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Abstract

In the realm of contemporary research, especially after a global pandemic, the po-

tential of remotely-collected webcam eye-tracking has emerged as a promising yet

relatively uncharted avenue. This thesis aims to both uncover and bolster the utility

of this method in understanding human behaviors, navigating the intricate trade-offs

it presents.

Chapter 1 gives context to the aim of this thesis by providing a panoramic view

of eye-tracking, remote and online experimentation, and the unique challenges that

they present when combined to form remote webcam eye-tracking.

In Chapter 2, we endeavoured to understand the utility of webcam eye-tracking

as a tool to explore the persistence of eye-hand coordination patterns within digi-

tized object interactions. Operating within a fully remote experimental setup, we

successfully deployed a digital drag-and-drop cursor movement task with webcam

eye-tracking, gathering complete datasets from 51 participants who used their own

web-cameras as eye-trackers. Our results demonstrate the usefulness of webcam eye-

tracking by capturing robust eye-cursor dynamics, and further reveal novel empirical

insights about the adaptability of the visuomotor system in a digital domain.

Chapter 3 pivots to evaluate the practical utility of webcam eye-tracking within a

binary choice decision-making domain. Building off of prior cursor-tracking work and

established binary choice tasks, we deployed our webcam eye-tracking study to 100

remote, crowdsourced participants. With webcam eye-tracking, we found decision-

difficulty effect earlier than what cursor-tracking alone could provide, demonstrating

the utility of webcam eye-tracking. In addition, webcam eye-tracking afforded us
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the opportunity to capture more nuanced decision-making processes as they relate to

gaze-driven information sampling, adding depth to the method’s usefulness.

Accompanying these investigations, Chapter 4 serves as a comprehensive, practical

guide, crystallizing lessons from the challenging process of applying webcam eye-

tracking to our chosen domains. Beyond its value as a collection of invaluable tips,

the chapter leverages evidence from the previous studies, providing evidence-based

recommendations on data quality, participant engagement, and experimental costs.

This thesis concludes with Chapter 5, providing a reflective perspective when

revisiting the contributions made in the previous chapters. Analyzing the method’s

utility and its empirical implications, my definition of utility evolves to be more broad

and holistic. I contemplate the future of eye-tracking technology from various angles,

and conclude this thesis with personal reflections on the challenges and rewards of

harnessing webcam eye-tracking.

In summary, this thesis showcases the potential of remotely-collected webcam

eye-tracking in comprehending human behaviors. From eye-hand coordination to

decision-making, and from practical guidance to future implications, the research

paints a compelling narrative of webcam eye-tracking’s utility, bridging the gap be-

tween remote data collection and nuanced insights into human behavior.
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Chapter 1

Introduction

1.1 Preamble

It’s 2050. You emerge from your catastrophic weather-proof sleeping pod after it

gently wakes you up at the perfect moment in your sleep cycle. Energized, you pet

your robot dog, whose qualities are so life-like you’re still in disbelief that he’s not

really “real”. You reach for a small case on your nightstand, opening it and then

popping in your freshly-charged contact lenses, ready to start your day. As you

make your way into the kitchen, you glance at the caffeine dispenser, turning on the

machine and confirming your usual morning beverage order with a couple quick blinks.

Your gaze moves to your temperature-regulating food cabinets, where the opaque

cabinet doors become transparent for you to survey their illuminated contents. As

you browse, you’re feeling uninspired, but unbeknownst to you, a couple items have

piqued your subconscious interest, and moments before you become frustrated with

your AI-grocer, your robot pup suggests a mangoberry and cocomelon smoothie. He’s

a genius! It never ceases to amaze you how he always knows exactly what will hit the

spot. Sure, the world is simultaneously burning while drowning, and you’re confined

to a small bunker somewhere in the Canadian mountains, but wow is it ever cool to

have a pair of eye-tracking contact lenses that make life so much easier.

Ok, it’s 2023 again. While you’re maybe a bit apprehensive (or filled with existen-

tial dread) about the future, especially for those that believe in science, you have to at
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least admit that a future with eye-tracking contact lenses sounds pretty neat. In the

meantime, what if everyone wore specialized eye-tracking glasses? Besides making our

daily activities more convenient with painless Internet of Things device interactions,

or enhancing a gaming experience, a world with ubiquitous eye-tracking would likely

be much safer. Operating a vehicle or operating on a brain tumor - these are the

kinds of riskier moments that could be de-risked with eye-tracking. If everyone wore

eye-tracking glasses, there could be multiple solutions to preventing driving accidents,

like disabling a vehicle’s ignition if the driver displays intoxicated gaze patterns, or

alerting nearby pedestrians at a crosswalk that an approaching vehicle is being driven

by a person whose eyes are on their phone screen instead of the road.

Of course, no one really owns or wears this specialized eye-tracking equipment,

and even in a dystopian (utopian?) 2050 future, it’s probably unlikely we’ll wear eye-

tracking devices, regardless of their form factor. But, what if I told you that right

now, upwards of one billion households worldwide may have the components of an

easy-to-use and unobtrusive eye-tracker already (Statista Search Department, 2021)?

If you missed the title of this thesis, you might be surprised to find out that this

magical and pervasive eye-tracking technology I’m referring to is in fact webcam eye-

tracking. There’s no doubt that the global pandemic accelerated users’ comfortability

with webcams, with videoconferencing becoming the safest way to engage in teaching

kindergarteners, visiting with aging family members, or attending global academic

conferences. For most computer owners and users, if they didn’t have a webcam

prior to the pandemic, it was one of the first purchases for their new home office.

For instance, Logitech, a consumer hardware manufacturer, reported modest year

over year increases of around 8% for their PC webcam sales until 2021, when the

pandemic sent webcam sales into a tailspin. In twelve months, webcam sales alone

increased 240%, from $129 million to $440 million, and the next year, another $400

million’s worth of webcams were sold at Logitech (Logitech 2023 Annual Report, SEC

Form 10-K, 2023). That is a lot of new eye-trackers on the market.
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Eye-tracking using a webcam is relatively new (first iterations tested by Bäck,

2006), but eye-tracking as a science isn’t. For the last 200 years, scientists have

sought to understand bigger-picture concepts like human cognition, perception and

attention from eye movements. How we look at things, what we look at, when we look

at them - chasing the answers to these questions offers a chance to peek inside the inner

workings of the brain. Over the years and even now, eye-tracking primarily occurs in

the lab with expensive, highly specialized equipment that can measure where the eyes

are looking at every half-millisecond with pinhead-level accuracy. These laboratory

eye-tracking systems have enabled ground-breaking, foundational research in many

domains, but their use, just like all laboratory systems for human research, comes at

a cost.

The traditional approach to human research, where undergraduate students attend

a controlled lab space to participate in rigid, paradigmatic experiments, has increas-

ingly been challenged for its validity and applicability. While the concept is complex,

and has its own criticisms (that are beyond the scope of this thesis, but see Holleman

et al., 2020), the ‘ecological validity’ of research has become an important factor in

modern day human research. Put simply, how much of the human experience that’s

been measured in the confines of a highly-controlled lab environment actually repre-

sents the true human experience of the real world? The idea of ecological validity has

exposed a tradeoff that it seems flew under the radar for some time, where experi-

mental control has been prioritized at the expense of ecological validity. Then tension

between ecological validity and experimental control is itself a moving target, having

gone from the relaxed methodologies of single-subject (often self-testing) experiments

of the late 1800’s and early 1900’s to rigorously-controlled experiments in modern uni-

versity laboratories. But, trying to measure true and real human behaviours as they

unfold in everyday life presents all sorts of challenges, from the logistics of recording

those behaviours, to the complexities of drawing meaningful, scientific conclusions

from undefined and diverse behaviours. What then is the sweet spot?
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The idea of tradeoffs, or finding the sweet spot, is central to this thesis - from

the experimental process at large to the specific decisions you make implementing a

single experiment or analyzing a single dataset.Throughout these thesis projects, the

global pandemic enforced a shift to remote, online research methods that pushed the

testing environment to a more ecologically-valid one. This was exciting, especially

when I came across a remote-friendly method of eye-tracking. Quickly, however, I

recognized one of the major tradeoffs that came with remote webcam eye-tracking

- sure I could test participants who were comfortable (and safe from covid-19) in

their own environments and on their own devices, but I no longer could control that

environment. The devices people used were their own, encouraging more authentic

device-use, but those devices varied in screen size, and were sometimes missing the

resources to power the webcam eye-tracking program. And unlike the lab, where I

could engineer an environment free from distractions, I had no idea if participants

were highly focused, or were sharing their attention with a TV program in the back-

ground. The problem with all of these releases of experimental control (as a result of

remote experimentation methods in general) is that they can add up to a collection of

datasets that are too noisy or full of extraneous factors for there to be any meaningful

conclusions to be drawn from them.

This experimental control challenge emerges with any shift to remote data col-

lection, but when using a method like webcam eye-tracking, there’s an additional

layer of noise in the eye-tracking data as a result of using remote-friendly methods.

Specifically, there emerges a tradeoff in data quality between the non-remote but

ultra-precise laboratory equipment and the remote-enabled but consumer-grade we-

bcam. But, is there a “sweet spot” in all of this, where remote webcam eye-tracking

affords enough data quality that meaningful, ecologically-valid conclusions can be

made?

The primary motivation for this thesis stemmed from the search for this perfect

balance. Could we explore the practical value of remote webcam eye-tracking by
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applying it in human research contexts and assessing whether it can produce data

that can contribute to meaningful conclusions about human behaviour? The rapid

development of remote webcam eye-tracking has meant its utility and application

have been relatively underexplored. Some works have approached the assessment of

webcam eye-tracking’s utility by performing technical validations on its precision and

accuracy (e.g. Burton et al., 2014; Wisiecka et al., 2022), but my approach anchors

to the method’s usefulness in capturing real human behaviours - assessing its ability

to achieve the optimal balance.

The remainder of the introduction presents the reader with some of the core back-

ground knowledge required to fully understand the significance of the contributions

of the three thesis studies. In order to appreciate the pervasive and nuanced chal-

lenges of webcam eye-tracking, it is first useful to provide an overview of eye-tracking

in general. I explain how it works in the typical lab context, and then discuss how

the eye-tracking process becomes more challenging when lab-grade eye-trackers are

exchanged for consumer-grade webcams. I then present an overview of online and

remote experimentation methods and discuss the pros and cons of trading the lab

environment for the accessible remote world. Finally, I join the two topics together,

explaining the practical challenges in collecting remote webcam eye-tracking, and

explaining the approach I took in exploring whether these challenges could be over-

come to still afford utility in the method. I conclude the introduction with high-level

summaries of the studies in this thesis.

1.2 Eye-tracking

The study of eye movements dates back at least two centuries, with early researchers

like Bell (1823) observing eye movement patterns and their effects on visual orienta-

tion. Early eye-tracking methods involved mechanical devices that directly measured

movements from the eyeball, such as a plaster contact lens (used with a local anes-

thetic of cocaine to cause only “a little temporary inconvenience”; Delabarre, 1898) or
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a mirror-linked rubber suction cup (Yarbus, 1967). Other methods relied on the ob-

servation of corneal reflections onto a film using prisms (Buswell, 1935) or electrodes

placed around the eye (Young & Sheena, 1975).

Beyond these early methodological innovations, it was the seminal work of Yarbus

(1967) that sparked an ongoing pursuit of understanding the brain through eye mea-

surements, quantifying the attentional value of recording gaze patterns while partici-

pants observed images. In specific, Yarbus (1967) was the first to show that differing

the goal of image viewing produced remarkably different fixation patterns. For ex-

ample, when presented with an image of a scene of people, fixations would cluster

on the faces when asked to guess their ages, or, when asked to assess the people’s

wealth, participants would fixate on their clothes and the contents of the environment

(see Figure 1.1). With these objective measures, Yarbus (1967) identified patterns

of fixation that reflected the informational value of different image elements, linking

the brain, or as he described it, the “thought process”, to the order and duration of

fixations. This “eye-mind link” (Rayner, 2009; Rayner & Reingold, 2015) has since

been explored beyond visual attention, offering an informative, moment-by-moment

window into perception, memory, language and decision-making (Carter & Luke,

2020).

In the following subsections, I describe modern day approaches to eye-tracking

(all of which do not require the use of cocaine!). Subsection 1.2.1 (Modern video-

based eye-tracking) presents an overview of the primary form eye-tracking takes today,

where videos of the eyes are used. The core components of video-based eye-tracking

are eye localization and gaze estimation, and I describe some of the different tech-

niques to solve these image processing challenges. In subsection 1.2.2 (Webcam eye-

tracking), I discuss the emergence of webcam eye-tracking as a specific form of video-

based eye-tracking that makes it possible to use video-based eye-tracking beyond the

laboratory. In the context of this thesis, having an understanding of the complexities

of the eye-tracking process in a more broad sense allows for a greater appreciation
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Figure 1.1: Eye movement patterns when viewing an image (photograph, top left
panel) with different goals (as stated) below each eye movement trace. Adapted from
Yarbus (1967).
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of the significant tradeoff that is required when a remote-friendly, consumer-grade

webcam is used. I present a broader picture of the various techniques to solving the

eye localization and gaze estimation problem as a means of highlighting the flexibil-

ity that exists within the method, suggesting that there’s certainly opportunities to

strike the perfect balance and find the sweet spot.

1.2.1 Modern video-based eye-tracking

Modern day eye-tracking no longer requires intrusive devices, instead relying on

more comfortable video-based techniques. This involves capturing images of the eyes

frame by frame using a camera and light source, or multiple cameras and/or lights.

Hansen and Ji (2010) and later Cristina and Camilleri (2018) describe video-based

eye-tracking as a process involving two interconnected components or domains, as de-

picted in Figure 1.2. The first component is eye localization, which involves detecting

the eye within a camera image and consistently monitoring its position across multi-

ple frames. The second is gaze estimation, which requires detecting and tracking the

eye while also incorporating the head’s position to accurately determine the location

of the gaze.

The first component of video-based eye-tracking, eye detection, has been tackled

with a variety of approaches for identifying the eye from video images. Model or

shape-based methods are often used in conjunction with infrared cameras, which can

produce very clear, high-contrast images of the eye (see Figure 1.3). These methods

detect the eye by the iris and pupil’s stereotypic circular or elliptical shapes, as well

as the shape of the eyelids, doing so by fitting a deformable shape template to the in-

frared camera images of the eyes (Hansen & Ji, 2010). Because the deformable shape

model is naturally flexible (i.e. deformable), model or shape-based methods of eye

detection are capable of handling frame to frame changes in the eye’s shape, scale, and

rotation (Hansen & Ji, 2010). In contrast, appearance-based methods are primarily

applied to eye images taken under indoor or ambient lighting conditions, where the
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Figure 1.2: The components of video-based eye detection and gaze tracking, adapted
from Hansen and Ji (2010).

way the visible spectrum light reflects off the eye (i.e. the photometric properties of

the eye) facilitates the eye’s detection (see Figure 1.3). These methods are indepen-

dent of geometry, instead applying image processing techniques that use templates or

distributions of pixel intensities to detect the eye within the image. Generating these

templates is typically accomplished with machine learning, but substantial training

data is required, making appearance-based methods more adversely affected by frame-

to-frame head and eye movements where the eye’s changed appearance hasn’t been

trained. Another approach to eye detection is feature-based methods, which focus on

identifying specific local features of the eye (as opposed to the entire eye model like

model/shape-based methods; Hansen and Ji, 2010; see Figure 1.3). These methods

employ image processing techniques that attempt to identify a feature like the limbus

or pupil by finding the feature’s bounds with intensity differences or filter responses.

Because this approach compares relative intensities within each image, feature-based

methods are more forgiving of lighting variability or head movements. All of these

methods, usually separately but sometimes in hybrid combination approaches, are
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Figure 1.3: Eye detection and localization methods. Adapted from Cristina and
Camilleri (2018) and Shehu et al. (2021b).

used as the first step in various contemporary, video-based eye-tracking solutions.

However, localizing the eye in a frame of video data is only the first step in de-

termining where that eye is looking. The output of the second component, gaze

estimation, is what this thesis is most concerned with. Gaze estimation requires the

derivation of a set of parameters to best estimate the direction of the gaze from the

image data (Hansen & Ji, 2010). Various calibration procedures are essential for

determining or acquiring these parameters and, in turn, achieving accurate gaze esti-

mations. Some calibrations are performed only once, like when a new camera is used,

where setup and camera calibrations are performed to ensure the imaging hardware’s

technical specifications are considered in the gaze estimation predictions (Cristina

& Camilleri, 2018; Hansen & Ji, 2010). Other calibrations are performed for each

new testing session. Gaze-mapping calibrations define the parameters required for

translating eye data into the coordinate space of the head and camera, and point-

of-regard calibrations further extend the gaze information onto a computer monitor
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or planar surface (Cristina & Camilleri, 2018). In the same fashion as feature-based

eye detection models, feature-based gaze estimation models also use the extracted

local features of the eye image, this time in service of mapping the relationship be-

tween those features and the gaze’s position. This mapping is founded on the initial

gaze-mapping calibration procedures, but is further built out with an interpolation

approach (or other more advanced approaches). Beyond feature-based gaze estima-

tion models, appearance-based models of gaze estimation have also started to emerge

as a solution to lower resolution input images (Hansen & Ji, 2010).

Clearly the quality of the image data is crucially important to both components of

eye-tracking, so it follows that the camera used to capture those eye images is a vital

component of the equation. Achieving optimal image data quality has been primarily

accomplished through the use of specialized equipment, such as infrared light imag-

ing and careful camera orientations. Infrared light cameras provide high-contrast

images of the eyes by using controllable yet invisible infrared lighting, overcoming

the variability that comes with visible spectrum lighting (Hansen & Ji, 2010). For

tasks completed on the computer screen, infrared cameras placed near or embedded

within the screen have been commonly used in laboratory settings. Traditionally, eye

trackers like the commonly-used EyeLink 1000 (SR Research, Ottawa, Canada; see

Figure 1.4) are used in conjunction with some form of physical restraint, like a bite

bar or a chin rest, in order to minimize the impacts of head movements on the eye

tracking process (seen in Figure 1.4). However, more recently, there’s been a move

towards cheaper, more lightweight options like the screen-mounted Tobii Pro Fusion

Eye-tracker (Tobii Research AB, Sweden) or the Gazepoint GP3 eye-tracker (Gaze-

point, Vancouver, Canada). Another hardware option is placing infrared cameras

directly on the head, eliminating the challenge of head movements, but introducing a

different challenge of situating the head’s position (i.e. gaze origin) in 3D space (Stone

et al., 2022). While older models may have been cumbersome and inhibited move-

ments, today’s head-mounted eye-trackers like Tobii’s Pro Glasses 3 (Tobii Research
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Figure 1.4: Examples of eye-tracking hardware. The left panel shows a desktop-
mounted EyeLink 1000 system where a chinrest is used to keep the head stationary.
The right panel shows a head-mounted Pupil Labs eye-tracker, used in experiments
by Lavoie et al. (2018). Left image from SR Research (www.sr-research.com/eyelink-
1000-plus/) and right image adapted from Lavoie et al. (2018).

AB, Sweden) or Pupil Labs’ Pupil Invisible (Pupil Labs GmbH, Berlin, Germany) are

no more intrusive than a pair of glasses, making them suitable for tasks that involve

physical activity or aren’t confined to a computer screen, such as Lavoie et al. (2018)

pictured in Figure 1.4.

With all the different ways to capture images of the eyes, the temporal and spatial

resolution of the recorded video images is an important factor in accurate eye detection

and gaze localization. In this image data context, spatial resolution pertains to the

number of pixels contained within the captured image, whereas temporal resolution

refers to the frequency at which images are captured over a period of time. In the case

of lab-grade tools like the EyeLink, Tobii and GazePoint, these specialized pieces of

hardware offer the temporal resolution of hundreds to thousands of samples per second

and use cameras with the spatial resolution to capture changes of 0.01º (root mean

square; EyeLink 1000 Plus Technical Specifications, 2017). Importantly, the camera’s

placement, especially in terms of its proximity to the eyes, affects the spatial resolution

of the eye image. This was explored by Kar and Corcoran (2016), who investigated the

effects of camera resolution and user distances from the camera on gaze estimation
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Figure 1.5: Effects of different camera setups and hardware. A) Images of the eye
using different camera resolutions at different distances from the user. B) Pupil
detection errors as a function of camera resolution and distance from the user.
Pupil detection errors are measured as the positional offset (in pixels) between the
algorithmically-determined pupil center and the true pupil center. Adapted from Kar
and Corcoran (2016).

errors in ambient light settings (see Figure 1.5). They found that more distance

between the user and camera produced greater errors in lower resolution cameras, and

that pupil detection errors reduced substantially with cameras of a higher resolution

(8MP or higher; Kar and Corcoran, 2016). Again, this work was using ambient light

cameras, but it’s worth noting that the type of illumination (infrared vs ambient

light) plays a significant role in the spatial resolution the eye-tracking system requires

to make accurate predictions. With the high contrast imaging of infrared cameras,

feature extraction of the pupil, for example, is likely to require much less spatial

resolution than the less-contrasted ambient light equivalent (like the image in Figure

1.5, for example). Returning to the temporal domain, while lab-grade eye-trackers

can collect at a 2000 Hz sampling rate, it’s been determined that at least 100 samples

per second (i.e. 100 Hz sampling rate) are required to capture high-frequency eye

movements or saccades without motion blur artifacts or missing saccades (Abbott &

Faisal, 2012; Kar & Corcoran, 2016).

While enhancing the spatial and temporal resolution of eye image data would gen-

erally improve the signal to noise ratio and in turn increase eye-tracking accuracy,
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there are more nuanced parts to the story. These nuances harken back to the constant

need to balance tradeoffs; in this case it’s finding the sweet spot of image data quality.

For example, a trade-off emerges between a larger field of view to track head move-

ments and a narrower field of view to capture high-resolution eye images (Hansen & Ji,

2010). Further, depending on the use case, the additional computational resources

required to process higher spatial and temporal resolution image data may inhibit

real-time processing or affect additional experimental computations and processes.

While these factors are in contention with one another, drawing from abstractions of

the fourth chapter in this thesis, they can be resolved with methodically testing the

tradeoff in order to eventually arrive at a balanced solution.

Interestingly, both components of video-based eye-tracking have utility in a range

of applications. Eye detection, for example, is a crucial component in computer vision

applications such as facial recognition, facial feature tracking, facial expression anal-

ysis, and iris detection and recognition (Hansen & Ji, 2010; Shehu et al., 2021b). On

the other hand, gaze tracking serves as more than just an empirical tool for studying

real-time cognitive processing. It is used for both diagnostic applications, providing

an objective and quantitative measurement of a viewer’s point of regard, and interac-

tive applications, where gaze serves as a control input for gaze-contingent tools and

gaze-based user interfaces (Hansen & Ji, 2010). Initially applied to enhance accessi-

bility in human-computer interactions with the advent of computers (Levine, 1981),

video-based eye-tracking has gained versatility over time. This is due to advance-

ments in hardware and software quality, enabling remote and real-time data capture

and expanding its applicability across various domains. Figure 1.6 from Shehu et al.

(2021b) highlights emerging eye-tracking applications across fields and deployment

platforms including device interactions like IoT smart home control (Klaib et al.,

2019), assessing human behaviors like confusion (Salminen et al., 2018), supporting

medical image interpretation (Brunyé et al., 2019), and advancing biometric proce-

dures like gaze-touch authentication (Abdrabou et al., 2019; Khamis et al., 2016,
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Figure 1.6: Classification of remote eye gaze tracking solutions across fields and de-
ployment platforms. Adapted from Shehu et al. (2021b).

2017).

Now, with an appreciation for the way video-based eye-tracking works, how can

we imagine this technology existing beyond the confines of the laboratory? In this

thesis, we required a method that afforded remote data capture of the gaze’s location.

Luckily, in the last decade or so, a remote-friendly form of video-based eye-tracking

has emerged, using a work-from-home office staple: the webcam.

1.2.2 Webcam eye-tracking

As video-based eye-tracking evolved, there became an increasing interest in alternative

methods to specialized laboratory-grade equipment for capturing eye images. This

stemmed from an improvement in both consumer camera technology, making the eye

image a higher quality, and the algorithms for eye localization and gaze estimation,

making the processes more robust and amenable to lower quality eye images. In

particular, the Human-Computer Interaction (HCI) domain was at the forefront of

this - excited by the potentially-transformative use of gaze as an accessible input

for computer interactions (Levine, 1981). Webcams, already integrated with personal

computers and known for their simplicity and low cost, naturally emerged as a suitable

candidate for video-based eye-tracking cameras.

HCI researchers were the primary contributors to the early development of we-
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bcam eye-tracking as a tool (Burton et al., 2014; Meng & Zhao, 2017; Papoutsaki

et al., 2016, 2017; San Agustin et al., 2010; Sewell & Komogortsev, 2010; Xu et al.,

2015; Zheng & Usagawa, 2018). From these development efforts emerged a hand-

ful of Javascript-based, open-source approaches to webcam eye-tracking, including

Webgazer (Papoutsaki et al., 2016) with direct applications for web-browsing, and

TurkerGaze (Xu et al., 2015), made specifically to integrate with the crowdsourcing

platform Amazon MTurk.

These initial webcam eye-tracking approaches involved eye detection and gaze es-

timation using feature-based methods (Heck et al., 2023), and unique calibration

procedures. For Webgazer, regression models are trained during user interactions

when web-browsing, operating on the assumption that the eye and cursor are at

the same position during clicking interactions (Papoutsaki et al., 2016). Various eye

detection methods are employed to narrow the full field of view web-camera image

to the upper half of the face, then to the smallest rectangular bounds that fit the

contour of the eye (Papoutsaki et al., 2016). From there, the pupils are located (in

two-dimensional, coordinate space), and whole-eye image features (in 120 dimensions)

are extracted. Through the self-calibration process of clicking during web browsing,

the pupil locations and eye features are mapped to screen coordinates through com-

plex linear regression algorithms, including a ridge regression model. Webgazer’s

ridge regression model is further enhanced by considering additional known human

visuomotor patterns during interaction including the time course of about 200-500

milliseconds for a stabilized target fixation (from Rayner, 1998), and the knowledge

that intentional cursor movements correlate strongly with gaze locations (as opposed

to a stationary cursor; Hauger et al., 2011). This translates into the incorporation of

additional pupil location and eye feature samples from up to 500 ms of time preceding

a click (and within a close-enough spatial bound), as well as the cursor’s click and

movement information variably weighted, where a click position receives a full unit

weight while a cursor movement receives a half unit weight that decays over time
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when stationary (Papoutsaki et al., 2016). While perhaps less sophisticated than the

webcam eye-tracking approaches that have since followed (including potentially more

robust appearance-based methods such as OpenGaze; Zhang et al., 2019), for their

time, tools like Webgazer (Papoutsaki et al., 2016) and TurkerGaze (Xu et al., 2015)

offered an exciting first-pass approach to webcam eye-tracking. Even today, the core

eye-tracking technology of these first tools is still relevant, with impressive advance-

ments and extensions of the program still being developed (e.g. RealEye; Wisiecka

et al., 2022).

Not surprisingly, with the invention of webcam eye-tracking came the commen-

surate demand for its validation as a tool prior to its use for more empirical work.

Thus followed a number of studies focused on assessing the performance, utility, and

feasibility of the novel method, often in comparison to lab-based methods of eye-

tracking. The utility of webcam eye-tracking has been recently tested in a variety

of domains including behavioural, psychological and cognitive science (Bogdan et

al., 2023; Schneegans et al., 2021; Semmelmann & Weigelt, 2018; Yang & Krajbich,

2021), online learning research (Hutt et al., 2023; Madsen et al., 2021; Robal et al.,

2018; Zhao et al., 2017), linguistics (Slim & Hartsuiker, 2022; Vos et al., 2022), mar-

keting (Schröter et al., 2021), and for clinical optometry applications (Bruno et al.,

2023). Further, feasibility studies have been performed to assess whether webcam

eye-tracking shows promise as a tool for research with specific target populations

including infants (Bánki et al., 2022), older adults living with Alzheimer’s Disease

(Greenaway et al., 2021), or classrooms with neurodiverse students (Wong et al.,

2023). Across these recent works, a central theme emerges: there’s cautious opti-

mism about webcam eye-tracking’s utility as an eye-tracking method.

The temperance of optimism about webcam eye-tracking is a function of the un-

deniable tradeoffs that emerged during the above validation studies. These chal-

lenges relate back to finding the sweet spot of eye image data quality, where the

image must hold enough information to predict the gaze’s location. Thus, the in-
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troduction of a consumer-grade, ambient light camera, paired with its unrestrictive

nature, amplifies many of the general challenges of eye-tracking (as discussed in sub-

section 1.2.1). These challenges include handling illumination variability and head

movements (Cristina & Camilleri, 2018; Shehu et al., 2021b), while contending with

greatly-reduced spatial and temporal resolution (Heck et al., 2023; Shehu et al.,

2021b). Unlike common infrared camera methods used in the lab where lighting

position and intensity is controlled throughout an experiment, webcam eye-tracking

introduces variance in the illumination of the eyes (Shehu et al., 2021b). Further,

webcam eye-tracking typically doesn’t restrict head movements with any additional

physical implements like in the lab. These tradeoffs are difficult to navigate, but as

suggested earlier, opportunities for lessening the tradeoff impact do exist.

In subsection 1.2.1, I highlighted different algorithmic approaches to detect the eye

and estimate the gaze. In the context of webcam eye-tracking, some approaches are

better suited than others to handle the unique challenges that arise. This is plain

to see in Figure 1.7, where the change to a webcam eye image makes it significantly

more difficult to detect specific features of the eye. That being said, this was the

approach used by early webcam eye-tracking systems like Webgazer (Papoutsaki et

al., 2016; though it might explain why some found the gaze prediction inaccuracy an

insurmountable hurdle). Instead, today, alternative machine-learning-trained algo-

rithmic approaches, like appearance-based methods, are employed to counteract the

challenge of a webcam-generated image. Here, lower quality images are tolerated be-

cause appearance-based methods extract whole-image eye characteristics rather than

a specific feature like the pupil (see Figure 1.7; Heck et al., 2023; Shehu et al., 2021b;

Zhang et al., 2019). In this way, all the pixel intensities of an eye image like that in

Figure 1.7 are stored and mapped to a specific known gaze location (from a calibra-

tion process). This therefore requires a substantial training dataset (i.e. calibration

procedure) in order to build out a regressive model that is capable of accurately

predicting untrained gaze locations from a matrix of pixel intensities. Of course, it
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Figure 1.7: A depiction of the eye images captured with different eye-tracking hard-
ware. Adapted from Webcam-Based Eye Tracking vs. an Eye Tracker [Pros & Cons],
by O. B. Jensen, 2022 (www.imotions.com/blog/learning/best-practice/webcam-eye-
tracking-vs-an-eye-tracker/).

shouldn’t then be a surprise that these methods also require navigating a trade-off.

For one, this process is computationally demanding, requiring, in our case, computa-

tional resources from the remote participant’s local device to facilitate the processing

of complex algorithms (e.g. convolutional, artificial, or recurrent neural networks;

Cristina and Camilleri, 2018; Shehu et al., 2021b). Further, as already stated, a

substantial calibration procedure is typically required prior to any eye detection or

gaze estimation, though efforts toward efficient and effective calibration are a current

focus for some researchers (Gudi et al., 2020; Saxena et al., 2022).

As evidenced, the primary contribution of most webcam eye-tracking research has

been methodological in nature, with innovations in the building and validation of

the tool rather than in its use. While its novelty effectively necessitates at least

some mention of the feasibility or utility of the method across all works, there are a

handful of empirically-focused works that have emerged from the adoption of webcam

eye-tracking. Recently, webcam eye-tracking has been used to examine visuo-spatial

attention in various domains including for object and tool affordances (Federico &

Brandimonte, 2019; Federico et al., 2023), face processing (Federico et al., 2021) and

body posture preferences (Jacobs et al., 2023). Its use has also been advocated for as

a way to remotely assess user experiences (Stone & Chapman, 2023) and the efficacy

of clinical treatments (Hsu et al., 2018). In the context of this thesis, Chapters 2 and

3 add to the short list of primarily empirical webcam eye-tracking contributions that
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have followed the initial methodologically-driven works, however they too provide

some assessment of webcam eye-tracking’s utility. In contrast, the fourth chapter

resembles the earlier methodological works, but takes a more practical approach to

the use of the method, while also incorporating considerations for the remote aspect

of webcam eye-tracking.

This remote aspect will be discussed next in section 1.3, but is presented first in

a more siloed manner to offer a broader picture of the tradeoffs that emerge with

remote experimentation methods. Later, in section 1.4, we bring both of these core

concepts together, to give context to the unique sweet spot that’s required to find

utility in remote webcam eye-tracking.

1.3 Remote & Online Experimentation

This thesis centers on the use of a remote tool for capturing complex human be-

haviours. The shift to collecting data from non-lab contexts affords an opportunity

to understand behaviours in the environments that they usually emerge in, rather

than the constructed laboratory environment. Methods for remotely capturing sim-

ple human behaviors, like survey responses or button presses, have been available

for some time. However, the widespread availability of the internet, combined with

the global health pandemic, has significantly accelerated online behavioral research

across many domains (Bánki et al., 2022; Gagné & Franzen, 2023; Johnson et al.,

2021; Weydmann et al., 2022; Yang & Krajbich, 2021). This has led to an increase in

the availability of other complementary tools that streamline the research process, as

well as the emergence of high-tech platforms that offer no-code experiment building

solutions.

