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Abstract

Advanced physics-based computational models have been developed in this thesis to

study dynamic failure in novel light-weight materials used in impact applications,

focusing on applying di�erent computational techniques to study three material sys-

tems: 1. novel self-propagating high-temperature synthesized (γ + α2)-TiAl/Ti3Al-

Al2O3 ceramic-metal composites, 2. single crystal magnesium, and 3. nano-grained

boron carbide. For the (γ + α2)-TiAl/Ti3Al-Al2O3 cermet, a progressive study has

been carried out by developing a three-dimensional microstructure-based �nite el-

ement model. The models have been developed to investigate the rate-dependent

mechanical response features (e.g., compressive strength, �ow stress hardening, and

energy absorbing e�ciency) and predominant failure mechanisms (e.g., void deforma-

tion and growth, particle cracking, and interface decohesion), and have been validated

with high �delity experimental data. Validating the numerical model has enabled pre-

dicting the material response outside of the experimentally-accessible conditions. To

date, few studies have been made to bridge ceramic-metal material models under dif-

ferent loading conditions with experimental inputs, such as porosity, particle volume

fraction, elastic modulus of the constitutions, and void clusters. To address this, a

modi�ed variational formulation of the Gurson model has been used to allow for the

damage caused by the voids. The strain hardening components, as one of the most

unknown material properties, have been calibrated by matching the modeling results

with experimental data. Following validation, the e�ects and implications of di�erent

parameters such as particle volume fraction, porosity, unit cell size ratio, and the

variability of the inclusions have been presented and discussed. After that, the model
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was extended to explore the response of the α2(Ti3Al) + γ(TiAl)−submicron grained

alumina cermet by considering high particle volume fraction and under high strain-

rate loading applications. In this part of the study, the energy absorbing e�ciency,

as one of the important factors in using the ceramic-metal composites in high-rate

applications, has been studied. The results have indicated that the particle shapes

and void volume fraction play an important role on energy absorption capabilities

of the (γ + α2)-TiAl/Ti3Al-Al2O3 cermets' damage tolerant design. These new un-

derstandings have informed the fabrication and re�nement of new generations of the

cermet variant for commercial use in protection products by industry partners.

In the second thrust of my research involving magnesium and boron carbide,

I have developed an advanced physics-based time-dependent phase-�eld model to

predict deformation and failure mechanisms (e.g., fracture and twinning) in these

anisotropic materials. Computationally, a monolithic scheme has been used as a

powerful technique to increase the accuracy of the solver and high-performance com-

puter clusters have been employed to solve large-scale problems associated with the

research. The coupled di�erential equations have been implemented in an open-source

high-level Python interface, FEniCS. First, the model is extensively validated for an

intrinsically brittle material, magnesium. Comparing with molecular dynamics simu-

lation, the twin interface velocity is explored in order to obtain the kinetic coe�cient.

Finding this velocity-related parameter is important as one of the main factors for

determining the driving force of twinning for magnesium. In addition, the spatial

distribution of the shear stress �eld in the parent and twinned phases is investigated.

The result provides insights into the e�ect of twin's thickness on further twin nu-

cleation and growth. Next, the critical strain and initial twin embryo size required

for propagation and growth of a single twin embryo in magnesium are predicted by

the current phase-�eld approach. After that, the e�ect of twin-twin and twin-defect

interactions is explored because this may increase the likelihood for crack and failure

leading to reduction of material lifetime. Then, the phase-�eld approach is extended
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to predict various deformation mechanisms in nano-grained B4C (e.g., fracture and

twinning). In addition, the crack propagation under compressive loading is treated by

using a new decomposition for the strain energy density, which represents a valuable

contribution to the literature.

Overall, this thesis consists mainly of three parts adapted from the two published

and the two submitted journal articles:

1.A physics-based model to capture the mechanical response of (γ+α2)-TiAl/Ti3Al-

Al2O3 cermet under quasi-static and dynamic loading,

2.An advanced phase-�eld approach to evolution and interaction of twins to un-

ravel time-evolved twinning behavior in magnesium at nanoscale, and

3.A comprehensive calibrated and validated phase-�eld model for studying the

deformation mechanisms of nanocrystalline Mg and B4C in order to provide

guidance for material re�nement via tailoring their mechanical properties and

microstructure.
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I, the �rst author of this submission, developed the model, wrote the code,

designed and performed all simulations, analyzed results, and wrote the origi-
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journal article. B.E. Abali helped with the code, allocated the computational

resources, reviewed and edited the submitted journal article. A. Reali reviewed
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acquired funding, reviewed, and edited the submitted journal article. All au-
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�Our virtues and our failures are inseparable, like force and matter. When they

separate, man is no more�

-Nikola Tesla
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face energy at t = 1ps; (c,d) Twin order parameter for small and large

strains and isotropic surface energy at t = 50 ps; (e,f) Twin order pa-

rameter for small and large strains and anisotropic surface energy at

t = 50 ps; (g,h) Twin order parameter for small and large strains and

isotropic surface energy at t = 500 ps; (i,j) Twin order parameter for

small and large strains and anisotropic surface energy at t = 500 ps;

(k) Local orientation of the twinned region obtained from molecular

dynamics simulations [260] and used to contrast with (g) and (h); and

(l,m) Order parameter for both isotropic and anisotropic surface energy

under simple shear loading using a phase-�eld model from the literature

[50], to be compared with (e) and (g). (k) and (l,m) are reproduced

with permission from [260] and [50], respectively. (For interpretation

of the references to color in this �gure, the reader is referred to the

web version of this article.) . . . . . . . . . . . . . . . . . . . . . . . .92
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4.2 Evolution of twin growth in a single crystal pure magnesium: (a) Nu-

merical setup of the rectangular single crystal with an initial rectangu-

lar twin with boundaries and tips in material con�guration; (b) Time

evolution of the twin order parameter as a function of the position y

normal to the habit plane. A horizontal line starting from point η = 0.5

is chosen for measuring the twin boundary interface velocity to show

the vertical interface displacement ∆y. The inset demonstrates the in-

terface pro�le at six di�erent time instants to show the time-dependent

growth of the twin; (c) Time evolution of the twin order parameter as

a function of the position x in the direction of the habit plane. Fewer

time instants than shown in (b) are used to demonstrate the constant

twin tip interface velocity. Similarly, the point η = 0.5 is chosen for

measuring the tip interface velocity and to show the constant horizon-

tal interface displacement ∆x. The analytical solution of the explicit

Ginzburg�Landau equation, which corresponds to t = 0ps, is shown

as the dotted red color; (d) Twin tip and twin boundary velocities as a

function of time obtained from (b) and (c), and compared with those

from the molecular dynamics simulations [260]. (For interpretation of

the references to color in this �gure, the reader is referred to the web

version of this article.) . . . . . . . . . . . . . . . . . . . . . . . . . . 95
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4.3 The time-evolved shear stress acquired from the phase-�eld model on

deformation twinning of pure single crystal magnesium: (a) Time evo-

lution of the length (blue squares) and width (red circles) of a single

rectangular twin embryo that grows at 7% shear strain. The insets

show the twin interface pro�les at t = 5ps, parallel and orthogonal

to the habit plane, by which the twin size is obtained; (b) Growth

of the twin area fraction (i.e., the ratio of twinned area to the total

area of the numerical geometry) predicted by the proposed phase-�eld

approach (blue squares) and compared with molecular dynamics simu-

lations (black line) [260]. The same numerical geometry setup as [260]

was used. The insets show the distribution of the twin order param-

eter at t = 10 ps and t = 25 ps to illustrate areal growth; (c) Spatial

variation of initial shear stress along the x -axis in single-twinned mag-

nesium at various time instants; (d) Variation of the average global

shear stress as a function of time. The numerical results (blue squares)

are compared with molecular dynamics data (black line) [260]. The in-

sets show the spatial distribution of local shear stress at t = 10 ps and

t = 25 ps along the red mid-line. The boundaries of the twin embryo

are denoted by the black dashed line. In the bottom of each insets, the

atomic shear stress from snapshots taken at similar times as [260] are

given for comparison. (For interpretation of the references to color in

this �gure, the reader is referred to the web version of this article.) . 98

xix



4.4 Exploration of twin-twin and twin-defect interactions to inform funda-

mental growth mechanisms in single crystal magnesium: (a) Evolution

of twin area fraction for 1, 2, and 3 twin embryos. The inset shows

the location of each twin for the three-embryo simulation. The area

of the middle twin is measured using its length and width obtained

from the interface pro�le at η = 0.5, as was done for Figure 4.2; (b)

Spatial distribution of the twin order parameter and shear stress in the

parent and twin phases for the numerical setup shown in the inset of

(a) at t = 10 ps and t = 20 ps; (c) Evolution of the shear stress along a

horizontal line through the middle of the single crystal microstructure

for di�erent numbers of embryos. The numerical setup is subjected

to 7% shear strain as was done in the other cases; (d) Study of twin-

defect interactions by considering the time-evolved twin tip interface

towards the boundary and the void. The related simulation dimensions

are given in the inset, which also shows that symmetric boundary con-

ditions were used (the symmetry line is shown by the dash red line).
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5.3 The numerical results showing of a circular twin embryo in a rect-

angular domain in single crystal magnesium in both small (left side

in image pair) and large (right side in image pair) deformations con-

sidering isotropic and anisotropic surface energies and elasticity with

orientation of the habit plane θ = 0: (a) Twin order parameter (i, ii),

displacement in the y direction (iii, iv), and distribution of the shear

stress (v, vi) for small (left side in image pair) and large strains (right

side in image pair) and isotropic surface energy at t = 50 ps; (b) Twin

order parameter (i, ii), displacement in the y direction (iii, iv), and

distribution of the shear stress (v, vi) for small and large strains and

isotropic surface energy at t = 500 ps; (c) Twin order parameter (i, ii),

displacement in the y direction (iii, iv), and distribution of the shear

stress (v, vi) for small and large strains and anisotropic surface energy

at t = 50 ps; and (d) Twin order parameter (i, ii), displacement in

the y direction (iii, iv), and distribution of the shear stress (v, vi) for

small and large strains and anisotropic surface energy at t = 500 ps.
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Chapter 1

Introduction

1.1 Motivation

This thesis explores the dynamic failure of novel light-weight materials that are used

in impact applications [1]. Subsequently, we provide brief motivations for the study of

the three primary materials of interest in this thesis: TiAl-Al2O3 ceramic-metal com-

posites, single crystal magnesium, and nano-grained boron carbide, with additional

details on motivations found for these materials in the individual chapters.

1.1.1 An Introduction to Two-Phase TiAl-Al2O3 Ceramic-Metal
Composites

Due to its excellent corrosion resistance, high speci�c strength, su�cient creep resis-

tance at elevated temperatures, and relatively low density, the two-phase titanium

aluminide alloys are a potential candidate for aerospace and automotive structural

applications [2�4]. These alloys can exhibit preferable mechanical performance as a

result of containing multilayer phases with smaller interlayer thickness [5, 6]. How-

ever, drawbacks such as poor fracture toughness, low ductility at room temperature,

and insu�cient strength at high temperatures put a strict limit on their use in some

applications [7]. To remedy this, introducing second phase particle reinforcements,

termed intermetallic matrix composites (IMCs), can improve the toughness, creep

resistance, and heat-resistance stability of the titanium aluminide material systems
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[8, 9]. This class of ceramic-metal materials can be categorized as either metal matrix

composites (MMCs) (≥ 50 vol.% metal) [10] or cermets (≥ 50 vol.% ceramic) [11].

With higher ceramic contents and associated greater strengths of cermets in compar-

ison with MMCs, cermets are expected to be more e�ective as strike-face materials

in aerospace and defense applications [12, 13]. Among compatible and thermochem-

ically stable strengthening phases for intermetallic TiAl, such as SiC [14], TiB2 [15],

Ti2AlC [16], Ti5Si3 [17], Al2O3 [18], and their combination [19, 20], this thesis is fo-

cused on a α2(Ti3Al) + γ(TiAl)-submicron grained alumina cermet due to its high

temperature strength [21], excellent oxidation resistance [22], exemplary wear resis-

tance [23], relatively low cost [24], and similarities between the coe�cients of thermal

expansion of the constituents [25]. In addition, the submicrometer alumina grain size

of the material under study here can lead to improved hardness, strength, and optical

performance in comparison to bulk alumina [26, 27], which makes submicron grained

advanced cermets more favorable for a wide range of applications, from light-weight

ballistic armor [28] to electronic packaging substrates and medical applications [29].

In the literature, researchers have developed various methods such as reactive hot

processing [30], mechanical alloying [31], and sintering [32] for fabricating intermetal-

lic TiAl-submicron grained Al2O3 materials. To date, there has been a number of

published papers detailing the microstructure features and low strain-rate mechani-

cal properties of two-phase TiAl/Al2O3 (see [18, 33]); however, limited studies have

been devoted to the mechanical response of these unique materials under high strain-

rate loading. A limited number of research has attempted to explore the deforma-

tion mechanisms of γ(TiAl)-based alloys [34, 35], and dynamic fracture of nano-

grained transparent alumina [36, 37]. No coupled numerical and experimental studies

have investigated the dynamic mechanical behaviors (e.g., stress-strain response),

microstructure parameters (e.g., inclusion shape, size, and aspect ratio), and dam-

age mechanisms (e.g., void deformation and growth) of an intermetallic TiAl-Al2O3

cermet; these are addressed in the present thesis.
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1.1.2 An Introduction to Single Crystal Magnesium

Due to their excellent strength-to-weight ratios, magnesium and magnesium-based

alloys have gained a lot of interests for transportation [38] and defense applications

[39]. However, limited number of dislocation slip systems in hexagonal close-packed

structure makes magnesium a comparable low ductile material at low temperature

[40]. Consequently, the successful implementation of Mg-based materials hinges upon

an accurate model to predict the complex material response (e.g., plasticity mecha-

nisms), where twinning is a common mechanism that manifests in magnesium [41�

43], especially under high strain-rate loading [44]. A variety of techniques operat-

ing on di�erent length scales, including in-situ synchrotron X-ray di�raction (XRD)

[45], transmission electron microscopy (TEM) [46], nanoindentation [47], and molec-

ular dynamics (MD) simulation [48] have been proposed to bridge the gap between

macroscopic observations and microstructural mechanisms in magnesium. Recent ap-

proaches have been supported by numerical simulations, performing a �nite element

method within the framework of crystal plasticity [49] and time-independent phase-

�eld approach [50] . In the present thesis, the research focuses on the twin morphology

in magnesium at the propagation stage which is associated with the formation and

migration of twin tips and twin boundaries. This is important for understanding the

mechanical behavior dominated by the twinning process and interactions [51] as will

be explored in this thesis.

1.1.3 An Introduction to Nano-Grained Boron Carbide

As a result of having high elastic sti�ness, relatively low mass density (2.52 g
cm3 ), and

a high Hugoniot elastic limit (HEL) of 14 -19GPa, boron carbide (B4C) has received

considerable attention in ballistic impact applications [52]. In boron carbide, twin-

ning is believed to occur under high pressure and high temperature conditions during

manufacturing processing [53], and can serve as the preferred cleavage planes [54].

Studying twinning phenomena in boron carbide is primarily motivated by its link
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to subsequent amorphization and phase transformation [55, 56], limiting B4C from

performing to its full potential in ballistic applications [57, 58]. Developing next-

generation boron-based materials with controlled twinning behaviors o�ers promising

opportunities for improved mechanical properties [59, 60] and performance in en-

gineering applications (e.g., gas turbine engines) [61]. This motivates the current

research for nano-grained boron carbide.

For nano-grained boron carbide, limited literature data has primarily focused on

processing [62], the e�ect of grain size on hardness and elastic modulus [63], and

rate-dependent mechanical behavior [64]. More recently, state-of-the-art real-time

visualization techniques such as ultra-high-speed-imaging have been coupled with

experimental setups to explore the in-situ fracture behaviors of boron carbide during

quasi-static and dynamic loading [65, 66]; however, no in-situ measurements exists on

time-resolved twin evolution and growth in boron carbide, which is likely a result of

the limitations in available diagnostics to capture growth and evolution behaviors at

su�cient length and time scales [67]. Computationally, modeling sub-nanometer scale

behavior of boron carbide have been pursued using molecular dynamics simulations

[68] and time-independent phase �eld approaches [69], with focus on hardening and

toughening mechanisms and twinning. While new understandings have been gained

by using molecular dynamics simulations to study plastic deformation and fracture

behaviors in boron carbide [70], atomistic simulations are limited in their ability to

simulate twinning behaviors at relevant length and time scales needed for practical

implementation in materials design. These limitations and gaps are addressed in this

thesis by studying growth mechanisms of twin tips and twin boundaries in single

crystalline boron carbide at the nanoscale. Speci�cally, a generalized constitutive

model for fracture and twinning as a failure mode for a novel nano-grained B4C is

developed based on the phase-�eld concept [71], expanding on previous work in the

literature involving continuum nonlinear elastic and elastic-plastic models [69].
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1.2 Thesis Objectives

Understanding and predicting dynamic deformation and damage evolution in anisotropic

brittle materials (e.g., ceramics and ceramic-metal composites) is needed for indus-

tries to re�ne the materials' design. To address this, the objective of this thesis is to

develop physics-based multi-scale computational models that describe the behavior

of novel light-weight brittle material systems: 1. a α2(Ti3Al) + γ(TiAl)-submicron

grained alumina cermet, 2. single crystal magnesium, and 3. nano-grained boron

carbide. The models can be used for studying the boundary value problems involving

more complicated geometries and boundary conditions. The computational models

make use of the most recent advancements in constitutive model formulation, paral-

lel computing, and numerical scheme. The models are informed and validated with

high �delity experimental tests and molecular dynamics simulations developed in the

group and from literature. The applied methods are described in the subsequent

chapters in detail. The outcomes of this thesis will be important to:

1. O�er promising avenues for qualitative and quantitative understanding of light-

weight materials using in impact applications, and serving as a foundation for

further material design and optimization such as increasing the con�dence limits

of these materials.

2. Provide insights into the factors that control the dynamic behavior of light-

weight materials by connecting their deformation and fracture mechanisms to

the microstructural features.

3. Understand the physics of the main plastic deformation in nanoscale magne-

sium for tailoring their ductility at room temperatures by capturing detailed

microstructural characteristics, such as twin interface evolution, to shed light

on the early stages of twin growth.

4. Guide the design, manufacturing, and testing of next-generation nano-grained
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brittle materials used in armor solutions by exploring favorable mechanical prop-

erties and microstructures for improved performance.

1.3 Thesis Goals

The objectives of this thesis will be accomplished by completing the following research

goals:

✓ Obtaining some of the critical microstructure parameters of two-phase TiAl-

Al2O3 ceramic-metal composites (e.g., shape, distribution, and volume frac-

tion of each constituent phases) via scanning electron microscopy (SEM), along

with obtaining elastic sti�ness of the matrix and inclusions from an ultra-

nanoindentation tester from Anton Paar. These parameters are considered as

inputs to the numerical framework.

✓ Implementing a microstructure-dependent physics-based model for predicting

the behavior of α2(Ti3Al) + γ(TiAl)-submicron grained alumina cermet under

both strain-rate dependent compression loading. As a result of having a porous

matrix with high particle volume fraction (up to 65 %), a three dimensional

face centered cubic (FCC) unit cell with a uniform monodisperse distribution

of voids is considered as the geometry in this study. The fracture behavior of

the cermet is modeled using the modi�ed variational formulation of the Gurson

model (MVAR), in which the main damage variable is the existing voids. The

void rotation as a result of subjecting the material to high stress values is taken

into account in the model. For the �rst time, the MVAR model is used for the

dynamic failure of realistic cermets rather than idealised ones.

✓ Conducting strain-rate dependent uniaxial compression experiments using MTS

machine (quasi-static strain rates) and split-Hopkinson Pressure Bar apparatus

(dynamic strain rates). Experiments are coupled with ultra-high-speed imaging
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and digital image correlation to evaluate stress-strain, lateral vs. axial strain,

and failure responses. This information serves to validate the model.

✓ Solving more than 30 simulations for both quasi-static and dynamic loading con-

ditions in terms of di�erent particle shapes (icosahedron, sphere, platelet, and

prism), inclusion volume fraction (60%, 65%, and 70%), void volume fraction

(0.5%, 1.5%, and 3%), and elastic sti�ness for both particles and matrix in or-

der to account for the experimental variability and to achieve realistic matching

with experiments.

✓ Taking �eld emission (FE) SEM micrographs on the fracture surface of the

recovered fragments in a dynamic experiment for post-mortem analysis of failure

mechanisms (e.g., void deformation and growth, particle micro-cracking, and

interface decohesion). These are used to compare with simulation results. To

model observed fracture behaviors at the matrix-patricle interface, a polynomial

cohesive zone model is incorporated into our numerical model. The proposed

model is shown to provide a good agreement with experimental data and is then

used to explore the material response outside of the experimentally accessible

conditions.

✓ Using an advanced physics-based model of deformation and nano-twinning to

predict the failure in magnesium nanoscale single crystals. The results con�rm

that our model is able to describe the early stages of twinning deformation.

✓ Generalizing a robust multi-scale micromechanical model for magnesium and

nano-grained boron carbide (B4C) under various loading conditions, which can

bridge the gap between lower scale deformation mechanisms (e.g., amorphiza-

tion, dislocation, and twinning) to macroscopic material behaviors such as frac-

ture, fragmentation, and granular �ow. A fully nonlinear continuum-based

phase-�eld approach which enables regularization of localization zones is used.
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The problem formulations are derived in both small and large strains with

consideration of anisotropic elasticity and surface energy, making the study

comprehensive.

✓ Focusing on twinning and fracture as the key deformation mechanisms in single

crystal magnesium and boron carbide at the nanoscale, an open-source Python-

based �nite element package FEniCS is implemented to solve the governing

equations by a monolithic scheme algorithm to improve the computational ac-

curacy. The simulation has been performed with the help of high performing

clusters to study the multi-length scale material response, enabling new insights

in twin growth and interaction to be determined.

✓ The obtained results are �nally compared, both qualitatively and quantitatively,

with the available experimental data for boron carbide and recent molecular

dynamics simulation results for magnesium from the literature.

1.4 Contributions

The contributions of this thesis are summarized as follows:

� Providing guidance to our partners in the USA and Canadian government for

material re�nement to enhance their mechanical properties and performance.

� Augmenting our understanding of dynamic failure in structural ceramic-based

materials driven by advancements in multi-scale physics-based modeling and

experimental validation coupled with state-of-the-art imaging and diagnostics

during experimentation.

� Presenting a detailed �nite element method for two separate order parameters

at both small and large strains with anisotropic elasticity and surface energy

which can be developed easily for describing other deformation mechanisms,

including dislocation, amorphization, phase transformation, fragmentation, etc.
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� Solving the coupled governing equations by implementing a highly accurate

monolithic algorithm in an open-source Python-based platform, which is com-

patible with parallel computing using high-performance clusters.

� Predicting the crack path in anisotropic brittle materials (e.g., boron carbide)

for the �rst time by considering a new decomposition for the strain energy

density for specimen under biaxial compressive loading.

� Tracking complex crack and failure trajectories induced by the spatial variation

of microstructure features across a heterogeneous material that are di�cult to

capture with conventional numerical methods.

� Determining the sequence of fracture and twinning in anisotropic brittle mate-

rials that are almost impossible from analysis of post-mortem material charac-

terization in dynamic experiments.

1.5 Thesis Structure

This thesis is organized as follows:

� Chapter 1: Introduction of this thesis, including motivations for studying α2(Ti3Al)+

γ(TiAl)-submicron grained alumina, magnesium, and nano-grained B4C, and

outlining the thesis objectives, thesis goals, contributions, and thesis structure.

� Chapter 2: Proposes a microstructure-based �nite element model for a novel

nano-grained ceramic-metal composites. This study, titled �An experimental

and numerical study of novel nano-grained (γ+α2)−TiAl/Al2O3 cermets�, was

published in Materials Science and Engineering: A in December 2018 [72].

� Chapter 3: Develops a microstructure and strain-dependent constitutive model

for α2(Ti3Al + γ(TiAl)-submicron grained Al2O3 cermet under dynamic com-

pression. This study, titled �The mechanical response of a α2(Ti3Al+ γ(TiAl)-
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submicron grained Al2O3 cermet under dynamic compression: modeling and

experiment�, was published in Acta Materialia in September 2019 [73].

� Chapter 4: Utilizes a �rst-of-its-kind time-resolved phase-�eld model to study

the growth and interactions of twins in single crystal magnesium. This chapter

is a prelude to use the model for investigating the deformation mechanisms of

B4C under various loading conditions. This study, titled �An advanced phase-

�eld approach to evolution and interaction of twins in single crystal magnesium�,

has been submitted to Acta Materialia in August 2021.

� Chapter 5: Extends the phase-�eld approach to predict various deformation

mechanisms (e.g., twinning and fracture) in single crystal Mg and B4C by im-

plementing the monolithic solver in an open-source �nite element platform. This

study, titled �Time-evolved phase-�eld model for capturing twinning, fracture-

induced twinning, and fracture at large strains in anisotropic brittle materials�,

has been submitted to Journal of the Mechanics and Physics of Solids in August

2021.
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Chapter 2

An Experimental and Numerical
Study of Novel Nano-Grained
(γ + α2)-TiAl/Al2O3

Cermets

Published in Materials Science and Engineering: A

B. Amiriana, H.Y. Lia, James D. Hogana

aDepartment of Mechanical Engineering, University of Alberta, Edmonton AB T6G

2R3, Canada

Abstract

In this study, a microstructure-based �nite element model for nano-grained

(γ + α2)-TiAl/Al2O3 cermets is proposed based on a modi�ed variational

formulation of the Gurson model for an elastic-plastic porous material. In the

modeling approach, the high volume fraction of alumina, variability in material

characteristics, and microstructural features (e.g., inclusion size) are considered.

Mechanical properties and microstructure inputs are derived from nanoindentation

and microscopy analysis performed for this study, as well as using available

information in the literature. Once developed, modeling results are validated

against experimental quasi-static compressive stress-strain measurements using

digital image correlation techniques. The validation is extended by comparing
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experimental observations and computational outputs of the ratio of the lateral to

axial strain (as a measure of deformation), and reasonable agreement is found. Once

the model is validated for an experimentally known condition, the e�ect of varying

the mechanical properties (e.g., strain hardening parameters and elastic modulus)

and microstructure variables (e.g., alumina volume fraction and porosity) on

material responses are then explored. These results serve as a foundation for future

microstructure optimization.

Keywords: Finite element models; Modi�ed variational formulation; Cermet;

Uniaxial compression test; Digital image correlation
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2.1 Introduction

Structural ceramics have properties necessary to allow them to serve as structural

components subjected to mechanical stress. Many of these ceramics also exhibit other

attractive properties, such as resistance to deformation at high temperature [21], high

hardness [22], and high wear resistance [23]. Taken together, these properties make

many structural ceramics suitable for application in light-weight ballistic armor [28],

and as medical applications and dental implants [29, 74]. In these and many other

applications, the monolithic form of these ceramics are susceptiple to catastrophic

brittle fracture. To remedy this, researchers have attempted to improve the ductility

and fracture toughness of ceramics by combining the high toughness of metals with

the high hardness, strength, and sti�ness of the ceramics [75�77]. In the ceramic-

metal materials, one can classify materials containing more than 50 vol.% metal as

metal matrix composites (MMCs) [10, 78], and those containing more than 50 vol.%

ceramic as cermets [11, 79]. In this study, we investigate the elastic characteristics

and strength of cermets.

Cermets typically have strengths that range between 2 and 7 times the strength

of the metal matrix composites, and this allows them to be a potential candidate for

aerospace and defense applications [79, 12, 13]. Compared with structural ceramics,

cermets have higher fracture toughness and higher �exural strength [80]. To further

the use of ceramic-metal materials in industrial applications, this study focuses on un-

derstanding the linkages between mechanical responses (e.g., stress-strain behavior),

and microstructure characteristics (e.g., inclusion size and porosity). This is studied

both experimentally and computationally for (γ + α2)-TiAl/Al2O3 cermets.

Achieving more favorable engineering properties in TiAl (e.g., high ductility and

toughness) can be obtained by incorporating (γ + α2) phase in the TiAl material

[3]. The (γ + α2)-TiAl is believed to exhibit improved mechanical properties over its

monolithic constituents as a result of greater volume fractions of lamellar grains, which
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are the result of the α → γ phase transformation and eutectoid reactions [81]. Prior

studies of (γ + α2)-TiAl family of materials include the processing and fabrication of

dense alumina-TiAl-Ti3Al [82], the oxidation behavior of in-situ TiAl/Al2O3 [83], and

microstructure characteristics of synthesized TiAl/Al2O3 [84�86]. Altogether, these

studies have advanced our understanding of the material science of these material

systems. To date, no studies have focused on the mechanical behavior and numerical

modeling of these materials, which is addressed in this study.

There are numerous predictive models that are used to desribe the mechanical

properties of cermets [87�89]. In earlier studies, the limiting state of plastic collapse

was used to relate the hardness of cermet to its microstructure [90]. Later, Engqvist et

al. [91] proposed empirical models for hardness of cemented carbide by studying the

interactions between the binder and the carbide. Among other modeling approaches,

microstructural models such as unit cell models [92] and dislocation based models

[93] have generated interest in predicting the strength of cermets. For example, in

a study by Legarth [94], the non-monotonical e�ect of a material length scale pa-

rameter on the failure strain of MMCs was adopted using a unit cell approach. In a

separate study, Bao et al. [95] carried out the combination of continuum plasticity

theory with unit cell modeling to study the non-deforming particles in reinforcing

ductile matrix materials. Other microstructure-independent approaches, such as the

self-consistent models, were developed for composites, however, their usefulness are

limited to materials with a low particle volume fraction [96]. In some commercial

cermets, the particle volume fraction can reach up to 80% [97]. To date, the majority

of the modeling e�orts have concentrated on idealised microstructure con�gurations

in conceptual ceramic-metal materials. Limited e�orts have been made to bridge

these models with experimental inputs [christman1989experimental, 98, 99]. In

this present study, contributions are made towards these e�orts by employing mi-

crostructural data as model inputs, and then using experimental data to validate the

model.
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Building on these previous works, the aim of this study is to develop a three-

dimensional face centered cubic (FCC) unit cell model of (γ + α2)-TiAl/Al2O3 com-

mercial cermet. A modi�ed variational formulation of the Gurson model (MVAR)

for elasto-plastic porous materials is used for the host material that is based on the

nonlinear homogenization approach. Scanning electron microscopy (SEM) images

are used for characterization of porosity, alumina volume fraction, and void clusters

as model inputs. Nanoindentation tests are used to provided inputs for sti�ness for

the matrix (γ + α2)-TiAl, and the reinforcement Al2O3 materials. Following this,

quasi-static uniaxial compression tests are performed and coupled with digital image

correlation (DIC) techniques to determine the stress-strain responses of the material,

as well as the corresponding ratio of axial to lateral strain during loading. These

experimental inputs are then used to validate the unit cell model. Following imple-

mentation and validation, the in�uences of the variability of the sti�ness and volume

fraction of alumina nano-particles, along with void volume fraction (porosity) on the

stress-strain behavior of cermet are discussed in detail. The totality of the results

allow us to further improve the material strength and performance through material

optimization.

2.2 Experimental Procedures and Results

2.2.1 Material Composition and Microstructure

The (γ+α2)-TiAl/Al2O3 cermet being investigated in this study is fabricated through

self-propagation high-temperature sintering, and is provided by Lumiant Corporation,

British Columbia. Cermet tiles are cut into specimens with size of 2.3mm (length)

× 2.5mm (width) × 2.7mm (height) for mechanical testings. Shown in Figure 2.1

is a backscattered electron (BSE) SEM image (Figure 2.1a) with energy dispersive

X-ray spectroscopy (EDS) density maps of the elements: Al (Figure 2.1b), Ti (Fig-

ure 2.1c), and O (Figure 2.1d). Altogether, Figure 2.1 is used to reveal the spatial
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distribution of the phases within the material, with brighter colors in Figure 2.1b to

Figure 2.1d corresponding to higher concentrations and darker colors corresponding

to lower concentrations. This information is used for modeling inputs.

Figure 2.1: EDS concentration mapping on a 2000 times magni�cation SEM image
showing distributions of selected element. Concentration of elements decrease based
on the color sequence in the visible light spectrum. Brighter colors correspond to
higher concentrations: a) FESEM image showing the phase distribution, where black
regions correspond to the alumina phase and white regions correspond to the TiAl
phase; b) Distribution and concentration of Al element in the FESEM image; c)
Distribution and concentration of Ti element in the FESEM image; (d) Distribution
and concentration of O element in the FESEM image.

In the Figure 2.1a, the lighter regions correspond to the TiAl phase because of

the higher Z (atomic number) value; consequently, the darker regions are the Al2O3

phase. The darkest spots in the BSE �gure correspond to the micro-pores present

in the material, which have been con�rmed with the �eld emission SEM (FESEM)

images. It is observed that the pores tend to cluster around the boundary or within

the alumina phase. To further analyze the features in the images, a MATLAB-

based program was developed to quantify the areal fractions of the alumina and

titanium aluminide phases, as well as the sizes of the alumina nanoparticles and

pores. These methods are consistent with those developed in Hogan et al. [100]. As
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an outcome of this analysis, the porosity level is determined as 1.2% to 3% at 2000

times magni�cation depending on a threshold setting. These values are within the

range that is reported by the manufacture of 2%. Using similar image processing

techniques, the average pore size was 0.07 ± 0.02µm, as measured by the major axis.

The individual alumina particles appear spherical in shape and in clusters in the

material with sizes of 0.5µm to 1.5µm with an average of 1 ± 0.3µm, and clusters

sizes of 3µm to 9µm. The area fraction of the alumina phase is estimated as 65 ±

1% using the same image processing techniques.

