438 64,474 93,016 281,336 80,803 351,940 30,155 298,579

4.5 Value of Various Sources of Expertise

The sources of expertise include two sets of information; textual data inside project and

references to the developers’ login names. Starting from “previous bug fixing history”, each

time we add an extra type of information and see if we can enhance the final overall MAP

over the three test projects –and if so, we obtain the best context score in Equation 4.1 for

that type of information. We investigate the value of the two mentioned sets of information

in two separate sub-sections.

101

Bug
number

projectId

author

createdAt

labels

title

body

Bug comment
bugNumber

projectId

createdAt

commenter

body

Commit
projectId

sha

author

createdAt

commitMessage

Project
id

name

description

startingDate

Pull Resuest
projectId

number

author

createdAt

labels

title

body

Commit comment
commenter

projectId

commitSHA

createdAt

body

Pull request comment

projectId

pullRequestNumber

createdAt

commenter

body

Bug assignment
bugNumber

assignmentDate

assigneeLogin

projectId

assignmentType

commitSHADeveloper

projectId

login

1

1

1

Figure 4.2: The data model of our Github data set

4.5.1 Considering additional textual information as evidence of

expertise

We consider bugs, commits, pull requests and the comments of each of them as evidence of

expertise of developers regarding the keywords (Stack Overflow tags) mentioned in them3.

Before we consider the exact effect of each source of information on the resulted MAP, we

identify the order of importance of each source in a pre-processing experiment. We start by

“previous bug fixing history” and consider each of the evidence as an addition to it. Items

that increase final MAP the most are considered the most important sources. The order of

importance of these elements is shown in Table 4.3 (from left to right). We found that bug

comment, commit and pull request are in order the most important sources.

Then we follow this ordering in obtaining appropriate context scores for each element.

Table 4.3 shows the results. The first row has no extra information and just includes the

previous bug fixing history. Then we add bug comment and obtain its best coefficient (which

produces the highest MAP). We do this using extensive 2d exploration (Blanco and Lioma

2012; Craswell et al. 2005) in a mutation experiment –also called grid search (Tatsis and

Parsopoulos 2016) or exhaustive parameter search (Zhai and Lafferty 2002)– considering

values between 0.0 and 1.0 with increments of 0.14 as the coefficient of bug comment. The

3The usefulness of considering only Stack Overflow tags instead of all the keywords was proved in our
previous research (Sajedi-Badashian and Stroulia 2018c) and we just rely on it here.

4The 0.1 is an arbitrary value. It can be any small value. Note that if it is too small, then too many

102

Table 4.3: Determining context weights for additional pieces of information in test projects
Coefficient

MAP
bug

comment
commit pull

request
pull request
comment

commit
comment

- - - - - 0.5448
0.4 - - - - 0.5564
0.4 1.0 - - - 0.5640
0.4 1.0 0.7 - - 0.5661
0.4 1.0 0.7 0.0 - 0.5661
0.4 1.0 0.7 0.0 0.4 0.5662

best obtained weight for bug comment is 0.4 (see the second row in the table). Lower

coefficient values underestimate its effect and higher values inflates noise in the data. In the

next step, we consider bug comment with its obtained coefficient (0.4) in addition to the

previous bug fixing history and add commit to obtain it best coefficient using 2d exploration.

The best obtained weight for commit is 1.0. This does not indicate that the commits are

more important than bug comments. In fact, we have obtained the order and importance

of the fields in the first place (i.e., as shown in Table 4.3 from left to right). The higher

coefficient for commit means that there is less noise in the commits since they are brief and

concise.

We follow the same approach to obtain appropriate context scores for other elements.

The obtained coefficient in each step is shown in bold and the achieved MAP is shown in

the last column. In general, bug comments, commits and pull requests which also obtained

the highest orders have the most effects on the final MAP. The bug comments are important

since they are directly related to the bug to be fixed. They appear like a discussion thread

under the bug, including keywords from that bug which makes them valuable. Commits

and pull requests are important in that both are directly related to the code. A committer

and submitter of a pull request have written some code in the project and in forked projects

(which are used in the main project) respectively. Both have done some efforts towards

the code. The reason commits are found more effective can be regarding the fact that pull

requests can be merged into different branches but the commits we captured are all related

to master branch. Also commit texts are usually shorter and including just clear technical

data. This makes the pull requests less important than the commits.

As mentioned above, the value of the weights does not show the item’s importance. We

different configurations would be generated to test. If it is too big, then we might loose some good configu-
rations.

103

obtained the order and importance of each item in the first place by comparing their effect on

the final MAP in isolation (i.e., determining how much the MAP increases if we add only one

source of expertise to “previous bug fixing history”). The obtained value of weights can be

interpreted as the level of noise in each item. For example, the commits include low level of

noise since they are brief and to-the-point and have the weight “1.0”. Pull requests are longer

and have lower weights (0.7). In all the cases, comments of an item (e.g., commit comment)

have lower weight than the item itself (e.g., commit). Adding “pull request comments”

has no positive effect on the final MAP, so we remove it from the considered evidence (the

coefficient “0” is selected for it). This can be because of lower importance of them in presence

of better evidence (e.g., bug comments and commits), or because of noise in them.

We can conclude that additional information from open-source projects can be very useful

for BA. Especially using the text of bug comments, commits and pull requests as evidence

of expertise of developers regarding the keywords mentioned in them enhances the assignee

prediction.

4.5.2 Considering References to the developers’ names

Next, we consider the references to the developers’ login names from sub-documents that are

related to a bug report, i.e., the description or the comments of that bug report, the related

commits to that bug report or the comments of those related commits. We cannot consider

other evidence like pull requests since relating them to a bug is not common (it is common

to mention “fixes bug # x” in a commit message, but not in the text of a pull request).

We hypothesize that if a developer is referenced somewhere from the social or technical

correspondence around a bug, then that developer has a high chance of being related to that

bug and / or work towards fixing it later.

Table 4.4: Statistics of the references to the developers’ names in three test projects

Source of reference # of
references

of
positive
references

Positive
reference
ratio (%)

of
referenced
developers

of
referencing

bugs
Bug 781 141 18.05 79 324

Comment of a bug 14,377 2,558 17.79 833 4,758

Commit related to a bug 2 0 0 2 2
Comment of a related

commit 0 0 0 0 0

All types Sum: 15,160 Sum: 2,699 Union: 17.80 Sum: 914 Union: 4,856

We do a short feasibility study in the three test projects, to check the appropriateness of

104

the referenced developers to fix the related bug. Table 4.4 shows the statistics about these

references from the four mentioned resources (bug, bug comment, commit related to a bug

and comment of a commit related to a bug) in the three test projects of our data set. The

first three columns show the number of references (to developers) found in each source of

information and the number of positive references as well as their ratio with respect to the

total references from each resource. Positive references are those references (or links) leading

to a bug fix by the referenced developer. As indicated in this table, the developers referenced

directly from a bug or its comment, have a high chance of being a fixer of that bug later

(∼18%). Note that referencing a developer from a comment of a bug is more common than

from the bug itself (compare the 14,377 references from bug comments against 781 references

from bugs). This is because the developers communicate in the comments of the bugs for

several purposes including suggesting developers to fix the bug.

We noticed that many developers (914) are referenced from many bugs (4,856), but not all

the references were dealing with the correct assignee (∼18% of the references were positively

linking the correct assignee). We checked the test projects in our data set and found that in

many cases the developers are referenced for the purpose of communication and information

sharing rather than recommending fixing the bug. As a result, we need a method to avoid

false positives. To achieve this, we maintain a list of “positive” referenced developers during

time. At each point in time, we just consider references to those developers with a good

“reference history” in the past (e.g., at least half of their previous references lead to work

towards fixing the related bug).

To take into account the positive references in our recommendations, we prioritize the

positively referenced developers (who have been referenced from anywhere related to a bug)

over all other developers. In order to do that, we calculate the score for the developers and

rank them in two separate groups; first, we consider those positively referenced developers

in one group, and then the rest of developers in another group. Note that since the text

containing the reference is not written by the referenced developer, we can not consider a

separate sub-document and a separate context(sdj) coefficient for the referenced developer

in Equation 4.1. That is the reason we prioritized the positive referenced developers against

other developers.

Like before, we obtained the order of importance of each type of reference (from bugs,

commits or their comments) in a separate pre-processing experiment (not shown here) in

our three test projects. Types of references that increase the final MAP more are considered

105

more important. For each reference type, we examined the value of MAP considering that

reference type, as an addition to the best configuration we obtained before in Table 4.3. That

best configuration is again shown in the first row in the table 4.5 which shows the order of

importance of the references. We found that bug comments and bugs are in order the most

importance references to developers’ login names.

Since we used the references to prioritize the developers (i.e., consider the positively ref-

erenced developers in a separate pool, before the other developers) rather than changing the

developers’ score (i.e., adding an entry to Equation 4.1), there is no need to obtain differ-

ent context scores for the references. So, we do the step-by-step process just to determine

whether using the new reference improves the final MAP or not.

The results are shown in Table 4.5. Both the references from bugs and bug comments

are effective and increasing the MAP. The number of references from commits and commit

comments are zero in these three projects, but they might be non-zero for the rest of projects,

so we did not omit them from our main experiment; we just considered them in the next

priorities.

Table 4.5: Determining whether to prioritize the referenced developers or not
bug

comment
bug commit commit

comment MAP

- - - - 0.5662
X - - - 0.6349
X X - - 0.6374

“Bug comments” and “bugs” are the most important resources with regard to references

to developers. It is interesting that “bug comments” are even more important than “bugs”.

As mentioned before, one reason can be that referencing developers from a bug description is

not so common. Instead, there are sometimes long discussions under a bug report mentioning

who may be a good fit to fix this bug, what is the right way of dealing with it and similar

concerns.

4.6 Validating Multisource Approach on the Whole

Data Set

In this section, we validate our Multisource approach. We report its results after final run

on all projects (excluding the three test projects), with the configuration we obtained from

106

our test projects. In order to validate our approach, we used the exact implementation

of our previous approaches, TTBA (Sajedi-Badashian and Stroulia 2018c) and made the

Multisource enhancements in it (to include multiple sources with various weights). We

compare the results regarding overall and per-project values.

Table 4.6: Comparison of the results of our approach against TTBA

Project Method
Top1
(%)

Top5
(%)

Top10
(%)

p@1 / r@1 p@5 / r@5 p@10 / r@10 MRR MAP

Html5
rocks

TTBA 66.63 87.17 92.69 0.67 / 0.57 0.20 / 0.82 0.11 / 0.91 0.76 0.71
Multisource 66.63 90.88 95.19 0.67 / 0.57 0.22 / 0.88 0.12 / 0.94 0.77 0.74

Yui3
TTBA 50.11 75.83 84.81 0.50 / 0.44 0.17 / 0.73 0.10 / 0.83 0.62 0.59

Multisource 50.89 79.16 86.81 0.51 / 0.45 0.18 / 0.76 0.10 / 0.85 0.64 0.61

Khan-
exercises

TTBA 57.18 85.41 89.26 0.57 / 0.52 0.20 / 0.84 0.10 / 0.89 0.69 0.67
Multisource 56.83 86.23 89.96 0.57 / 0.51 0.20 / 0.85 0.10 / 0.89 0.69 0.68

Ghost
TTBA 59.39 85.27 91.66 0.59 / 0.46 0.22 / 0.82 0.12 / 0.91 0.70 0.67

Multisource 57.52 89.40 94.50 0.58 / 0.44 0.23 / 0.87 0.13 / 0.94 0.71 0.68

Julia
TTBA 45.67 71.80 81.02 0.46 / 0.40 0.16 / 0.69 0.09 / 0.80 0.57 0.55

Multisource 46.78 78.37 86.78 0.47 / 0.41 0.18 / 0.76 0.10 / 0.86 0.61 0.59

Travis-
ci

TTBA 57.47 74.74 78.09 0.57 / 0.55 0.16 / 0.73 0.08 / 0.77 0.65 0.64
Multisource 56.20 80.06 82.89 0.56 / 0.54 0.17 / 0.79 0.09 / 0.82 0.66 0.66

Elastic
search

TTBA 47.61 73.97 84.71 0.48 / 0.44 0.16 / 0.71 0.09 / 0.82 0.59 0.57
Multisource 52.33 80.34 88.95 0.52 / 0.48 0.17 / 0.78 0.10 / 0.87 0.65 0.62

Salt
TTBA 43.28 72.63 81.14 0.43 / 0.36 0.17 / 0.69 0.10 / 0.79 0.56 0.53

Multisource 44.78 79.52 86.89 0.45 / 0.37 0.19 / 0.76 0.11 / 0.85 0.60 0.57

Angular
.js

TTBA 46.47 79.87 86.19 0.46 / 0.42 0.17 / 0.77 0.10 / 0.85 0.60 0.58
Multisource 47.98 83.05 88.70 0.48 / 0.44 0.18 / 0.81 0.10 / 0.87 0.63 0.61

Rails
TTBA 41.42 69.91 78.69 0.41 / 0.36 0.15 / 0.66 0.09 / 0.76 0.54 0.51

Multisource 44.68 75.48 83.04 0.45 / 0.39 0.17 / 0.72 0.10 / 0.81 0.58 0.55

Total
(10 proj)

TTBA 47.50 74.73 82.93 0.48 / 0.42 0.17 / 0.72 0.10 / 0.81 0.59 0.57
Multisource 49.31 80.36 87.36 0.49 / 0.43 0.18 / 0.78 0.10 / 0.86 0.63 0.60

Table 4.6 shows the final results. The overall MAP for 93k BAs of all the 10 projects

in Multisource approach is 0.60. Compared to TTBA, it is improved by ∼3%. Regarding

project-specific results, the improvement is between 1 to 5 percent (Multisource works better

in all the 10 projects). Regarding other metrics, in almost all the cases Multisource works

better. There are only a few exceptions; in two small projects (Html5rocks and Khan-

exercises)5 and two medium projects (Ghost and Travis-ci) TTBA works equally or slightly

better regarding @1 values. It seems that superiority of Multisource against TTBA is more

evident in large projects rather than small ones. We hypothesize that this difference arises

from the size, time duration and availability of “multi-source” evidence.

To investigate on this, we compare the available multi-source evidence in the two groups

of projects; group 1 includes the above four projects that have slightly better @1 accura-

5Note that based on size of projects we divided them into three categories; small, medium and large.

107

cies for TTBA and group 2 includes the other six projects in which regarding all metrics

Multisource obtained better results. Group 1 includes two small and two medium projects.

In group 2, only Yui3 is small, Angular.js is medium and the other four are large projects.

Results of this comparison are shown in Table 4.7.

Table 4.7: Available multi-source data in different projects

Group 1:
4 projects

(Html5rocks, Khan-exercises,
Ghost and Travis-ci)

Best MAP: Multisource
Best @1: TTBA

Group 2:
other 6 projects
(Yui3, Julia, Elasticsearch,
Salt, Angular.js and Rails)

Best on all metrics:
Multisource

Number of BAs per
project 3,582 11,055

Number of references to
developers’ names per bug 0.95 1.26

Average length of bugs
and their comments

26.96 40.57

Average project duration 53 65

As shown in this table, the projects of group 2 have much more multi-source evidence

than the other group. Those information, as sources of expertise, are the key to success

of Multisource. Lack of information especially affects the first recommendation. Without

enough multi-source evidence, the success of Multisource would be chancy and the @1 results

are more vulnerable. Note that even though in 4 projects of group 1, regarding three @1

metrics, TTBA is competing against Multisource, still regarding MAP and other 7 metrics

Multisource performs better. The intuition is that the multi-source evidence can sometimes

be noisy and misleading regarding the first recommended rank (i.e., when there not enough

data) and produce no better @1 accuracies, but even in those cases, the next recommended

developers include more ground-truth assignees and hence the final efficiency criterion, MAP

is enhanced. In other words, with no extra evidence of expertise, the Multisource approach

of Equation 4.1 would be the same as TTBA. Little extra evidence (as in small projects) can

slightly enhance the results of Multisource or not (depending on the quality of additional

evidence and existence of noisy data). When it comes to large projects with abundance of

extra evidence (which are all in group 2), the effect of noise is reduced, and the predictions are

more accurate. So, the difference between Multisource and TTBA is more evident. On the

other hand, in large projects, there are too many candidates and it is difficult to identify the

best developers to fix a new bug. Since Multisource benefits from a fine-grained weighting

scheme that differentiates between many existing evidence of expertise, it obtains better

results.

108

Overall, these results, as well as the other comparisons of MAP we established before,

shows that our Multisource method outperforms TTBA.

Our approach is also fast. On a machine with Core i7 CPU and 16GB of RAM, we cap-

tured time-to-run for each project; in the most complicated case, which includes evidence

from all our additional sources (bug, bug comment, commit, pull request and commit com-

ment as well as links to developers’ login names), it takes between 0.1 and 134.1 seconds

to run for each project (average=32.9, median=11), depending the number of bugs to be

assigned and number of additional sources. The average time for assigning developers to

each bug in the whole data set is 4.6 milliseconds.

4.7 Threats to Validity

There are a few points about the sources of expertise and how we used them (to infer about

the best developer to fix a new bug) as well as the generalization of our approach for further

studies (for other projects or platforms including other types of expertise evidence) that we

review and discuss as internal and external threats to validity.