In the context of this thesis, our initial motivation for adopting remote methods

of experimentation stemmed from the challenges posed by the global COVID-19 pan-

demic. However, over time, I have come to recognize the remarkable possibilities

presented by remote data capture, particularly in its capacity to capture genuine and
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natural human behaviors in real-world environments rather than controlled labora-

tory settings. This theme has become central to this thesis, prompting the following

exploration into the intricacies of remote data collection (subsection 1.3.1), and the

challenges and benefits of transitioning to online platforms from controlled laborato-

ries (subsection 1.3.2).

1.3.1 Background - What it is and how it works

Remote online data collection refers to the use of internet-based tools to gather re-

sponse data from participants, eliminating the need for their physical presence in

a laboratory setting. This method primarily relies on asynchronous participation,

allowing individuals to engage in experiments remotely using their personal devices

and within their own environments. In the following discussion, we specifically focus

on remote data collection methods where participants engage without direct experi-

menter supervision or moderation. However, it’s worth acknowledging that there are

innovative solutions for remote yet synchronous data collection in highly-controlled

experimental paradigms, such as those used in neuropsychological tests (e.g. Cuttler

et al., 2021; Wadsworth et al., 2016).

The process of conducting experiments online, as described by Grootswagers (2020)

and Sauter et al. (2020), involves three key components: experiment building, exper-

iment hosting and management, and participant recruitment (a note: these are the

components of conducting the experiment and don’t pertain to the steps required

after the experiment is conducted - we elaborate on the complexities of the later ex-

perimentation process in Chapter 4). The first component of online experimentation

is experiment building, which, unlike in-lab experimentation, requires the coding of

programs specifically tailored for web browser execution. This task is further compli-

cated by the unique and novel nature of experimentation and the scientific process,

making a rigid template or a one-size-fits-all approach less useful. Fortunately, the

recent availability of GUI-based and low-code experiment building tools has empow-
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ered non-web developers, such as human behavioural researchers, to easily create and

deploy complex online experiments. A variety of options have emerged in the last

decade including: Labvanced (Finger et al., 2017), Gorilla (Anwyl-Irvine et al., 2020),

Lab.js (Henninger et al., 2022), jsPsych (de Leeuw, 2015; Leeuw et al., 2023), Psy-

choPy (Peirce et al., 2019), Empirica (Almaatouq et al., 2021), nodeGame (Balietti,

2017), psychTestR (Harrison, 2020), Pushkin (Hartshorne et al., 2019), OpenSesame

(Mathôt et al., 2012), Lookit (Scott & Schulz, 2017), PsyToolkit (Stoet, 2017), and

IBEX/PennController (Zehr & Schwarz, 2018). These tools vary in their accessibility

(proprietary or open source), functionalities, support, and extensibility. In general,

these methods allow researchers to design and implement complex, accurate, and pre-

cise online experiments without requiring expertise in web-compatible programming

languages like JavaScript.

The second component of online data collection is experiment hosting. Here, in

contrast to running an in-lab study where the experimental code and data are stored

locally on the testing computer, an online experiment’s code and resources must be

hosted on the internet through a server (Grootswagers, 2020; Sauter et al., 2020).

Commercial experiment-building platforms like Gorilla and Labvanced have built-in

server infrastructure that facilitates both executing the experiment (i.e. hosting) and

storing the collected participant data. For experiments created with freely available

tools like OpenSesame or jsPsych, researchers with advanced technical expertise have

the option to use their own web servers or cloud services (e.g. AWS or Google) for

hosting, or they can opt for a centralized hosting provider like OpenLab (Shevchenko,

2022) or Pavlovia (www.pavlovia.org; Grootswagers, 2020; Sauter et al., 2020). These

services offer hosting solutions designed to simplify study administration, with orga-

nized and secure storage of participant data as well as tools that integrate with various

participant recruitment platforms.

The final component of online experimentation is participant recruitment (Grootswa-

gers, 2020; Sauter et al., 2020). This stage allows the full potential of online experi-
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mentation’s efficiency to be realized, as entire experimental datasets can be collected

within a matter of hours (A. Newman et al., 2021; Sauter et al., 2020). Partici-

pants typically access the study through a provided link and can complete the online

experiment as long as they have internet access and a compatible browser. Crowd-

sourcing platforms like Amazon Mechanical Turk (MTurk; www.mturk.com) or Pro-

lific (www.prolific.co) have been commonly used for recruiting participants in online

research. These platforms maintain an active pool of interested participants and

offer experimenters simplified participant management, handling of participant com-

pensation, and anonymized, real-time communication channels for troubleshooting

technical issues (Aguinis et al., 2021; Johnson et al., 2021). The increasing use of

participants from crowdsourcing platforms (Uittenhove et al., 2022) has led to vari-

ous investigations into the data quality, utility, and population sampling features of

these platforms (particularly MTurk; Aguinis et al., 2021; M. Buhrmester et al., 2011;

Chmielewski and Kucker, 2020; Crump et al., 2013; Johnson et al., 2021; Paolacci,

2010; Peer et al., 2017; N. Stewart et al., 2017; Thomas and Clifford, 2017). I will

explore these aspects further in the next subsection, where I discuss the advantages

and disadvantages of online research methods.

1.3.2 Advantages and disadvantages

By now, it should be apparent that online experimentation requires navigating a host

of its own unique tradeoffs. At the heart of the transition from tightly controlled

laboratory settings to remote online experimentation is the unavoidable reduction of

experimental control. This tradeoff of experimental control is perverse and affects all

aspects of online experimentation (see Figure 1.8 from Gagné and Franzen, 2023),

from the quality of the data collected to the level of participant engagement.

This central experimental control tradeoff primarily manifests in the quality of

data collected from remote participants. Lower quality or noisier data arises from

variations in participants’ hardware and software (Anwyl-Irvine et al., 2020; Pronk et
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al., 2020; Semmelmann et al., 2017; Uittenhove et al., 2022), and their environments

(Clifford & Jerit, 2014; Uittenhove et al., 2022). It is accepted that the accuracy and

precision of stimulus presentation and response timings will be less reliable and more

variable than those achieved with laboratory-grade equipment (Grootswagers, 2020;

Sauter et al., 2020). However, the extent of this challenge appears to be limited,

with lab-to-online comparison studies demonstrating minimal and acceptable system

variability in stimulus presentation and response timing (e.g. < 10 ms inter-trial vari-

ability reported by Bridges et al. (2020) in their comprehensive ‘timing mega-study’)

and successful replication of classic response timing effects (Anwyl-Irvine et al., 2020;

Brand & Bradley, 2012; Crump et al., 2013; Gagné & Franzen, 2023; Miller et al.,

2018; Pronk et al., 2020; Uittenhove et al., 2022). For example, using crowdsourced

online participants, Crump et al. (2013) were able to replicate classic response timing

patterns in Flanker, Simon and Stroop paradigms, where incompatible or incongruent

items all elicited longer response times than compatible or congruent items. Further-

more, this challenge seems to be diminishing as technology improves and browser

display methods are refined for even greater precision (e.g. optimizing the perfor-

mance of JavaScript timing functions; Garaizar and Reips, 2019; Lukács and Gartus,

2022). However, for more complex forms of online data collection, such as webcam

eye-tracking, data quality remains a persistent challenge. For instance, Yang and

Krajbich (2021) report excluding only one out of 40 datasets collected in the lab,

while needing to exclude half of their online-collected datasets due to poor-quality

eye gaze data (though these exclusions occur during initial hardware and calibration

checks).

A second tradeoff that emerges with remote data collection is the limited oversight

in experimental procedures, making it difficult to ensure participants’ comprehensive

understanding of the experiment (Chandler et al., 2014; Paolacci, 2010; Thomas

& Clifford, 2017) and their maintenance of attention and engagement (Buchanan

& Scofield, 2018; Cheung et al., 2017; Clifford & Jerit, 2014; Johnson et al., 2021).
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While these challenges can be minimized through well-designed studies that adhere to

a growing body of online experimentation recommendations (e.g. the fourth chapter

of this thesis, as well as Aguinis et al., 2021; Gagné and Franzen, 2023; A. Newman

et al., 2021; Sauter et al., 2020; Thomas and Clifford, 2017), online participants still

self-report more environmental distractions than in-lab participants (although it has

no effect on task performance, Clifford and Jerit, 2014), and they may multitask

during the study (Necka et al., 2016). Moreover, online participants display varied

motivations for participating in online research, which can impact study selection,

attention and dropouts (Jun et al., 2017). Recent work has also identified between-

platform differences in attention, comprehension and dishonesty (Peer et al., 2022),

adding further complexity to the situation. Contributions like the fourth chapter

of this thesis help experimenters find the sweet spot in these kinds of challenging

tradeoffs that come with online experimentation.

A third challenge of remotely collected data stems from the characteristics of the

participant samples, which are typically obtained through crowdsourcing or recruit-

ment platforms. While laboratory research is often limited by convenience sampling

and may only be generalizable to WEIRD (Westernized, Educated, Industrialized,

Rich, and Democratic) participants (Henrich et al., 2010), online sampling is gen-

erally more diverse than typical American college samples (M. Buhrmester et al.,

2011), and it can help address the WEIRD sampling issue to some extent (Buchanan

& Scofield, 2018; Sauter et al., 2020; Uittenhove et al., 2022). However, online sam-

pling still tends to skew towards particular demographic groups (M. Buhrmester et

al., 2011; Casler et al., 2013; Johnson et al., 2021; Paolacci, 2010; Peer et al., 2017)

and may become less diverse due to events like the covid-19 pandemic, which lim-

ited internet access for low-income and minority communities (Lourenco & Tasimi,

2020). Moreover, sampling bias may arise from participants self-selecting into the

sample (Aguinis et al., 2021; Cheung et al., 2017; Clifford & Jerit, 2014), and their

non-naivety as they become familiar with research tools and experimental paradigms
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(Chandler et al., 2014; DeVoe & House, 2016; N. Stewart et al., 2017). Attrition rates

of crowdsourced participation in online experiments are also higher than in-lab stud-

ies (M. D. Buhrmester et al., 2018; Gagné & Franzen, 2023; Peer et al., 2022; Yang

& Krajbich, 2021; Zhou & Fishbach, 2016), with a recent review of MTurk studies

with attrition rates ranging from 31.9 to 51% (Aguinis et al., 2021), which can lead

to confounded and false conclusions (Zhou & Fishbach, 2016).

As the use of crowdsourcing platforms like MTurk has become popular in academic

research, the associated challenges have been extensively explored. This increased

popularity has also brought attention to some accessory or tangential challenges that

researchers have had to address, such as the risk of collecting fraudulent data from

bots (Dupuis, 2019; A. Moss et al., 2021; A. Newman et al., 2021), or, more re-

cently, the pervasive use of large language models like ChatGPT by crowdsourced

participants in text summarization tasks (which presents additional concerns when

those types of tasks have previously been considered the gold standard for testing

the validity of those very models; Veselovsky et al., 2023). Ethical concerns have also

been raised about the potentially exploitative and unfair rates of payment (i.e. below

minimum wage) typically provided to crowdsourced participants (Lovett et al., 2018;

A. J. Moss et al., 2023). Fortunately, with increased awareness of these problems,

and practical guides like the fourth chapter, researchers can account for and mitigate

these issues by implementing sound and just online experimental procedures and de-

signs, including fair payment (A. J. Moss et al., 2023; A. Newman et al., 2021; Sauter

et al., 2020).

Despite the challenges, remote data collection offers several advantages. Online,

crowdsourced participants are more diverse than in-lab research populations, includ-

ing individuals that are traditionally underrepresented in academic research (Aguinis

et al., 2021; Bader et al., 2021; Berinsky et al., 2012; M. Buhrmester et al., 2011).

Remote data collection also provides accessibility to individuals who may face barriers

in accessing traditional lab spaces. Additionally, online methods allow researchers to
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Figure 1.8: A list of the costs and benefits of online behavioural research. Adapted
from Gagné and Franzen (2023).

access specific or niche participant pools, such as hard-to-reach populations like in-

fants (Bánki et al., 2022), non-medical anabolic steroid users (J. Cohen et al., 2007),

or cohorts from different global regions for cross-cultural research (Van Doorn et al.,

2017).

One significant benefit is the parallel nature of data collection, allowing for efficient

and cost-effective scaling of human data collection (Semmelmann et al., 2017). Un-

like physical lab spaces that collect participants individually, online methods enable

simultaneous collection of multiple data sets with minimal experimenter oversight

(M. D. Buhrmester et al., 2018; Mason & Suri, 2012; Peer et al., 2017; Yang &

Krajbich, 2021). This benefit is echoed by many researchers when discussing the

strengths of online research, with many noting the data collection period being a

matter of hours rather than weeks (e.g. A. Newman et al., 2021; Peer et al., 2017;

Yang and Krajbich, 2021). This scalability also means that sample sizes can be much
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larger with very little additional effort, helping to offset the tradeoff of noisier data by

efficiently improving the signal to noise ratio (Aguinis et al., 2021; Gagné & Franzen,

2023; Paolacci, 2010). In addition, these benefits are not at any greater financial cost

to the experimenter, making them resource efficient (M. D. Buhrmester et al., 2018;

Mason & Suri, 2012; Paolacci, 2010; Peer et al., 2017).

With advancements in technology, online research opportunities have grown, en-

abling flexibility in more complex experimental design choices (Aguinis et al., 2021;

Paolacci, 2010; N. Stewart et al., 2017). Technological improvements, such as pre-

cisely timed stimulus delivery and the recruitment of a participant’s computer mouse,

camera or microphone have enhanced the possibilities of online research (Johnson et

al., 2021). Pushing the limits of online experimentation is the recording of rich, con-

tinuous forms of data, like the ongoing position of the cursor, or, most relevant to this

thesis, the location of the gaze at every moment. In collaboration with my colleagues,

we have taken advantage of this opportunity, twice testing the limits of these methods.

In a complex, two-player card game, where each player joined remotely, Ma, myself,

Chapman and Hayward (2023) successfully recorded the cursors of both participants,

and were even able to broadcast their opponent’s cursor position to each player. This

afforded us an opportunity to explore much more than the simple measures of card

selection, revealing changes in cursor movements when the pair of players were play-

ing games cooperatively or competitively with each other. I also collaborated with

Ouellette Zuk and Chapman (2023) to produce the initial study of decision-difficulty

that my third chapter builds upon. Again, the capabilities of remote data collec-

tion were tested by performing a multi-device study, collecting the cursor position

from computer users, and the touchscreen finger trajectories from both tablet and

smartphone users. Remarkably, rich, high-resolution cursor and touchscreen interac-

tion position data could be recorded from hundreds of remote participants, revealing

impressive decision difficulty effects in the trajectory data (see Appendix A for the

complete paper).
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It’s clear that we are at an exciting moment in time, where remote experimentation

technology is capable of recording dense, continuous human data. With the parallel

advancements in webcam eye-tracking technology it’s now possible to remotely deploy

gaze-tracking experiments on the internet. This shift to online experimentation is ex-

citing, especially because, despite the change in experimental context, meta-analyses

and empirical studies repeatedly find little difference in the validity of online vs in-lab

data across various properties and criteria (e.g. A. Newman et al., 2021; Thomas and

Clifford, 2017; Uittenhove et al., 2022; Walter et al., 2019; Weydmann et al., 2022).

This context shift is also exciting for its use in facilitating the observation of par-

ticipants’ behaviors in their own environments, promoting ecologically-valid research

and enabling researchers to explore behaviors that align more closely with natural

and realistic everyday activities. This, combined with the emerging opportunities for

capturing more complex and continuous forms of behaviour, is what I discuss next in

section 1.4.

1.4 Practical Implications of Remote Webcam Eye-
tracking

We have now arrived at the intersection of eye-tracking methods and remote online

experimentation methods that are the crux of this thesis. It’s clear that both of

these methods offer numerous opportunities, and that when combined, they have the

potential to offer meaningful insights about real-world dynamic human behaviors.

However, I have also belabored the significant tradeoffs that each method demands.

In this section, I present remote webcam eye-tracking in terms of its own distinct

tradeoffs when it is practically applied as a research method. The first subsection

acts as a high-level account of the key challenges, and is thus a brief summary of a

portion of the fourth chapter. The second subsection serves to explain and setup our

approach to assessing the utility of remote webcam eye-tracking. It explains how the

second and third chapters are practical applications of webcam eye-tracking, where we
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understand if it’s useful by how well it can capture key behaviours from the eye-hand

coordination and decision-making domains.

1.4.1 Challenges that need to be overcome

The implementation of webcam eye-tracking in remote online experiments poses nu-

merous challenges stemming from the various challenges already inherent to the meth-

ods of webcam eye-tracking and remote experimentation that exist independently of

their combination. The limitations of remote webcam-based methods include com-

promised spatial and temporal data quality compared to traditional laboratory eye-

trackers. Spatial errors can range from 0.88° to 7° (Saxena et al., 2022; Semmelmann

& Weigelt, 2018; Shehu et al., 2021b; Skovsgaard et al., 2011), and are often not of a

uniform magnitude across different portions of the screen (Semmelmann & Weigelt,

2018; Vos et al., 2022). In previous remote webcam eye-tracking studies, the hard-

ware’s internal sampling limits (usually 30 or 60 Hz), paired with the computational

demands of the remotely-deployed eye-tracking system, produces a sampling rate in

the range of 11.5 Hz to 40 Hz (Bánki et al., 2022; Semmelmann & Weigelt, 2018;

Stone & Chapman, 2023; Vos et al., 2022; Yang & Krajbich, 2021).

While even more typical forms of online experiments like surveys can be chal-

lenging for participants, deploying webcam eye-tracking over the internet demands

considerable effort from participants, requiring hardware, sustained attention, and

controlled environmental elements like lighting (Bánki et al., 2022; Gagné & Franzen,

2023; Semmelmann & Weigelt, 2018) (5, 14, 45). This manifests in substantial rates

of participant attrition (Yang & Krajbich, 2021). To address these challenges with

participants, thorough experimental design, pilot testing, and effective participant

communication are essential. In particular, remote webcam eye-tracking demands ro-

bust, engaging instructions and the experimenter’s virtual availability for responsive

troubleshooting.

Finally, for reasons including those above, challenges emerge when it comes time
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to interpret remotely collected webcam eye-tracking data. For instance, with limited

spatial accuracy, recent studies suggest that remote webcam eye-tracking can accu-

rately distinguish between a maximum of 4 to 6 areas of interest on a computer screen

(Slim & Hartsuiker, 2022; Yang & Krajbich, 2021). Moreover, slower sampling rates

prevent the detection of rapid eye movements, such as saccades and microsaccades,

which means webcam eye-tracking is not currently compatible with applications like

those that predict emotional and cognitive states from microsaccades (Heck et al.,

2023).

Again, the fourth chapter of this thesis provides a more robust and comprehen-

sive view of these challenges, and also elaborates on the solutions that contribute to

finding the sweet spot of high-quality remotely captured webcam eye-tracking data.

It does so while presenting data-informed lessons learned from the empirical studies

I describe in Chapters 2 and 3 of this thesis. Through these two projects, I grew

to appreciate and understand first-hand the various challenges faced by a cognitive

scientist deploying webcam eye-tracking, and in the next subsection, I explain how

these challenging projects were exercises in testing the utility of remote webcam eye-

tracking for behavioral research.

1.4.2 Testing the utility of webcam eye-tracking with practical
applications in two domains

The purpose of this thesis is to explore the experimental utility of webcam eye-

tracking. That is, despite the challenges presented, can webcam eye-tracking be

a useful method for understanding human behaviours? In order to understand its

utility, rather than taking the approach of a highly technical validation study, or

quantifying the accuracy and precision of the tool, I applied the tool to two unique

research domains. These domains were selected for their history of producing stable

and reliable continuous forms of behavior as measured with well-established tools

(some of which we’ve previously employed in our own lab). Given this, I wanted
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to explore the way these rich, continuous behaviours might translate (or not) to

experimentation with remote webcam eye-tracking. Said a different way, my approach

to understanding the utility of this novel method was to apply it in non-novel domains

and look for specific, predicted outcomes. The following outlines the selected domains

and explains which established, domain-specific, continuous behaviours make them

ideal test cases for exploring the utility of remote webcam eye-tracking.

Eye-hand coordination in digital object interactions

The first domain that offers an opportunity for assessing the utility of remote webcam

eye-tracking is eye-hand coordination. Research on eye-hand coordination during real-

world object interactions has revealed remarkably consistent patterns of behavior.

Early works by Land and Hayhoe (2001) and Land et al. (1999) examined tasks such

as making tea and preparing a sandwich, where participants displayed consistent eye-

hand coordination patterns even in complex and unstructured settings. In these tasks,

the gaze exclusively focused on task-relevant objects in the scene and disregarded

irrelevant objects. Most prominently, the pattern most commonly observed was one

where the eyes led motor actions, fixating on the object to be manipulated for about

half a second before the hand’s initial movement towards it. The gaze remained

fixated on the object until the completion of the manipulation, and then moved on to

the next target without returning. This pattern of eye leading motor action extends

to other naturalistic, visually-guided interactions like walking (Land, 2006; Patla &

Vickers, 2003), typing (Butsch, 1932), and music playing (Furneaux & Land, 1999),

with the eye leading the hand for at least 500 ms (and up to about 1 second) before

the initiation of the interaction.

More recently, my colleagues have furthered the understanding of these patterns by

more precisely quantifying the timings of eye and hand dynamics using modern mo-

tion capture and head-mounted eye-tracking technologies (Lavoie et al., 2018). Par-

ticipants completed two naturalistic movement tasks that resembled typical kitchen
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activities like picking up and moving a filled cup across a work area or moving a

pasta box from a cupboard to the countertop. Their findings aligned with Hayhoe

(2000) and Land et al. (1999), showing that eye-hand coordination in both kinds of

object interaction involved fixating on the object at least 500 ms before the interac-

tion began. Within 600 ms of the interaction start, the eyes shifted to look ahead to

the next area for interaction. This dominant ∼500 ms eyes-leading-hand pattern has

proven highly consistent and stable, including in tasks not just involving reaching,

and is therefore a good choice of behaviour to look for with webcam eye-tracking.

We expect to witness this 500 ms eye-leading-action pattern when explored in yet

another type of task, even if the specific task space is a digital one (as necessitated

by webcam eye-tracking). However, as this space is untested, beyond our primary

motivation of exploring the utility of webcam eye-tracking by applying it to a digital

eye-hand coordination task, we also are in a position to make a novel empirical con-

tribution should webcam eye-tracking indeed exhibit utility. Specifically, this work

could provide one of the first quantitative insights about the dynamics of eye-cursor

coordination during digital object interactions. In sum, if we find this distinct ∼500

ms pattern during a digital object interaction task by using webcam eye-tracking, we

will have a strong case study for the utility of webcam eye-tracking while also making

a novel empirical contribution to the eye-hand coordination domain.

Binary choice decision-making

Binary decision-making is another domain that offers an opportunity to explore the

utility of webcam eye-tracking as a research tool while also contributing to a better

understanding of human visual behaviours. In decision-making research, the emphasis

has shifted towards understanding the process of real-world decision-making, priori-

tizing the dynamics of behavior over mere decision outcomes (Cisek & Kalaska, 2010;

Dotan et al., 2018, 2019; Gallivan et al., 2018; Wispinski et al., 2020). A prominent

method in this context is the reach-decision paradigm, which involves tracking the
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movements of the finger or hand as it is used to reach towards one of two choice

options on a screen. This method has also been robustly proven to extend from 3D

reaching (Chapman et al., 2010a, 2010b; Gallivan et al., 2018) to computerized, 2D

reach-decisions using cursor-tracking (Freeman, 2018; Hehman et al., 2015; Stillman

et al., 2018, 2020). Across contexts, when coupled with a binary choice, the attrac-

tion towards each choice option can be continuously measured and tracked (Dotan

et al., 2018, 2019; Stillman et al., 2018). The reach or cursor trajectories formed

during decision-making will exhibit a continuum of direct to indirect movements that

represent the competition between choice options and the difficulty of the decision

(Faulkenberry et al., 2016; Freeman, 2018; Hehman et al., 2015; Koop & Johnson,

2013; Maldonado et al., 2019; Stillman et al., 2018, 2020).

The recent digitized and screen-based binary decision-making study I was part of

(Ouellette Zuk et al., 2023; see Appendix A) is an excellent example that demon-

strates the very strong and robust effects of decision difficulty on movement trajec-

tories. Ouellette Zuk et al. used three different types of binary choices that have

each been previously shown (independently) to sensitively reflect decision-difficulty

effects through cursor trajectories: objective perceptual judgements, semi-subjective

conceptual judgements, and subjective preference judgements. With all three tasks,

Ouellette Zuk et al. explored whether effects from hard and easy decisions would

replicate on a computer with a cursor, but also, if they were robust enough to extend

to choices made on large and small format touch devices (tablets and smartphones).

Despite the differences in the way the choice is enacted (cursor movement vs touch

interaction), and other features like the substantial variation in screen size, the dif-

ficulty of a decision (hard vs easy) was sensitively reflected in multiple features of

cursor and finger movement trajectories alike.

Given the robustness of decision-difficulty effects across multiple forms of binary

decision in Ouellette Zuk et al.’s task, and the fact that the task was, in part, per-

formed in a digital, webcam-friendly context (the personal computer condition), this
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specific task offers an opportunity to test the utility of webcam eye-tracking for gain-

ing an even richer picture of the decision-making process. In specific, we are offered

an opportunity to take a task with established Hard and Easy conditions, and ask

how useful webcam eye-tracking is in generating indices of decision difficulty. While

previous work would suggest that eye movements are affected by decision difficulty

in a binary choice task (Krajbich & Rangel, 2011; Krajbich et al., 2010), these works

use highly-precise lab-grade eye-tracking tools that model difficulty effects in gazing

behaviours on a millisecond by millisecond basis. Thus, if we apply Ouellette Zuk et

al.’s decision-making task with proven and robust hard and easy decision contexts,

will remote webcam eye-tracking have utility in offering some indication of decision

difficulty? If so, we will again have the opportunity to not only provide a test case

of the utility of webcam eye-tracking, but also offer novel empirical decision-making

findings.

1.5 This Thesis

It should be clear now that remotely-collected webcam eye-tracking is an exciting and

promising, albeit underexplored, method for understanding human behaviours. The

trade-offs that emerge when trying to use webcam eye-tracking abound: tradeoffs

between accessibility and experimenter control, between measures with time or space

sensitivity, between meaningful/useful data and accessible collection procedures. But

at the heart of these trade-offs is the aim of this thesis: to understand whether remote

webcam eye-tracking has utility as a method for understanding human behaviours.

As stated, I approach this aim by exploring remote webcam eye-tracking’s utility

when applied to two unique domains: eye-hand coordination during object interaction

(Chapter 2), and binary choice decision-making (Chapter 3). For eye-hand coordi-

nation, webcam eye-tracking will be considered useful as a method if the 500 ms

eye-leading-effector pattern is observed via webcam eye-tracking. For binary choice

decision-making, webcam eye-tracking will be considered useful if difficulty effects
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emerge in eye-tracking data. To accompany these demonstrations of webcam eye-

tracking’s possible utility, I also present a practical methodological guide (Chapter

4) to share the knowledge acquired during the challenging processes of applying we-

bcam eye-tracking to those two domains. This guide serves as an alternative way

to understand the utility of webcam eye-tracking in that it fills a gap in the current

literature about how to practically use webcam eye-tracking. But, more than just

offering some very useful and hard-earned tips, Chapter 4 of this thesis is also infused

with data demonstrations drawn from the previous two chapters. This means not

only can we offer guidance, but we can also provide an evidence-based prescription

with respect to data quality, participant drop-out and experiment costs. With this

guide, the practical utility of webcam eye-tracking is expanded (and doesn’t require

an experimenter to spend years of their life becoming an expert and writing a thesis

about the matter!).

To briefly summarize, in Chapter 2, I examine webcam eye-tracking as a tool to

explore whether eye-hand coordination patterns during object interactions persist in

a screen-based digital context. Working from a familiar place of real-world object

interactions and the empirically-established way the vision and motor systems com-

bine to facilitate these, I create a screen-based, digital analog to a tested real-world

interaction while integrating webcam eye-tracking. I adapt my colleagues’ ‘Cups

Task’ (Lavoie et al., 2018) from a real-world, tabletop cup-transferring activity into a

two-dimensional, screen-based task, where circles were dragged and dropped to visual

targets in sequence with a cursor. Using webcam eye-tracking, we remotely record the

gaze position, complemented by a record of the cursor’s position, in order to explore

the coordination between the two datastreams. Participants completed 50 trials, re-

peating a learned sequence of 8 drag and drop circle movements on each trial. Here,

we explore the utility of webcam eye-tracking in two ways: 1) we explore whether the

quality of webcam gaze data, even when supplemented by required data processing

and treatments, is sufficient to even begin exploring eye-cursor coordination, and 2)
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if sufficient, we want to see if webcam eye-tracking has utility in revealing a 500 ms

eye-leading-cursor pattern like the coordination patterns of the real-world.

In Chapter 3, I assess the utility of webcam eye-tracking by applying it to the

decision-making domain using a replication and extension of a binary choice study.

In a similar vein to Chapter 2, this study also builds off an established foundation,

this time from previous work with my colleague (Ouellette Zuk et al., 2023, see

Appendix A), and before that, from a series of cursor-tracking binary choice tasks.

This study repeats the same experimental procedure as the previous work, but with

the addition of remotely-captured webcam eye-tracking. Completing the experiment

on a computer, participants made decisions by moving their mouse-cursor from a

starting position to their selected choice. The decisions were constructed from three

established binary choice tasks: a Sentence Verification task (Dale & Duran, 2011),

a Numeric-Size Congruity task (Faulkenberry et al., 2016), and a Photo Preference

task (Koop & Johnson, 2013). Each task was designed and analyzed to produce

hard and easy trials. With very strong decision-difficulty effects emerging in the

cursor movements in the earlier study (Ouellette Zuk et al., 2023), here, we wanted

to assess the utility of webcam eye-tracking by exploring whether it might reveal

additional decision-difficulty effects. Given the limit of cursor-tracking only affording

decision information from movement initiation onwards, could webcam eye-tracking

prove useful in illuminating whether any decision difficulty effects emerge before the

cursor starts to move towards a choice?

In Chapter 4, I describe the utility of webcam eye-tracking in detail, providing a

comprehensive guide to practically employing it as a behavioural research method.

As previously stated, this paper is borne out of the challenges I faced and the lessons

learned while attempting to glean the highest utility from webcam eye-tracking in

the first two studies. While both studies mention methodological challenges and

solutions, and include supplementary materials that enhanced webcam eye-tracking’s

utility, they were anchored first and foremost to their respective domains. In the end,
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the process of designing, building, testing, and analyzing these webcam eye-tracking

studies was a process of maximizing the utility of webcam eye-tracking - trying to

make the most out of a challenging method. The fourth paper outlines this process,

while sparing budding webcam eye-tracking researchers some of the challenges I faced

by providing practical solutions and considerations. The paper covers the complete

span of the experimental process, defined by information most relevant to the time

before, during and after data collection. Importantly I lean on the data generated from

my two earlier studies to infuse this third chapter with evidence-based suggestions in

an effort to provide the most realistic and practical picture of experimentation with

webcam eye-tracking. Thus, Chapter 4 is a demonstration of and contribution to

webcam eye-tracking’s utility.

This thesis concludes with Chapter 5, a discussion that revisits the contributions

made in Chapters 2, 3, and 4 within their methodological, empirical and broader

contexts. I analyze Chapters 2 and 3, assessing their ability to demonstrate the utility

of webcam eye-tracking and how this utility informed interesting empirical findings. I

discuss utility through a new, more broad lens, an unexpected change in perspective

that evolved over the course of this thesis. I further offer reflections on the future

of eye-tracking, considering it from pessimistic, optimistic and realistic viewpoints.

Lastly, I conclude this thesis by reflecting on my challenging yet rewarding experiences

with webcam eye-tracking. By the end, I hope to have convinced you, the reader, that

remote webcam eye-tracking has immense utility, and that it is possible to achieve

the elusive balance between remotely-collected and high-quality webcam eye-tracking

data.
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Chapter 2

Assessing webcam eye-tracking utility
in digital object interactions

Abstract

Do patterns of eye-hand coordination observed during real-world object interactions

apply to digital, screen-based object interactions? We adapted a real-world object

interaction task (physically transferring cups in sequence about a tabletop) into a

two-dimensional screen-based task (dragging-and-dropping circles in sequence with a

cursor). We collected gaze (with webcam eye-tracking) and cursor position data from

51 fully-remote, crowd-sourced participants who performed the task on their own com-

puter. We applied real-world time-series data segmentation strategies to resolve the

self-paced movement sequence into phases of object interaction and rigorously cleaned

the webcam eye-tracking data. In this preliminary investigation, we found that: 1)

real-world eye-hand coordination patterns persist and adapt in this digital context,

and 2) remote, online, cursor-tracking and webcam eye-tracking are useful tools for

capturing visuomotor behaviours during this ecologically-valid human-computer in-

A version of this work was previously published as: Bertrand, J. K. & Chapman, C. S. (2023).
Dynamics of eye-hand coordination are flexibly preserved in eye-cursor coordination during an online,
digital, object interaction task. In Proceedings of the 2023 CHI Conference on Human Factors in
Computing Systems (CHI ’23), April 23–28, 2023, Hamburg, Germany. ACM, New York, NY, USA,
13 pages. https://doi.org/10.1145/3544548.3580866.
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teraction task. We discuss how these findings might inform design principles and

further investigations into natural behaviours that persist in digital environments.