Next, the concentration of constitutive elements are investigated using energy dis-

persive X-ray microanalysis. From Figure 2.1b, it is observed that Al is present

everywhere in the material, with higher concentration in the alumina phase (darker

phase in the SEM image). Comparing the Al (Figure 2.1b) with the Ti (Figure 2.1c)

concentrations, it is observed that regions of higher concentrations of Al correspond

to regions of lower concentrations of Ti. Similarly, regions of higher concentrations

of Al correspond to regions of higher concentrations of O, which are believed to be

the Al2O3 phases with trace amounts of O with the Ti and Al. This is the α2-TiAl

phases (con�rmed with X-ray di�raction (XRD) but not shown for brevity).

2.2.2 Experimental Setup

The quasi-static uniaxial compression test was conducted on a standard MTS series

810 servo-hydraulic machine. Loading platens were made from hardened steel (M2

high-speed steel) and were held in alignment by the machine grip. Ti-6Al-4V titanium

alloy jacketed tungsten carbide (WC) platens were used between the specimen and

the loading platens to provide stress redistribution from the specimen to the loading

platens, as well as to protect the machine load platens from indentation of the hard

specimens. This is required by the ASTM C1424-15 [101]. As required, extreme

pressure grease was applied on the WC platen surfaces to eliminate the frictional

e�ect. The platens were then pre-loaded without specimen to create a thin, uniform
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layer of lubricant. Good alignment was ensured by carefully bringing the platens and

specimen in touch. The experiment was performed under displacement control with

a nominal strain rate of 1 × 10−4 s−1. The cross-head displacement was measured

by a linear variable di�erential transformer displacement sensor with an accuracy of

0.001mm. A 100 kN load cell with background noise corresponding to approximately

±1N was used to record the force history during loading process. The acquisition

rate of the MTS machine was set at 30Hz. An AOS PROMON U750 high-speed

camera was used to provide visualization on macroscopic deformation features on the

specimen surface. The specimen was positioned normally to the optical axis of the

camera to eliminate out-of-plane displacement. This camera has a full resolution of

1280 × 1024 pixels and recorded at a frame rate of 100 frames per second. In total,

�ve experiments are presented in this study at the same loading condition to study

variability and validate the model.

2.2.3 Digital Image Correlation Technique

2.2.3.1 Methodology

Digital image correlation was used to obtain the global strain �eld from the specimen

surface during compression testing. The Correlated Solutions VIC2D 6 software [102]

was used to produce the full-�eld strain measurements. In DIC analysis, a small subset

of an image is tracked as the specimen translates and deforms. In each image, the

subset in the deformed images are shifted to match the pattern in the reference image;

the �match� is performed as the total di�erence in gray level at each point. In order

to obtain the displacement information by tracking the deformation or displacement

of subsets, a correlation peak is determined as the gray level for each subset [103].

The position of the peaks provides the local displacement and the height of the peaks

gives the degree of correlation. During the analysis, the zero-normalized squared sum

of di�erence (ZNSSD) method was chosen to perform the correlation. This method

is known to be highly robust, which will not be a�ected by the o�set and scale in
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lighting [104]. Gaussian low-pass �lter was selected to eliminate the high frequency

signals and pre-smooth both reference and deformed images. The �Optimized 8-tap�

interpolation scheme in the software was selected, which incorporated the highest

order of spline scheme. In post processing, the rigid body motion was removed to

compensate any possible vibration on the camera or the machine, which was deemed

minimal in this experiment.

2.2.3.2 Setup

In the experiment, an ultra-�ne point airbrush with 0.12mm needle and nozzle was

used to spray specialize airbrush paint with particle size down to 0.1µm onto the

specimen surface. A thin, white base coating was applied on the as-received shiny

specimen surface to have a uniform background. Black speckles were then sprayed

on the base coat with a continuously sweeping motion.

In these experiments, an ultra-bright LED light equipped with �ber optical light

guide with a 7.6mm diameter liquid light guide was used to provide high intensity

uniform lighting environment over the specimen surface. A highly contrasted and

overexposed surface condition was obtained. According to Jerabek et al. [105], a �ne

speckle pattern and appropriate light intensity gives a better result when it is under

the condition of overexposure. With good specimen preparation and lighting environ-

ment, the PROMON U750 camera was used to capture the deformation process of the

specimen. With the �rst image as the reference (undeformed) image and appropriate

area of interest (AOI), the �suggested subset� function in the VIC2D package is used

to obtain the proposed subset size with minimum estimated error. This could be used

as an alternative way to examine the goodness of speckle pattern. It was observed

that a consistent subset size was obtained on all specimens used in this study, where

all subset sizes were in the range of 23 × 23 pixels to 30 × 30 pixels. To perform the

analysis, the correlation step size was altered in each selected AOI from 2 to 7 based

on the noise level to determine the optimal results. Several AOIs were tested in each
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experiment to examine the repeatability of the results, including failure strain, strain

rate, and slope change between axial and lateral strains. Finally, the smoothest strain

�eld with least aliasing was picked and imported into MATLAB for further analysis

with the stress data. Details on sensitivity analysis and �ltering are beyond the scope

of this study.

2.2.4 Experimental Results

2.2.4.1 The Stress-Strain Response of (γ + α2)-TiAl/Al2O3

Shown in Figure 2.2 is the engineering stress-strain plot of the material from the

quasi-static uniaxial compression tests. The naming of the specimens follows the

DIC speckle pattern sequences (i.e., sp1, sp2, etc.). Specimens sp1, sp4, and sp5 are

tests that successfully showing the repeatability of the experiments. Some outliers,

such as sp2 and sp3 in the �gure, correspond to potential microstructural variabilities

and surface deformation features during loading (sp3 had a visible fracture form on

its surface at the corresponding dip in the stress). These are included to demonstrate

the variability in the results.

Figure 2.2: Variations of the experimental engineering stress with the DIC engineering
strain.

From the �gure, the failure strain of the materials is between 1.1% and 1.7%, with an
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average of 1.4 ± 0.2%. The compressive strength is between 2200MPa and 2600MPa,

with an average of 2400 ± 120MPa. Strain hardening e�ects are observed on all

curves, which indicates ductility in the material when compared to, for example,

alumina. Similar shaped curves for cermets have been reported by others in the

literature [106, 107]. The slope of the initial part of the stress-strain curve, taken

as the Young's modulus of the material, is between 240GPa and 310GPa, with an

average of 274 ± 26GPa.

2.2.4.2 The Transverse and Axial Strain Ratio During Loading

Next, the ratio of transverse (εyy) to longitudinal (εxx) strain is examined in Figure

2.3. Color schemes follow those from Figure 2.2. Again, three curves are presented

for repeatability and two outliers are shown for potential microstructural variability.

In Figure 2.3, the initial lateral to longitudinal strain ratio across all �ve samples is

0.227 with a standard deviation of 0.001. The ratio at the initial constant portion is

identi�ed as the Poisson's ratio of the intact material, which corresponds to the �rst

order approximation for small values of length change. The value reported here is

reasonable as the Poisson's ratio for alumina is 0.220 reported by Coorstek [CoorsTek

Inc.], and for γ-phase titanium aluminide is 0.230-0.240 [108].

Figure 2.3: Variation of the lateral and longitudinal strain ratio with the DIC strain.
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After the initial part of the curve, the ratio of lateral to longitudinal strain could be

a representation of the deformation mechanisms that manifest in the material during

loading. In Figure 2.3, all curves start near a constant value of 0.227 and remains �at

until 0.2% to 0.4% strain, after which time the curves increase at variable rates until

maximum values of 0.250 to 0.320 (average of 0.290 ± 0.020). The rise in the curves is

a consequence of damage accumulation, and this appears to be increasing at a greater

rate in the lateral direction (perpendicular to compression) than the axial direction

(parallel to compression). Here, material failure is likely through a combination of

plastic deformation and fracture. In tests sp1, sp3, and sp4, the ratio rises to ap-

proximately 0.300 before failure. Specimen sp2 shows a signi�cantly lower �nal ratio

than other tests at much lower failure strain. In addition, specimen sp5 has a much

greater failure strain and higher �nal strain ratio. The reason for this is unknown,

but is also likely due to the microstructural variability. Interestingly, no discernible

features other than a minor transition in slopes is observed for sp3, where cracking

occurred during compression testing. Altogether, these results provide insights into

material deformation and will serve as data sets for validation our modeling e�orts

described next.

2.3 Numerical Modeling of (γ +α2)-TiAl/Al2O3 Cer-

mets

2.3.1 Microstructure Representation

In this study, the microstructure is modeled as a two phase material: (i) the elastic-

plastic and isotropic matrix (γ + α2)-TiAl phase, and (ii) the inclusion Al2O3 phase.

Porosity is also generated by means of a Mathematica code. The microstructure rep-

resentation is considered by ellipsoidal voids with both equal or unequal semi-axes a1,

a2 and a3, and this is shown schematically in Figure 2.4. Here, a three-dimensional

unit cell with spherical isotropic elastic particles of alumina in a voided elasto-plastic
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matrix is modeled. In our modeling approaches, the FCC crystal structure arrange-

ment is considered in order to allow us to achieve representative volumetric densities

of the secondary alumina phase (∼ 65%).

Figure 2.4: Schematic representation of microstructures presenting the local orienta-
tion axes of an ellipsoidal void with semi-axes a1, a2, and a3.

In these simulations, the set of internal variables for describing the general state of

microstructure are: accumulated plastic strain in the undamaged matrix εMp , the

volume fraction of the voids f , the local fraction of volume occupied by voids, two

aspect ratios characterizing the ellipsoidal shape of the voids (w1 and w2) and their

distribution functions, and the orientation of the principal axes of the voids (ni with

i = 1, 2, 3).

2.3.2 Constitutive Equations

The deformation behavior of (γ+α2)-TiAl/Al2O3 material is distinguished by separat-

ing it into recoverable and nonrecoverable parts based on the additive decomposition

of strain rates. The rate of deformation tensor D, at every material point of the

homogenized porous material is written as

D = Del +Dpl, (2.1)

where Del and Dpl are the elastic and plastic parts, respectively. As a consequence

of the compressibility of the material behavior due to presence of voids, the plastic
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strain rate tensor is only hydrostatic. In this case, linear elasticity is assumed for

simplicity as

σ = Eel : εel, (2.2)

which is the relation between the Cauchy stress σ, and elastic strain tensors εel

through the fourth-order elasticity tensor Eel. A hypoelastic form is assumed for

the elastic deformation tensor as

Del =M e : σ̊, (2.3)

where M e is the e�ective elastic compliance tensor and σ̊ is the corotational rate of

the Cauchy stress given by

σ̊ = σ̇ − ω · σ + σ · ω, (2.4)

where ω is the spin of voids relative to a �xed frame, i.e., ṅi = ω · ni, i = 1, 2, 3. The

e�ective compliance tensor is written as [109]

M e =M +
f

1− f
Q−1, (2.5)

In Eq 2.5, M is the elastic compliance tensor of the matrix material which is the

inverse of the elastic modulus tensor E

E = 2µK+ 3κJ, (2.6)

J =
1

3
δijδkl, (2.7)

K = I− J, (2.8)

Q = E : (I− S), (2.9)

Iijkl =
δikδjl + δilδjk

2
, (2.10)

where µ and κ denote the elastic shear and bulk moduli of the matrix, δ and I are

the symmetric second- and fourth-order identity tensors, f is the porosity, S is the

fourth-order Eshelby tensor, and Q is the microstructural fourth-order tensor which
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is proportional to the shear modulus, Poisson's ratio, aspect ratio of the voids, and

also the orientation of the ellipsoidal voids [110].

The derivation of the constitutive relations is the variational procedure that is used

to estimate the e�ective properties of the nonlinear porous material in terms of an

appropriate linear comparison composite. The e�ective yield function can be written

in the form [111]

Φ(σ, s) =
1

1− f
σ : m : σ − σ2

y(ε̄
p), (2.11)

where s is the set of internal variables; σy is the yield strength in tension of matrix

material, and is taken to be a function of the equivalent plastic strain ε̄p in the matrix

material. Here, m is normalized e�ective viscous compliance tensor and is de�ned as

m =
3

2
K+

3

1− f
µQ

−1|ν=0.5, (2.12)

where the limit for Poisson's ratio is due to assumption of plastic incompressibility.

It is emphasized that the plastic behavior described by the macroscopic potential

is fully compressible. If we limit our model to spherical voids, whose shape remain

unchanged during deformation, the MVAR model reduces to the Gurson isotropic

model

Φ(σ, ε̄p, f) =

(︃
1 +

2

3
f

)︃(︃
σe

1− f

)︃2

+
9

4
f

(︃
p

1− f

)︃2

− σ2
y(ε̄

p) = 0, (2.13)

where σe = (
3

2
σd : σd)0.5 is the equivalent von Mises stress, σd = σ−pδ is the deviatoric

part of the stress, and p =
1

3
σ : I is the hydrostatic stress. It is assumed that only the

plastic deformation of the matrix leads to change in microstructure because the voids

do not carry load and the elastic strains are smaller than the plastic counterpart.

An e�ect of the mean normal stress on the plastic �ow always exists when there is

a non-vanishing void volume fraction. By implementing the normality hypothesis of

plasticity, the plastic rate of deformation tensor is obtained by

Dpl = λ̇N, (2.14)

N =
∂Φ

∂σ
=

2

1− f
m : σ, (2.15)
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where λ̇ ≥ 0 is the plastic multiplier which can be obtained by consistency condition,

and N is the direction of the plastic strain increment. With consideration of the

equal relation between the macroscopic plastic work and microscopic work

σ : Dpl ≡ λ̇σN = (1− f)σy ̇̄ε
p, (2.16)

the evolution of equivalent plastic strain is then obtained by

̇̄εp =
λ̇σ : N

(1− f)σy
, (2.17)

For the damage evolution, the matrix material is assumed to be plastically incom-

pressible (von Mises type) and the elastic volumetric strains are negligible. The

evolution equation for porosity from the continuity equation is given by

ḟ = (1− f)Dp
kk, (2.18)

where Dp
kk is the volumetric part of the plastic rate of deformation tensor and can be

integrated to calculate the current f . The strain hardening response of the material

matrix, following the J2 �ow rule, is described by the yield stress σy as a function of

the accumulated equivalent plastic strain εp [109]

σy(ε
p
M) = σ0

(︃
1 +

εpM
ε0

)︃n

, ε0 =
σ0
E
. (2.19)

In this expression, σ0 and ε0 are the initial yield stress and strain, respectively, and

n is the strain hardening exponent.

In the MVAR model, a critical void volume fraction is used as a fracture criteria

such that the damage evolution accelerates as the damage parameter reaches to a

critical value. This characterizes the rapidly growing void volume fraction in the void

coalescence phase. In Eq 2.18, one can use a damage rate coe�cient KD, which is

de�ned as

KD =

{︄
1 D ≤ Dc,
fm−fc
ff−fc

Dc < D ≤ 1,
(2.20)
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where Dc is the damage critical value, ff is the volume fraction at failure (f = ff ),

fc is the critical value of void volume fraction at coalescence under uniaxial tension,

and fm = 1/q1 , with q1 as a constant parameter introduced by Tvergaard [112]. This

function was introduced by Tvergaard and Needleman [113] in order to account for

the loss of load-carrying capacity after void coalescence.

In order to implement the local integration scheme, two methods have been com-

monly used: Runge�Kutta and the fully implicit method. In both schemes, the

integrated variables are the elastic strain tensor εe, the accumulated plastic strain

ε̄p, and the void volume fraction (porosity) f . In this study, we have used the fully

implicit method with Newton�Raphson (N-R) scheme, which is the optimal choice

for solving the constitutive equation because of the quadratic rates of convergence.

This integration algorithm is �rst-order accurate, unconditionally stable, and easy for

using the consistent tangent operators in the general N-R procedure. For implement-

ing the fully implicit method, the generalized midpoint rule was used because of its

e�ciency. The integration algorithm of the constitutive equations for MVAR model

is listed in Box-I.

Box-I. Local incremental integration algorithm for modi�ed variational

formulation model

1. The elastoplastic constitutive initial value problem

ε̇e(t) = ε̇(t)− (1− f)ε̇p(t)N, (2.21)

ḟ(t) = (1− f)2tr(N) ε̇p(t). (2.22)

2. The incremental form of constitutive equation

εen+1 = εen +∆ε− (1− f)∆εpN, (2.23)

fn+1 = fn + (1− f)2trN ∆εp, (2.24)

Φ(σn+1, An+1) = 0; σn+1 = ρ̄
∂ψ

∂εe

⃓⃓⃓⃓
n+1

; An+1 = ρ̄
∂ψ

∂f

⃓⃓⃓⃓
n+1

. (2.25)

3. The general viscoplastic constitutive equations

εen+1 −∆ε+∆tg(σn+1, An+1) = 0, (2.26)

fn+1 − fn −∆tJ(σn+1, An+1) = 0. (2.27)
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with consideration of

g (σ(t), A(t)) = λ̇(σ(t), A(t)) N(σ(t), A(t)), (2.28)

J(σ(t), A(t)) = λ̇(σ(t), A(t)) H(σ(t), A(t)). (2.29)

where in our case we have

g(σ(t), A(t)) = (1− f)∆εpN, J(σ(t), A(t)) = (1− f)2tr(N)∆εp. (2.30)

4. The linearized system of time-discrete equations

dεe +∆t
∂g

∂σ
: dσ +∆t

∂g

∂A
∗ dA = d∆ε (2.31)

df −∆t
∂J

∂σ
∗ dσ +∆t

∂J

∂A
∗ dA = 0, (2.32)

where * is the appropriate product and

gn+θ = g((1− θ)σn+1 + θσn, (1− θ)An + θAn+1), (2.33)

Jn+θ = g((1− θ)σn+1 + θσn, (1− θ)Hn + θHn+1). (2.34)

5. The complete set of constitutive relations⎛⎜⎜⎜⎝
∂Re

∂∆εe
∂Re
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0

0
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where

Re = ∆εe −∆ε+ (1− f)∆εp N, (2.36)

Rp = ∆εp − Φ(σ, s)∆t (2.37)

Rf = ∆f − (1− f)2∆εp tr(N), (2.38)

6. The Jacobian matrix components
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∂∆εe
= I+ (1− f)∆εp

∂N
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.
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2.4 Model Validation and Application

2.4.1 Model Validation

Until now, a three-dimensional FCC unit cell model of the (γ+α2)-TiAl/Al2O3 com-

mercial cermet has been presented based on a modi�ed variational formulation of the

Gurson model. In this section, some experiments and microscopy analysis are used

as inputs into the model, and then the model is validated against quasi-static com-

pression experiments. The mechanical properties of the matrix, reinforcements, and

the damage parameter values are given in Table 2.1. The elastic modulus of the two

phases in the material, EM and EP , are determined by using an ultra-nanoindentation

tester from Anton Paar equipped with a diamond Berkovich indenter. A matrix of

30×30 indents are performed on an area of 290×290µm. The value of EP = 278GPa

obtained from nanoindentation tests is lower than those often reported for bulk scale

high purity alumina, which ranges between 300GPa and 410GPa [114]. From the

literature, a decrease in sti�ness of nanocrystalline particles is a result of increased

volume fraction of the grain boundary atoms [115, 116], and the e�ects of interactions

across grain boundaries with increasing the number of grains or decreasing the grain

size [117�119]. The values for νM , νP , σ
M
y , and f0 are obtained from the literature.

The baseline for the alumina volume fraction is 65%. The ratio of the size length of

the unit cell to diameter of the reinforcements is 1.477, and the ratio of the average

pore size to the average nanoparticle size is 0.03.

In these simulations, the uniaxial compression stress is applied in the x direction

with displacement control type loading. In the absent of voids, the matrix is assumed

to have an initial yield strain of ε0 = 0.001 [99]. The commercial ABAQUS is used for

performing the calculations and a ten-node quadratic tetrahedron element (C3D10

in the ABAQUS FEA notation) is employed for meshing the unit cell. The Dirichlet

boundary condition is implemented for this simulation in order to compare with

uniaxial compression experiments. Shown in Figure 2.5 is the engineering stress-
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Table 2.1: Material properties and the related damage parameters for each

component.

Parameters Notation Value Reference

Young's modulus (Matrix) EM 178± 31 GPa Nanoindentation test

Young's modulus (Particle) EP 278± 41 GPa Nanoindentation test

Poisson's ratio (Matrix) νM 0.23 [120]

Poisson's ratio (Particle) νP 0.22 [CoorsTek Inc.]

Yield stress (Matrix) σM
y 0.45 GPa [120]

Initial porosity (Matrix) f0 0.01 [99]

strain curve obtained numerically, and compared with experimental data previously

shown in Figure 2.2. In the curve, we vary the strain hardening modulus in the matrix

material between 1GPa (b) to 2GPa (a), because the strain hardening components

are material parameters which are the most unknown in the model. From the �gure,

we observe that strain hardening components of k = 1.5GPa and n = 0.05 (c) �t the

data reasonably well, and are in acceptable ranges [121, 122]. We use these parameters

in all subsequent modeling.

Figure 2.5: The engineering stress-strain behavior of ceramic-metal composite for
various strain hardening parameters.

Next, we examine the ability of the model to capture the experimental results
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in terms of stress-strain response. In order to study the experimental variability,

15 di�erent realizations of the model were simulated based on varying matrix and

particle sti�ness. In these simulations, each alumina particle was assigned a di�erent

sti�ness, and the matrix sti�ness was left to vary, both assume a normal distribution

about an average (from Table 2.1) with a 20% standard deviation. The summary

of these simulations is shown in Figure 2.6 as the shaded regions, with realizations

for the upper and lower bounds indicated in the legend. The realization that best

�t the experimental data (EM = 178GPa and EP = 278GPa) is indicated as a

dashed-dot red line. By considering an elastic modulus for bulk scale alumina, EP =

380GPa, the yield strength of the composite increases by 73MPa (5% of the upper

limit yield strength), and the peak stress decreases by 26.5MPa (1% of the upper limit

peak stress). Overall, the model reasonably captures the experimental stress-strain

response considering how few parameters were �t to the experimental data.

Figure 2.6: Variation of engineering stress versus engineering strain for both modeling
results and experimental data.

Next, the ability of the model to predict deformation observed in the experiment

is investigated by plotting outputs of the lateral (εyy) over the axial (εxx) strain in

Figure 2.7. As before, matrix and alumina particles sti�ness were varied to probe

variability in the model and experimental outputs. From Figure 2.7, we observe
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that the initial ratio of the lateral to axial strain computed numerically is 0.220 ±

0.002. This is slightly smaller than the experimental values (0.227 ± 0.001), but

within reasonable agreement. The model seems to predict the onset of the transition

to higher ratios at around 0.2% to 0.4% strain. The predicted peak value of the

lateral to axial strain ratio is between 0.299 and 0.329, which is slightly greater than

the experimental values, but still within reasonable magnitudes. The reasons for

this are explained in the �Discussion� section. Altogether, these results indicate that

the model framework with real-world inputs provide reasonable agreement with the

experimentally-determined values of stress-strain responses and strain ratios.

Figure 2.7: Variation of strain ratio during loading with axial strain.

2.4.2 The E�ect of Alumina Volume Fraction, Porosity, and
Unit Cell Size

After showing a good correlation between the proposed model and experimental

trends, we now explore the e�ects of varying the concentrations of the alumina phase

and porosity in order to study the implications for future materials design. In these

simulations, we take the baseline parameters included in Table 2.1, and we change

the volume fraction of the alumina and pores. This is meant to simulate realistic

changes that can be made to the microstructure through processing. First, we begin

by investigating the e�ect of varying the volume fraction of the alumina particles on
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the engineering stress-strain behavior and ratio of lateral to axial strain (Figure 2.8).

In this case, the particle sizes remained constant and di�erent reinforcement volume

fraction was obtained by changing the size of the unit cell. The baseline was consid-

ered for concentration of particles with an average of 65 ± 7%, which is believed to

be an appropriate range to vary the alumina concentrations.

Figure 2.8: The e�ect of particle volume fraction on engineering stress-strain response
and deformation pro�le of cermet during loading with consideration of various FE
meshes (Arrows indicate increasing alumina volume fraction).

From Figure 2.8, the results show that increasing the alumina volume fraction from

65% to 72% (direction of marked arrow) can increase the peak stress by around

126MPa (∼ 6% of the current strength). Conversely, the peak strength decreases by

90MPa when the volume fraction is decreased from 65% to 59%, which represents 4%

of the current strength. In addition, increasing the alumina particles volume fraction

from 65% to 72% can lead to decreasing the maximum strain ratio by 0.004. Moreover,

the onset of the transition to plastic region and higher strain ratios is predicted at

around 0.4% to 0.6% strain. Lastly, the e�ect of di�erent meshes on the results (very

�ne, �ne, and coarse mesh) are plotted. The number of elements in each mesh is

shown in the insert in Figure 2.8. The inset shows quite small di�erences in the

material response for di�erent number of elements, which shows mesh-insensitivity.

Next, the e�ect of varying the void volume fraction and unit cell size ratio (SUC), the
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ratio of the size length of the unit cell to diameter of the alumina particles, on the

engineering stress-strain behavior and ratio of lateral to axial strain is investigated in

Figure 2.9. The results were obtained assuming equiaxed pore morphology (voids with

equal semi-axis), and uniformly random distribution at a constant alumina particle

volume fraction (65%). In addition, the baseline was considered for porosity values

with an average of 1.5 ± 0.7%, which is believed to be a reasonable amount one could

vary the porosity in this material. As can be observed in Figure 2.9, the peak stress

value decreases with increasing void volume fraction (direction of marked arrow) from

lowest (f = 0.001) to highest (f = 0.03) porosity values by 105MPa (∼ 5% of the

current strength). Conversely, the strain ratio increases by 0.002 with increasing the

void volume fraction from f = 0.001 to f = 0.03. With an increase in the unit

cell size ratio, lower stress values were also observed. Similar behavior was predicted

for mechanical properties of carbon nanotube polymer composites [123]. Considering

the highest value of porosity (f = 0.03), the strength is decreased by 152MPa, by

varying the unit cell size ratio from SUC = 1.447 to SUC = 1.526, which shows a 7%

reduction in the current strength. For lower porosity values (f = 0.001), the strength

di�erence between values would be 168MPa, 3% change across the range of unit cell

size ratios. Conversely, the strain ratio increases with increasing unit cell size ratio for

f = 0.03 by 3%. For all cases, mesh insensitivity is observed (not shown for brevity).

Implications of these results are discussed in the following section.
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Figure 2.9: Predicted compressive engineering stress-strain curves and lateral to lon-
gitudinal ratio for the ceramic-metal composite with varying porosity and size of the
unit cell (Arrows indicate increasing void volume fraction).

2.5 Discussions

In this study, a general modi�cation of the Gurson-based models was proposed in order

to investigate the micromechanical behavior of nano-grained (γ + α2)-TiAl/Al2O3

commercial cermets. Here, the previous works [124�126] on ductile nanoporous MMCs

have been expanded to investigate the mechanical characteristics and the deformation

pro�le of commercial cermets [127, 128] by incorporating a nonlinear homogenization

variational structure for composites [129]. For the �rst time, a commercial cermet,

rather than an idealised one [98], with high particles volume fraction (∼ 65%) has

been studied both numerically and experimentally. Material characterization was

done to generate microstructural inputs into the model, including measurements of

alumina size (average of 1 ± 0.3µm), alumina volume fraction (65 ± 1%), porosity

size (0.05µm to 0.09µm), and void volume fraction (1.2% to 3%). An FCC unit cell

structure was considered as the microstructure of this novel oxide cermet to provide

the highest possible reinforcement volume fraction. Once inputs were made, the model

was validated against experiments through comparison of the compressive stress-

strain response and the ratio of lateral to axial strain. Experimental data was obtained
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from quasi-static uniaxial compression tests, coupled to novel DIC techniques. In the

literature, limited measurements exist for the stress-strain response of cermets [107,

130, 131], likely due to the only recent advancements in the DIC technology. The

stress-strain measurements on our cermet revealed that strength of the material was

between 2200MPa and 2600MPa, with an average of 2400 ± 120MPa, the sti�ness

was between 240GPa and 310GPa, with an average of 274 ± 26GPa, and the failure

strains were between 1.1% and 1.7%, with an average of 1.4 ± 0.2%. These values

were much higher than the counterparts in MMCs [132] and idealised cermets [98],

indicating the unique properties of this novel (γ + α2)-TiAl/Al2O3 cermet.

A comparison of the experimental and numerical results showed that the exper-

imental values were in reasonable agreement with the numerical predictions of the

stress-strain and ratio of strains responses (Figures 2.5 and 2.6). The numerical

values for strength of the material was between 1970MPa and 2580MPa, and the

sti�ness was between 220GPa and 260GPa. Experimentally, minor di�erences may

be attributed to residual stress in the material set as a consequence of di�erent ther-

mal coe�cient between the constituent phases [133], reinforcements fracture during

manufacturing process or mechanical loading [134], and particle shape and clustering

that contributes to damage accumulation, cracks nucleation sites, and degradation of

the mechanical properties of the cermet [135]. Numerically, the uniform and homo-

geneous distribution of alumina assumed in the model likely results in higher stress-

strain values and ratio of strains, when compared to experimental results. There may

also be some degree of porosity in the actual material that is not captured in the

model, which can occur either by the fracture of the inclusions or by decohesion of

the particle-matrix interfaces [136], that accumulates during loading and acts to re-

duce the strain ratio. Moreover, the model simulates mostly uniform void growth and

coalescence throughout the body, whereas the failure in the experiment is likely due

to the growth and coalescence of a few voids/cracks [133]. Furthermore, there was a

gradual transition from low to high strain ratio, both numerically and experimentally,
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which may attribute to di�erent behavior of particle clustering as a single hard large

particle or independent reinforcement [137] (Figure 2.7). Altogether, insights gained

here for comparing the experiments and models can provide guidance for future work

in directions motivated by discrepancies between the simulations and the test data.

Once the model was validated, the e�ect of changing the alumina volume fraction,

porosity and unit cell size was explored. This exercise can provide valuable informa-

tion for optimization the material mcirostructure for the mechanical response (e.g.,

strength, sti�ness, and Poisson's ratio evolution). It was found that increasing the

alumina particles volume fraction from 65% to 72% result in increasing the material

strength by 6%. Physically, this increase in alumina volume fraction would lead to

larger interfacial area between matrix and particles, which can result in more e�ective

load-bearing capacity and increase the strength [133]. For porosity, it was observed

that reducing the porosity from its current level of 1.5% to 0.1% results in an increase

in strength of 2.5%. While possibly challenging to increase the alumina volume frac-

tion and reduce the porosity to these levels, this information provides guidance to

material manufactures with response to where e�orts should be concentrated to im-

prove the mechanical responses of this novel cermet material. For instance, reducing

the presence of porosity sites such as �ne oxide particles arising from manufacturing

process can remove the barriers for dislocation motion in the matrix and increase the

sti�ness of the overall material [138].

2.6 Concluding Remarks

In the present study, a modi�ed variational formulation of the Gurson model was

employed for predicting the quasi-static behavior of a (γ + α2)-TiAl/Al2O3 cermet.

This is the �rst time this material has been studied extensively, both numerically

and experimentally. BSE-SEM and EDS analysis were used for determining the mi-

crostructure parameters as model inputs. Quasi-static uniaxial compression tests,

coupled with DIC technique, were performed to investigate the mechanical response
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and corresponding evolution of the deformation pro�le during loading. Following im-

plementation, the experimental inputs were used to validate the unit cell model and

reasonable agreement was found. The strain hardening components, which were the

most unknown material parameters, were obtained by matching the modeling results

with experimental trends. The strength of 2209 ±239MPa, sti�ness of 240 ±20GPa,

and strain hardening modulus of 1.5 ± 0.5GPa were predicted from the presented

model, which were in good agreement with experimental data. Once validated, the

e�ects and implications of di�erent parameters such as particle volume fraction, poros-

ity, unit cell size ratio, and the variability of the inclusion sti�ness were presented

and discussed. Altogether, it is speculated that the proposed model together with

appropriate measurements can be accounted for representing the unique mechanical

responses of other commercial cermets as well.
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Abstract Novel experimental data, obtained using an advanced digital image

correlation technique coupled to ultra-high-speed photography, have been used to

develop and validate a microstructure-dependent constitutive model for a

α2(Ti3Al) + γ(TiAl)-submicron grained Al2O3 cermet. Utilizing experimental

characterization for important simulation inputs (e.g., microstructural features size

and constituent sti�ness), the numerical model makes use of a variational form of

the Gurson model, based on the nonlinear homogenization approach, to account for

the experimentally observed deformation features in this composite (e.g., void

deformation and growth and particle fracture). By considering the variability in
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microstructural features (e.g., particle shape, size, and aspect ratio), as well as

densely packed ceramic particles, the proposed model is evaluated by comparing the

numerical responses to experimental results for quasi-static and dynamic

stress-strain behavior of the material. The results show that the proposed approach

is able to accurately predict the mechanical response and deformation of the

microstructure. Once validated, the model is expanded for studying the

predominant damage mechanisms in this material, as well as determining important

mechanical response features such as transitional strain rates, �ow stress hardening,

extensive �ow softening, and energy absorbing e�ciency of the material as a

function of void and particle volume fraction under high strain-rate loading. The

totality of this work opens promising avenues for qualitative (damage

micromechanisms) and quantitative (stress-strain curve) understanding of

ceramic-metal composites under various loading conditions, and o�er insights for

designing and optimizing cermet microstructures.