Construct validity:

The most important validity threat is about the definition of assignee we used for the val-

idation of our approach. We used the extensive definition of “the developer who is tagged

as assignee at the closing time, the developer who closes the bug, or any other developer

who works towards fixing the bug” (Sajedi-Badashian and Stroulia 2018c). One can argue

that in practice, there might be discrepancies from the proper assignee. A developer may

fix a bug, without being the best candidate for fixing that bug. On the other hand, in

reality, a developer may have no connection with a given bug, nor have done any attempts

towards fixing the bug (e.g., because of being busy with another bug, or due to other project

circumstances), but still be a good possible fixer for the bug.

To address this issue, we argue that the best way to identify “all” the (possible) ground-

truth assignees of a bug would be to discuss it with a project manager and tag all the

appropriate developers as right assignees. Unfortunately, this plan is too expensive; it needs

lots of time and resources to investigate about thousands of bugs and developers. To the best

of our knowledge, no previous studies have done such an inspection towards validity of their

approach. We did not investigate this in our projects either. Instead, we defined the “right

109

assignee” based on the most comprehensive definition in the literature (Sajedi-Badashian

and Stroulia 2018c) to be inclusive of all the possible developers who worked towards fixing

the bug and capture the most probable bug fixers. This is the most comprehensive definition

of assignee that has been used up to now (Sajedi-Badashian and Stroulia 2018c). Also, we

did our best to clean the data set and remove any bugs that are not closed, to prevent

misrepresentations.

Internal validity:

The other challenge is related to our Github data. We just considered the data from the

main branch of each project, which is called “master” by default. But there are evidence of

expertise in other branches that are ignored, and could possibly change our results.

To address this issue, we argue that although this might be true, it would not have much

effect on our results since most of the contributions of the developers are usually in the

master branch. In addition, the contributions of the developers in the master branch are

usually more important than the secondary branches.

External validity:

While we tested our Multisource approach using several open-source projects and their avail-

able data, one could suspect its usefulness in other (different) projects, networks or platforms

with other types of evidence of expertise. For example, the practicality of our scoring func-

tion (Equation 4.1) might be questionable in proprietary software.

We argue that although our final scoring function (Equation 4.1) might not work perfectly

in new settings, it has the capability of being tuned for different situations; first, the different

context coefficients –context(sdj)– for the new types of evidence can be fine-tuned using 2d-

exploration (Blanco and Lioma 2012; Craswell et al. 2005). Second, for the situations with

special backgrounds or vocabularies where the Stack Overflow tags are not representative

of the most important keywords (like some proprietary software), other idf -like weighting

schemes with proper indexing can be adopted rather than our term-weighting –w(t). Finally,

even the factors freq(t, q) and tf(t, sdj) can be utilized in a different way that works better

for those specific situations. All these adjustments can be met with a small percentage of

bug reports in the projects, or a few test projects, to obtain desirable results in different

setups. The important aspect is that the general scheme of our approach is easily supporting

multiple sources of expertise with different importance (weights). Also, it benefits from a

proper granularity of the technical terms and their time of usage by the developers.

110

4.8 Conclusions and Future works

Based on our previous approach, we developed a bug-assignment method that can consider

and apply various sources of expertise all at the same time, but with different levels of

importance. With its high granularity over different evidence of expertise and their technical

terms, we showed that it is capable of highly accurate assignee recommendation and that it

outperforms state-of-the-art methods.

In addition to enhancing our bug-assignment method, in this study, we investigated the

information value of different pieces of data that are usually found inside open-source soft-

ware repositories. We realized that different types of social and technical contributions of

developers inside a software repository can be very useful for recommending proper fixers.

Using our multi-source experiments, we showed that extending the sources of expertise from

only bug fixing to diverse sources in open-source projects can propose non-trivial enhance-

ments in automatic assignee recommendation accuracy. These valuable evidence of expertise

are easily accessible in open-source projects for public and can be utilized for further research

in this area.

Specifically, we found that the text of bug comments, commits or pull requests contain

useful information about the expertise of their author (poster). In addition, the links to

developers’ login names from developers’ contributions contain fruitful information about

who might be a good candidate to fix a given bug.

We provided the data sets of our experiments online 1. This is a rich set of textual

information about bugs, commits, pull requests and social contributions of developers in the

VCS that can be processed for further studies.

Despite the high extent of the provided data set in this study, still extending this study

is possible by providing richer data; one can investigate the usage of more textual elements

available in the open-source repositories (e.g., information available in other branches).

As another future work to this study, the notion of “ground-truth assignee” can be

enhanced to include all the expert developers regarding the given bug. In order to obtain

such a list for each bug, the project managers need to review the bug reports and recommend

the set of appropriate developers for each one, regardless of other project constraints (and

just based on developers’ expertise). In a big project with lots of bug reports, this is expensive

in terms of time and effort but would help to have a more appropriate evaluation.

111

Acknowledgements

The work is supported by Graduate Student Scholarship6 funded by Alberta Innovates -

Technology Futures (AITF)7 and Queen Elizabeth II Graduate Scholarship 8 funded by

Faculty of Graduate Studies and Research (FGSR)9 at University of Alberta.

6https://fund.albertainnovates.ca/Fund/BasicResearch/GraduateStudentScholarships.aspx
7https://innotechalberta.ca
8https://www.ualberta.ca/graduate-studies/awards-and-funding/scholarships/queen-elizabeth-ii
9https://www.ualberta.ca/graduate-studies

112

Chapter 5

Utilizing Beyond-project Sources of

Expertise for Bug Assignment

113

Preface

In this chapter, we investigate the usefulness of additional sources of evidence of developers’

expertise beyond their activities in the project where the bug originates. We consider the

developer’s activity in Stack Overflow and in projects other than the project from which the

bug under examination originates. We examine how the additional sources affect the overall

bug-assignment process. We provide two scenarios for external sources of expertise:

1) The external sources are considered in the absence of internal sources, which would be

realistic, for example, in the case of developers new to the project. In this case, we assume

that we have the external contributions for all the developers in isolated settings1. The main

contents of this chapter are devoted to this case. We also performed a preliminary feasibility

study for this case which is shown in Appendix 5.A.

2) The external sources are considered in addition to internal sources to see if they provide

any complementary information or not. Appendix 5.B discusses this case.

We show that in the ideal/isolated settings (the first case above in which external contri-

butions of all the considered developers are available), usage of external sources is capable of

accurate assignee recommendation. However, in general settings (when only partial external

sources of expertise are added to the complete internal data), this does not enhance the

prediction accuracy since accurate inside-project sources of expertise are available.

The contents of this chapter has been published at the 19th International Conference on

Fundamental Approaches to Software Engineering (FASE 2016).

Appendix 5.A has been published at the 31st International Conference on Software Main-

tenance and Evolution (ICSME 2015).

1In this case, we filter and remove the developers with no external evidence of expertise and any bug
report assigned to them. So we described it as “isolated settings”.

114

Abstract

Bug triaging, i.e., assigning a bug report to the “best” person to address it, involves identi-

fying a list of developers that are qualified to understand and address the bug report, and

then ranking them according to their expertise. Most research in this area examines the

description of the bug report and the developers’ prior development and bug-fixing activi-

ties. In this chapter, we propose a novel method that exploits a new source of evidence for

the developers’ expertise, namely their contributions in Stack Overflow, the popular soft-

ware Question and Answer (Q&A) platform. The key intuition of our method is that the

questions a developer asks and answers in Stack Overflow, or more generally in software

Q&A platforms, can potentially be an excellent indicator of his/her expertise. Motivated

by this idea, our method uses the bug-report description as a guide for selecting relevant

Stack Overflow contributions on the basis of which to identify developers with the necessary

expertise to close the bug under examination. We evaluated this method in the context of

the 20 largest Github projects, considering 7144 bug reports. Our results demonstrate that

our method exhibits superior accuracy to other state-of-the-art methods.

115

5.1 Introduction

Software development, today more than ever, is a community-of-practice activity. Developers

often work on multiple projects, hosted on large-scale software repository platforms, such as

Github and BitBucket. They access and contribute information to open question-answering

web sites, such as Java Forum, Yahoo! Answers and Stack Overflow 2. Through the devel-

opers’ participation on these code-sharing and question-answering platforms, rich evidence

of their software development expertise is collected. Understanding the developers’ expertise

is relevant to many software-engineering activities, including “onboarding” of new project

members so that their expertise is best utilized in the new context, forming new teams that

have the necessary expertise to take on new projects, and bug triaging and assignment to

the person that is best skilled to fix it.

In this study we focus on the bug-triaging-and-assignment task, which has already re-

ceived substantial attention by the software-engineering community (Anvik et al. 2006)(Čubranić

and Murphy 2004)(Jeong et al. 2009)(Linares-Vásquez et al. 2012)(Matter et al. 2009)(Nguyen

et al. 2014). The typical formulation of bug triaging problem aims at ranking a number

of developers that could potentially fix a given bug report. Most solutions to date have con-

sidered developers’ expertise, using their past development and bug-resolving contribution

as evidence. In contrast, we describe and report on the effectiveness of a bug-assignment

method that uses expertise networks extracted from social software-development platforms.

At a high level, our work makes two novel contributions to the bug-triaging research.

First, we demonstrate that as a software focused Q&A web site, Stack Overflow contains

valuable information about the expertise of the participating developers, which may be

exploited to support bug triaging. Second, we comparatively investigate a family of methods

for analyzing Stack Overflow posts to precisely understand how to improve state-of-the-art

bug-triaging methods.

The rest of the chapter is as follows. Section 5.2 sets the background context for our

work. Section 5.3 describes in detail our new bug-assignment method, ranking the expertise

of developers based on a new metric relying on Stack Overflow. Section 5.4 reports on the

evaluation of our method. Finally, Section 5.6 concludes with a summary of the take-home

lessons of this work.

2http://www.coderanch.com/forums, http://answers.yahoo.com, and http://stackoverflow.com/

116

5.2 Literature Review

There are two categories of previous research relevant to this body of work: (a) expertise

identification and recommendation; and (b) bug triaging.

Expertise Identification and Recommendation Venkaratamani et al . (Venkataramani

et al. 2013) described a system for recommending specific questions to Stack Overflow mem-

bers qualified to answer them. The system infers the developers’ expertise based on the

names of the classes and methods to which the developers have contributed. Similarly, Fritz

et al . (Fritz et al. 2010) developed the “Degree of Knowledge” (DOK) metric to determine

the level of a developer’s knowledge regarding a code element (class, method or field), based

on the developer’s contribution to the development of this element. Mockus and Herbsleb

(Mockus and Herbsleb 2002) developed the Expertise Browser (EB), a tool that identifies

the developers’ expertise from their code and documentation, considering system commits

and changes to classes, sub-systems, packages, etc.

Zhang et al . (J. Zhang et al. 2007) described a method for constructing a “Community

Expertise Network” (CEN) from the post-reply relations of Java Forum users. They then

ranked the users’ expertise using the PageRank (Brin and Page 1998) and HITS (Hyperlink-

Induced Topic Search) (Kleinberg 1999) algorithms on this network.

Bug Triaging Previous research in bug-triaging has produced a number of different tech-

niques for selecting the (list of k) most capable developer(s) to resolve a given bug report.

Typically the first developer in the list is selected as the bug assignee but, if this developer

is unavailable or somehow unsuitable to work on the bug report, the other developers in the

recommendations list may be tasked with the bug. Given this problem formulation, most

researchers evaluate their methods by reporting top-k “accuracy” (Anvik 2006; Bhattacharya

et al. 2012; Čubranić and Murphy 2004; Jeong et al. 2009; Lamkanfi et al. 2011; Lin et al.

2009; Shokripour et al. 2012; Tamrawi et al. 2011a; Tamrawi et al. 2011b) (hit ratio in the

top-k recommended list) or precision-and-recall (Anvik 2006; Anvik et al. 2006; Anvik and

Murphy 2011; Canfora and Cerulo 2006; Matter et al. 2009; Shokripour et al. 2013) (preci-

sion is the percentage of the suggested developers who were actual bug fixers and recall is

the percentage of bug fixers who were actually suggested).

Machine Learning (ML) approaches: Čubranić and Murphy(Čubranić and Murphy

2004) used a Naive Bayes classifier to assign each bug report (a “text document” consisting

117

of the bug summary and description) to a developer (seen as the “class”). Their classifier

was able to predict the bug assignee with a top-1 accuracy of up to 30%.

Next, Anvik et al . (Anvik et al. 2006) proposed a Support Vector Machine (SVM) method

as a more effective text classifier for this problem, reporting up to 57%, 64% and 18% top-3

accuracy. Additionally considering the bug-report severity and priority (Anvik and Murphy

2011) resulted in 75%, 70%, 84%, 98% and 98% top-5 accuracy. Note that the last two

high-accuracy results are were obtained in very small projects, with 6 and 11 developers

respectively. A subsequent method, taking also into account information about the compo-

nents linked to bugs and the list of active developers resulted in 64% and 86% accuracies in

two projects (Anvik 2006).

Lin et al . (Lin et al. 2009) used SVM and C4.5 classifiers, considering the bug-report

textual data (title and description) as well as the bug type, class, priority, submitter and the

module IDs, and obtained up to 77% accuracy.

Considering severity and component of the bug reports in addition to the textual de-

scriptions, Lamkanfi et al . (Lamkanfi et al. 2011) compared the effectiveness of four ML

approaches, Naive Bayes, Multinomial Naive Bayes, 1NN and SVM in predicting the ground-

truth assignee. They reported Multinomial Naive Bayes as the most accurate method with

79% accuracy.

Naguib et al . (Naguib et al. 2013) used LDA to assign the bug reports to topics. Then,

mining the activity profiles of the developers in a bug-tracking repository, they associate

topics to developers. Finally, they suggest the developers with the most topics matching

with the bug-report topics. They obtained up to 75% top-5 accuracy.

Information Retrieval (IR) approaches: Canfora and Cerulo (Canfora and Cerulo 2006)

consider each developer as a document by aggregating the textual descriptions of the change

requests that the developer has addressed. Given a new bug report, the textual description

of the new request is used as a query to the document repository to retrieve the candidate

developer. This method achieved 62% and 85% accuracy in two projects.

Develect, by Matter et al . (Matter et al. 2009), employs the Vector Space Model (VSM)

and relies on a vocabulary of “technical terms” collected from the developers’ source-code

commits and the bug-report keywords. The developer’s expertise is modeled as a term vector,

based on that developer’s commit history. Given a new bug report, the closest –according

to the cosine distance– developer is identified. This method achieved up to 34% and 71%

top-1 and top-10 accuracies.

118

Linares-Vásquez et al . (Linares-Vásquez et al. 2012) applied IR-based concept-location

techniques (Poshyvanyk and Marcus 2007) to locate the source code files relevant to the text-

change request. Source-code authorship information of these files was used to recommend

expert developers and they obtained up to 65% precision.

Shokripour et al . (Shokripour et al. 2012) proposed an assignee recommender for the

bug reports based on information extracted from the developers’ source code, comments,

previously fixed bugs, and source code change locations. A subsequent study (Shokripour et

al. 2013) improved these results using additional data, such as the source-code files, commits

and comments of the developers, names of classes, methods, fields and parameters in the

source code. The maximum top-5 accuracy of their approach on three different projects was

62%. They obtained 48% and 48% top-1 and 60% and 89% top-5 accuracies on two projects

(between 57 and 9 developers respectively).

Other approaches: Tamrawi et al . (Tamrawi et al. 2011b) introduced a fuzzy approach

that computes a score for each “developer - technical term” based on the technical terms

available in previous bug reports and their fixing history by the developers. Considering the

new bug report, they calculate a score for each developer as a candidate assignee by com-

bining his/her scores for all the technical terms associated with the bug report in question.

This method was shown to achieve between b40% and 75% for top-1 and top-5 accuracy

over 7 projects.

A number of studies have examined bug reassignments, the reasons that cause them,

and ways to reduce them (Baysal et al. 2009) (Zimmermann et al. 2012). To reduce bug

reassignments, Jeong et al . (Jeong et al. 2009) introduced “tossing graphs” of developers (as

nodes) and edges between them, weighed by the number of times the destination developer

was assigned a bug originally assigned to the source developer. Then, beginning with the first

prediction (developer candidate) in hand, they used this graph to predict the next developer

by consulting this graph. They obtained up to 77% top-5 accuracy.

All the above studies some combination of the bug textual and categorical attributes, the

bug code components, and the developers’ coding and bug-fixing contributions. Our method

is unique in that it uses the developers’ Stack Overflow questions and answers, as well as

their previous bug assignments, and correlates these contributions to relevant bugs based on

the semantic tags they share.