2.1 Introduction

At the core of all well-considered user experiences is the user themselves. So-called

human-centered designs incorporate behaviour, cognition, and perception into their

product. An early example is the psychophysical mapping of human sensitivity to

flickering light. Over hundreds of years, scientists learned that a light display re-

freshing at a minimum of 30 Hz appeared continuous to the human eye - setting the

benchmark for early computer screens.

Of course, perceiving the world is only part of a user’s experience - they also in-

teract with their environment to achieve their goals. Like the display refresh-rate

example, principles of human interaction can dictate good design. Fitts’ Law (Fitts,

1954) is one such finding that is now adopted as a design principle in human-computer

interaction (HCI; MacKenzie, 1992; Seow, 2005). In this seminal work, Fitts (1954)

quantified the speed-accuracy tradeoff for movements of different amplitudes (how

far you need to move) to targets of different sizes. Put succinctly, he showed a law-

ful relationship whereby larger amplitude movements and smaller targets both result

in longer movement times. These real-world findings have since been explored in

depth in an HCI context (MacKenzie, 1992), informing and assessing the design of

two- (MacKenzie & Buxton, 1992) and three-dimensional (Grossman & Balakrish-

nan, 2004) pointing devices, the soft (virtual) QWERTY keyboard (Mackenzie et al.,

1999; William Soukoreff & Scott Mackenzie, 1995), and the properties and placement

of interactive web elements (Karousos et al., 2013; Lin & Ho, 2020; McGuffin &

Balakrishnan, 2005; Roy et al., 2021).

Critically, user experience (UX) is best thought of as a dynamic cycle of perception

and action whereby the information we need to guide our upcoming actions is informed

by where we look; how we move then shapes the environment causing changes in the
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perceptual experience. Consider, for example, the coordinated effort required of the

visual and motor systems to safely pick up a cup full of hot coffee. Before any

movement, the eyes will fixate the drink, leading the action of the hand by about

500 milliseconds. Seamlessly, as soon as the mug is grasped, the eyes will move to

look at the next object for action, like a sugar packet, well before the hand is finished

moving the hot drink (Land et al., 1999). These patterns of visuomotor coordination

are ubiquitous and stereotypic, appearing in human and non-human primates (Arora,

2019; Ngo et al., 2022) alike. Here we ask, in the same way real-world findings have

informed computer screen and keyboard design, can principles of real-world eye-hand

coordination help inform UX design for digital interactions?

To approach this question, we used an online, eye-tracking-enabled platform (Lab-

vanced; Finger et al., 2017) to create a screen-based version of a real-world object

interaction task (Lavoie et al., 2018). Instead of moving cups to targets on a ta-

ble, crowdsourced participants (N = 51) dragged circles to targets on their computer

screen while we recorded cursor movements and webcam eye-gaze coordinates. We

had two primary motivations - first, to explore if the quality of the webcam gaze data

(and subsequent processing procedures) would be sufficient to explore visuomotor co-

ordination in our specific task, and second, to quantify if the patterns of eye-cursor

coordination would match principles of eye-hand coordination in the real world. Our

findings, while preliminary, reveal that both of these are true for this experiment,

offering an introduction to entirely new ways of collecting user experience data and

suggesting UX design should further explore and consider the tight and environment-

invariant principles of visuomotor coordination during target interaction tasks.
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2.2 Related Works

2.2.1 Real-World Object Interactions

The tight coupling, in both space and time, of eye movements and motor actions has

been well-documented. While much of this research has involved rigid, paradigmatic

tasks, those most relevant to UX leverage technological advances to explore eye-hand

coordination during self-paced, natural and realistic interactions. For example, the

seminal works of Land et al. and Hayhoe measured where people look when making a

pot of tea (Land et al., 1999) and preparing a sandwich (Hayhoe, 2000). Despite the

complexity of these tasks and the lack of experimental structure, the researchers were

able to break down the tasks into their constituent subtasks (e.g. reaching for the

kettle, removing the lid, etc.) to reveal remarkably consistent patterns of eye-hand

coordination (Land & Hayhoe, 2001).

First, even though there are irrelevant objects throughout the kitchen scenes, the

eyes only ever fixate on task-relevant objects (Land & Hayhoe, 2001). Critically,

these are not the most salient (as defined by low level visual properties like contrast)

objects in the visual field; rather, gaze only lands upon task-relevant objects. Second,

gaze behaves serially, always fixed upon the current object of manipulation, leading

the hand to that object, and when the manipulation is almost complete, moving on to

the next object without return (Land & Hayhoe, 2001). In Land et al.’s tea-making

task (1999), aggregated across all 94 distinct sub-tasks, the dynamics of the gaze and

hand display a consistent pattern: participants fixate on the object to be manipulated

for about half a second prior to the hand’s initial movement towards that object and

remain fixated there until leaving for the next target about half a second before the

completion of the current manipulation.

This general pattern of the eye leading motor action has been found in many

contexts, extending beyond kitchen activities to less obvious forms of naturalistic,

visually-guided interactions like walking (Land, 2006; Patla & Vickers, 2003), key-
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board typing (Butsch, 1932), and music playing (Furneaux & Land, 1999). Across

these interactions, the exact amount of time the eye leads the hand appears to be at

least 500 ms (and up to about 1 second), showing some flexibility for the time (De-

coninck et al., 2011) or accuracy constraints (Rand & Stelmach, 2010) of the task,

or kinematics required for different task contexts (Johansson et al., 2001; Pelz et al.,

2001). Lavoie et al. (2018) took a modern approach to investigations of eye-hand co-

ordination during real-world object interaction by combining state of the art motion

capture and mobile eye-tracking. In perfect alignment with Land et al. (1999), Lavoie

et al. (2018) found that all object interactions involved the eyes fixating the object at

least 500 ms prior to the start of the interaction. Then, within 600 ms of the interac-

tion start, the eyes would leave to look ahead to the next area for interaction (Lavoie

et al., 2018). This dominant pattern of eye-hand coordination has proven itself highly

consistent across real-world object interactions, but, in service of applying real-world

findings to digital domains, what happens when we move towards interactions with

digital objects?

2.2.2 Lab-based Digital Interactions

Some visuomotor coordination research trades the complexity of an in-lab kitchen

for the control of a computer workstation, treating screen-based, digitally-presented

objects as a convenient proxy for real-world objects. Nonetheless, patterns of eye

leading hand (or computer cursor or manipulandum) are remarkably consistent in

the digital domain. In tracing shapes with a cursor, the eye leads the cursor by

223-295 ms (Deng et al., 2016), and in distractorless visual search there is a 190 ms

lead (Bieg et al., 2010). A related paradigm of tracking an unpredictable object on a

screen shows that the eye lags behind the target object by 24 ms, whereas the hand

lags behind it by 108 ms (Danion & Flanagan, 2018). During simple reaches towards

on-screen targets, the eyes arrive about 386 ms before the hand (Sailer et al., 2000),

although gaze and hand dynamics are flexible to factors like the target’s visibility
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before or during the reach (van Donkelaar & Staub, 2000). Adaptive gaze behaviour

is also shown for two-target sequential reaches: the eye anchors to the first target for

an extra 95 ms to ensure the hand’s arrival before continuing to a second target (Rand

& Stelmach, 2010). For visually-guided sequential movements of a manipulandum-

handle’s contact with 5 virtual target objects, the gaze arrives at targets 208 ms before

contact and leaves 106 ms after contact (Bowman et al., 2009). Finally, dragging

virtual objects about in a pseudo-touchscreen context also elicits gaze-leading-hand

patterns (Sims et al., 2011). Taken together, this line of research predominantly

studies target-directed reaching and following, but not interaction. Even so, in all

contexts, the eyes lead the hand (or cursor) by a few hundred milliseconds.

2.2.3 UX-Focused Digital Interactions

What do eye-cursor coordination patterns look like when digital object interactions

are also realistic and ecologically-valid? The HCI domain offers us some answers,

however object interactions beyond simple target clicks remain almost entirely unex-

plored. Early eye-cursor studies employed search engine results pages (SERPs; Guo

and Agichtein, 2010a; Navalpakkam et al., 2013; Rodden and Fu, 2007) but mostly

considered visuomotor coordination only from a spatial context, measuring the pixel

distance between the cursor and eye. Huang et al. (2012) did consider timing, find-

ing that the gaze led the cursor by at least 250, and typically 700 ms during SERP

browsing. Of course, with less experimental control, scientists are more likely to find

a range of behaviours. Indeed, B. A. Smith et al. (2000) looked at cursor-pointing

to graphical user interface targets and observed at least three eye-cursor coordina-

tion patterns: “eye gaze following the cursor to the target”, “eye gaze leading the

cursor to the target”, and less commonly, “eye gaze switching between the cursor and

target until the target is reached”. The use of multiple strategies during digital yet

ecologically-valid tasks is perhaps best illustrated by Liebling and Dumais (2014).

Here subjects performed their regular work duties on their office desktop while their
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gaze and cursor movements were recorded. To begin making sense of the data, the

researchers anchored their analysis to cursor clicks, with 32 classes of click-targets

determined by metadata records. This rich dataset revealed nuanced coordination -

in general, the gaze arrived near the click point 100-200 ms earlier than the cursor.

However, the occurrence of or need for coordination varied by target-type: the gaze

led the cursor ∼30% of the time for ‘TitleBar’ clicks, yet ‘List’ clicks were gaze-first

more than 85% of the time (Liebling & Dumais, 2014). In these unconstrained tasks

we find additional evidence to support that the eyes lead the cursor, but also see im-

plications for the limitation of this approach when faced with real digital interaction

complexity. In the current study, we attempt to strike a balance between ecolog-

ical validity and experimental control, focusing on a prescribed digital interaction

sequence without imposing any constraints on how (e.g. where to look, how fast to

move etc.) the sequence should be completed.

2.2.4 Webcam Eye-tracking

One limitation of almost all of the aforementioned studies is that they occur in the

lab. A principle of human-centered design is not only to focus on the user but also

to consider the environment and context in which their experience is happening (ISO

9241-210:2010). One recent technological advancement that might make it possible

to study visuomotor coordination in more authentic environments (e.g. users in their

own homes on devices they regularly use) is to use webcam data to derive estimates

of screen-based gaze behaviour. However, webcam eye-tracking has struggled to es-

tablish its utility as a research tool. The reasons are numerous: webcam eye-tracking

has a much slower sampling rate (∼10 Hz compared with 100+ Hz in the lab; Bánki

et al., 2022; Gagné and Franzen, 2023; Semmelmann and Weigelt, 2018), many users

are unable to participate due to a slow internet connection or insufficient hardware

(Bánki et al., 2022; Gagné & Franzen, 2023), uncontrolled lighting can significantly

decrease data quality (Fraser et al., 2021; Semmelmann & Weigelt, 2018; Yang &
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Krajbich, 2021) and, even with optimal conditions, extensive time must be spent cal-

ibrating the system (up to 50% of the study duration as in Semmelmann and Weigelt

(2018)). Despite these limitations, recent advances, especially in using machine learn-

ing to predict gaze location (e.g. Labvanced v2 High Sampling Mode eye-tracking;

Finger et al., 2017), offer a path forward, especially where spatial accuracy is the

most important feature of the data (Semmelmann & Weigelt, 2018; Wisiecka et al.,

2022). Further, researchers have shown that focusing on fixations to the most relevant

areas (i.e. areas of interest, or AOIs) is a reasonable approach for eye-tracking data

(Holmqvist et al., 2011). Therefore, a major motivation of the current study was to

explore whether state-of-the-art webcam eye-tracking algorithms (Finger et al., 2017)

combined with participation criteria (e.g. processing speed) and AOI-based clustering

and analyses would provide sufficient data quality to explore eye-cursor coordination.

2.3 Methods

2.3.1 Participants

51 adults provided their informed consent to participate in the experiment. Of these,

14 participant datasets were rejected for unsalvageable eye data, and 8 participant

datasets were rejected for low trial count (<50%) after removing trials with proce-

dural or technical errors (see subsection 2.3.6 - Data Processing and Appendix B -

Supplementary Materials for complete data cleaning procedure). The remaining 29

participants (12 female, 1 undisclosed gender; Age: M = 27.07, SD = 10.75) were 26

right-hand users and 3 left-hand users. All participants had no prior knowledge about

the experiment or its objective. All experimental proceedings were approved by the

University of Alberta’s Research Ethics Board (Pro00087329) and were performed in

accordance with relevant guidelines and regulations. All participants were recruited

using the online crowdsourcing platform Prolific (www.prolific.co) and were paid for

their time (6 GBP per hour, ∼$10 CAD per hour).
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2.3.2 Materials

All participant data was collected online using Labvanced (Finger et al., 2017), a

browser-based Javascript experimentation platform. The Labvanced platform offers

built-in webcam eye-tracking (Labvanced v2 High Sampling Mode eye-tracking Finger

et al., 2017) and can record the position of the cursor across time. It was necessary to

impose some minimum requirements to achieve stable data collection: only laptop (n

= 19) or desktop (n = 10) computers with an audio output (headphones or speakers);

only Mac (n = 3), Windows (n = 26) or Linux (n = 0) operating systems and Chrome

browser; a webcam with a minimum resolution of 1280 x 720 pixels; a landscape-

oriented screen with a minimum of 600 x 600 pixels (Mode = 1920 x 1080 px) and a

system (including internet connection) capable of collecting at least 10 samples per

second of the head’s position for optimal eye-tracking precision (M = 14.5 Hz, SD =

4.3 Hz).

2.3.3 Digital Task Layout

We modeled our digital task layout (see Figure 2.1A) to mirror Lavoie et al.’s 2018

Cups Task apparatus (see Figure 2.1B), which featured a short-walled table-top sur-

face with a midline partition, two cups, 4 AOIs, a Home area, and a fixation sphere.

In the real world, participants stood next to the counter-height apparatus, looking

down on the surface. Thus, we designed our screen-based version to appear like a flat,

bird’s eye view of the real-world task. All real-world elements were proportionally

scaled to a 800 x 450 pixel frame in Labvanced (and later, automatically scaled by

Labvanced to each participant’s screen resolution). Like the real-world version, the

Far Left and Right AOIs (FLAOI/FRAOI) were colored blue, the Near Left and Right

AOIs (NLAOI/NRAOI) were green, and the Home area was purple. The real-world

white paper cups filled with white beads were modeled as white circles. As a proxy

for haptic feedback, we designed the circles and Home area to be responsive to cursor

hover by darkening in color whenever the cursor landed within their borders. Finally,
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Figure 2.1: A) The digital task layout. The full screen (800 x 450 pixels) is depicted,
where a purple Home area and a Restart button are located in the bottom right
corner outside the black-bordered task area. The target Areas of Interest (AOIs)
are split into those at the top (blue, Far Left and Right) and those at the bottom
(green, Near Left and Right). Participants dragged-and-dropped circles (white, one
Near, one Far) between target AOIs. B) A still image of the real-world Cup-Transfer
Task we based our digital object interaction task on (from Lavoie et al., 2018). C)
The task sequence. A trial involved 8 Moves, with the order and direction of circle
movements shown with numbered arrows. The cursor started in the Home area to
begin the trial and returned to the Home area after Moves 2, 4, 6, and 8. D) The
segmentation of a single object interaction (i.e. one Move) into its events and phases.
The top of the panel shows the velocity traces of the circle (white) and cursor (black).
The onset of the circle movement was detected as a combination of these velocities
and the distance between the cursor and the relevant target AOIs (bottom panel).
Together, this defined the Pick-up and Drop-off events, which in turn defined the
Reach (green), Transport (light blue) and Release (dark blue) phases.

select elements were introduced to the digital task space in service of loosely repli-

cating the real-world, experimenter-guided experience: a restart button was always

available should the participant realize they made a movement sequence error, text

appeared with instructions if the participant took more than three seconds to move

into their starting position, and a highlighted border appeared around the Home area

to mark the important start and end events of the trial.

2.3.4 Task

Our task was an adaptation and extension of an established object interaction task

from the real world (Lavoie et al., 2018). We doubled the number of object interac-

tions within a sequence, and transformed the task to a digital, screen-based version.

Critically, Lavoie’s real-world task was designed to be segmented in time and space
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to allow for an examination of eye-hand coordination measures around the critical

Pick-up and Drop-off interaction events (Lavoie et al., 2018). By adopting a similar

structure, our analysis also relies on segmentation centered on these key time points.

Our 8-movement sequence (see Figure 2.1C) is as follows: with the cursor always

beginning at Home, Move 1 was a Pick-up of the Near circle at NRAOI, with its

Drop-off at NLAOI. Immediately after, the Far circle was picked up from FRAOI

and was transported to its Drop-off at FLAOI (Move 2). The cursor then returned

to the Home position (as was required after every two object interactions). Moves

3 and 4 were a reflection of the first movements: the Far circle was picked up from

FLAOI and moved back to FRAOI, and the Near Circle was picked up from NLAOI

and moved back to NRAOI. After the cursor returned to Home, the Far circle was

transported from FRAOI to FLAOI (Move 5), and then the Near circle moved from

NRAOI to NLAOI (Move 6). This pattern was again reflected after the cursor visited

Home, with Move 7 the pickup of the Near circle from NLAOI to drop off at NRAOI,

and Move 8 the pickup of the Far circle from FLAOI to FRAOI. The cursor returned

to Home to end the trial.

2.3.5 Procedure

Prolific (www.prolific.co) participants were provided a study link and a detailed study

description that included an estimate of the study’s duration (1 hour), the hardware

requirements, and instructions for avoiding technical complications (included in Ap-

pendix B - Supplementary Materials). Clicking the study link launched the full-screen

Labvanced window and requested webcam device permission. Participants failing to

meet the minimum requirements would receive an error or warning message immedi-

ately. Barring no issues, participants would first read a consent form and provided

they gave their informed consent, would then answer a brief demographic and hard-

ware survey.

Next, participants would proceed self-paced through the task instructions. Fol-

60



lowing online research best practices (e.g. Gagné and Franzen, 2023), we developed

extensive instructions including an instructional video (see Appendix B - Supple-

mentary Materials), and gave task directions in a way that required participant en-

gagement. Participants were informed that the task was a screen-based version of a

real-world task. They were shown a picture of the real-world task (see Figure 2.1B)

and told that the circles in their task were to be thought of as two-dimensional cups.

Finally, participants were encouraged to use favourable lighting conditions and were

instructed about the use of a virtual chinrest feature, strategies previously shown to

improve webcam eye-tracking data quality (Semmelmann & Weigelt, 2018).

A 5 minute Labvanced eye-tracking calibration followed the instructions, and par-

ticipants were required to repeat the calibration if the predicted gaze error exceeded

7% of the screen size. Lastly, participants completed one guided (click-through) prac-

tice trial, and then a second unguided practice trial with time-delayed hints (i.e. only

shown if participant paused for three seconds or longer). Participants could repeat

the unguided practice trial as many times as they wanted to ensure they understood

the prescribed sequence of movements (1.2 unguided practice trials completed on

average).

Participants would then complete the 50 self-paced experimental trials. Every 10

trials, they would receive an update about how many trials they had completed. A

brief, 7-point eye-tracking re-calibration was performed every 5 trials, enabling the

use of Labvanced’s adaptive drift correction feature. After completing the 50 trials,

participants were offered a long-form text input field to provide study feedback (if

any) and thanked for their time. The study then concluded, with the browser exiting

fullscreen mode, and participants receiving compensation via Prolific.

The entire experimental procedure, as a Labvanced study, can be accessed via the

link in Appendix B - Supplementary Materials.
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2.3.6 Data Processing

Employing webcam eye-tracking during an online, self-paced, sequential object-interaction

task proved to be challenging. The resulting raw data required a number of quality

assessments and treatments to ensure its utility for analysis. While this paper centers

on our empirical findings, the corresponding methodological contribution of this work

is not trivial, and we provide a detailed account of our data processing pipeline in

Appendix B - Supplementary Materials.

The uncontrolled nature of the online testing environment could give rise to less

accurate or spurious gaze predictions. We determined, in a cursory visual inspection

of pilot data, that unlike cursor data, gaze data were prone to spatial distortions.

That is, while much of the structure of the screen layout of the task was evident

in most participants’ gaze data (e.g. many fixations following a pattern shaped like

the distribution of targets) these fixation “hot spots” would not necessarily project

to the actual target locations - instead they were often shifted or skewed (see Figure

2.2 and Appendix B - Supplementary Materials for examples). However, if one is

primarily interested in which object a person is fixating and when, the exact location

of that fixation is mostly irrelevant, and instead you can define and analyze looks to

AOIs in relative space. Taking advantage of the fact that our key analyses related to

4 distinct, spatially distributed locations for Pick-up and Drop-off events, we used a

data-driven AOI approach. Here, we assumed that participants’ gaze would primarily

be driven toward the 4 target locations (NRAOI, NLAOI, FRAOI and FLAOI). Using

data from all 50 trials, from all times when the participant had clicked and held

the cursor button down, we employed a k-means clustering approach to spatially

bin the gaze data into 4 corresponding AOIs (see Figure 2.2 for a representative

participant’s clustering centroids and see Appendix B - Supplementary Materials

for additional examples). Thus, our eye-tracking data, while retaining its temporal

resolution, was spatially transformed from the 800 x 450 Labvanced coordinate frame
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into four mutually-exclusive bins: NRAOI, NLAOI, FRAOI and FLAOI. Fourteen of

the original 51 subject datasets were rejected because the clustering centroids did not

follow the spatial configuration of the AOIs (left targets to the left of right targets,

near targets lower on the screen than far targets), suggesting raw gaze data errors

beyond a spatial distortion that we could not account for. In the Supplementary

Materials (see Appendix B), we include a probability density analysis of the accepted

clusters in transformed space where we fit bivariate normal distributions to each

cluster for each participant and demonstrate that, on average, 28.97% of eye-tracking

data, if linearly transformed to the Labvanced coordinate frame, would fall within

the 80 x 80 pixel AOI it was cluster-assigned to. Importantly, only 0.1% of the eye

data risked assignment to any of the 3 non-assigned AOIs in transformed pixel space.

Notably, this approach is not without its risks or limitations. First, by using the

data to define the AOIs used for analysis, we run the risk of circularity. Therefore

our first test was to ensure that the distribution of looks to each AOI across time

matched the time-varying demands of the task. Since our clustering was collapsed

across time, this would ensure that the reported looking behaviour was sensitive to

the actual task being performed. Second, as discussed in Sections 2.4 - Results and

2.6 - Limitations and Future Directions, by only creating four cluster-based AOIs,

we lose the ability to detect looks to other areas of the display (e.g. the Home or

Fixation targets). Since these other areas were not relevant for the majority of our

task, and entirely irrelevant to the key interaction events, this was a trade-off we felt

was worth making despite the consequence of limiting our approach’s applicability to

other task designs or research questions. Third, the spatial accuracy assessment of

our clustering approach (in Appendix B - Supplementary Materials) highlights the

highly effective discrimination between AOIs by having effectively no chance of a mis-

classified eye-gaze, but it also exposes the challenge of noisier eye-data for within-AOI

discrimination - had we constrained ourselves to transformed eye data that fell within

the boundaries of the actual on-screen AOI-objects, we would have lost more than
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70% of the data. In Supplementary Materials (see Appendix B), we represent our

clusters as independent bivariate normal probability density functions to visualize

their clear spatial cohesiveness, but we acknowledge that the AOI-binning approach

may have limited use where targets are less spatially distributed or the task space

necessitates unpredictable, dynamic, numerous and/or densely organized targets.

Beyond the eye data cleaning, various steps (as outlined in Appendix B - Supple-

mentary Materials) were taken to ensure participants completed the task correctly.

While participants could move the circles about as they pleased, a trial was designed

to only advance once all the movements were made. Although various real-time checks

were performed to preemptively avoid sequence errors, they still occurred and those

trials were removed from the analyzed data. Eight further subjects were removed for

having a trial count below 50% after trial rejection for sequence (and other) errors.

Therefore, 29 datasets were included in the following analyses.

2.3.7 Segmentation

In order to explore eye-cursor coordination patterns during object interactions, we

needed to define and then automatically identify the 8 movements in each trial and the

2 object interactions (Pick-up and Drop-off) within each movement (see Figure 2.1D).

This first necessitated re-sampling the cursor and eye data to a common sampling

frequency of 60 Hz. Most often this meant that the eye data was upsampled while the

cursor data was downsampled. Following Lavoie et al.’s 2018 approach, we considered

the object interaction to include the period when the cursor moves toward the object

(Reach: onset = cursor approaching Pick-up location + velocity exceed threshold;

offset = Transport onset), the period when the cursor drags the object (Transport:

onset = object leaving Pick-up location + velocity exceeds threshold; offset = object

approaching Drop-off location + velocity drops below threshold) and the period when

the cursor moves away from the object (Release: onset = Transport offset; offset =

cursor leaving Drop-off location + velocity drops below threshold), as depicted in
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FLAOI FRAOI

NLAOI

NRAOI

Subject 47

Figure 2.2: Mapping of one representative participant’s raw eye-data to target AOIs.
Raw eye-data samples (small circles) were clustered into 4 bins and, based on their
spatial configuration, bins were assigned to one of the 4 target AOIs (dashed boxes).
Individual samples are color-coded by their assigned bin: light green -> NRAOI,
dark green -> NLAOI, light blue -> FRAOI and dark blue -> FLAOI. Raw-data
bin-cluster centroids are shown in corresponding colors as filled circles with black
borders. The raw data clearly groups into four clusters but the cluster centroids do
not align with the actual task space (skewed down). Our analysis therefore relies on
when the eye-data was within each cluster, not the actual space it occupied.
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Figure 2.1D. A Pick-up is said to occur at the transition between Reach and Transport

while a Drop-off is said to occur at the transition between Transport and Release.

We used our custom Gaze and Movement Analysis (GaMA) software in MATLAB to

segment our trial data into 8 movements (Moves 1-8) and each movement into the

3 phases (Reach, Transport and Release). In GaMA, spatial and temporal features

of the data are used to automatically define key events, like the start of an object

Transport (see Williams et al., 2019). We followed the principles of Lavoie et al.

(2018) and other real-world examples (Valevicius et al., 2018; Williams et al., 2019)

to segment our data, where thresholds were applied to the cursor and circles’ velocity

and AOI-proximity as a means to define the onset and offset of the Reach, Transport

and Release phases (see Appendix B - Supplementary Materials for additional details

and threshold values).

2.3.8 Data Analysis

Dependent Measures

We had two primary motivations: 1) to determine if the quality of webcam eye-

tracking data would be sufficient to explore eye-cursor coordination dynamics for our

specific 2D UX context and, if so, 2) to explore, in a preliminary way, if the ∼500 ms

of fixation time around a manual interaction would be preserved in our specific 2D

UX context, despite drastic differences in the physics and style of control.

With respect to 1), it is a hallmark of eye-hand coordination during object inter-

action that, even though not directly instructed, participants look almost exclusively

at task relevant targets (namely the object they are going to interact with and the

locations where they are going to move it to and from). As such, our first dependent

measure examines, for each target location in the task (4 total, see subsection 2.3.3

- Digital Task Layout), the average time spent fixating that location when it was

relevant to the current movement (i.e. a Pick-up or Drop-off location) and the aver-

age time spent fixating that location when it was irrelevant to the current movement
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(i.e. one of the two targets on every movement that are not a Pick-up or Drop-off

location).

Average Fixation Duration (ms) Across a given trial, the average time spent

fixating on one of the AOIs (NRAOI, NLAOI, FRAOI or FLAOI, see Figure 2.1A)

when that AOI was a relevant location (a Pick-up or Drop-off location for the current

movement) or not. Across the 8-movement sequence, each AOI was relevant and

irrelevant an equal number of times.

With respect to 2), fixation time around an interaction consists of two values - how

long the eyes are on an object prior to interaction (eye-arrival latency) and how long

the eyes linger on an object after an interaction is initiated (eye-leaving latency). Our

task involves object manipulations with two interaction events, the Pick-up and the

Drop-off. Therefore, we examine the eye arrival and eye leaving latencies for both of

these events.

Importantly, it has previously been reported that eye arrival and leaving latencies

are not absolute (Lavoie et al., 2018), but can flexibly change based on the demands

of the task in general and the durations of each constituent movement and phase

in specific. Therefore, to test for these possible within-task adaptations, we also

examined eye latencies and each movement in terms of the durations of the Reach,

Transport and Release phases.

Based on this motivation, we extracted and analyzed the following measures per

movement:

Phase Duration (ms) The time spent in each phase (Reach, Transport, Release).

Eye-arrival latency at Pick-up and Drop-off Eye-arrival latency (EAL) at

Pick-up was defined as the difference between Transport start time and the time of

the eye’s arrival at the Pick-up location. EAL at Drop-off was defined as the difference

between Transport end time and the time of the eye’s arrival at the Drop-off location.
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Eye-leaving latency at Pick-up and Drop-off Eye-leaving latency (ELL) at

Pick-up was defined as the difference between Transport start time and the time of

the eye leaving the Pick-up location. ELL at Drop-off was defined as the difference

between Transport end time and the time of the eye leaving the Drop-off location.

Statistical Procedure

Each dependent measure was analyzed in Jamovi (Version 2.2.5; an open-source statis-

tical software) using a two-factor repeated-measure analysis of variance (RMANOVA).

If a two-way interaction was revealed from the omnibus RMANOVA, follow-up single-

factor RMANOVAs were performed to test the simple main effects of one factor at all

levels of the other factor. Significant main effects were explored with all pairwise com-

parisons. All reported RMANOVA p-values include a Greenhouse-Geisser correction

for violations of sphericity, and all follow-up pairwise comparisons are fully reported

in Appendix B - Supplementary Materials (with Bonferroni-corrected p-values).

2.4 Results

2.4.1 Online, webcam eye-tracking can be a suitable method
for quantifying gaze behaviours

As described earlier, our data-driven definition of AOIs leaves us vulnerable to cir-

cularity in our analyses. To address this potential criticism, here we look at task

relevant timing to check if our approach is valid. Since our AOI clustering is ag-

nostic to timing, any effects of spatial gaze distribution across time that match task

demands provide solid evidence for the utility of our approach. Critically, therefore,

we show that participants’ gaze fixated more on the Task Relevant AOIs than on

the Task Irrelevant AOIs (Figure 2.3 - see Appendix B - Supplementary Materials

for a complementary spatial analysis). These results align favourably with the early,

real-world work of Hayhoe and Land (2000, 2006, 2001) and give credence to our

use of webcam eye-tracking as a method for a preliminary investigation of gaze be-
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Figure 2.3: Average fixation duration to each of the four target AOIs (green and blue
squares) across movements when that AOI was task-relevant (yellow bars, when that
AOI was a Pick-up or Drop-off site for a movement) or task-irrelevant (grey bars).
Relevant AOIs were fixated significantly longer than Irrelevant AOIs. Error bars show
95% confidence intervals of the estimated marginal means.

haviours during our specific online, screen-based, object interaction task. Our 4 x 2

(Position x Task Relevance [Relevant / Irrelevant]) RMANOVA revealed significant

main effects of both Position (F (1.50, 41.97) = 11.6, p < .001) and Task Relevance

(F (1.00, 28.00) = 329.2, p < .001), and a significant interaction between the two

factors (F (1.83,51.26) = 45.7, p < .001). Post-hoc pairwise follow-ups compared Rel-

evant vs Irrelevant fixation durations at each location - for each location it was fixated

more when it was Relevant than when it was Irrelevant (all p’s < .001).

This analysis also allowed us to explore for any specific spatial biases in the eye-

tracking data recorded in this task. In general, looks to targets were relatively evenly

distributed, except for times when looks to other objects in the environment were

mis-classified to spatially-proximal target locations. Specifically, at some times, looks

to the Home position may have been categorized as looks to the NRAOI and looks to

the Fixation position may have been categorized as looks to the FRAOI. This pattern

is also visible in the complementary spatial analysis in Supplementary Materials (see
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Appendix B), where the bivariate normal probability density function of the NRAOI

shows more dispersion, likely as a result of also capturing some Home position looks.

Along the same lines, in this supplemental analysis the FLAOI has the least disper-

sion, matching its status as the most isolated task-relevant object. As mentioned,

however, the overall lack of spatial specificity is a consequence of our AOI clustering

but does not appear to add significant noise to our analyses. For a complete analysis

of these spatial biases, see Appendix B - Supplementary Materials.

In general, while accounting for the inherent limitations in the design of our study,

this analysis offers a demonstration of the sensitivity of webcam eye-tracking. The

stark differences in looking time driven by the expected pattern of task relevance,

complemented by the low risk of assigning gazes to inaccurate clusters (as evidenced

in Appendix B - Supplementary Materials), gave us sufficient confidence to further

explore the dynamics of eye-cursor coordination.