Keywords: Microstructure-dependent constitutive model; Nonlinear homogenization

approach; Dynamic uniaxial compression test; Digital image correlation; Materials

design
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3.1 Introduction

Due to its excellent corrosion resistance, high speci�c strength, su�cient creep resis-

tance at elevated temperatures, and relatively low density, the two-phase titanium

aluminide alloys are a potential candidate for aerospace and automotive structural

applications [2�4, 139]. In comparison to their monolithic constituents, γ(TiAl) and

α2(Ti3Al), these alloys can exhibit preferable mechanical performance as a result of

containing multilayer phases with small inter-layer thickness [5, 6, 140, 81]. However,

drawbacks such as poor fracture toughness and low ductility at room temperature

[141, 142], and insu�cient strength at high temperatures put a strict limit on their

use in certain applications [7]. To remedy, introducing second phase particle reinforce-

ments, termed intermetallic matrix composites (IMCs) can improve the toughness,

creep resistance, and heat-resistance stability of the titantium aluminide material sys-

tems [8, 9, 143]. This class of ceramic-metal materials can be categorized as either

metal matrix composites (MMCs) (≥ 50 vol.% metal) [10, 78], or cermets (≥ 50 vol.%

ceramic) [11, 79]. With higher ceramic contents and associated greater strengths of

cermets in comparison with MMCs, the former are expected to be far more e�ective

as strike-face materials in aerospace and defense applications [12, 13]. In addition,

ceramic-metal composites have higher fracture toughness and higher �exural strength

in comparison to structural ceramics [80]. Among compatible and thermochemically

stable strengthening phases for intermetallic TiAl such as SiC [14], TiB2 [15], Ti2AlC

[16], Ti5Si3 [17], Al2O3 [18], and their combination [20, 19], this study is focused on

a α2(Ti3Al) + γ(TiAl)-submicron grained alumina cermet due to its high tempera-

ture strength [21], excellent oxidation resistance [22], inclusive wear resistance [23],

relatively low cost [24], and similarities between the coe�cients of thermal expansion

of the constituents [25, 33]. In addition, the submicrometer alumina grain size of

the material under study here can lead to improved hardness, strength, and optical

performance in comparison to the bulk alumina [26, 27, 144], which makes submicron
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grained advanced cermets more favorable for a wide range of applications, from light-

weight ballistic armor [28] to electronic packaging substrates and medical applications

[29, 74].

Researchers have developed various methods such as reactive hot processing [30],

mechanical alloying [31], and sintering process [32] for fabricating intermetallic TiAl-

Al2O3 to compensate for the lower ductility and fracture toughness of ceramics, as

well as poor strength and sti�ness of metals, when combining these two materials [75,

76]. As a result of the α → γ phase transformation and eutectoid reactions [81], the

two-phase titanium aluminide contains a high volume fraction of lamellar grains. To

date, there has been a number of published papers detailing the microstructure and

mechanical properties of two-phase TiAl/Al2O3 (see e.g., [18, 25, 33, 86, 145]); how-

ever, limited studies have been devoted to the mechanical response of these unique

materials under high strain rates. A limited number of research have attempted to

explore the deformation mechanism of a γ(TiAl)-based alloys [146, 34, 147, 35], and

dynamic fracture of nanograined transparent alumina [36, 37]. For example, Ber-

tels et al. [146] con�rmed the e�ects of superdislocations and mechanical twinning

under dynamic compression loading in a γTiAl-based alloy. In addition, Belenky et

al. [36] showed that the dynamic initiation toughness increased signi�cantly when

compared with the quasi-static regime. Studies of Ti-based cermets under dynamic

loading include dynamic mechanical damage mechanisms in TiC-1080 steel cermets

[148, 149], dynamic tensile failure of 6061-T6/Al2O3 [150], and the e�ect of con�ne-

ment on impact response of TiC/Ni cermet [151]. To date, no coupled numerical

and experimental studies have been investigated the dynamic mechanical behaviors

(e.g., stress-strain response), microstructure parameters (e.g., inclusion shape, size,

and aspect ratio), and damage mechanisms (e.g., void deformation and growth) of an

intermetallic TiAl-Al2O3 cermet, which are addressed in the present study.

The mechanical properties of cermets can be predicted numerically by implement-

ing various types of modeling approaches [87�89]. For example, Pelletier et al. [90]
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employed the limiting state of plastic collapse to relate the hardness of a nickel-based

alloy cermet to its microstructure. Later, Engqvist et al. [91] proposed an empirical

model for hardness of cemented carbides by studying the interactions between the

binder and the carbide. Microstructural models, such as unit cell models [92] and

dislocation-based models [93] have also generated interest in predicting the strengths

of cermets. For example, Legarth [94] used a unit cell approach for investigating

the non-monotonical e�ect of a material length scale parameter on the failure strain

of MMCs. In addition, the combination of continuum plasticity theory with unit

cell model to study the rigid particles in ductile matrix materials was carried out by

Bao et al. [95]. There are other microstructure-independent approaches, such as self-

consistent models, but their usefulness are restricted to composites with a low particle

volume fraction [96]. However, in some commercial cermets, the particle volume frac-

tion can reach up to 80% [97], such that the microstructure-independent approaches

are no longer valid. As a result of existing signi�cant variability for the commercial

cermets with high particle volume fraction, modeling e�orts to date have focused on

idealised microstructure con�gurations, where a limited number of studies have been

made to bridge these models with experimental inputs under high strain-rate loading

[152, 98, 99]. For example, Ramesh and Ravichandran [153] investigated the evolu-

tion of damage and failure modes of boron carbide-aluminum cermet under dynamic

loading conditions, by using the plate impact recovery technique. They found that

most of the strain is accommodated by soft intermetallic phases during the initial

compression pulses. Deobald and Kobayashi [154] experimentally characterized the

dynamic fracture of Si/Al2O3 composites. Their study revealed an increased per-

centage of transgranular fracture in the dynamic fracture zone. Compton and Zok

[79] described the operative damage and deformation mechanisms of TiC/Ni cermets

under impact loading. Their results showed that cermets with higher toughness ex-

hibits greater amounts of local particle cracking. The lack of understanding of the

dynamic behavior and damage mechanisms of commercial cermets along with high
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submicron particle volume fraction motivates this jointed numerical and experimental

investigation.

In the present work, an experimental setup that enables digital image correlation

measurements of the deformation �eld during uniaxial compression tests is outlined,

and these experimental results are considered for numerical simulation comparisons.

Scanning electron microscopy (SEM) is performed at room temperature on the frag-

ments recovered from the uniaxial compression tests to investigate the fracture mech-

anisms of α2(Ti3Al) + γ(TiAl)-submicron grained alumina cermet under quasi-static

and dynamic loading, and on the material microstructure before experiments to quan-

tify the secondary phase alumina size and shape, and porosity in the material. To

incorporate the void deformation and growth in a constitutive framework of the porous

host material, a modi�ed variational formulation of the Gurson model (MVAR) is pro-

posed for a microstructure-based three-dimensional face centered cubic (FCC) unit

cell model with a monodisperse distribution of voids along with a polynomial cohesive

zone models for decohesion of particle-matrix interface. The compression behaviors

of the cermet, such as �ow and compression strengths, as well as possible damage

mechanisms under low and high strain rates are discussed and compared with exper-

imental results. The in�uence of material microstructural variabilities (e.g., particle

shapes, size, and aspect ratio), as well as particles with variability in sti�ness and

volume fraction are included for better simulation of true specimens under uniaxial

compressive loading. The proposed model is shown to provide a good correspon-

dence to the experimental data, and can serve as a fundamental approach for further

material design and optimization such as increasing the con�dence limits of these

materials.

3.2 Material and Experiments

The material investigated in this study is an α2(Ti3Al) + γ(TiAl)-submicron grained

alumina cermet. The material is supplied by Lumiant Corporation, British Columbia,
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and fabricated using solid �ame combustion self-propagation high-temperature sin-

tering (SHS) process. The initial powders are aluminum (Al) and titanium dioxide

(TiO2) phases to form the chemical reaction required for obtaining the �nal com-

posite. The reaction is done in the presence of metallic binder phase additives

(Fe,Co,Cr,Ni,Mo, and Ni Mo) to facilitate the densi�cation process of the cermet

[155].

3.2.1 Material Characterization

Backscattered electron (BSE)-SEM are taken on a Zeiss Sigma �eld emission scanning

electron microscope with the acceleration voltage (EHT) set at 20 kV and a working

distance of approximately 3.8mm (Figure 3.1). The lighter regions correspond to the

two-phase TiAl phase because of the higher atomic number, while the darker regions

are the alumina phase. By using image processing with thresholding in grayscale,

the porosity level is determined as 1.2% to 3% at 2000 to 6000 times magni�cation,

which tends to cluster around the boundary or within the alumina particle phase. The

average pore size is 0.07 ± 0.02µm, as measured by the major axis. The individual

alumina particles appear spherical in shape and in clusters in the material with size

between 0.5µm to 1.5µm with an average of 1 ± 0.3µm, and cluster sizes of 3µm

to 9µm. The area fraction of the alumina phase is estimated as 65 ± 1%. The

area fraction of 65% is assumed to be equal to the particle volume fraction as an

input for the simulation in the absence of volumetric data. These results from the

micrographs are averaged from nine di�erent locations randomly taken across three

samples. In addition, the elastic modulus of the matrix (EM = 178 ± 31GPa) and

alumina particles (EP = 278± 41GPa) are determined by nanoindentation using an

ultra-nanoindentation tester equipped with a diamond Berkovic indenter performed

on an area of 290 × 290µm with 900 indents in total. All the mechanical properties

for the matrix and the particle are listed and discussed in Table 3.1 in the �Results�

section.
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Figure 3.1: The experimental characterization of two-phase titanium aluminide-
submicron grained alumina cermet using BSE-SEM. The black regions correspond
to the alumina phase and white regions correspond to the two-phase TiAl phase.

3.2.2 Material Testing

3.2.2.1 Uniaxial Compression Testing

Cermet tiles are cut into specimens with size of 2.3mm (length) × 2.7mm (width)

× 3.5mm (height) for mechanical testing. The quasi-static uniaxial compression test

is detailed in Amirian et al. [72] and is brie�y recounted here for completeness.

The test is conducted on a standard MTS series 810 servo-hydraulic machine, and

is performed under displacement control with a nominal strain rate of 1 × 10−4 s−1.

A 100 kN load cell with background noise corresponding to approximately ±1N is

used to record the force history during loading process. An AOS PROMON U750

high speed camera with a full resolution of 1280 × 1024 pixels is used to provide

visualization on macroscopic deformation features on the specimen surface. This is

coupled with the digital image correlation strain measurements using the VIC2D 6

software [102]. For these measurements, the highest quality of the brightness and

contrast on the material surface is obtained by using a combination of high intensity

LED with optical light guide and metallic paint. The system is adjusted so that

images with good sharpness and overexposure are obtained, where an optimal subset
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size in the VIC2D software is achieved.

The dynamic uniaxial compression tests are conducted on a modi�ed version of

a split-Hopkinson pressure bar (SHPB), where similar setups have been well docu-

mented in the literature [156�158], and the technique has been widely used on ceramics

and cermets testing [156, 159]. In the current study, the SHPB equipment comprised

a striker bar, an incident bar, and a transmitted bar (made from maraging steel C-

350) with the length of 1016mm and 914mm and a common diameter of 12.7mm for

incident and transmitted bars, respectively. The signals for the stress are measured

by a strain gauge mounted on the transmitted bar. The specimens are placed between

two impedance matched Ti-6Al-4V titanium alloy jacketed tungsten carbide (WC)

platens, where the interfaces are lubricated with extreme pressure grease to reduce

friction and allow the specimen to expand freely in the lateral dimension. A mild

steel pulse shaper with a thickness of 0.0635mm is placed in front of the incident

bar (against the striker) to create a ramped signal pro�le. This speci�c pulse shaper

provides a proper rise time (8 − 10µs) and ramp time for which the material can

reach equilibrium under a single pass of a loading compressive wave, and the natural

response of the material can be captured. In this case, the total time of the whole

event is within 20µs.

For data acquisition, an HBM Gen3i high-speed recorder from Durham instruments

is used to capture the voltage signals with the sampling rate at 25MHz, and only

the transmitted signal is used to compute the stress-time pro�le. An ultra-high-speed

Shimadzu HPV-X2 camera is used to capture the failure process of the specimen

during SHPB testing at 2 million frames per second with an exposure time of 200 ns.

The camera has a full resolution of 400×250 pixels, where 128 frames can be captured

at the speci�c frame rate. In this setup [160], a light ring equipped with 32 high-

power LED emitters with a focal point of approximately 330.2mm (from REL. Inc.)

is placed concentric to the camera lens for providing further lighting to the specimen,

which can further enhance the brightness and contrast conditions for the post-DIC
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analysis. Similar to quasi-static tests, DIC is used to obtain the global strain �eld in

the dynamic tests. In these dynamic experiments, a K2 DistaMax lens from In�nity

Photo-Optical Inc. is used to achieve a �eld of view where the full spatial resolution

of the DIC analysis can be utilized. Altogether, these setups enable us to obtain

stress-strain measurements and visualization of the surface deformation, and these

are used to validate the model developed in this study.

3.3 Constitutive Modeling

In this section, a numerical model is presented for the mechanical response of the

α2(Ti3Al) + γ(TiAl)-submicron grained Al2O3 cermet under high strain-rate loading.

First, a porous three-dimensional FCC unit cell model with four inclusions is con-

sidered for the geometry of the specimen, and the modi�ed variational formulation

of the Gurson model is presented for the constitutive response of the unit cell. The

model has been implemented with a user-material (UMAT) fortran user-subroutine

provided by ABAQUS/Standard. Next, the damage of matrix-particle interface is

modeled by introducing a cohesive zone model, which was informed by deformation

mechanisms observed in the experiments.

3.3.1 Geometry and Model Properties

Following di�erent modeling strategies such as empirical [161] or microstructurally-

motivated model [88, 162], which are valid for low particle volume fraction and are

described through statistical information, a three-dimensional model comprising a

FCC arrangement of periodic rigid particles is considered in this study. This model is

computationally less expensive than the geometrically realistic unit cell models [163],

and is able to reach higher particle volume fraction (up to 73%) and local strains in

the matrix. Moreover, the face-centered cubic structure of TiAl single crystal makes

this assumption a more reasonable for geometry model of the material.

The schematic view of the arrangement of the inclusions used in the �nite ele-
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ment models is marked in Figure 3.2. The unit cell is comprised of isotropic elastic

particles with a Young's modulus of EP = 278GPa, which was obtained from an

ultra-nanoindentation tester from Anton Paar, and Poisson's ratio of νP = 0.22. The

rigid spherical particles is �lled with a porous isotropic elastic-plastic matrix, with a

Young's modulus and Poisson's ratio of EM = 178GPa and νM = 0.23, respectively.

All of the related mechanical properties along with the damage parameters are given

later in Table 3.1, with corresponding sources of the information. For spherical voids

with a uniform monodisperse distribution that are constructed by means of a random

sequential adsorption algorithm [164] and are generated by a Mathematica code, the

radius of each void is

Rv = L

(︃
3f

4πN

)︃ 1
3

, (3.1)

where L is the length of the unit cell, N is the number of pores in the unit cell, and

f is the void volume fraction. The microstructure representation of cermet is also

considered by ellipsoidal voids with unequal semi-axes. The ratios of L and pore size

to the diameter of alumina phase are 1.477 and 0.03, respectively.

Figure 3.2: Sketches of the arrangement of the ceramic particles used in the �nite
element models: (a) Three-dimensional periodic arrangements of particles; (b) Three-
dimensional FCC arrangement of inclusions with the unit cell subjected to high strain-
rate loading.
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3.3.2 The Theoretical Framework of α2(Ti3Al) + γ(TiAl)-Al2O3

Cermet

In order to derive the constitutive equations, small strain formulation is used which

is common for studying these materials [99, 165]. By separating the deformation

behavior of the homogenized porous material into elastic and plastic parts, the rate of

deformation tensor, D, at every material point of the α2(Ti3Al)+ γ(TiAl)-submicron

grained Al2O3 cermet is decomposed as

D = Del +Dpl, (3.2)

where Del and Dpl are the elastic and plastic parts, respectively. As a consequence

of the compressibility of the material behavior due to presence of voids, the plastic

strain-rate tensor is only hydrostatic.

3.3.2.1 Elastic Constitutive Equations

The elastic deformation tensor of the cermet material follows the hypoelastic form as

Del =M e : σ̊, (3.3)

where M e and σ̊ are the e�ective compliance tensor and Jaumann rate of the Cauchy

stress, respectively. These are de�ned as [109]

M e =M +
f

1− f
Q−1; σ̊ = σ̇ − ω · σ + σ · ω, (3.4)

where ω is the spin of voids relative to a �xed frame, i.e., ṅi = ω ·ni, i = 1, 2, 3, and M

is the elastic compliance tensor of the matrix phase which is assumed to be isotropic

such that

Mijkl =
1

2µ
Kijkl +

1

3κ
Jijkl, (3.5)

Jijkl =
1

3
δijδkl, (3.6)

Kijkl = Iijkl − Jijkl, (3.7)

Iijkl =
δikδjl + δilδjk

2
, (3.8)

Qijkl = Eijkl : (Iijkl − Sijkl), (3.9)
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where µ and κ denote the elastic shear and bulk moduli of the matrix, δ and I are the

symmetric second- and fourth-order identity tensors, f is the porosity, S is the fourth-

order Eshelby tensor [166], and Q is the microstructural fourth-order tensor which

is proportional to the shear modulus, Poisson's ratio, aspect ratio of the voids, and

the orientation of the ellipsoidal voids [110]. It is worth noting that the components

of the e�ective compliance tensor depend on the void volume fraction, shape, and

orientation of the voids, and these evolve in time.

3.3.2.2 Plasticity Behavior

For obtaining the rate-dependent constitutive relations of nonlinear cermet mate-

rial, the local behavior of the matrix phase is described by an isotropic, viscoplastic

dissipation potential W (σ) as [129]

W (σ) = (1− f)
ε̇0σflow
n+ 1

(︃
σ̂e

σflow(ε
p
M)

)︃n+1

, (3.10)

where σflow is the �ow stress of the matrix in tension which is the function of the

accumulated plastic strain εpM , ε̇0 is the reference strain rate, and n is the inverse

of strain rate sensitivity parameter (n = 1 for linearly viscous material and n →

∞ for rate-independent material response). The variational procedure, detailed in

Castaneda [129], is used to derive the constitutive relations of the composite. The

e�ective yield function can be written as [111]

Φ(σ, s) =
1

1− f
σ : mMVAR : σ − σ2

y(ε̄
p), (3.11)

where s is the set of internal variables and is the function of local equivalent plastic

strain, porosity, the aspect ratio of local ellipsoids, and the unit vectors in the direc-

tions of the principal axes of the voids. The overestimation of the original variational

formulation and the Gurson model for the e�ective response of the porous material at

high stress triaxialities and low porosity [167] is corrected by using the MVAR model.
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Here, m is the normalized e�ective viscous compliance tensor de�ned as [109]

mMVAR
ijkl = mV AR

ijkl + (q2 − 1)Jijpqm
V AR
pqrs Jrskl, (3.12)

mV AR
ijkl =

3

2
Kijkl +

3

1− f
µQ−1

ijkl|ν=0.5, (3.13)

q =
1− f√
fln( 1

f
)
, (3.14)

Q−1
ijkl(µ, ν) =

1

2µ

(︃
15

1− ν

7− 5ν
Kijkl +

3

2

1− ν

1 + ν
Jijkl

)︃
, (3.15)

The scalar factor q preserves the convexity and smoothness of the yield surface for all

the microstructural con�gurations. By substituting Eqs 3.12-3.15 into Eq 3.11, the

yield surface is obtained as

Φ(σ, f) =

(︃
1 +

2

3
f

)︃
σ2
e +

9

4

(︃
1− f

lnf

)︃2

p2 − (1− f)2σ2
y = 0, (3.16)

where σe = (
3

2
σd : σd)0.5 is the equivalent von Mises stress, σd = σ − pδ is the

deviatoric part of the stress, p =
1

3
σ : I is the hydrostatic Cauchy stress, and σy is the

yield strength of the parent phase with zero porosity. The strain hardening response

of the material matrix, following the J2 �ow rule, is described by the yield stress as

a function of the accumulated equivalent plastic strain εp [109]

σy(ε
p
M) = σ0

(︃
1 +

εpM
ε0

)︃N

; ε0 =
σ0
E
. (3.17)

In this expression, σ0 and ε0 are the initial yield stress and strain, respectively, and N

is the strain hardening exponent. It is observed that in the special case of spherical

voids and equaling f to zero, Eq 3.16 reduces to the classic Huber�Mises model. For

the strain rate sensitivity of the matrix phase, it is assumed that only the plastic

deformation of the matrix leads to changes in microstructure because the voids do

not carry load and the elastic strains are smaller than the plastic counterpart [168].

By implementing the normality hypothesis of plasticity, consideration of the equal

relation between the macroscopic plastic work and consistency condition, the plastic

rate of deformation tensor is obtained as

σ : Dpl ≡ λ̇σ : N = (1− f)σy ̇̄ε
p; ̇̄εp =

λ̇σ : N
(1− f)σy

, (3.18)
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where λ̇ ≥ 0 is the plastic multiplier, which can be obtained by consistency condition,

and N is the direction of the plastic strain increment.

3.3.2.3 Evolution of Damage

For the damage evolution, the porosity is viewed as the main damage parameter in

the material. The evolution equation for porosity from the continuity equation is

given by [169]

ḟ = (1− f)Dp
kk +

fN

sN
√
2π
exp

[︄
−1

2

(︃
̇̄εp − ϵN
sN

)︃2
]︄
, (3.19)

where the �rst and second term on the right hand side account for void growth

and plastic strain controlled nucleation process, respectively. Dp
kk is the volumetric

part of the plastic rate of deformation tensor, fN is the particle volume fraction of

nucleating voids, sN is the standard deviation of the nucleation strain, and ϵN is the

void nucleation strain. A critical void volume fraction is used as a fracture criteria

such that the damage evolution accelerates as the damage parameter reaches to a

critical value [170]. This characterizes the rapidly growing void volume fraction in

the void coalescence phase. In Eq 3.19, one can use a damage rate coe�cient Kf ,

which is de�ned as

Kf =

{︄
1 f ≤ fc,
fm−fc
ff−fc

fc < f ≤ 1,
(3.20)

where ff is the void volume fraction at failure (f = ff ) [171], fc is the critical value of

void volume fraction at coalescence under uniaxial tension, and fm = 1/q1 with q1 as

a constant parameter introduced by Tvergaard [112]. This function was introduced

in order to account for the loss of load-carrying capacity after void coalescence.

For implementing the local integration scheme, the integrated variables are the

elastic strain tensor εe, the accumulated plastic strain ε̄
p, and the void volume fraction

(porosity). In this study, the fully implicit method with a Newton�Raphson (N-R)

scheme are used for the local integration scheme, which is detailed in Amirian et al.

[72]
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3.3.2.4 Interface Decohesion Model

Interfaces have e�ects on the material design of ceramic-metal composites because of

their highest responsibility for sti�ness, strength, fracture behavior, and stress-bearing

capacity [172, 173]. As a result of existing ceramic particles in the microstructure,

debonding along the reinforcement/matrix interface is one of the main fracture mi-

cromechanisms, which is highly localized in front of the crack tip [174].

There are di�erent models for characterizing interfaces, such as a narrow region of

continuum with graded properties and cohesive zones with speci�c traction-separation

laws [175, 176]. The facilitation of numerical implementations are the major reasons

for using a continuum mechanics framework rather than ad hoc methods [177], and

these frameworks are commonly called cohesive zone laws. In this model, the traction

is taken to be a function of the displacement jump across the interface, where in order

to simulate the interfacial behavior of cermet, a polynomial cohesive zone model is

used [178]. The normal traction (Tn) separation (δn) relation with the assumption of

δt = 0 is demonstrated in Figure 3.3.

Figure 3.3: A traction-separation law for the polynomial cohesive zone model applied
at the particle-matrix interface.

By increasing interfacial separation, the traction increases to the maximum value,

which is de�ned as the interfacial bonding strength. After this maximum value, the
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traction decreases to zero where complete failure occurs. For the unloading/reloading

path, the interface behavior can be evaluated by the sign of λ and λ̇ which is followed

the same linear relationship. For the interface under compression, the normal and

tangential traction for loading and unloading path are de�ned as

Tn = K
δn
δcn
, K > 10EP , (3.21)

Tt = ξ
27

4
σmax

δt
δct
(1− λ)2, λ = λmax < 1 and λ̇ ≥ 0;Loading Path, (3.22)

Tt = ξ
27

4
σmax

δt
δct
(1− λmax)

2, λ < λmax or λ̇ < 0;Unloading Path, (3.23)

where δcn and δ
c
t are critical normal and tangential separation values, respectively, σmax

is the maximum normal stress of the interface, ξ is the ratio of maximum tangential

strength to normal strength
(︂

τmax

σmax

)︂
, EP is the particle's sti�ness, and λ is the non-

dimensional damage parameter which is induced from interface decohesion

λ =

{︃(︃
|δn|
δcn

)︃
+

(︃
|δt|
δct

)︃}︃ 1
ζ

, (3.24)

where ζ de�nes the interaction of the normal and tangential separations. In the

present study, the same cohesive behavior is assumed along the normal and tangential

directions (ξ = 1 and δcn = δct ) and no strain rate e�ects are assumed to simplify the

model in order to capture the basic physics. In order to describe the interfacial

debonding behavior, the interface fracture energy G, which is equal to the area under

curve shown in Figure 3.3, is used [178]

G =
9

16
σmaxδ

c
n. (3.25)

This indicates that in purely normal separation, σmax is the maximum traction and

the total separation occurs at un = δn. It is worth stating that only the cracking

of the α2(Ti3Al) + γ(TiAl)-submicron grained alumina cermet is considered as the

principal contributions to the interface fracture energy, and the residual strain energy

released by the cracking of the reaction products along with the energy dissipated by

periodic cracking of the reaction products are ignored. Next, the model is validated

against the mechanical responses and failure behaviors of the experimental results.
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3.4 Results

The mechanical behavior of the α2(Ti3Al) + γ(TiAl)-submicron grained alumina cer-

met under high strain rate uniaxial compression is explored using a three-dimensional

FCC unit cell model in combination with a modi�ed variational formulation of the

Gurson model. The numerical results are validated against the experimental data,

and then are used to provide insights into various aspects of the material response

during dynamic loading. The mechanical properties of each unit cell constituents

along with the damage parameter values are given in Table 3.1, and will serve as ref-

erence values in the remainder of this article. The baseline for the submicron grained

alumina volume fraction is 65%, and the ratio of the average pore size to the average

particle size is 0.02. The quasi-static and dynamic response of the unit cell are sim-

ulated using commercial �nite element software ABAQUS by implementing UMAT.

For meshing the unit cell, approximately 350,000 ten-node quadratic tetrahedron el-

ements (C3D10 in the ABAQUS FEA notation) are employed. In these simulations,

the inclusions are assumed to be perfectly bonded to an elastic-plastic matrix. In

order to compare with the uniaxial quasi-static and dynamic compression tests, a

�xed-displacement boundary condition is implemented to one end of the unit cell

and the simulations are performed by imposing a controlled displacement (uniform

constant-velocity boundary condition), with low (10−4 s−1) and high (2000 s−1) strain

rates in the axial direction, which are approximately the nominal loading rates in the

experiments (shown schematically in Figure 3.2(b)) [179].

3.4.1 Quasi-Static and Dynamic Compression Behaviors

The simulated stress-strain relationships of the ceramic-metal composite compressed

at low and high strain rates together with the experimental results are summarized in

Figure 3.4. The numerical data range are obtained by changing the sti�ness, shape,

volume fraction, and aspect ratio of the inclusions in the unit cell structure in order
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Table 3.1: Material properties and the related damage parameters for the unit

cell constitutents (M for matrix and P for particles).

Parameters Notation Value Reference

Young's modulus (M ) EM 178± 31 GPa Nanoindentation

Young's modulus (P) EP 278± 41 GPa Nanoindentation

Density (M ) ρM 4.1
(︁

g
cm3

)︁
[120]

Poisson's ratio (M ) νM 0.23 [120]

Poisson's ratio (P) νP 0.22 [CoorsTek Inc.]

Yield stress (M ) σM
y 0.45 GPa [120]

Initial yield stress (M ) σ0 0.3GPa [109]

Strain hardening exponent (M ) N 0.05 [72]

Initial porosity (M ) f0 0.01 [99]

Initial yield strain (M ) ε0 0.001 [99]

Speci�c heat (M ) CpM 559.77
(︂

J
Kg K

)︂
[180]

Surface energy (P) γP 0.97± 0.04 (Jm−2) [181]

Interface fracture energy G 4 (Jm−2) [182]

to account for the variabilities of the material, and to compensate for the discrepancy

between experimental and numerical results. For each of these parameters, random

realizations of the properties are generated by assuming a normal distribution of the

mean (values in Table 3.1) and a 20% uncertainty. The stress-strain data for all cases

are presented as shaded regions (except for dynamic numerical loading) that repre-

sent lower and upper bounds on the stress and strain values. The di�erent regions

of the curve that correspond to the various particle shapes are noted in the caption,

and this is done for ease of comparison and clarity. Figure 3.4(a) is discussed in

the subsequent paragraph. First, the representative curves from the quasi-static and

dynamic experiments are presented in Figure 3.4(b) in order to demonstrate the com-

mon softening and hardening behavior in the cermet, especially for the dynamic case.

As observed, the quasi-static curves (blue) tend to follow a convex behavior (values
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presented later when describing Figure 3.4(a)). For the dynamic case (red curves),

the behavior is more complicated as it exhibits cycling hardening and softening be-

havior, which was observed in other types of cermets [149, 183, 184]. This is believed

to be a consequence of a texturing phenomenon (e.g., plastic deformation) observed

during dynamic loading [160]. In addition, the sensitivities of numerical stress-strain

curves to inclusion shapes (prism, platelet, icosahedron, and ellipsoid) compared to

experimental results are illustrated in Figure 3.4(c). It can be seen that the prism

shape exhibits the greatest softening post peak, while the cylinder shows a softening

then hardening behavior. Overall, and as will be discussed next with respect to Fig-

ure 3.4(a), the numerical results reasonably capture the experimental data. The raw

data is provided as supplementary to this article.

Referring back to the Figure 3.4(a), for the experimental data under low strain rates

(red shaded region), the failure strain which is the peak strain in this case is between

1.1% and 1.4% with an average of 1.3 ± 0.2%. The quasi-static compressive strength,

which is de�ned as the magnitude of the peak axial stress that is sustained by the

specimen, is between 2121MPa and 2402MPa, with an average of 2262 ± 141MPa.

Strain hardening e�ects are observed which indicates ductility in the material when

compared to, for example alumina, which behaves in a linear elastic manner until

failure [106, 107]. The stress-strain curve also exhibits a yielding behavior which

commences at a strength of ∼ 1173MPa. For the quasi-static case, the Young's

modulus of the material is between 240GPa and 310GPa, with an average of 274 ±

26GPa. The tangent modulus (strain hardening rate) at 0.7% strain (the cross point

of numerical and experimental data) varies in the range of 109GPa and 197GPa,

with an average of 153 ± 44GPa.

For the numerical data under quasi-static loading (gray shaded region in Figure

3.4(a)), 15 di�erent realizations of the model are simulated across variable void and

particle concentration, and mechanical properties. Results show that the high work

hardening rate is maintained until about 1.4% strain. The quasi-static compressive
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strength is between 1970MPa and 2578MPa, with an average of 2274 ± 304MPa.

The Young's modulus changes from 234GPa and 282GPa, with an average of 258 ±

24GPa. The strain hardening rate at 0.7% strain is between 87GPa and 130GPa,

with an average of 108.5 ± 21.5GPa. For an upper limit in the elastic sti�ness, the

yield strength of the composite increases by 73MPa (5% of the upper limit yield

strength), and the peak stress decreases by 26.5MPa (1% of the upper limit peak

stress).

Next, the dynamic stress-strain behavior of the ceramic-metal composites are explored

experimentally (brown shaded region in Figure 3.4(a)). The stress-strain response

initially behaves as a typical brittle material with a linear stress-strain curve at which

time the material rapidly damages and there is an appreciable drop in stress, and thus,

dynamic compressive strength. The dynamic Young's modulus (taking the slope of

the stress-strain curve at 0.1% strain) is between 240GPa and 270GPa, with an

average of 255 ± 11GPa. The high work hardening rate is maintained until about

0.6% strain, after which it begins to soften or reduce near the peak stress ranged from

2696MPa to 3447MPa, with an average of 3133 ± 237MPa. Following this initial

peak stress, there is then a decrease (softening) in the stress in the material until

1.1% to 1.4% strain. This initial decrease is then followed by an increase in stress

until approximately 2% strain, after which the curve collapses and the material fails

catastrophically.