119

5.3 A Social Bug-Triaging Model

Software developers today contribute to a variety of social platforms, including social software-

development platforms, question-and-answering communities, technical blogs, and presentation-

sharing web sites. The key intuition of our work is that these contributions constitute evi-

dence of expertise that can be exploited in the context of bug triaging. More specifically, in

this study, we analyze the developers’ contributions in Stack Overflow for assigning them to

Github bug reports. Focusing on the overlap of the two social platforms (Sajedi-Badashian

et al. 2014), our approach examines the questions and answers in Stack Overflow that pertain

to the terms mentioned in a bug report’s title and description. It uses Stack Overflow tags

for cross-referencing Github bug reports with Stack Overflow questions and answers. Tags

categorize the questions and their corresponding answers in terms of a few well-known tech-

nical terms. The community curates these tags to improve their quality: the person asking a

question selects the initial tags for the question (out of around 40,000 available but evolving

tags) and expert community members, who enjoy a reputation above some threshold, can

edit them. Tags are also used as indication of expertise; for example, the person answering

a question tagged with Android and Java is assumed to be knowledgeable in these two do-

mains. Furthermore, the more upVotes this answers collects, the more knowledgeable this

answerer is assumed to be.

Figure 5.1 summarizes the elements of interest in a real bug report3. Some of the words

in the bug-report’s title and description are shown as italic because they also appear as tags

in the Stack Overflow questions reported in Table 5.1, where they are shown in bold.

Bug report title: TooManyOpenFiles might cause data-loss in ElasticSearch Lucene
Bug report body: Under certain circumstances a TooManyOpenFiles excep-
tion in Java thrown as FileNotFoundException might cause data loss where entire
shards lucene indices are deleted. This is mainly caused by Lucene-4870 https is-
sues.apache.org jira browse LUCENE-4870 - currently all Elasticsearch releases are
affected by this.
Project title: elasticSearch
Project description: Open Source Distributed RESTful Search Engine
Project language: Java

Figure 5.1: An example bug report (selected fields)

Table 5.1 reports partial information about five questions in Stack Overflow and the

3https://github.com/elasticsearch/elasticsearch/issues/2812 2014-08-20

120

answers provided by seven developers. Each question is associated with the developer who

asked it, the number of upVotes it received, and its thematic tags. The questions are sorted

based on the number of their tags that match with the bug-report textual information (in

Figure 5.1) and are shown in bold under each question. The more tags the question shares

with the bug-report terms, the more relevant it is to the bug report. We will use these tags

to characterize the expertise areas required to address the bug report in question.

Table 5.1: An example of scoring regarding the bug shown in Figure 5.1 based on the users’
activities in Stack Overflow

Question/Answerer up
Votes

Bob Ali Joe Mike Jane Tom Ben

Q1/Mike;
version control,
open source

3 46 5 53 28

Q2/Jane;
ajax, php, data,
search, jquery

1 20 16 22 6

Q3/Mike;
elasticsearch, php,
java, lucene

21 11 14 29 10

Q4/Ali;
https, css, java,
jira, data

0 27 0 86

Q5/Ben;
search, lucene,
https, java,
elasticsearch

70 1 18 42 -4 14 98

AnswerNum 5 4 4 3 3 2 0

Z score 2.24 1.34 2 0.45 1 1.41 -1

A score

(46+1)·1+
(20+1)·2+
(11+1)·3+
(27+1)·4+
(1+1)·5=

247

(5+1)·1+
(16+1)·2+
(14+1)·3+
(18+1)·5=

180

(53+1)·1+
(22+1)·2+
(29+1)·3+
(42+1)·5=

405

(6+1)·2+
(0+1)·4+

(-4+1)·5= 3

(28+1)·1+
(10+1)·3+
(14+1)·5=

137

(86+1)·4+
(98+1)·5=

843
0

Q score
(µ = 20) 0

20·(4
0+1)

=80
0

20·(1
3+1 +

3
21+1)

=7.7

20·(2
1+1)

=20
0

20·(5
70+1)

=1.41

SSA Z score 15.72 6.20 20.12 -1.44 9.34 29.03 -1.19

5.3.1 Social Metrics of Expertise

Zhang et al . (J. Zhang et al. 2007) introduced a family of metrics for measuring expertise in

social networks. The simplest one is AnswerNum, the number of answers contributed by a

user. However, while answering a question is an indication of expertise, asking a question is

an indication of lack of expertise. Z score is a more sophisticated metric that considers both

121

questions and answers: Z = (a− q)/
√

(a+ q). In this formula, q and a are the numbers of

the questions and answers correspondingly posted by user u. If a user asks as many questions

as he answers, his Z score will be close to 0. Developers who answer more questions than

they ask have positive Z scores, and vice versa. The Z score is undefined for users who have

not asked nor answered a question. The developers in Table 5.1 are ordered (left to right)

in descending AnswerNum order.

5.3.2 A Bug-Specific Social Metric of Expertise

The Z score would likely identify the most active question answerers as the preferred bug as-

signees every time, consistently ignoring all other developers. To prevent this phenomenon,

we have chosen to refine the Z score with bug-specific information. As discussed before,

we use Stack Overflow tags as a cross-referencing mechanism between Github bug reports

and Stack Overflow questions and answers. Developers facing problems with their tasks,

use these tags, which are indexed by search engines (Stack Exchange Team n.d.), to search

for earlier questions and their answers that could be helpful to them. Tags are generic

enough to convey semantic topics and, yet, specific enough to relate to programming con-

cepts and expertise needed to fix Github bugs. As a sanity check against the possibility that

tags may drastically limit the relevant information between Github and Stack Overflow, we

examined the bug reports in three selected Github projects (out of the 20 projects consid-

ered in this study) and found that the textual information of each bug report (including

projectLanguage, projectDescription, issueTitle and issueBody) mentions between 2 to 89

Stack Overflow tags (avg=14.9, var=132 and σ=11.5). In effect, the Stack Overflow tags

define a common vocabulary for developers to exchange information. This vocabulary has a

fundamental advantage over natural languages; all tags are useful and there is no need for

stop-word and noise-word removal from the bug-report texts.

Our approach limits the search for potential bug assignees to the Stack Overflow members

that have asked questions or provided answers with at least one tag in common with the

text of the bug report under examination, b. To that end, we define the following terms.

A scoreu,b =
∑

a ∈ u′s answers

(upV a+ 1) · (match tagsa,b) (5.1)

122

Q scoreu,b = µ ·
∑

q ∈ u′s questions

(match tagsq,b)

(upV q + 1) (5.2)

Z scoreu =
(a− q)
√

(a+ q)
(5.3)

SSA Z scoreu,b =
(A scoreu,b −Q scoreu,b)
√

(A scoreu,b +Q scoreu,b)
(5.4)

• match tagsSO,b: all the Stack Overflow tags that appear in the title and description

of the bug report; these are, in effect, the Stack Overflow topics that are important for

the bug report in hand.

• match tagsq,b: the shared tags between a question (q) and b.

• match tagsa,b: the tags that annotate the question of an answer (a) that also appear

in b.

Based on the above definitions, we have developed a measure of the expertise of the

project developers in the areas defined by the match tagsSO,b set. As we have discussed

above, our inspection of numerous bug reports has established that the textual information

of each bug report is usually matched with several tags. As a result, the relevant subsets of

q and a for each developer, match tagsq,b and match tagsa,b, frequently contain more than

one elements.

Our expertise metric is specific to a particular bug report, b. It is subject-aware in that

it considers two sets of tags –match tagsq,b and match tagsa,b– relevant to the bug under

examination. Finally, it is social in that it relies on social assessments of the Stack Over-

flow content, taking into account the numbers of upVotes and downVotes associated with

the developer’s Stack Overflow questions and answers.

Let us now describe our expertise metric for developer (user)4 u on bug report b. We

define the A scoreu,b (see Equation 5.1) and Q scoreu,b (see Equation 5.2) to replace a and q

4We used the notation u (user) instead of d (developer) in this section since it represents a Stack Over-
flow user, which is also representing a Github developer. This is the same notation that was used in our
published paper.

123

respectively in the original definition of the Z score. At any point in time, for every answer

the user has contributed in the past that is relevant to the bug in question (i.e., is associated

with a tag that appears in the bug report), the number of match tagsa,b is multiplied with

the number of the answer’s upVotes (plus one, for the answer itself). In effect, each answer

contributes to the calculation of the user’s expertise, taking into account the number of

upVotes that the answer has received, which reflects the community’s judgement on the

answer’s quality and usefulness. The sum of these terms make up A scoreu,b. Each question

is considered as evidence of lack of relevant expertise but this weakness is compensated by

promotion of the question by other users (upVotes). To reflect the intuition that the “asker

of a naive question is less knowledgeable than asker of a good one”, we divide match tagsa,b

by the number of upVotes (plus one for the question itself). This tends to make the value

of Q scoreu,b very small relative to A scoreu,b, which is why we use the µ normalization

factor to adjust it. The social subject-aware Z score (SSA Z score) can then be defined

as shown in Equation 5.4. This formula involves the terms relevant to the user’s expertise

(as match tagsq,b and match tagsa,b used in A scoreu,b and Q scoreu,b for different questions

and answers). Furthermore, it takes into account the votes of the users to the answers and

questions to advance good ones. The SSA Z scoreu,b focuses on answers and questions related

to the topics relevant to the bug under examination.

Table 5.1 shows different scores for the users. Each cell at the intersection of a question

and a developer contains the number of upVotes for the answer posted by that developer

to the question. Tom has the best SSA Z scoreu,b: he provided two answers to questions

relevant to the bug, which received many upVotes.

Note that our implementation of the above score is aware of the temporal aspect of a

developer’s expertise. The activity of a developer in Stack Overflow accumulates over time

but the estimation of the developer’s expertise for a given bug report, reported in time t,

is based only on his contributions up to date: the SSA Z scoreu,b considers questions and

answers of the user u posted in time t1 < t.

A Recency-Aware SSA Z score

The expertise of the developers shifts over time as they work on different projects with

potentially different technologies (Matter et al. 2009). Developers actively working in a

particular domain are more appropriate to be assigned to a bug in this domain. This is why

Mayter et al . consider a decay factor in their model of developers’ expertise. Shokripour

124

et al . (Shokripour et al. 2012) also consider this idea in their bug-assignment method: the

older the evidence for a particular expertise is, the less relevant it is for current expertise

needs. Anvik et al . (Anvik et al. 2006) used filtering approaches to capture the recency of

work.

Motivated by the intuition that “more recent evidence of expertise is more relevant”, we

define the recency-aware, social, subject-aware RA SSA Z scoreu,b as follows.

RA SSA Z scoreu,b = α · (SSA Z scoreu,b)+

β · (
∑

i ∈ previous bugs
assigned to u

1

1 +
number of bugs occurred

between i and b

) (5.5)

In this formula, α and β are tuning parameters and we explain how we tuned them in

Section 5.4.4. Having the RA SSA Z scoreu,b for all users in the community over a bug

report, our algorithm sorts the users and reports the top k as the most capable developers

to fix the bug.

5.4 Evaluation

We obtained two Stack Overflow data sets (S. E. C. Stack Exchange 2014)(Stack Exchange,

Inc n.d.) (approximately 65GB and 90GB). They consist of several XML files including

information of 2,332,403 and 3,080,577 users, their posts, tags, votes, etc. In order to link

these users to Github, their emailHash is needed (Sajedi-Badashian et al. 2014)(Vasilescu

et al. 2013), which is provided by the older data set. We merged these two data sets to get

a large data set including the newer posts with old users.

We used a mySQL dump (The GHTorrent Project n.d.) (with a size of about 21GB)

containing information of 4,212,377 Github users and their project memberships. However,

this data set did not include the textual information of the bug reports. We obtained this

information from a set of MongoDB dumps provided by the same web site (The GHTorrent

Project n.d.) (with a size of about 210GB) including information of 2,908,292 users. Again,

we also merged the two data sets and obtained a large data set including information about

Github users, projects and bug reports.

As our method assigns bugs to developers with a presence in both Github and Stack

Overflow, we used identity merging (Sajedi-Badashian et al. 2014)(Vasilescu et al. 2013) to

identity the common users in Github and Stack Overflow. The Github data set contains

125

the e-mails of the users, but Stack Overflow data set includes e-mail hash. So for each

Github user, using MD-5 function, we obtained the e-mail hash and compared it with e-mail

hashes in Stack Overflow. With this approach, we found 358,472 common users.

5.4.1 Experiment Setup

For each Github project, we first calculated the union of the sets of project members, com-

mitters, bug reporters and bug assignees, and we removed from this set all developers without

any Stack Overflow activity, to calculate the project’s community-members set. Next, we

sorted the projects based on the cardinality of their community-member sets and we iden-

tified the top 20 projects5 with the highest number of community members and the highest

number of bug assignees.

For the selected 20 projects, the number of community members vary from 28 to 822

(average=127, median=87). Out of 14,172 bug reports in all the selected projects, we exam-

ined 7144 bug reports that have been assigned to one of the project’s community members.

Note that we could not use the rest of bug reports since they were assigned to develop-

ers with no Stack Overflow activity. We used bug reports from three of these projects for

training and tuning purposes and 17 for final evaluation. For each bug report in each of

the 20 chosen projects, we ran our algorithm to recognize the RA SSA Z scoreu,b score of

all project-community members. Then, we ranked the users from the highest score to the

lowest.

We report the average top-k recommendation accuracies. We compare our results for k=1

and k=5 with several implemented methods, as well as previously published results. We also

report our results based on MAP (Mean Average Precision) as a precise, synthesized, rank-

based evaluation measure.

5.4.2 Comparison to State of the Art

Direct comparison with earlier methods is not possible since none of the previous studies

we reviewed above have made available their bug-assignment algorithm implementation and

data sets. To approximate this comparison, we experimented with the scikit-learn 6

5rails/rails, scala/scala, adobe/brackets, JuliaLang/julia, mozilla/rust, mozilla-b2g/gaia, an-
gular/angular.js, bundler/bundler, lift/framework, dotcloud/docker, edx/edx-platform, elastic-
search/elasticsearch, fog/fog, html5rocks/www.html5rocks.com, Khan/khan-exercises, saltstack/salt,
travis-ci/travis-ci, NServiceBus/NServiceBus, TryGhost/Ghost and yui/yui3

6http://scikit-learn.org/stable/

126

implementations of a number of algorithms classifying bugs to developers, which we applied

to our own data set. Considering the previous bug reports and the ground-truth assignee for

each one, these algorithms use word-based features of the bug reports to predict the most

probable developer who would fix the bug.

1NN, 3NN and 5NN In this family of classifier methods, each bug report is considered

a point in a multi-dimensional space, each dimension defined by a distinct word. Each

developer (class) corresponds to a hyper-plane in this space, consisting of all the bugs closed

by the developer. Then, given a new bug report and a corresponding new point in the space,

the closest existing point is selected. The class of the selected point (bug report) is the

recommendation for the new bug report. This process is called Nearest Neighbor (1NN). In

3NN and 5NN, we look for 3 or 5 nearest points (bug reports) to that point and simply get

their average to determine a hyper-plane and its class (developer) as the recommendation.

Lamkanfi, et al . (Lamkanfi et al. 2011) and Anvik (Anvik and Murphy 2011) used this

method for their predictions about bug reports.

Naive Bayes (NB) and Multinomial Naive Bayes (MNB) In this family of algorithms,

the developers’ features are the words included in the textual elements of the bug reports they

have handled before. These features are considered by the learner as a bag of words. Given

a new bug report, the classifier returns the classes (developers) with the highest number

features in common with the bug. Bhatacharya et al . (Bhattacharya et al. 2012), Čubranić

and Murphy (Čubranić and Murphy 2004) and Anvik (Anvik et al. 2006) are from those

researchers who used this method for bug triaging.

Building on the above method, a group of Naive Bayes classifiers, one per developer,

may be constructed to decide the developer to which a given bug report belongs, and to

calculate the probability of that being the case. Then, this probability is compared over all

the developers to infer the most probable bug fixers. Lamkanfi et al . (Lamkanfi et al. 2011)

and Anvik (Anvik and Murphy 2011) used this method for bug triaging.

SVM This approach represents bug reports as vectors in a multi-dimensional space –similar

to 1NN, 3NN and 5NN. With each word being a dimension, this classifier considers each bug

report a point in this multidimensional space. Then, considering all the bug reports that

are already assigned to each developer as a category, the optimal hyper-planes between these

points to separate different categories is inferred. This method also assigns a label (name

of a developer) to each category. Then, given a new bug report, it reports the label of its

category. Lin et al . (Lin et al. 2009), Anvik et al . (Anvik et al. 2006) and Bhattacharya et

127

al . (Bhattacharya et al. 2012) used this method for bug triaging.

5.4.3 Implementation

The Java implementation of our approach as well as our data sets (3 training and tuning

and 17 final evaluation projects and their bug reports) and output results are available

online at https://github.com/anonymous-user-1/BugTriaging for consideration or future

comparisons.

Regarding the implemented Machine-Learning approaches, given that no open implemen-

tations were available for the previous bug-assignment methods reported in the literature, we

made fair effort toward the best implementation of the competitor algorithms. We processed

bug reports’ title and body words with TFIDF, producing TFIDF word vectors. In order

to make the process competitive enough to our approach, we made the process online; train

them on first n-1 bug reports and then test on the nth. Then train on first n bug reports

and test on n+1th and so on.