2.4.2 Digital object interactions yield unique, context-specific
movement dynamics

As described above, in order to understand the nuances of eye-cursor coordination it

is first essential to map the naturally-occurring variations in task demand as indicated

by the time spent in each movement and each phase within that movement (Reach,

Transport and Release, Figure 2.4). Thus, we used a 3 x 8 (Phase x Movement)

RMANOVA to examine phase duration. Both main effects of Phase (F (1.58, 44.20)

= 138.5, p < .001) and Movement (F (3.63, 101.68) = 34.1, p < .001) were significant,

as was their interaction (F (5.38,150.53) = 21.0, p < .001). Because we were most

interested in learning how changes in each phase might impact eye latencies, we exam-

ined how phase values changed across movements. The three follow-up single-factor

RMANOVAs (Reach/Transport/Release x Movement) each revealed main effects of

Movement (Reach: F (3.74, 104.80) = 24.5, p < .001; Transport: F (3.80, 106.41) =

22.2, p < .001; Release: F (3.13, 87.55) = 29.7, p < .001). These results highlight
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a general pattern of longer Reach phases for movements covering longer screen dis-

tances. That is, movements that directly follow a Home visit (i.e. Moves 1, 3, 5, 7)

cover more screen distance and elicit longer Reach phases than those that immedi-

ately follow a circle movement (i.e. Moves 2, 4, 6, 8) except for Move 1, which has

the shortest Home to AOI distance. This finding aligns with the principles of Fitts’

Law.

The single biggest difference between the movement dynamics in the digital com-

pared to real-world task is the duration of the Transport phases. Cursor click and

drag movements are much faster (around 200 ms) than their real-world counterparts

(over 1000 ms from Lavoie et al., 2018). Besides a quick final move (M = 0.143

secs) and some slight differences between other movements, the Transport phases are

relatively similar in duration (M ’s range from 0.205 to 0.255 secs, see Appendix B -

Supplementary Materials for full pairwise analysis). Overall, the relative consistency

of the Transport duration across the task again reflects that phase timing is primarily

related to movement distance - Transport distance is the same for all movements.

Pairwise comparisons (as reported in Appendix B - Supplementary Materials) be-

tween movements for the Release phase also follow a pattern of longer phase durations

for movements covering more screen distance (between the movement’s drop-off loca-

tion and the next destination location), as predicted by Fitts’ Law.

2.4.3 Eye-cursor coordination during Pick-up interactions re-
sembles the real world, while Drop-off coordination flex-
ibly conforms to the digital context

Our final motivation was to understand eye-cursor coordination during digital object

interaction by examining the latencies between the eye and cursor arriving (EAL) and

leaving (ELL) the Pick-up and Drop-off sites across the 8 Movements (Figure 2.4).

For each of EAL and ELL we ran an 8 x 2 (Movement x Interaction Site [Pick-up /

Drop-off]) RMANOVA.
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Figure 2.4: Interaction Phase durations and Eye Latencies at Pick-up and Drop-off
across the 8 movements. Each movement is shown as a horizontal bar centered on the
middle of the Transport (light blue) phase. Movements start with a Reach (green)
as the cursor moves toward the target circle, transition to a Transport as the circle is
moved, and end with a Release (dark blue) as the cursor moves away from the circle.
The start of Transport is the Pick-up event and the end of Transport is the Drop-off
event. White circles show the time the eye arrives (EAL) before each event while
black circles show the time the eye leaves (ELL) following an event. Dark green lines
connect the Pick-up EAL and ELL while Dark blue lines connect the Drop-off EAL
and ELL. Despite the short Transport phases, the eye latencies adapt to ensure at
least 500 ms of fixation time around each interaction event.
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For EAL there were significant main effects of Movement (F (3.43, 96.09) = 14.28,

p < .001) and Interaction Site (F (1, 28) = 251.6, p < .001), as well as a significant

interaction between the two factors (F (3.97, 111.2) = 8.37, p < .001). Follow-up

simple main effect RMANOVAs compared Pick-up and Drop-off EALs across the 8

movements. Drop-off EALs were remarkably consistent, showing no effect of Move-

ment, demonstrating that gaze consistently arrives at a Drop-off location just over

100 ms before the clicked-and-dragged object. Pick-up EALs did show a significant

effect of Movement (F (3.87, 108.42) = 27.3, p = < .001) which aligns with the dura-

tion of the Reach phase in which the Pick-up occurred. That is, for movements with

a longer Reach phase (e.g. Movements 3, 5, 7) the eye arrives at the Pick-up location

earlier - this kind of within-trial flexibility is also observed in the real world (Lavoie

et al., 2018). Full reporting of the pairwise comparisons is available in Appendix B -

Supplementary Materials.

Together, these EAL findings suggest: 1) similar to real-world interactions, during

digital Pick-up interactions the eyes arrive about 400-500 ms before the cursor starts

to move the object, and 2) unlike real-world interactions, during digital Drop-off

interactions the eyes only arrive about 100-200 ms before the dragged object, reflecting

the stark differences in the duration of digital versus physical object Transport.

For ELL there were significant main effects for both Movement (F (2.93, 82.01) =

22.7, p < .001) and Interaction Site (F (1, 28) = 340.2, p < .001), and also a significant

two-way interaction (F (4.62, 129.38) = 15, p < .001). Follow-up simple main effect

RMANOVAs compared Pick-up and Drop-off ELLs across the 8 movements and both

were significant (Pick-up: F (2.88, 80.7) = 8.2, p < .001; Drop-off: F (3.6, 100.91)

= 24.3, p < .001). Despite statistical differences, the timing of the eye leaving the

Pick-up location is quite stable and short, ranging from ∼35-135 ms. Where Pick-up

ELL does vary, it appears to change as a function both of the length of the upcoming

transport and as a push-pull with the preceding eye arrival latencies. As an example,

Movement 6 has a relatively long Transport phase and comparatively short preceding
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EAL - this results in it having the longest Pick-up ELL. Full reporting of the pairwise

comparisons is available in Appendix B - Supplementary Materials.

The most surprising result from our study, and what stands out as the biggest

difference from real-world eye-hand coordination, is how long our participants spend

looking at an object after they have dropped it off. Here, ELL at Drop-off exceeds

400 ms in all cases and is often more than 600 ms. This is drastically different from

the real-world Drop-off ELLs which only range from 140-250 ms (Lavoie et al., 2018).

This important finding demonstrates that participants compensate for abbreviated

digital Transports by having their eyes remain fixated for longer at the location where

the object is dragged to. This prolonged Drop-off ELL also scales with duration of the

Release phase, with Movements with longer Release phases also showing the longest

ELLs. This relationship suggests that the compensatory prolongation of the Drop-off

ELL may in part relate to the planning of the next movement following a Release.

Full reporting of the pairwise comparisons is available in Appendix B - Supplementary

Materials.

Together, our ELL findings further inform the nuances of eye-cursor coordination

in digital interactions: 1) like real-world Pick-ups, the eyes wait until the Pick-up

happens then quickly leave, and 2) unlike real-world Drop-offs, the eyes dwell at the

Drop-off site well beyond the end of the Transport.

2.5 Discussion

In this preliminary investigation, we show that eye-cursor coordination during a spe-

cific form of digital object interaction obeys constraints similar to eye-hand coordi-

nation during real-world interactions. Specifically, we find the eye dwells on or near

the site of a digital interaction for at least 500 ms, almost identical to the amount

of time others report in real-world interactions with physical objects. This initial

finding demonstrates the potential utility of webcam eye-tracking collected from on-

line, remote, crowdsourced participants as a tool for capturing rich, meaningful, and
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ecologically-valid visuomotor data.

Our study was designed to make the comparison of digital to real-world interactions

as valid as possible. Thus, we adapted a previously reported real-world task (Lavoie

et al., 2018) where the 500 ms minimum dwell time per interaction had previously

been quantified. In our digital adaptation of this real-world cup-transfer task, we

asked crowdsourced, online participants to perform 50 trials of an 8-movement drag-

and-drop sequence (see Figure 2.1). While performing this digital interaction task,

participants’ cursor and gaze positions on the screen were monitored via the Lab-

vanced experiment platform (Finger et al., 2017) using their own computer webcams.

As described throughout this study, there are significant challenges to collecting we-

bcam eye-tracking data, and as such, a major objective for this project was to assess

its feasibility as a tool for quantifying patterns of dynamic eye-cursor coordination.

Tentatively, and with the caveat that substantial preprocessing was required, we

believe that the eye data quality in this task was sufficient to explore eye-cursor

coordination for this specific digital context. First, as reported by other research

groups collecting online data (i.e. Semmelmann and Weigelt, 2018; Semmelmann

et al., 2017; Yang and Krajbich, 2021), we experienced high rates of data exclusion

(>40% of participants were not included in analysis, predominantly due to eye-data

quality issues) even though we imposed restrictions on the hardware and internet

connection of eligible participants. Second, for the participants who were included in

the analysis, the eye data required extensive processing. This included reducing the

spatial dimensionality from the (x,y) coordinate frame of the screen to 4 data-driven

AOI bins (see Figure 2.2 for a representative subject), which were then mapped to the

4 task-relevant interaction locations. Given this approach departs from conventional

eye-tracking analysis, we confirmed its sensitivity by testing if the distribution of gaze

to each of these task-relevant AOIs followed the predictions imposed by task demand.

Specifically, we show that participants fixated more on interaction locations that were

relevant to the current movement (i.e. the target where you were clicking an object
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and the target where you were dragging it to) than to locations that were not relevant

to that movement (see Figure 2.3, and Appendix B - Supplementary Materials for

the complementary spatial investigation).

It is important to acknowledge that our successful collection and preliminary vali-

dation of webcam eye-tracking is in and of itself a significant contribution. With the

uncontrolled nature of online tasks, and a technology that relies on consumer-grade

hardware, there are many opportunities for noise or error to prevent successful data

collection. We worked hard to minimize dropout due to hardware and internet is-

sues by imposing very clear requirements, stated during crowdsourcing and checked

during the study initialization. Then, we spent considerable time developing clear

and transparent instructions to assist with participant retention. We provided de-

tailed information about potential privacy concerns as well as video and interactive

walk-through demonstrations of the task to promote participant understanding (see

Appendix B - Supplementary Materials). As described above, our data was then

processed using a k-means clustering technique. While clustering the eye-data was a

successful approach for this study, it succeeded in part because our task-relevant AOIs

were static and spatially distributed. Importantly, this means this approach will not

be as successful or even possible for tasks with dynamic AOIs or AOIs that are close

together. We further discuss these and other important limitations in Section 2.6 -

Limitations and Future Directions, below.

Our investigation of gaze distribution (see Figure 2.3 for a temporal assessment, and

Appendix B - Supplementary Materials for a spatial assessment) gave us sufficient

confidence in the quality of the eye-tracking data to pursue our primary question

of whether or not digital eye-cursor coordination in this task would follow similar

patterns to real-world eye-hand coordination. Examining visuomotor coordination in

tasks designed to promote natural, self-paced behaviours requires the task first be

broken into its constituent interactions and then that those interactions be broken

into the discrete phases of interaction. Adopting the segmentation strategy employed
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by Lavoie et al. (2018) we identified an important distinction between real and digital

object interactions: despite both forms of movement being self-paced, digital objects

are transported in about 200 ms (see Figure 2.4), 4 to 5 times faster than real objects

are moved in the real world. Given these movements, it was impossible that the

exact pattern of eye-hand coordination observed in the real world would be preserved

during digital interactions. That is, during real-world interactions, when transporting

an object between locations, the eye will “look ahead” to the drop-off site about 500 ms

before the hand and object arrive. But, as just explained, during digital interactions,

the entire transport lasts about 200 ms, meaning the eye cannot look ahead in the

same way.

Remarkably, our results suggest that the visuomotor system preserves the overall

interaction eye-dwell time of at least 500 ms by flexibly adapting the pattern of

fixations. Specifically, we quantified eye-cursor latencies around both the Pick-up

(cursor clicked to start dragging) and Drop-off (release of cursor click to stop dragging)

events. At each event, we calculated how long the eye was looking at the location prior

to the event (eye arrival latency, or EAL) and how long the eye remained looking at

the location after the event (eye leaving latency, or ELL). As depicted in Figure 2.4,

for a digital Pick-up, the pattern of gaze is almost identical to a real-world interaction:

the eyes arrive at the location 400-500 ms before and stay for about 100 ms after.

Given the speed of the Transport phase, eye latencies during digital Drop-off are

significantly different from the real world. The eyes arrive around 100 ms before

the event, but surprisingly, linger for 400-500 ms after the digital object has been

released. With consideration to the preliminary nature of our investigation, we take

this as the most important finding in our study: gaze allocation during a digital, self-

paced, drag-and-drop object interaction flexibly adapts to the drastically different

mechanics of movement to ensure about 500 ms of visual information is acquired

from the beginning and end of each interaction movement. Thus, this perfectly aligns

with the take-home message of real-world interactions, but the route by which it is

77



achieved is significantly different.

Given this initial evidence for the persistence of ∼500 ms of eye fixation towards

objects we interact with across real and digital domains (for at least this specific

context), what insights might this offer for UX design principles? First, it suggests

that as particular digital experiences are being designed, there may be a fundamental

lower limit on the pacing with which interactions can occur while respecting the

natural cadence of visuomotor coordination. For example, a drag-and-drop movement

will take at least one second if executed at a natural speed. A designer wanting to push

these movements to be faster might consider rearranging the target locations to make

them spatially contiguous, possibly allowing the Pick-up and Drop-off information to

be gathered by a single fixation. On the flip side, a designer requiring particularly

precise cursor interactions might consider spatially separating the targets, letting

the extra distance provide additional time for targeting fixations to occur within the

natural rhythms of the task. In both of these cases, these preliminary findings support

the notion that a design achieves maximum efficiency not by being the fastest, but

rather, by aligning with the demands of a visuomotor system that evolved to optimally

coordinate movements (Cisek, 2022) on its own time scale.

A second design principle which is more indirectly revealed via this introductory

study is the role that feedback plays in facilitating successful interactions. Unlike

in the real world where a person using their body to interact with an object typi-

cally receives haptic feedback about the interaction, digital interactions rely almost

exclusively on visual feedback for confirmation that an interaction is proceeding suc-

cessfully. In the current study we attempted to boost the visual cues associated with

interaction by changing the visual properties of targets based on the cursor position.

But, we believe there is more work to be done exploring how additional modalities

could move digital interactions toward their real-world counterparts. For example,

adding sound cues relevant to interaction, or even more sensitive and dynamic vi-

sual cues on objects that are successfully being interacted with may liberate the eyes
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to move in an even more natural fashion. Some work in high leverage interactions

like laparoscopic surgery (Panait et al., 2009) has shown the utility of this approach.

As real and digital worlds become less siloed and share elements across spaces (e.g.

virtual and augmented reality), we predict that these mixed interactions will also

obey the ∼500 ms of viewing time and so too will benefit from the exploration of

multimodal feedback cues.

2.6 Limitations and Future Directions

Our goal was to measure more ecologically-valid user experiences from a diverse pop-

ulation of participants using their own digital devices in familiar environments. Thus,

we collected eye-tracking data from webcams on remotely recruited participants. This

meant we sacrificed some experimental control and introduced more eye-tracking

noise, leading to a number of notable limitations. Here we describe some of these

limitations and for each, offer a future direction for how to test and improve the

study.

First, we provide no formal validation of the accuracy of the webcam eye-tracking

system. While we attempted to quantify the functional accuracy in both time (see

Figure 2.3) and space (see Appendix B - Supplementary Materials) a future approach

would be to conduct the same experiment under controlled lab conditions while simul-

taneously recording both webcam and lab-grade, high-resolution eye-tracking data.

Of course, a shift to the lab would also remove some of the environmental confounds

of remote participation (lighting, hardware differences etc.) and would therefore pro-

vide a best-case measure of the magnitude of accuracy difference between webcam

and lab-grade systems. Thus, given the known accuracy reduction in the current

study, we urge the reader to take these results as preliminary and interpret them

with due caution, leaving formal validation as a future opportunity.

Second, the reduced accuracy of the webcam eye-tracking forced us to define and

use four, large, mutually-exclusive AOI bins with a spatial distribution roughly match-
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ing the actual targets but susceptible to spatial skewing (see Figure 2.2 and Appendix

B - Supplementary Materials). As a result, we are unable to identify exactly where

within a defined AOI the gaze was focused. Our analysis assumes that a look within

a particular AOI is actually a look toward the relevant target object - an assump-

tion that follows from real-world tasks where gaze is anchored only to task-relevant

objects (Hayhoe, 2000; Land & Hayhoe, 2001). In the Supplementary Materials (see

Appendix B) we present our attempt to quantify some aspects of this assumption by

examining the spatial dispersion of the eye data when transformed into the task space.

As reported, this analysis suggests that our AOI-binning was useful (unlikely to result

in eye-data being mislabelled) but also highlights the remaining noise (most eye data

still falls outside of a task-defined AOI). Therefore, the assumption of the specific

timing and location of eye-positions relative to AOI boundaries should also be tested

in future work. That is, further study is needed to confirm that this pattern of gaze

anchoring extends to digital, screen-based contexts, and is also true in uncontrolled,

remote settings. Again, a future study is needed to directly test this assumption by

conducting an in-lab experiment comparing webcam to lab-grade eye-tracking.

Third, and perhaps most importantly, the large-AOI approach detailed above

presents a significant limitation in our ability to draw definitive conclusions about

how digital interactions relate to real-world interactions. This means the results of

our second research question should be treated with particular caution as they are

based on unvalidated assumptions. As an example, we are unable to provide any

quantifiable proof that the arrival and dwell time of eye data binned into four large

screen-based AOIs is equivalent, or even a good proxy for, the arrival and dwell

time of a real-world fixation to a real-world object. As mentioned above, the spa-

tial dispersion analysis of eye data clusters presented in the Supplementary Materials

(see Appendix B) provides some quantified context for the general validity of this

approach, but, again, a potential future solution would be to conduct a laboratory

eye-tracking experiment benchmarked against a gold-standard, high-resolution eye
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tracker. Moreover, this future study could also explore a range of real-world and dig-

ital tasks to make the connections between them more clear. As an example, a more

consistent real-world variant of the screen-based drag and drop task we employed

here would have participants move and slide an object across a table, rather than lift

and place as was done in the previous real-world experiment we used as inspiration

(Lavoie et al., 2018).

Finally, the previous point about task variety highlights a limitation of our ap-

proach regarding its wider generalizability. To be clear, we only examined a single

digital-interaction task that was designed to mimic only a single real-world object

interaction task, and as such, our claims of this exposing a general property of the

required fixation time for successful interaction (∼500 ms) should be tempered. As

with how the body can interact with objects in the real world, during digital inter-

actions there are a multitude of ways people can interact with digital objects. Here

we limited ourselves to only one form of interaction (drag-and-drop) and as such, any

conclusions we draw may only apply to that particular case. It is possible, or even

likely, that other styles of interaction (e.g. point-and-click, swipe, hover) would result

in different patterns of gaze behavior.

Taken together, these limitations highlight the need to interpret these results as

exploratory and further validate some of the key assumptions. That being said,

while accounting for these limitations, this study does suggest the promising power

of remote data collection for ecologically-valid, user-centered, visuomotor research.

This study also offers practical and automated methods (albeit task-specific) for ex-

tracting gaze patterns from unreliable data. Here, those methods provide sufficient

quality to conduct an exploratory investigation of eye-cursor coordination under these

more challenging conditions. In doing so, we believe we provide encouraging, though

preliminary, evidence for some basic principles of gaze behavior during digital inter-

actions. We think these results are exciting to drive future research focused on both

validating the webcam results with in-lab experimentation, and exploring visuomotor

81



coordination across the broader digital interaction space.

2.7 Conclusion

We believe our study introduces a potential new approach to user testing that ac-

counts for aspects of UX that are rarely considered. Specifically, by adopting fully-

remote testing of participants from the comfort of their own home, using their own

hardware, we are actually testing users in the environment and context in which

they’d typically encounter digital products. Moreover, our unique approach of har-

vesting gaze and movement data and automatically converting the data into objective

metrics of experience gives rise to previously untapped insights. Here, in a preliminary

investigation, aided by advances in webcam eye-tracking (Finger et al., 2017), we used

this new level of insight to compare coordination across real and digital worlds, but

this information may be valuable in innumerable contexts. The repertoire of digital

interactions extends well beyond clicks and drags to points, swipes, flicks, pinches,

taps and any number of other actions. Each of these is likely to be accompanied by a

stereotyped pattern of natural visuomotor coordination which, when studied through

the lens of gaze and movement behaviour, can help refine design processes. Already

the benefits of this approach are being seen in real-world applications where scientists

are better able to assess the movements of prosthetic limb users (Hebert et al., 2019)

with the goal of helping those patients achieve more functionality in their activities

of daily living.

It turns out, people don’t move in mysterious ways. Instead, there are particular

strategies for effective interactions that are true across drastically different environ-

ments. Like Fitts found for speed accuracy tradeoffs (Fitts, 1954), which retain their

relationship on land (Fitts, 1954), underwater (Kerr, 1973), and in space (D. Newman

& Lathan, 1999), here we report that across real and digital interactions, properties of

eye-hand and eye-cursor coordination remain constant. By adapting design principles

to align with these invariant properties of human performance we stand to improve
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the user’s experience.
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Chapter 3

Assessing webcam eye-tracking utility
in binary choice decision-making

Abstract

As decisions require the gathering of relevant information, eye-tracking measures that

capture the way visual information is typically acquired offer powerful indices of

the dynamic decision-making process. This study is the second of a pair of studies

that explore continuous measures of decision-making using remote, online tools in

naturalistic settings. While cursor-tracking, used in the companion paper (Ouellette

Zuk et al., 2023), enabled access to dynamic decision processes expressed during

movement, in the present study, we now employ webcam eye-tracking to examine

the dynamics of information gathering during decision making prior to movement

initiation. Using three previously published binary choice tasks, we explored indices

of decision difficulty in the gaze dynamics that would complement the motor measures

in our companion paper. We find that harder choices elicit more eye dwells and longer

final dwells, reflecting a decision resolution process that Ouellette Zuk et al. index

during the final choice movement. Beyond this, we identify distinct gaze patterns

A version of this work has been published on a pre-print server (not peer-reviewed) as Bertrand, J.
K., Zuk, A. A. O., & Chapman, C. S. (2023). Continuous Measures of Decision-Difficulty Cap-
tured Remotely: II. Webcam eye-tracking reveals early decision processing. bioRxiv, 2023-06.
doi:10.1101/2023.06.06.543799.
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uniquely employed in each task, revealing the utility and sensitivity of gaze metrics

in illuminating the early difficulty-independent information gathering processes at

play. Together, this paper series demonstrates the power of remote, online methods

as tools for deeply understanding the complete, dynamic and continuous decision

process, from the first glance to the final response.

3.1 Introduction

In the past, research on decision-making has primarily focused on the outcomes of de-

cisions and has used discrete measures such as choice-outcomes, accuracy, or reaction

time to understand the underlying cognitive processes involved (see Schuetz et al.,

2019 for review). However, these approaches really only capture what decision was

made with little or no information about how a particular decision was arrived at.

To address this gap, recent research has turned to the motor system as a means to

investigate the dynamics of decision-making. Actions that move through space have

been shown to track decision processes that unfold across time (Cisek & Kalaska,

2010; Dotan et al., 2019; Gallivan et al., 2018; Wispinski et al., 2020).

One of the most accessible ways to record movement data is through cursor move-

ments on a screen. For example, 2-D computer-mouse movements provide a sensitive,

flexible, and scalable method to study decision dynamics (Faulkenberry et al., 2016;

Freeman, 2018; Hehman et al., 2015; Koop and Johnson, 2013; Moher and Song,

2014; Stillman et al., 2018, and many more). Moreover, the widespread adoption of

cursor-based technologies (computers, tablets, smartphones) and the recent availabil-

ity of online experiment generation tools (e.g., Labvanced, Finger et al., 2017; Gorilla,

Anwyl-Irvine et al., 2020; lab.js, Henninger et al., 2022; jsPsych, Leeuw et al., 2023;

PsychoPy, Peirce et al., 2019) means that now, more than ever, we can collect infor-

mation about decision dynamics from larger, more diverse samples and from people

in more ecologically-valid contexts (i.e., remote, online data collection). The current

study is the second half of a two-article set aimed at mapping the possibilities and
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limitations of using remote data collection during cursor-based decision tasks. In the

first study (Ouellette Zuk et al., 2023), we focus on testing the robustness of remote

data collection for understanding dynamic decision-making, showing that nuanced

details of decision processes are available not only in computer-mouse movements but

are also clearly evident and sometimes even stronger when the same task is deployed

on tablets and smartphones.

But, our first study is literally only half the story. While cursor-tracking reveals

valuable insights into the decision process once movement begins, it cannot track

details of the perceptual processes that occur prior to a movement toward a particular

choice being initiated. While reaction time reliably tracks decision difficulty in this

early phase (e.g., Palmer et al., 2005; Schouten and Bekker, 1967) it fails to capture

any of the constituent dynamics of how the decision process is evolving. In these

crucial early moments of a decision, a person is gathering the necessary information

from their environment to inform their choice. For tasks involving visual stimuli

in particular, this information gathering is primarily mediated by eye movements.

Therefore, eye-tracking offers a unique opportunity to investigate the decision process

at an earlier stage, revealing how individuals extract information and make decisions

based on where they focus their gaze.

Given this, it is not surprising that eye-tracking has long been a prominent method

in decision-making research. Extensive work has shown the interconnectedness of gaze

and choice, where gaze patterns can both reflect and bias choices (Glaholt & Rein-

gold, 2009; Glaholt et al., 2009; Shimojo et al., 2003). Moreover, eye movements have

been shown to actively sample the world in a way that adaptively maximizes the

informative value of fixations (Cassey et al., 2013; Gottlieb, 2018). Analyzing these

fixation sequences that precede a decision has provided valuable insights, revealing

that the location, duration, and pattern of fixations serve as indices of the relative

competition between choice options (Krajbich & Rangel, 2011; Krajbich et al., 2010).

Findings like these have challenged classic decision-making theories (e.g., evidence
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accumulation; Gold and Shadlen, 2007; Ratcliff and Rouder, 1998; P. L. Smith and

Vickers, 1988) to reconcile the important role the eyes play in information sampling.

This has led to the development of gaze-aware decision models such as the atten-

tional drift diffusion model (aDDM; Krajbich et al., 2010), Decision Field Theory

(Busemeyer & Townsend, 1993), and the gaze cascade model (Shimojo et al., 2003).

These models assume an option receives more evidence when gazed at, acting like an

amplifier for the attended option (Krajbich, 2019). Moreover, the aDDM has been

extended beyond preferential choice contexts, encompassing different stimuli types

(e.g., numeric information vs pictorial images; Krajbich et al., 2012) and choice do-

mains (e.g., risky and social choices; S. M. Smith and Krajbich, 2018). Collectively,

these theoretical advancements and empirical contributions provide a foundation for

comprehending how the eyes sample spatially-distributed information, emphasizing

the value of eye-tracking as a method to better understand how decisions unfold.

In the context of the current study, they show that eye-tracking is almost a perfect

complement to cursor-tracking in its ability to fill in the gap of decision dynamics

during the earliest stages of a choice being made.

A major drawback shared by all of the aforementioned eye-tracking studies is their

confinement to laboratory settings. Recently, however, the use of webcam eye-tracking

has emerged as a promising avenue in bridging the gap between controlled laboratory

experiments and data collected in a wide range of environments (e.g., Bertrand and

Chapman, 2023; Stone and Chapman, 2023; Yang and Krajbich, 2021). Admittedly,

webcam eye-tracking is still a method in its infancy and has notable limitations in

both temporal and spatial accuracy (Bánki et al., 2022; Semmelmann & Weigelt,

2018; Yang & Krajbich, 2021). Despite these challenges, it offers a distinct advantage

by capturing gaze patterns in ecologically-valid settings such as within the partic-

ipants’ own homes and on their personal devices. Furthermore, it can be argued

that - with the overall trend toward increasing digital and screen based interactions

- computerized decision-making tasks like the one used by Krajbich et al. (2010),
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now closely resemble everyday, real-world decisions. Thus, by shifting these tasks to

a more naturalistic context, such as the participants’ homes, a more comprehensive

exploration of authentic, real-world visual behaviours and decision-making processes

becomes possible. Additionally, the remote nature of this method allows for scalable

data collection beyond the limitations of a laboratory, while also providing access to

more diverse, global populations (Aguinis et al., 2021; Johnson et al., 2021).

Therefore, in this study we employ webcam eye-tracking - in part to explore its po-

tential and limits as a method - and theoretically to explore the relationship between

decision difficulty and gaze behaviour patterns. As previously mentioned, the current

study is a companion paper to Ouellette Zuk et al. (2023), with both studies inten-

tionally sharing the same experimental design. This design aimed to replicate and

extend three unique and previously published mouse-tracking based decision-making

tasks. These tasks were deliberately chosen to cover a range of decision domains in-

cluding objective perceptual judgments (Numeric Size-Congruity, Faulkenberry et al.,

2016), semi-subjective conceptual judgements (Sentence Verification, Dale and Duran,

2011) and subjective preference judgements (Photo Preference, Koop and Johnson,

2013). The tasks also varied in terms of stimulus characteristics, encompassing nu-

merical digits, written statements, and photos. By employing webcam eye-tracking,

we not only gain insights into how the decision context varies across tasks but also

how differences in the presentation and distribution of information across space af-

fect the decision-making process, something that cannot be solely obtained through

mouse-tracking. Thus, replicating Ouellette Zuk’s design with eye-tracking will not

only allow us to explore the rich, dynamic decision process earlier in time, beginning

before movement initiation, but also explore how this process presents across decision

contexts and with different distributions of decision information in the display. In

doing so, we also demonstrate the utility of remote data collection in general and

webcam eye-tracking in specific as a tool for capturing this rich readout of decision-

making from participants in their own environments using their own devices.
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3.2 Results

This study replicates and extends our cursor-tracking-focused companion paper (Ouel-

lette Zuk et al., 2023). Both studies employed three binary choice tasks where partic-

ipants indicated their choice through cursor movements: a Sentence Verification task

(Dale & Duran, 2011), a Numeric-Size Congruity task (Faulkenberry et al., 2016),

and a Photo Preference task (Koop & Johnson, 2013). Each task was designed and

analyzed to produce Easy and Hard trials (see Figure 3.1): For the Sentence Veri-

fication task, based on previous work (Dale & Duran, 2011), participants indicated

if a simple statement was true or false. On Easy trials, the statements were true

and not negated (e.g., ‘Cars have tires’) and on Hard trials the statements were true

and negated (e.g., ‘Cars do not have wings’). For the Numeric-Size Congruity task,

based on previous work (Faulkenberry et al., 2016), participants indicated which of

two digits had a higher numeric value. On Easy trials the size and numeric value were

congruent (e.g., 2 vs. 8), and on Hard trials size and value were incongruent (e.g.,

2 vs. 8). Finally, for the Photo-Preference task, based on previous work (Koop &

Johnson, 2013), participants indicated which of two photos they preferred. On Easy

trials, one photo had low pleasantness while the other had high pleasantness and on

Hard trials both photos had high pleasantness. Our companion paper successfully

replicated the main finding from the original task publications (i.e., Dale and Duran,

2011; Faulkenberry et al., 2016; Koop and Johnson, 2013) that responses on Hard

trials take longer than Easy trials, while also showing how decision difficulty affects

cursor movements. Here we predict that we will also replicate the finding that Hard

trials generate longer response times than Easy trials and investigate how decision

difficulty affects webcam-tracked gaze behaviour.
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3.2.1 Response Time: Hard decisions take longer than easy
decisions

We use Response Time as a single, broad measure to capture the duration from the

presentation of choice options to the point of response (marked by the cursor entering

the selected option). It encompasses both reaction time and movement time as de-

scribed in our companion paper (Ouellette Zuk et al., 2023). Replicating our previous

work, and confirming our key prediction, across all three tasks we observed a consis-

tent Difficulty effect (see Figure 3.1). Specifically, Hard trials required significantly

more time than Easy trials (Sentence Verification: t(96) = 21.0, p < .001, d = 2.13;

Numeric-Size Congruity: t(89) = 8.01, p < .001, d = 0.84; Photo Preference: t(96)

= 7.95, p < .001, d = 0.81).

3.2.2 Proportion of Trials: Unique task demands drive unique
gaze behaviours

We began our examination of gaze patterns within each task by characterizing and

analyzing the most frequently observed dwell patterns (see Figure 3.1). For our

analysis, we defined a dwell as a continuous gaze on an area of interest, lasting at

least 100 milliseconds within the expanded boundaries of that area (see Figure 3.3).

A dwell ended if the gaze shifted outside that area for more than 100 milliseconds.

To identify the most common gaze patterns we conducted separate RMANOVAs for

each task. These analyses aimed to assess when and how often the eyes dwelled on

particular AOIs. The following RMANOVAs include up to four factors to describe

the dwell patterns observed: Dwell Count, Difficulty, First Dwell Side, and Last

Dwell Option. The Dwell Count factor consisted of four levels (1, 2, 3, and 4 or

more), indicating the number of unique dwells during a trial. The Difficulty factor

distinguished between trials classified as either Hard or Easy. The First Dwell Side

factor described whether the initial dwell on a trial fell upon the Left or the Right

choice option. Finally, the Last Dwell Option factor indicated whether the final dwell
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Figure 3.1: Examples of hard and easy decisions, alongside response time (horizontal
bar graphs) and the proportion of trials (vertical bar graphs) results across the study’s
three tasks: A) Sentence Verification, B) Numeric Size Congruity and C) Photo
Preference. Throughout, orange represents hard decisions, while green represents
easy decisions. Error bars are the standard error of the difference between the hard
and easy conditions. The proportion of trials data is presented as simplified marginal
means, where each factor analyzed in the Repeated Measures ANOVA (RMANOVA)
is presented independently across its levels (note (Ch.) means Chosen and (Unch.)
means Unchosen) The Sentence Verification task includes an untested but present
gaze behaviour of No Dwells on Options, indicating the proportion of trials where
only the sentence received a dwell.
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of the trial was on the Chosen or Unchosen option.