Numerically for the high strain-rate loading (hatched blue in Figure 3.4(a)), more

than 30 di�erent realizations in terms of particle volume fraction (60%, 65%, and

70%), Young's modulus, and di�erent void volume fraction (0.5%, 1.5%, and 3%) are

simulated as a result of experimentally observed microstructure variabilities, as many

of the alumina appears clustered in the microstructure, and so attempts are made for

these considerations on the stress-strain response for these strain rates. Speci�cally,

the numerical results for the dynamic case show that by increasing the axial strain,

the stress linearly increases with slopes change from 277GPa (region VI for platelet
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inclusions with 3% void volume fraction) to 329GPa (region I for ellipsoid particles

with 0.5% void volume fraction), with an average of 303 ±37GPa (measured at 0.1%

strain) until ∼0.9% strain. The stress-strain response then starts to yield until a

dynamic compressive strength between 2757MPa (at 1.1% strain in region VI) and

3484MPa (at 1.6% strain in region III), with an average of 3074 ± 250MPa . The

α2(Ti3Al)+γ(TiAl)-submicron grained alumina ceramic-metal composites tend to lose

their load-bearing capacity at strains ranging from 1.1% to 1.6%, with an average of

1.3 ± 0.2%. The softening rate in this region decreases from 1.8GPa to 1.7GPa. As

can be seen in the �gure, most of the dynamic properties are much higher than the

quasi-static compressive properties. For example, the failure strain of the composite

at high strain rates is larger than that of quasi-static loading (increasing from 1.4%

to 2.3%). For both numerical and experimental results under dynamic loading, the

peak stress is followed by extensive �ow softening, whose softening rate is less at

lower strains and considerably higher at higher strains. This softening behavior may

be related to the temperature increase subjected to adiabatic process in dynamic

loading [185]. Numerically, the growth and coalescence of microvoids plays the role

of softening parameter and thus enables modeling reduction in material load-bearing

capacity before failure, which are detailed in the �Discussion� section.
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Figure 3.4: The mechanical response of ceramic-metal composite under uniaxial com-
pression test: (a) The numerical and experimental axial stress vs. strain under quasi-
static (qs; red- and gray-shaded region at 1×10−4 s−1 strain rate) and dynamic (dyn;
brown shaded region and hatched blue at ∼ 2000 s−1 strain rate) loading for both
numerical (Num) and experimental (Exp) cases; (b) Representative curves for qs and
dyn experimental data; and (c) Sensitivities of numerical stress-strain curves to par-
ticle shapes compared to selected experimental data.

Shown in Figure 3.5 is the variation of the compressive strength as a function

of the strain rate. Two groups of experimental data, including some results from

a previous study [72], are plotted and compared with the numerical data. The ex-

perimentally observed quasi-static compressive strengths are between 2121MPa and

2402MPa with an average of 2262 ±141MPa, and the dynamic compressive strengths

are between 2696MPa and 3447MPa with an average of 3133 ± 237MPa. It is ob-

served that a rate dependency of compressive strength occurs. The experimental

compressive strength is about 1.3 times the quasi-static strength with seven order

increase in strain rate. In comparison with the experimental results, the numerical

compressive strength increases from 2250MPa to 2480MPa, with the strain rates

from 1× 10−4 s−1 to 800 s−1. Above the strain rate of 800 s−1, there occurs a transi-

tion into a regime of rapid strain rate strengthening where the compressive strength
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increases from 2480MPa to 5101MPa across an increase in strain rates of 800 s−1

to 3500 s−1. The strain rate at 800 s−1 is considered as the transitional strain rate

(ε̇tr) for this material, which has been shown to be dependent on the particle volume

fraction, the hardening exponent, and the strain rate sensitivity of the matrix [186].

For 800 s−1 ≤ ε̇ ≤ 3500 s−1, the rate-dependency of the compressive strength σc, is

represented by a power law �t with the equation σc ∝ ε̇0.89, which the exponent is the

slope of the blue dash-dot line in this semi-log plot. The increase in rate-dependency

exponent will be discussed in the context of advanced ceramics in the �Discussion�

section. According to the numerical simulations, for strain rates higher than 3500 s−1,

the strain rate strengthening tends to increase at a lower rate, and this can be a conse-

quence of thermal softening or damage accumulation. The numerical results are also

compared with di�erent experimental data from the literature for single phase alu-

mina [187�190]. It shows that for high strain-rate regimes, the compressive strength

of the α2(Ti3Al) + γ(TiAl)-submicron grained alumina cermet reasonably follows the

behavior of alumina inclusions.

Figure 3.5: The change of compressive strength with strain rate, compared with
experimental data. Note the logarithmic scale of the strain rate axis.
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3.4.2 Rate- and Particle Volume Fraction-Dependent Flow Stress

Another consideration of the mechanical response of ceramic-metal composites is

the variation of the �ow stress for three di�erent reinforcement volume fraction by

changing the strain rates from 10−4 s−1 to 5000 s−1 (Figure 3.6). Here, the �ow stress

at 1.25% strain replaces the 0.2% o�set �ow stress commonly used in other studies,

as a consequence of mitigating stress equilibrium issues at small strains during SHPB

tests [146]. The experimental �ow stresses at quasi-static case change from 1962MPa

to 2149MPa. For the dynamic case (2000 s−1), the experimentally measured �ow

stresses range from 2680MPa to 3137MPa. Numerically, it is observed that increasing

the submicron grained alumina volume fraction increases the �ow stress. For quasi-

static case, increasing the particle volume fraction from 60% to 70% results in an

increase in the �ow stress by 174MPa. While for the dynamic loading (2000 s−1), the

�ow stress increases from 2956MPa to 3088MPa. Over the rates presented here, the

�ow stress at 1.25% strain for 65% particle volume fraction increases from 1900MPa to

3200MPa by changing the strain rates from 10−4 s−1 to 5000 s−1. The strain hardening

rate for strain rates between 100 s−1 to 2000 s−1 is higher than its counterpart for

lower strain value. While, for strain rates lower than 1 s−1, the strain hardening rate

is negligible for three di�erent particle volume fraction and the curves are nearly

parallel to each other. Notable for 70% alumina concentration composite is that

it begins to soften for strain rates higher than 5000 s−1, likely as a consequence of

experiencing high concentration of damage accumulation (nucleation, growth, and

coalescence of the voids) which is detailed later in the study.
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Figure 3.6: The variation of �ow stress with strain rate at 1.25% strain along for
three di�erent particle volume fractions VP , compared with the experimental data.
Note the logarithmic scale of the strain rate axis.

3.4.3 Toughening Behavior Under Quasi-Static and Dynamic
Loading

In order to use the ceramic-metal composites in high-rate applications such as air-

craft and space vehicles, understanding the toughening and energy absorption during

dynamic loading is crucial towards fully realizing their potential. Experimentally,

the determination of dynamic fracture toughness of cermets is complicated due to

the presence of stress waves and inertial e�ects [191]. The e�ect of increasing the

toughness of monolithic alloys by adding ceramic particles is investigated in this sub-

section by probing the e�ect of void volume fraction and shape on toughness. To do

this, values from the dynamic stress-strain curves are utilized, which are comprised

of the compressive strength (peak stress), strain to compressive strength, strain in

the stress-drop zone (for strains greater than 1%), total strain, and the stress-bearing

capacity, de�ned as the slope of the stress-strain curve in the stress-drop zone (Figure

3.7). The areas underneath the curve before compressive strength and beneath the

stress-drop zone are called the initiation (KI
IC) and propagation (KP

IC) toughness,
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respectively [192].

Figure 3.7: Schematic showing toughening behavior and its associated terms: com-
pressive strength, strain to compressive strength, strain to stress-drop zone, stress-
bearing capacity, initiation toughness, and propagation toughness.

The change of the initiation and propagation toughness with void volume fraction

for di�erent particle shapes (icosahedron, sphere, platelet, and prism) are shown in

Figure 3.8. Higher and lower void volume fractions than are currently assessed in

the material via SEM are probed to look at the sensitivity of void concentration on

toughness. This is motivated by the fact that the void concentrations throughout

a larger plate of the material are believed to be variable as a consequence of the

SHS manufacturing process. For all of the shapes, increasing the void volume frac-

tion decreases the initiation toughness and increases the propagation toughness. The

icosahedron particle shape has the broadest range for initiation toughness (decreasing

from 31MPa m
1
2 to 18MPa m

1
2 by increasing the void volume fraction from 0.5% to

3%). The lowest range is related to prismatic particles (decreasing from 34MPa m
1
2

to 28MPa m
1
2 over the strain range of 0% to 1%). For the prism inclusion shapes with

0.5% void volume fraction, the energy absorbed by the specimen in the region de�ned

for initiation toughness is the highest (34MPa m
1
2 ). The minimum initiation tough-
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ness is for platelet inclusions with 3% void volume fraction (17.5MPa m
1
2 ). In the case

of the propagation toughness, the highest increase is related to icosahedron particles

(increasing from 24MPa m
1
2 to 31MPa m

1
2 by increasing the void volume fraction

from 0.5% to 3%). The prism inclusions have the lowest increase of propagation

toughness (increasing from 22MPa m
1
2 to 24MPa m

1
2 by increasing the void volume

fraction). The highest and lowest values for propagation toughness are related to the

platelet particles with 3% void volume fraction (32MPa m
1
2 ) and prism shapes with

0.5% void volume fraction (22MPa m
1
2 ), respectively. The maximum total dynamic

fracture toughness (de�ned as the summation of initiation and propagation tough-

ness) is for prism inclusions with 0.5% void volume fraction (56MPa m
1
2 ). The main

reason would be the alignment of compression loading with prism (angular) inclusions

axes, which can serve to strengthen the microstructure under dynamic loading. The

minimum total toughness (49MPa m
1
2 ) is for platelet (polygonal) particles with 3%

void volume fraction. Previous studies showed that angular alumina particles rarely

damage by the nucleation and growth of matrix voids, whereas polygonal alumina

matrix voiding occurs about as frequently as particle fracture [188]. Together, this

leads to increasing the energy absorbed by the microstructure. The higher fracture

toughness of experimental results under dynamic loading (65MPam
1
2 ) than numeri-

cal results can be related to existing metallic or glassy secondary phases [193, 194],

which has been shown to decrease the brittleness and increase the fracture tough-

ness of ceramic-metal materials. In addition, the transition of transgranular fracture

of the ceramic particles to intergranular fracture of the composite through the ma-

trix phase is another explanation for the enhanced toughness [191]. Overall, these

results demonstrate the importance of particle shape and void volume fraction on

energy-absorption capabilities of ceramic-metal materials in damage tolerant design.
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Figure 3.8: The change of initiation (KI
IC) and propagation (KP

IC) toughness with
void volume fraction for: (a) icosahedron; (b) sphere; (c) platelet; and (d) prism
inclusion shapes.

3.4.4 Deformation and Fracture Mechanisms of Dynamically
Compressed Composites

In order to examine the fracture and deformation mechanisms of the dynamically

compressed α2(Ti3Al) + γ(TiAl)-submicron grained alumina cermet, fracture surface

of the recovered fragments are investigated using SEM, and these are compared with

the contour of equivalent von Mises stress from the numerical simulation (Figure 3.9).

Shown in Figure 3.9(a) is the FESEM micrograph taken on the fracture surface ob-

tained from one of the recovered fragment in a dynamic experiment for postmortem

analysis and characterization of microscopic failure. The overall failure is a combi-

nation of intergranular fracture through the matrix and transgranular fracture inside

the submicron grained alumina phase. The crack is observed to start from the top
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left corner (su�ciently high local stress concentration at the particle-particle contact

points), and this appears to propagate along the alumina particles and through the

titanium aluminide matrix. There is also evidence of particle pull-out followed by

particle cracking along the crack path. Shown in Figure 3.9(b) is a magni�ed view

on one of the fracture sites of alumina particles. It is observed that a transgranular

fracture through the alumina particle occurs, where its neighbor particles remained

intact. To compare these particle cracking mechanisms, a plot of the equivalent von

Mises stress in the FCC unit cell is shown in Figure 3.9(c). For the numerical simula-

tions, the icosahedron (20 face polyhedron with aspect ratio of 1, sphericity of ≈0.94,

and volume fraction of 65%) shape is considered for the reinforcements to capture the

real shape of particles observed in the composite at this scale. It is observed that the

crack spans from one corner of polygonal alumina particle, which is limited by the

matrix and other particles, and it passes to the upper particle (on planes parallel to

the compressive loading axis) until it is arrested by the ductile matrix. It is observed

that the stress state is spatially very heterogeneous, and there exist regions wherein

the von Mises stress is positive (tensile stresses) within the matrix. These tensile

stresses result in the dilation of the matrix. Generally, the fracture behaviors of the

material captured by using the three-dimensional unit cell model under dynamic com-

pression loading is in good agreement with the experimental observations. The stress

analysis on cracked particle as a result of internal e�ects induced by rapid loading is

studied in �Discussion� section.
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Figure 3.9: The fracture mechanism (particle cracking) of dynamically compressed
composites: (a) SEM image of the fracture surface; (b) The magni�ed region with
FCC-like structure comprised of particle cracking; and (c) Contours of equivalent von
Mises stress demonstrating fracture pattern through the alumina particle.

As a result of having a porous matrix (void volume fraction of 1.5 ± 1%), the

other fracture phenomenon in this type of cermet is the deformation of two-phase

TiAl matrix via the growth and coalescence of voids, which is explored in Figure

3.10. Shown in Figure 3.10(a) is an SEM image demonstrating internal ductile void

growth and coalescence in a dynamically compressed fragment. In the image, it

is observed that the crack has a high tendency to initiate from the existing voids

and propagate through the neighboring voids, leading to softening behavior (loss of

load-bearing capacity) of the cermet. In the magni�ed image in Figure 3.10(b), a

void can be seen on the crack path, where its orientation coincides with the likely

stress concentration point leading to fracture initiation and growth. The experimental

observations are compared with simulation results of void growth around particles

(Figure 3.10(c)) for various strain evolution (Figure 3.10(d)). The failure criterion

in the simulation is modeled by the modi�ed variational formulation of the Gurson

model, which incorporates the void deformation and growth after large deformation,
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as the damage parameter reaches to a critical value. For the simulation results,

the void with an ellipsoid geometry and aspect ratio of 1 with the ratio of void to

particle size changing from 0.02 to 0.04 is used, and a mesh sensitivity analysis is

performed to ensure no mesh size dependence of the results. In these simulations,

the initial void volume fraction is considered to be 0.1%, and this is determined from

SEM images on as-received (undeformed) materials. The contours of axial strain

in the loading direction at di�erent total engineering strains of 0.5%, 1%, 1.25%,

1.5%, 2%, and 2.25% are given in Figure 3.10(d). It is observed that strains begin

to accumulate for selected voids for strains lower than the yield (0.5% strain) in the

loading direction, and these evolve and connect adjacent voids, which are close to

the particle by 1% strain. After coalescence (1.25% strain), additional voids begin

to accumulate strain (1.5% strain), and the strain �elds from these voids eventually

coalesce with neighboring voids (2% strain). The complete coalescence (2.25% strain)

coincides with an increase in global strain. It is worth noting that voids tend to

grow toward the particle-matrix interface until it is arrested at the free edges. In

addition, the positive heterogeneous total strain (tensile strain) shows dilation in the

matrix. As can be seen, void growth behavior qualitatively match with that observed

experimentally.
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Figure 3.10: The fracture mechanism (void growth) of dynamically compressed
α2(Ti3Al) + γ(TiAl)-submicron grained alumina cermet: (a) SEM image of the pol-
ished fracture surface; (b) Close-up observation of the framed area in (a) including
void deformation and growth; (c) Three-dimensional unit cell with porous matrix;
and (d) Contours of compressive total strains at ε = 0.5%, ε = 1%, ε = 1.25%, ε =
1.5%, ε = 2%, and ε = 2.25%.

Finally, interfacial debonding damage is numerically investigated by using the poly-

nomial cohesive zone model and compared with the experimental results. The SEM

images along with contour mapping of equivalent plastic strain in the unit cell are

illustrated in Figure 3.11. Figures 3.11(a) and 3.11(b) are micrographs taken on the

fracture surfaces showing the interfacial debonding mechanisms. As can be seen, the

debonding can happen in both the matrix-particle and particle-particle interfaces.

The propensity of these two debonding mechanisms is hard to quantify, but it is pos-

tulated that the density of the matrix-particle debonding will be higher due to less

amount of energy needed to break apart the titanium aluminide-alumina interface.

It is observed that the top and bottom boundaries of the particle are separated from

the matrix during loading (Figure 3.11(b)). The numerical comparisons are shown in
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Figures 3.11(c) and 3.11(d), in which the former shows the arrangement of the par-

ticles and voids in the FCC unit cell, and the latter demonstrates equivalent plastic

strain contours and associated particle debonding (indicated with arrows). For the

numerical model, the interface fracture energy and the plane strain Young's modulus

of α2(Ti3Al)+γ(TiAl)−Al2O3 are assumed to be about 4 Jm−2 and 180GPa, respec-

tively [182]. According to Figure 3.11(d), at small strain (ε = 0.5%), a small debond

is found along the lower interface of the middle particle. By increasing the strain (ε

= 0.7%), the upper interface of the particle starts to debonding. A further increase

in applied strain (ε = 0.9%) leads to additional particle decohesion, and the strain

distribution becomes heterogeneous. At the �nal stage (ε = 1.3%), debonding begins

to propagate from left to right along the interface, and the debond arrest occurs at the

location of around 45◦ from the compression axis. Similar behavior has been shown

for rate-dependent interfacial debonding of MMCs by Zhang et al. [195]. Also, the

maximum equivalent plastic strain seems to happen at two adjacent voids between the

particle and the boundary edge in the loading direction. The comparisons between

experimental observation and numerical result are found to be reasonable.
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Figure 3.11: The fracture mechanism (interface debonding) of dynamically com-
pressed α2(Ti3Al) + γ(TiAl)-submicron grained alumina cermet: (a) SEM image of
the fracture surface; (b) The magni�ed region with FCC-like structure comprised of
interfacial debonding; and (c) Three-dimensional unit cell with porous matrix along
with (d) contours of the equivalent plastic strain at ε = 0.5%, ε = 0.7%, ε = 0.9%,
and ε = 1.3%.

3.5 Discussion

In this study, a modeling framework was developed to predict the mechanical behavior

of a α2(Ti3Al) + γ(TiAl)-submicron grained alumina cermet under low (1× 10−4s−1)

and high (up to 5000 s−1) strain-rate uniaxial compressive loading. A modi�ed vari-

ational formulation of the Gurson model was employed to a three-dimensional FCC

unit cell for an elastic-plastic porous matrix, and three main damage mechanisms were

studied and then validated with experimental results obtained from quasi-static and

dynamic uniaxial compression tests: 1. particle cracking, 2. void deformation and

growth, and 3. interface decohesion. The previous works on quasi-static and dynamic

behavior of MMCs and idealised cermets with low reinforcement volume fraction and

pore-free matrix [152, 99, 196] have been expanded both numerically and experimen-
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tally. Material characterization was carried out using SEM scans in order to generate

microstructural inputs into the proposed model, and the experimental stress-strain

responses were obtained from a novel DIC technique coupled to high-speed imaging

and uniaxial compression experiments. Altogether, this study can give insights for

designing and implementing of ceramic-metal composites in reliable structures. In

the following sections, the results are summarized and implications are presented.

3.5.1 The Investigation of Material Response Under Quasi-
Static and Dynamic Loading Conditions

The experimental and numerical stress-strain behavior of the α2(Ti3Al) + γ(TiAl)-

submicron grained alumina cermet under uniaxial compression in quasi-static and

dynamic loading were �rst compared in Figure 3.4. The high strain rates obtained

from the SHPB experiments were in the range of 1100 s−1 to 2000 s−1. By taking

the slope of the experimental and numerical stress-strain curve at 0.1% strain, the

average quasi-static and dynamic sti�nesses were 274 ± 26GPa and 255 ± 11GPa

(258 ± 24GPa and 303 ± 37GPa), respectively. The increasing trend in stress-strain

behavior was maintained until about 0.7% and 1.4% strain for high and low strain

rates, respectively. In both the experimental and numerical cases, the initial behavior

of the material was the same as typical brittle material with a linear stress-strain

behavior. The di�erence between the stress in the material for the experimental and

numerical results (from 0.1% to 0.9% strain) can be attributed to particle clustering in

the specimen that was observed in SEM images (Figure 3.1), and was not accounted

for explicitly in the unit cell model (schematic in Figure 3.2). This experimentally

observed particle agglomeration leads to increasing the plastic strains accumulated

in the matrix, higher strain hardening, and thus a higher �ow stress. For the quasi-

static case, there is also likely some degree of porosity in the actual material along

with assuming uniform and homogeneous distribution of alumina submicron particles

in the model, resulting in higher numerical stress-strain values as compared with the
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experimental data [136]. Additionally, the generation, pinning down, and accumu-

lating dislocations within the grain, and existing precipitates in the grain interior is

another reason for higher strengths value of experimental than numerical results in

that region [197].

After the linear region, the stress in the material starts to yield until the peak stress.

The higher stress-strain values of experimental data under dynamic loading in com-

parison with numerical results in the stress-drop zone can be related to the limited

number of reinforcements used in the unit cell model. The compressive strength and

failure strain were around 1.3 times the values obtained from quasi-static tests with

a seven order increase in strain rate from 1 × 10−4 s−1 to 2000 s−1. After the peak

stress, the strain hardening e�ect of plastic deformation was quickly accompanied by

the �ow softening behavior of the material. One reason is increased damage formation

and accumulation processes, which was experimentally and numerically initiated at

0.9% and 1.3% strain, respectively. The other potential reason is related to proli�c

banding and associate surface rumpling within the matrix, as observed experimentally

by Longy and Cagnoux [198].

3.5.2 The E�ect of Adiabatic Thermal Softening

Under high strain-rate loading, thermal softening due to the work exerted on the

matrix can be one of the reasons for the �ow softening behavior after the peak stress

in stress-strain curve, which can be evaluated under an adiabatic assumption as [185]

∆T =
0.95η

ρMCpM

∫︂ ε

0

σdε, (3.26)

where ρM is the density of the material, CpM is the speci�c heat, and η is the thermal

e�ciency that is given by [199]

η =

⎧⎪⎨⎪⎩
0 ε̇ ≤ 10−3s−1,

0.316 log ε̇+ 0.95 10−3s−1 < ε̇ < 1.0s−1,

0.95 ε̇ ≥ 1.0s−1

(3.27)
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In this study, the potential temperature increase is explored as a consequence of

existing �ow softening in the numerical and experimental results. By substituting

the related parameters from Table 3.1 into Eq 3.26, the average temperature increase

under dynamic loading is around 25◦K, which is lower than the melting point of the

matrix. An adiabatic temperature rise about 20◦K for 60% TiB2/Al composite and

less than 5◦K for 55% Al2O3/Al have been previously reported [200, 184]. From this

analysis, these low global temperature increases are not believed to play roles in the

experimentally and numerically �ow softening behavior of the cermet. However, there

still may be localize temperature rises in the narrow region of ceramic-metal interfaces,

which were not captured in the simulations or observed in the SEM analysis. This

highly localized temperature increase occurs as a result of lower thermal conductivity

for alumina nanoparticles (22Wm−1K−1) than that of two-phase TiAl (35Wm−1K−1).

In addition, the highly non-uniform local strain rate distribution in the matrix due

to constraining e�ects from particles, along with rapid sliding of particles under high

strain rates, may result in softening or even melting of the low melting point matrix

[201, 202].

3.5.3 Strain Rate E�ects on Compressive Strength

The compressive strength of the cermet for quasi-static and dynamic strain rates was

studied both numerically and experimentally, and then compared with di�erent alu-

mina materials from the literature (Figure 3.5). Unlike experimental data which were

carried out for only two strain rate regimes, the numerical method was able to inves-

tigate the material response under intermediate strain rates and rates slightly greater

than those achievable in the SHPB tests. Experimentally, the quasi-static compressive

strength were between 2121MPa and 2402MPa with an average of 2262 ± 141MPa.

While for the dynamic case, the dynamic compressive strength was between 2696MPa

and 3447MPa with an average of 3133 ± 237MPa. The experimental compression

strength increases from 2402MPa to 2696MPa with a seven order increase in strain
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rates in the minimum case. In the maximum case, increasing the strain rate lead

to varying the compressive strength from 2121MPa to 3447MPa. In addition, the

experimental failure strain increases from 1.1% to 2.3% with increasing strain rates

from quasi-static to dynamic loading ranges. Numerically, increasing the strain rate

from 1× 10−4 s−1 to 800 s−1 leads to increasing the compressive strength of the mate-

rial by 10% (from 2250MPa to 2480MPa). For high strain-rate regimes ranging from

800 s−1 to 3500 s−1, a 106% increase in compressive strength was observed over these

rates (from 2480MPa to 5101MPa). For this α2(Ti3Al)+ γ(TiAl)-submicron grained

alumina cermet, the critical strain rates was about ε̇ ≃ 800 s−1, above which a rapid

transition occurred into a high strain-rate strengthening regime. Di�erences in the

rate e�ects between the experiments and numerical model may be attributed to ad-

ditional porosity [203] that likely exists in the material due to the particle clustering

that is not captured in the model. For strain rates lower than the transitional value,

the matrix material dictates the strain rate sensitivity (0.02 for two-phase titanium

aluminide [120]) of the compressive strength, which is controlled by the thermally-

activated growth of microcracks. For higher strain rates value, the constraining e�ect

of the particles can result in increasing the local strain rate near the particulate-

matrix interface, and pushes the composite into the high strain rate regime [186].

For α2(Ti3Al) + γ(TiAl)-submicron grained alumina cermet under dynamic loading,

the strain rate exponent was found to be 0.89 in excess of the cube-root theoretical

maximum for brittle materials. By using the model of Paliwal and Ramesh [204], the

strain rate sensitivity exponent was found to be closer to 2/3 for advanced ceramics,

and was considered as a scaling model for the compressive strength of brittle mate-

rials [205]. For experimental studies on hot-pressed silicon nitride and pyroceramic

matrix reinforced with SiC, the strain rate exponents were 0.87 and 0.77, respectively

[206]. A reason for this high strain rate exponent has been related to the possibility of

kink nucleation and propagation by cermet with high particle volume fraction which

involves very high local strain rates [206]. Additionally, a strain rate exponent higher
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than 0.33 implies that the consequence of increasing strain rate must be to involve

crack initiation as well as crack propagation, which may manifest itself through rate-

dependent localized plasticity [207]. This local plastic �ow can be suppressed by high

loading rates, thereby inhibiting dislocation-nucleated microfracture and increasing

the strength rapidly [208].

3.5.4 The Study of Flow Stress of the α2(Ti3Al) + γ(TiAl)-
Submicron Grained Alumina Cermet

In this study, the e�ect of di�erent particle volume fractions (60%, 65%, and 70%) on

the rate-dependent �ow stress in the material taken at 1.25% strain was also investi-

gated (Figure 3.6). The experimental quasi-static �ow stress was between 1962MPa

and 2149MPa. Under dynamic loading (2000 s−1), the experimentally measured �ow

stress ranged from 2680MPa to 3137MPa. The proposed numerical model was used

to evaluate the �ow stress for strain rates up to 5000 s−1. The numerical �ow stress

varied from 1820MPa to 1994MPa for low strain-rates loading. While for high strain-

rates loading (1000 s−1), the numerical �ow stress ranged from 2781MPa to 2928MPa.

For this part of the study, the numerical results were reasonably captured the exper-

imental data. At higher strain rates for highest particle volume fraction, the stress

softening rate was more signi�cant than the other cases due to relatively shorter de-

formation times. By increasing the strain rates, it has been shown that the presence of

high volume fraction of ceramic nanoparticles in ceramic-metal composites increases

the �ow stress as a consequence of stronger constraining e�ect of the particles [209].

In addition, Zhu et al. [201] investigated that high particle content composites form a

network structure whereby the external load can be transferred directly via particles,

results in higher �ow stress. For cermets with particle volume fractions higher than

70%, where the inter-particle spacing is much smaller than average, the structure be-

comes unstable and collapse by particle sliding as a result of existing tangential stress

between adjacent particles [210]. Moreover, the adiabatic heating generated from the
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work hardening process promotes the occurrence of dynamic recrystallization, which

leads to rapidly decrease of �ow stress with the continuous increase of strain rate

[211]. On the other hand, the small size alumina inclusions can increase the resis-

tance to crack propagation by reducing the size of the nucleating �aws. This re�ned

microstructure plays an important role as barriers to the enablement and transmis-

sion of dislocations [197], matrix hardening by geometrically necessary dislocations,

and channeled plastic �ow in the matrix between particles [212]. In other words, the

Orowan strengthening, which results from the interaction between dislocations and

the highly-dispersed reinforcement, becomes favorable in the materials [213].

To study the �ow stress of the material in terms of strain rate sensitivity (SRS),

the corresponding relation is often used [214]

SRS =
σfd − σfq

σfq

1

ln( ε̇d
ε̇q
)
, (3.28)

where σfq and σfd are the quasi-static (1 × 10−4 s−1) and dynamic (2000 s−1) �ow

stress at a constant plastic strain. By taking the �ow stress at 1.25% strain, the

results showed an increase of the SRS from 0.005 (1×10−4 s−1) to 0.04 (2000 s−1). The

reported strain rate sensitivities for Al2O3/Al, B4C/Al, and TiB2/2024Al composites

were in the range of 0.02 to 0.05 [215, 216]. A strain rate sensitivity ranging from 0.02

to 0.04 (at 1.25%) was obtained from experimental data in this study, which has been

shown to be controlled by the sensitivity of the matrix and the interaction of particles

and matrix [186]. The variation of experimental SRS can be related to a material

microstructural variabilities related to the coupling of the strain rate sensitivity of

the matrix and the constraining e�ect of the particles, which is stronger when the

applied strain rate is higher or the particle volume fraction is larger. In addition, the

stress distributed on the particles increases as the strain rate increases under dynamic

loading, which enhances the SRS of the composite [217].
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3.5.5 The Micromechanisms of Internal Damages

The theoretical models for analyzing particle cracking, matrix void-induced damage,

and interface debonding have been developed for MMCs material under low and high

applied strain rates [218�220]; however, the experimental data are lacking between

the low and high strain rate regimes for ceramic-metal composites with high particle

volume fractions. Limited studies involving the modeling of ceramic-metal composites

have considered rate e�ects, di�erent damage mechanisms, and real microstructural

variables which are addressed in the present work. Among the di�erent damage modes

present in particle-reinforced ceramic-metal composites, particle fracture is commonly

encountered for composites containing brittle reinforcements that are strongly bonded

to a tough matrix (Figure 3.9). To further analyze particle fracture results in this

study, this subsection investigates the fracture stress on the submicrometer alumina

inclusions.

Particle cracking by propagation of an internal defect is given by the Gri�th equa-

tion [221]:

σp =

(︃
2EPγP
πC

)︃0.5

, (3.29)

where σp is the stress on the particle, γP is the particle fracture surface energy, EP is

the Young's modulus of particle, and C is the internal crack length. By substituting

the related values from Table 3.1 into Eq 3.29, considering the crack length equal

to 1µm, it can be calculated that the stress on the particle is about 440MPa under

dynamic loading. This is deemed to be comparable with the scale provided in Figure

3.9(c). One of the main reasons for particle cracking in this cermet is likely related

to the clustering of the alumina inclusions within the microstructure (see Figure 3.1),

which has been shown to in�uence cracking propensity [222]. In addition, for higher

inclusion volume fractions, there are more inter-particle contact points per particle

which can increase the stress in a local region of contact point, and, thus, desire for

cracking [223]. Moreover, local positive tensile stress generated by inhomogeneous
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local deformation in the neighborhood of the voids and observed in the simulations

likely contributes to local tensile microcracks that were found to nucleate at pre-

existing defects (porosity of the matrix).

Another experimentally observed damage micromechanism in the α2(Ti3Al) +

γ(TiAl)-submicron grained alumina cermet was the matrix failure due to void de-

formation and growth. For the failure of the porous matrix, the modi�ed variational

formulation of the Gurson model was implemented. The results (see Figure 3.10)

showed that voids tend to grow towards the particle-matrix interface, and this is ac-

companied by a bulk volume increase (positive strain) because of the fracture porosity

in the cavitation matrix. The interfacial debonding is another damage mechanism

which was observed experimentally and modeled numerically by implementing poly-

nomial cohesive zone models [178]. A three-dimensional cubic unit cell with interfacial

layer between particulates and matrix was pictured in Figure 3.11. It was shown that

there is a debond initiating along the upper half interface of one particle, propagating

from left to right along the interface, and then arrest at the location of around 45◦

from the compression axis. The similar behavior for rate-dependent interfacial deco-

hesion of MMCs has been demonstrated by Zhang et al. [195]. In the current study,

the simulations showed that further increasing the applied strain results in further

increases in the maximum equivalent strain and does not in�uence the microscopic

distribution of deformation. According to the study of fracture in particulate rein-

forced MMCs [224], it is recognized that these damage mechanisms are responsible

for softening and failure of the composites under dynamic loading.

3.6 Conclusions

This work is aimed at understanding the stress-strain behavior of a α2(Ti3Al) +

γ(TiAl)-submicron grained alumina cermet, considering high particle volume frac-

tion, under high strain-rates loading, and accounting for deformation mechanisms

(i.e., particle cracking, void deformation and growth, and interfacial debonding). Ex-
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periments along with a novel DIC technique was used to measure the global strain

�elds through the specimen, and the experimentally obtained stress-strain curves were

used for the purpose of validating the numerical model. For numerical simulations,

the FCC unit cell model was used for reaching to the high particle volume fraction

up to 70% in this cermet. A modi�ed variational formulation of the Gurson model

was performed to investigate the e�ect of damage in the form of porous elastic-plastic

matrix void nucleation. By considering di�erent realizations accounting for the exper-

imental variabilities in mechanical properties and microstructure, the model was able

to reasonably predict the sti�ness, compressive strength, and failure strains from the

experiments. Exploring the material response outside of the experimentally-accessible

conditions was allowed by the numerical validated model for the two experimental

conditions, thus enabling a more comprehensive understanding on the rate-dependent

response of the composite.