We used the followings parameters for scikit-learn machine learners. For KNN, we

chose k as the parameter (1, 3 or 5), weights=‘uniform’, algorithm=‘auto’, leaf size=30,

p=2, metric=‘minkowski’ and metric params=None. For Multinomial Naive Bayes, we used

Laplace smoothing priors (α = 1.0) fit to prior distribution using OneVsRestClassifier clas-

sifier strategy. Similarly for Naive Bayes, but it uses multiclass classification. For SVM, we

used Support Vector Classification (SVC) class. We chose RBF kernel type, used shrinking

heuristic, with gamma kernel coefficient 1/n for n features, error penalty=1 and probabil-

ity=true. More details as well as the the Python implementation of the mentioned approaches

are available online at https://github.com/anonymous-user-1/ML-bug-triager-scikit/blob/

master/dumpbayes.py.

5.4.4 Performance of Variant Social Metrics of Expertise

In Section 5.3 we incrementally developed our Triage score starting with the simple social

measures of expertise a and q. To gain an insight on how each aspect of this measure

contributes to the bug-assignment effectiveness, we applied several intermediate variants of

the metric, representing different intuitions in its evolutionary construction process, to three

test projects with 490 bug reports in total, randomly selected from the 20 projects of our

study.

128

The performance of the simplest measure, i.e., the number of answers, AnswerNum (J.

Zhang et al. 2007), tagged with at least one of thosematch tagsSO,b is shown in Table 5.2. The

triaging accuracy is poor and does not recommend this naive measure for the bug-assignment

task.

The original Z score (J. Zhang et al. 2007), which considers answers as indication of

expertise and questions as indication of lack of expertise, does not perform much better.

The problem was that the Z score metric measures general expertise rather than expertise

specific to the bug under examination, and, as a result, it is inadequate to compete with the

approaches reported in the literature.

Next we evaluated the subject-aware Z score, SA Z score, which measures expertise of the

developers in match tagsSO,b, without considering upVotes. This score is in effect equivalent

to SSA Z score, but with µ=1 and without considering upVotes. µ was the normalization

factor which we used to balance the values of Q scoreu,b with A scoreu,b when it was divided

by “1+number of upVotes of the question”. In other words, we set µ = 1 for SA Z score

because it does not consider upVotes. Again, a small improvement was observed in the

performance, evidence that, not surprisingly, awareness of the bug under examination is

useful in selecting the right bug assignee. Still this score is not competitive with the literature

results.

Our next step was to consider the community’s curation of the questions and answers.

Instead of uniformly considering all Stack Overflow answers of a developer as evidence of

expertise and all questions as evidence of lack of expertise, we evaluated whether weighing

“good” answers and questions more than “bad” ones would make a difference. The Stack

Overflow users’ upVotes are evidence for the quality of the questions and answers and the

social subject-aware Z score (SSA Z score) was designed to take them into account, as well

as being aware of the bug context. This metric involves the µ normalization factor that

determines the importance of considering “asking” as “lack of expertise” with respect to

answers. It can be assigned a static value, or, it may be tuned for different projects. For all

projects, we set it to “1+Harmonic Mean of upVotes of all related questions” (all questions

containing at least one match tagsSO,b) which has slightly better performance. The tuning

results are shown in Table 5.2. Note that for the example of Table 5.1, we have µ=20,

obtained simply based on the average of upVotes of the questions mentioned in the first

column.

The final improvement leading to our triage score was to make it sensitive to the recency

129

Table 5.2: Accuracy results for preliminary approaches and tuning
Method Top-1 Top-5 MAP

AnswerNum 3.40 21.00 0.1384
Z score 3.49 21.05 0.1453

SA Z score (µ=1, upVotes=0) 9.12 23.59 0.1801

SSA Z score

µ=1 12.33 56.97 0.3216
µ=10 12.06 52.68 0.3153
µ=20 11.79 50.67 0.3128
µ=1+avg(upVotes) 12.06 53.61 0.3166
µ=1+avg(upVotes)2 11.66 53.73 0.3130
µ=1+HM(upVotes) 12.33 58.45 0.3223

recency-aware SSA Z score

α=0.001 42.65 88.37 0.618
α=0.01 43.06 88.57 0.621
α=0.1 41.84 86.33 0.609
α=1 39.59 77.96 0.565
α=10 38.98 77.14 0.559

of the relevant Stack Overflow activity. The key intuition here is that “the fixing activity

has locality” meaning that “the recent fixing developers are likely to fix bug reports in the

near future” (Tamrawi et al. 2011b). Inspired by this idea, we considered the recency of the

developers” activities, highlighting recent ones more than past ones. As we anticipated, the

results improved further.

Finally, we examined the impact of the various parameters of our metrics to the bug-

triaging performance. For the purpose of tuning and calibrating our method, we needed

to determine the values for α and β in the RA SSA Z scoreu,b (Equation 5.5). We set the

value of β to 1 in order to reduce the variables to one. Then, changed α and measured the

accuracy and MAP on three test projects. The best results obtained with α=0.01. This is

because of very large numbers attained for Social Z score (i.e., number of upVotes multiplied

by number of tags, summed over all answers of each user). Later in this section, we apply

the parameter values (µ, α and β) obtained from the three projects into the remaining 17

projects in our final evaluation.

5.4.5 Performance of the RA SSA Z scoreu,b

As the final evaluation, we ran our algorithm over 17 projects (holding out the three projects

used for tuning) including 6654 bug reports and sorted the recommended developers for each

bug report. We measured the average top-k accuracies as well as MAP. The average top-k

130

accuracies of our approach for k from 1 to 5 are 45.17%, 66.41%, 77.50%, 84.79% and 89.43%

respectively. We also obtained the MAP as 0.633, which is very strong and shows that the

harmonic mean of the ground-truth assignee is 1.58 over all the bug reports.

We also implemented the other approaches discussed in Section 5.4.2. We ran those

experiments to compare the results of our method with other approaches on the same data

set. The results for average top-1 and top-5 accuracies as well as MAP are shown in Table

5.3.

Table 5.3: Accuracy results for different simulated approaches compared with ours
h
h
h
h
h
h
h
h
h
h
h
h

h
h

h
h
hh

Evaluation Measure
Method

1NN 3NN 5NN
Naive
Bayes

Multinomial
Naive Bayes SVM

Our
approach

Top 1 Accuracy (%) 43.09 46.48 45.60 43.77 42.75 45.46 45.17
Top 5 Accuracy (%) 70.46 75.63 75.00 78.98 75.97 81.82 89.43

MAP 0.575 0.610 0.596 0.609 0.606 0.617 0.633

Note that all the values reported in Table 5.3 are averages over all the 17 projects ex-

amined. We also examined the detailed results for each project and found them close to

the mean (var=60.97 and σ=7.81 for top-5 accuracies). Our results demonstrate that our

RA SSA Z scoreu,b, relying on evidence of developers’ expertise from their Stack Overflow ac-

tivities, is very effective in selecting the right assignee for the right bug, much more so than

all competing machine-learning algorithms relying exclusively on Github data. In the next

section, we analyze these results and compare the details with the other methods.

5.5 Analysis

First, we compare our approach against implemented machine-learning methods. The results

in Table 5.3 show that our method outperforms all of the other machine learning methods

in terms of top-5 accuracy and MAP. 3NN, 5NN and SVM do well for top-1 accuracy,

slightly better than our approach. Our average top-5 accuracy is between 8 to 19 percent

better than other approaches. The MAP value of our approach, 0.633, corresponds to the

harmonic mean 1.58 for the rank of the ground-truth assignee (implying that the ground-

truth assignee frequently appeared in the rank-1 and rank-2 positions in the results). MAP

varies from 0.575 (for 1NN) to 0.617 (for SVM as the best approach after ours). Comparing

the different algorithms on the same data set demonstrates the usefulness of our method.

The improved MAP and accuracy of our approach over these other methods shows that our

131

approach is trustworthy and capable of precise assignee recommendation.

Let us now compare the accuracy of our approach against the accuracy reported in

previous published contributions. Due to differences in the experimental design and collected

metrics of the various studies, it is impossible to have an exact and fair comparison. Some

of these earlier methods reported the maximum accuracy over different projects instead of

the average accuracy. Also they differ in reported values for k in top-k accuracies, with

top-1 and especially top-5 being the most frequently used. As one of the best obtained

accuracies in the previous studies, Shokripour et al . obtained 48% top-1 and 60% and 89%

top-5 accuracies on two projects (between 57 and 9 developers respectively). Our top-5

accuracy outperforms theirs, but their approach performs 3% better on top-1. Note that

their best results were obtained in a project with only 9 candidate developers (our projects

included between 28 and 822 developers). Also note that their approach was tested only on

80 and 85 bug reports, as opposed to our 7144 bug reports. In fact, some of the features

and meta-data that are required for their method (e.g., product and component of the bug

reports) are difficult to obtain (Lamkanfi et al. 2011), which makes this study challenging to

replicate.

To summarize our comparison findings, it is important to mention the following. Our

evaluation of our metric is the most thorough reported in the literature (with 20 projects

and 7144 bug reports). Our metric highly outperforms all previously reported methods in

terms of average top-5 accuracy, and most of them in terms of average top-1 accuracy. More

importantly, our metric exhibits the highest MAP.

Limitations and Threats to Validity The most important concern with respect to the

validity of our method is that the common users (between Stack Overflow and Github) who

constitute the project community are a small part of the complete set of developers associ-

ated with each project. The common users between Stack Overflow and Github represent

up to 20% of the total number of users, in each of these networks. There are many users

about whom we do not have information, because we could not match their profile in the two

networks. However, to mitigate this limitation, unlike most previous studies, we examined

our approach on a large number (i.e., 20) of big projects with thousands of users and bug

reports which is fairly substantial, limiting threats to external validity. We can even argue

that this phenomenon may be an advantage of our approach that focuses on high-quality

evidence of developers’ expertise established in the actively curated Stack Overflow commu-

132

nity and ignores developers who do not have such credentials. If our method performs well

by accessing parts of the developers’ contributions, it should improve when accessing the

complete information.

Currently, for privacy reasons, much of the Q&A content at the software social networks

is provided anonymously. One could envision however that project managers could request

their developers to provide their Stack Overflow IDs. Thus, the step of identifying users

common across the two networks through their e-mails should become unnecessary and a

larger community of developers, with far more extensive Q&A contributions, will become

available to the bug-assignment process.

One concern, is the practice of some developers answering their own questions on Stack

Overflow for announcing a commonly encountered issue with some API, library, etc. How-

ever, we investigated the questions and answers of members of three (out of the 20) chosen

projects and found that only 3% of their answers are answers to one’s own questions, and

only in around half of these cases the question is up-voted, meaning that the case did not

indicate expertise, but lack of expertise (as we assumed).

5.6 Conclusions and Future Work

The fundamental novelty of our work lies in that it is the first bug-assignment method to con-

sider evidence of developers’ expertise beyond their contributions to software development,

examining instead their contributions to a Q&A platform. Our method takes advantage of

the fact that many developers participate in both platforms. Relying on the expertise of

the community to recognize good (and bad) questions and answers, our method taps into a

rich, and as yet unexploited, social source of expertise information. To consider this infor-

mation in the context of the software-development task at hand, our method relies on the

intersection between Github bug-report text and tags of the Stack Overflow questions and

answers. We believe Stack Overflow is a rich source of expertise for software engineering

purposes since the privilege of important Stack Overflow contributions like up/downVoting

is only available to community members who have established a minimum reputation.

We have thoroughly evaluated our method with 20 popular Github projects, compar-

ing its performance (a) against six traditional machine-learning approaches that have been

widely used for bug assignment before, and (b) against the reported accuracies of previ-

ous bug-triaging publications. Our approach exploits expertise information found in Stack

133

Overflow and readily outperforms the competition. We believe that in order to achieve even

better performance, a project manager may ask the ID of his developers in the software

social networks and identify their full Q&A contributions.

Generalizing beyond Stack Overflow, how helpful it is for bug assignment, and what

limitations it suffers, we envision a new research agenda studying the application of third-

party expertise networks to bug triaging. The biggest open question is how to generalize

this approach to multiple expertise networks. As well as various Q&A networks and code

forums, perhaps there are wikis, project documentation, or developer performance histories

that could be mined for expertise networks to exploit for bug triage.

In addition to considering multiple social platforms, we also plan to consider tag syn-

onyms: Stack Overflow introduces lists of tag synonyms and suggests the users to use the

primary definitions (e.g., “servlets” instead of “webservlet”, “authentication” instead of “lo-

gin”), but does not enforce the practice. In the future, we plan to consider integration of

the synonyms in their primary definitions in code and data sets.

Acknowledgments

This work has been partially funded by IBM, the Natural Sciences and Engineering Research

Council of Canada (NSERC) and the GRAND NCE.

134

5.A Appendix: A Preliminary study for Usage of Ex-

ternal Beyond-project Sources of Expertise in Iso-

lated Settings

135

Abstract

Bug triaging and assignment is a time-consuming task in big projects. Most research in

this area examines the developers’ prior development and bug-fixing activities in order to

recognize their areas of expertise and assign to them relevant bug fixes. We propose a novel

method that exploits a new source of evidence for the developers’ expertise, namely their

contributions to Q&A platforms such as Stack Overflow. We evaluated this method in the

context of the 20 largest Github projects, considering 7144 bug reports. Our results demon-

strate that our method exhibits superior accuracy to other state-of-the-art methods, and

that future bug-assignment algorithms should consider exploring other sources of expertise,

beyond the project’s version-control system and bug tracker.

136

5.A.1 Introduction and Background

Bug-triaging-and-assignment has received substantial attention by the software-engineering

community (Anvik et al. 2006; Čubranić and Murphy 2004; Hossen et al. 2014; Jeong et al.

2009; Kagdi et al. 2012; Linares-Vásquez et al. 2012; Matter et al. 2009; Nguyen et al. 2014;

Zanjani et al. 2015). Given a bug report, the goal is to select and rank relevant project

developers, who would have the relevant knowledge to fix it. This problem touches on

two relevant research areas: (a) expertise identification and recommendation, and (b) bug

triaging.

Relevant to expertise-recommendation, Venkataramani et al . (Venkataramani et al. 2013)

described a system for recommending Stack Overflow members qualified to answer specific

questions. The system considers the names of the classes and methods to which the develop-

ers have contributed to infer their expertise. Similarly, Fritz et al . (Fritz et al. 2010) posed

the “Degree of Knowledge” (DOK) metric to determine the level of a developer’s knowledge

regarding a code element –class, method or field– based on the developer’s contribution to the

development of this element. Mockus and Herbsleb (Mockus and Herbsleb 2002) described

“Expertise Browser” (EB), a tool that identifies the developers’ expertise about code and

documentation, considering system commits and changes to classes, sub-systems, packages,

etc. Teyton et al . (Teyton et al. 2014) developed XTic, a system taht requires as input a

set of skills of interest and provides an automatic process that extracts skills and experience

levels from source code repositories. Zhang et al . (J. Zhang et al. 2007) described a method

for constructing a “Community Expertise Network” (CEN), from the post-reply relations of

Java Forum users. Assuming that asking questions is evidence of ignorance and providing

answers is evidence of expertise, they defined and demonstrated the usefulnes of the Z-score

as an expertise indicator: Z = (a− q)/
√

(a+ q), where q and a are respectively the number

of questions asked and answered by a community member.

There has already been substantial research on bug triaging, which has produced a num-

ber of different techniques to select the (top-k, where k is typically 1 and 5) most capable

developer(s) to resolve a given bug report. Table 5.4 summarizes some key results of this

work.

In relation to this earlier research, the method we propose in this paper is unique in that

it uses the developer’s expertise, as demonstrated by the developer’s contributions to Stack

Overflow, as a source of evidence regarding the competence of a developer to fix a bug. We

describe our method in Section 5.A.2 and we report on our experimental-evaluation results

137

Table 5.4: Recent Bug-Triaging Methods
Authors Basic method / Information used Effectiveness

(Čubranić and
Murphy 2004)

Naive Bayes classification of bug reports (i.e., “text
documents”) to developers (i.e., “classes”); uses bug
summary and description.

up to 30% top-1

(Anvik et al.
2006)

Support Vector Machine (SVM) classification of bug
reports (i.e., “text documents”) to developers (i.e.,
“classes”); uses bug summary and description.

up to 57%, 64% and 18%
top-3 accuracy

(Tamrawi et al.
2011b)

A fuzzy-set representation of the relations between
developers and the bug reports’ technical terms; uses
bug summary and description.

average 40% and 75% for
top-1 and top-5 accuracy
over 7 projects

(Lamkanfi et al.
2011)

Multinomial Naive Bayes and some other ML
approaches; uses bug report summary, description,
severity and component.

79% accuracy in predicting
severity of bug reports

(Lin et al. 2009)
SVM and C4.5 classifiers; uses bug summary and
description, type, class, priority, submitter and the
module ID.

up to 77% top-10 accuracy

(Nguyen et al.
2014)

Regression model based on LDA topic modeling; uses
bug description.

Just estimated the time to
fix for each developer ±2.3
days

(Canfora and
Cerulo 2006)

A probabilistic IR method to query the new bug
report’s text and find the best developer (considered as
a document); uses descriptions of the change requests.

62% and 85% accuracy in
two projects

(Matter et al.
2009)

Vector Space Model (an IR method); uses source-code
commits and the bug-report keywords;

34% and 71% top-1 and
top-10 accuracies

(Linares-Vásquez
et al. 2012)

IR-based concept location techniques; uses text of a
change request and source code files.