Sentence Verification Task

Sentence Verification was unique in that many times (∼35% of all trials) participants’

eyes dwelled only on the sentence and never on either choice option. We represent

the proportion of these “No Dwells on Options” in Figure 3.1A, but it is not possible

to examine them in our statistical analysis of choice option gaze patterns. Thus, we

acknowledge their presence as a predominant gaze behaviour in Sentence Verification

and proceed with the rest of the analysis looking only at trials having at 1 or more

dwells.

A 2 (Last Dwell Option) x 2 (Difficulty) x 4 (Dwell Count) RMANOVA of the

proportion of trials within the Sentence Verification task revealed a significant three-

way interaction between the tested factors (see Table 3.1; F (1.27,121.97) = 53.6, p <

.001, η2p = 0.36). This interaction was interrogated further by splitting the data into

the much more common trials that ended with a dwell on the Chosen option (∼60%)

and those that more rarely ended with a dwell on the Unchosen option (∼5%). For

each of these groups we ran separate 2 (Difficulty) x 4 (Dwell Count) RMANOVAs.

When we look at the three-way interaction follow-up RMANOVA for Last Dwell

on Chosen we reveal a significant interaction between Difficulty and Dwell Count

(F (1.29,123.74) = 56.4, p < .001, η2p = 0.37), as well as significant main effects

(Dwell Count: F (1.33,127.76) = 281.9, p < .001, η2p = 0.75; Difficulty: F (1,96) =

41.1, p < .001, η2p = 0.30). We further followed up the two way interaction with four

1-factor RMANOVAs - one for each level of Dwell Count. Here, we see significant

Difficulty effects in the proportion of trials at each level of Dwell Count. For last dwell

on Chosen one-dwell trials, we see a higher proportion of Easy trials than Hard trials

(p < .001, MHard−Easy = -0.104), while the reverse pattern of a higher proportion

of Hard than Easy trials is revealed when there are two, three, and four or more

dwells (all p’s < .05, and MHard−Easy range from 0.00215 to 0.0192). In general,
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this suggests that for trials that show the commonly-occurring Last Dwell on Chosen

pattern, Harder trials result in more dwells than Easy trials.

When the Last Dwell fell on the Unchosen option (which occurred rarely, M Unchosen

= 0.0434), we observed differences in the proportion of trials driven by both Difficulty

(F (1,96) = 5.19, p = .0249, η2p = 0.051) and the Dwell Count (F (1.17,112.37) = 61.16,

p < .001, η2p = 0.39), but not their interaction (F (1.22,116.65) = 1.99, p = 0.1582, η2p

= 0.020). The proportion of Hard trials was slightly higher than that of Easy trials

(MHard−Easy = 0.0024), and all pairwise comparisons between the number of dwells

yielded significant results (all p’s < .05), with the proportion of trials following a

pattern of one-dwell > two-dwells > three-dwells > four or more dwells. The results

suggest that participants have very few trials with multiple dwells in this task and

that the relatively rare gaze pattern where the eyes end on the Unchosen option occurs

slightly more on Hard trials than Easy trials.

Overall, Figure 3.1A highlights the general gaze patterns elicited by the Sentence

Verification task: while sometimes there was no gaze upon the choice options, when

it did happen, it was usually only once, and almost always on the chosen option.

However, in the relatively infrequent number of trials where the gaze dwelled more

than one time on the options, this occurred more often on hard trials.

Numeric-Size Congruity Task

We explored the proportion of trials in Numeric-Size Congruity with a 2x2x2x4

RMANOVA (Last Dwell Option x First Dwell Side x Difficulty x Dwell Count).

Two significant three-way interactions were revealed (these were the highest order

significant interactions): Last Dwell Option x Difficulty x Dwell Count (see Table

3.1; F (1.85,164.29) = 22.2812, p < .001, η2p = 0.20) and Last Dwell Option x First

Dwell Side x Dwell Count (F (2.26,201.05) = 18.0261, p < .001, η2p = 0.17).

To follow-up the Last Dwell Option x Difficulty x Dwell Count interaction, like the

Sentence Verification follow-up, we looked at Difficulty x Dwell Count at each Last
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Dwell Option level separately. Again, participants were much more likely to end the

trial by looking at the Chosen (∼80%) as compared to the Unchosen (∼20%) option.

Following up the three-way interaction for the more common last dwell on Chosen

gaze pattern, we uncovered a two-way interaction between Difficulty and Dwell Count

(F (1.75,155.67) = 10.1,p < .001, η2p = 0.10). The further follow-ups at each level of

Dwell Count found that the interaction was driven primarily by a significant Difficulty

effect on one-dwell trials only. That is, there is a greater proportion of single, Chosen

option dwells on Hard trials compared to Easy trials (p < .001, MHard−Easy(1Dwell) =

0.0353, η2p = 0.18). Overall, this result highlights the high proportion of trials where

the last dwell ends on the chosen option, while revealing a subtle difficulty effect

in single dwell trials. We believe this difficulty effect is best understood after also

explaining the pattern of behaviour on Last Dwell on Unchosen trials.

For the less common Last Dwell on Unchosen trials, the 2x4 follow-up RMANOVA

revealed a significant two-way interaction (F (1.86,165.17) = 26.9, p < .001, η2p = 0.23).

Further follow-ups highlight that this is an effect driven by a significantly greater

proportion of Last Dwell on Unchosen trials in Easy one and two-dwell cases than

Hard (both p’s < .001, MHard−Easy(1Dwell) = -0.0261, η2p = 0.36; MHard−Easy(2Dwells)

= -0.0133, η2p = 0.16). Last Dwell on Unchosen is a less common gaze pattern as

compared to Last Dwell on Chosen, but when present, it’s more likely to happen on

Easy trials where there’s only one or two dwells to the choice options. So, why are

we seeing fewer dwells on harder trials, opposite to what we saw in the other tasks?

We speculate this has to do with a unique property of the Numeric-Size Congruity

task where what makes a specific trial hard is the physical size of the target, which

we feel is likely related to its visual discriminability. Specifically, on Hard trials, your

eyes have landed on a physically small but numerically large number. This smaller

character likely takes additional time to resolve. During this time, however, it is

possible that you are also processing information from the other target location (E.

Stewart et al., 2020). On these Hard trials, the other numeral at this peripheral
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location is numerically small and physically large. We think that it may be easier to

resolve this peripheral, larger target, eliminating the need for a second fixation. If we

take the mirror scenario, on an Easy trial your eyes land on a numerically large digit

that is also physically large. Resolving this larger stimulus occurs quickly. But, the

peripheral target in these cases is physically small. We speculate that on some trials

there is too much uncertainty about the identify of the peripheral stimulus which in

turn drives a second dwell to its location. The net result of this is that, on some Hard

trials your linger at the first location and don’t need a second fixation while on some

Easy trials you can more quickly leave the first location but feel the need to take a

look at the second location.

Returning back to the second three-way interaction (Last Dwell Option x First

Dwell Side x Dwell Count) that emerged from the omnibus RMANOVA, we chose to

first explore this interaction at each level of First Dwell Side separately. In general,

whether looking at trials where the gaze first fell on the Left option (which occurred

∼60% of the time) or the Right option (which occurred ∼40% of the time), the

results are relatively similar. In both cases, a significant two-way interaction emerges

between Last Dwell Option and Dwell Count (First Dwell Left: F (1.66,147.96) =

80.3, p < .001, η2p = 0.47; First Dwell Right: F (1.74,154.92) = 149, p < .001, η2p =

0.63). Further follow-ups for each case (at each level of Dwell Count) show the same

pattern: the proportions of Last Dwell on Chosen trials is significantly greater than

the Last Dwell on Unchosen trials (all 8 final tests have p values < .01).

All together, Figure 3.1B summarizes these results with marginal means shown for

simplicity. In the Numeric-Size Congruity task, most often there were only one or

two gazes upon the choice options, and in both cases, the first gaze was most likely

to start on the left while the last gaze was almost always on the chosen option. The

difficulty effects in this task were more subtle. When the gaze only landed on the

chosen option and stayed there, it was more likely that this happened on a hard

trial than an easy trial. But, in the small proportion of trials where the last dwell
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was on the unchosen option, there were more one dwell and two dwell gazes on easy

trials than hard trials. We speculate this difficulty effect has to do with peripheral

processing and the visual discriminability of targets of different sizes.

Photo Preference Task

We tested the proportion of trials in the Photo Preference task with a 2x2x2x4

RMANOVA (Last Dwell Option x First Dwell Side x Difficulty x Dwell Count) and

found a significant four-way interaction between Last Dwell Option, First Dwell Side,

Difficulty and Dwell Count (F (2.65,254.36) = 29.94, p < .001, η2p = 0.24). For Photo

Preference trials the most dominant factor was the First Dwell side with first looks to

the Left (∼80%) being much more common than first looks to the Right (∼20%). As

such, our initial follow-ups to the omnibus RMANOVA involved performing a 3-factor

RMANOVA at each of the two levels of First Dwell Side.

In the more commonly-occurring trials where the First Dwell started on the Left,

the three-way follow-up test revealed a significant three-way interaction between Last

Dwell Option, Difficulty and Dwell Count (see Table 3.1; F (2.57,247.20) = 30.43,

p < .001, η2p = 0.24). The additional follow up two factor RMANOVAs that were

performed for each level of Last Dwell Option revealed further interaction effects be-

tween Difficulty and Dwell Count in both tests (Last Dwell Unchosen: F (1.98,189.71)

= 4.82, p = .009, η2p = 0.048; Last Dwell Chosen: F (2.69,258.31) = 35.89, p < .001,

η2p = 0.27). In the most commonly occurring First Dwell Left-Last Dwell Chosen case,

the two-way interaction follow-ups for each level of Dwell Count revealed a difficulty

effect only for two and four or more dwells. For First Dwell Left, Last Dwell Cho-

sen, two-dwell trials, there was a greater proportion of Easy trials than Hard trials

(MHard−Easy = -0.0637, p < .001, η2p = 0.44), and an opposite pattern for four or

more dwell trials (MHard−Easy = 0.0312, p < .001, η2p = 0.23). In the less common

First Dwell Left, Last Dwell Unchosen case, when further follow-ups were performed

at each level of Dwell Count, we found the two-way interaction to be driven by sig-
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nificant differences in trials with one and four or more dwells. For one-dwell, Last

Dwell Unchosen, First Dwell Left trials, there was a significantly greater proportion

of Easy trials than Hard trials (MHard−Easy = -0.00921, p = .00421, η2p = 0.08) and

the opposite pattern for four or more dwell trials (MHard−Easy = 0.0138, p < .001, η2p

= 0.16). Taken together we see that Hard trials generally shift toward having more

dwells (three or more) than Easy trials (one or two).

Shifting to the follow up analysis of the more infrequent trials where the First

Dwell was to the Right, the only significant effects came from the main effects of Last

Dwell Option and Dwell Count (Last Dwell Option: F (1,96) = 17.502, p < .001,

η2p = 0.15; Dwell Count: F (2.06, 197.43) = 24.566, p < .001, η2p = 0.20). All the

pairwise comparisons were significant, with a greater proportion of First Dwell Right

and Last Dwell Chosen trials than First Dwell Right and Last Dwell Unchosen trials

(M Chosen−Unchosen = 0.00791, p < .001), and, when the First Dwell started on the

Right, a pattern of greater proportions of two-dwells than one-dwell than three-dwells

than four or more dwells (all p’s ≤ .01689).

Figure 3.1C highlights the dominant gaze patterns evident during the Photo Prefer-

ence task. Most often, participants looked at each option at least once, almost always

starting on the left and ending on whichever option they chose. Decision difficulty

inflated the number of dwells, with participants more likely to make more dwells if

the decision was harder.

3.2.3 Gaze Dynamics: Driven early by stereotyped informa-
tion gathering, affected later by decision difficulty

We used our proportion of trials analyses to guide an in depth exploration of gaze

dynamics for the most commonly occurring gaze patterns in each task. This ensured

adequate statistical power and allowed us to fully represent the dramatic ways gaze

patterns differed across tasks. The analyses presented in the current section focused

on the temporal aspects of gaze patterns and specifically examined how these dynam-
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Table 3.1: Proportion of trials results from each task’s three-way interaction involving
Difficulty as a factor. Note. *p < .05; **p < .005; ***p < .0005
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ics varied with decision difficulty. We operationalized the gaze dynamics into timing

metrics to describe the onset and duration of a dwell, as well as the time from the end

of the dwell to the end of the trial (where the trial ended upon the cursor entering the

chosen option). In cases where the most frequent gaze pattern involved more than 1

dwell, we also measured the onset and duration of the second or last dwell, as well as

the time between dwell events. Across the three tasks, we analyzed 21 gaze dynamics

metrics. We conducted paired t-tests comparing the Hard and Easy Difficulty condi-

tions for each metric. To account for the potential impact of multiple comparisons,

we adjusted the significance level to p = .05/21 = .00238. We fully report the results

of these twenty-one gaze metrics in Table 3.2.

Sentence Verification Task

The most common gaze behaviour observed during the Sentence Verification task

was either no dwell on any choice option or a single dwell on the chosen option. As

mentioned earlier, we did not investigate gaze dynamics for the no dwell on option

trials. To examine the gaze behaviour on single dwell trials, we analyzed three metrics:

First Dwell Onset, First Dwell Duration, and End Dwell to Response (see Figure

3.2A). In the Sentence Verification task, irrespective of decision difficulty, there was

no difference in the duration of the dwell on the chosen option. However, for both

First Dwell Onset, and the time from the end of the dwell up to the response (End

Dwell to Response), Hard decisions elicited significantly longer latencies (see Table

3.2).

While we know that Response Times are longer for hard decisions (see above),

these gaze dynamics suggest that the additional time is not simply due to an elon-

gated timeline for all components of a Hard decision. Rather, in this particular task,

where decision-relevant information resides outside of the choice options, more time is

spent reading the sentence for Hard decisions before the gaze moves to the chosen op-

tions (approximately 700 ms). But, the chosen option itself does not require extensive
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Figure 3.2: Gaze dynamics of the most common dwell patterns across the three deci-
sion tasks. Each pattern is depicted for hard and easy decisions, with every decision
shown within a horizontal orange (hard) or green (easy) bar. All gaze patterns are
aligned to the moment choice options are presented. Arrows are used to indicate the
onsets and offsets of dwells, while the blue bar shows the dwell duration on the chosen
option, and the grey bar shows the dwell duration on the other option for patterns
where there is more than one dwell. Any significant differences between the gaze met-
rics of hard and easy trials are indicated with a star (*) and an opaque bar or thicker
arrow. Insignificant differences are shown as transparent bars or thin arrows. For the
Photo Preference 2 or more dwells plot, only the first and last dwell are depicted, but
the results include trials where there would be additional dwells. Detailed means and
statistics are available in Table 3.2.
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viewing as the ‘True’ and ‘False’ options maintain a consistent position throughout

the task. Hence this dwell time does not differ between Hard and Easy trials. How-

ever, after the gaze leaves the chosen option, a harder decision requires more time to

complete compared to an easier decision. This suggests that there is further cognitive

processing involved in resolving the decision before the mouse cursor lands in the

chosen option. We discuss this finding in light of our parallel mouse-tracking study

(Ouellette Zuk et al., 2023) in the Discussion.

Numeric-Size Congruity Task

For Numeric-Size Congruity we analyzed the two most prevalent gaze behaviours: a

single dwell on the chosen option, and two dwells with the last dwell on the chosen

option. Interestingly, in contrast to Sentence Verification, the effect of difficulty on

gaze pattern timing in single dwell trials was entirely different. Figure 3.2B illustrates

that the only significant difference between Hard and Easy trials was found in the

dwell duration of the single fixation, with Hard trials eliciting longer dwells than Easy

trials (see Table 3.2). In this task, since the decision-relevant information is located

at the choice option, the effects of decision difficulty are primarily expressed in the

time required to visually acquire this information.

Further insights about the decision-making process are gained when exploring the

two-dwell pattern with the last dwell on the chosen option. In these trials, we seg-

mented the pattern into 5 constituent metrics: time to first dwell, first dwell duration,

time between dwells, second dwell duration and second dwell offset to response. Re-

markably, only the duration of the second (and last) dwell showed a significant effect

of decision difficulty (see Table 3.2). This indicates that in two-dwell trials, both

Hard and Easy trials exhibit the same initial dwell gaze pattern up until the second,

and chosen, choice option is viewed. Only at this point, does the gaze tend to dwell

longer on average for Hard decisions, suggesting that additional time is needed to

process and integrate the decision-related information obtained from both options.
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Photo Preference Task

To capture the unique gaze behaviours specific to Photo Preference, we examined two

distinct patterns: the highly stereotypic gaze pattern of two dwells with the first dwell

on the left and the last dwell on the chosen (and right) option, as well as a broader

set of patterns involving more than one dwell where the last dwell was on the chosen

option. Similar to the Numeric-Size Congruity task, we analyzed five metrics for

two-dwell, first-dwell-left, last-dwell-chosen trials. Once again, we found significant

effects of difficulty only in the second (and last) dwell, with Hard trials resulting in

dwells significantly longer than Easy trials (see Table 3.2). Figure 3.2C illustrates this

pronounced difference, and we later discuss how the form of this decision information

(colorful photos) and the type of decision required (preference) likely contribute to

this finding.

Lastly, we also examined decision difficulty in Photo Preference across all gaze

patterns involving more than one dwell (trials with two, three or four or more dwells)

where the last dwell fell on the chosen option. Here, we still analyzed five metrics,

but with adjustments: metrics were anchored to the ‘last’ dwell (whether it was

the second, third, fourth or more), and the measure of time between the two dwells

was replaced with the onset time of the last dwell relative to the start of the trial.

This is depicted in Figure 2C. In these analyses, we observed significant differences

between Hard and Easy trials in the duration of the last dwell, the onset of the

last dwell, and the offset of the last dwell to the response (see Table 3.2). Hard

trials consistently exhibited longer latencies in all three metrics. As these tests were

performed on aggregated data from two, three, four, or more dwells, the onset of the

last dwell aligns with the results from the proportion of trials, where Hard Photo

Preference trials had a greater proportion of trials with more dwells compared to

Easy trials. Once again, the duration of the last dwell provided evidence that it

was not exclusively the ‘second’ dwell but rather the ‘last’ dwell affected by decision
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difficulty. Further, the impact of decision difficulty extended beyond the last gaze,

as Hard decisions appeared to require additional time for resolution, consistent with

the longer movement times in Ouellette Zuk et al.’s study (2023). Perhaps most

interestingly, just like the Size-Congruity task, the timing of the first dwell was not

impacted by decision difficulty. That is, in terms of both onset and duration, the first

dwell is highly stereotyped, suggesting that decision competition doesn’t really begin

until all decision information has been sampled.

3.3 Discussion

In this study we collected data from a remote cohort of participants performing

three different binary choice tasks while recording gaze behaviour via webcam eye-

tracking. This paper serves as a companion to Ouellette Zuk et al. (2023) which

details how decision-dynamics play out for the same three tasks when measured by

mouse-tracking. Both papers rely on previously published works (Dale & Duran,

2011; Faulkenberry et al., 2016; Koop & Johnson, 2013) that identified trials with

hard or easy decisions. Briefly the three tasks were: A Sentence Verification task

where you determined whether a statement was true or false (difficulty was manip-

ulated through sentence negation); A Numeric-Size Congruity task where you deter-

mined which of two digits was numerically larger (difficulty was manipulated through

the congruence of physical and numerical size); and a Photo-Preference task where

you determined which of two photos you preferred (difficulty was manipulated by

the pleasantness-similarity between the two photos). In general, hard choices take

longer to resolve than easy choices, a finding we report in the companion paper and

replicate here in our analysis of Response Times (see Figure 3.1). However, response

time is a coarse measure that cannot reveal any of the underlying decision processes.

Similarly, though it is able to fill in the gap about the effects of decision-difficulty on

decision processes after a movement is initiated, mouse-tracking (e.g., Ouellette Zuk

et al., 2023) is blind to decision processes arising prior to movement onset. Thus, the
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Table 3.2: Pairwise comparisons between hard and easy trials for all gaze metrics.
Note. Gaze dynamics were tested at an alpha level of .05/21 = .0023809. *p <
.0023809; **p < .0001; ***p < .00001
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primary objective of this study was to examine how decision difficulty manifests in

gaze dynamics - a measure capable of indexing decision processes from the moment

of stimulus onset.

In order to investigate gaze dynamics it was first necessary to more broadly cat-

egorize gaze patterns - the series of looks (dwells) the eyes made on certain targets

relevant to a decision. For example, it would be meaningless to examine the dy-

namics of a second-dwell for a task where this rarely occurred. We first examined

trial characteristics including number of dwells, the side of space of the first dwell

and whether the last dwell was toward the chosen target, calculating the proportion

of trials observed for each gaze pattern and whether they occurred in hard or easy

trials. This analysis of common patterns first revealed a task-general difficulty effect

whereby more dwells were observed on harder trials. Second, and more importantly,

it also highlighted distinct and unique gaze patterns observed between tasks. While

the first paper in this series (Ouellette Zuk et al., 2023) demonstrated the consistency

of decision difficulty effects between tasks, here the proportion of trials analysis ex-

posed a relationship between gaze behaviour and the spatial distribution of decision

information within a task.

In the Sentence Verification task all of the decision information is contained in a

statement at the top-middle of the screen with no unique information contained at the

left or right choice options (the “True” and “False” labels at these locations remained

constant). As such, the dominant gaze behaviour in this task contained either no

looks toward the choice options or a single look toward the option that was selected.

On the trials with one dwell on the chosen option, we found that the duration of

that dwell remained the same for both hard and easy trials. Instead, the effects of

decision difficulty emerged in the time it took for the dwell to start, and the time

from the end of the dwell to the response. In this task we can infer that the gaze was

focused on the sentence, and as the sentence contained all of the decision information,

the differentiation between hard and easy trials emerged prior to any look towards
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the response options. In the case where a subsequent look to the chosen target

occurs, the constant dwell duration seen regardless of decision difficulty suggests that

this gaze might only serve the difficulty-independent process of spatially guiding the

mouse response. However, after the gaze leaves the chosen option, difficulty effects

re-emerge, suggesting that additional cognitive processing may be required beyond

the choice-option dwell to finalize the decision.

In the Numeric-Size Congruity task, unlike Sentence Verification, the information

necessary to make a decision is contained at the choice options. However, this task

has the interesting property that sometimes a single fixation toward a choice option

is sufficient to make a decision (e.g., if your eyes dwell on the digit “1” or “9” you can

definitively know it is the lower or higher numeric value respectively) while other times

a single dwell is insufficient (e.g., if you eyes dwell on the digit “2” or “8” fixating the

other target is necessary to make a definitive decision). Given this, it is logical that the

dominant gaze patterns observed in this task are divided into trials with only a single

dwell and trials with two dwells. When examining the single dwell on chosen trials

of the Numeric-Size Congruity task, difficulty effects manifest in a manner wholly

opposite to that of the Sentence Verification task. Specifically, when participants

focus only on the chosen option, they spend significantly more time dwelling on it

during hard trials compared to easy trials. This prolonged dwell on the incongruent

yet correct choice option is the only metric in the Numeric-Size Congruity task where

difficulty effects become evident. Neither the onset of the first dwell nor the offset to

response show any changes with difficulty. This begins to fill in the picture of how

eye gaze functions with respect to decision difficulty - at the moment when sufficient

information about the decision has been acquired via eye gaze then, and only then,

does difficulty begin to differentially affect the decision timeline.

This hypothesis of gaze distribution being tied to information acquisition receives

additional support from the two-dwell trials in the Numeric-Size Congruity task. Here

we observe an intriguing pattern whereby the gaze dynamics of hard and easy trials
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appear identical all the way until the second dwell, where then, and only then, do

hard trials exhibit a significantly longer duration for the last dwell compared to easy

trials. Following this extended second dwell, the time to the response is comparable

for both difficulty conditions. Thus, all the effects of decision difficulty for this set of

trials are reflected exclusively in the last dwell, where determining the correctness of a

numerically large but physically small (i.e., incongruent) choice option requires more

dwell time compared to a numerically large and physically large (i.e., congruent)

choice option. Perhaps most importantly, the first dwell, which is predominantly

directed towards the unchosen option, does not take longer in the hard condition. It

is only when participants view both choice options, and therefore have acquired all

the necessary decision information, that difficulty effects emerge.

Finally in the Photo Preference task, decision information is necessarily and evenly

distributed between both choice targets. That is, you can’t make a determination of

comparative preference between two photos without having your eyes dwell on both

of them. Accordingly, when examining the most common gaze patterns in the Photo

Preference task, they all involve two or more dwells with the single most common

pattern being a look to the left, unchosen target followed by a look toward the right,

chosen target. Focusing on this specific two-dwell pattern, the results follow the

structure outlined in the Numeric-Size Congruity task. That is, the difficulty effect

emerges exclusively in the last dwell duration of these Photo Preference trials. Like

before, a hard trial does not exhibit signs of being difficult until the second, chosen

option is viewed.

These results are confirmed in our broader investigation of Photo Preference trials

with two or more dwells (e.g., trials with two, three, four or more dwells). Again, we

consistently observed difficulty effects in the latter half of the trial, with hard trials

showing a longer duration for the last dwell, as well as later onsets of the last dwell

and longer durations between the last dwell and the response. This broader result

shows the consistency of the difficulty effect on the duration of the last dwell, while
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the prolonged onset of the last dwell on hard trials likely results from averaging trials

with a higher dwell count. Of note, the time from the offset of the last dwell to the

response should not be conflated with the number of dwells in the same way. Instead,

it suggests that this broader set of trials, with more dwells in harder trials, may more

clearly capture decisions with lingering uncertainty. In other words, if harder trials

take longer and more dwells cost more time, this set of trials may reflect the more

challenging choices where difficult decisions are still being resolved all the way until

the final choice occurs.

Taken together, the analysis of gaze behaviour across these three binary choice

tasks sheds light on the dynamics of decision making. It appears there are at least

two processes at play - the gathering of decision information and the resolution of

the decision. While these two aspects of the decision can likely proceed in parallel,

our data suggest that information gathering is the predominant driver of gaze early

in trials and proceeds largely without impact from the specific demands of decision

difficulty until all the relevant information has been at least partially sampled. More-

over, information gathering appears to be highly stereotyped for a given task. This is

most evident in the Photo Preference trials - when information was evenly distributed

across two locations, the vast majority of dwells were directed first to the left, and

then to the right. This aligns with gaze-focused decision models trained on behav-

ioral data from similar binary choice preference tasks (Busemeyer & Townsend, 1993;

Krajbich et al., 2010; Shimojo et al., 2003). These models assume a left-first gaze,

highlighting the persistent influence of ingrained eye movements used in reading left

to right (at least in the English-speaking population tested). Additional evidence for

the stereotyped nature of information gathering is seen in the first dwell dynamics

on trials with more than one dwell (Numeric-Size Congruity and Photo Preference).

Here, the time to first dwell and first dwell durations are not impacted by decision

difficulty.

This suggests that there is a level of dynamics involved in decision making that
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most models don’t capture. That is, most decision-models simulate a dynamic deci-

sion using a series of static parameters - for example the rate at which evidence for

an option accumulates and the bound to which it must accumulate to in order for

it to be chosen. However, here we show that the parameters themselves are likely

changing throughout a decision. Specifically, we argue that the value of a given choice

option necessarily fluctuates as the decision shifts from information gathering to de-

cision resolution. Consider the Photo Preference task. Initially a target’s value is

dictated by its ability to deliver new information (for a review of this idea, see Got-

tlieb et al., 2013), separate from its content (e.g., pleasantness). Thus, both targets

are equally valuable and the eyes adopt a stereotyped left-to-right pattern of infor-

mation sampling. But then, target-value shifts to being defined by the details of the

image. Now, the pleasantness of each option, and critically the relative pleasantness

between options, dictates the resolution of the decision. This ability to shift decision

parameters based on the current task context can explain both of our major gaze

dynamic findings: initial dwells are stereotypical, driven by information gathering

and not affected by decision difficulty, while the last dwells are affected by decision

difficulty since value during decision resolution is determined by the relative difference

in task-relevant content between targets.

Understood this way, it is clear that multiple facets of a target determine its value:

if it contains task-relevant information, if it has been looked at, if it is an image or

text, if it is small or large, if it is easily identified or not. Equally clear is that which

facets are of value changes over time. Across our two studies we can measure the value

transition from information gathering to decision resolution - a specific example of the

more general pattern of explore versus exploit behaviors (J. D. Cohen et al., 2007).

Since a key aspect of exploration is the physical location of targets, eye-tracking is

particularly well suited to measure these kinds of information gathering behaviours.

Then, as a decision shifts to resolution, which typically demands a motor response,

mouse-tracking becomes a sensitive tool for watching the later stages of competition
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play out across time and space. Together, this highlights the complementary ap-

proaches taken across our two companion papers: gaze behaviour is acutely sensitive

to task differences, especially early in trials and with respect to the spatial distribu-

tion of decision-relevant information, while mouse tracking is more sensitive to the

decision difficulty effects that appear once all relevant information has been sampled.

We believe a cross-paper comparison of difficulty effects between tasks offers some

initial support for this idea. Arguably, the gaze dynamics during Sentence Verification

are the least informative - many trials have no dwells at the site of a choice and

those that do, don’t have dwell durations that differentiate between hard and easy

trials. In complete contrast, as we report in our companion paper (Ouellette Zuk

et al., 2023), during-movement measures of movement time and trajectory strongly

differentiate between hard and easy trials for the same task. On the other end of the

spectrum, the current analysis of gaze patterns in the Photo Preference task offers

rich information about the contemplation of decision options, including many trials

with multiple dwells. But, this same task in our companion paper (Ouellette Zuk et

al., 2023) shows that during-movement measures had, relative to the other tasks, the

least sensitivity to decision-difficulty. Not only does this show why collecting gaze

and movement data is important, it also has theoretical implications. We previously

made the distinction between gathering and resolving decision information - related

processes that can sometimes proceed in parallel. We speculate that tasks like Photo

Preference which require longer times spent gathering information are thereby also

granted extra time to start resolving a decision prior to movement onset. As a result,

movement related measures in these kinds of tasks show less sensitivity as more of

the decision has been completed prior to the initiation of a response.

Aside from their impressive combined ability to cover the full range of a decision

- from stimulus onset to response completion - there is another, methodological link

between our two companion papers: their use of remote data collection. Not only

did it vastly increase the sample size of our studies (more than 400 data sets initially
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collected across the two papers) it also made the study accessible to participants

who may not typically participate in academic research (see supplementary material

in Ouellette Zuk et al., 2023). Maybe most importantly, it also allowed us to test

participants in more ecologically-valid environments. That is, we can collect data

from people using their own devices from the comfort of their own homes without

introducing an artificial, isolated, and highly-controlled laboratory setting that likely

limits our ability to capture realistic and natural human behaviour (Kingstone et al.,

2008; Shamay-Tsoory & Mendelsohn, 2019).

3.4 Limitations and Conclusion

Together, this paper series demonstrates the power of remote, online methods as

tools for deeply understanding the complete, dynamic and continuous decision pro-

cess, rewinding the decision from the typically-collected final choice response, all the

way back to the first glance. Combined, our studies reveal an incredibly robust set of

findings, on smartphones, tablets and computers with mouse-tracking or eye-tracking

across three unique decision tasks we can measure and decompose the effects of deci-

sion difficulty with precision.

Of course, full remote data collection is not without its limitations, some which

are particularly evident in the current study. Most notably, there are known spatial

and temporal inaccuracies when using webcam eye-tracking. As an example, we did

not feel we had sufficient spatial accuracy to properly analyze nuanced reading be-

haviour during the initial dwells to the statement in the Sentence Verification task.

This limitation also led to an unforeseen and unfortunate outcome - due to the sam-

pling rate slowdown caused by prioritizing the collection of webcam eye-tracking, our

mouse-tracking data in the current study was not sufficiently sampled to perform

a confirmatory analysis of the effects reported in our companion paper (Ouellette

Zuk et al., 2023). Finally, at present, webcam eye-tracking is generally restricted to

participants using a computer with a webcam - it hasn’t yet been widely used with
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sufficient accuracy on mobile devices in decision science research.

These limitations, however, are the type which seem likely to be overcome soon.

Improved and more efficient gaze detection driven by ever-improving machine learn-

ing models, continued advancements in consumer hardware, and the use of mobile

device cameras for eye-tracking research (e.g., Namnakani et al., 2023) are all on the

imminent horizon (Khamis et al., 2018). And in that future, we envision using gaze

and movement tracking will be paramount to understanding participant behaviour in

and out of the lab. Importantly, as we advocate for moving into unrestricted domains

- where the nature of the task and the decisions that people make are not controlled

by an experimenter - we recognize the need for and strength of this combined met-

rics approach. Including both gaze and movement analysis allows you to understand

both where the most relevant decision information is located via eye-tracking, and via

motion-tracking, how difficult it is to adjudicate between that information to arrive

at and perform the final movement required to enact a choice.