The experimentally observed damage micromechanisms such as particle cracking

and interface decohesion (acting as strain-deteriorating parameters), and failure in

the matrix by micro-void growth and coalescence (bene�cial for the microstructure

in terms of having higher fracture resistance) was also modeled numerically. It was

shown that the predicted numerical model was in good agreement with experimen-

tal observations in terms of quantitative (e.g., stress-strain curve and compressive

behavior) and qualitative (e.g., internal damage behavior) properties of the cermet.
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Abstract This study utilizes a novel time-resolved phase-�eld model to explore the

time-dependent growth and interactions of twinning in magnesium single crystal at

the nanoscale, a topic that is yet to be fully understood. The model is e�ciently

solved within a monolithic scheme for the �rst time in the literature using a highly

parallelized open source �nite element solver. We validate the model using

published molecular dynamics simulations and non-time-resolved phase-�eld results

for magnesium where twinning has been shown to be important in its dynamic
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behavior. Once the numerical implementation is validated, we exercise the model in

order to gain new insights into kinetic energy coe�cients, growth of twin

morphology, temporally-evolving spatial distribution of the shear stress �eld in the

vicinity of the nanotwin, and multi-twin and twin-defect interactions. Overall, this

research addresses gaps in our fundamental understanding of twin growth, while

providing motivation for future discoveries in twin evolution and their e�ect on

next-generation material performance.
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4.1 Introduction

Developing next-generation materials with controlled twinning behaviors o�ers promis-

ing opportunities for improved mechanical properties [59, 60] and performance in

engineering applications (e.g., gas turbine engines [61] and light-weight automotive

structures [225]). Among materials that exhibit twinning [226�229], magnesium (Mg)

[41, 230�232] is an example of a light-weight metal where twinning plays an impor-

tant role in its mechanical response. In magnesium, single twinning occurs through

contraction [233] and extension strains [234] along the c axis [235]. Recent studies

have focused on observations of asymmetric twin growth due to heterogeneous grain

deformation in the vicinity of the twin [236]. The results showed that interaction of

twin boundaries with other defects (i.e., voids and self-interstitials) would increase

the likelihood for void nucleation, cracking, and premature failure, leading to a degra-

dation of material performance and reduction of material lifetime [237, 238]. Recent

e�orts have also been made to better understand the twin local stress and the role

of neighboring grains to accommodate the transformation [239]. In engineering ap-

plications, there is a broad interest in incorporating magnesium in high strain-rate

applications (e.g., aerospace [44]), where twin growth and evolution are important

in mechanical performance [240]. However, knowledge gaps in understanding twin

growth [241], thickening [242], and interactions [243] need to be addressed before the

adoption of magnesium-based alloys into these applications; these will be studied in

this research for a single crystal Mg material system.

To date, few experimental measurements exist on time-resolved twin evolution in

magnesium [244]. Limited in-situ data is likely a result of the limitations in available

diagnostics to capture growth and evolution behaviors at su�cient length and time

scales [67]. To this end, atomistic simulations have been widely adopted to probe ef-

fects such as atomic shu�ing mechanisms for propagation of twins in magnesium [245],

disconnections and other defects associated with the twin interface [246], and reac-
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tion of lattice dislocation with twin boundaries [247]. While new understandings have

been gained to accurately model plastic deformation and fracture in magnesium [248,

249], atomistic simulations are limited in their ability to simulate twinning behaviors

at relevant length and time scales needed for practical implementation in engineering

applications. Challenges also exist in molecular dynamics in applying characteriza-

tion algorithms (e.g., centrosymmetry parameter [250] and bond angle analysis [251])

to interpret post-deformation crystal structure defect types (e.g., twinning) [252]. In

another approach, continuum mechanics modeling utilizing crystal plasticity theory

is also an important tool for predicting the twinning and de-twinning response in

materials with hexagonal close-packed crystal structures [253, 49, 254, 255]; how-

ever, crystal plasticity modeling cannot spatially capture the twinning process due

to treating the twinning deformation as an unidirectional shear deformation mode

[256]. More importantly, the conventional crystal plasticity model is unable to inves-

tigate the e�ect of twin microstructure on the mechanical behavior of magnesium at

the nanometer scale [257]. Altogether, these limitations motivate the development

of cutting-edge computational models in this study to unravel time-evolved twinning

behavior in small-scale magnesium.

Building on these past works, this current article utilizes an advanced physics-based

phase-�eld approach to study the nanoscale growth of existing twins in anisotropic

single crystal magnesium. A fully nonlinear phase-�eld theory is employed allowing

for anisotropic surface energy, nonlinear elasticity in the null temperature, and large

elastic strains in nanoscale defect-free volumes and high pressures. To the author's

knowledge, this is the �rst continuum-based model in the literature that accounts

for time-dependencies of the interfacial motion of twinning, motivated by previous

literature [258, 259]. The coupled equilibrium and phase-�eld equations are solved

using a monolithic scheme to increase the computational accuracy. This approach en-

ables e�cient solutions and �exibility to extend the physics-based model to additional

length scales. In the present study, we initially focus on validating our time-resolved
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continuum-based model for magnesium using previous static phase-�eld models [50]

and molecular dynamics simulations [260] (Figure 4.1). Twin propagation speeds are

then explored (Figure 4.2) and compared with molecular dynamics results [260] and

analytical solutions [261]. Insights in growth rates are important given the limited

available data [244] and studying these behaviors is vital in high-rate applications of

magnesium [262]. The results are then validated in terms of twin area fraction and

the average global shear stress (Figure 4.3), and the role of twin-twin and twin-defect

interactions is explored (Figure 4.4). Through these approaches, the research o�ers

broad potential in materials design and motivates promising directions in experimen-

tal and computational materials science.

4.2 Results

4.2.1 Theory

In this study, we use standard continuum mechanics notation, where Latin indices

refer to spatial coordinates. We adopt Einstein's summation convention over repeated

indices. All tensors are expressed in Cartesian coordinates. We designate the contrac-

tion of tensorsA = {Aij} andB = {Bij} over one and two indices as A·B = {AijBjk}

and A : B = {AijBij}; the dyadic product is represented by ⊗; δij denotes the Kro-

necker delta; the transposition, inversion, determinant, trace, symmetric part, and

skew-symmetric part of A are indicated by AT , A−1, det (A), tr (A), sym(A), and

skew(A), respectively. The symbols ∇0 and ∇ represent the gradient operators in the

initial and current con�gurations, respectively. The superscripts E and IE stand for

elastic (recoverable) and inelastic (irreversible) deformations, respectively. For the

description of the twin, the order parameter η, is introduced where η = 0 denotes

the parent crystal and η = 1 is the twin. The total deformation gradient F , in a

large-displacement formulation, is multiplicatively decomposed as

Fij = FE
ikF

IE
kj . (4.1)
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The kinematics for twinning in simple shear is given by [263]

FIE
ij = δij + ϕ(η)γ0simj, (4.2)

where ϕ(η) = η2(3 − 2η) is the interpolation function [264], γ0 is the magnitude of

maximum twinning shear, and s andm are the unit vectors along the twinning direc-

tion and normal to the twinning plane, respectively. Considering the mechanical load,

the constitutive equation for the Helmholtz free energy density is ψ = ψ(FE, η,∇0η).

Using a thermodynamically compatible modeling approach [265] and assuming a lin-

ear approximation between the time rate of change of the twin order parameter and

the driving forces, the expressions for the �rst Piola�Kirchho� stress tensor P , and

the Ginzburg�Landau equation are obtained as

Pij = FE
ik

∂ψE

∂EE
km

(︁
FIE
jm

)︁−1
;ψE =

1

2
EE
ijCeijklE

E
kl;E

E
ij =

1

2

(︁
FE
kiF

E
kj − δij

)︁
, (4.3)

Ceijkl =
∂2ψE

∂EE
ij∂E

E
kl

, (4.4)

η̇ = −L

(︄
∂ψE

∂η
+
∂ψ∇

∂η
−
(︃
∂ψ∇

∂η,0

)︃
,0

)︄
, (4.5)

where Ce(η) = Ce(0) + (Ce(1)− Ce(0))ϕ(η) is the total tangent elastic modulus, being

Ce(0) at the parent phase and Ce(1) at the twin phase, and L is the kinetic coe�cient.

The elasticity tensor at the twin phase is related to the parent phase by considering the

reorientation matrix associated with twinning Q within a centrosymmetric structure

[266]

Cijkl(1) = QimQjnQkoQlpCmnop(0). (4.6)

The elastic strain energy density, ψE, (compressible neo�Hookean elasticity [267])

and the interfacial energy, ψ∇, (a standard double-well potential [268, 269]) per unit

reference volume are

ψE =
µ

2

(︂
I
C
E
ij
− 3
)︂
− µ ln J +

λ

2
(ln J)2 , ψ∇

1 (η) = Aη2 (1− η)2 + κijη,iη,j, (4.7)
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where A = 12Γ
l
characterizes the energy barrier between two stable phases (min-

ima), related to the twin boundary surface energy, Γ, and the twin boundary thick-

ness, l; κij = κ0δij with κ0 being the gradient energy parameter, I
C
E = CE

ii and

J2 = ϵijkC
E
i1C

E
j2C

E
k3, with ϵijk de�ned as the Levi�Civita (permutation) symbol, are

invariants of CE, and µ and λ are the Lame coe�cients. Transient, rate e�ects, and

path dependence of solutions could be included by substituting the expressions for

the free energy in Eq 4.5 dictating twin evolution in the material con�guration

η̇ = −Lη

(︄
2Aη

(︁
1− 3η + 2η2

)︁
− ϕ′(η)γ0

(︁
µδij + (λ ln J − µ) (CE

ij)
−1
)︁
× (4.8)

CE
ijsimj − 2κ0η,ij

)︄
.

The boundary conditions for the evolution of the twin order parameter are obtained

from the same thermodynamic procedure that leads to Eqs 4.3 and 4.5

ρ0n0i
∂ψ

∂η,0i
= 0 or η(t) = 0 or η(t) = 1, (4.9)

where ρ0 and n0 are the density and unit external normal in the undeformed (initial)

con�guration, respectively.

4.2.2 Validation of the Phase-Field Model and Twin Order
Parameter for Single Crystal Magnesium

At �rst, we validate our time-resolved phase-�eld model for single crystal magnesium

using previous static phase-�eld results [50] and molecular dynamics simulations [260]

(Figure 4.1). The presence of pronounced mechanical anisotropy, local stress concen-

trations, and high pressure in nanoscale defect-free magnesium implies employing

ansiotropic mechanical properties, anisotropic surface energy, and a large displace-

ment formulation in our simulations. The material parameters for all simulations are

given in Table S1 from the Supplementary Information section. The nucleation and

evolution of deformation twinning in a magnesium single crystal are simulated using

the same initial twin geometry as in [50]. A circular twin embryo of initial radius
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r = 3nm (corresponding to the analytical sharp interface solution [270]) is embedded

into a rectangular domain of dimensions 40 × 40 nm in plane strain conditions. The

⟨1 0 1 1⟩ plane and {1 0 1 2} directions are considered as the primary twinning system

[271]. This twin system can easily nucleate and grow due to the lower shear and shuf-

�e displacements needed for atoms in order to twin [272]. The validation simulations

in Figure 4.1 are performed to investigate the twin parameter distribution subjected

to simple shear with Dirichlet boundary conditions on the order parameter for di�er-

ent cases, including an isotropic (Figure 4.1(a, c, d, g, h)) and an anisotropic surface

energies (Figure 4.1(b, e, f, i, j)) at three di�erent time instants (see Supplementary

Information for more information about the de�nitions of isotropic and anisotropic

surface energies). Within the simulation time of 500 ps, the twin embryo grows until

it is repelled by the rigid outer boundaries. For the anisotropic case, the equilibrium

shape of the twin embryo is wider in the horizontal direction (parallel to the habit

plane) and �atter normal to the habit plane when compared with the isotropic case,

which is in good qualitative agreement with the reference phase-�eld results shown in

Figure 4.1(m) [50]. In addition, the twin interface thickness has a lower value normal

to the habit plane for the anisotropic surface energy when compared with the ideal

isotropic one. This may be related to the contribution of the core and elastic energies

to the total surface energy of the interface [273]. For large deformation simulations

(Figure 4.1(b, d, f, h, j)), an orientation of the twin evolution is realized due to the

di�erence in the driving force for twinning, which is a factor of (F η)−1. Overall,

the twin shape predicted by the current time-dependent phase-�eld approach shows

features in good agreement with the molecular dynamics simulation (Figure 4.1(k))

[260] and steady-state continuum-based model (Figure 4.1(l, m)) [50]. Finally, it is

worth mentioning that the twin tended to shrink and eventually disappear when the

magnitude of the shear loading was lower than γ0 = 0.07 or the size of the initial

nucleus were lower than 3 nm. This detwinning mechanism has been observed previ-

ously in copper [274] and gold nanowires [275], but this is not the focus of the present
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contribution.
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Figure 4.1: Distribution of the twin order parameter, η, for an initially circular single
twin with radius of 3 nm in a simple-sheared rectangular domain in both small and
large deformations considering both isotropic and anisotropic surface energies and
elasticity with zero orientation of the habit plane. The initial conditions are chosen
to match results published in the literature using a static phase-�eld approach [50]
and molecular dynamics model [260], while the choice of times are selected to show
the evolution of the twin growth under noted conditions: (a,b) Twin order parameter
for small and large strains with an isotropic surface energy at t = 1ps; (c,d) Twin
order parameter for small and large strains and isotropic surface energy at t = 50 ps;
(e,f) Twin order parameter for small and large strains and anisotropic surface energy
at t = 50 ps; (g,h) Twin order parameter for small and large strains and isotropic
surface energy at t = 500 ps; (i,j) Twin order parameter for small and large strains
and anisotropic surface energy at t = 500 ps; (k) Local orientation of the twinned
region obtained from molecular dynamics simulations [260] and used to contrast with
(g) and (h); and (l,m) Order parameter for both isotropic and anisotropic surface
energy under simple shear loading using a phase-�eld model from the literature [50],
to be compared with (e) and (g). (k) and (l,m) are reproduced with permission from
[260] and [50], respectively. (For interpretation of the references to color in this �gure,
the reader is referred to the web version of this article.)
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4.2.3 The Determination of the Kinetic Coe�cient for Mag-
nesium Using Twin Tip and Twin Boundary Velocities

Next, the kinetic coe�cient for single crystal magnesium is obtained using inter-

face velocity pro�les in both twin tip and twin boundary directions (Figure 4.2) by

comparing the present time-resolved phase-�eld results with molecular dynamics sim-

ulations [260]. The kinetic parameter plays an important role in describing the twin

boundary propagation as a key plasticity mechanism [276], and there is a lack of ex-

perimental studies that quantify the twin boundary mobility in magnesium given the

di�culty of the measurements. For the simulations in Figure 4.2, we used the same

simulation setup as [260] by considering one rectangular twin embryo with an initial

length of 7 nm and width of 4.3 nm inserted at the center of a 77 × 55 nm rectan-

gular plate undergoing a constant shear strain of 7% (see Figure 4.2(a)). In Figure

4.2(a), the
(︁
1012

)︁
twinning planes (i.e., the upper and lower planes) are referred to

as twin boundaries (TB) because of the twin thickening through twin boundary mi-

gration, and the
(︁
1012

)︁
twinning planes (i.e., the vertical planes) are referred to as

twin tips (TT) as a result of the lateral motion of the twin tip. Applying the shear

deformation in the [1011] direction results in the twin interface pro�les illustrated in

Figures 4.2(b) and 4.2(c) for the twin boundary and twin tip for times noted in the

sub�gures, respectively. In the case of twin boundaries, the interface pro�les along

the width of the sample at di�erent time instants are illustrated in Figure 4.2(b).

The boundary velocity is calculated by tracking the bottom and top boundaries of

the twin at η = 0.5 over time (green line in Figure 4.2(b)). The inset in Figure 4.2(b)

shows the interface displacement in the vertical direction ∆y, indicating that the twin

boundary velocity is decreasing as it approaches the outer boundaries. In calculating

the twin tip velocity in Figure 4.2(c), the horizontal displacement of the interface ∆x

at η = 0.5 is tracked through time (see insets). The results indicate that ∆x and

the twin tip velocity is constant, with values of velocity summarized later in Figure

4.2(d). The constant trend of twin tip mobility may be ascribed to the large back
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stress arising at the twin tip [277]. Mapped in red onto Figure 4.2(c) is the explicit

analytical solution for the stationary Ginzburg�Landau equation given by [261]

ηanalytical =

(︃
1 + exp

(︂−x
w

)︂)︃−1

; w =

√︃
κ0
2A

. (4.10)

The comparison of numerical results with this analytical solution enables the twin in-

terface width (i.e., di�erence between twin interface position at η = 0.01 and η = 0.99)

to be calculated. The determination of the twin interface width is important because

its size can guide the selection of the element size and spatial mesh re�nement in �nite

element simulations of twinning [269]. Finally, Figure 4.2(d) shows the time-evolved

twin boundary (black) and tip (blue) velocities obtained using the proposed phase-

�eld model, compared with molecular dynamics simulations [260]. The proposed

continuum and molecular dynamics results are in excellent agreement. Altogether,

Figure 4.2 provides a good validation for the present time-dependent phase-�eld ap-

proach, and, more importantly, enables the determination of the kinetic energy coef-

�cient (4200 (Pa · s)−1) for single crystal magnesium. This is the �rst ever reported

value in the literature for twinning, and its determination is of great importance in

understanding the kinetics of twin growth and its dependence on other parameters

(e.g., shear stress) during the early stages of twin evolution [277].
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Figure 4.2: Evolution of twin growth in a single crystal pure magnesium: (a) Nu-
merical setup of the rectangular single crystal with an initial rectangular twin with
boundaries and tips in material con�guration; (b) Time evolution of the twin order
parameter as a function of the position y normal to the habit plane. A horizontal
line starting from point η = 0.5 is chosen for measuring the twin boundary interface
velocity to show the vertical interface displacement ∆y. The inset demonstrates the
interface pro�le at six di�erent time instants to show the time-dependent growth of
the twin; (c) Time evolution of the twin order parameter as a function of the position
x in the direction of the habit plane. Fewer time instants than shown in (b) are used
to demonstrate the constant twin tip interface velocity. Similarly, the point η = 0.5
is chosen for measuring the tip interface velocity and to show the constant horizontal
interface displacement ∆x. The analytical solution of the explicit Ginzburg�Landau
equation, which corresponds to t = 0ps, is shown as the dotted red color; (d) Twin
tip and twin boundary velocities as a function of time obtained from (b) and (c), and
compared with those from the molecular dynamics simulations [260]. (For interpreta-
tion of the references to color in this �gure, the reader is referred to the web version
of this article.)
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4.2.4 The Time-Evolved Shear Stress in the Combined Matrix-
Twin Embryo

Here, the evolution of the twin area fraction and the shear stress σ12, in the parent and

twin phase are studied (Figure 4.3). This part of the investigation is motivated by the

necessity of better understanding the intense local stress within a small region in the

microstructure as this is the driving force for the propagation and growth of a twin.

These insights may inform about the sequence of events leading to the formation of

the visible twins at an early stage in magnesium. In Figure 4.3, the same boundary

conditions and a constant 7% shear strain are used in the same rectangular twin

embryo system depicted in Figure 4.3(a). Initially, the length and width of a single

rectangular twin embryo at di�erent times are calculated in Figure 4.3(a); this will

be used to obtain the twin area fraction in Figure 4.3(b). In the �gure, values are

calculated for η = 0.5 on the interface pro�le as shown in the insets at t = 5ps.

Results indicate that the twin growth is larger in the twin tip direction rather than

in the twin boundary direction, and this di�erence decreases at later time instants

as the twin approaches the outer boundaries. Next, the change of the twin area

fraction, de�ned as the ratio of the twinned to the whole simulated area, is shown

in Figure 4.3(b) under shear loading, and this is compared with molecular dynamics

simulations [260]. The insets in Figure 4.3(b) show the morphology of the twin

at two di�erent times for visualizing how the twins grow. Knowing the twin area

fraction evolution is important towards enhancing our understanding of the crystal

grain reorientation associated with deformation twinning, where limited data exists

because of the special experimental tools required to access the length and time scales

needed to capture such measurements [244]. As seen in Figure 4.3(b), the present

phase-�eld model reasonably predicts the evolution of the twin area fraction. Next,

the shear stress pro�le acting parallel to the x direction is plotted for various times

in Figure 4.3(c), which is used to demonstrate the redistribution of internal stresses

resulting from twinning [278]. The plateau and decreasing regions indicate the shear
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stress variation in the matrix and twin phases, respectively. By progressing in time,

the shear stress decreases as the x position approaches the center of the simulation

geometry, until it reaches its minimum. The magnitude of the shear stress within the

twin decreases as a function of time, and, eventually, becomes negative for the last

time instants of the simulation. This phenomenon is consistent with experimental

results [236]. At the same time, the pro�le evolves spatially and temporally. Finally,

the average global shear stress �eld is shown in Figure 4.3(d), where the �eld is taken

as the average across the red line spanning both the twin and the matrix depicted

in the inset. The measurements are important because they can provide insights

into the complex load sharing mechanisms that are generated by the parent and the

twin phase [279]. The results are also compared with molecular dynamics simulations

[260], both qualitatively (the insets at t = 10 ps and t = 25 ps) and quantitatively.

The phase-�eld results match the molecular dynamics simulations well. The results

show that the global shear stress is decreasing as the twin size evolves. Altogether,

results from Figure 4.3 are important for determining the activation force required

for twin embryo growth that may serve as an input into higher scale models [280].
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Figure 4.3: The time-evolved shear stress acquired from the phase-�eld model on
deformation twinning of pure single crystal magnesium: (a) Time evolution of the
length (blue squares) and width (red circles) of a single rectangular twin embryo that
grows at 7% shear strain. The insets show the twin interface pro�les at t = 5ps,
parallel and orthogonal to the habit plane, by which the twin size is obtained; (b)
Growth of the twin area fraction (i.e., the ratio of twinned area to the total area
of the numerical geometry) predicted by the proposed phase-�eld approach (blue
squares) and compared with molecular dynamics simulations (black line) [260]. The
same numerical geometry setup as [260] was used. The insets show the distribution
of the twin order parameter at t = 10 ps and t = 25 ps to illustrate areal growth; (c)
Spatial variation of initial shear stress along the x -axis in single-twinned magnesium
at various time instants; (d) Variation of the average global shear stress as a function
of time. The numerical results (blue squares) are compared with molecular dynamics
data (black line) [260]. The insets show the spatial distribution of local shear stress
at t = 10 ps and t = 25 ps along the red mid-line. The boundaries of the twin embryo
are denoted by the black dashed line. In the bottom of each insets, the atomic shear
stress from snapshots taken at similar times as [260] are given for comparison. (For
interpretation of the references to color in this �gure, the reader is referred to the
web version of this article.)
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4.2.5 Studying Twin Interactions Toward Microstructure Tai-
loring and Materials Design

Finally, simulations have been performed to study the e�ect of twin-twin and twin-

defect interactions (Figure 4.4). Understanding these interactions is an important

step toward developing better predictive models for designing materials with tailored

properties and microstructures [281�284]. In real materials, twin interactions may

result in the formation of twin-twin junctions that may cause strain hardening [285]

and crack initiation [286], leading to a strong in�uence on the overall material perfor-

mance. First, the change of area fraction of the middle twin as a function of time for

a di�erent number of embryos is illustrated in Figure 4.4(a). Only the middle embryo

is considered in the analysis in order to better isolate the interactions and reduce

boundary e�ects. The location of the twins for the three embryo cases is illustrated

in the inset. In Figure 4.4(a), it is shown that increasing the number of twins leads

to a decrease in the twin area fraction of the middle embryo as a result of its interac-

tion with the other twins. The di�erence of the twin area fraction for multi-embryo

cases becomes larger at later time instants. This �nding is important as it highlights

the e�ects of twin interactions on twin evolution, where experimental measurements

are currently very limited [287]. Next, the spatial variation of the order parameter

and the corresponding shear stress at t = 10 ps and t = 20 ps are depicted in Figure

4.4(b). This result reveals insights into the expansion of the twin domain through the

accumulation of large plastic shear strain at the nanoscale [288]. The homogeneous

growth in the twin area is exempli�ed in the top left inset in Figure 4.4(b), where

the twins have not changed in shape until t = 10 ps. The corresponding shear stress

distribution at t = 10 ps is shown in the bottom left inset, where the shear stress in-

side the twins is negative while it is positive in the matrix. The heterogeneous stress

distribution around the twins is due to a sudden change in the stresses within the

twin-matrix interfaces, associated with the need to accommodate deformation in this

region [256]. From the spatial shear stress distribution, it is observed that the local
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shear stress reaches a minimum in the center of each twin. Outside the twins, the

shear stress is lower at the bottom left and top right twins because of the constrain-

ing e�ect of the adjacent twins to the middle one. In the right insets, the deviatoric

deformation in twin morphology at t = 20 ps is identi�ed due to the interaction of

the twins with each other and the disturbing of the stress �eld by them. The stress

distribution in the vicinity of the twin-matrix interfaces at t = 20 ps is heterogeneous

as a result of high stress concentrations in the matrix near the twin boundaries. It is

also shown that the middle twin experiences a maximum shear stress resulting from

the compressive forces generated by the other twins. The local stress concentration

is one main interaction of crack and twins where some nucleation site appears in the

interfaces inside and around the interface [289].

Next, the change of shear stress along a horizontal line through a middle section

of the simulation area as a function of a 1, 2, or 3 twin embryo system is shown in

Figure 4.4(c). It is observed that increasing the number of twins leads to decreasing

the shear stress values in the matrix phase, while the di�erence in shear stress values

for the later time instants are larger as a result of twin-twin interactions. In the

twinned regions at later times, the junctions of di�erent embryos result in a negative

shear stress with steeper slopes as compared with earlier times. In addition, it can be

observed that the stress concentration in the matrix, predominantly in the vicinity of

the twin boundaries, increases only marginally with increasing twin thickness (black

lines in Figure 4.4(c)). Finally, the interaction of a twin and a defect is investigated in

Figure 4.4(d) by comparing the change in the twin tip velocity towards the boundary

and the void along the blue dashed horizontal line. The numerical setup is also given

in the inset, where symmetric boundary conditions are used. The radius of 2 nm is

chosen for the void. For all times, the results indicate that the tip velocity is linearly

decreasing in time in a direction approaching the left boundary. For the void, the

velocity at the tip is constant until some point after which a sudden decrease in the

velocity occurs, resulting from the twin-defect interaction. In addition, the twin tip
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velocity is larger toward the void because of the higher stress concentration in�uence

by the void.

Figure 4.4: Exploration of twin-twin and twin-defect interactions to inform funda-
mental growth mechanisms in single crystal magnesium: (a) Evolution of twin area
fraction for 1, 2, and 3 twin embryos. The inset shows the location of each twin for
the three-embryo simulation. The area of the middle twin is measured using its length
and width obtained from the interface pro�le at η = 0.5, as was done for Figure 4.2;
(b) Spatial distribution of the twin order parameter and shear stress in the parent
and twin phases for the numerical setup shown in the inset of (a) at t = 10 ps and
t = 20 ps; (c) Evolution of the shear stress along a horizontal line through the middle
of the single crystal microstructure for di�erent numbers of embryos. The numerical
setup is subjected to 7% shear strain as was done in the other cases; (d) Study of
twin-defect interactions by considering the time-evolved twin tip interface towards
the boundary and the void. The related simulation dimensions are given in the inset,
which also shows that symmetric boundary conditions were used (the symmetry line
is shown by the dash red line). (For interpretation of the references to color in this
�gure, the reader is referred to the web version of this article.)
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4.3 Discussion

In this study, the evolution of twinning in magnesium has been studied using a val-

idated and calibrated phase-�eld model to gain better insights into the time-evolved

twin morphology, the spatial distribution of the internal shear stress, and the twin

interactions. A highly-accurate monolithic iterative procedure has been implemented

for solving the coupled balance and Ginzburg�Landau equations, and the governing

equations have been solved in an open-source high-level computing platform FEniCS.

For engineering examples with FEniCS, please refer to [290]. The results presented

in this work con�rmed the impact of the current model by capturing the behavior

of the leading deformation mechanism in single crystal magnesium, twinning. By

means of the proposed implementation, the state variables (i.e., the displacement and

the twin order parameter) have been computed monolithically for various scenarios

in discrete time steps, including small and large deformations with both isotropic

and anisotropic surface energies and elasticity. The data have been compared with

a continuum mechanics model [50] and molecular dynamics simulations [260]. The

�ndings are qualitatively consistent with both literature approaches. A notable result

emerging from the proposed model is the prediction of the critical strain and initial

twin embryo size required for growth and propagation under the chosen numerical

settings. This computational implementation is particularly useful because identi-

fying such features experimentally is challenging given the length and time scales

needed to reproduce these events [291]. Next, the interface velocities for the twin tips

and twin boundaries have been explored in order to determine the kinetic coe�cient

using the phase-�eld model and compared with recent molecular dynamics simulation

[260]. Studying velocity growths is important because they a�ect hardening, texture

evolution, and ductility in the material [292]. To the authors' best knowledge, the

present work pioneers the analysis of the interface mobility, showing di�erent trends

of twin evolution in the direction parallel and orthogonal to the twin habit plane. The
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interface velocity is considered to be an important factor to determine the thermody-

namic driving force for interface propagation, because knowing the interface velocity

for any value of the driving force potentially leads to the determination of the kinetic

coe�cient for any range of materials [293]. The interface pro�le was also compared

with the analytical solution of the stationary Ginzburg�Landau equation, and the

obtained numerical interface width of 1.58 nm was close to the analytical value of

1.62 nm [261]. This information guides mesh selection and re�nement when modeling

twinning in this system [294]. In addition, the current phase-�eld modeling approach

overcomes the challenges existing in molecular dynamic simulations for calculating the

twin size, such as identifying the orientation of each atom in the twinned region [252],

and is able to capture new behavior of twin growth for t ≤ 5 ps, comparing well with

previous molecular dynamics data [260]. The strong point of the current approach is

to track multiple interfaces in order to measure twins' size with no additional e�orts

for samples larger or smaller than in atomistic simulations.

A further considerable implication of the proposed model is the possibility of inves-

tigating the local and global shear stress �eld inside the parent and twinned phases.

Analysis of twin shear stress �elds induced in these cases provides further evidence for

the e�ect of twins' thickness and their mutual position on further twin growth and/or

further twin nucleation [295�297]. Moreover, the importance of an appropriate strat-

egy for partitioning the stress �elds between the twinned and untwinned domains have

been demonstrated in this study. A �nal upshot of the current phase-�eld model has

been to explore new understandings in twin-twin and twin-defect interactions. For

the case where multiple twins grow in one grain, a common occurrence observed in

experiments [298], it is highlighted that the stress concentration around the void could

signi�cantly increase the twin interface velocity, a�ecting subsequent expansion of the

twins. Taken together, our study provides a framework for a new way to understand

local deformation mechanisms in materials by analyzing the evolution and interaction

of twins at the nanoscale.
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4.4 Methods

The problem-speci�c parts of the computer code used to perform the simulations have

been generated automatically from a high-level description that resembles closely the

notation used in this work by using a number of tools from the FEniCS Project [299,

300]. The time stepping parameters are chosen such that the momentum balance

scheme is second-order accurate and stable. Quadratic and linear Lagrange functions

are used for the �nite element approximation of the displacement and the twin order

parameter, respectively. A mesh of 423,500 triangular elements is adopted. Initial

conditions are also prescribed as part of the solution procedure. More importantly, a

fully-coupled solution strategy is used, and a Newton�Krylov method is employed to

solve the nonlinear equilibrium and Ginzburg�Landau equations in each time step,

with a minimum of 5000 time steps for studying the twinning behavior in magnesium.

It is noted that 10 elements are considered at the interface to resolve the sharp

variation along the interface width. The conjugate gradient method with a Jacobi

preconditioner from PETSc packages [301] has been employed for solving the nonlinear

equations. The simulation has been performed by a computing node using Intel Xeon

E7-4850, in total 64 cores each with 40 MB cache, equipped with 256 GB Memory in

total, running Linux Kernel 5 Ubuntu 20.04.

4.5 Data Availability

The authors declare that the main data supporting the �ndings of this study are

available within this article. Extra data are available from the corresponding authors

upon reasonable request.

4.6 Code Availability

The Python code, generated during the current study, is part of the FEniCS project

available at http://www.fenicsproject.org/download, and an example for the compu-
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tational implementation is available in [302] to be used under the GNU Public license

[303].
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4.10 Supplementary Information

4.10.1 Summary of Content

Here, we provide the equations for calculating the e�ective bulk modulus, shear mod-

ulus, and Poisson's ratio. The relations for the phase-�eld parameters, including the

double-well barrier, gradient energy, and the reorientation matrix are then given. The

mechanical properties for the single crystal magnesium is provided in Table 4.1.
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4.10.2 The E�ective Bulk Modulus, Shear Modulus, and Pois-
son's Ratio

The Bulk modulus, shear modulus, and the Voigt average Poisson's ratio for crystals

with trigonal or hexagonal symmetry are obtained as [304]

K =
(C11 + C12)C33 − 2C2

13

C11 + C12 + 2C33 − 4C13

; (4.11)

µ =
1

15

(︂
2C11 + C33 − C12 − 2C13 +

3

2
(C11 − C12) + 6C44

)︂
; (4.12)

ν =
3K − 2µ

6K + 2µ
, (4.13)

where C are the second order elastic constants extrapolated from 4.2 ◦K to 0 ◦K.

4.10.3 The Transformation Barrier and Gradient Energy Pa-
rameter

The energy barrier between two stable phases (minima) A, and the gradient energy

κ0, are given as [50]

A = 12
Γ

l
; κ0 =

3

4
Γl, (4.14)

where Γ is the twin boundary surface energy and l is the twin boundary thickness.

4.10.4 The Reorientation Matrix

The reorientation matrix Q, associated with the twinning within a centrosymmetric

structure is obtained by [266]

Q =

{︄
2mimj − δij type I twins,

2sisj − δij type II twins,
(4.15)

where s = (cos θ, sin θ)T and m = (− sin θ, cos θ)T are the lattice orientation vectors

in the vector form, δ is the Kronecker delta, and θ denotes the orientation of the habit

plane. Type I and type II twins di�er in re�ections or rotations of the lattice vectors

in the twin and parent phase.
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4.10.5 The Matrix Form of the Gradient Coe�cient

The gradient energy parameter in the matrix form can be written as

κ =

⎛⎝κ11 0

0 κ22

⎞⎠ , (4.16)

for both isotropic (κ11 = κ22 = κ0) and anisotropic (κ11

2
= 2κ22 = κ0) twin boundary

surface energies.