85% top-5 accuracy

(Shokripour
et al. 2013)

A method based on information extraction; uses bug
summary and description, detailed source code info
(comments, names of classes, methods, fields, etc.).

48% and 48% top-1 and 60%
and 89% top-5 accuracies on
two projects (57 and 9
developers)

(Jeong et al.
2009)

Introduced “tossing graphs” of developers to reduce
bug reassignment; uses bug report title and description

up to 77% top-5 accuracy

in Section 5.A.3. Reflecting on these results and the corresponding results of earlier studies,

we argue for the merits of our method in Section 5.A.3. Finally, in Section 5.A.4, we

conclude with the lessons we hope to share with the community and our plans for future

work.

5.A.2 A Social Bug-Triaging Method

Motivated by the overlap in the activities of developers in Github and Stack Overflow (Sajedi-

Badashian et al. 2014; Vasilescu et al. 2013), in this work, we ask what if we combine

expertise-recommendation based on networks like Stack Overflow with triaging of issues?

and we describe a method that exploits evidence of expertise in the developers’ Stack Over-

flow activity traces, for identifying candidate bug fixers in Github. Let us describe the key

138

intuition of our method with a simple example: if a developer has answered several questions

tagged with the jquery keyword, and her answers have received the community’s approval

with many upVotes, she has a “proven” expertise record in jquery ; therefore, she should be

a likely candidate for fixing bugs whose description includes the jquery keyword.

Consider, for example, the activity around five Stack Overflow questions, shown in Table

5.5. The bold tags indicate keywords that also appear in the bug report, which needs to be

addressed. The middle section of Table 5.5 reports the simple AnswerNum score, namely the

total number of questions answered by the developer, and the developer’s Z-score(J. Zhang

et al. 2007) as described above. These two expertise indicators completely ignore the bug

at hand, which is why we developed the three additional scores, reported at the bottom of

Table 5.5 and described in detail in Section 5.A.2 below. We use Stack Overflow tags for

cross-referencing Stack Overflow and Github. As a sanity check for the applicability of tags

in Github bug reports, we examined the bug reports in 3 selected projects (out of the 20

projects considered in this study) and found that the textual information of each bug report

(including project language, project description, issue title and issue body) mentions between

2 to 89 tags (avg=14.9 and σ=11.5). In effect, tags are keywords, curated by the community,

that define a common set of vocabularies for developers to exchange information without

the need for stop-word and noise-word removal from the bug-report texts.

A Bug-Specific Social Metric of Expertise

Given a bug report, b, the objective is to estimate a developer’s expertise and potential

ability to fix it. To that end, we define matched tagsq,b and matched tagsa,b, as the set

of tags of a specific question (q) and its answers (a) that appear in the textual information

of the bug report (b). These metrics are calculated for each pairwise combination of bug

reports and questions (and answers) provided by the project developers.

We next define Au,b, relative weighted answers, and Qu,b, relevant weighted questions,

to replace a and q respectively in the original definition of Z-score, taking into account the

community’s assessment of the “quality” of a developer’s contributions. The definition of Au,b

is shown in Equation 5.6. At any point in time, for every answer a developer has contributed

in the past that is relevant to the bug under consideration, the number of matched tagsa,b is

multiplied with the number of the answer’s upVotes (plus one, for the answer itself).

139

Table 5.5: Example of different scores for users
`
`

`
`
`
`
`
`
`
`
`

`

Question
Answerer

Bob Ali Taylor Yakob Jane Brian Harpreet

Q1 by Yakob, 3 upVotes
tags: [version control],
[open source]

46 5 53 28

Q2 by Jane 1
upVotes
tags: [ajax], [data],
[search], [jquery], [php]

20 16 22 6

Q3 by Yakob, 21 upVotes
tags: [lucene],
[elasticsearch], [php],
[java]

11 14 29 10

Q4 by Ali, 0 upVotes
tags: [https], [css], [java],
[jira], [data]

27 0 86

Q5 by Harpreet, 70 up-
Votes
tags: [java], [ajax],
[https], [xml], [lucene]

1 18 42 -4 14 98

AnswerNum 5 4 4 3 3 2 0

Z-score 2.24 1.34 2 0.45 1 1.41 -1

A

(46+1)·1 +
(20+1)·2 +
(11+1)·3 +
(27+1)·4 +
(1+1)·5 =

247

(5+1)·1 +
(16+1)·2 +
(14+1)·3 +
(18+1)·5 =

180

(53+1)·1 +
(22+1)·2 +
(29+1)·3 +
(42+1)·5 =

405

(6+1)·2 +
(0+1)·4 +
(-4+1)·5 =

3

(28+1)·1 +
(10+1)·3 +
(14+1)·5 =

137

(86+1)·4 +
(98+1)·5 =

843
0

Q
(µ = 20)

0
20·(4

0+1)

= 80
0

20·(1
3+1+

3
21+1)=7.7

20·(2
1+1)

= 20
0

20·(5
70+1)

= 1.41

SSA Z-score 15.72 6.20 20.12 -1.44 9.34 29.03 -1.19

Au,b =
∑

a∈answers
posted by u

(upV otesa + 1) · (matched tagsa,b) (5.6)

The Qu,b is calculated as shown in Equation 5.7. In principle, questions are considered as

evidence of lack of expertise (J. Zhang et al. 2007). However, to mitigate the adverse effects

of asking “good” questions, we divide matched tagsa,b by the number of upVotes (plus one

for the question itself). This tends to make the value of Qu,b very small, in comparison to

Au,b, which is why we use the µ normalization factor to adjust it.

Qu,b = µ ·
∑

q∈questions
posted by u

(matched tagsq,b)

(upV otesq + 1) (5.7)

The Social Subject-Aware Z-score (SSA Z-score) can then be defined, as shown in Equa-

140

tion 5.8.

SSA Z-scoreu,b =
(Au,b −Qu,b)
√

(Au,b +Qu,b)
(5.8)

Note that, in order to capture a temporally-aware measure of a developer’s expertise,

this formula only involves questions and answers posted before the time when the bug was

reported (i.e., tq < tb and ta < tb).

A Recency-Sensitive SSA Z-score

Developers’ expertise shifts over time as they work on different projects with potentially

different technologies. This is why, many related expertise-modeling methdologies (Anvik et

al. 2006; Matter et al. 2009; Shokripour et al. 2013) include a decay factor for older evidence

of expertise and weigh it less than more recent one. To capture this intuition, that “recent

evidence of expertise is more valuable”, we defined Recency of activity as shown in Equation

5.9 below.

Recency of activityu,b =
∑

i ∈

bugs of u

1

1 + |{d|d∈bugs of u ∧ td > ti ∧ td < tb }| (5.9)

Note that t is the time that the bug report was submitted, and the denominator counts

the number of bug reports that occurred between i and b. The intuition here is that bug-

fixing exhibits locality, namely that “the developers that have been fixing bugs recently are

likely to fix bug reports in the near future” (Tamrawi et al. 2011b). We combine the two

last metrics to assign each user a new score regarding the bug currently being triaged:

Triage scoreu,b = α · (SSA Z-scoreu,b) + β · (Recency of activityu,b) (5.10)

In this formula, α and β are parameters, which are tuned following a systematic process

explained in Section 5.A.3. Having the Triage score for all users in the community over a

bug report, our bug-triaging algorithm sorts the users and reports the top k developers to

fix the bug.

5.A.3 Evaluation

We obtained two Stack Overflow data sets (Stack Exchange, Inc n.d.; S. E. C. Stack Ex-

change 2014) (approximately 65GB and 90GB). They consist of several XML files including

141

information about 2,332,403 and 3,080,577 users, their posts, tags, votes, etc.). In order to

link these users to Github, their email hash is needed (Sajedi-Badashian et al. 2014), which

is provided by the older data set. We merged these two data sets to get a large data set

including users of old data set with newer posts.

We used the GHTorrent mySQL dump (Gousios 2013) (with a size of about 21GB) con-

taining information about 4,212,377 Github users and their project memberships. However,

this data set did not include the textual information of the bug reports. We obtained this

information from a set of MongoDB dumps from the GHTorrent site (210GB) including infor-

mation of 2,908,292 users. Again, we merged the two data sets and obtained a large data set

including information about Github users, projects and bug reports. Both the Github and

Stack Overflow data sets include information of the users and their activities from 2008 to

2014. As our method assigns bugs to developers with a presence in both Github and Stack

Overflow, we encoded users’s emails in Github with MD-5 function and compared them with

every e-mail hash available in Stack Overflow (Sajedi-Badashian et al. 2014; Vasilescu et al.

2013). With this approach, we found 358,472 common users7.

Experiment Setup and Implementation

We first extracted the community members of each project as the union of the sets of project

members, committers, bug reporters, and bug assignees. We then refined this community to

include only developers who had posted some questions or answers on Stack Overflow. Next,

we identified the top 20 ranked projects based on the number of their community members7.

For the selected 20 projects, the number of community members vary from 28 to 822

(average=127, σ=169, median=87). Out of 14,172 bug reports in all the selected projects,

we examined 7144 bug reports that have been assigned to one of the community members

in the related project. Note that we could not use the rest of bug reports since they were

assigned to developers with no Stack Overflow activity. However, if this approach is applied

in the workplace, alternative networks should be tested and used. We used bug reports from

three of these projects for training and tuning purposes and 17 for final evaluation. For

each bug report in each project, we ran our algorithm to compute the expertise score of all

project-community members and ranked the users from the highest score to the lowest. We

report top-1 and top-5 accuracies as well as Mean Average Precision (MAP) as a synthesized,

7Our data sets, information of 3+17 projects, Java implementation of our approach and output
and tuning results are available online at: http://github.com/alisajedi/BugTriaging

142

rank-based evaluation measure (Wong et al. 2014).

To compare with other state-of-the-art methods, we experimented with the scikit-learn 8

implementations of a number of machine-learning algorithms used as the basis for the above

research (Anvik et al. 2006; Čubranić and Murphy 2004; Lamkanfi et al. 2011; Lin et al.

2009) which we applied9 to our own data set: (1) 1NN, 3NN and 5NN; (2) Naive Bayes; (3)

Multinomial Naive Bayes; and (4) SVM.

We used the words in the title and description of the bug reports as the TFIDF feature

vectors. We developed an online train-and-test method; train them on first n-1 bug reports

and then test on the nth. Then recursively train on first n bug reports and test on n+1th.

We used the following parameters for scikit-learn machine learners. For KNN, we

chose k as the parameter (1, 3 or 5), weights=‘uniform’, algorithm=‘auto’, leaf size=30,

p=2, metric=‘minkowski’ and metric params=None. For Multinomial Naive Bayes, we used

Laplace smoothing priors (α = 1.0) fit to prior distribution using OneVsRestClassifier clas-

sifier strategy. Similarly for Naive Bayes, but it uses multiclass classification. For SVM, we

used Support Vector Classification (SVC). We chose RBF kernel, used shrinking heuristic,

with gamma kernel coefficient 1/n for n features, error penalty=1 and probability=true.

Results

Out of 20 projects, we selected three projects (including 490 bug reports). We then measured

the performance metrics of different approaches from AnswerNum to original Z-score, to

Subject-Aware Z-score (SA Z-score), to Social Subject-Aware Z-score (SSA Z-score), to the

final recency-aware SSA Z-score (Triage score). In each step, we observed an improvement

in accuracy. This validates our effort toward considering Stack Overflow upVotes while being

aware of bug content. For the purpose of tuning and calibrating our method, we needed to

determine the best values for µ, α and β (Equations 5.7 and 5.10). The best obtained values

are as follows: µ (normalization factor) is set to “Harmonic Mean plus 1”, β=1 and α=0.01.

The reason for small α value can be because of very large numbers attained for Social Z-score

(i.e., number of upVotes multiplied by number of tags, summed over all answers of each user).

We apply the parameter values (µ, α and β) obtained from the three test projects into the

remaining 17 projects in our final evaluation.

As the final evaluation, we ran our algorithm over 17 projects (holding out the three

8http://scikit-learn.org/stable/
9 Our Python implementations: http://github.com/abramhindle/bug-triager-scikit/blob/ali/

dumpbayes.py More explanation of the ML methods are also available at the repository.

143

projects used for tuning) including 6654 bug reports and sorted the recommended developers

for each bug report. The average top-k accuracies of our approach for k from 1 to 5 are

45.17%, 66.41%, 77.50%, 84.79% and 89.43% respectively. We also obtained a Mean Average

Precision (MAP) of 0.633, which is very strong and shows that the harmonic mean of the

ground-truth assignee is 1.58 over all the bug reports. Note that in bug triaging, MAP is equal

to Mean Reciprocal Rank (MRR) of the ground-truth assignee over all the recommendations.

We also implemented the other approaches discussed in Section 5.A.3. We ran those

experiments to compare the results of our method with other approaches on the same data

set. The results for average top-1 and top-5 accuracies as well as MAP are shown in Table

5.6.

Table 5.6: Results of different simulated approaches compared with ours
h
h
h

h
h

h
h
h
h
h
h
h
h
h
h
h
hh

Evaluation Measure
Method

1NN 3NN 5NN
Naive
Bayes

Multinomial
Naive Bayes SVM

Our
approach

Top 1 Accuracy (%) 43.09 46.48 45.60 43.77 42.75 45.46 45.17
Top 5 Accuracy (%) 70.46 75.63 75.00 78.98 75.97 81.82 89.43

MAP 0.575 0.610 0.596 0.609 0.606 0.617 0.633

The values reported in Table 5.6 are averages over all 17 projects examined. However,

we examined the detailed results for each project and found them close to the mean (me-

dian=90.19 and σ=7.81 for top-5 accuracies). Our results demonstrate that our Triage score,

relying on evidence of developers’ expertise from their Stack Overflow activities, is very ef-

fective in selecting the right assignee for the right bug, much more so than all competing

machine-learning algorithms relying exclusively on Github data. It is noteworthy that our

approach is fast and efficient enough since it avoids the typical text pre-processing of most

IR-based methods, such as stemming and indexing. Each bug report was triaged in almost

a second, which is fast enough for real-time use.

Analysis

The results in Table 5.6 demonstrate that our method exhibits the best performance, out-

performing all other machine-learning methods in terms of top-5 accuracy and MAP. 3NN,

5NN and SVM do well for top-1 accuracy, slightly better than our approach. Our average

top-5 accuracy is between 8 to 19 percent better than other approaches. The MAP value of

our approach —0.633— corresponds to the harmonic mean 1.58 for the rank of the ground-

truth assignee (implying that the ground-truth assignee frequently appeared in the rank-1

144

and rank-2 positions in the results). MAP varies from 0.575 (for 1NN) to 0.617 (for SVM

as the best approach after our’s). Comparing the different algorithms on the same data set

demonstrates in the usefulness of our method.

We also compared our results with previously published results. In short, as one of

the best obtained accuracies in the previous studies, Shokripour et al . (Shokripour et al.

2013) obtained 48% top-1 and 60% and 89% top-5 accuracies on two projects (with 57

and 9 developers respectively). Our top-5 accuracy outperforms theirs, but their approach

performs 3% better on top-1. Note that their best results were obtained in a project with

only 9 candidate developers (our projects included between 28 and 822 developers). Also

note that their approach was tested only on 80 and 85 bug reports, as opposed to our 7144

bug reports, which constitutes strong evidence on the robustness of our approach.

To summarize our comparison findings, it is important to mention the following three key

points. Our evaluation of our metric is the most thorough reported in the literature (with

20 projects and 7144 bug reports). Our metric highly outperforms all previously reported

methods in terms of average top-5 accuracy, and most of them in terms of average top-1

accuracy. More importantly, our metric exhibits the highest MAP/MRR.

Limitations and Threats to Validity

An external validity threat is that the common users (between Stack Overflow and Github)

constitute up to 20% of the total number of users in each of these networks. Currently,

for privacy reasons, much of the Q&A content at the software social networks is provided

anonymously. However, the large number (i.e., thousands) of developers and bug reports

on which we tested our approach mitigates this limitation. One could envision that project

managers could easily request their developers to provide their IDs in Q&A networks like

Stack Overflow, as part of their CV. As a result, more extensive Q&A contributions (or

alternative sources of information) will become available to the bug-assignment process.

Another concern is how to treat the phenomenon of developers answering their own

questions to announce a commonly encountered issue with some API, library, etc. However,

we investigated the questions and answers of members of three projects out of 20 and found

that only 3% of their answers are answers to one’s own question, and only in around half of

these cases, the question is upVoted, meaning that the case did not indicate expertise, but

lack of expertise (as we assumed).

145

5.A.4 Conclusions and Future Work

In this paper, we described a method that effectively utilizes the expertise networks, such

as Stack Overflow contributions of developers and their previous bug-assignment history

to decide the best candidate developer for fixing a bug. We have thoroughly evaluated

our method with 20 popular Github projects, comparing its performance (a) against six

traditional machine-learning approaches that have been widely used for bug assignment

before, and (b) against the reported accuracies of previous bug-triaging publications. Our

approach outperforms the competition.