3.5 Methods

3.5.1 Participants

100 adults provided their informed consent to participate in the experiment, and

completed the study in full. Of the 100 participants, 36 self-identified as female, 66

as male, and one participant preferred to not disclose their gender. The average par-

ticipant age was 25.47 years old (+/- 4.28). Participants were recruited using Prolific

(www.prolific.co), an online crowdsourcing platform, where we followed Ouellette Zuk

et al.’s (2023) participant restrictions on age (18 to 35 years old), and prior approval

rating on the platform (95-100%). We paid participants for their time (6 GBP per

hour, ∼$10 CAD per hour). All experimental proceedings were approved by the

University of Alberta’s Research Ethics Board (Pro00087329) and were performed in

accordance with relevant guidelines and regulations.
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3.5.2 Materials

All participant data for the study was collected through the use of Labvanced (Fin-

ger et al., 2017), an online, browser-based Javascript experimentation platform. We

designed our study in a 800 x 450 pixel coordinate frame in Labvanced (see Figure

3.3B), where it would automatically scale to the size of the participant’s screen. We

used Labvanced’s built-in webcam eye-tracking (Labvanced v2 High Sampling Mode

eye-tracking Finger et al., 2017). To ensure high-quality data collection, certain mini-

mum requirements were imposed. Participants were required to use either a laptop (n

= 75) or desktop (n = 25) computer with a mouse. The operating systems supported

were Mac (n = 15), Windows (n = 84) or Linux (n = 1), along with the Chrome

browser. Furthermore, participants were required to have a webcam with a minimum

resolution of 1280 x 720 pixels, a landscape-oriented screen with a minimum resolu-

tion of 600 x 600 pixels (Mode = 864 x 1536 px), and a computer system capable

of collecting at least 10 samples per second of the head’s position for optimal eye-

tracking precision (M = 15.65 Hz, SD = 5.69 Hz). This system threshold was often

met if participants had a graphics card and had freed up system resources prior to

starting the study (i.e. closing any other programs running on their computer).

3.5.3 Task & Procedure

Broadly, the tasks and procedures followed by Ouellette Zuk et al. (2023) were re-

peated here but with the addition of webcam eye-tracking, and with only computers

being included (Ouellette Zuk et al also tested tablets and smartphones). Like Ouel-

lette Zuk et al. (2023), we asked participants to complete three distinct tasks that all

required decision-making in a binary choice paradigm where choices were made with

mouse movements. These tasks were Numeric-Size Congruity, Sentence Verification,

and Photo Preference (with examples shown in Figure 3.1).

Participants recruited through Prolific (www.prolific.co) were given access to a de-

tailed description of the study. This description included an approximate duration of
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the study (1 hour), information regarding the necessary hardware, and instructions on

how to avoid any potential technical difficulties (complete Prolific description avail-

able in the Supplementary Materials). Upon clicking the study link that accompanied

the study’s description, participants were directed to a full-screen Labvanced browser

window and prompted to grant permission for their webcam device. In the event that

participants did not meet the minimum requirements, they would immediately receive

an error or warning message. Assuming no issues arose, participants would begin by

providing their informed consent to participate, after which they would proceed to

answer a brief survey pertaining to their demographic information and the hardware

they were using.

Before the primary experimental tasks, participants were given information to en-

courage successful webcam eye-tracking data collection. Instructions about optimal

lighting conditions, the re-calibration process, and the virtual chinrest feature were

provided to participants. Then, participants underwent Labvanced’s 5-minute eye-

tracking calibration procedure. It was required that participants redo the calibration

if the predicted gaze error surpassed 7% of the screen’s dimensions. After completing

calibration, participants began the main experiment.

Figure 3.3 illustrates the experimental procedure and trial progression. Three tasks

were performed, with simple task instructions preceding each task. The presentation

order of the tasks was counterbalanced such that participants were automatically

assigned to one of the six possible order variations by the online experimentation

platform in a manner that tried to balance the number of completed datasets across

all six order variations. 84 trials were completed per task, with task stimuli presented

in a randomized order within each task. Every 5 trials, a brief seven-point eye-tracking

recalibration procedure was performed to adaptively correct any drift errors in the

gaze prediction algorithm over the course of the experiment. At any point during an

experimental trial, the virtual chinrest feature would pause the trial if a participant’s

excessive head movement affected the quality of the gaze prediction (M = 6.59 trials,
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SD = 7.22 trials).

An experimental trial began with a green circular start button labeled “Touch here”

at the bottom center of the screen. Participants had to move their mouse cursor to

the button to initiate the trial. This prompted the appearance of a three-second

countdown at the center of the screen. If the mouse cursor was removed from the

circular button, the countdown paused until the cursor’s return. In the Numeric

Size-Congruity and Photo Preference tasks, a task-specific question appeared at the

top center of the screen during the countdown (see Figure 3.1). Once the countdown

ended, two choice boxes appeared at the upper-left and upper-right corners of the

screen, presenting trial-specific options. In the Sentence Verification task, two choice

options appeared alongside the countdown and displayed a statement at the top center

of the screen after the countdown completed. Participants could immediately select

their choice option by moving their mouse cursor inside the respective choice area.

Once a choice was made, the selected box was highlighted while the other choice

option and start button disappeared. A “Next” button then appeared at the center

of the screen for participants to click to proceed to the next trial at their own pace.

All three tasks required binary choice decisions in Hard and Easy conditions. In

the Numeric-Size Congruity task, participants were presented with pairs of digits

and asked to determine which digit had a higher numeric value. The pairs of digits

varied in congruence, where some pairs were congruent in both numeric and physical

size (representing Easy trials with low decision difficulty, e.g., 2 vs. 8), while others

were incongruent in numeric and physical size (representing Hard trials with high

decision difficulty, e.g., 2 vs. 8). In the Sentence Verification task, participants were

tasked with verifying the truthfulness of statements. From previous work (Dale &

Duran, 2011) it has been shown that statements that are true show large decision

difficulty effects based on whether they are non-negated (representing Easy trials

with low decision difficulty, e.g., ‘Cars have tires’) or negated (representing Hard

trials with high decision difficulty, e.g., ‘Cars do not have wings’). In the Photo

119



Preference task, participants were presented with pairs of photos that differed in

valence (from the International Affective Picture System stimulus set, Lang et al.,

2008, as in Koop and Johnson, 2013). They were asked to then choose which photo

they preferred. The pairs of photos varied in their dissimilarity of valence, with some

pairs being dissimilar (representing Easy trials with low decision difficulty, e.g. High

vs. Low pleasantness) and others being similar (representing Hard trials with high

decision difficulty, e.g. High vs. High pleasantness). These tasks were designed to

cover a wide range of decision domains, including objective perceptual judgments

(such as discriminating between digits), semi-subjective conceptual judgments (such

as evaluating the truth value of statements), and subjective preference judgments

(such as expressing a preference for specific photographs). Additionally, the tasks

intentionally differed in terms of stimulus characteristics and the cognitive processing

requirements involved.

The entire experimental procedure, as a Labvanced study, can be accessed via the

link in Supplementary Materials.

3.5.4 Data Processing

The uncontrolled nature of online, remote data collection, including the use of we-

bcam eye-tracking, presented some data quality challenges that required thoughtful

treatments. Gaze and cursor timeseries data were collected in a way that maximized

the number of data samples processed for each participant, with priority given to the

collection of gaze samples. All gaze and cursor data were then upsampled (linearly

interpolated) to a common sampling rate of 60 Hz. The gaze prediction algorithm

was refined (i.e., recalibrated) every 5 trials using Labvanced’s adaptive drift correc-

tion method (Finger et al., 2017), therefore gaze data quality varied over time. To

minimize data rejection, we assessed the quality of each participant’s gaze data within

each task independently (as opposed to rejecting an entire dataset for poor gaze data

for a subset of trials).
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Figure 3.3: A) All three tasks presented a classic reach-decision paradigm requiring
participants to choose one of two stimuli presented at the top left and right of their
computer screen. For Numeric-Size Congruity (SC) and Photo Preference tasks (PP),
countdown onset was accompanied by a question specific to the task, appearing at
the top center of the display. The Sentence Verification (SV) task presented the two
choice options coincident with countdown onset and presented a statement (rather
than a question) upon countdown completion. Participants proceeded in a self-paced
manner, pressing a button to begin the next trial. B) The enlarged areas of interest
(AOIs) used to define the boundaries of the Left and Right choice options (blue
transparent areas) when determining whether a dwell was made. The dimensions of
the choice AOIs (275 x 310 pixels) are presented relative to the dimensions of the
frame size (800 x 450 pixels). The Question/Statement AOI was used only for data-
cleaning in the SV task. This frame was scaled to the size of each participant’s screen.
C) Overview of the experiment’s design. Each participant completed an SV task, an
SC task, and a PP task, with task order counterbalanced between participants. Eye-
tracking calibration occurred at the beginning of the session, and a re-calibration
procedure was performed every 5 trials. Task-specific instructions were presented
prior to each task.
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Using custom MATLAB scripts and our Gaze and Movement Analysis software,

our initial data cleaning approach aimed to assess whether the gaze data showed

reasonable patterns or whether it contained noisy, spurious gaze prediction errors

(see Bertrand and Chapman, 2023 for a similar approach). Using more exaggerated

but still mutually-exclusive boundaries (see Figure 3.3B - AOI Dwell Boundaries), we

determined whether the gaze fell inside at least one of the task-critical areas during

the decision period. For the Numeric-Size Congruity and Photo Preference tasks, we

considered the gaze data of reasonable quality if the gaze fell within the left or right

choice options for at least 100 milliseconds continuously. For the Sentence Verification

task, we instead used at least one look (minimum 100 ms) to the sentence area as a

proxy of reasonable gaze data as it was common for participants to not look at the

choice options. In each task, if less than half of the trials showed reasonable gaze data

(i.e., one dwell on a task-relevant AOI), we removed the full task from the participant’s

dataset for analysis. Based on this criteria, from 100 participants, 3 subjects’ Photo

Preference task data were removed, 9 subjects’ Numeric-Size Congruity task data

were removed, and 3 subjects’ Sentence Verification task data were removed. Of the

remaining datasets, any individual trials that failed to show reasonable gaze data

(per the same criteria) were removed leaving the Photo Preference, Numeric-Size

Congruity, and Sentence Verification tasks with 82.79 (+/-2.96), 73.41 (+/-9.58) and

81.70 (+/-5.79) of 84 trials respectively.

Then, to assess non-gaze-related quality of data, we employed similar rejection

criteria to Ouellette Zuk et al. (2023). Within each task, we removed any trials

where the response time was less than 100 milliseconds or greater than 3 standard

deviations above the subject’s mean response time in that task. We also removed any

trials where a pause occurred from the virtual chinrest feature, or any trials where the

response time was not computable (from participant error or occasional data recording

issues). Further, any incorrect trials were removed from the Sentence Verification

and Numeric-Size Congruity tasks (where accuracy could be assessed objectively).
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Following these additional trial rejections, we again removed entire task data from

any participant with less than 42 of their original 84 task trials, which resulted in

one additional Numeric-Size Congruity task removal. From 100 participants, the final

task datasets included in analysis were: Photo Preference: n = 97, 78.30 (+/- 5.18)

trials, Numeric-Size Congruity: n=90, 70.87 (+/-9.16) trials, Sentence Verification:

n=97, 72.09 (+/-8.23) trials.

Unlike our companion paper (Ouellette Zuk et al. 2023) where cursor-tracking pro-

vided the key dependent measures, high-quality gaze data from webcam eye-tracking

was the primary goal of the current study. While we did record mouse trajectory data

alongside our gaze data, we did not have sufficient data quality to reliably metricize

the mouse trajectory data in the same way as Ouellette Zuk et al. (2023). With

recording priority given to the gaze data, and cursor movements generally being very

quick, we found that there were many instances that the number of data samples from

the cursor were insufficient. We discuss this unintended consequence in the Discus-

sion, and encourage readers to engage with our companion paper (Ouellette Zuk et

al., 2023), which provides a thorough analysis of high-quality cursor and touchscreen

trajectories from an original sample of more than 300 other participants.

3.5.5 Dependent Measures

Our analysis strategy revolved around three sequential steps. First, to confirm and

replicate that the main decision-difficulty effects elicited by these tasks were present

in the current study, for every trial we recorded Response Time (ms): the time from

the choice options being presented to the moment the cursor was detected as entering

within the bounds of a choice option.

Second, to broadly characterize and analyze the dominant gaze patterns within

each task, we calculated Proportion of Trials (%): a value of 0 or 1 for each trial

that represented if that trial shared certain characteristics (e.g. was it Hard or Easy).

These counts were then aggregated such that proportion of trials for a given char-
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acteristic was always calculated within each task per participant, where the trials

fitting the characteristic were counted and then divided by the total number of trials

included in the analysis (specifically, the number of Hard plus Easy trials).

Third, we used the results from the proportion analysis to guide our examination

of the gaze dynamics of the most frequent gaze patterns within each task. These gaze

dynamics were centered on describing the timing of specific dwell patterns - when a

dwell started, how long it lasted, and when it ended relative to the response. For

patterns with more than one dwell, we wanted to capture this information about

both the first and last dwell. Using the first and last (as opposed to strictly second)

dwell afforded us flexibility in describing two-dwell patterns, but also three, four or

more dwell patterns. In all three tasks, for every gaze pattern observed (where every

gaze pattern necessitated there being at least one dwell), the following measures were

collected:

First Dwell Onset (ms): the time from the choice options being revealed to the start

of the first dwell within a choice option.

First Dwell Duration (ms): the length of time the dwell stayed at the first choice

option viewed.

End Dwell to Response (ms): the time from the end of the final dwell to the response,

as determined by the mouse cursor’s entry into the choice option.

When a frequent gaze pattern included more than one fixation (only the Numeric-

Size Congruity and Photo Preference tasks), the last dwell’s duration was also col-

lected:

Last Dwell Duration (ms): the length of time the dwell stayed at the last choice

option viewed preceding a response.

To capture the time of the last dwell’s onset, we used two measures, dependent

on the number of dwells in the gaze pattern being explored. When looking at trials

with exactly two dwells, we use Transition Duration as a measure, but when looking

at a collection of trials with two or more dwells (Photo Preference only), we use Last
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Dwell Onset:

Transition Duration (ms): the time between the first and second (i.e. last, in these

cases) dwells, measured from the offset of the first dwell to the onset of the second

dwell.

Last Dwell Onset (ms): the time from the choice options being revealed to the start

of the last (i.e. second, third, fourth or more) dwell within a choice option.

3.5.6 Statistical Procedure

Each dependent measure was analyzed within each task using Jamovi (Version 2.2.5;

an open-source statistical software). Response times and gaze dynamic metrics for

each task were analyzed using paired t-tests of each participant’s Hard and Easy trial

means on that given task. To correct for multiple comparisons, the three response

time tests were performed with an alpha of .05/3 = .01667, and the twenty-one gaze

dynamic metrics were tested with an alpha of .05/21 = .00238. The proportion of

trials measures were tested using Repeated Measures ANOVAs, where p-values were

Greenhouse-Geisser-corrected for sphericity violations. The Sentence Verification task

was tested with a 3 factor RMANOVA, and Numeric-Size Congruity and Photo Pref-

erence tasks were tested with 4 factor RMANOVAs. We followed the family-wise

error correction procedure from Cramer et al. (2016), where the threshold for signifi-

cance becomes increasingly more conservative with every significant test result within

a family of results. We treated all 3 omnibus RMANOVAs as a single family to de-

termine the significance of the omnibus results for the proportion of trials measures.

Follow-up RMANOVAs were then performed on the highest order interaction(s), test-

ing each level of one factor against the other factors (see section 3.2 - Results). This

interaction procedure was performed as necessary until a single-factor RMANOVA

was reached, where the simple main effects of one factor could be tested at all levels

of the other factor. Significant main effects were explored with all pairwise compar-

isons. The Cramer et al. (2016) procedure was again employed for these follow-up
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RMANOVAs, where the family-wise error correction was performed within-task (i.e.

each task’s follow-up tests became a family). We report our results in Tables 3.1

and 3.2. Table 3.1 presents the per task trial proportion results from the breakdown

of each three-way interaction involving the factor of difficulty, and Table 3.2 fully

reports the gaze metrics differences between the Hard and Easy trials for each of our

21 gaze-dynamic measures.
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Chapter 4

A practical guide to webcam
eye-tracking

4.1 Introduction

This document is born out of a pandemic pivot from the (inaccessible) lab to online

research methods including webcam eye-tracking. We naively transitioned to the

online eye-tracking space assuming this method would be relatively developed and

rich with resources. However, unlike its lab counterpart, we quickly realized that

online, webcam-based eye-tracking is still in its infancy - an experimental method at

best. This became a major research focus for our lab. That is, even though our lab

access has returned, we have spent considerable effort and exploration over the last

number of years investigating the limits of webcam eye-tracking and what it can tell

us about measuring human behaviour remotely.

This document reflects the countless methodological lessons learned as we tra-

versed a large knowledge gap to generate high-quality webcam eye-tracking results

(e.g. Bertrand and Chapman, 2023; Bertrand et al., 2023). Its central purpose is to

share methodological knowledge as a means of demystifying and supporting the use

of webcam eye-tracking in remote, online behavioural research. We hope this docu-

ment can serve as a guide to the method of webcam eye-tracking, an offering of best

practices, and a collection of how-to’s, intended to give those with some lab-grade

eye-tracking experience the information to confidently deploy their first remote we-
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bcam eye-tracking study. In particular, we have tried to share this information in a

non-technical manner. As we’ve gone about developing our methods, we have opted

for tools that defer the highly technical aspects of optimized gaze prediction algo-

rithms and browser-based experiment deployment to experts. Thus, this document is

meant for behavioural researchers like (but not limited to) linguists, economists, de-

velopmental psychologists, behavioural scientists, cognitive neuroscientists, and user

experience and human computer interaction researchers rather than computer scien-

tists or software engineers.

4.1.1 Background

Recording the movements of the eyes has come a long way since the creative yet cum-

bersome mechanical devices used over one hundred years ago (e.g. Delabarre, 1898).

In this current century, specialized eye-tracking hardware (which the reader may be

most familiar with) typically involves the use of infrared light cameras. These eye-

trackers illuminate the eyes with invisible infrared light to capture reflections from

the cornea to provide high-contrast video images. The changing appearance of the

corneal reflection (or sometimes other features) in these images is then fed into the

gaze prediction algorithm, which has often been trained with calibration data. These

sophisticated infrared eye-tracking systems come in various forms, including desktop-

mounted eye-trackers with cameras near a computer screen, and head-mounted eye-

trackers with cameras directly on the participant’s head. Generally speaking, these

lab-based eye-tracking devices have proven highly effective in measuring eye move-

ments and predicting the gaze’s location, supporting an ‘explosion’ of eye-tracking

experiments in the last 15 years (Carter & Luke, 2020).

However, certain limitations of lab-based infrared eye trackers have always been

present, including their high cost, potential intrusiveness for users, and confinement

to lab environments. In response, there has been a significant push towards devel-

oping more lightweight, portable, and cost-effective alternatives. Human-computer
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interaction researchers, in particular, have emphasized the need for such tools to use

gaze as an input for computer use (Levine, 1981), which has the potential to be hugely

transformative as an assistive technology. However, for some time, the main obsta-

cle in creating lightweight and accessible eye-tracking solutions was the difficulty of

obtaining high-quality eye images.

Fortunately, there have been significant technological advancements that have be-

gun to tackle this challenge. Firstly, there has been a significant improvement in

camera hardware, particularly with the miniaturization of high-quality web cameras

that are now commonly integrated directly into computers. Alternative methods to

gaze prediction algorithms have also been developed, specifically optimized for the

lower contrast images captured under visible spectrum lighting conditions (e.g. Bäck,

2006). Sewell and Komogortsev (2010) were some of the first to show the promise of

an unmodified, consumer-grade webcam as a tool for real-time eye gaze tracking, and

further work on algorithms for real-time eye-tracking with laptop cameras continued

(Meng & Zhao, 2017; Zheng & Usagawa, 2018). It was also around this time that

toolboxes like Webgazer (Papoutsaki et al., 2016) and TurkerGaze (Xu et al., 2015)

emerged as exciting, early webcam eye-tracking software programs, meant specifically

to be deployed for remote, online research.

Since then, more sophisticated webcam eye-tracking options have emerged (e.g.

RealEye, Wisiecka et al., 2022; Labvanced, Finger et al., 2017; OpenGaze, Zhang et

al., 2019; see Shehu et al., 2021b for complete review of remote eye-tracking options),

aided by more robust gaze predication algorithms that harness advancements in ma-

chine learning, like deep neural networks. For the most part, the novelty of these we-

bcam eye-trackers has meant that most research involving their application has been

focused on the more technical aspects of the method. Webcam eye-tracking’s accu-

racy, validity, and performance has been assessed across a variety of domains including

behavioral, psychological, and cognitive science (Bogdan et al., 2023; Schneegans et

al., 2021; Semmelmann & Weigelt, 2018; Yang & Krajbich, 2021), online learning
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research (Hutt et al., 2023; Madsen et al., 2021; Robal et al., 2018; Zhao et al., 2017),

linguistics (Slim & Hartsuiker, 2022; Vos et al., 2022), marketing (Schröter et al.,

2021), and clinical optometry applications (Bruno et al., 2023). Additionally, feasi-

bility studies have explored the potential of webcam eye-tracking for research with

specific populations such as infants (Bánki et al., 2022), older adults with Alzheimer’s

Disease (Greenaway et al., 2021), and neurodiverse students in classrooms (Wong et

al., 2023).

As evidenced by the small collection of recent, methodologically-focused works,

webcam eye-tracking is still a relatively new method. These works have exposed sev-

eral of the challenges that come with using this new method. The main limitations

include issues with temporal and spatial accuracy, the complex implementation of

algorithms with low-quality data, and the general challenges of online experimen-

tation, such as limited participant oversight and technical difficulties. Unlike the

well-established lab environment, webcam eye-tracking involves navigating unknown

territory. However, our experience in overcoming these challenges has motivated us

to create this guide. We recognize the tremendous potential of webcam eye-tracking

as a method, and while it may require more effort from experimenters, we aim to

demystify this exciting approach and enable you to conduct high-quality webcam

eye-tracking experiments with ease.

4.1.2 Organization of this guide

With many things to consider across the entire experimental process, we have struc-

tured this guide in a fashion that will be familiar to experimentalists. We present

information organized by when it is most relevant across the experimental process,

with information best considered Before, During, or After Data Collection.

In the following Before Data Collection section, we provide a comprehensive overview

of information and considerations that establish the groundwork for a well-executed

webcam eye tracking experiment. We emphasize the active and hands-on role of the
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experimenter in understanding the iterative cycles of designing, building, and test-

ing, despite the limitations and constraints posed by remote webcam eye tracking.

We also discuss additional considerations prior to collecting data, like the timeseries

nature of gaze data, and effective participant communication.

We then focus on the important considerations During Data Collection, taking

evidence from our own experiments to frame the data collection process as a sort of

filtering procedure. This data collection filter is described in both theory and practice,

used to illustrate the ways that the collection process is affected by the experimenter’s

choices, and also a product of an uncontrollable remote data collection environment.

We also discuss the cost implications of webcam eye-tracking as they relate to the

data collection filter.

In the After Data Collection section, we assess the quality of the collected data in

both the temporal and spatial domains. We explain the quality of our data within the

context of our chosen system settings and the data filtering process. Additionally, we

discuss data processing techniques, including those informed by features of the task,

that can assist researchers in effectively addressing their research questions within the

constraints of webcam eye-tracking.

4.2 Before Data Collection

We begin our guide with the Before Data Collection section, dedicated to the process

of designing and constructing a high-quality webcam eye-tracking experiment. In this

section, we outline the unique limitations and constraints of webcam eye-tracking and

guide you through an iterative process that involves: A) designing an experiment that

considers these constraints, B) exploring potential solutions for overcoming or working

within these constraints, and C) rigorously testing your choices to ensure confidence in

the experiment’s quality. This section also covers essential but wide-ranging aspects

like the collection of gaze data as timeseries data and participant communication,

including recruitment and instructions. Although the process we will describe is not
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strictly linear (and rather is a recursive and iterative one), we present it in three

distinct parts for the sake of clarity and document structure.

Before moving forward, we’d like to briefly acknowledge the importance of selecting

a suitable webcam eye-tracking system to ensure a high-quality webcam eye-tracking

experiment. Similar to laboratory eye-trackers, webcam eye-tracking software and

web applications vary in their accessibility (e.g. open or closed sourced software),

flexibility, user-friendliness, intended use, platform compatibility, data analysis tools,

support, pricing, and, crucially, data quality. We have intentionally avoided providing

an extensive review of webcam eye-tracking systems in this guide, but point the reader

to the existing works that elaborate on features and functionalities of different webcam

eye-tracking systems (e.g. Bánki et al., 2022; Shehu et al., 2021b; Vos et al., 2022).

In our own search for webcam eye-tracking options for remote online testing during

the global pandemic, we opted for Labvanced’s webcam eye-tracking as it was offered

within a complete online experimentation platform (something we also required as

part of our pandemic transition). Moreover, following the iterative process we will

next describe, our initial internal testing confirmed satisfactory eye-tracking data

quality.

4.2.1 Experimental design within the constraints of webcam
eye-tracking

The very first step to building a great webcam eye-tracking experiment is to gain a full

appreciation for the challenges inherent to the method. The most notable difference

for lab-based eye-tracking experimenters will be the significant limits to the spatial

and temporal quality of webcam eye-tracking data. These limitations stem from dif-

ferences in sampling rates between consumer-grade and lab-grade hardware (webcam

vs. commercial eye-trackers) and the unpredictable and uncontrollable environment

encountered during remote participant engagement. As a result, we must recognize

that our representation of gaze data will exhibit more noise and deviation from the
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true gaze position when compared to data collected in controlled lab contexts.

Spatial noise arises due to the inaccuracy inherent to a gaze prediction algorithm,

where it’s not possible to achieve perfect accuracy in pinpointing the gaze’s location.

In and out of the lab, eye-tracking typically involves an initial calibration procedure

and periodic re-calibrations to maintain a stable prediction of the gaze position. In

the case of lab-grade systems like those from SR Research (Ottawa, Canada), To-

bii (Stockholm, Sweden), or Pupil Labs (Berlin, Germany), researchers have grown

accustomed to spatial errors on the order of less than one visual degree (Ehinger

et al., 2019). Relying on predictive algorithms makes some degree of spatial error

inevitable, but in webcam eye-tracking, the magnitude is greater. Reports on this

are varied and limited, with estimates ranging from 0.88° (Skovsgaard et al., 2011) to

2.6° (Saxena et al., 2022) to ∼4° (Semmelmann & Weigelt, 2018) and even exceeding

7° in certain cases (Shehu et al., 2021a, in a comparison of various remote gaze esti-

mation methods). Moreover, webcam eye-tracking’s spatial accuracy can vary across

different areas of the screen (Semmelmann & Weigelt, 2018; Vos et al., 2022).

Noise in the temporal domain arises due to limitations in the number of data

samples collected over time. In laboratory settings, high-end hardware is designed to

maximize the sampling rate, allowing specialized cameras to track the eye’s position

at rates from hundreds to thousands of times per second (e.g. the EyeLink 1000 can

achieve up to 2000 Hz). This high sampling rate enables precise knowledge of when

the gaze transitions from one location to another with millisecond precision. This

allows researchers to ask questions not only about where they eye fixates, but also

about how the eye moves (e.g. saccades and microsaccades). On the other hand,

webcam eye-tracking systems rely on consumer-grade hardware. Currently, webcams

typically offer a sampling rate of only 30 Hz, although 60 Hz webcams are gradually

becoming more popular. Further, the samples collected by webcams (image data)

need to be processed into timestamped gaze coordinates (positional data), a task

usually performed using a participant’s consumer-grade computing resources.
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The temporal accuracy of webcam eye-tracking systems has been reported in lim-

ited contexts, with varying ranges: including 11.5 Hz (Bánki et al., 2022), 14 Hz (the

remote cohort in Semmelmann and Weigelt, 2018), 15 Hz (Stone & Chapman, 2023),

∼20 Hz (Vos et al., 2022) and ∼40 Hz (Yang & Krajbich, 2021). Consequently, in-

stead of recording gaze samples every half of a millisecond as can be achieved in the

lab, webcam eye-tracking systems only produce an estimated gaze location at best

every 16 or 32 milliseconds (depending on a respective 60 or 30 Hz hardware-limited

rate), but in practice are often even slower (e.g. ∼47 ms on average based on our

datasets presented in the During Data Collection section).

So, what implications do these less-precise spatial and temporal features of webcam

eye-tracking data hold for aspiring researchers in the field? Primarily, the limitations

of webcam eye-tracking restrict researchers’ ability to address certain research ques-

tions or employ specific experimental designs that rely on spatial or temporal preci-

sion. This may seem obvious, but the limited spatial accuracy of webcam eye-tracking

data makes it difficult to investigate research questions about the precise location of

the gaze. This becomes particularly problematic in densely populated task spaces

where multiple task-relevant objects are present, as it becomes difficult to discern

precisely which object is being fixated. Consequently, answering questions about the

gaze patterns during crowded visual search scenes or the reading of dense text pas-

sages may not be feasible with webcam eye-tracking. Recent studies have provided

examples of the lower spatial accuracy limits of webcam eye-tracking systems, con-

firming the ability to, at a minimum, distinguish between 4 (Bertrand & Chapman,

2023; Slim & Hartsuiker, 2022) to 6 (Yang & Krajbich, 2021) areas of interest on a

computer screen. In parallel, the temporal limitations of webcam eye-tracking im-

pede experimenters from drawing conclusions about the precise timing and dynamics

of gaze patterns, such as the dynamics of saccades. These limitations also impact the

ability to investigate questions involving very small timing effects.

By now, it should be evident that webcam eye-tracking has inherent constraints
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on its utility, and researchers must consider these limitations when designing their

experiments. The main questions that arise are: how can we practically account for

these limitations and, how can we determine the threshold for crowding in a visual

search display or define what qualifies as a ‘too brief’ looking behaviour?

In reality, there are no hard rules when it comes to addressing these types of

questions regarding experimental design. Instead, experimenters must actively engage

in a highly iterative process of understanding how the limitations of webcam eye-

tracking can be considered and potentially controlled within their chosen webcam

eye-tracking system (and are perhaps driving factors in selecting the platform in the

first place). This iterative process and its relationship to experimental design are

depicted in Figure 4.1, where the design of the experiment emerges as a result of

the research question and the constraints posed by webcam eye-tracking, including

spatial and temporal limitations. However, the design is continuously refined as the

experimenter explores and tests the available options provided by the system. The

objective is to minimize the effects of the method’s limitations on the study. Unlike

experiments conducted in controlled laboratory environments, our experiences have

shown that the relatively unexplored online webcam eye-tracking domain requires

extensive pilot testing to identify the optimal set of system options that can effectively

address a specific research question.

4.2.2 Opportunities to work around or within the constraints
of webcam eye-tracking

In general, webcam eye-tracking systems provide choices for experimenters regarding

calibration robustness and offer varying degrees of flexibility. This flexibility in a

webcam eye-tracking system can serve as a differentiating factor when selecting a

webcam eye-tracking system. Experimenters are typically provided with the flexibility

to adjust various aspects of the calibration and recalibration processes, as well as the

format of recorded gaze data. For instance, the duration of the calibration process
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differs across systems. RealEye (Wisiecka et al., 2022), for example, offers a 40-

point calibration, while Gorilla’s (Anwyl-Irvine et al., 2020) Webgazer (Papoutsaki

et al., 2016) implementation allows experimenters to choose between a shorter 5-

point calibration or a longer 9-point calibration. Labvanced (Finger et al., 2017), on

the other hand, provides even more options, including 15-point (∼40 seconds), 55-

point (∼2 minutes), 130-point (∼5 minutes) or 175-point (∼7 minutes) calibrations.

While webcam eye-tracking systems may have plug and play capabilities with default

settings, gaining a practical understanding of the available options and their effects

can assist experimenters in minimizing the spatial and temporal limitations associated

with webcam eye-tracking.

To minimize the temporal limitations associated with webcam eye-tracking, which

primarily stem from a low sampling rate resulting in an insufficient number of gaze

samples, the key approach is to prevent the collection of data with a low sampling

frequency from the outset. While certain participant efforts, such as closing back-

ground applications on their device, may potentially contribute to a higher sampling

rate, overcoming temporal limitations is challenging since most factors are beyond

experimenter control. These immutable factors include computing power, available

resources, webcam frame rate, and internet quality. Therefore, the most effective

strategy to address the issue of low-frequency gaze data collection is to restrict par-

ticipation in the study to individuals who meet a predefined sampling rate threshold.

Ideally, this is done as early as possible in the study to not waste excluded partici-

pants’ time. Alternatively, in specific cases where the research question and the target

population warrant it, conducting a preliminary screening of participants to assess

their sampling rate may be appropriate. This approach could be particularly relevant

for niche samples such as young children or specific clinical populations as opposed to

broad crowdsourced populations. The determination of the appropriate threshold will

be explored further in the subsequent section following our examination of methods

to mitigate spatial limitations.
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Figure 4.1: A flowchart depicting the process of determining whether you’re ready to
begin collecting experimental data. Your experimental design should be built with
consideration of both your research question, and with an appreciation for the limits
imposed by choosing webcam eye-tracking as your eye-tracking method. Multiple
cycles of pilot testing are typically required to understand whether your experimental
design and your choice of system options are compatible and give you the ability to
adequately answer your research question. However, if after iteratively pilot test-
ing to explore your options, it is not possible to balance the limitations of webcam
eye-tracking with your ability to answer your research question (via adjusting your
experimental design and the system options available to you), other less-constrained
forms of eye-tracking should be explored.
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In contrast to the preventative approach used for addressing temporal limitations,

spatial limitations in webcam eye-tracking, particularly related to spatial accuracy, of-

fer more opportunities for experimenters to take mitigating actions. These limitations

are closely tied to the quality of the gaze prediction algorithm and the understanding

that the algorithm itself has inherent limitations contributing to spatial inaccuracies.