Table 4.1: Material properties and model constants for single crystal

magnesium

Parameters Notation Value Reference

Elastic constants C11 63.5GPa [305]

� C12 25.9GPa [305]

� C13 21.7GPa [305]

� C33 66.5GPa [305]

� C44 18.4GPa [305]

Bulk modulus K 36.9GPa Eq 4.11

Shear modulus µ 19.4GPa Eq 4.12

Poisson's ratio ν 0.276 Eq 4.13

Twin boundary energy Γ 0.117 J/m2 [242]

Twinning shear γ0 0.1295 [235]

Regularization length l 1.0 nm [268]

Transformation barrier A 1.404GPa Eq 4.14

Gradient energy parameter κ0 0.0878 nJ/m Eq 4.14

Kinetic factor L 4200 (Pa · s)−1 Calibrated with MD [260]
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Chapter 5

Time-Evolved Phase-Field Model for
Capturing Twinning,
Fracture-Induced Twinning, and
Fracture at Large Strains in
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Abstract A time-dependent phase-�eld approach is developed for modeling

twinning, fracture, and fracture-induced twinning in anisotropic brittle nano single

crystals. Considering anisotropic elastic properties and phase boundary energy, a

detailed �nite element procedure is developed for studying the behavior of brittle

solids subjected to large stresses and �nite deformations. Two separate order
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parameters related to the fracture and twinning are used, and the evolution of the

order parameters is governed by coupled elasticity and Ginzburg�Landau equations.

To the authors' best knowledge, for the �rst time, a monolithic strategy is employed

for solving the governing equations in order to improve the computational accuracy

of the model. To discretize the time derivative equations, a second-order backward

di�erence scheme is used. A �nite element code was then developed within the

Python-based open-source platform FEniCS for a system with twinning and

fracture and employed to solve three problems: (i) twin evolution in

two-dimensional single crystal magnesium and boron carbide under simple shear

deformation; (ii) crack-induced twinning for single crystal magnesium under pure

mode I and mode II loading; and (iii) study of fracture in homogeneous single

crystal boron carbide under biaxial compressive loading. The results for these

problems are compared with the available experimental data, previous stationary

phase-�eld results, and analytical solutions from the literature. The algorithm can

also be extended for the study of phase transformations under dynamic loading or

thermally-activated mechanisms, where the competition between various

deformation mechanisms is accounted for within the current comprehensive model

approach. Altogether, the proposed model opens a number of interesting

possibilities for simulating and controlling failure pattern development in anisotropic

brittle solids experiencing extreme mechanical loading.

Keywords: Phase-�eld model; Anisotropic brittle solids; Single crystals; Finite

element method; Fracture and twinning; Monolithic scheme
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5.1 Introduction

Understanding and predicting anisotropic fracture and damage evolution in brittle

materials have been long-standing problems in engineering designs. Owing to the ad-

vent of novel modeling techniques and the advances in computational capabilities, the

usage of accurate and robust numerical methods plays a key role in situations where

purely experimental approaches are of high cost and not always readily accessible

(e.g., high-energy in-situ X-ray computed microtomography [306], in-situ electron

backscattered di�raction (EBSD) [307], and micro/nano-mechanical testing [308]).

In the literature, the simulation of fracture in solids at the atomic scale is commonly

treated by molecular dynamics (MD) [309], density functional theory (DFT) [310], or

lattice static models that are based on spring networks [311]. Despite addressing non-

linearities at the crack tip, avoiding singularity-related issues, and considering bond

breaking between atoms [312�314], there exist challenges in using atomistic models

to cover the time and length scales necessary to analyze the structural response at

the macroscale needed for engineering applications.

Conventionally, there are two main categories of numerical approaches that can

be employed to provide realistic simulations of material failure: (i) discrete crack

models (e.g., the discrete element method [315, 316], the extended �nite element

(XFEM) method [317], the cohesive zone method [318], and the cohesive segment

method [319]) in which the displacement �eld is allowed to be discontinuous across the

fracture surfaces, and (ii) smeared (continuum) crack models (e.g., damage models

[320], and di�use interface models [321]) that consider a continuous displacement

everywhere, assuming gradually decreasing stresses to model the degradation process.

Regardless of showing much success in modeling crack propagation [322], the discrete

crack models need additional criteria based on stress, strain energy density, energy

release rate, or virtual crack closure techniques [323] to predict the crack initiation

(nucleation), growth, and branching in dynamic fracture problems [324]. Further, the

110



sharp representation of cracks requires remeshing algorithms or using the partition of

unity method [325], both having their own di�culties in tracking the multiple crack

fronts in complex three-dimensional morphologies [326, 327].

In the smeared crack approach, regularizing strong discontinuities caused by strain

localizations within a �nite and thin band leads to a precise approximation of the crack

topology [328]. The gradient damage model [329], physical/mechanical community-

based phase-�eld fracture model [330�332] that traces back to the reformulation of

Gri�th's principle [333], and peridynamics [334], which can be regarded as gener-

alized non-local continuum mechanics, fall within this category. Replacing partial

di�erential equations in the phase-�eld model by integrals in peridynamics allows

for topologically complex fractures such as intersecting and branching to be handled

in both two and three dimensions [335]. Coupling the smeared and discrete crack

approaches, for example, the element deletion method [336], the combined non-local

damage and cohesive zone method [337], and thick level-set method [338] have also

shown promising results in modeling fracture. In the thick level-set method, a discon-

tinuous crack description is surrounded by continuous strain-softening regions, which

is de�ned by a level-set function to separate the undamaged from the damaged zone

[339]. However, the dependence of the results on the �nite element meshes and the

convergence of the solutions, for a mesh size tending to zero, results in numerical

errors [340].

As an alternative approach, the phase-�eld model has been widely used recently in

the context of phase transition processes, ranging from solidi�cation [341] and phase

transformation in a solid [342] to the modeling of ferroelectric materials [343]. Hav-

ing the capability to model the microstructural evolution, it has been successfully

adopted in the simulation of martensitic phase transformations [264], reconstructive

phase transformations [344], phase transformations in liquids [345], dislocations [346],

twinning [50], damage [347], and their interactions [348�350]. Initiated with the cele-

brated work by Francfort and Marigo on the variational approach to brittle fracture
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[351], where the total energy is minimized simultaneously with respect to the crack

geometry and the displacement �eld, the concept of applying the phase-�eld method

in fracture mechanics has gained signi�cant interest in the literature [261, 352�354,

289, 355�359]. Due to the thermodynamic driving forces, the evolution of interfaces

(e.g., merging and branching of multiple cracks) is predicted with no additional ef-

fort [360]. Also, being quantitative and material-speci�c as well as simple to couple

to other calculations (e.g., stress or temperature [361]) makes phase-�eld modeling

a powerful and �exible method for studying the fracture of single-crystalline [362]

and polycrystalline materials [363]. The high computational cost in the phase �eld

due to resolving the gradient term by using su�ciently re�ned mesh in the damaged

zone can be straightforwardly tackled by parallel implementations [364] and adaptive

remeshing [365].

Using the phase-�eld model to study the failure mechanisms in brittle materials has

recently received increasing attention [366�370]. Unlike ductile failure behavior, brit-

tle solids often fail catastrophically along grain boundaries [371], or cracks propagate

along the interstitials in the case of geomaterials [372]. In the mechanics community,

Wu applied a uni�ed phase-�eld model to simulate the mechanics of damage and

failure of concrete [373]. In his work, a fourth-order model for the phase-�eld approx-

imation of brittle materials was developed using the explicit Hilber�Hughes�Taylor�α

[374] method and the phase-�eld models were represented by a phase transformation-

independent single-well energy potential to describe the fracture behavior. In the

physics community, on the other hand, the phase-�eld models are commonly derived

by adapting the phase transition formalism of Landau and Ginzburg [375]. For ex-

ample, Aranson et al. [376] combined elastic equilibrium with the Ginzburg�Landau

(GL) equation, which accounted for the dynamics of defects, to study the crack propa-

gation in brittle amorphous solids. Another GL-based phase-�eld approach restricted

to mode III fracture (antiplane shear) was proposed by Karma et al. [330] and Hakim

and Karma [321] in the two- and three-dimensional settings, respectively. Consider-

112



ing fracture as a solid-gas transformation, the double-well energy potential appeared

in phase-�eld modeling of damage in the study by Levitas et al. [354]. Some of the

disadvantages of the double-well potential, such as crack widening and lateral growth

during crack propagation, can be eliminated by using a single-well term; however, the

realistic shape of the stress-strain curves obtained from the experiments or atomistic

simulations cannot always be captured by the single-well free energy density [261].

In numerical implementations, nonlinear problems with a strong coupling between

the equilibrium equation and the phase-�eld parameter can be solved through two

approaches: (1) the most-commonly used one is the staggered solution scheme, which

is based on decoupling the momentum equation and phase-�eld problem into the sys-

tem of two equations that can be solved in a staggered manner [377, 378]. Regardless

of its robustness due to giving rise to two convex minimization problems, a signi�cant

amount of staggered iterations is required at a �xed loading step, thus resulting in a

high computational cost [379]; (2) the alternative option would be implying the solu-

tion of the phase-�eld formalism for both variables' increments (e.g., displacement and

phase-�eld variables) simultaneously [380]. As compared with the staggered scheme,

the monolithic solution is more e�cient as a result of needing less Newton�Raphson

iterations [381]. To the best of our knowledge, no studies have focused on solving the

GL-based phase-�eld problem for predicting the twinning and fracture behavior of

brittle materials by using a monolithic scheme; this is addressed in the current study.

The applications of fracture mechanics have traditionally focused on crack growth

problems under mode I mechanisms [382, 383]. Earlier phase-�eld models have not

extensively considered the e�ect of loading conditions (e.g., tensile and compressive

states) on fracture behavior of the brittle materials [330, 355, 376]. Most of the

previous studies are focused on the mechanism of crack initiation and growth of

opening (mode I) cracks since experimental observations indicate that pure mode I

crack growth is usually preferred to mixed-mode or pure mode II crack growth [384,

385]. In some models, it is assumed that the crack grows under opening mode con-
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ditions, even in the case of pure shear loading, as a result of local tensile stresses

at the tip [386]. To achieve this behavior in conventional phase-�eld approach, a

common technique is to distinguish between tensile and compressive states by de-

composing the strain energy density, either using a spectral decomposition [377] or

a hydrostatic-deviatoric approach [387]; however, as reported in [388, 389], present-

ing a su�ciently high con�ning pressure to obtain mode II cracks and a low ratio

between the critical stress intensity factors KIIc and KIc may lead to fracture under

a sliding mode. In addition, numerical techniques such as the Miehe and Amor de-

compositions present disadvantages that have yet to be addressed in order to solve

the crack propagation under compressive loading in anisotropic materials [390]. For

example, the Miehe decomposition shows unphysical sti�ening at the �nal part of

the force-displacement curve instead of a complete sti�ness loss for the fully cracked

specimen [391]. As another example, the Amor decomposition appears to have some

limitations for compression-dominated loading [392]. Accordingly, presenting a more

comprehensive model to predict the crack path under compression for anisotropic

materials is needed, as will be addressed in this research.

Goals and outlook : In the present study, we seek to extend the GL phase-�eld

approach to predict fracture and twinning in single crystal anisotropic brittle materials

(e.g., magnesium Mg, and boron carbide B4C). For the �rst time in the literature to

our best knowledge, this study focuses on increasing the computational accuracy of

the method by means of implementing the monolithic scheme for solving the coupled

di�erential equations in the open-source parallel computing platform FEniCS [393].

As a result of large elastic strains by local stress concentrations in nanoscale defect-

free volumes or by high pressures [265], as well as large shears arising from twinning

[394], a fully geometrically and physically nonlinear phase-�eld theory along with an

anisotropic surface energy and nonlinear elasticity is employed. In the current study,

a new decomposition for the strain energy density based on [391] is used to reproduce

the experimentally-observed crack propagation under compressive loading, and the
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simulated results are compared with analytical solutions. In these comparisons, a

double-well energy potential is considered for studying the fracture behavior (e.g.,

crack initiation, growth, and propagation) and twinning in brittle solids.

The remainder of this study is outlined as follows. In Section 5.2, a brief description

about the materials' choice is presented. The theoretical aspects of the phase-�eld

theory, including �nite deformation kinematics, balance laws, a thermodynamically

sound derivation of equations, and the weak forms of the governing PDEs are pre-

sented in Section 5.3. Finite element discretization details and the numerical imple-

mentation are given in Section 5.4. Results and representative material properties for

brittle materials along with the discussion of phase-�eld simulations are reported in

Section 5.5. The conclusions of the study are �nally drawn in Section 5.6.

Throughout this study, the following notations will be used. Contractions of

second-order tensorsA = {Aij} andB = {Bij} over one and two indices are de�ned as

A·B = {AijBjk} andA : B = {AijBij}, where the repeated indices denote Einstein's

summation, and Aij and Bij are the components of the tensors in a right-handed

orthonormal Cartesian basis {e1, e2, e3}; the dyadic product of vectors a = {ai}

and b = {bj} is represented by [a ⊗ b]ij = {aibj}; Cross product × for any tensor

D = Dijklei⊗ej⊗ek⊗el is de�ned asQ×D = Dijkl(Q ·ei)⊗(Q ·ej)⊗(Q ·ek)⊗(Q ·el)

with Q being an orthogonal tensor. I denotes the second order identity tensor; δij

denotes the Kronecker delta; the transposition, inversion, determinant, trace, sym-

metric part, and skew-symmetric part of A are indicated as AT , A−1, det(A), tr(A),

sym(A), and skew(A), respectively. The symbols ∇0 and ∇ represent the gradient

operators in the initial B0 and current B con�gurations, respectively. Subscripted

commas denote partial coordinate di�erentiation. The symbol := denotes equality by

de�nition.
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5.2 Materials

The focus of the present study is to model the deformation behavior of magnesium

and boron carbide single crystals, assuming these to be elastically sti� and brittle.

The low ductility of these materials can lead to large driving forces for dislocation

glide, leading to other mechanisms such as phase transformations [395], deformation

twinning [396], and fracture [397].

5.2.1 Magnesium

Having low density (∼23% of steel and ∼66% of aluminum), high strength, and dura-

bility for a wide range of temperatures in high performance automotive and aerospace

applications, magnesium and its alloys have attracted considerable attention in recent

years [398, 399]. Mg alloys tend to be brittle due to the limited number of disloca-

tion systems [400]. As a result of possessing low-symmetry crystallographic structure,

twinning is the dominant deformation mode [401, 402] that results in transitions in the

material behavior at high strain rates [403]. A previous study indicated that the for-

mation of intersecting twins can improve the ductility of Mg alloys [404]. Therefore,

understanding and predicting the twinning behavior during plastic deformation of

magnesium is critical towards the realization of next-generation light-weight metallic

materials for application in automotive and defense industries. To investigate twin-

ning in magnesium, various techniques such as high-resolution transmission electron

microscopy [286], visco-plastic self-consistent polycrystal models [405], elasto-plastic

self-consistent polycrystal models [406], molecular dynamics simulations [241], crystal

plasticity models [407], and quasi-static phase-�eld models [50] have been employed.

In this study, the fracture and twinning behaviors of single crystal magnesium are

studied using an advanced time-dependent phase-�eld theory by numerically solving

engineering problems.
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5.2.2 Boron Carbide

As a result of possessing hardness above 30GPa, low density (2.52 g/cm3), and high

Hugoniot elastic limit (17 -20GPa), boron carbide (B4C) has received considerable

attention in ballistic applications [408]. Due to its high melting point and ther-

mal stability [409], extreme abrasion resistance [410], and high temperature semi-

conductivity [53], boron carbide excels in refractory, nuclear, and novel electronic

applications, respectively; however, its performance is hindered by one or more of a

number of inelastic deformation mechanisms, including deformation twinning [411],

stress-induced phase transformations [412], and various fracture behaviors [68] when

subjected to mechanical stresses exceeding their elastic limit. The key failure mech-

anisms in boron carbide (e.g., cleavage fracture and twinning) are commonly studied

experimentally using numerous characterization techniques (e.g., transmission elec-

tron microscopy [413] and Raman spectroscopy [414]). Fracture in the form of shear

failure, cavitation, and cleavage has been con�rmed from atomic simulation results,

either via �rst principles or molecular dynamics simulations [415, 416]. Finite defor-

mation continuum models, such as cohesive zone models for fracture [417] and crystal

plasticity [418] have also been used to investigate inelastic deformation in single and

polycrystalline boron carbide. The present time-evolved phase-�eld model seeks to

engineer the next generation of anisotropic boron carbide-based armor ceramics by

understanding the important plastic deformation and brittle fracture mechanisms

that govern its high rate performance.

5.3 Formulation

In this section, a time-dependent phase-�eld theory is developed for a solid body in the

context of large and small strain theories based on thermodynamic laws with single

twinning and fracture systems. The present approach extends that of Clayton and

Knap [50, 362, 419, 420] to account for the time-evolution of order parameters towards
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an equilibrium state and predicting the twinning and crack paths in anisotropic single

crystal materials.

5.3.1 Order Parameters

The main desired feature of the proposed model is to introduce a separate order

parameter η assigned to each material point X for the description of the twinning,

which is equal to 0 in the parent elastic crystal and 1 in the twin. The twin boundary

zone is determined by η ∈ (0, 1). The second order parameter, denoted by ξ, is used

to represent fracture. ξ = 0 indicates undamaged material, ξ = 1 fully damaged

material, and ξ ∈ (0, 1) partially degraded material. Both of these state variables are

commonly assumed to be at least C2-continuous with respect to X according to the

di�use interface theory [421, 422].

5.3.2 Kinematics

An arbitrary multigrain body is considered in the reference (B0 ⊂ Rd, with d ∈

{1, 2, 3}), stress-relaxed intermediate, and current con�guration (B ⊂ Rd). The ex-

ternal boundaries ofB0 andB are ∂B0 and ∂B, respectively. We denote the traction

(Neumann) boundary of B0 by ∂B0N i
and the displacement (Dirichlet) boundary by

∂B0Di
. The same boundaries in the current con�gurations are ∂BN i for the traction

and ∂BDi for the displacement (see Figure 5.1).
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Figure 5.1: Multiplicative decomposition of the deformation gradient into elastic
F E and irreversible plastic F η parts with corresponding con�gurations. The refer-
ence stress-free con�guration B0 , the deformed con�guration B, and an arbitrary
intermediate con�guration B∗ of a polycrystal material are shown. The Neumann
and Dirichlet boundary conditions corresponding to each con�guration are also il-
lustrated. Two separate order parameters for fracture ξ (blue color) and twinning η
(green color) are also considered. (For interpretation of the references to color in this
�gure, the reader is referred to the web version of this article.)

The motion of solid material with twinning and fracture will be described by a vec-

tor function x = X (X, t), where x and X are the positions of points at time t in

material B0 , and spatial B, con�gurations, respectively. Let u(X, t) = x(X, t) −X

denote the displacement of a point X at time t. The displacement �eld satis�es

time-dependent Dirichlet boundary conditions ui(X, t) = gi(X, t), on ∂BDi , and

time-dependent Neumann boundary conditions on ∂BN i . The deformation gradi-

ent is de�ned as F = ∇0x = ∂xi

∂Xj
ei ⊗ ej . The total deformation gradient in the fully

large-strain formulation is a second order tensor multiplicatively decomposed as

Fij = FE
ikF

η
kj, (5.1)

where FE is the recoverable elastic deformation conjugated to the applied stress, and

F η is the irreversible deformation associated with structural defects, such as twinning,
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evolving within the material. In contrast to F which always satis�es compatibility

conditions ∇×F = 0, the deformation maps FE and F η are generally not integrable

as a result of existing crystal defects [423, 424]. Additional structural changes can be

included in this theory for representation of other defects, such as point defects [425]

or dislocation slips [257]. In small deformations, the multiplicative decomposition Eq

5.1, is replaced by

εij = εEij + εηij, (5.2)

where εE is the elastic distortion and εη is the twinning shear-related deformation.

The kinematics for twinning in simple shear [263] is given as

εη = ϕ(η)γ0s ⊗m ; εηij = ϕ(η)γ0simj; (5.3)

F η(η) = I + ϕ(η)γ0s ⊗m ; Fη
ij = δij + ϕ(η)γ0simj,

where s and m are the orthogonal unit vectors (in initial con�guration) in the di-

rections of twinning and normal to the twinning plane, respectively; and γ0 is the

magnitude of the maximum twinning shear. The interpolation function ϕ(η) is ob-

tained from a general representative function φ(a, η) within a fourth-degree potential

de�ned as [264]

φ(a, η) = aη2(1− η)2 + η3(4− 3η), (5.4)

where a is a constant parameter, and to ensure that φ(a, η) is a monotonous function,

a should be chosen between 0 and 6. The interpolation function φ(a, η) satis�es the

conditions φ(a, 0) = 0, φ(a, 1) = 1, ∂φ(a,0)
∂η

= ∂φ(a,1)
∂η

= 0. ϕ(η) = φ(3, η) = η2(3− 2η).

For a = 0, ϕ(η) = φ(3, η) = η2(3− 2η) which obeys the antisymmetry condition, i.e.,

ϕ(1 − η) = 1 − ϕ(η). We de�ne the Jacobian determinant, J = detF = detFE :=

dV
dV0

, where dV0 and dV are the volumes of an in�nitesimal element in material and

spatial con�gurations, respectively. This indicates that detF η = 1, which means that

twinning preserves the volume and mass density of the material elements. The Green�
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Lagrange total and elastic strains in large and small deformations are introduced as

E =
1

2
(C − I ); Eij =

1

2
(Cij − δij), (5.5)

EE =
1

2
(CE − I ); EE

ij =
1

2
(CE

ij − δij), (5.6)

εE =
1

2

[︂
∇u+ (∇u)T − ϕ(η)γ0 (s⊗m+m⊗ s)

]︂
; (5.7)

εEij =
1

2
[ui,j + uj,i − ϕ(η)γ0 (simj +misj)] ,

respectively, where C = F T · F (Cij = FkiFkj) and C
E = (FE)T · FE

(︁
CE

ij = FE
kiF

E
kj

)︁
are the right Cauchy�Green total strain and elastic strain tensors, respectively. Con-

sidering twinning as an isochoric process results in C = C E and J =
√
detC E.

5.3.3 Laws of Thermodynamics and Constitutive Equations

For an arbitrary volume V0 (or V ) with an external surface S0 (or S) and unit external

normal n0 (or n) in the undeformed (or deformed) con�guration B0 (or B), the �rst

law of thermodynamics leads to the global energy balance equation reads (in indicial

notation)∫︂
S0

(p0ivi − h0in0i)dS0 −
d

dt

∫︂
V0

ρ0(U +
1

2
vivi)dV0 +

∫︂
V0

ρ0(fivi + r)dV0 = 0, (5.8)∫︂
S

(pivi − hini)dS − d

dt

∫︂
V

ρ(U +
1

2
vivi)dV +

∫︂
V

ρ(fivi + r)dV = 0, (5.9)

where p0i = n0jPji (pi = njσji) is the traction vector on the external surface S0 (or S),

P (or σ) is the �rst nonsymmetric Piola�Kirchho� stress tensor (or the symmetric

Cauchy stress tensor), v is the particle velocity, h0 (or h) is the heat �ux , U is the

speci�c internal energy (per unit mass), ρ0 (or ρ) is the mass density in the material

(or spatial) con�guration, f is the body force per unit mass, and r is the heat source

per unit mass per unit time. The second law of thermodynamics is the combination

of the global entropy balance equation with the Clausius�Duhem inequality for the
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whole volume V0 (or V )

d

dt

∫︂
V0

ρ0sdV0 −
∫︂
V0

ρ0
r

θ
dV0 +

∫︂
S0

1

θ
h0in0idS0 := Si ≥ 0, (5.10)

d

dt

∫︂
V

ρsdV −
∫︂
V

ρ
r

θ
dV +

∫︂
S

1

θ
hinidS := Ssi ≥ 0, (5.11)

where Si (or Ssi) is the total entropy production rate in the initial (or current) con�g-

uration, s is the speci�c entropy, and θ is the temperature. The �rst and second law

of thermodynamics can be transformed to the following volume integrals by using the

balance of linear momentum and the Gauss theorem∫︂
V0

(︂
PijḞji − ρ0U̇ − (h0i),0i + ρ0r

)︂
dV0 = 0, (5.12)

Si :=

∫︂
V0

S̄idV0 ≥ 0, S̄i = ρ0ṡ− ρ0
r

θ
+

(︃
h0i
θ

)︃
,0i

, (5.13)∫︂
V

(︂
σij ε̇ij − ρU̇ − (hi),i + ρr

)︂
dV = 0, (5.14)

Ssi :=

∫︂
V

S̄sidV ≥ 0, S̄si = ρṡ− ρ
r

θ
+

(︃
hi
θ

)︃
,i

, (5.15)

where
(︂
h0i

θ

)︂
,0i

= 1
θ
(h0i),0i−

1
θ2
h0iθ,0i

(︂(︁
hi

θ

)︁
,i
= 1

θ
(hi),i −

1
θ2
hiθ,i

)︂
. Multiplying Eqs 5.13

and 5.15 by θ, the global dissipation rate in the undeformed (or deformed) state is

introduced as

D̄ :=

∫︂
V0

(︄
ρ0θṡ− ρ0r + θ

(︃
h0i
θ

)︃
,0i

)︄
dV0 ≥ 0, (5.16)

D̄s :=

∫︂
V

(︄
ρθṡ− ρr + θ

(︃
hi
θ

)︃
,i

)︄
dV ≥ 0. (5.17)

Combining Eqs 5.12 and 5.14 with Eqs 5.16 and 5.17, the following dissipation in-

equalities in the reference (or current) con�guration are derived as

D =

∫︂
V0

(︃
PijḞji − ρ0U̇ + ρ0θṡ−

1

θ
h0iθ,0i

)︃
dV0 ≥ 0, (5.18)

Ds =

∫︂
V

(︃
σij ε̇ij − ρU̇ + ρθṡ− 1

θ
hiθ,i

)︃
dV ≥ 0. (5.19)
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The inequalities 5.18 and 5.19 can be split into the Planck's inequalities (Dm,Dsm)

and the Fourier's inequalities (Dt,Dst) as

Dm =

∫︂
V0

(︂
PijḞji − ρ0U̇ + ρ0θṡ

)︂
dV0 ≥ 0; Dt =

∫︂
V0

−
(︃
1

θ
h0iθ,0i

)︃
dV0 ≥ 0, (5.20)

Dsm =

∫︂
V

(︂
σij ε̇ij − ρU̇ + ρθṡ

)︂
dV ≥ 0; Dst =

∫︂
V

−
(︃
1

θ
hiθ,i

)︃
dV ≥ 0. (5.21)

By introducing the speci�c Helmholtz free energy ψ = U −θs and substituting it into

Eqs 5.20(1) and 5.21(1), and using temperature as an independent thermodynamic

parameter instead of entropy, the �nal dissipation inequalities are obtained as

Dm =

∫︂
V0

(︂
PijḞji − ρ0ψ̇ − ρ0sθ̇

)︂
dV0 ≥ 0, (5.22)

Dsm =

∫︂
V

(︂
σij ε̇ij − ρψ̇ − ρsθ̇

)︂
dV ≥ 0. (5.23)

Here, we assume that the Helmholtz free energy exhibits the following functional

dependency

ψ = ψ(FE, η,∇0η, θ, ξ,∇0ξ), (5.24)

ψs = ψs(ε
E, η,∇η, θ, ξ,∇ξ), (5.25)

in the initial and the current con�gurations, respectively. The dependencies on posi-

tion and temperature gradient have been neglected because of objectivity. After the

substitution of the rate of free energy

ψ̇ =
∂ψ

∂FE
ij

ḞE
ij +

∂ψ

∂η
η̇ +

∂ψ

∂η,0i
̇η,0i +

∂ψ

∂θ
θ̇ +

∂ψ

∂ξ
ξ̇ +

∂ψ

∂ξ,0i

̇ξ,0i, (5.26)

ψ̇s =
∂ψs

∂εEij
ϵ̇Eij +

∂ψs

∂η
η̇ +

∂ψs

∂η,i
η̇,i +

∂ψs

∂θ
θ̇ +

∂ψs

∂ξ
ξ̇ +

∂ψs

∂ξ,i
ξ̇,i, (5.27)

123



into Eqs 5.22 and 5.23, one obtains

Dm =

∫︂
V0

[︄(︄
PikF

η
jk − ρ0

∂ψ

∂FE
ij

)︄
ḞE
ji +

(︃
Pij

∂Fη
ki

∂η
FE
jk − ρ0

∂ψ

∂η

)︃
η̇ (5.28)

− ρ0

(︃
s+

∂ψ

∂θ

)︃
θ̇ − ρ0

∂ψ

∂η,0i
̇η,0i +

(︄
Pij

∂Fξ
ki

∂η
FE
jk − ρ0

∂ψ

∂ξ

)︄
ξ̇

−ρ0
∂ψ

∂ξ,0i

̇ξ,0i

]︃
dV0 ≥ 0,

Dsm =

∫︂
V

[︃(︃
σij − ρ

∂ψs

∂εEij

)︃
ε̇Eij +

(︃
σij
∂εηij
∂η

− ρ
∂ψs

∂η

)︃
η̇ (5.29)

− ρ

(︃
s+

∂ψ

∂θ

)︃
θ̇ − ρ

∂ψ

∂η,i
η̇,i +

(︄
σij
∂εξij
∂η

− ρ
∂ψs

∂ξ

)︄
ξ̇

−ρ ∂ψ
∂ξ,i

ξ̇,i

]︃
dV ≥ 0.

Assuming independency of the dissipation rate on ḞE
ji, ε̇

E
ij, and θ̇ leads to the expres-

sions for the elasticity law and entropy in the material and spatial con�gurations

σij = ρ
∂ψs

∂εEij
; PikF

η
jk = ρ0

∂ψ

∂FE
ij

= ρ0F
E
in

∂ψ

∂EE
nj

; s = −∂ψ
∂θ
. (5.30)

For homogeneous materials, by considering the terms proportional to η̇, η̇,0i (or η̇,i),

ξ̇, and ξ̇,0i (or ξ̇,i) in Eqs 5.28 and 5.29, and using the permutability of time and space

di�erentiation in the reference (or current) con�guration along with the di�erentiation

product rule and the Gauss theorem, the dissipation rate becomes

Dm =

∫︂
V0

[︄(︄
FE
kiPkj

∂Fη
ji

∂η
− ρ0

∂ψ

∂η
+ ρ0

(︃
∂ψ

∂η,0i

)︃
,0i

)︄
η̇ (5.31)

+

(︄
FE
kiPkj

∂Fξ
ji

∂ξ
− ρ0

∂ψ

∂ξ
+ ρ0

(︃
∂ψ

∂ξ,0i

)︃
,0i

)︄
ξ̇

]︄
dV0

−
∫︂
S0

[︃(︃
ρ0n0i

∂ψ

∂η,0i

)︃
η̇ +

(︃
ρ0n0i

∂ψ

∂ξ,0i

)︃
ξ̇

]︃
dS0 ≥ 0,

Dsm =

∫︂
V

[︄(︄
σij
∂εηij
∂η

− ρ
∂ψs

∂η
+ ρ

(︃
∂ψs

∂η,i

)︃
,i

)︄
η̇ (5.32)

+

(︄
σij
∂εξij
∂ξ

− ρ
∂ψs

∂ξ
+ ρ

(︃
∂ψs

∂ξ,i

)︃
,i

)︄
ξ̇

]︄
dV

−
∫︂
S

[︃(︃
ρni

∂ψs

∂η,i

)︃
η̇ +

(︃
ρni

∂ψs

∂ξ,i

)︃
ξ̇

]︃
dS ≥ 0,
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ρ0n0i
∂ψ

∂η,0i
= ρni

∂ψs

∂η,i
= 0, (5.33)

ρ0n0i
∂ψ

∂ξ,0i
= ρni

∂ψs

∂ξ,i
= 0. (5.34)

Then, the assumed mutually independent dissipation inequalities for the fracture and

twin order parameters can be expressed in the following decoupled form

Dmη =

∫︂
V0

Xηη̇dV0 ≥ 0; Dmξ
=

∫︂
V0

Xξ ξ̇dV0 ≥ 0, (5.35)

Dsmη =

∫︂
V

Xsηη̇dV ≥ 0; Dsmξ
=

∫︂
V

Xsξ ξ̇dV ≥ 0, (5.36)

where

Xη : = PkiF
E
kj

∂Fη
ij

∂η
− ρ0

∂ψ

∂η
+ ρ0

(︃
∂ψ

∂η,0i

)︃
,0i

; (5.37)

Xξ : = PkiF
E
kj

∂Fη
ij

∂ξ
− ρ0

∂ψ

∂ξ
+ ρ0

(︃
∂ψ

∂ξ,0i

)︃
,0i

,

Xsη : = σij
∂εηij
∂η

− ρ
∂ψs

∂η
+ ρ

(︃
∂ψs

∂η,i

)︃
,i

; (5.38)

Xsξ : = σij
∂εξij
∂ξ

− ρ
∂ψs

∂ξ
+ ρ

(︃
∂ψs

∂ξ,i

)︃
,i

,

are the thermodynamic forces conjugate to η̇ and ξ̇ in the material and spatial con-

�gurations, respectively. In the case of local relationships between the driving forces

and time evolution corresponding to each order parameter, Eqs 5.35 and 5.36 give

rise to

ρ0Dη = Xηη̇dV0 ≥ 0; ρ0Dξ = Xξ ξ̇dV0 ≥ 0, (5.39)

ρDsη = Xsηη̇dV ≥ 0; ρDsξ = Xsξ ξ̇dV ≥ 0. (5.40)

In order to satisfy the above inequalities, one can assume a linear approximation

between the time rate of change of order parameters and the driving forces, and,

thus, Eqs 5.39 and 5.40 transform to the Ginzburg�Landau equations for both state

variables as

η̇j = Lη
jiX

η
i , (5.41)

ξ̇j = Lξ
jiX

ξ
i , (5.42)
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where Lη
ji = Lη

ij and Lξ
ji = Lξ

ij are the positive de�nite kinetic coe�cients related to

the twinning and fracture mechanisms.