The fundamental novelty of our work is that it takes advantage of contributions of the de-

velopers in software Q&A networks as a rich, unexploited socio-technical source of expertise

information, beyond their code. This leads us to a more interesting insight: applying vari-

ous third-party expertise networks in bug triaging envisions new horizons for software

maintenance community. In fact, the socio-technical information available on the web is a

great source of expertise. While some developers contribute in Stack Overflow, many others

may prefer Java Forum, Ask Ubuntu, Experts Exchange, Code Project, Web developer, SUN

Forums, MSDN Forums and so on. As part of their development process, developers may

provide their IDs in their desired software social platforms, to better inform our method

regarding their expertise and thus improve the triaging process.

In the future, we plan to handle tag synonyms. Different synonym tags can be integrated

in their primary definition addressing in bug reports and Q&A contents. Finally, capturing

level of similarity of the keywords in bug reports with tags (e.g., “xml-parser”, “xml parser”,

“xmlparsing” and “xml parsing” compared to tag “xml-parsing”) can be a useful extension.

Curation, noise reduction, and tag recommender approaches (Shaowei Wang et al. 2014)

may also be useful in this case.

Acknowledgments

This work has been partially funded by IBM, the Natural Sciences and Engineering Research

Council of Canada (NSERC) and the GRAND NCE.

146

5.B Appendix: Can External Beyond-project Sources

of Expertise be Useful in General Settings?

We showed in the main part of this chapter that the external sources of expertise are useful

in isolated settings (in which any developer with no external contribution is eliminated).

This is useful when internal sources are not available –e.g., in new projects.

Here, we investigate the case in more generic settings, without removing any developers

or bugs (with or without internal evidence of expertise). Since our Multisource approach

(Chapter 4) is capable of combining various sources of expertise and its data set contains

both internal and external sources of expertise of developers, we build up this section based

on the Multisource approach.

We consider the usage of two external sources of information as evidence of expertise

of developers; evidence from other projects and other social networks. Due to limitations

in finding shared users between our projects and sub-projects, or other networks (as we

mentioned before in Section 4.4), we consider these external evidence for assigning bugs in

our two biggest projects, “Angular.js” and “Rails”. Starting from the best configuration

we obtained using the within-project sources, each time we add an extra type of external

beyond-project information and see if we can improve the overall accuracy. Then we evaluate

the usefulness of these external sources of expertise.

5.B.1 Information From Project Families

While specific expertise information –like comments and commits– inside a project is useful

in determining the proper bug fixers, the similar information obtained from sub-projects can

also be of use in the main project.

To understand the extent to which information from sub-projects can be useful for the

main projects (“Angular.js” and “Rails”), we consider the same types of evidence we found

useful in Section 4.5. According to the statistics we showed in Table 5.7, there are only 184

and 472 users respectively in Angular.js and Rails who are also in their sub-projects as well.

This is a small portion of the users (7.7% and 11.6% respectively). The rest of the users

have no multi-project evidence.

We used Equation 4.1 for evaluating appropriateness of a developer for a bug, and con-

sidered the same weights we obtained in Table 4.3 for context(sdj) coefficients. Then we

repeated the experiment with additional data (bug comments, commits, pull requests and

147

Table 5.7: Statistics of the shared users with sub-projects or Stack Overflow
Angular.js Rails

#
Ratio to

all
developers

#
Ratio to

all
developers

Total # of developers 2,386 100% 4,079 100%

of developers shared with at
least one sub-project

184 7.7% 472 11.6%

of developers shared with
Stack Overflow

136 5.7% 265 6.5%

commit comments10). We added one piece of additional source at a time. The highest im-

provement in final MAP was regarding bug comments but was trivial (less than 0.1%) and

hence we do not show them here separately. We explain this as follows;

The addition of evidence from sub-projects are not that effective when within-project

evidence are available; this can be due to locality of project expertise. In fact, the local

information is much more fruitful than the project families. In a sense, each piece of data

that is added, can bring some redundant data or false positives. Once rich local data is

available (like in our experiment), addition of external data will not help much. The other

reason is that finding external evidence for all the users in a project is very difficult (or

impossible). In our experiment, the number of users with multi-project evidence is a small

fraction of the all users in the two projects (∼10%).

But the external beyond-project data can be useful when there is no within-project data

available (e.g., starting phase of a new project). To investigate this, we check the effectiveness

of evidence from sub-projects, without considering within-project evidence. In other words,

we assign bugs to developers in two main projects, by considering the evidence of expertise

just from their sub-projects. We do not do any filtering to removal of any users (e.g., non-

shared users between the main project and their sub-projects). So we have evidence for 7.7%

and 11.6% of the users respectively in Angular.js and Rails. For the rest of the users, we

consider no activity, which means no evidence of expertise.

The results of this experiment are shown in Table 5.8. Surprisingly, the overall MAP is

17.43% which is higher than expected. Note that we are using evidence from sub-projects

to assign bugs in the main project, and these evidence are related to only around 10% of

the users (there is no evidence for the rest of the users). Having more shared users –or more

10Note that we cannot use the references to developers’ login names from resources of project families. A
reference to developer d (shown as “@d”) for bug #n in “Angular.js” is originated from somewhere in the
description or comments of that bug in “Angular.js”, not other projects.

148

evidence from those users– can lead to better recommendations. Comparing the amount

of evidence of expertise in “Angular.js” against “Rails” confirms this claim; as mentioned

before in the last two rows of Table 4.2, the evidence of sub-projects of Angular.js is several

times more than the evidence of Rails. This can interpret the higher accuracy in Angular.js.

Table 5.8: Results of using external sources of expertise
Angular.js Rails total
of

assignments MAP # of
assignments MAP # of

assignments MAP

Regular (the best obtained
result with all within-project

evidence)
9,658

60.92

11,305

55.21

20,963

57.84

Just using evidence from project
families

19.39 15.76 17.43

Just using evidence from Stack
Overflow

10.85 2.64 6.42

The total top-1, top-5 and top-10 accuracies (for brevity, not shown in Table 5.8) are

respectively 6.8%, 32.7% and 45.9% which show that many of the recommendations are in

the top of the list. Note that there are ∼2.3k and ∼4k developers respectively in Angular.js

and Rails and it is very tough to identify the ground-truth assignee out of those high num-

ber of users. So, the sources of expertise in project families are capable of producing fair

recommendations, without considering internal evidence of expertise. Although this (using

only evidence from external sources) cannot compete against state-of-the-art methods, we

argue that those external evidence can be useful in special situations. For example, in early

stages of the projects, when there is not enough evidence of expertise available, any addi-

tional source is very helpful. Another example is regarding a new developer to an existing

project (i.e., we can obtain the evidence of expertise for those specific developers from their

contributions in other projects). Needless to say, more shared users, or more evidence of

expertise of those shared users between the project families and main project will establish

more accurate recommendations.

5.B.2 Information from Other Technical Networks

Next, we consider usefulness of another external source, Stack Overflow, for bug-assignment

in software projects. In the main contents of this chapter, we examined usage of Stack

Overflow in an “isolated settings” for bug-assignment; we showed that “filtering the de-

velopers to the shared users between Stack Overflow and Github” and using our previous

method (Sajedi-Badashian et al. 2016) can assign bugs to developers with high accuracy. In

149

the current study, since our Multisource scoring function is capable of considering multiple

sources of expertise, we extend our experiments to examine the level of suitability of Stack

Overflow posts in bug-assignment, without eliminating non-shared users.

To understand the extent to which the expertise from Stack Overflow is useful, we consid-

ered Stack Overflow posts of developers of Angular.js and Rails. According to the statistics

we showed in Table 5.7, there are only 136 and 265 users respectively in Angular.js and

Rails, who are also in Stack Overflow. This is a small portion of the users (5.7% and 6.5%

respectively). The rest of the users have no Stack Overflow evidence.

Again, we use Equation 4.1 for considering appropriateness of a developer for a bug. In

addition to the evidence used in our main experiment, we considered Stack Overflow answers

as an additional evidence of expertise –regarding the areas mentioned in the tags of the

related question. We tunned the coefficient of Stack Overflow answers with different values.

Similar to the multi-project experiment, we found that this external source of expertise

could not improve the results of Multisource (for brevity, we did not show those detailed

results here). The reason is similar to the multi-project experiment; once there are local

information about the project contributors, the additional external sources are not fruitful.

Also note that the number of users with Stack Overflow evidence is a very small fraction

of all users (∼ 6%). Adding the questions of Stack Overflow as an additional source of

expertise even decreases the accuracy. This is consistent with our previous findings about

Stack Overflow questions being evidence of lack of expertise (Sajedi-Badashian et al. 2016),

unlike Stack Overflow answers.

In the next step, like previous experiment, we limit the sources of expertise to only

the external information (i.e., Stack Overflow evidence). In other words, we assign bugs

to the developers in the same two projects of the previous step –Angular.js and Rails– by

considering the evidence of expertise just from Stack Overflow, in absence of any evidence

from these two projects. Like previous experiment, we do not filter or remove the users

(e.g., non-shared users between our two projects and Stack Overflow are not removed but

assumed to have no evidence of expertise).

The results are shown in Table 5.8. The overall MAP is 6.42%. Again, Angular.js shows

much better performance than Rails. The results are even lower than the multi-project

experiment. We argue that this low accuracy is related to lack of external information.

The number of shared developers between Stack Overflow and our projects are 136 and 265

users for Angular.js and Rails (5.7% and 6.5%) respectively. Considering the fact that the

150

evidence of expertise is coming from around 6% of the developers to assign all the bugs in

the two projects, the results are still convincing. Also note that there are ∼2.3k and ∼4k

developers respectively in Angular.js and Rails which makes the assignee prediction very

hard.

We believe that having more information (i.e., more shared developers with Stack Over-

flow or more answers by those shared developers) can produce much better recommendations.

To elaborate about this argument, we point to the higher MAP in Angular.js compared to

Rails and examine the shared developers between Stack Overflow and these two projects.

As shown in Table 5.9, the percentage of shared developers with Stack Overflow are in both

projects around 5% of the total users, but the average and median number of Stack Over-

flow answers posted by Angular.js members are 78.5 and 23 respectively, both around 1.5

times the equivalent numbers in Rails. This means that the users of Angular.js have more

Stack Overflow contributions and hence our method gives better recommendations in it. In

other words, having more evidence from Stack Overflow can lead to more accurate results.

Table 5.9: Statistics of the answers posted by the developers in Stack Overflow
Angular.js Rails

of developers with at least one answer (%) 120 (5.03%) 239 (5.86%)

of answers posted by each
developer

min 1 1
max 1,065 2,036

average 78.5 54.2
median 23 15

Again, aligned with results of last sub-section, we argue that Stack Overflow contributions

of developers, like the other evidence from project families, can be useful in early stages of

the projects (as external sources of expertise), when there is not enough local evidence of

expertise available in the project.

Connecting these findings with the ones we obtained in the main contents of this chapter,

regarding usefulness of Q&A contributions in isolated settings (by considering only shared

users with our projects), we argue that using Q&A contributions as an addition to the sources

of expertise is useful only if the shared user base is big enough. The companies’ internal

developer networks are a good resource for these types of evidence.

151

Chapter 6

Conclusions and Future Works

In this thesis, we have made the following contributions:

1) We comprehensively surveyed the previous research on bug-assignment and reviewed

different objectives, methods, metrics, information and dimensions of variability. Then we

proposed a framework for evaluation of bug-assignment research, covering three main in-

spirations. First, MAP is the most reliable metric for evaluation of bug-assignment exper-

iments. It reflects the effectiveness of the bug-assignment method and is least sensitive to

the dimensions of variability in different projects. Second, in order to validate the assignee

recommendations realistically, the definition of ground-truth assignee, which is used as the

ground truth in bug-assignment research, should comprehensively include every bug-fix effort

by developers. Because of the general lack of consistency around the processes of recording

who fixed a bug, it is reasonable to consider that all developers who contributed to a bug

being fixed (whether they are mentioned to have closed it or they are mentioned as having

fixed it) or have been nominated by a project manager as assignee should be good choices

as assignees to this bug. Third, the developer community, who are the potential assignees

used to validate a bug-assignment approach, should be inclusive of all project members. We

demonstrate that filtering the candidate developers may artificially inflate the reported accu-

racy. From a higher perspective, validating a new bug-assignment approach needs some spirit

of equity and fairness. The important aspects of evaluation and reporting in our proposed

framework enables replication of the bug-assignment studies and supports reproducible re-

search. This promotes its usage in other research or industrial applications. This work is

reflected in Chapter 2.

2) We developed TTBA, a new bug-assignment method that uses a fine-grained term-

152

weighting scheme that enables utilization of “time” and “importance” of the keywords by

developers. It features two main aspects. First, it utilizes the Stack Overflow as the thesaurus

of technical terms and identifies the specificity and technicality of the keywords from their

appearance statistics in Stack Overflow. Second, it highlights the time of usage of the

keywords by developers to diminish the effect of old evidence of expertise. TTBA is capable

of accurately recommending appropriate developers to fix the given bug reports. We showed

that it outperforms other bug-assignment approaches. This work is described in Chapter 3.

3) Preserving TTBA’s high granularity of the time of usage of technical terms by develop-

ers, we further enhanced it to include multiple sources of expertise with different importance.

Unlike most previous bug-assignment studies that focused on enhancing methods, our Multi-

source TTBA approach tries to enhance data by engaging a variety of sources of expertise of

developers. We showed that using the sources of expertise from diverse sources in open-source

projects can propose non-trivial enhancements in automatic bug-fixing accuracy. Using this

Multisource TTBA approach, we investigated the information value of different pieces of

information that are usually found in open-source software repositories. We realized that

different types of social and technical contributions of developers can be very useful for rec-

ommending proper fixers. Specifically, we found that the text of bug comments, commits and

pull requests (in this order) contain useful information about the expertise of their developer.

In addition, the links to developers’ login names from developers’ contributions contain use-

ful information about who might be a good candidate to fix a given bug. Regarding external

beyond-project sources, we found that they generally cannot provide enhancement to the

within-project sources. However, they can be useful only in specific conditions (like starting

phase of new projects) or when the external sources of all the developers are available (like

in some proprietary software). The Multisource TTBA approach is discussed in Chapter

4 and the investigation of information value of various sources of expertise is performed in

Chapters 4 and 5 (respectively for internal and external sources).

4) We made all our data sets available online for further researchers to replicate our

studies, or develop and evaluate their bug-assignment methods on (Chapters 2, 3, 4 and 5).

The most comprehensive data set1 we extracted and published is regarding our latest experi-

ments (Chapter 4 and Appendix 5.B) which includes both technical and social contributions

of developers in 13 big open-source projects in Github during +5 years. This data set is

one of the most comprehensive and recent data sets available for further bug-assignment

research.

153

6.1 Future Works

Extending different parts of current thesis is possible as future directions:

As one of the contributions of this thesis was to investigate the effect of various informa-

tion on bug-assignment, still richer data can be used regarding two aspects. First, providing

more textual elements available in open-source repositories (e.g., information available in

other branches or communications of developers in private developer networks), which would

be straightforward using our Multisource approach. Second, utilization of varied types of

information (e.g., meta-data elements) which might need some adjustments in the scoring

function and further tunings.

As another future work to this study, the notion of “assignee” can be enhanced to include

all the expert developers regarding each given bug. In order to obtain such a list for each bug,

the project managers need to review the bug reports and recommend the set of appropriate

developers for each one. In a big project with lots of bug reports, this is expensive in terms

of time and effort but would help to have a more appropriate evaluation.

The other amendment would be a query expansion method for inferring some new key-

words for each bug report, after eliminating the non-Stack Overflow tags. This may be

needed since our TTBA and Multisource methods eliminate other keywords and the remain-

ing keywords might be only a few keywords. In our data sets, only a few percentage of bug

reports had this problem and we did not do any enhancement for them. In any case, one

might expand the tags to infer new keywords and enhance the prediction. This may enhance

the method’s final accuracy. In addition, some stop-words removal (e.g., removing generic

Stack Overflow tags like this, for or while) may also be useful.

The other possible update is regarding tag synonyms. Stack Overflow preserves a list

of tag synonyms which show couples of related tags (the main tag and the secondary one).

Merging the secondary tags into the main one in all the bug reports can lead to obtaining

better results.

Finally, in our TTBA and Multisource approaches, for each tag, we considered weights

based on its appearance in Stack Overflow. Then we used those weights constantly for all

the projects. This can be changed in order to obtain a better accuracy. One would envision

using more specific weights for keywords obtained from each domain or project. In any case,

the main idea of granularity of time of usage of the keywords and capturing the importance

of the technical terms from a thesaurus remains the same.