As such, there are avenues to enhance the accuracy of gaze predictions by provid-

ing the algorithm with ample data to make more precise predictions. This can be

achieved through several means, such as optimizing the robustness of the calibration

process (like varying the number of points used in the calibration procedure as dis-

cussed earlier). Additionally, employing a robust and frequent recalibration procedure

and implementing online data cleaning processes like drift correction or other spa-

tial filters can contribute to improving gaze prediction quality. Furthermore, efforts

like setting a threshold for acceptable spatial error after calibration, or incorporating

ongoing checks for the stability of the participant’s head position (e.g. the “virtual

chinrest” feature in Labvanced, or RealEye’s “head movement watcher”) can enhance

the quality of the data used by the gaze prediction algorithm, leading to improved

spatial accuracy of the recorded gaze data.

Determining the optimal set of choices among the available options requires careful

consideration of the research goal, the spatial and temporal limitations of the sys-

tem, and the specific experimental design. As depicted in Figure 4.1, this process

is iterative and recursive, often involving exploration and testing of various settings

to ensure that the research question can be effectively addressed. It’s important to

recognize that every research question is unique, and the role and purpose of webcam

eye-tracking data can vary greatly across different contexts and use cases. Conse-

quently, what may be the most appropriate settings for one study might not be

suitable for another. For example, in short studies where eye-tracking is primarily

used only to broadly assess participants’ engagement (e.g. determining whether they

were looking at the screen during the presentation of critical information), opting for
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minimal calibration and not excluding participants with low sampling rates might be

sufficient. Or, in studies involving specific populations where participant recruitment

poses challenges, it may be most practical to be more lenient when setting thresholds,

acknowledging that data quality issues may need to be addressed in the post-data

collection phase. Ultimately, the selection of settings should align with the specific

research objectives, taking into account the interplay between spatial and temporal

constraints, and the particular demands of the experimental design. By carefully

considering these factors and conducting iterative pilot testing, researchers can arrive

at the most appropriate settings that enable them to obtain reliable and meaningful

webcam eye-tracking data.

In the studies discussed in the During and After Data Collection sections, a set of

relatively restrictive settings was applied, including a 5 minute, 130-point calibration,

a requirement of less than 7% calibration error, re-calibration every 5 trials, and

a minimum system performance of over 10 Hz. In turn, a significant number of

crowdsourced participants ‘returned’ the study (see Figure 4.2), likely due to system

performance limitations or dissatisfaction with the complexity of the experiment.

However, considering our research goals, we deemed this trade-off to be reasonable in

order to obtain meaningful data for our particular use case (as outlined in the After

Data Collection section). In the upcoming section, we will elaborate on the iterative

pilot testing process that we engaged in to achieve our effective implementation of

webcam eye-tracking.

4.2.3 Testing your design with consideration of the constraints
of webcam eye-tracking

Crafting an interesting research question and implementing webcam eye-tracking into

your experiment is an excellent starting point. However, it is important to recognize

that these efforts are akin to hypotheses requiring rigorous testing. Unlike the con-

trolled laboratory setting, where the use of lab-grade eye-trackers is well-established,
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webcam eye-tracking is in its infancy as a method. Consequently, its application

necessitates more guidance and involvement from the experimenter. While likely

familiar in practice to any behavioural experimenters, pilot testing for online ex-

perimentation (see Johnson et al., 2021 for general online experiment pilot testing

guidance), and especially for experimentation using a technically complex method

like webcam eye-tracking, is a highly essential component for successful data collec-

tion. Treating the pilot process as an iterative, small-scale feasibility study allows

online webcam eye-tracking researchers an opportunity to identify and address any

potential issues before releasing the study to a broader sample. In practice, this may

involve testing the study on a small cohort (around 3 to 5 crowdsourced or local par-

ticipants) or reducing the number of trials to evaluate the study’s mechanics and flow.

Providing multiple opportunities for participant feedback during this stage is crucial,

as is communicating the purpose of the pilot study to participants. In the Engaging

with Participants subsection, we also highlight the importance of clear instructions -

something that itself requires pilot testing.

During the pilot testing phase of our studies, we actively solicited participant feed-

back due to the potential for technical difficulties at any moment. At the end of the

study, we presented participants with a long-form text box to gather their insights and

address any issues they encountered. Additionally, participants occasionally provided

unsolicited feedback through the crowdsourcing inbox feature. This feedback can

serve as valuable indicators of the need for improved task instructions, better trou-

bleshooting guidance, or whether the selected eye-tracking system thresholds need to

be re-evaluated. Performing a cursory assessment of participant attrition related to

eye-tracking system settings and exploring the effects of these settings on the data can

be particularly useful for first-time webcam eye-tracking researchers (note: our Filter-

ing participants in practice subsection goes well beyond a cursory assessment). While

challenges may arise during any form of human data collection, addressing unfore-

seen and untested issues is more manageable in a small pilot study before proceeding
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to a larger-scale study. By incorporating pilot testing and user feedback into the

study design and implementation, researchers can enhance data quality, participant

engagement, and overall participant (and experimenter!) satisfaction.

4.2.4 Other considerations before collecting data

Appreciation of gaze data as timeseries data

Once a webcam eye-tracking system has been configured most effectively (as deter-

mined by thorough pilot testing), it is essential to consider how gaze data is recorded

and stored. Drawing on prior experience with collecting and analyzing time series

data, such as other biological signals, can provide valuable insight into setting up the

necessary “scaffolding” for high-quality data recording. The raw webcam eye-tracking

data typically consists of (X,Y) coordinates representing the predicted gaze location

over time. However, there are nuanced differences in this raw data output among

various webcam eye-tracking applications. These differences include factors like the

spatial (coordinate) and temporal frame of the data, as well as whether the gaze

signal is sampled and recorded at a consistent, stable rate. We discuss the impli-

cations of these factors when processing the data in After Data Collection. In our

case with Labvanced-acquired data, the (X,Y) coordinates are recorded relative to a

scaled 800 X 450 pixel-unit frame, matching the coordinate frame of the experiment.

Each (X,Y) gaze coordinate is time-stamped using the computer’s internal clock (e.g.

UNIX time) in a non-stationary and dynamic manner, capturing changes in the pre-

dicted gaze location as quickly as the system processes them (as opposed to being

recorded at a fixed interval of time). To make sense of this gaze data, it is necessary

to have spatial and temporal records of relevant on-screen objects and events.

In practice, capturing changes in the coordinate positions of interactive or dynamic

objects is crucial in the spatial domain. For example, tasks that involve participants

dragging an object across the screen (e.g. our Object Interaction task described in

the During Data Collection section) or scenarios where targets appear in randomly
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assigned locations require additional spatial data to provide context and meaning to

the gaze data. When both the gaze and key objects, whether stationary or dynamic,

are recorded within the same coordinate frame, it becomes possible to understand

how the gaze interacts with the presented stimuli.

In the temporal domain, recording timestamped event flags is akin to recording

object positions. While precise timing of stimulus presentation is typically achieved

using specialized equipment (like a ViewPixx monitor, for example) in a laboratory

setting, online experimentation has limitations in terms of stimulus presentation pre-

cision. Timestamping events helps retain some level of temporal accuracy. This means

that even if a stimulus is not presented at the exact desired moment on a given trial,

the experimenter knows precisely when it was presented. This information adds fur-

ther context to the gaze data and enables accurate calculation of measures such as the

time to first fixation on a presented stimulus. In both studies described in the During

Data Collection section, we recorded the time of every frame change and timestamped

participant-generated events like response initiation and completion, and interaction

with targets. Having the timing information of these events allowed for the analysis

of relative segments of data across all participants, despite variations in their absolute

timings due to system fluctuations or the self-paced nature of the task. Unless the

number of events becomes so large that it overwhelms the system’s ability to record

eye-tracking data, it is generally preferable to record more events rather than fewer.

Pilot testing provides a good opportunity to confirm that all necessary events are

accurately recorded in the data output.

Engaging with Participants - Recruitment & Instructions

Recruiting participants for online webcam eye-tracking experiments can be approached

in various ways, but using a crowdsourcing platform offers several advantages, includ-

ing efficient scaling of recruitment and access to a wider range of participants (Aguinis

et al., 2021; Johnson et al., 2021). This approach also enables rapid data collection,
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as noted by several webcam eye-tracking researchers. For instance, Yang and Kra-

jbich (2021) reported that webcam eye-tracking data collection only lasted a couple

of days, whereas they estimated it would have taken several weeks in a laboratory set-

ting. In our studies, we used Prolific (www.prolific.co), an academic research-focused

crowdsourcing platform, but other platforms like Amazon Mechanical Turk are worth

exploring as well. Traditional methods of participant recruitment may not be suit-

able for webcam eye-tracking experiments depending on the restrictiveness of the

selected eye-tracking settings. As discussed in the Filtering participants in practice

subsection, our chosen eye-tracking settings were particularly restrictive and resulted

in significant participant drop-off at the outset during threshold checks. Recruitment

via campus communications or an undergraduate research pool may be especially in-

efficient when dealing with this uncontrollable form of attrition (however, for specific

research questions, given the local sample, some experimenters may choose to use

webcam eye-tracking within the lab, where steps can be taken to ensure thresholds

are met). If crowdsourcing is not suitable for your research question, a threshold

test study can be employed as an initial screening tool in the recruitment process.

This can involve a simple test link to determine whether a participant meets the

eye-tracking initiation threshold requirements. While this is not a perfect solution,

as participants may change devices or their system processing power may fluctuate,

it is a way to protect from inefficient recruitment efforts.

Effectively using a crowdsourcing platform like Prolific necessitates clear commu-

nication with participants, given the remote nature of the recruitment process. With

Prolific, this begins with the study title and description displayed to potential partici-

pants. We have found it highly effective to include specific participation requirements

directly in the study title (e.g. “[task title] - webcam required”) and further empha-

sizing them in the text of the study description (both at the beginning and later in

the text). The study description should outline the tasks participants are expected

to perform and provide troubleshooting solutions for any potential issues. In the
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Supplementary Materials (see Appendices B and C), we include an example of the

recruitment text we used on Prolific. Pilot testing (as previously discussed), provides

an opportunity to receive feedback on these initial participant communications and

refine them for clarity. For instance, based on pilot participant suggestions, we added

a mention of the requirement to remain still for the virtual chinrest feature to the

study description. Another useful tool when running more involved remote experi-

ments is the messaging inbox offered by most crowdsourcing platforms. This allows

participants to directly communicate with experimenters if any issues arise. Similar to

in-laboratory experimentation, it is important to be easily accessible to participants

and address any questions they may have, as clear and responsive communication is

crucial for successful data collection.

Clear communication for remote webcam eye-tracking studies extends to providing

participants with instructions that are easy to understand. It should be assumed

that the average participant is not familiar with eye-tracking, either technically or

as a scientific method. Clearly informing participants about the eye-tracking process

can encourage their engagement, build trust, and address any potential concerns. For

example, participants, both in the lab and online, may have valid privacy concerns re-

garding the collection and use of their data, especially when it extends beyond button

presses or survey responses. While informed consent documents should cover data

collection and use, it is helpful to reiterate this information before the webcam turns

on. Many webcam eye-trackers, including Labvanced, only record gaze position in

numeric form without recording or transmitting facial video data. Additionally, the

calibration process should be clearly and unambiguously explained, leaving no room

for confusion or questions. For first-time webcam eye-tracking researchers, piloting

the calibration process with naive participants for feedback can be beneficial. In our

studies, we complemented Labvanced’s built-in calibration process with a supplemen-

tary warning message just prior to calibration (e.g. “calibration will begin once you

press the Next button to proceed”), which helped ensure that participants were not
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confused or unprepared for this critical procedure. In the Supplementary Materials

of Chapter 2 and 3 we include a link to our task instructions (see Appendices B and

C.

4.3 During Data Collection

Congratulations - you have developed, piloted, and launched your study online! Now

what? The data collection phase of a remote webcam eye-tracking experiment is

exciting for reasons like the efficiency and scalability of the collection process, but this

phase can also introduce frustrations. In this section, we explain the data collection

process in the context of the deliberate choices made in the Before Data Collection

section, and highlight how these choices can contend with the typical frustrations of

remote data collection. We then give real-world context to these ideas, using past

remote webcam eye-tracking experiments (n = 151) to trace the flow of participants

through the filtering process.

4.3.1 Filtering participants in theory

Data collection during webcam eye-tracking studies is complicated by two key fac-

tors: A) the use of a technically-complex research tool like webcam eye-tracking and

B) the online, remote setting, where experimenters have limited control over partici-

pants’ engagement and commitment (Buchanan & Scofield, 2018; Cheung et al., 2017;

Clifford & Jerit, 2014; Johnson et al., 2021).

Some of the challenges associated with online data collection and crowdsourcing

platforms more generally include sampling concerns (A. Newman et al., 2021), par-

ticipant inattention or lack of engagement (Johnson et al., 2021), and susceptibility

to fraudulent data and bots (Dupuis, 2019; A. Newman et al., 2021). These have

been discussed elsewhere (e.g. Aguinis et al., 2021; Gagné and Franzen, 2023; A.

Newman et al., 2021; Sauter et al., 2020; Thomas and Clifford, 2017), and we highly

recommend first-time online researchers familiarize themselves with these and other
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challenges specific to the online context, such as achieving representative sampling on

crowdsourced platforms (N. Stewart et al., 2017) and the utility of attention checks

(when applicable).

The above works also highlight many benefits to online research and the use of

crowdsourcing platforms, including the efficient and cost-effective nature of data col-

lection (Semmelmann et al., 2017), the limited oversight required by the experimenter

(M. D. Buhrmester et al., 2018; Peer et al., 2017), and the ease of collecting large

sample sizes (Aguinis et al., 2021; Gagné & Franzen, 2023). The accessibility of par-

ticipants and rapid rate of data collection (e.g. sometimes only hours rather than

weeks, Yang and Krajbich, 2021) are excellent in contributing to a large pool of po-

tential participants eager to access studies. However, in reality, the use of a complex

method like webcam eye-tracking introduces multiple opportunities for issues that

could threaten the quality of data collected, and in turn, the ability to answer the

research question. Taken together, these reasons are why the process of obtaining

complete raw datasets can be likened to a filtration system, as depicted in Figure 4.2.

Throughout the data collection process, would-be participants are filtered out for

a variety of reasons. Determining the parameters of these filters was discussed in the

Before Data Collection section. Ideally, these choices have been tested through pilot

testing prior to data collection, with their use being driven by the data quality they

will afford and that the research question necessitates. For some, this means that a

substantial number of would-be participants will be filtered out as was the case in

our own studies.

As webcam eye-tracking researchers Yang and Krajbich (2021) have pointed out,

“what matters is the final number of subjects, rather than the fraction of recruited

subjects”. Yet, there is a point where the fraction becomes too small, making webcam

eye-tracking inefficient and economically irresponsible. Therefore, it’s important to

appreciate the filtration process we face as webcam eye-tracking researchers, and ex-

plore opportunities to minimize the effects of filtration (e.g. costs, time) throughout
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the data collection process. We present our data collection process as a means of high-

lighting various approaches that can be taken to filtering participants. The specific

processes themselves may be of less relevance and will change across platforms and

experimental designs, but our general approaches to filtering are broadly relevant.

Initially, the study is distributed through crowdsourcing platforms like Prolific or

M-Turk, or through alternative channels such as undergraduate research pools or

email lists. Here, the first round of participant filtering occurs. Despite interested

participants having the necessary means to access the study link (i.e. a device with

internet access), not all those interested will meet the temporal threshold due to in-

sufficient computing resources. Others lack the necessary hardware (i.e. computer

and webcam), and some interested participants fail to proceed from the crowdsourc-

ing platform to the study (linked in the study description on the platform). This

initial check results in a significant filtering out of participants, as we quantify later.

Therefore, it is crucial to assess participant eligibility for webcam eye-tracking as

early as possible to avoid wasting participants’ time. For example, platforms like

Labvanced perform these checks immediately after the study link has been clicked.

Since the temporal resolution threshold is set by the experimenter, it is important

to make well-informed choices, as they directly impact the likelihood of participants

passing the first filter of eye-tracking initialization (as discussed earlier in the Before

Data Collection section). Further, this first layer of filtering, if handled at the very

outset of the experiment, and paired with clearly communicated participant require-

ments, can have important cost implications, minimizing the amount of money spent

on unusable or poor quality data.

Once the participant successfully initializes the study, including meeting the tem-

poral requirements of the eye-tracking system, they must pass the second filter, which

involves an eye-tracking data quality check for spatial accuracy. This check evalu-

ates how accurately the gaze prediction algorithm estimated the gaze location during

the calibration phase, where it is assumed that the true location of the gaze aligns
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with the known location of the calibration points used (because participants are in-

structed to look at those points). The calibration period is crucial for calibrating the

prediction algorithm to the participant’s eyes and environmental factors like ambient

lighting. However, it also serves as an opportunity to assess the estimated calibration

error and identify potential factors that may hinder accurate gaze predictions, such

as reflections on a participant’s glasses, for example. The prediction algorithm will

always attempt to provide a prediction if given data, even if that data is spurious. In

the glasses case, if the screen’s reflection inhibits the ability to correctly locate the

participant’s eyes, the predicted gaze data will fail to represent the gaze in any mean-

ingful way (and will only be a source of noise during data analysis). To address this,

experimenters can set a maximum allowable calibration error threshold and decide

whether to allow the calibration to be repeated if the threshold is exceeded (based on

the research question and other considerations discussed in the Before Data Collection

section).

As shown in Figure 4.2, the second filtering stage acts as the boundary between

complete and incomplete datasets. It also helps address common challenges of online

research, such as participant abandonment, lack of personal responsibility, failed at-

tention checks, or difficulties in understanding or performing the tasks. Employing

strategies discussed in the Before Data Collection section, such as interactive instruc-

tions and clear communication about study requirements, can help reduce this form

of participant attrition. For instance, we explicitly state the requirement to remain

still throughout the experiment in our study description on Prolific to minimize sur-

prises and frustration for participants. However, besides these challenges, there are

also uncontrollable contributors to participant attrition, inherent to the complexity

and remote nature of webcam eye-tracking studies. These include technical difficul-

ties and “frozen” errors that prevent participants from completing the study. In such

cases, it is important to be available to troubleshoot issues with participants, even

though some problems may be beyond our control, resulting in participants being
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Figure 4.2: A visual depiction of the participant filtering process in practice, showing
the outcome of the data collection process of both example studies combined (i.e.
Bertrand and Chapman, 2023; Bertrand et al., 2023). Each small square represents
one subject at each stage of the filtering process. Explanations of each stage of
filtering are provided for additional context, as well as the monetary implications.

advised to end the study without further attempts.

During this second filtering process, participant attrition demands particular atten-

tion, especially considering the investment of time made by the participants. Ethical

research practices necessitate compensating participants for their time. Minimizing

attrition during this stage can therefore have a tangible impact on reducing expenses

associated with incomplete datasets that are unlikely to be included in the analysis

(depending on the research question). While incomplete datasets due to technical

difficulties and other factors are not uncommon even in lab settings, the challenges

are amplified in the context of remote webcam eye-tracking studies, as we illustrate

further in the next section.

Finally, at the end of the filtering process, we obtain a collection of datasets that

represent participants who have successfully completed the study, providing usable

eye-tracking data for analysis. Next, we’ll discuss how this plays out during real,

previously-collected experiments involving remote webcam eye-tracking.
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4.3.2 Filtering participants in practice

To provide a practical understanding of the filtration process and add context to the

data discussed in the next section, we examine two previously-published large-scale

webcam eye-tracking studies (Bertrand & Chapman, 2023; Bertrand et al., 2023).

These studies were conducted using the Labvanced online experimentation platform,

and participants were recruited with the crowdsourcing platform Prolific. The data

collection periods of each study happened within one year of each other, and each

study required participants to spend around one hour completing the tasks.

The first study, referred to as the Object-Interaction study (Bertrand & Chapman,

2023), involved dragging and dropping a circle to target locations. The second study,

the 2AFC study (Bertrand et al., 2023) focused on decision-making using a cursor. As

the authors, we planned to collect 50 complete participants for the Object-Interaction

study and 100 complete participants for the 2AFC study. Detailed methods can be

found in the respective study publications. Both studies aimed to investigate the

coordinated patterns of eye movements and cursor actions, which guided our choice

of moderately restrictive thresholds for webcam eye-tracking. For example, we set our

initial temporal resolution threshold to a 10 Hz minimum face sampling rate (note:

Labvanced uses the face sampling rate as a temporal resolution threshold rather than

gaze sampling, as it is an indicator of the system’s resources to track the gaze’s origin

- a component critical for accurate gaze prediction). From here, we will refer to both

studies as a combined dataset for the purposes of this discussion.

During the data collection phase, a total of 949 subjects “accepted” the study on

Prolific (depicted in Figure 4.2). However, only 275 (29%) subjects actually started

the study, making it past the first filter. A breakdown of which filter features con-

tributed the most to this drop-off of 674 (71%) subjects cannot be determined due

to the lack of data from Prolific and Labvanced. That is, Labvanced does not store

any information if a subject fails to pass the eye-tracking initialization (which encom-
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passes the hardware check and temporal resolution check), making it impossible to

determine whether participants failed to meet the requirements or failed to click the

study link. It might be reasonable to assume that most crowd-sourced participants

intended to participate, and that the drop-off was therefore likely due to the insuf-

ficient processing power of the majority of interested Prolific participants. However,

this kind of study is also unlike most studies performed on the crowdsourcing plat-

form. If participants employ a strategy of accepting any limited time study offerings

before assessing their eligibility (which appeared to be the case based on the almost

instant speed that participants would ’accept’ the study once it was live on the plat-

form), this amount of participant filtering is likely not only attributable to insufficient

processing power. Further, although we applied an additional participant filter using

Prolific’s option to require a webcam device, this screening criteria is assessed only

when participants self-select that they have a webcam device when initially register-

ing on the platform, rather than being some kind of enforced live check prior to the

participant accepting the study. Therefore, participants may only realize their lack

of appropriate hardware after accepting the study invitation.

Given the substantial number of participants filtered out of the study at this early

stage, we underscore the importance of clear and effective communication with partic-

ipants throughout the entire research process. This is particularly vital for essential

aspects like the eye-tracking initialization check, where, in our case, the only recourse

for unresolved issues was to request participants “return” the study. When employing

relatively stringent thresholds to obtain higher-quality webcam eye-tracking data, ef-

fective communication becomes even more important. In our case, through pilot test-

ing, we anticipated this level of participant attrition, and recognized that it was likely

due to factors beyond participants’ direct control, such as their computer processing

power. To prevent wasting participants’ time and the experimenter’s economic and

human resources in addressing issues beyond their control, we repeatedly warned par-

ticipants from the beginning that the experiment might fail to run on their computer,
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leading to their inability to participate. By conducting this check at the outset and

providing multiple warnings, we significantly minimized the time invested by those

that couldn’t pass the initial filter. Participants who failed the initial eye-tracking

initialization could determine their eligibility within 10-15 seconds of launching the

study. Consequently, subjects who failed to pass the first filter were not compensated.

Out of the 275 participants who progressed beyond the initial filter, only 151 of

them successfully completed the entire study. The remaining 124 participants ac-

cessed the study but did not complete it, potentially due to eye-tracking issues or

other factors. Specific eye-tracking issues may have included insufficient spatial ac-

curacy of the gaze prediction, as determined by the calibration procedure. In our

case, we used a maximum allowable calibration error cut-off of 7% of the partici-

pant’s screen size. Furthermore, participants may not have completed the study if

they experienced recurring difficulties with the virtual chinrest feature or encountered

technical problems related to connectivity or processing instability. Participants who

passed the first filter but failed to progress beyond the second filter were compensated

for their time, based on the timestamped data in the Labvanced records.

In total, we spent £1399.20 in crowdsourcing costs to collect 151 participant

datasets during an hour-long webcam eye-tracking experiment. One third of all

costs were service fees to Prolific, with the rest of the funds paid to participants

for their time. Of the £1399.20, £1293.20 was spent on complete datasets (n=151),

and £106.00 was spent on incomplete datasets (only paid to 22 of 124 incomplete

participants given their time investment), amounting to ∼ 8% in additional costs for

unusable data. With consideration of these additional costs, the cost per complete

dataset was £9.27. Compared to experiments run in our lab, where we pay partici-

pants at a rate of about £6.00 ($10 CAD) per hour, the costs for our crowdsourced

webcam eye-tracking data are substantially higher. These differences come almost

entirely from the 33.33% service fees to Prolific, which, when excluded amount to

a cost of £6.17 per one-hour dataset collected. When considering the difference in
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experimenter time to collect 151 eye-tracking datasets in the lab (in a serial fashion)

as compared to being collected in a parallel fashion with crowdsourcing, these addi-

tional costs seem reasonable, and likely are saving lab personnel costs. We do note

that these costs represent those only from our data collection phase, and aren’t a

representation of the costs associated with the piloting phase. As an example of pilot

costs, across our two studies, it took 19 pilot subjects to start collecting experiment-

quality data. Because the Object Interaction task hadn’t yet been designed for online

deployment, and was our first online eye-tracking study, all 19 of these pilot subjects

were run as part of pilot testing for that task. Conversely, the 2AFC task was built

off of a previously-deployed online study, and having understood the implications

of the system settings from the Object Interaction task, in the end, although small

tweaks were made to the instructions, the pilot process was successful to the point

of producing experiment-quality data (and were thus included in the analysis). It is

hopefully clear that the costs of piloting are not inconsequential, but also that there

are savings to be gained from the continued use and familiarity with running webcam

eye-tracking experiments.

Ultimately, our journey from 949 participants to 275, and then further filtered to

151 participants, enabled us to obtain the necessary raw data to address our research

questions. The quality and analysis of these remaining 151 datasets will be explored

and assessed in the subsequent After Data Collection section.

4.4 After Data Collection

After much effort to design an effective study and carry out the data collection process,

we end up with a collection of raw datasets. In our case, at the end of the participant

filtering process, we are left with 151 complete raw datasets. In this section, we discuss

everything that comes after the raw data collection process. This includes assessing

the raw data quality and then processing the data to minimize quality issues and

maximize the data’s utility in answering the research question at hand.
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4.4.1 Assessing raw webcam eye-tracking data quality

First, we assess the quality of our raw data. Beyond its use in this document as

an informative look into the quality of data acquired in a true experimental con-

text, this is not unlike those informal assessments we performed during and after the

collection of this data (and pilot data). As we’ve repeated, there are many more

unknowns for an experimenter when performing remote webcam eye-tracking than

in-lab eye-tracking. Unlike the laboratory, where the quality of the data is generally

stable and not something that’s often thought about or interrogated, the quality of

the data from webcam eye-tracking requires the experimenter’s active oversight and

assessment. Without appreciating the potential data quality issues in one’s raw data,

experimenters run the risk of drawing false conclusions, or miss the opportunity to

uncover valuable insights. This data quality assessment is also highly informative for

guiding the data processing strategy, as discussed later.

We assess the quality of our raw data in two separate dimensions: time and space.

The consideration of these dimensions is a theme throughout this document, and

continues here. While both components are foundational to eye-tracking data, as

discussed, the reader might find their research question particularly aligned with

one dimension more than the other. However, the interconnectedness of these two

dimensions means that poor quality in one dimension can corrupt the quality of

the data for both dimensions. A highly sampled yet spatially insensitive signal is

as uninformative as a spatially accurate signal sampled only a few times. Thus,

appreciating the quality of the data with respect to both the spatial and temporal

aspects is important.

Assessing data in time

First, we examine the temporal characteristics of our raw data. Of primary im-

portance, and always of note in the related literature, is the sheer quantity of gaze

samples recorded. Given the lack of experimental control in an online setting and the
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likelihood of recording noisier data compared to lab conditions, it’s important that we

have a sufficient number of samples to identify the signal through the noise. There-

fore, the sampling rate is perhaps one of the most important metrics in describing

the quality of the raw data.

We explore the timing quality of the raw data in more than one way. First, by

looking at the average sampling rate of the datasets, and then, by exploring the

variability of that sampling rate on two timescales: 1) at the level of variability

between consecutive samples of eye-tracking data, and 2) at the level of variability

across the duration of the experiment.

How do we assess the average sampling rate? As discussed in the Before Data

Collection section, when we move to an online, remote data collection context, we

forfeit highly precise instruments, like lab-grade eye-trackers that capture thousands

of samples per second. The online nature further challenges our sampling ability as

various processes need to be carried out on a limited bandwidth, all operating on

the processing power of consumer-grade hardware. In light of these limitations, it is

reasonable to adopt a "get as much as you can" approach for eye-tracking data in

online studies. Rather than enforcing a fixed sampling rate that could lead to skipped

samples or suboptimal performance, we collect as many samples as possible within

the defined bounds. This approach is reflected in our use of the ’Effective Sampling

Rate’ metric, which considers the number of gaze samples collected over programmed

eye-tracking recording period.

The effective sampling rate of our raw data could be calculated in more than one

way, but we defined this metric as the number of gaze samples collected over the

time that we have requested (i.e. implemented) eye-tracking. In our cases, we have

programmed eye-tracking to run from the first to last frame of every trial. Therefore,

we calculate the effective sampling rate per trial as:

Effective Sampling Rate =
ngaze samples collected

timetrial end - timetrial start
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Across all 151 remote participants (pooled between our two studies) who satis-

fied the various participation requirements (discussed in the Filtering participants in

theory subsection), the average effective sampling rate observed was 21.2 Hz (SE =

0.26, Range = 8.47 to 29.53). Across the literature, this sampling rate for remote

webcam eye-tracking of crowdsourced participants is about as expected or moderately

higher (reports range from 11.5 Hz in Bánki et al., 2022 to upwards of 40 Hz in Yang

and Krajbich, 2021), though various approaches to obtaining sampling rates makes

it difficult to make direct comparisons. We stress that our average effective sampling

rate metric should not be considered in a vacuum; this is the effective sampling rate

achieved when particular constraints (like Labvanced’s ‘medium-high, 10 Hz mini-

mum face processing’ threshold) are used. As outlined in the Before and During

Data Collection sections, thresholds chosen will impact the number of people able to

participate (illustrated in Figure 4.2), and what we now report is the effective sam-

pling rate of those who made it through the filter (i.e. 151 participants rather than

the 949 at the start of the filter). Therefore, the effective sampling rate is somewhat

constructed by our design - a function of our choices when building our experiment.

Had we been more lenient in our minimum face processing rate requirement, we likely

would have increased the number of participants who made it through our filters, but

would have decreased the overall effective sampling rate. Conversely, since our chosen

system (Labvanced) supported webcam hardware with a maximum sampling rate of

30 Hz, which is typical for consumer webcams, it’s likely we could achieve a sampling

rate closer to 30 Hz with more restrictive thresholds. In the near future, since 60 Hz

webcams are now on the market, it’s also likely that webcam eye-tracking systems

will evolve to be compatible with these faster cameras as well, supporting even faster

webcam eye-tracking sampling rates.

The effective sampling rate is informative in giving a metric to broadly describe

the temporal quality of a trial or session of webcam eye-tracking, but we can also

ask how consistently the samples are collected both across a given trial or across the
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entire duration of the study.

The first, and more granular investigation of estimated sampling rate variability

comes by exploring the extent to which an estimated sampling rate actually samples

at a consistent rate. For example does 30 Hz on a given trial actually represents

30 equally spaced out (in time) samples in one second (i.e. every 33 ms), or is it

instead composed of samples at all different intervals that, when averaged, represent

a 33 ms interval. As a metric, the derived insights here are more nuanced because

the eye-tracking system doesn’t set or ascribe to a fixed sampling rate. Instead,

this measure is included to highlight how much variability could be introduced when

operating within all the limitations and confines (and technical complexities) of a

crowdsourced, webcam eye-tracking experiment. We use a 2D histogram of every

subject’s "Estimated Sampling Rate Difference" between their estimated sampling

rate and the interval of time between each of their recorded gaze data samples (see

Figure 4.3).

While systems will vary and technology will improve, remote online webcam eye-

tracking will always contend with the limitations brought about by consumer hard-

ware and browser-based applications. This wide range of variability we see in Figure

4.3, where some subjects have estimated sampling rate differences in +/- 300 ms

range, highlights the magnitude of the momentary changes that the eye-tracking

sampling experiences, and serves to inform why later-discussed data treatments are

worth considering. However, the clustering of data near-zero for all subjects suggest

that the majority of the time, the estimated sampling rate is a reasonable represen-

tation of the general timing of recorded gaze samples. We also note that in both

studies reviewed, cursor-tracking was also enabled and recorded (sampled as fast as

possible, but only when a change in cursor position is detected), and this may have

effects on the momentary stability of the eye-tracking system (because of time-varied

throughput demands) and also the estimated sampling rate decay we see over time

(increased demands on local cache resources; see Figure 4.4).
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Figure 4.3: Histogram of timing variability between eye-tracking samples, where the
variability is calculated as the difference between average sampling rate time difference
and the true time differences, in milliseconds. Each participant (n=151) is shown per
row, where the Object Interaction cohort (n=51) is shown in the top 51 rows. The
colorbar indicates the histogram count of the number of samples for given offsets from
the estimated sampling rate.