5.3.4 Free Energy and Kinetic Equations

Considering the mechanical loads, the Helmholtz free energy per unit undeformed (or

deformed) volume is de�ned in the following form

ψ(FE, η,∇0η, ξ,∇0ξ) = ψe
(︁
C E(F , η), η, ξ

)︁
+ ψ∇(η, ξ,∇0η,∇0ξ), (5.43)

ψs(ε, η,∇η, ξ,∇ξ) = ψe
s

(︁
εE(∇u, η), η, ξ

)︁
+ ψ∇

s (η, ξ,∇η,∇ξ), (5.44)

where ψe(or ψe
s) and ψ

∇(or ψ∇
s ) are the elastic strain energy and the interfacial energy

per unit reference (or current) volume, respectively. In geometrically nonlinear theory,

the strain energy density for fracture and twinning is expressed within the framework

of compressible neo-Hookean elasticity as a result of describing the usual increase

in tangent bulk modulus with increasing compressive pressure when large volume

changes are involved [50, 267]

ψe =
µ

2
(I
C
E
ij
− 3)− µ ln J +

λ

2
(ln J)2 , (5.45)

where I
C
E = CE

ii, and J
2 = ϵijkC

E
i1C

E
j2C

E
k3, with ϵijk being the permutation symbol.

For small strains, the following isotropic linear elasticity strain energy density is used

for simplicity and computational e�ciency

ψe
s =

1

2
λ (∇ · u)2 + 1

4
µ tr

{︃[︂(︂
∇u+ (∇u)T

)︂]︂2}︃
. (5.46)

The constants λ and µ are material coe�cients with equal dependency on ξ as

k = λ+
2

3
µ; µ = µ0ϕ̂(ξ); λ = λ0ϕ̂(ξ). (5.47)

In Eq 5.47, ϕ̂(ξ) = ζ + (1 − ζ) (1− ξ)2 is a degradation function, and k is the bulk

modulus. The constant ζ ensures a minimal residual sti�ness for fully fractured mate-

rials. The quadratic degradation of elastic sti�ness has likewise been used in a number
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of other phase-�eld and gradient damage models [426�428]; however, the re�ection

or rotation of the reference frame of the crystal lattice commensurate with twinning

should be taken into account for anisotropic elastic constants [266]. Considering this,

the elastic strain energy density in the reference frame is written as

ψe =
1

2
EE
ijCeijklE

E
kl; Ceijkl =

∂2ψe

∂EE
ij∂E

E
kl

. (5.48)

The tangent elastic modulus at each material point is then determined using

Ce = Ce(0) + (Ce(1)− Ce(0))ϕ(η), (5.49)

where Ce(0) denotes the elasticity tensor of the parent phase. For the twin phase,

Ce(1) is expressed in index form as

Cijkl(1) = QimQjnQkoQlpCmnop(0), (5.50)

where Q is the reorientation matrix associated with twinning within a centrosym-

metric structure [266]

Qij =

{︄
2mimj − δij type I twins,

2sisj − δij type II twins.
(5.51)

Type I and type II twins di�er in re�ections or rotations of the lattice vectors in

the twin and parent phase. For the interfacial energy per unit reference (or current)

volume, one can write the following speci�c form

ψ∇(η, ξ,∇0η,∇0ξ) = ψ∇
s (η, ξ,∇η,∇ξ) = ψ∇

1 (η, ξ) + ψ∇
2 (η, ξ,∇η) + (5.52)

ψ∇
3 (ξ) + ψ∇

4 (η, ξ,∇ξ).

The �rst term consists of a standard double-well potential [268, 269, 293]

ψ∇
1 (η, ξ) = Aη2 (1− η)2 ι(ξ), (5.53)

where A = 12Γ
l
characterizes the energy barrier between two stable phases (minima)

and this is related to the twin boundary surface energy Γ and the twin boundary
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thickness l; ι(ξ) is a coupling degradation function which degrades with the fracture

parameter ξ. It is assumed that ι(ξ) = ϕ̂(ξ), meaning that the twin boundary energy

and the elastic shear modulus degrade with damage according to the same quadratic

function. The regularization length is taken as the cohesive process zone for shear

failure [429]

l =
16πΥ

µ0 (1− ν0)
, (5.54)

where Υ is the fracture surface energy, µ0/2π is the theoretical shear failure strength,

and ν0 = (3k0 − 2µ0)/(6k0 + 2µ0) [430]. The second term on the right-hand side of Eq 5.52

follows from the Cahn�Hilliard formalism [421]

ψ∇
2 (ξ,∇η) = κijη,iη,j; κij = κ0ι(ξ)δij; κ0 =

3Γl

4
, (5.55)

where κij and κ0 are a diagonal tensor of rank two and gradient energy parameter,

respectively.

For cleavage fracture, which is the primary failure mode in boron carbide,

ψ∇
3 (ξ) = Bξ2, (5.56)

ψ∇
4 (∇ξ) = ωijξ,iξ,j; ωij = ω0 [δij + β (δij −MiMj)] , (5.57)

where B = Υ/h is the ratio of fracture surface energy and crack thickness, ω0 = Υh is a

material constant, β is the cleavage anisotropy factor, and M is the orientation of the

cleavage plane which is known a priori [377, 378]. The cleavage plane can be a plane

of low surface energy or low intrinsic strength in the crystal [431]. The parameter

β penalizes fracture on planes not normal to M so that β = 0 results in isotropic

damage. Eq 5.56 has been used in a number of recent continuum models of fracture

as a result of its ability to converge to the correct surface energy of a singular surface

when the twin boundary thickness tends to zero [387, 432]. Transient, rate e�ects,

and path dependence of solutions could be included by substituting the expressions
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for the free energy in Eqs 5.41 and 5.42 dictating their evolution in the material

η̇j = −Lη
ji

{︄
∂ψe

∂ηi
+
∂ψ∇

∂ηi
−
(︃
∂ψ∇

∂η,0i

)︃
,0i

}︄
= −Lη

ji

{︁
2Aηi

(︁
1− 3ηi + 2η2i

)︁
× (5.58)

ι̂(ξi)− ϕ′(ηi)γ0
[︁
µδij + (λ ln J − µ) (CE

ij)
−1
]︁ [︁
CE

ijsimj

]︁
−2κ0 [ι̂(ξ)η,ij + ι̂′(ξi)ξ,iη,j]} ,

ξ̇j = −Lξ
ji

{︄
∂ψe

∂ξi
+
∂ψ∇

∂ξi
−
(︃
∂ψ∇

∂ξ,0i

)︃
,0i

}︄
= −Lξ

ji

{︁
2Bξi

[︁
κ0|η,0i|2 + Aη2i (1− ηi)

2]︁×
ι̂′(ξi)− 2ω0

[︃
ξ,ij + β

(︃
ξ,ij −MiMjei

∂

∂xi
(ξ,j)

)︃]︃
(5.59)

+
1

2

∂λ

∂ξi
(ln J)2 − 1

2

∂µ

∂ξi

(︁
2 ln J − CE

ii + 3
)︁}︃

,

or spatial con�gurations

η̇j = −Lη
ji

{︄
∂ψe

s

∂ηi
+
∂ψ∇

∂ηi
−
(︃
∂ψ∇

∂η,i

)︃
,i

}︄
= −Lη

ji

{︁
2Aηi

(︁
1− 3ηi + 2η2i

)︁
ι̂(ξi) (5.60)

−τ − 2κ0 [ι̂(ξ)η,ij + ι̂′(ξi)ξ,iη,j]} ,

ξ̇j = −Lξ
ji

{︄
∂ψe

s

∂ξi
+
∂ψ∇

∂ξi
−
(︃
∂ψ∇

∂ξ,i

)︃
,i

}︄
= −Lξ

ji

{︁
2Bξi

[︁
κ0|η,0i|2 + Aη2i (1− ηi)

2]︁×
ι̂′(ξi)− 2ω0

[︃
ξ,ij + β

(︃
ξ,ij −MiMjei

∂

∂xi
(ξ,j)

)︃]︃
(5.61)

+
1

2

(︃
∂k

∂ξ
− 2

3

∂µ

∂ξ

)︃
(ui,j)

2 +
∂µ

∂ξ
εikεkj

}︃
,

where τ = µϕ′(η)γ0 [ϕ(η)γ0 − u,i (simj +misj)].

5.3.5 Mechanical Equilibrium Equations

The mechanical governing equations and the associated boundary conditions over the

reference and current con�guration are, neglecting the body and inertia forces,

Pij,j = 0 in V0; σij,j = 0 in V, (5.62)

Pijn0j = p0i on S0; σijnj = pi on S, (5.63)

PikFjk = FikPjk in V0; Sij = Sji in V, (5.64)

with

Pij =
∂W

∂Fij

⃓⃓⃓
η,ξ

= FE
ik

∂ψe

∂EE
km

(︁
F η
jm

)︁−1
; σij =

∂W

∂u,i

⃓⃓⃓
η,ξ
. (5.65)
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Eqs 5.63 and 5.64 are the Neumann boundary conditions on the external surface

S0 (or S) and the Cauchy's second law of motion in the reference (or current) con-

�guration, respectively.

5.3.6 Weak Forms of the Governing Equations

Considering the variational formulations of initial boundary value problems associated

with the material con�guration, the weak forms of the equilibrium equations given

by Eq 5.62 and Ginzburg�Landau equations for both state variables obtained in Eqs

5.58-5.61 are derived and will be used in computing numerical examples later in the

manuscript. The presented numerical simulations employ a novel monolithic strategy

by which the equilibrium equations and all of the phase-�eld equations are solved

in a coupled manner. For each time step, both displacements and order parameters

are solved simultaneously. We denote the test function for the displacement by δu,

which are vanished on the displacement boundary S0u. The test functions for the

order parameters are denoted by δξ and δη, respectively, such that δξ = δη = 0 on

the corresponding order parameter boundary. To formulate a �nite element problem,

we let T be a triangulation of Ω into �nite element cells such that T = {K }.

Working with the usual Lagrange �nite element basis

VK =
{︁
v ∈ H 1(Ω), v ∈ PK(K ) ∀K ∈ T

}︁
, (5.66)

where H 1(Ω) is a conforming �nite element space and PK(K ) denotes the space of

Lagrangian polynomials of order K on a �nite element cell. Given the data at time

tn, we will solve uh, ηh, ξh ∈ (VK2)
d × VK1 × VK1 at time tn+1 such that

L (δu, δη, δξ;uh, ηh, ξh) = 0 ∀(δu, δη, δξ) ∈ (VK2)
d × VK1 × VK1 , (5.67)

where K2 > 1 and K1 > 0, and the subscript h will be used to denote an approximate

quantity. As a result of the linearity, functional L can be additively decomposed into

L (δu, δη, δξ;uh, ηh, ξh) = Lu(δu;uh, ηh, ξh) + Lη(δη;uh, ηh, ξh) + (5.68)

Lξ(δξ;uh, ηh, ξh),
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where Lu, Lη, and Lξ represent the contributions of linear momentum, evolution of

the twinning, and fracture order parameters, respectively. The corresponding func-

tional will be the input to the code. In addition, high-level tools are exploited to

generate computer code automatically by performing automatic di�erentiation and

linearization, yielding the Jacobian for use in a Newton solver. For all time-dependent

equations, implicit time integrator will be used.

5.3.6.1 Residual for Balance of Linear Momentum

Multiplying Eq 5.62 by δu and applying integration by parts, the weak form (residual)

of the mechanical equilibrium equation is derived as

R(uh, δuh) = −
∫︂
V0

Pij,jδuhi
dV0 = 0; −

∫︂
V

σij,jδuhi
dV = 0. (5.69)

Considering the relation (Pjiδui),j = Pji,jδui +Pjiδui,j and applying the Gauss diver-

gence theorem yields

R(uh, δuh) =

∫︂
V0

Pjiδuhi,j
dV0 −

∫︂
S0

p0iδuhi
= 0; (5.70)∫︂

V

σijδuhi,j
dV −

∫︂
S

piδuhi
= 0,

where

Lu =

∫︂
V0

Pjiδuhi,j
dV0 −

∫︂
S0

p0iδuhi
; Pij = FE

ikCklmnE
E
mnF

η−1
jl . (5.71)

Here, P is the �rst Piola�Kirchho� stress tensor in terms of elastic and irreversible

deformation tensors.

5.3.6.2 Ginzburg�Landau Equations: Time Discretization andWeak Form

In this section, the weak forms of two independent time-dependent Ginzburg�Landau

equations are acquired. The time derivative of order parameters are discretized using

the θ-scheme over a time period of t ∈
[︁
ti, tf

]︁
, where ti and tf denote the initial

and �nal time instants, respectively. This scheme requires the solution from the
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current time step, which is provided by the initial conditions. With Eqs 5.58-5.61,

the following time-discretization is introduced, where a superscript n indicates the

number of a time step and ∆tn = tn − tn−1 is the length of the current time step

ηnhj
− ηn−1

hj

∆tn
+ Lη

ji

{︂
2Aηn−α

hi

(︂
1− 3ηn−α

hi
+ 2

(︁
ηn−α
hi

)︁2)︂
ι̂
(︁
ξn−α
hi

)︁
(5.72)

+6ηn−α
hi

(︁
1− ηn−α

hi

)︁
γ0
[︁
µ
(︁
ξn−α
hi

)︁
δij +

(︁
λ
(︁
ξn−α
hi

)︁
ln J − µ

(︁
ξn−α
hi

)︁)︁
CE−1

ij

]︁
[︁
CE

ijsimj

]︁
− 2κ0

[︂
ι̂
(︁
ξn−α
hi

)︁
ηn−α
h,ij

+ ι̂′
(︁
ξn−α
hi

)︁
ξn−α
h,i

ηn−α
h,i

]︂}︂
= 0,

ξnhj
− ξn−1

hj

∆tn
+ Lξ

ji

{︂
2Bξn−α

hi

[︂
κ0|ηn−α

h,i
|2 + A

(︁
ηn−α
hi

)︁2 (︁
1− ηn−α

hi

)︁2]︂
ι̂′
(︁
ξn−α
hi

)︁
(5.73)

−2ω0

[︃
ξn−α
h,ij

+ β

(︃
ξn−α
h,ij

−MiMjei
∂

∂Xi

ξn−α
h,j

)︃]︃
+

1

2

(︃
∂λ

∂ξhi

)︃n−α

(ln J)2

−1

2

(︃
∂µ

∂ξhi

)︃n−α (︁
2 ln J − CE

ii + 3
)︁2}︄

= 0,

ηnhj
− ηn−1

hj

∆tn
+ Lη

ji

{︂
2Aηn−α

hi

(︂
1− 3ηn−α

hi
+ 2

(︁
ηn−α
hi

)︁2)︂
ι̂
(︁
ξn−α
hi

)︁
(5.74)

+6ηn−α
hi

(︁
1− ηn−α

hi

)︁
γ0τ

(︁
ηn−α
hi

, ξn−α
hi

)︁
− 2κ0[︂

ι̂
(︁
ξn−α
hi

)︁
ηn−α
h,ij

+ ι̂′
(︁
ξn−α
hi

)︁
ξn−α
h,i

ηn−α
h,i

]︂}︂
= 0,

ξnhj
− ξn−1

hj

∆tn
+ Lξ

ji

{︂
2Bξn−α

hi

[︂
κ0|ηn−α

h,i
|2 + A

(︁
ηn−α
hi

)︁2 (︁
1− ηn−α

hi

)︁2]︂
ι̂′
(︁
ξn−α
hi

)︁
(5.75)

−2ω0

[︃
ξn−α
h,ij

+ β

(︃
ξn−α
h,ij

−MiMjei
∂

∂Xi

ξn−α
h,j

)︃]︃
+

1

2

(︃
∂k

∂ξhi

)︃n−α

−2

3

(︃
∂µ

∂ξhi

)︃n−α

(ui,j)
2 +

(︃
∂µ

∂ξhi

)︃n−α

εik (ηhi
)n−α εkj (ηhi

)n−α

}︄
= 0,

where yn−α
h = (1−α)yn−1

h +αynh . This discretization yields for α = 0, α = 1, and α =

0.5 the �rst-order accurate explicit Euler method, �rst-order accurate implicit Euler

method, and second-order accurate Crank�Nicolson method, respectively [433]. The

next step is to discretize the spatial variables using the �nite element methodology.

To this end, we multiply each equation with a test function, integrate over the entire
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domain, and integrate by parts where necessary. This leads to∫︂
V0

ηnhj
− ηn−1

hj

∆tn
δηnhj

dV0 +

∫︂
V0

Lη
ji

{︂
2Aηn−α

hi

(︂
1− 3ηn−α

hi
+ 2

(︁
ηn−α
hi

)︁2)︂
ι̂
(︁
ξn−α
hi

)︁
(5.76)

+6ηn−α
hi

(︁
1− ηn−α

hi

)︁
γ0
[︁
µ
(︁
ξn−α
hi

)︁
δij +

(︁
λ
(︁
ξn−α
hi

)︁
ln J − µ

(︁
ξn−α
hi

)︁)︁
CE−1

ij

]︁
[︁
CE

ij simj

]︁}︁
δηnhi

dV0 +

∫︂
V0

2κ0Lη
jiι̂
(︁
ξn−α
hi

)︁
ηn−α
h,i

δηnh,i
dV0 +∫︂

V0

2κ0Lη
jiι̂

′ (︁ξn−α
hi

)︁
ηn−α
h,i

ξn−α
h,i

δηnhi
dV0 −

∫︂
S0

2κ0Lη
jiι̂
(︁
ξn−α
hi

)︁
ηn−α
h,i

n0jdS0 = 0,∫︂
V0

ξnhj
− ξn−1

hj

∆tn
δξnj dV0 +

∫︂
V0

Lξ
ji

{︂
2Bξn−α

hi

[︂
κ0|ηn−α

h,i
|2 + A

(︁
ηn−α
hi

)︁2 (︁
1− ηn−α

hi

)︁2]︂
× ι̂
(︁
ξn−α
hi

)︁
+

1

2

(︃
∂λ

∂ξhi

)︃n−α

+ (ln J)2 − 1

2

(︃
∂µ

∂ξhi

)︃n−α (︁
2 ln J − CE

ii + 3
)︁2}︄

δξni dV0

+

∫︂
V0

2ω0(1 + β)Lξ
jiξ

n−α
h,i

δξn,idV0 +

∫︂
V0

2ω0Lξ
jiMiMjξ

n−α
h,i

δξn,jdV0 (5.77)

−
∫︂
S0

2ω0(1 + β)Lξ
jiξ

n−α
h,i

n0jdS0 = 0,

in large deformations, and∫︂
V

ηnhj
− ηn−1

hj

∆tn
δηnhj

dV +

∫︂
V

Lη
ji

{︂
2Aηn−α

hi

(︂
1− 3ηn−α

hi
+ 2

(︁
ηn−α
hi

)︁2)︂
ι̂
(︁
ξn−α
hi

)︁
(5.78)

+6ηn−α
hi

(︁
1− ηn−α

hi

)︁
γ0τ

(︁
ηn−α
hi

, ξn−α
hi

)︁}︁
δηnhi

dV0 +

∫︂
V

2κ0Lη
jiι̂
(︁
ξn−α
hi

)︁
ηn−α
h,i

δηnh,i
dV

+

∫︂
V

2κ0Lη
jiι̂

′ (︁ξn−α
hi

)︁
ηn−α
h,i

ξn−α
h,i

δηnhi
dV −

∫︂
S

2κ0Lη
jiι̂
(︁
ξn−α
hi

)︁
ηn−α
h,i

njdS = 0,∫︂
V

ξnhj
− ξn−1

hj

∆tn
δξnj dV +

∫︂
V

Lξ
ji

{︂
2Bξn−α

hi

[︂
κ0|ηn−α

h,i
|2 + A

(︁
ηn−α
hi

)︁2 (︁
1− ηn−α

hi

)︁2]︂
(5.79)

× ι̂
(︁
ξn−α
hi

)︁
+

1

2

(︃
∂k

∂ξhi

)︃n−α

− 2

3

(︃
∂µ

∂ξhi

)︃n−α

(ui,j)
2 +

(︃
∂µ

∂ξhi

)︃n−α

εik (ηhi
)n−α

× εkj (ηhi
)n−α}︁ δξni dV +

∫︂
V

2ω0(1 + β)Lξ
jiξ

n−α
h,i

δξn,idV +

∫︂
V

2ω0Lξ
jiMiMjξ

n−α
h,i

δξn,jdV

−
∫︂
S

2ω0(1 + β)Lξ
jiξ

n−α
h,i

njdS = 0,

in small deformations.

5.4 Finite Element Implementation

The �nite element method is applied to discretize the weak forms of the nonlinear

problems discussed in the previous sections approximating the primary variables (i.e.,
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displacement, and twinning and fracture order parameters). For this purpose, the

geometry of a continuous body B0 in the initial con�guration is approximated as

B0 ≈ Bh
0 =

ne⋃︂
1

B0e , (5.80)

where ne is the number of �nite elements. All kinematic variables and the geometry

are interpolated using the isoparametric concept within one �nite element B0e as

Xe =

ng∑︂
I=1

NI (ϑ)XI , (5.81)

where NI (ϑ) is the shape function de�ned within the reference element, ϑ denotes the

coordinates of the isoparametric reference element, and ng is the number of nodes in

each element. The mapping from the reference element Bfe to the initial con�guration

B0e and to the current con�guration Be are de�ned as

F fe = j
fe
J−1

fe
; J

fe
=

ng∑︂
I=1

XI ⊗∇ϑNI ; j
fe
=

ng∑︂
I=1

xI ⊗∇ϑNI ; (5.82)

∇ufe =

ng∑︂
I=1

uI ⊗ J−T
fe

∇ϑNI ; ∇δufe =

ng∑︂
I=1

δuI ⊗ J−T
fe

∇ϑNI ;

∇∆ufe =

ng∑︂
I=1

∆uI ⊗ J−T
fe

∇ϑNI .

In these equations, ∇ϑNI is the gradient of the scalar function NI with respect to the

coordinates ϑ; ∇ufe, ∇δufe, and ∇∆ufe are the material gradients of the displace-

ment, the gradients of their weighting functions, and their increments, respectively

[434].

5.4.1 Finite Element Formulation of the Weak Form of the
Equilibrium Equation

The �rst Piola�Kirchho� stress tensor in Eq 5.70 is replaced by the second Piola�

Kirchho� stress tensor, leading to

Pijδui,j = SikFjkδui,j =
1

2
Sik (Fkjδui,j + δuj,iFkj) = SijδEij, (5.83)
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where δEij denotes the variation of the Green�Lagrange strain tensor. Discretizing

and using the gradient of the displacement vector within an element Bfe

δEfeij =
1

2

ng∑︂
I=1

[︁
FfeikNI,j + NI,iFfekj

]︁
δukI =

ng∑︂
I=1

BkIδukI , (5.84)

where

B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

NI,1 0 0

0 NI,2 0

0 0 NI,3

NI,2 NI,1 0

0 NI,3 NI,2

NI,3 0 NI,1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (5.85)

Thus, the virtual work of the equilibrium equation can be approximated with �nite

elements by ∫︂
B0

δEijSij =
ne⋃︂
e=1

ng∑︂
I=1

δuIk

∫︂
Bfe

BIkSfekj (5.86)

5.4.2 Discretization of the Ginzburg�Landau Equations

Considering the following discretizations for the variables in the reference element

ηfe =

ng∑︂
I=1

NI (ϑ) η̂I ; δηfe =

ng∑︂
I=1

NI (ϑ) δη̂I ; ∆ηfe =

ng∑︂
I=1

NI (ϑ)∆η̂I ; (5.87)

ξfe =

ng∑︂
I=1

NI (ϑ) ξ̂I ; δξfe =

ng∑︂
I=1

NI (ϑ) δξ̂I ; ∆ξfe =

ng∑︂
I=1

NI (ϑ)∆ξ̂I ,

and performing the standard assembly operation, the systems of algebraic equations

for obtaining the nodal twinning and fracture order parameters are derived as

(M η
i +∆tnL

η
i +∆tnR

η
i ) ·∆ηfei = −rη

i , (5.88)(︂
M ξ

i +∆tnL
ξ
i +∆tnR

ξ
i

)︂
·∆ξfei = −rξ

i , (5.89)
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where

LηM η
i = LξM ξ

i =
ne⋃︂
e=1

ng∑︂
I=1

ng∑︂
K=1

∫︂
Bfe

NINKdV0; (5.90)

Lη
i =

ne⋃︂
e=1

ng∑︂
I=1

ng∑︂
K=1

∫︂
Bfe

2κ0Lη ι̂
(︁
ξfe
)︁
∇N T

I ∇NKdV0;

Rη
i (ηn, ξn) =

ne⋃︂
e=1

ng∑︂
I=1

ng∑︂
K=1

∫︂
Bfe

∂f η
i (ηn, ξn)

∂ηn
NINKdV0;

∂f η
i (ηn, ξn)

∂ηn
= 2Aηn

(︁
1− 3ηn + 2η2n

)︁
ι̂ (ξn) ;

rη
i (ηn, ξn) = (LηM η

i +∆tnL
η
i ) η

fe
n − LηM η

i η
fe
n−1 +∆tnf

η
i (ηn, ξn) ;

f η
i (ηn, ξn) =

ne⋃︂
e=1

n∑︂
I=1

∫︂
Bfe

f η
i (ηn, ξn)NIdV0;

Lξ
i =

ne⋃︂
e=1

ng∑︂
I=1

ng∑︂
K=1

∫︂
Bfe

2ωLξ∇N T
I ∇NKdV0;

Rξ
i (ηn, ξn) =

ne⋃︂
e=1

ng∑︂
I=1

ng∑︂
K=1

∫︂
Bfe

∂f ξ
i (ηn, ξn)

∂ξn
NINKdV0;

∂f ξ
i (ηn, ξn)

∂ξn
= 2Bξn

[︁
κ0|∇ηn|2 + Aη2n (1− ηn)

2]︁ ι̂′ (ξn) ;
rξ
i (ηn, ξn) =

(︂
LξM ξ

i +∆tnL
ξ
i

)︂
ξfen − LξM ξ

i ξ
fe
n−1 +∆tnf

ξ
i (ηn, ξn) ;

f ξ
i (ηn, ξn) =

ne⋃︂
e=1

n∑︂
I=1

∫︂
Bfe

f ξ
i (ηn, ξn)NIdV0.

In Eqs 5.87 and 5.88,M i is the phase �eld kinetic matrix, Li is the phase-�eld sti�ness

matrix, ∆ηfei and ∆ξfei corresponds to the increment of the order parameters, Gi is a

ni × ni symmetric global matrix, ni is the total number of degrees of freedom for the

order parameters, and f ξ,η
i (ηn, ξn) and rξ,η

i (ηn, ξn) are ni × 1 global column matrices

corresponds to driving forces and residuals for each state variables, respectively.

5.5 Numerical Examples

A number of numerical examples under various loading conditions in two-dimensional

samples are now presented to demonstrate that the model captures the deformation

mechanisms observed in metallic magnesium and ceramic boron carbide, both quali-
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tatively and quantitatively. The material properties used in the simulations are shown

in Table 5.1 for Mg and B4C. The time stepping parameters are chosen such that the

momentum balance scheme is second-order accurate and stable. Quadratic and lin-

ear Lagrange functions are used for the displacement and all other �elds, respectively.

Size, time, and stress are normalized by 1 nm, 1 ps, and 1GPa, respectively. Initial

conditions are also prescribed as part of the solution procedure.

Table 5.1: Material properties and model constants for magnesium and boron carbide

Parameters Value-Mg Value-B4C Reference

Elastic constants (C11) 63.5GPa 487GPa [305, 435]

� (C12) 25.9GPa 117GPa [305, 435]

� (C13) 21.7GPa 66GPa [305, 435]

� (C33) 66.5GPa 525GPa [305, 435]

� (C44) 18.4GPa 133GPa [305, 435]

Shear modulus (µ) 19.4GPa 193GPa [436, 437]

Bulk modulus (k) 36.9GPa 237GPa [436, 437]

Twin surface energy (Γ) 0.12 J/m2 0.54 J/m2 Eq 5.53

Twinning shear (γ0) 0.13 0.31 [411, 235]

Gradient energy parameter (κ0) 0.0878 nJ/m 0.4212 nJ/m Eq 5.55

Transformation barrier (A) 1.404GPa 3.01GPa [415, 235]

Regularization length (l, h) 1.00 nm 1.04 nm Eq 5.54

A fully coupled solution strategy along with a Newton�Krylov method is employed

to solve the non-linear equations in each time step. The problem-speci�c parts of the

computer code used to perform the simulations have been generated automatically

from a high-level description that resembles closely the notation used in this work by
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using a number of tools from the FEniCS Project ([299], [438], [300]). The precondi-

tioned Jacobi for nonlinear equations is employed as the method of solution. Three

di�erent problems have been solved:

(i) Twin propagation in two-dimensional magnesium and boron carbide single crys-

tals (Section 5.5.1);

(ii) Analysis of twinning induced by a crack under pure mode I or mode II loading

(Section 5.5.2);

(iii) Fracture in homogeneous boron carbide single crystals under biaxial compressive

loading (Section 5.5.3).

Parameters such as time instance after the (n − 1)th iteration tn, �nal time tf , and

the maximum number of iterations for the elasticity and the phase �eld equations

are chosen di�erently in each case and are reported while discussing the respective

problems.

5.5.1 Phase-Field Approach to Model Twin Growth and Prop-
agation

In this example, the nucleation and evolution of deformation twinning in a single crys-

tal of magnesium (Section 5.5.1.1) and boron carbide (Section 5.5.1.2) are simulated

in a two-dimensional domain in plain strain conditions (Figure 5.2).
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Figure 5.2: The numerical setup of the rectangular single crystal including a single
twin embryo in the material con�guration.

For validation, the model is initially solved for elastically isotropic pure magnesium

single crystals with the properties listed in Table 1. A circular twin nucleus (η = 1)

of initial radius a = 3nm is embedded in a rectangular domain (η = 0) of dimensions

40 × 40 nm for the magnesium simulations. The initial radius of the twin embryo is

set to 3 nm as a result of the fact that a bifurcation from circular to elliptical shape

occurs for a radius of 3.2 nm, corresponding to the analytical sharp interface solution

[270]. The lattice orientation vectors are in the form

s = (cos θ, sin θ)T ; m = (− sin θ, cos θ)T , (5.91)

where θ denotes the orientation of the habit plane. Also, according to the following

matrix-form gradient coe�cient

κ =

⎛⎝κ11 0

0 κ22

⎞⎠ , (5.92)

both isotropic (κ11 = κ22 = κ0) and anisotropic (κ11

2
= 2κ22 = κ0) twin boundary

surface energies are employed in our simulations to explore their e�ects and for val-

idation purposes. The following simple shear with Dirichlet boundary condition on
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the order parameter is considered

{u1 = ΛY, u2 = 0, η = 0} ∀X, Y ∈ ∂B, (5.93)

where Λ = 0.08 is the magnitude of applied shear for all simulations in the following

section.

5.5.1.1 Twin Embryo Propagation and Growth in Single Crystal Magne-
sium

Figure 5.3 shows contour plots demonstrating the spatial distributions of numerical

results for the growth of a circular twin embryo in single crystal magnesium with an

orientation of the habit plane θ = 0. The embryo is undergoing simple shear at 8%.

Parameters of interest include the twin order parameter (i, ii), y displacement (iii,

iv), and shear stress (v, vi). Each image pair considers both small (left side) and

large strains (right side), as well as isotropic (a, b) and anisotropic surface energies

(c, d). The results are illustrated at time instants of t = 50 ps and t = 500 ps

to show the evolution of twin's morphology. The mesh of the rectangular domain

includes 160,000 linear triangular elements. By using a standard h-convergence, we

obtained that the chosen mesh is �ne enough to deliver mesh insensitive results. The

⟨1 0 1 1⟩ plane and {1 0 1 2} direction are considered as the primary twinning system

in magnesium [271]. The phase �eld results in this chapter can be improved through

additional consideration of mechanisms across more loading conditions. The current

results are meant to highlight the application of phase �eld modeling approaches to

computational material science.
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First, the evolution of the twin order parameter subjected to simple shear with

the boundary conditions de�ned in Eq 5.93 at t = 50 ps and t = 500 ps for small and

large deformation with isotropic twin boundary energy are shown in the deformed

state in Figure 5.3(a, b)(i, ii). As can be seen, the twin embryo grows until it is

repelled by the rigid outer boundaries where the order parameter is set to zero.

Under these numerical conditions, a small orientation of the twin evolution is realized

due to the di�erence in the driving force for twinning, which is a factor of (F η)−1.