154

References

Aggarwal, Karan et al. (2017). “Detecting duplicate bug reports with software engineering
domain knowledge.” In: Journal of Software: Evolution and Process 29.3. 30

Ahsan, Syed Nadeem, Javed Ferzund, and Franz Wotawa (2009). “Automatic software bug
triage system (bts) based on latent semantic indexing and support vector machine.” In:
Software Engineering Advances, 2009. ICSEA’09. Fourth International Conference on.
IEEE, pp. 216–221. 16, 46

Akbarinasaji, Shirin, Bora Caglayan, and Ayse Bener (2017). “Predicting bug-fixing time:
A replication study using an open source software project.” In: Journal of Systems and
Software. 14, 57

Alipour, Anahita (2013). “A CONTEXTUAL APPROACH TOWARDS MORE ACCU-
RATE DUPLICATE BUG REPORT DETECTION.” MA thesis. Canada: University of
Alberta. 29, 30

Aljarah, Ibrahim et al. (2011). “Selecting discriminating terms for bug assignment: a formal
analysis.” In: Proceedings of the 7th International Conference on Predictive Models in
Software Engineering. ACM, p. 12. 1, 10, 16, 20, 4

Anjali, Devina Mohan, Neetu Sardana, et al. (2016). “Visheshagya: Time based expertise
model for bug report assignment.” In: Contemporary Computing (IC3), 2016 Ninth In-
ternational Conference on. IEEE, pp. 1–6. 17, 20, 92, 95

Anvik, John (2006). “Automating bug report assignment.” In: Proceedings of the 28th inter-
national conference on Software engineering. ACM, pp. 937–940. 16, 117, 118

Anvik, John, Lyndon Hiew, and Gail Murphy (2006). “Who should fix this bug?” In: Pro-
ceedings of the 28th international conference on Software engineering. ACM, pp. 361–370.

16, 28, 33, 37, 46, 68, 92, 116–118, 125, 127, 137, 138, 141, 143

Anvik, John and Gail Murphy (2011). “Reducing the effort of bug report triage: Recom-
menders for development-oriented decisions.” In: ACM Transactions on Software Engi-
neering and Methodology (TOSEM) 20.3, p. 10. 16, 46, 117, 118,

Bachmann, Adrian et al. (2010). “The missing links: bugs and bug-fix commits.” In: Pro-
ceedings of the eighteenth ACM SIGSOFT international symposium on Foundations of
software engineering. ACM, pp. 97–106. 51, 79

Banerjee, Sean et al. (2016). “Automated triaging of very large bug repositories.” In: Infor-
mation and Software Technology 89. issn: 0950-5849. doi: https://doi.org/10.1016/
j.infsof.2016.09.006. url: http://www.sciencedirect.com/science/article/
pii/S0950584916301653. 14, 57

155

Banitaan, Shadi and Mamdouh Alenezi (2013). “Tram: An approach for assigning bug reports
using their metadata.” In: Communications and Information Technology (ICCIT), 2013
Third International Conference on. IEEE, pp. 215–219. 16

Baysal, Olga, Michael W Godfrey, and Robin Cohen (2009). “A bug you like: A framework
for automated assignment of bugs.” In: Program Comprehension, 2009. ICPC’09. IEEE
17th International Conference on. IEEE, pp. 297–298. 1, 10, 16, 119

Baysal, Olga, Reid Holmes, and Michael W Godfrey (2012). “Revisiting bug triage and reso-
lution practices.” In: Proceedings of the First International Workshop on User Evaluation
for Software Engineering Researchers. IEEE Press, pp. 29–30. 14

Beyer, Stefanie and Martin Pinzger (2015). “Synonym suggestion for tags on stack overflow.”
In: Proceedings of the 2015 IEEE 23rd International Conference on Program Comprehen-
sion. IEEE Press, pp. 94–103. 80

Bhattacharya, Pamela and Iulian Neamtiu (2010). “Fine-grained incremental learning and
multi-feature tossing graphs to improve bug triaging.” In: Software Maintenance (ICSM),
2010 IEEE International Conference on. IEEE, pp. 1–10. 1, 10, 15, 16, 2

Bhattacharya, Pamela, Iulian Neamtiu, and Christian R Shelton (2012). “Automated, highly-
accurate, bug assignment using machine learning and tossing graphs.” In: Journal of
Systems and Software 85.10, pp. 2275–2292. 1, 10, 11, 16, 2

Blanco, Roi and Christina Lioma (2012). “Graph-based term weighting for information re-
trieval.” In: Information retrieval 15.1, pp. 54–92. 71, 85, 86, 100,

Borg, Markus (2014). “Embrace your issues: compassing the software engineering landscape
using bug reports.” In: Proceedings of the 29th ACM/IEEE international conference on
Automated software engineering. ACM, pp. 891–894. 16

Bortis, Gerald and André van der Hoek (2013). “Porchlight: A tag-based approach to bug
triaging.” In: Proceedings of the 2013 International Conference on Software Engineering.
IEEE Press, pp. 342–351. 14

Brin, Sergey and Lawrence Page (1998). “The anatomy of a large-scale hypertextual Web
search engine.” In: Computer networks and ISDN systems 30.1, pp. 107–117. 117

Budgen, David and Pearl Brereton (2006). “Performing systematic literature reviews in
software engineering.” In: Proceedings of the 28th international conference on Software
engineering. ACM, pp. 1051–1052. url: https://dl.acm.org/citation.cfm?id=
1134500. 13

Canfora, Gerardo and Luigi Cerulo (2006). “Supporting change request assignment in open
source development.” In: Proceedings of the 2006 ACM symposium on Applied computing.
ACM, pp. 1767–1772. 16, 22, 25, 26,

Carlson, Patrick Eric (2015). “Engaging developers in open source software projects: Har-
nessing social and technical data mining to improve software development.” PhD thesis.
Iowa State University. 67

Cavalcanti, Yguaratã et al. (2014a). “Challenges and opportunities for software change re-
quest repositories: a systematic mapping study.” In: Journal of Software: Evolution and
Process 26.7, pp. 620–653. 14, 38

Cavalcanti, Yguaratã et al. (2014b). “Combining rule-based and information retrieval tech-
niques to assign software change requests.” In: Proceedings of the 29th ACM/IEEE in-
ternational conference on Automated software engineering. ACM, pp. 325–330. 16, 22, 24–26, 36,

156

Cavalcanti, Yguaratã et al. (2016). “Towards semi-automated assignment of software change
requests.” In: Journal of Systems and Software 115, pp. 82–101. 17, 24–26, 36, 59,

Chaparro, Oscar (2017). “Improving bug reporting, duplicate detection, and localization.”
In: Proceedings of the 39th International Conference on Software Engineering Companion.
IEEE Press, pp. 421–424. 14

Chen, Liguo, Xiaobo Wang, and Chao Liu (2010). “Improving bug assignment with bug
tossing graphs and bug similarities.” In: Biomedical Engineering and Computer Science
(ICBECS), 2010 International Conference on. IEEE, pp. 1–5. 16

Cormack, Gordon V and Thomas R Lynam (2006). “Statistical precision of information
retrieval evaluation.” In: Proceedings of the 29th annual international ACM SIGIR con-
ference on Research and development in information retrieval. ACM, pp. 533–540. 31

Craswell, Nick et al. (2005). “Relevance weighting for query independent evidence.” In:
Proceedings of the 28th annual international ACM SIGIR conference on Research and
development in information retrieval. ACM, pp. 416–423. 71, 85, 86, 100,

Čubranić, Davor and Gail Murphy (2004). “Automatic bug triage using text categorization.”
In: In SEKE 2004: Proceedings of the Sixteenth International Conference on Software
Engineering & Knowledge Engineering. Citeseer. Banff, Alberta, Canada. 16, 22, 25, 26,

Ded́ık, Václav and Bruno Rossi (2016). “Automated bug triaging in an industrial context.”
In: Software Engineering and Advanced Applications (SEAA), 2016 42th Euromicro Con-
ference on. IEEE, pp. 363–367. 17

ElSalamouny, Ehab, Karl Tikjøb Krukow, and Vladimiro Sassone (2009). “An analysis of
the exponential decay principle in probabilistic trust models.” In: Theoretical computer
science 410.41, pp. 4067–4084. 67

Florea, Adrian-Cătălin, John Anvik, and Răzvan Andonie (2017a). “Parallel Implementation
of a Bug Report Assignment Recommender Using Deep Learning.” In: International
Conference on Artificial Neural Networks. Springer, pp. 64–71. 17

— (2017b). “Spark-based cluster implementation of a bug report assignment recommender
system.” In: International Conference on Artificial Intelligence and Soft Computing.
Springer, pp. 31–42. 17

Fomel, Sergey and Jon F. Claerbout (2009). “Guest Editors’ Introduction: Reproducible
Research.” In: Computing in Science Engineering 11.1, pp. 5–7. issn: 1521-9615. doi:
10.1109/MCSE.2009.14. 11, 49

Fritz, Thomas et al. (2010). “A Degree-of-knowledge Model to Capture Source Code Famil-
iarity.” In: Proceedings of the 32Nd ACM/IEEE International Conference on Software
Engineering - Volume 1. ICSE ’10. Cape Town, South Africa: ACM, pp. 385–394. isbn:
978-1-60558-719-6. 117, 137

Github (2017a). Closing issues using keywords. url: https://help.github.com/articles/
closing-issues-using-keywords/ (visited on 10/31/2011). 40, 51, 79

— (2017b). Collaborators. url: https://developer.github.com/v3/repos/collaborators/
(visited on 10/31/2011). 37

Gousios, Georgios (2013). “The GHTorent dataset and tool suite.” In: Proceedings of the
10th Working Conference on Mining Software Repositories. IEEE Press, pp. 233–236. 142

157

Goyal, Anjali (2017). “Effective bug triage for non reproducible bugs.” In: Proceedings of the
39th International Conference on Software Engineering Companion. IEEE Press, pp. 487–
488. 17

Guo, Philip J et al. (2011). “Not my bug! and other reasons for software bug report reassign-
ments.” In: Proceedings of the ACM 2011 conference on Computer supported cooperative
work. ACM, pp. 395–404. 1

Helming, Jonas et al. (2010). “Automatic assignment of work items.” In: International Con-
ference on Evaluation of Novel Approaches to Software Engineering. Springer, pp. 236–
250. 14

Hosseini, Hadi, Raymond Nguyen, and Michael W Godfrey (2012). “A market-based bug allo-
cation mechanism using predictive bug lifetimes.” In: Software Maintenance and Reengi-
neering (CSMR), 2012 16th European Conference on. IEEE, pp. 149–158. 16, 19, 21

Hossen, Md Kamal, Huzefa Kagdi, and Denys Poshyvanyk (2014). “Amalgamating source
code authors, maintainers, and change proneness to triage change requests.” In: Proceed-
ings of the 22nd International Conference on Program Comprehension. ACM, pp. 130–
141. 16, 20, 25, 37,

Hu, Hao et al. (2014). “Effective bug triage based on historical bug-fix information.” In:
Software Reliability Engineering (ISSRE), 2014 IEEE 25th International Symposium on.
IEEE, pp. 122–132. 15, 16, 20, 58,

Jain, Swati and Swapna RoseWilson (2016). “Automated bug assortment system in datasets.”
In: Inventive Computation Technologies (ICICT), International Conference on. Vol. 2.
IEEE, pp. 1–7. 17

Jain, Vibhor, Anand Rath, and Srini Ramaswamy (2012). “Field weighting for automatic bug
triaging systems.” In: Systems, Man, and Cybernetics (SMC), 2012 IEEE International
Conference on. IEEE, pp. 2845–2848. 16

Jeong, Gaeul, Sunghun Kim, and Thomas Zimmermann (2009). “Improving Bug Triage with
Bug Tossing Graphs.” In: Proceedings of the the 7th Joint Meeting of the European Soft-
ware Engineering Conference and the ACM SIGSOFT Symposium on The Foundations
of Software Engineering. ESEC/FSE ’09. Amsterdam, The Netherlands: ACM, pp. 111–
120. isbn: 978-1-60558-001-2. 1, 10, 16, 20, 2

Jie, Zhang et al. (2015). “A survey on bug-report analysis.” In: SCIENCE CHINA Informa-
tion Sciences 58, pp. 1–24. doi: 10.1007/s11432-014-5241-2. 10

Jonsson, Leif (2013). “Increasing anomaly handling efficiency in large organizations using
applied machine learning.” In: Software Engineering (ICSE), 2013 35th International
Conference on. IEEE, pp. 1361–1364. 16, 17, 21, 59,

Jonsson, Leif et al. (2012). “Towards automated anomaly report assignment in large complex
systems using stacked generalization.” In: Software Testing, Verification and Validation
(ICST), 2012 IEEE Fifth International Conference on. IEEE, pp. 437–446. 16, 17, 21

Jonsson, Leif et al. (2016). “Automated bug assignment: Ensemble-based machine learning
in large scale industrial contexts.” In: Empirical Software Engineering 21.4, pp. 1533–
1578. 1, 10, 11, 17, 5

Kagdi, Huzefa, Maen Hammad, and Jonathan I Maletic (2008). “Who can help me with this
source code change?” In: Software Maintenance, 2008. ICSM 2008. IEEE International
Conference on. IEEE, pp. 157–166. 16, 37

158

Kagdi, Huzefa and Denys Poshyvanyk (2009). “Who can help me with this change request?”
In: Program Comprehension, 2009. ICPC’09. IEEE 17th International Conference on.
IEEE, pp. 273–277. 16, 20

Kagdi, Huzefa et al. (2012). “Assigning change requests to software developers.” In: Journal
of Software: Evolution and Process 24.1, pp. 3–33. 16, 137

Karim, Muhammad Rezaul et al. (2016). “An empirical investigation of single-objective and
multiobjective evolutionary algorithms for developer’s assignment to bugs.” In: Journal
of Software: Evolution and Process 28.12, pp. 1025–1060. 17, 18, 21, 59,

Kevic, Katja et al. (2013). “Collaborative bug triaging using textual similarities and change
set analysis.” In: Cooperative and Human Aspects of Software Engineering (CHASE),
2013 6th International Workshop on. IEEE, pp. 17–24. 16

Khalil, Elias, Mustafa Assaf, and Abdel Salam Sayyad (2017). “Human resource optimiza-
tion for bug fixing: balancing short-term and long-term objectives.” In: International
Symposium on Search Based Software Engineering. Springer, pp. 124–129. 17, 19, 21, 59

Khatun, Afrina and Kazi Sakib (2016). “A bug assignment technique based on bug fix-
ing expertise and source commit recency of developers.” In: Computer and Information
Technology (ICCIT), 2016 19th International Conference on. IEEE, pp. 592–597. 15, 17, 37, 38,

Kim, Sunghun and E James Whitehead Jr (2006). “How long did it take to fix bugs?” In:
Proceedings of the 2006 international workshop on Mining software repositories. ACM,
pp. 173–174. 1, 10

Kitchenham, Barbara. and Stuart Charters (2007). “Guidelines for performing Systematic
Literature Reviews in Software Engineering.” In: Software Engineering Group, School
of Computer Science and Mathematics, Keele University and Department of Computer
Science, University of Durham, Tech. Rep., EBSE. url: http://citeseerx.ist.psu.
edu/viewdoc/summary?doi=10.1.1.117.471. 13

Kleinberg, Jon M (1999). “Hubs, authorities, and communities.” In: ACM Computing Sur-
veys (CSUR) 31.4es, p. 5. 117

Lamkanfi, Ahmed et al. (2011). “Comparing mining algorithms for predicting the severity
of a reported bug.” In: Software Maintenance and Reengineering (CSMR), 2011 15th
European Conference on. IEEE, pp. 249–258. 117, 118, 127,

Lee, SunRo et al. (2017). “Applying deep learning based automatic bug triager to industrial
projects.” In: Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering. ACM, pp. 926–931. 17, 46

Li, Guo et al. (2015). “Is It Good to Be Like Wikipedia?: Exploring the Trade-offs of Intro-
ducing Collaborative Editing Model to Q&A Sites.” In: Proceedings of the 18th ACM Con-
ference on Computer Supported Cooperative Work & Social Computing. ACM, pp. 1080–
1091. 60

Lin, Zhongpeng et al. (2009). “An empirical study on bug assignment automation using
Chinese bug data.” In: Empirical software engineering and measurement, 2009. ESEM
2009. 3rd international symposium on. IEEE, pp. 451–455. 16, 117, 118, 127,

Linares-Vásquez, Mario et al. (2012). “Triaging incoming change requests: Bug or commit
history, or code authorship?” In: Software Maintenance (ICSM), 2012 28th IEEE Inter-
national Conference on. IEEE, pp. 451–460. 1, 10, 16, 57, 1

Liu, Jin et al. (2016). “A Multi-Source Approach for Bug Triage.” In: International Journal
of Software Engineering and Knowledge Engineering 26.09n10, pp. 1593–1604. 1, 10, 17, 18, 5

159

Lukins, Stacy K, Nicholas A Kraft, and Letha H Etzkorn (2010). “Bug localization using
latent dirichlet allocation.” In: Information and Software Technology 52.9, pp. 972–990. 14

Manning, Christopher, Parbhakar Raghavan, and Hinrich Schütze (2008). Introduction to
Information Retrieval. Cambridge University Press. 28–31, 38, 39, 52,

Manning, Christopher, Hinrich Schütze, et al. (1999). Foundations of statistical natural lan-
guage processing. Vol. 999. MIT Press. 65

Matter, Dominique, Adrian Kuhn, and Oscar Nierstrasz (2009). “Assigning bug reports using
a vocabulary-based expertise model of developers.” In: Mining Software Repositories,
2009. MSR’09. 6th IEEE International Working Conference on. IEEE, pp. 131–140. 15, 16, 23, 25,

Meldrum, Sarah, Sherlock A Licorish, and Bastin Tony Roy Savarimuthu (2017). “Crowd-
sourced Knowledge on Stack Overflow: A Systematic Mapping Study.” In: Proceedings of
the 21st International Conference on Evaluation and Assessment in Software Engineer-
ing. ACM, pp. 180–185. 60

Mockus, Audris and James D. Herbsleb (2002). “Expertise Browser: A Quantitative Ap-
proach to Identifying Expertise.” In: Proceedings of the 24th International Conference
on Software Engineering. ICSE ’02. Orlando, Florida, USA: ACM, pp. 503–512. isbn:
1-58113-472-X. 117, 137

Naguib, Hoda et al. (2013). “Bug report assignee recommendation using activity profiles.”
In:Mining Software Repositories (MSR), 2013 10th IEEE Working Conference on. IEEE. 16, 118

Nasim, Sana, Saad Razzaq, and Javed Ferzund (2011). “Automated change request triage
using alpha frequency matrix.” In: Frontiers of Information Technology (FIT), 2011.
IEEE, pp. 298–302. 14, 16

Nguyen, Tung Thanh, Anh Tuan Nguyen, and Tien N. Nguyen (2014). “Topic-based, Time-
aware Bug Assignment.” In: SIGSOFT Softw. Eng. Notes 39.1, pp. 1–4. issn: 0163-5948.
doi: 10.1145/2557833.2560585. url: http://doi.acm.org/10.1145/2557833.
2560585. 1, 10, 16, 18, 2

Park, Jinwoo et al. (2011). “Costriage: A cost-aware triage algorithm for bug reporting
systems.” In: Proceedings of the National Conference on Artificial Intelligence, p. 139. 16, 18, 20, 22,

— (2016). “Cost-aware triage ranking algorithms for bug reporting systems.” In: Knowledge
and Information Systems 48.3, pp. 679–705. 17, 18, 22, 94

Peng, Roger D (2011). “Reproducible research in computational science.” In: Science 334.6060,
pp. 1226–1227. 11, 49

Ponzanelli, Luca, Andrea Mocci, and Michele Lanza (2015). “Stormed: Stack overflow ready
made data.” In: Mining Software Repositories (MSR), 2015 IEEE/ACM 12th Working
Conference on. IEEE, pp. 474–477. 60

Poshyvanyk, Denys and Andrian Marcus (2007). “Combining formal concept analysis with
information retrieval for concept location in source code.” In: Program Comprehension,
2007. ICPC’07. 15th IEEE International Conference on. IEEE, pp. 37–48. 119

Rahman, Md Mainur, Guenther Ruhe, and Thomas Zimmermann (2009). “Optimized as-
signment of developers for fixing bugs an initial evaluation for eclipse projects.” In: Pro-
ceedings of the 2009 3rd International Symposium on Empirical Software Engineering
and Measurement. IEEE Computer Society, pp. 439–442. 16, 37

Rahmana, Md Mainur et al. (2012). “An empirical investigation of a genetic algorithm for
developer’s assignment to bugs.” In: Proceedings of the First North American Search
based Symposium. 16, 19, 21

160

Saha, Ripon K, Sarfraz Khurshid, and Dewayne E Perry (2015). “Understanding the triaging
and fixing processes of long lived bugs.” In: Information and Software Technology 65,
pp. 114–128. 1, 10, 57

Sahu, Tirath Prasad, Naresh Kumar Nagwani, and Shrish Verma (2016). “An empirical
analysis on reducing open source software development tasks using stack overflow.” In:
Indian Journal of Science and Technology 9.21. 22

Sajedi-Badashian, Ali (2016). “Realistic bug triaging.” In: Doctoral Symposium, Software En-
gineering Companion (ICSE-C), IEEE/ACM International Conference on. IEEE, pp. 847–
850. v

Sajedi-Badashian, Ali, Abram Hindle, and Eleni Stroulia (2015). “Crowdsourced Bug Triag-
ing.” In: ICSME ’15. Bremen, Germany: IEEE. 17, 37, 67

— (2016). “Crowdsourced Bug Triaging: Leveraging Q&A Platforms for Bug Assignment.”
In: Proceedings of 19th International Conference on Fundamental Approaches to Software
Engineering (FASE). FASE ’16. Eindhoven, The Netherlands: Springer. 17, 20, 22, 31,

Sajedi-Badashian, Ali, Vraj Shah, and Eleni Stroulia (2015). “GitHub’s big data adaptor: an
eclipse plugin.” In: Proceedings of the 25th Annual International Conference on Computer
Science and Software Engineering. IBM Corp., pp. 265–268. v

Sajedi-Badashian, Ali and Eleni Stroulia (2016). “Measuring user influence in github: the
million follower fallacy.” In: CrowdSourcing in Software Engineering (CSI-SE), 2016
IEEE/ACM 3rd International Workshop on. IEEE, pp. 15–21. v

— (2018a). “A Systematic Framework for Evaluating Bug-assignment Research.” In:Manuscript
under review. iv, 63, 68, 73, 76,

— (2018b). “The Information Value of Different Sources of Evidence of Developers’ Exper-
tise for Bug Assignment.” In: Manuscript under review. iv

— (2018c). “TTBA: Thesaurus and Time Based Bug-Assignment.” In: Manuscript under
review. iv, 78, 79, 93, 96,

Sajedi-Badashian, Ali et al. (2014). “Involvement, Contribution and Influence in GitHub and
Stack Overflow.” In: Proceedings of 24th International Conference on Computer Science
and Software Engineering. CASCON ’14. Markham, Ontario, Canada: IBM Corp., pp. 19–
33. url: http://dl.acm.org/citation.cfm?id=2735522.2735527. v, 120, 125, 138,

Schwab, Matthias, Martin Karrenbach, and Jon Claerbout (2000). “Making scientific com-
putations reproducible.” In: Computing in Science & Engineering 2.6, pp. 61–67. 11

Seacord, Robert C, Daniel Plakosh, and Grace A Lewis (2003). Modernizing legacy systems:
software technologies, engineering processes, and business practices. Addison-Wesley Pro-
fessional. 1, 10

Sean, JR, M McNee, and JA Konstan. “Accurate is not always good: How accuracy metrics
have hurt recommender systems.” In: extended abstracts on Human factors in computing
systems (CHI06) p, pp. 1097–1101. 47

Servant, Francisco and James A Jones (2012). “WhoseFault: automatic developer-to-fault as-
signment through fault localization.” In: Proceedings of the 34th International Conference
on Software Engineering. IEEE Press, pp. 36–46. 16, 67, 70

Shani, Guy and Asela Gunawardana (2011). “Evaluating recommendation systems.” In: Rec-
ommender systems handbook. Springer, pp. 257–297. 28, 29, 31

161

Sharma, Meera, Madhu Kumari, and VB Singh (2015). “Bug assignee prediction using as-
sociation rule mining.” In: International Conference on Computational Science and Its
Applications. Springer, pp. 444–457. 17

Shi, Yue et al. (2012). “TFMAP: optimizing MAP for top-n context-aware recommenda-
tion.” In: Proceedings of the 35th international ACM SIGIR conference on Research and
development in information retrieval. ACM, pp. 155–164. 29, 31

Shokripour, Ramin et al. (2012). “Automatic Bug Assignment Using Information Extrac-
tion Methods.” In: Advanced Computer Science Applications and Technologies (ACSAT),
2012 International Conference on, pp. 144–149. doi: 10.1109/ACSAT.2012.56. 16, 19, 23, 25,

Shokripour, Ramin et al. (2013). “Why so complicated? simple term filtering and weighting
for location-based bug report assignment recommendation.” In: Proceedings of the 10th
Working Conference on Mining Software Repositories. IEEE Press, pp. 2–11. 1, 10, 16, 20, 5

— (2014). “Improving automatic bug assignment using time-metadata in term-weighting.”
In: IET Software 8.6, pp. 269–278. 17

— (2015). “A time-based approach to automatic bug report assignment.” In: Journal of
Systems and Software 102, pp. 109–122. 15, 17, 25, 38,

Somasundaram, Kalyanasundaram and Gail Murphy (2012). “Automatic categorization of
bug reports using latent dirichlet allocation.” In: Proceedings of the 5th India software
engineering conference. ACM, pp. 125–130. 14

Stack Exchange, Inc. Stack Exchange Data Dump. ”https://archive.org/details/stackexchange”,
Visited on 2014/08/20. 125, 141

Stack Exchange Team.What are tags, and how should I use them? ”http://stackoverflow.com/help/tagging”,
Visited on 2015/03/17. 122

Stack Exchange, Inc (2017). Stack Exchange Data Dump. url: https://archive.org/
details/stackexchange (visited on 11/10/2016). 69, 100

Stack Exchange, Stack Exchange Community (2014). Is there a direct download link with a
raw data dump of Stack Overflow? url: http://meta.stackexchange.com/questions/
198915/is-there-a-direct-download-link-with-a-raw-data-dump-of-stack-

overflow-not-a-t (visited on 08/20/2014). 125, 141

Sun, Xiaobing et al. (2014). “Empirical studies on the nlp techniques for source code data
preprocessing.” In: Proceedings of the 2014 3rd International Workshop on Evidential
Assessment of Software Technologies. ACM, pp. 32–39. 25, 59

Sun, Xiaobing et al. (2017). “Enhancing developer recommendation with supplementary
information via mining historical commits.” In: Journal of Systems and Software 134,
pp. 355–368. 17, 24–26, 32, 36,

Tamrawi, Ahmed et al. (2011a). “Fuzzy set and cache-based approach for bug triaging.” In:
Proceedings of the 19th ACM SIGSOFT symposium and the 13th European conference
on Foundations of software engineering. ACM, pp. 365–375. 16, 23, 25, 26,

— (2011b). “Fuzzy set-based automatic bug triaging: NIER track.” In: Software Engineering
(ICSE), 2011 33rd International Conference on. IEEE, pp. 884–887. 16, 20, 22, 23,

Tatsis, Vasileios A and Konstantinos E Parsopoulos (2016). “Grid search for operator and
parameter control in differential evolution.” In: Proceedings of the 9th Hellenic Conference
on Artificial Intelligence. ACM, p. 7. 71, 85, 102

162

Teyton, Cédric et al. (2014). “Automatic extraction of developer expertise.” In: Proceedings
of the 18th International Conference on Evaluation and Assessment in Software Engi-
neering. ACM, p. 8. 137

The GHTorrent Project.MySQL database dumps. ”http://GHTorrent.org/downloads/mysql-
2014-08-18.sql.gz”, Visited on 2014/08/20. 125

Tian, Yuan et al. (2016). “Learning to rank for bug report assignee recommendation.” In:
Program Comprehension (ICPC), 2016 IEEE 24th International Conference on. IEEE,
pp. 1–10. 1, 10, 17, 57, 5

Vasilescu, Bogdan, Vladimir Filkov, and Alexander Serebrenik (2013). “StackOverflow and
GitHub: associations between software development and crowdsourced knowledge.” In:
Social Computing (SocialCom), 2013 International Conference on. IEEE, pp. 188–195. 125, 138, 142

Venkataramani, Rahul et al. (2013). “Discovery of Technical Expertise from Open Source
Code Repositories.” In: Proceedings of the 22Nd International Conference on World Wide
Web Companion. WWW ’13 Companion. Rio de Janeiro, Brazil: International World
Wide Web Conferences Steering Committee, pp. 97–98. isbn: 978-1-4503-2038-2. 117, 137

Wang, Shaowei et al. (2014). “Entagrec: an enhanced tag recommendation system for soft-
ware information sites.” In: Software Maintenance and Evolution (ICSME), 2014 IEEE
International Conference on. IEEE, pp. 291–300. 146

Wang, Song, Wen Zhang, and Qing Wang (2014). “FixerCache: Unsupervised caching active
developers for diverse bug triage.” In: Proceedings of the 8th ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement. ACM, p. 25. 17, 22, 47

Wang, Xiaoyin et al. (2008). “An approach to detecting duplicate bug reports using nat-
ural language and execution information.” In: Software Engineering, 2008. ICSE’08.
ACM/IEEE 30th International Conference on. IEEE, pp. 461–470. 14

Weidt, Frâncila and Rodrigo Silva (2016). “Systematic Literature Review in Computer
Science-A Practical Guide.” In: Relatórios Técnicos do DCC/UFJF 1. 13

Wong, Chu-Pan et al. (2014). “Boosting bug-report-oriented fault localization with segmen-
tation and stack-trace analysis.” In: Software Maintenance and Evolution (ICSME), 2014
IEEE International Conference on. IEEE, pp. 181–190. 143

Wu, Wenjin et al. (2011). “Drex: Developer recommendation with k-nearest-neighbor search
and expertise ranking.” In: Software Engineering Conference (APSEC), 2011 18th Asia
Pacific. IEEE, pp. 389–396. 16

Xia, Xin et al. (2017). “Improving automated bug triaging with specialized topic model.”
In: IEEE Transactions on Software Engineering 43.3, pp. 272–297. 17

Xie, Xihao et al. (2012). “Dretom: Developer recommendation based on topic models for
bug resolution.” In: Proceedings of the 8th international conference on predictive models
in software engineering. ACM, pp. 19–28. 16, 92

Xu, Guandong, Yanchun Zhang, and Lin Li (2010). Web mining and social networking:
techniques and applications. Vol. 6. Springer Science & Business Media. 28

Xuan, Jifeng et al. (2012). “Developer prioritization in bug repositories.” In: Software Engi-
neering (ICSE), 2012 34th International Conference on. IEEE, pp. 25–35. 16, 20

Yan, Meng et al. (2016). “A component recommender for bug reports using Discriminative
Probability Latent Semantic Analysis.” In: Information and Software Technology 73,
pp. 37–51. 14

163

Yang, Geunseok, Tao Zhang, and Byungjeong Lee (2014). “Utilizing a multi-developer network-
based developer recommendation algorithm to fix bugs effectively.” In: Proceedings of the
29th Annual ACM Symposium on Applied Computing. ACM, pp. 1134–1139. 16

Yu, Yue et al. (2016). “Reviewer recommendation for pull-requests in GitHub: What can we
learn from code review and bug assignment?” In: Information and Software Technology
74, pp. 204–218. 14

Zanjani, Motahareh Bahrami (2016). “Effective assignment and assistance to software de-
velopers and reviewers.” In: Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering. ACM, pp. 1091–1093. 17

Zanjani, Motahareh Bahrami, Huzefa Kagdi, and Christian Bird (2015). “Using developer-
interaction trails to triage change requests.” In: Proceedings of the 12th Working Confer-
ence on Mining Software Repositories. IEEE Press, pp. 88–98. 17, 20, 59, 137

Zhai, ChengXiang and John Lafferty (2002). “Two-stage language models for information
retrieval.” In: Proceedings of the 25th annual international ACM SIGIR conference on
Research and development in information retrieval. ACM, pp. 49–56. 71, 85, 102

Zhang, Hongyu, Liang Gong, and Steve Versteeg (2013). “Predicting bug-fixing time: an em-
pirical study of commercial software projects.” In: Proceedings of the 2013 international
conference on software engineering. IEEE Press, pp. 1042–1051. 14

Zhang, Jun, Mark S. Ackerman, and Lada Adamic (2007). “Expertise Networks in Online
Communities: Structure and Algorithms.” In: Proceedings of the 16th International Con-
ference on World Wide Web. WWW ’07. Banff, Alberta, Canada: ACM, pp. 221–230.
isbn: 978-1-59593-654-7. 117, 121, 129,

Zhang, Mi and Neil Hurley (2008). “Avoiding monotony: improving the diversity of recom-
mendation lists.” In: Proceedings of the 2008 ACM conference on Recommender systems.
ACM, pp. 123–130. 47

Zhang, Tao and Byungjeong Lee (2012). “An automated bug triage approach: A concept pro-
file and social network based developer recommendation.” In: International Conference
on Intelligent Computing. Springer, pp. 505–512. 16

— (2013). “A hybrid bug triage algorithm for developer recommendation.” In: Proceedings
of the 28th annual ACM symposium on applied computing. ACM, pp. 1088–1094. 16

Zhang, Tao et al. (2016). “Towards more accurate severity prediction and fixer recommen-
dation of software bugs.” In: Journal of Systems and Software 117, pp. 166–184. 2, 10, 17, 20, 3

Zhang, Tao et al. (2017). “Bug report enrichment with application of automated fixer rec-
ommendation.” In: Proceedings of the 25th International Conference on Program Com-
prehension. IEEE Press, pp. 230–240. 17, 22

Zhang, Wen, Song Wang, and Qing Wang (2016a). “BAHA: A Novel Approach to Automatic
Bug Report Assignment with Topic Modeling and Heterogeneous Network Analysis.” In:
Chinese Journal of Electronics 25.6, pp. 1011–1018. 17

— (2016b). “KSAP: An approach to bug report assignment using KNN search and hetero-
geneous proximity.” In: Information and Software Technology 70, pp. 68–84. 2, 10, 17, 20, 2

Zhang, Xunhui et al. (2017). “DevRec: A Developer Recommendation System for Open
Source Repositories.” In: International Conference on Software Reuse. Springer, pp. 3–
11. 22

164

Zimmermann, Thomas et al. (2012). “Characterizing and predicting which bugs get re-
opened.” In: 34th International Conference on Software Engineering (ICSE), 2012. IEEE,
pp. 1074–1083. 119

165