Finally, it is worth noting that the twin morphology at the �nal stage is in qualitative

agreement with the reference static phase-�eld results [50] and molecular dynamics

simulations [241], thus serving to validate the set of results in Figure 5.3(a, b)(i, ii)

for the proposed time-dependent phase-�eld model. Next, the distribution of the

displacement in the y direction for the domain under simple shear loading for small

and large strains at di�erent times are depicted in Figure 5.3(a, b)(iii, iv). The positive

and negative displacement values indicate that the left and right sides of the twinned

boundary regions are under compressive and tensile loading, respectively. The range

of displacement magnitudes at the very last time instant are lower than those at initial

times as a result of inhibiting by the boundaries. The corresponding evolution of the

shear stress for small and large strains with consideration of the isotropic surface

energy at various times are illustrated in Figure 5.3(a, b)(v, vi). Investigating the

shear stress distribution improves our knowledge of the redistribution of high local

stress resulting from twinning [278], and this provides new insights into demonstrating

the driving force for the propagation and growth of twin within a small region in the

microstructure. Finally, in Figure 5.3(a, b)(v, vi), it is also shown that the shear

stress within the twinning regions has negative values with di�erent lower limits for

small and large strains.

Next, the e�ect of anisotropic surface energy is studied in Figure 5.3(c, d)(i -

vi). For the twin order parameter in Figure 5.3(c)(i, ii), the equilibrium shape of

the twin embryo under small strains is wider in the horizontal direction (parallel to
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the habit plane) and �atter in the vertical direction at t = 50 ps as compared to the

isotropic energy results shown in Figure 5.3(a)(i, ii). This behavior has been observed

previously in the time-independent phase-�eld approach [50], where the results are

in agreement with those in this study, thus providing an additional con�rmation of

validation for our time-dependent phase-�eld model. After completing its growth in

the horizontal direction, Figure 5.3(c)(i, ii), the twin begins to grow in width for later

times, t = 500 ps, Figure 5.3(d)(i, ii). This behavior is correlated to the surface energy

anisotropy ratio κ11/κ2 [50]. Moreover, the twin interface thickness has a lower value

in the direction normal to the habit plane for the anisotropic surface energy scenario

depicted in Figure 5.3(c, d)(i, ii) as compared with the isotropic case from Figure

5.3(a, b)(i, ii). This phenomenon is consistent with that observed by Clayton [50]

and is related to the contribution of the core and elastic energies to the total surface

energy of the interface [273]. The displacement for the anisotropic case Figure 5.3(c,

d)(iii, iv) is lower than in the isotropic one from Figure 5.3(a, b)(iii, iv). Finally,

the variation of shear stresses for anisotropic surface energies at various time instants

under small and large strains are depicted in Figure 5.3(c, d)(v, vi). Considering the

results at t = 500 ps, Figure 5.3(c, d)(vi), the maximum and minimum shear stress

values for the current simulations are within a 7% di�erence of the results obtained

in [50] for a time-independent phase-�eld model, again validating our current time-

dependent phase-�eld model. For both isotropic and anisotropic surface energies, the

magnitude of the shear stress within the twinning region decreases as a function of

time and, eventually, becomes negative. This is consistent with experimental results

for single crystal magnesium under simple shear loading [236].

For the next set of simulation examples in Figure 5.4, the same boundary conditions

and numerical setup from Figure 5.3 are considered for θ = π/6. The layout of the

�gure is similar to that of Figure 5.3 with θ = 0 where (a, b)(i - vi) and (c, d)(i -

vi) are the simulation results for the order parameter, displacement, and shear stress

under small and large strains at t = 50 ps and t = 500 ps for isotropic and anisotropic
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surface energies, respectively. For the isotropic surface energy case in Figure 5.4(a)(i,

ii) at t = 50 ps, the twin is smaller as a consequence of less driving force under

the same shear loading of 8% as compared with Figure 5.3(a)(i, ii). Further, the

twin area fraction at t = 500 ps shown in Figure 5.4(b)(i, ii) is much smaller than

the case when the orientation of the habit plane is aligned with the shear loading

direction (Figure 5.3(a)(i, ii)). In the case of large strains, the twin tends to grow

more prominently in the direction of the habit plane when θ = π/6 than when θ = 0

(Figure 5.4(a)(ii)). The displacement contours shown in Figure 5.4(a - d)(iii, iv)

shows that the upper and lower sides of the twin's interface are under tensile and

compressive loading, respectively, which is similar to Figure 5.3(a - d)(iii, iv). The

displacement in the vertical direction (Figure 5.4(a)(iv)) is ∼17% greater than that

for the small deformation case depicted in Figure 5.4(a)(iii), and the maximum shear

stress under large strain conditions (Figure 5.4(a)(vi)) is 5% greater than that for

the small deformation case (Figure 5.4(a)(v)). At t = 500 ps, the twin embryo has

a greater thickness for small deformations (Figure 5.4(b)(i)) as compared with its

growth in length in the direction of the habit plane for the case of large deformations

(Figure 5.4(b)(ii)), until it is prohibited by the boundaries. The displacement at the

end of the simulation is around 17% larger for small strains (Figure 5.4(b)(iii)) as

compared with the large deformation result (Figure 5.4(b)(iv)). Lastly, the spatial

variations of shear stress at t = 50 ps and t = 500 ps are depicted in Figure 5.4(a,

b)(v, vi). As can be seen, the minimum and maximum shear stress values happen in

the twinned region and matrix, respectively. The heterogeneous stress distribution

around the twins is due to a sudden change in the stresses within the twin interface

[256].

Next, the phase-�eld results for the anisotropic surface energy and θ = π/6 are shown

in Figure 5.4(c, d)(i-vi). Considering the distribution of the twin order parameter for

small strains, Figure 5.4(c, d)(i, ii), the twin boundaries tend to be expanded parallel

to the habit plane when compared with the isotropic case because the elongation in the
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direction of s is favored due to a decreasing contribution of the gradient energy term

[50]. Pointing to Figure 5.4(c)(iii, iv), the maximum displacement values for large

deformations are 20% higher than those in the small deformation case from Figure

5.4(a)(iii, iv). At the tip of the twin, the shear stress is maximum and ∼10% larger

for large strain conditions (Figure 5.4(a)(vi)) as compared to the small deformation

case (Figure 5.4(a)(v)). For the same boundary conditions, the results are depicted

for t = 500 ps in Figure 5.4(b, d). Here, the twin embryo has a di�erent equilibrium

shape than what shown in Figure 5.3 for θ = 0. Namely, the twin is rotated in such a

way that one axis in the reference coordinate is aligned to the direction s of twinning

shear, as shown in Figure 5.4(d)(i, ii). The twin interface also has a lower thickness

in the direction normal to the habit plane due to the various contributions of the core

and elastic energies to the interface energy [273]. For the displacement contour, the

values are 30% larger for the anisotropic energy (Figure 5.4(d)(iii, iv)) as compared

to the isotropic case, while the di�erence in shear stress for small and large strains is

negligible.

5.5.1.2 Twin Embryo Propagation and Growth in Single Crystal Boron
Carbide

Following the validation for Mg single crystals, the model is employed to predict the

twin growth in single crystal boron carbide. In superhard materials, B4C in this study,

the failure is often correlated with twins and stacking faults at room temperature

[439, 440]. The presence of twins in pressureless sintered and hot-pressed B4C has

been identi�ed by a high-resolution TEM [441], and reported in previous literature

[53, 442], ranging from t = 1nm up to t = 30 nm in width for milled and unmilled

samples [443]. It has been hypothesized that the formation of nanotwins and the

presence of twin boundaries in boron carbide could lead to strengthening the materials

by arresting twin boundary slip within the nanotwins [444]. The homogeneous and

heterogeneous nucleation and growth of twin embryos will lead to formation of mature
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twins with the length and thickness of several hundred nanometers or micrometers

[445, 446]. Given the lack of true images of the twin interfaces in boron carbide

[411, 447] as well as the di�culty in experimentally tracking the twin growth process,

the present continuum mechanics model will provide insight into the deformation

behavior of pre-existed twinned B4C, which have been largely neglected in previous

works [50, 71]. In addition, the morphology of mature twins will be a�ected by

the early stages of the twin nucleus evolution, which necessitates a comprehensive

model such as the one proposed herein. In this light, understanding how twins are

formed and then developing e�ective strategies for incorporating twin boundaries into

polycrystalline microstructures constitute an attractive approach for enhancing the

mechanical response of ceramics. To address this, we conducted numerical simulations

using the phase-�eld model in a boron carbide single crystal. The combination of

growth of a single twin embryo in two critical directions, including the twin thickening

through twin boundary (TB) migration and the twin tip (TT) propagation have been

measured and compared with experiments (Figure 5.5). Shear strains are applied by

displacing all the boundary regions, while the bottom side is �xed. A time step of

∆t = 1 fs is chosen for solving the problem. The dimensions of the simulation domain

are 40 × 40 nm in the X and Y directions, and contains 160,000 linear triangular

elements. One circular twin embryo with a radius of 5 nm is inserted at the center

of a square containing the perfect B4C crystal lattice, using the Eshelby method as

in [448]. The magnitude of applied shear Λ is set to 0.3, which is maximum at the

top and zero at the bottom. Additional simulations showed that choosing a shear

magnitude lower than 0.3 leads to shrinking and disappearing of the twin.

Schematics of the simulation result for an initially circular twin embryo in boron

carbide at t = 1ps and t = 2ps with the X-axis along the [1101] direction are shown

in Figures 5.5(a) and 5.5(b), respectively. Figure 5.5(a) depicts the �twin tip�, which

occurs in the primary direction of twin growth, and the �twin boundary�, which occurs

in a direction perpendicular to the twin growth. Under shear loading, the size and
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shape of the initial circular twin changed until reaching a stable con�guration. Similar

to other ceramics such as calcite, the twin was contracted at the beginning of loading,

and this has been shown to be related to the stress reversal [449]. Next, the twin

embryo's shape and growth direction at t = 2ps from Figure 5.5(b) is compared

with the high resolution transmission electron microscope images (Figure 5.5(c)) and

density functional theory results (Figure 5.5(d)) [444]. The shape and angle of twin

embryo obtained from the numerical simulations are in good agreement with the

previously published results, showing the symmetric twin with an inclination angle

of 73.1◦ to 73.3◦.
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Figure 5.5: The distribution of twin order parameter in boron carbide from snapshots
taken at (a) 1 ps and (b) 2 ps for samples deformed under shear strain: (a) Various
interfaces associated with a single twin embryo; (b) Direction of twin propagation in
a 40 × 40 nm plate with an initial circular twin nucleus of radius 5 nm denoted by
yellow dotted line; (c) TEM image showing the larger twin spacing in boron carbide
at the 100 nm scale with an angle of 73.3◦ [444]; and (d) Symmetric twin in boron
carbide with inclination angles of 73.1◦ and 73.3◦ on the two sides predicted by
density functional theory [444]. (c) and (d) reproduced with permission from [444].
(For interpretation of the references to color in this �gure, the reader is referred to
the web version of this article.)

Following this basic validation for boron carbide with results under restrictions of

experimental limitations in the literature, the change of the twin size (e.g., length

and thickness) and twin interactions in a single crystal boron carbide are explored

in order to measure the velocity of twin tips and boundaries (Figure 5.6). Being an

important parameter for indicating the twin boundary propagation as a key plasticity

mechanism, the present �ndings have important implications for studying the mor-

phology of twins. To accomplish this, the velocities are calculated by tracking the

mid points (η = 0.5) on the twin tip and twin boundary interfaces with respect to
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time. Currently, there is no such statistical data on twin boundary velocity for single

crystalline boron carbide, and so we hope our results will provide some new insights

for future research. Considering only one nucleus in the center of the domain, the

twin boundary (red colored) and twin tip (blue colored) velocities are shown in Fig-

ure 5.6(a). The distribution of the twin order parameter at di�erent steps along with

the direction for twin tip and twin boundary are also shown in the inset, where the

applied shear loading of 0.3 is in the [1101] direction. By choosing ∆t = 1 fs as the

time step, the initial circular nucleus shrinks in size until reaching to a stable shape.

After that time, the twin starts to grow in the direction of 73.6◦ with respect to the

loading direction. In this case, the twin tip and twin boundary velocities are larger

at the beginning of the loading in comparison with later time instants due to the

detwinning process [449] and larger space for uncon�ned propagation. In addition,

the average of twin tip velocities (2.71 ± 0.86 nm/ps) are larger than twin boundaries

(2.91± 0.37 nm/ps) as a result of having a larger aspect ratio. For the two nuclei sce-

nario shown in Figure 5.6(b), the average of twin boundary velocities of the middle

embryo (2.76±0.48 nm/ps) are larger than the single twin case because of the tendency

of the middle twin to interact with the twin at the top of the inset (termed as Twin

#2). The variation of the twin tip velocity is also smaller than the single twin case

on the basis of the fast growth of the twin's aspect ratio. Moreover, Twin #2 has a

lower aspect ratio, indicating that the two twins will have a wedge shape in the case

of interaction between each other. The spreading of a wedge shaped twin has been

seen for other ceramics as a result of rapid load drop associated with the twinning

process [450].
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Figure 5.6: Bar charts showing the twin boundary (red arrow) and twin tip (blue
arrow) velocities for a single crystal boron carbide by considering di�erent numbers
of twin embryos under a shear loading of 0.3: (a) Velocities of a single twin in the
center of the numerical geometry at various noted time steps. The insets show the
evolution of the twin, parallel and orthogonal to the habit plane; (b) Velocities of two
nuclei with respect to time. In the inset, the second twin is inserted at x = 25 nm
and y = 35 nm; (c) Velocities are shown for three twin embryos. A di�erent growth
direction for the third twin is clear in the inset; (d) Change of twin boundary and
twin tip velocities for four nucleus. The growth of each embryo is illustrated in the
inset. (For interpretation of the references to color in this �gure, the reader is referred
to the web version of this article.)

When placing Twin #3 at the bottom right of the specimen near the �xed boundary

conditions (Figure 5.6(c)), the average twin boundary velocities of Twins #1 and #2

are increased. This is likely a consequence of increasing the twins' aspect ratio, which

can be related to the high tendency of twins to interact. Moreover, Twin #3 grows in

the direction perpendicular to other embryos because of arresting at the boundary in
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the scenario depicted for the three twin systems in Figure 5.6(c). By adding another

embryo close to the �xed boundary condition in a four twin system (Figure 5.6(d)),

all the twins' aspect ratio decreased, with Twin #2 decreased by ∼30% in both length

and width. Furthermore, the embryo in the middle tended to connect to the nucleus

at the top of the domain as a result of the proximity of Twin #2 with the shear

loading. Altogether, adding more twin nuclei leads to decreasing the twin boundary

velocity of Twin #1, which can be caused by the local stress created from other nuclei

to restrict the movement of the boundary.

5.5.2 Fracture-Induced Twinning in Single Crystal Magnesium

The next example seeks to evaluate the current phase-�eld approach for studying

twinning at a crack tip in magnesium. This is motivated by our need to better

understand the sequence and competition of twinning and fracture, which is di�cult

to unravel experimentally [308] (e.g., via nanoindentation tests). In this subsection,

a stationary pre-existing crack is considered by a thin notch in a two-dimensional

geometry for studying twinning under mode I and mode II cracking. The numerical

setup is shown in Figure 5.7. An initially square domain of size 100 nm by 100 nm

with a pre-existing edge crack of length 50 nm and thickness 4 nm with a rounded tip

of radius 2 nm is considered for simulations under a plain-strain condition. The crack

is assigned a �nite radius to alleviate extreme deformations due to singular stress

�elds at the tip [451]. For this problem, only Eqs 5.83 and 5.88 are solved iteratively.

For boundary conditions, the crack surface is free of traction (Pijnj = 0) and the force

conjugate to the order parameter (2κijη,inj) is set to zero along all of the boundary

conditions. Along each external boundary condition except for the crack surface, the

displacements for pure mode I or mode II loading are imposed as was done in [452].

The orientation of the twin system, s and m, is chosen such that the resolved shear

stress is maximum (i.e., θ = 1.2 rad for mode I and θ = 0 for mode II). In addition, a

small twin nucleus with a radius of 0.8 nm at the crack tip is considered as the initial
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condition for the twin order parameter.

Figure 5.7: A square domain containing an edge crack for numerical simulations under
plain strain condition. The origin of the (X, Y) coordinate system is at the crack tip,
with positive X downward and positive Y to the right.

The phase-�eld results for mode I loading are illustrated in Figure 5.8 where a con-

tour of the twin order parameter is plotted. It is clear that the twin growth to the

external boundaries is prohibited by the imposed displacement boundary conditions.

By progressing in time, the ⟨1 0 1 1⟩{1 0 1 2} twin band is nucleated at the crack tip

and develops at an externally applied strain of 5% due to the stress concentration.

The shape and angle of the twin of 69.4◦ at t = 110 ps are in agreement with the

atomic simulation results of tensile twinning in single crystal magnesium [453], where

a value of 69◦ was reported.
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Figure 5.8: Time-evolved twin morphology for mode I loading of a single crystal
magnesium at 4% tensile strain: (a) t = 1ps; (b) t = 50 ps; (c) t = 75 ps; and
(d) t = 110 ps. The resulting twin propagation angle is 69.4◦, which is close to the
molecular dynamics results of ∼ 69◦ [453]. (For interpretation of the references to
color in this �gure, the reader is referred to the web version of this article.)

The mode II case is shown in Figure 5.9 for the twin order parameter at various time

instants. Similar to the mode I case, the twin nucleates at the crack tip and starts

to grow until it is inhibited by the right boundary condition. As expected, the twin

system is aligned in a direction that has the maximum resolved shear stress (θ = 0).

This results is in qualitative agreement with the stationary phase-�eld model under

similar boundary conditions [419], thus providing additional validation for our time-

resolved phase-�eld model. This needle-shaped lenticular twin, which has also been

observed in [454], suggests that twin growth occurs by extension of a fast twin tip

followed by a coordinated slower migration of the boundaries [244].
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Figure 5.9: Time-evolved order parameter for mode II loading of a single crystal
magnesium at 5% tensile strain: (a) t = 1ps; (b) t = 50 ps; (c) t = 100 ps; and (d)
t = 140 ps. (For interpretation of the references to color in this �gure, the reader is
referred to the web version of this article.)

5.5.3 Phase-Field Modeling of Fracture Subjected to Shear
and Compressive Loading in Anisotropic Boron Carbide
Single Crystals

The subject of crack growth in the literature has mainly focused on mode I fracture

because opening mode crack growth is preferred before that under mixed mode or

pure shear mode conditions [455]. It is recognized that, even under pure shear loading,

local tensile stresses at the tip result in crack growth under mode I conditions [456].

However, cracks can grow in brittle materials under mode II loading when the ratio

between the critical stress intensity factors, KIIc/KIc, is low [389]. It is also believed

that at a su�ciently high con�ning pressure, the crack is assumed to extend along
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a smooth curved path that maximizes KII [457]. In heterogeneous brittle solids, the

di�erent microstructural inhomogenities (e.g., voids and microcraks) result in a large

process regions at the crack tip, and this may lead to macroscopic mode II failure

under compressive loads in such materials [458]. The study of crack initiation and

propagation of mode II fracture is, thus, important in order to better understand the

behavior of cracks in brittle solids.

Classically in phase-�eld modeling in the literature [426], it is assumed that for

compressive deformation states, crack growth does not take place. To deal with

this, a common technique is to decompose the strain energy density into tensile and

compressive parts using a spectral decomposition [377], or a hydrostatic-deviatoric

approach [387]; however, both of the decomposition have disadvantages that have

yet to be addressed. Speci�cally, regarding the spectral decomposition, the force-

displacement curve shows unphysical sti�ening in the fully-cracked specimen [390].

For the hydrostatic-deviatoric method, there are limitations for compression-dominated

loading (e.g., the material is allowed to crack in volumetric expansion and shear, but

not in volumetric compression) [356]. In addition, both of these popular decompo-

sitions can only be used for isotropic materials [391]. Nevertheless, boron carbide

has strong anisotropic elasticity (Emax

Emin

= 8.11, where Emax and Emin are the gen-

eral maximum and minimum Young's modulus, respectively) [459]. To address these

limitations in the current study, the elastic strain energy density, Eq 5.45, in small

deformations can be rewritten as [391]

Ψe =
1

2
tr (Ψ)2 ; Ψ = Ψλ +Ψµ, (5.94)

where Ψλ =
√
λεe and Ψµ =

√
µεe are the tensorial square roots of the elastic

strain energy density, which are dependent on the material directions. Finding the

principle roots of the strain energy densities Ψ1, Ψ2 and Ψ3 with corresponding

principle directions n1, n2, and n3, the total principle strain energy densities under
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compressive (-) or tensile (+) types of deformation can be written respectively as

Ψe
− =

1

2
⟨Ψ1⟩− +

1

2
⟨Ψ2⟩− +

1

2
⟨Ψ3⟩− , (5.95)

Ψe
+ =

1

2
⟨Ψ1⟩+ +

1

2
⟨Ψ2⟩+ +

1

2
⟨Ψ3⟩+ . (5.96)

This new energy density decomposition will be employed to predict the crack propa-

gation under mixed mode loading in boron carbide.

5.5.3.1 Crack Initiation and Propagation Under Biaxial Compressive Stress
in Single Crystal Boron Carbide

Consider the biaxial compression test of a single crystal B4C specimen with a sin-

gle pre-existing notch under plane strain condition as shown in Figure 5.10. The

dimensions of the square domain are those of Figure 5.7, and the material pa-

rameters are the same as those mentioned in Table 5.1. Additionally, the frac-

ture surface energy (Υ) and cleavage anisotropy factor (β) are set to 3.27 and

100 J/m2 (or 0 for isotropic damage), respectively [460]. In the simulations, a total

of 323,460 triangular elements were used to discretize the domain with a �ner mesh

assigned to critical zones. A high con�ning stress is chosen such that the opening

stress intensity factors at the tip of the crack in any direction is zero. The stress

parallel to the crack plane is assumed to be larger than the stress values normal to

the crack plane (σXX > σYY). The initial condition for the time-dependent fracture

order parameter and time step are set to ξ(t = 0) = 0.01 and ∆t = 0.5 fs, respectively.

In the simulations, all the frictional e�ects on the crack surfaces are disregarded.
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Figure 5.10: Geometry and boundary conditions in the numerical simulations of biax-
ial loading in a pre-notched domain. The Cartesian coordinate system is considered
at the crack tip.

The crack evolution process under these numerical conditions is depicted in Figure

5.11. As shown, biaxial compression �rst leads to the initiation of the crack from the

tip of the notch (Figure 5.11(a)). The range of the fracture order parameter indicates

that the crack is not fully formed at t = 0.5 ps. At t = 0.75 ps (Figure 5.11(b)), the

crack kinks as two single straight branched cracks at a small angle. By progressing in

time to t = 0.9 ps, two anti-symmetric cracks begin to propagate toward the top and

bottom boundaries due to the larger compressive normal stress parallel with the crack

plane (Figure 5.11(c)). In addition, the crack grows in incrementally small steps that

are consistent with experimental observations for other brittle materials [461, 462].

At the last time frame of t = 1ps, the propagation path of cracks in single crystal

B4C is shown (Figure 5.11(d)). As can be seen, the crack patterns follow a curvilinear

path described by a function axb. The crack paths reported analytically in [463] and

measured experimentally in [461] support this result. In the studied experiments, b

was found in the interval 1.43 to 1.58 for pre-fractured specimens of gypsum under
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uniaxial and biaxial compression [457]. From the analytical model, the exponent was

required to be equal to 1.5 in order to be independent of the crack extension length

[463]. For boron carbide in this study, the exponent b is obtained as 1.66 ± 0.06

and this is in reasonable agreement with the predicted theory for brittle materials

[457]. The curvature parameter a is equal to 0.49 ± 0.08 (nm)−0.66 and the angle of

the branched kink is 73.1◦, which is in good agreement with the value (70◦) reported

in [388].

Figure 5.11: Crack evolution obtained with the phase-�eld approach under a biaxial
stress loading condition in single crystal B4C: (a) At t = 0.5 ps, the fracture order
parameter starts to accumulate at the tip of the pre-existing notch. The maximum
value of the order parameter is 0.3, showing that the crack region is not fully formed;
(b) Two fully cracked regions start to grow via an incipient kink at t = 0.5 ps; (c)
Two anti-symmetric cracks at t = 0.9 ps which emerged �rst at the crack tip. The
inset shows the mode II crack growth under a combined load of shear and high
compression. (d) Stable propagation of cracks along a curvilinear path described by
y = axb at t = 1.0 ps. The angle from the previous crack plane to the new assumed
direction of crack growth is 73.1◦. (For interpretation of the references to color in this
�gure, the reader is referred to the web version of this article.)
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The homogeneous damage distribution (ξ ∼ 0.5) in Figure 5.11 is also due to the

hydrostatic nature of the loading. As it is shown in [354], the damage initiation

criteria in the current phase-�eld potential for fracture is ful�lled at in�nitesimal

load; however, at the crack free surface where the load is not applied, the color is

dark blue, which indicates no damage, as expected.

5.6 Concluding Remarks

A robust �nite element procedure for solving a coupled system of equilibrium and

time-dependent Ginzburg�Landau equations has been derived based on thermody-

namic laws. The model has been used for studying the evolution of twinning de-

formation and fracture in anisotropic single crystal magnesium and boron carbide

at �nite strains. The formulation considers distinct order parameters for fracture

and twinning. For the �rst time, a monolithic strategy has been employed for solv-

ing the coupled mechanical equilibrium and order parameters evolution equations.

The computational procedures and numerical algorithms are implemented using the

Python-based open-source platform FEniCS. The present nonlinear �nite element

code has been developed and used to study: (i) the growth and propagation of defor-

mation twinning in single crystal magnesium and boron carbide, (ii) fracture-induced

twinning in single crystal magnesium under pure mode I and mode II loading, and

(iii) the prediction of the crack path under biaxial compressive stress loading in single

crystal boron carbide. The numerical results for all the problems are in agreement

with the available experimental data and analytical solutions in the literature. It has

been demonstrated through numerical simulations that the proposed model delivers

adequate results matching qualitatively a variety of observed phenomena, including

the growth of existing twin embryos, the e�ect of pre-existing cracks on the twin path

under various loading, and the propagation of cracks under compression for highly

anisotropic boron carbide. The current contribution opens up new possibilities for

multi-scale fracture models. In the future, our �nite element-based phase-�eld model
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can be applied for studies of phase transformations (e.g., amorphization) and in-

teraction between plasticity and fracture under high strain-rate loading. As a next

step, the current model could be combined with the discrete localized plastic �ow

(e.g., shear band and dislocation pileups) and thermally-activated mechanisms (e.g.,

melting) to capture the behavior of the brittle materials in laser spall experiments.

5.7 Data Availability

The authors declare that the main data supporting the �ndings of this study are

available within this article. Extra data are available from the corresponding authors

upon reasonable request.

5.8 Code Availability

The Python code, generated during the current study, is part of the FEniCS project

available at http://www.fenicsproject.org/download, and an example for the compu-

tational implementation is available in [302] to be used under the GNU Public license

[303].

5.9 Declaration of Competing Interests

The authors declare no competing �nancial interests or personal relationships.

5.10 CRediT Authorship Contributions Statement

B.A developed the model, wrote the code, designed and performed all simulations,

analyzed results, and wrote the original draft. H.J developed the model, analyzed

results, reviewed, and edited the submitted journal article. B.E.A helped with the

code, allocated the computational resources, reviewed and edited the submitted jour-

nal article. A.R helped in computational aspects, reviewed and edited the submitted

161

http://www.fenicsproject.org/download


journal article. J.D.H supervised the research, acquired funding, reviewed, and edited

the submitted journal article. All authors discussed the results.

5.11 Acknowledgements

The authors acknowledge support from Natural Sciences and Engineering Research

Council of Canada (NSERC) Discovery Grant 2016-04685 and NSERC DNDPJ 531130-

18, and partial support of the MIUR-PRIN project XFAST-SIMS (no. 20173C478N).

162



Chapter 6

Conclusions & Future Work

6.1 Conclusions

This thesis developed advanced physics-based computational models to study the

mechanical response of novel light-weigh materials under various loading conditions,

seeking to address the limitations that exists in experimental approaches (e.g., high Z

contrast necessary for good imaging quality in X-ray microtomography [464]) or �rst

principle methods (e.g., molecular dynamics simulations, density functional theory,

and lattice static models). Various computational approaches were applied to explore

the failure mechanisms of three di�erent materials system: 1. novel self-propagating

high-temperature synthesized (γ + α2)-TiAl/Ti3Al-Al2O3 ceramic-metal composites,

2. nanoscale single crystal magnesium, and 3. nano-grained single crystal boron car-

bide. For the cermet material system, a three-dimensional microstructure-based �nite

element method, employing a modi�ed variational formulation of the Gurson model,

was used to capture the strain rate dependent behavior. Then, the numerical results

were validated through multi-scale testing and imaging (e.g., quasi-static and dynamic

uniaxial compression tests). For magnesium and boron carbide, a time-resolved phase

�eld approach was developed to investigate the predominant deformation mechanisms,

including fracture and twinning. The �nite element method was utilized to deal with

the coupled phase-�eld and elasticity equations, and a monolithic iterative procedure

was applied in an open-source �nite element computing platform to solve the gov-
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erning equations. Due to the limited published data involving single crystal boron

carbide, the model was initially solved for the growth and propagation of a single

twin embryo in single crystal magnesium, and the phase-�eld results were validated

with the most recent molecular dynamic simulations for twin interface velocities from

this material. After using and validating the model for magnesium, the phase-�eld

approach was extended to describe the fracture and twinning in single crystal boron

carbide.

This thesis achieves its objective of providing a comprehensive study of the me-

chanical response and deformation mechanisms of novel light-weight materials used

in impact applications in the form of two peer-reviewed published papers (Chapters

2 and 3) and two submitted papers (Chapters 4 and 5). The main results from this

thesis are summarized for further emphasis:

� Considering a commercial cermet rather than an idealised one with high particle

volume fraction, a three-dimensional FCC unit cell model could reasonably

capture the experimentally observed stress-strain response under quasi-static

uniaxial compression tests. The numerical results also showed that increasing

the particles volume fraction from 65% to 72% resulted in increasing the material

strength by 6%. In addition, there was a gradual transition from low to high

strain ratio (the ratio of transverse to longitudinal strain), attributed to di�erent

behavior of particle clustering or independent reinforcements.

� Proposing a modi�ed variation formulation of the Gurson model along with a

polynomial cohesive zone model for the decohesion of the particle-matrix inter-

face, the results indicated that most of the dynamic properties of the (γ + α2)-

TiAl/Ti3Al-Al2O3 cermet (e.g., failure strain) are much higher than the quasi-

static loading. A transitional strain rate describing the increase in compressive

strength was 800 s−1 at 2480MPa, which were in good agreement with exper-

imental data. Furthermore, for di�erent particle shapes, increasing the void
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volume fraction resulted in decreasing the initiation toughness and increasing

the propagation toughness.

� Implementing a time-resolved phase-�eld model for studying the evolution of

twins in Mg, the interface velocity pro�les in both twin tip and twin boundary

directions were extracted to obtain the kinetic coe�cient by validating the re-

sults with molecular dynamics simulations. The results indicated that the twin

tip velocities were constant, while the twin boundary velocities were decreasing

when approaching to the outer boundary conditions. In addition, the magni-

tude of the shear stress in the twinned region decreased as a function of time

and became negative; this has been observed experimentally.

� Employing calibrated and validated continuum mechanical theory, the physi-

cal mechanisms of twinning and fracture in anisotropic brittle materials were

studied. The sequence of deformation mechanisms were modeled in the ceramic

boron carbide by solving the simultaneous geometric nonlinearity, nonlinear

elasticity, and surface energy anisotropy with the �nite element method. Re-

sults in this thesis provided new insights into activity or inactivity of di�erent

inelasticity mechanisms under compression and shear. For example, the crack

propagation and growth in boron carbide was predicted for specimen under bi-

axial compressive loading by comparing with an analytical solution from the

literature.

6.2 Future Work

The majority of future work will be centered around modeling and validation of the

dynamic failure of boron carbide. Speci�c activities will include:

� Considering the thermal and plastic parts into the phase-�eld formulation for

fracture, the current model from Chapter 5 can be expanded to study phase

transformation in brittle ceramics under high impact loading. By considering
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the complete terms for the inelastic part of the deformation gradient, including

temperature [465], dislocation [466], and amorphization [71], the competition

of these mechanisms can be quanti�ed and serve as a foundation for future

optimization of boron carbide under ballistic impact loading. Further challenges

arise since many of these deformation features may be inherent in as-formed

plates [467], in additional to being able to be activated during dynamic failure

[468].

� Tracking complex crack trajectories induced by the spatial variation of mi-

crostructure features across a heterogeneous material that are di�cult to cap-

ture with conventional numerical methods [469] can be achievable. In fact,

the nano-grained boron carbide, with smaller grains and more grain boundaries

than conventional 15µm-sized B4C [470], has been observed to have di�erences

in crack propagation (i.e., conventional boron carbide is solely transgranular

[100], while the nano-grained B4C is a combination of trans- and inter-granular

[471]). Therefore, predicting the crack path during loading can be of great help

for future material design.

� Implementing the model for large scale problems using high performance com-

puting clusters to simulate the crack behavior in engineering applications [472]

(∼ 10 × 10 × 1 cm). From a modeling perspective, current computing capacity

limits the study of multi-length scale material response at a realistic physical

dimension.

� Extension of the model to study the boundary value problems involving more

complicated geometries and boundary conditions [473]. This includes improve-

ments in meshing strategies for multi-scale fracture or di�erent orientation of

crystal structure [474].

� Generalizing the interpolation functions used in the phase �eld model to match
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additional data for other stress-deformation states. These can be higher order

functions with di�erent coe�cients, which can be obtained from MD simulations

[475] to better predict the dynamic behavior of boron carbide.

� The integration of these activities into a comprehensive physics-based model for

nano-grained boron carbide will allow us to provide guidance to our partners

at USA Army Research Laboratory (ARL) for material re�nement. This could

include, for example, informing ARL of the e�ects of grain size or spatially-

distributed twinning on properties and performance. ARL would lead activities

to determine what processing conditions and additives are needed to produce

the desired microstructure, and we would use these directions through compu-

tational materials science.
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