162



In our second approach to describing the estimated sampling rate variability, we

map out the effective sampling rate calculated per trial, across the duration of the

study (Figure 4.4). With our combined datasets having similar average experimental

durations (Object-Interaction: M = 45min 07sec, SD = 09min 46sec; 2AFC: M =

1hr 03min 27sec, SD = 10min 09sec) we show all 151 participants’ effective sampling

rates over the course of their eye-tracking data collection, in 10 minute intervals. A

general trend emerges that shows the slowing of the effective sampling rate over the

course of the ∼1 hour experiment. This reduced sampling rate may be the result of

various factors like the system’s backend engineering and handling of data, and/or

the ability of the participants’ hardware (e.g. processor’s temperature regulation) to

sustain prolonged, substantial resource use. In the case of a system like Labvanced’s,

where the processing involved with eye-tracking is handled client-side (i.e. no video

data is transmitted from the participant’s computer, but is instead processed using

their system’s resources to generate coordinate gaze data), this continued resource

demand likely weighs on a typical participant’s hardware. The subject’s local cache

is also used during the experiment execution and thus would further weigh on per-

formance over time. At least for our platform of choice, webcam eye-tracking may

introduce some limitations when trying to record longer studies that exceed 30 or 45

minutes (although this concern will likely diminish rapidly as platform and consumer

technology improves). We explore how this diminishing sampling rate may or may

not affect data quality further below (like in the magnitude of recalibration error

across time in Figure 4.5, for example).

Assessing data in space

While still only considering the data in isolation from the experimental context it

was conducted for, following the implementation suggestions in the Before Data Col-

lection section, we can now use the recorded calibration and recalibration error as

an indicator of general spatial accuracy. Prior to any experimental trials, all 151
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Figure 4.4: The effective sampling rate, in Hz, across 10 minute intervals of the
recording duration is shown, with each line representing a single subject (color-coded
for experimental cohort) and the group average indicated with a black line.
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subjects performed a 5 minute calibration procedure where they fixated targets on

the screen from a range of head positions. At the end of this preliminary calibration,

a calibration error was calculated that represents the magnitude of error between

the algorithmically-predicted gaze location and the known target locations (taken as

ground truth). Of course, in practice, this measure, and the taking of the calibration

targets as ground truth, is muddied by the limited experimental control of a remote

study, but our use of a restrictive calibration error limit (see the Before Data Collec-

tion section) provides some reassurance that participants are meaningfully engaging

in the calibration and that the subject’s environment is suitable for effective webcam

eye-tracking (i.e. appropriate lighting and background, limited visual distractions).

Figure 4.5A depicts the initial calibration error recorded for each subject within each

experimental cohort. This calibration error is an aggregated measure of the magni-

tude of error of all the calibration points, for X and Y domains separately, measured

within the 800 x 450 common pixel unit coordinate frame used by Labvanced. Our

use of calibration error as a metric is limited by the error being recorded in an un-

signed way (i.e. for 40 pixels of error in the X domain, for example, it’s unclear

whether that error represents a prediction bias to the left or right). However, Fig-

ure 4.5A does expose a bias in our data using a fitted least squares reference line,

where the initial calibration shows an unbalanced error contribution of more error in

the X domain than the Y domain. Given the general properties of computer screens

being wider than they are tall, it is not necessarily surprising that we see a least

squares line that skews to more error in the X domain than Y, but we share this plot

more for information than to generate definitive conclusions. It’s worth noting that

our imposed restrictions on calibration error (7% in our case) when operating in the

Labvanced frame (800 x 450 pixel units) translates to 56 pixels in screen width and

31.5 pixels in height, however the 7% threshold is calculated on the diagonal distance

(Euclidean) and thus explains why we see data in Figure 4.5 A that has a magnitude

larger than 56 pixels in X or 31.5 pixels in Y but not exceeding either of these in both
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components.

Our general trend of X>Y gaze prediction error further carries over into the re-

calibration findings. Here, in Figure 4.5B, we also plot the complete cohort of data

(n=151), separated by study. Importantly, the number of recalibrations performed

varies greatly between the two studies (recalibration occurs every 5 trials in both

studies but subjects perform ∼5 times more trials of a much shorter duration in the

2AFC Task). All data shown are averaged recalibration values. Interestingly, per-

forming only 10 vs 56 recalibrations appears to have little impact on the magnitude of

the recalibration error, or the relationship between X and Y error. We further employ

a 10 minute interval sampling like the sampling rate results to explore whether the

recalibration error changes over time. This average recalibration error is measured

in Euclidean pixel units, taking subject averages of the Euclidean distance of each

calibration period over 10 minute intervals. From Figure 4.5C, we see an upward

trend to the average magnitude of recalibration error over the duration of the exper-

iment, suggesting that the spatial accuracy may decay over time when performing

hour long experiments. However, this result may also be a consequence of a broader

data quality decrement when remotely running longer experiments where prolonged

attention is required.

4.4.2 Data Processing

All data presented thus far has been wholly raw data. In practice, despite our best

efforts to create a sound experiment and run an efficient data collection process, the

quality of the eye-tracking data collected can only be controlled to a certain extent.

We therefore rely on exercising more experimental control post data collection, where,

when appropriate, we use more liberal trial and subject rejection thresholds than we

might employ in the lab. Given the vast span of research questions that can be

answered with webcam eye-tracking, this guide pertains primarily on how to run an

online webcam eye-tracking experiment, but we share some general data processing
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Figure 4.5: Various measures of webcam eye-tracking spatial error from the two
experiments. A) The initial calibration error is shown, with individual calibration
errors indicated by circles, color-coded with the experimental cohort. Initial calibra-
tion error is determined after the full calibration procedure is complete, prior to any
experimental recording. Error is in unsigned pixel space, using a common coordinate
frame of 800 x 450 pixels. A diagonal line separates the two halves of the plot to
highlight the areas where there’s more error in the X domain or in the Y domain.
Two fitted least squares reference lines are shown, per cohort. B) The average recal-
ibration error is shown, where the unsigned error in both the X and Y domain has
been averaged over all the recalibrations performed throughout the experiment. All
other aspects of the plot are identical to plot A. C) Recalibration error across the
study duration is shown, where the average recalibration error is computed for each
10 minute interval of recording time. Error here is calculated by combining the error
in the X and Y domains with a euclidean distance measure. Each line represents an
individual’s average euclidean distance error across the time intervals, colour-coded
for cohort. The black line indicates the grand average of the entire n = 151 group.
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ideas and practical approaches we have found useful over our online experimentation

journey.

We estimated the sampling rate from eye-tracking data that was collected without

a fixed sampling rate (see the During Data Collection section and Figures 4.3 and

4.4). A simple processing step to use from the outset is to upsample (or re-sample)

your eye-tracking data to a common sampling rate for all the collected data. For

our purposes, because we also record cursor position (which is recorded at a much

higher sampling rate than eye-tracking data for our datasets), and use the cursor

+ eye data together in joint measures, we choose a 60 Hz common sampling rate,

and linearly interpolate our eye data in the missing frames. A linear interpolation

is an oversimplification of the velocity profile of the saccade, but, at present and as

previously discussed, research on saccade dynamics is beyond the scope of current

webcam eye-tracking capabilities. Given the variability within and between subjects’

estimated sampling rates (see Figure 4.3), it would be best to employ an approach that

would protect against data with too much time between sequential samples, or not

enough samples in general. Depending on your study design and research question,

this sampling threshold will vary, but consider, for example, how uninformative only

three data points over a five second span would be. There will be almost entirely

interpolated data in the processed signal, and this could easily mislead or confuse the

data story. This upsampling approach is like an inverse to a filtering approach which

most lab-based eye-tracking scientists would use to smooth out their data. In the

upsampling case for webcam eye-tracking data, we ‘smooth’ our webcam eye-tracking

data by filling in gaps instead of dampening noisy outliers in 1000 Hz lab eye data.

Besides pertaining to raw data, until now, all measures presented have also been

ones without consideration of the experimental tasks being performed by the par-

ticipants. Of course, for our purposes, generic measures will afford greater general

applicability for our audience’s various types of experimental designs, but in practice,

task-specific data quality assessments are typically the more interesting investigations
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when taking stock of your raw data output. In general, a guiding principle of exer-

cising a healthy amount of skepticism about the data is one worth following. Given

all the limitations of webcam eye-tracking discussed at length throughout, becoming

familiar and comfortable with your eye-tracking data in the form of visual inspection

(plots, heatmaps etc.) or extracting metrics for practical sanity checks is important.

For example, Figure 4.6 is a reproduction from Bertrand and Chapman (2023) where

we performed a basic validation of our data quality and data processing approach by

measuring the amount of time spent fixating at each of our 4 areas of interest when

that area was an active (relevant) or inactive (non-relevant) area for interaction. We

used the expected pattern (significantly more fixation at relevant vs irrelevant sites)

as a basic proof that later results were grounded in legitimate and valid eye-tracking

data.

When beginning to assess quality, consider what values (or patterns of values) you

might extract that would give you confidence to proceed with the analysis procedure

(or, alternatively, indicate the need for creative data-driven cleaning treatments).

Simple measures like time to first fixation to a key target or fixation duration can

be useful here, and when combined with other task-agnostic measures like calibra-

tion error, may inform first-pass analysis choices like what constitutes a reasonable

bounding area about an AOI for metric generation purposes.

Another piece of guidance for data processing, but more as a principle, is to consider

in what ways you might be able to discern completely random or erroneous data for

cases where the participant may have left the view of the webcam, or are focusing

their gaze elsewhere. While there are various ways to avoid this happening during

the data collection by implementing things like a virtual chinrest, or designing the

experiment to not advance without user input etc., it’s important to consider how

you might be able to use features within the data to identify trials (or subjects) not

suitable for analysis. Some of these ideas were mentioned above when referencing

becoming familiar with the data and performing sanity checks; these types of sanity
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Figure 4.6: An example from the object interaction task (Bertrand & Chapman,
2023) of how task-specific measures can be generated as a means of validating the
quality of your collected data. In this case, we measured the average fixation duration
at each of the four target AOIs (Far Left: FLAOI, Near Left: NLAOI, Far Right:
FRAOI, Near Right: NRAOI) across the task’s eight movements when that AOI was
relevant (yellow bar; a pick-up or drop-off site) or irrelevant (grey bar; not a pick-up
or drop-off site) to the movement. Our results indicated significantly longer fixations
on relevant AOIs than irrelevant AOIs, following the proven and established pattern
of only looking at task-relevant areas. A reproduction from Bertrand and Chapman
(2023)
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checks are also reasonable to employ as rejection criteria. In our example above

where we classify areas as task relevant or irrelevant, we use this classification to also

identify trials and/or subjects that violate this pattern entirely - indicating faulty

or unreliable gaze predictions that shouldn’t be considered in analyses. In our case,

this resulted in analyzing only 29 of the 51 datasets for the Object Interaction study.

Determining the ideal criteria requires an appreciation for your research question

and your experimental design, and visually inspecting the data can help to clarify

a reasonable approach (i.e. ‘bad’ or strange coordinate gaze data is not obvious

numerically until plotted). This criteria is also sometimes important to ensure you

have sufficient data to answer your research question. For example, in a task like

our 2AFC task, because we wanted to analyze gaze as it related to the two presented

choices, we decided to exclude trials where the gaze was never recorded as falling

on or around the two choice areas (even when we considered a wider, adjusted area

bound). Striking the right balance is important to not reject ‘good’ data while not

effectively accepting noise or ‘bad’ data. For this particular experiment, this meant

we analyzed 97 of 100 participant datasets. Clearly, different research questions will

inform these rejection procedures - our two studies varied significantly in the rejection

rate of datasets for analysis.

What if these preliminary data processing strategies are still presenting data that

is difficult to make sense of? There are a number of more complex or advanced ap-

proaches to combat various challenges. For example, our object interaction study

(n=29; Bertrand and Chapman, 2023) ended up requiring substantial data transfor-

mations by using a k-means clustering approach to spatially bin the data into 4 areas

of interest because of spatial distortions (full procedure illustrated and described in

the Supplementary Materials of Bertrand and Chapman, 2023, see Appendix B). We

also supplemented our relevant/irrelevant proof (see Figure 4.6) with a more complex

spatial probability analysis for further validation of our data transformation processes

(also in the Supplementary Materials of Bertrand and Chapman, 2023, see Appendix
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B). Application of post-hoc fixation detection algorithms on particularly noisy raw

gaze data may also be fruitful in distilling data into less quantity and more quality

gaze representations. Linearly transforming gaze data based on known in-task anchor

locations that can be confidently and reliably used (because of task designs that may

require careful monitoring at that location, for example) can also be employed as a

pseudo post-hoc drift correction. Though it may require more creative and scrappy

strategies than in the lab, if the experiment has been designed and implemented

effectively, there will generally be some approach to overcome data quality hurdles

that will still allow for powerful answers to your research question. As technology

continues to advance, these data quality challenges will become less pronounced, and

solutions to the challenges will no doubt improve too.

4.5 Summary of Recommendations

Taken together, we hope this guide will assist in developing and running high-quality

webcam eye-tracking experiments. We were motivated to share these ideas after

learning through trial and error, effectively performing pilot tests on the method

itself. Now, after learning some of the nuances of this methodology, we hope we

can share our learnings and knowledge to make webcam eye-tracking more accessible

for experimenters to implement. We hope the reader is excited about webcam eye-

tracking, and takes away the key messages in Figure 4.7 for each stage of the research

process.

4.6 Conclusion

If nothing else is taken away from this paper, we hope the reader sees the importance

of engaging in a thorough and iterative pilot testing phase to understand whether

it’s possible to design and build a webcam eye-tracking experiment that is capable

of answering your research question. This document is meant to serve as a practi-
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Figure 4.7: Summary of recommendations for online webcam eye-tracking experi-
ments

cal guide for experimenters, but is limited in scope to the more important pieces of

information for performing a successful experiment. Outside of this more practical

context, we urge experimenters to also explore further considerations to the method,

including implications for participant privacy and security. We also are excited for

this eye-tracking method to continue progressing beyond laptop and desktop com-

puter webcams to other consumer cameras like smartphones (actively being explored,

e.g. Namnakani et al., 2023). For the most part, extensions beyond webcams to

these other types of consumer cameras still present similar challenges for behavioural

experimentalists, and our guide will still be relevant for these cases. We also believe

there are exciting opportunities for more supportive crowdsourcing environments that

enable better participant filtering earlier in time to further limit costs and time. In

the end, we’re excited for the future of webcam eye-tracking and hope you are able

to enjoy the process of contributing to its use in your future webcam eye-tracking

research.
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Chapter 5

Discussion

The purpose of this thesis was to explore the utility of webcam eye-tracking for hu-

man behavioural research. As you’ve now read, throughout the three projects, we’ve

taken a couple different approaches to understanding utility. In Chapters 2 and 3,

we chose distinct domains to use as testbeds for webcam eye-tracking, assessing the

method’s utility in terms of its practical application and ability to sensitively cap-

ture key domain-specific behaviours. Our fourth chapter takes a different approach

to exploring webcam eye-tracking’s utility, offering instead a contribution to its util-

ity by sharing practical knowledge for employing the method in online behavioural

research, and by providing evidence-based recommendations that make the method

more accessible for researchers.

In the following sections, I provide an overview and contextualization of the stud-

ies conducted within this thesis. Chapters 2 and 3 are presented in an order that

first summarizes the extent to which webcam eye-tracking’s utility was established

based on the key domain-specific indicators I presented in the Introduction (Chapter

1). Then, following these summaries, the utility discussion is bolstered by revisiting

the additional empirical contributions the studies made (that webcam eye-tracking

afforded us). We further discuss the studies’ contributions by situating our results in

the existing literature. We conclude the discussions of Chapters 2 and 3 by providing

an honest reflection about the process of determining if and how it might be possible
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to derive meaning from the raw webcam eye-tracking data. With Chapter 4 being a

methodological contribution built upon the first two experiments, I briefly summarize

its contribution and situate its utility in the current literature. The rest of the discus-

sion shifts towards an exploration of utility as a concept, paired with an exploration

of the future of webcam eye-tracking through both optimistic and pessimistic lenses.

I close out this thesis with a personal reflection on my journey and experiences with

webcam eye-tracking as a method.

5.1 Study Summaries

5.1.1 Chapter 2 - Assessing webcam eye-tracking utility in
digital object interactions

Chapter 2 endeavoured to understand the utility of webcam eye-tracking as a tool to

explore the persistence of eye-hand coordination patterns within digitized object inter-

actions. Specifically, we wanted to probe whether webcam eye-tracking could identify

the familiar 500 ms eye-leading-hand (here, eye-leading-cursor) pattern, commonly

observed in real-world object interactions (e.g. Lavoie et al., 2018). Operating within

a fully remote experimental setup, we successfully deployed a digital drag-and-drop

cursor movement task with webcam eye-tracking, gathering complete datasets from

51 participants who used their own web-cameras as eye-trackers. As we presented

in Chapter 2 and discussed later, substantial data processing efforts were made to

enable a thorough exploration of the gaze data. These efforts proved fruitful, making

it possible to not only explore the gaze data, but also reveal the unique and robust

500 ms eye-leading cursor pattern across all eight movements of our digital interaction

task.

The significance of Chapter 2 extends beyond a demonstration of webcam eye-

tracking’s utility in capturing rich visuomotor behaviours from online participants. It

also afforded us the opportunity to unveil novel empirical insights about the adapt-

ability of the visuomotor system in a digital domain. When we quantified eye-cursor
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latencies during object pick-up and drop-off events, we found that the real-world’s 500

ms “look ahead” behaviour manifested differently in digital interactions. Preceding

the cursor’s object pickup, the eyes mirrored real-world behaviour, arriving at the

object approximately 500 ms prior to the cursor. However, due to the rapid nature

of dragging a digital object on-screen compared to physical manipulation, the limited

time span between the pick-up and drop-off precluded the eyes from having their

requisite 500 ms of anticipatory time at the drop-off site. Instead, the eyes arrived at

the drop-off location only ∼100 ms prior to the cursor. Remarkably, even after the

drop-off, the gaze remained fixated on the drop-off site for an additional 400-500 ms.

This surprising finding, revealed with webcam eye-tracking, hints at the existence

of a fundamental ∼500 ms window for visual information processing during interac-

tions, both digital and real-world, with the visuomotor system displaying adaptive

flexibility in accelerated digital interactions.

These results therefore align with and extend existing literature from both the real-

world and digital domains. Returning back to the real-world domain that inspired this

work, as has been stated, the presence of the 500 ms eye-leading-cursor visuomotor

pattern is consistent with Lavoie et al. (2018) and others’ eye-leading-hand pattern

(Hayhoe, 2000; Land & Hayhoe, 2001; Land et al., 1999). In turn, this resembles

patterns that arise from other real-world, visually-guided tasks like walking (Land,

2006; Patla & Vickers, 2003), keyboard typing (Butsch, 1932), and music playing

(Furneaux & Land, 1999). Further, the observed general flexibility of the visuomotor

system mirrors real-world instances where imposed time (Deconinck et al., 2011),

accuracy (Rand & Stelmach, 2010), or kinematic constraints (Johansson et al., 2001;

Pelz et al., 2001) elicit adaptative eye-hand coordination patterns. Our most novel

empirical finding was uncovering the consistent, prolonged (∼500 ms) gaze fixation

after drop-off. In addition to adapting to the rapidity of mouse movements, this

extended fixation might also relate to the limited sensory (haptic) feedback of cursors

compared to the rich haptic experiences of real-world object interactions. While
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speculative, we see parallels in the visuomotor patterns employed by prosthetic limb

users (Cheng et al., 2022), including those performing Lavoie et al.’s (2018) identical

real-world task (Hebert et al., 2019), where a lack of haptic feedback is compensated

by a reliance on visual feedback, perhaps extending the time spent looking at the

drop-off site.

In the context of digital interactions, this work adds to the smaller set of works

that explore the dynamics of visuomotor behaviours mediated by digital (e.g. screen-

based) interactions. Our eye-leading-cursor results are broadly observed in other

forms of digital interactions including shape tracing (Deng et al., 2016), distractorless

visual search (Bieg et al., 2010), object tracking (Danion & Flanagan, 2018), simple

(Sailer et al., 2000) and sequential (Rand & Stelmach, 2010) reaches towards a screen,

and dragging virtual objects on a touchscreen (Sims et al., 2011). In these activities,

this pattern appears across both cursor and touchscreen interactions, though these

types of interactions typically result in smaller eye-lead times (within ∼100 to 300

ms). Our longer eye-lead times, despite being more in line with real-world timings

(e.g. Hayhoe, 2000; Land and Hayhoe, 2001; Land et al., 1999; Lavoie et al., 2018),

likely reflect how eye-cursor coordination is shaped by the nature of a specific dig-

ital interaction. That is, there is other evidence of specific task features affecting

visuomotor patterns (Liebling & Dumais, 2014; van Donkelaar & Staub, 2000), and

our drag and drop task has greater demands to accurately select, drag and release

the object within the narrow bounds of the pick-up and drop-off areas. Conversely,

the smaller eye-lead times were measured in digital tasks that were primarily simple

reach, point, or click responses (as opposed to clicking-dragging-releasing), where less

anticipatory looking ahead may be required.

Arriving at these types of conclusions took a lot of work. Unlike the above cited

works that used lab-grade eye-trackers, our choice to employ webcam eye-tracking

(for various reasons already discussed) meant we had to contend with its limita-

tions. Beyond the hurdles in gathering the data (as recounted in Chapter 4), deriving
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meaning from the raw gaze data output from webcam eye-tracking proved to be our

most daunting task. Despite our intentions to reproduce the metrics derived from

real-world lab-grade eye-tracking (Lavoie et al., 2018), we were confronted with the

realities of lower quality raw gaze data that, on the surface, appeared to render this

goal unattainable. Simply following the same steps used by Lavoie et al. to convert

the raw gaze data into our target metrics would have yielded nothing but meaningless

noise. That is, trying to extract only instances of the raw gaze coordinates falling

within the coordinate bounds of the pick-up/drop-off locations, for example, would

have resulted in very limited spatial overlap. Thus, data from entire trials, and even

entire participants, might lack instances of alignment between the raw gaze data and

any of the four pick-up/drop-off locations.

Instead, constrained by the data quality afforded by webcam eye-tracking, we had

to develop a solution to our noisy data quality problem. Visual inspection of the

gaze and cursor behaviour over time revealed within-subject spatial distortions in

the gaze data, yet their movements seemed to align in direction and timing. Put

another way, the gaze data seemed to follow the task in time but was distorted in

space. Recognizing that there was potentially something to be salvaged, we developed

a clustering approach for the skewed gaze data, using the cluster centroids as the

center of the 4 AOIs (assigned based on their relative spatial orientation), and then

binned the raw gaze data to its nearest AOI/centroid. This transformation addressed

the skewed raw gaze data by rendering the absolute (and distorted) spatial location

irrelevant. The cost, however, was a significantly diminished spatial resolution, with

sensitivity reduced to only these 4 AOIs. Moreover, this strategy didn’t resolve all of

our data quality concerns; by the end, we had to exclude 22 out of the 51 participant

datasets from analysis due to issues with eye data quality. This example of data

processing is another testament to the tradeoffs we faced when adopting webcam

eye-tracking; it allowed us to successfully track how the eyes led the cursor, but it

hindered our exploration of certain real-world metrics from Lavoie et al. (2018). For
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example, without the spatial sensitivity to track when the gaze and cursor intersected,

we were unable to see whether the change from a real-world hand to a mouse-cursor

affected effector-gaze interactions (like in Lavoie et al., 2018). More specifically, the

previous real-world results also reported the amount of time spent looking at the

hand, an important indicator of task proficiency but something we couldn’t even

conceptually replicate with this data. Finally, the data processing decision we made

to reduce the gaze data to 4 AOIs not only exposed the limits of our chosen eye-

tracking method but also made it necessary to corroborate our empirical results with

additional supportive “proofs”. Being transparent, reviewers demanded that we show

evidence beyond the main empirical findings that the data quality was sufficient to

base our results on. As such, we included demonstrations that the expected gaze

behaviour pattern throughout a trial followed functional predictions (i.e. greater

fixation time on relevant AOIs compared to irrelevant AOIs, see Chapter 2, Figure

2.3) and we performed a spatial probability analysis to confirm the high likelihood of

our clustering approach accurately assigning gaze data to the appropriate AOI.

5.1.2 Chapter 3 - Assessing webcam eye-tracking utility in
binary choice decision-making

Chapter 3 was strategically designed to evaluate the utility of webcam eye-tracking

within a decision-making context. Our primary objective was to replicate and extend

the results of the first paper in this two-part series: a binary choice investigation

conducted by Ouellette Zuk et al. (2023; included in the Appendix). The binary

choice decisions spanned diverse decision domains and featured a range of stimuli, all

presented in the same layout. With the participation of 100 remote, crowdsourced

participants, three binary choice tasks - Sentence Verification (Dale & Duran, 2011),

Numeric Size Congruity (Faulkenberry et al., 2016), and Photo Preference (Koop

& Johnson, 2013) - were tested. Our approach to evaluating webcam eye-tracking’s

utility was to explore whether it could enhance our understanding of decision difficulty,
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a factor robustly illustrated in Ouellette Zuk et al.’s cursor movement measures.

Rather than adopting a specific, hypothesis-driven approach as in Chapter 2, Chapter

3 was more exploratory. That is, in Chapter 2 we knew what effect we predicted

and what measure we’d use to chart it, but in Chapter 3, while we knew the effect

of interest (decision difficulty) its specific manifestation in gaze behaviour was an

open question. By using webcam eye-tracking to capture gaze data, we progressed

beyond cursor movement measures, uncovering decision difficulty effects earlier in

time. Specifically, we unveiled a pattern of increased gazes at the choice options for

hard trials than easier ones, an effect consistently observed across all three binary

choice tasks.

Yet, webcam eye-tracking facilitated an even deeper exploration of nuanced decision-

difficulty effects by revealing task-specific gaze patterns that mirrored the task-specific

spatial distribution of decision-relevant information. Despite the uniform presenta-

tion format of the binary decision tasks, varying decision types necessitated distinct

approaches to acquiring the decision-relevant information. For instance, choosing a

preferred photo required scrutinizing both options, with minimal attention to the

repetitive task instructions at the top of the screen. In contrast, to verify the truth-

fulness of a sentence, the sentence needed to be read, while peripheral vision may have

been sufficient for indicating a decision via cursor placement due to the fixed ‘true’

and ‘false’ choice options. In the Numeric Size Congruity task, identifying the larger

numeric (and not necessarily physical) number in two options is somewhere in the

middle: akin to Photo Preference both choice options contain important information,

but because of the stimuli set used, there were times that the correct answer could be

deduced with only one option viewed. Webcam eye-tracking illuminated these vari-

ations in how information was spatially distributed, informing further task-specific

analyses of the most prevalent gaze patterns. By dissecting these prevalent patterns,

we uncovered novel difficulty effects in each task, tracing the decision-making process

through the time spent looking at task-relevant information. In the end, webcam
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eye-tracking demonstrated its utility while simultaneously contributing to a deeper

understanding of the decision-making process.

Positioning our findings within the broader literature context, we begin with the

preceding (and accompanying; see Appendix A) paper that laid the foundation for this

contribution (Ouellette Zuk et al., 2023). While this earlier study elegantly showcased

the value of remote data collection for continuous cursor and touchscreen trajectories

in decision-making, it grappled with a notable limitation: the inability to reveal pre-

movement decision processes. This knowledge gap underscores the significance of

Chapter 3, where webcam eye-tracking is employed to reveal information about the

decision-making process that occurs prior to movement. Granted, we know that once

the cursor starts moving, we can access insights about the decision making process,

where decision difficulty is reflected in the duration and trajectory curvature of cursor

movements (Faulkenberry et al., 2016; Freeman, 2018; Hehman et al., 2015; Koop &

Johnson, 2013; Maldonado et al., 2019; Stillman et al., 2018, 2020) . However, we

also know that the decision-making process is sensitive to decision difficulty prior to

movement initiation, as evidenced by a robust history of response timing effects where

harder decisions take longer than easier decisions (e.g. McCarthy and Donchin, 1981;

Palmer et al., 2005; Rangel and Hare, 2010; Schouten and Bekker, 1967). Therefore,

our Chapter 3 adds to a growing collection of works that have employed eye-tracking as

a means of understanding the dynamics of decision-making (for reviews see Bhatnagar

and Orquin, 2022; Orquin and Mueller Loose, 2013) - how decision-making unfolds

across the entire decision, including the time before movement where eye movements

are required to sample the relevant decision information.

Diving into these pre-movement mechanisms further, gaze patterns have been

shown to both bias and reflect choices (Glaholt et al., 2009; Gold & Shadlen, 2007;

Shimojo et al., 2003). Classic decision-making models and theories (e.g. evidence

accumulation; Gold and Shadlen, 2007; Ratcliff and Rouder, 1998; P. L. Smith and

Vickers, 1988) have incorporated the important role gaze plays in information sam-
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pling (e.g. the attentional drift diffusion model, aDDM; Krajbich et al., 2010), where

the eyes act as an accumulator of information samples for different alternatives un-

til enough information is accumulated to make a choice (Krajbich & Rangel, 2011;

Krajbich et al., 2010). The aDDM has primarily been modeled after decisions like

our Photo Preference task, where gaze patterns during preferential binary choices are

predicted to begin with the gaze on the left option and conclude with the gaze on the

chosen option, with harder choices requiring more and longer choice option fixations

(Krajbich et al., 2010). Remarkably, despite the various constraints imposed by we-

bcam eye-tracking (discussed later), our analysis of the most common gaze patterns

during Photo Preference aligns with the aDDM, and to the best of our knowledge, is

the first time remotely-captured webcam eye-tracking has revealed these effects.

Despite the aDDM being extended and tested with different stimuli types (e.g.

numeric vs pictorials; Krajbich et al., 2012) and choice domains (e.g. risk and social

choices; S. M. Smith and Krajbich, 2018), it wasn’t clear how gaze patterns would

express decision difficulty for our Sentence Verification and Numeric Size Congruity

tasks. However, our results offer interesting complementary evidence for the role

gaze plays in information gathering. Previous work has shown that, during three-

alternative preferential choices, only after all three choices were viewed did the un-

derlying preferential value of a choice affect the fixation process (Krajbich & Rangel,

2011). While its carryover into non-preference choices is speculative, our work sup-

ports the notion that early fixations reflect only information gathering (and not choice

discrimination), with decision difficulty effects emerging only later in time (Krajbich

& Rangel, 2011). However, perhaps the greatest and most novel offering of Chapter 3

comes from the powerful message it can provide when considered alongside its coun-

terpart (Ouellette Zuk et al., 2023): the combination of cursor-tracking and webcam

eye-tracking produces an immense opportunity to understand the entire timeline of

a decision - from stimulus onset to the end of action enactment - all while captured

entirely remotely. Together, these works demonstrate to decision-making researchers
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that it’s possible to measure a complicated human process beyond the confines of the

laboratory, enabling the capture of more authentic and realistic decision-making.

The ability to remotely explore the complexities of the decision making process

across time is exciting, but much like Chapter 2, it was a challenge to arrive at

meaningful measures that could offer these insights. Chapter 3 presented a novel

challenge. Unlike Chapter 2’s focus on finding ways to apply established and specific

gaze-cursor coordination metrics to noisy webcam eye-tracking data, Chapter 3 did

not have nearly the same specificity of target metrics. Instead, our process to gen-

erate metrics was different - we had some idea from gaze-aware decision-models that

gaze pattern features like where, how often, and for how long you looked would be

important (Krajbich & Rangel, 2011; Krajbich et al., 2010), but we also knew that

webcam eye-tracking imposed spatial and temporal limitations that wouldn’t give us

the power to generate the same kind of highly-precise saccade-based gaze metrics that

were foundational to models like the aDDM (Krajbich et al., 2010). Thus, akin to

Chapter 2, our first step towards meaningful measures was a spatial dimensionality

reduction to the raw gaze data, assigning the gaze data into one of the two choice

option AOIs if its coordinates fell within the moderately-expanded AOI boundaries.

Likely due to improvements in the quality of our chosen webcam eye-tracking

program (which was under continuous development throughout both studies), our

initial visual inspections and coarse metrics (e.g. looking at the number of trials

where the raw gaze data never fell within either choice option) indicated that more

advanced data treatments (like the clustering approach used to resolve skewed gaze

data in Chapter 2) were unnecessary. However, during these early data explorations,

we quickly came to realize that despite the task’s outward appearance of being highly

constrained (i.e. only two choice options in a simple decision paradigm involving easy

and hard trials), we needed to contend with the unconstrained nature of exploratory

eye movements. Unlike a cursor, which must land on a specific choice option for the

task to proceed, eyes sampling the choice options possess the freedom to move without
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any task-driven constraints. By that I mean that despite the aDDM, for example,

suggesting that the first gaze during decision-making falls on the left choice option, in

reality, not all participants looked at the left option first in every trial for each task.

To address this, our approach involved surveying features of the gaze data as a means

of building a picture of the most commonly-employed gaze strategies. This is how we

arrived at our within-task proportion of trials measures, where the use of a counting

measure meant we could test the full range of features (e.g. like 1 to 4 dwells) without

putting ourselves at risk of a failed statistical test due to empty cells (i.e./e.g. where

most participants never had a trial with 4 dwells). This proportion analysis approach

uncovered the substantial differences in gaze patterns between tasks, and informed

the further lines of analyses that explored the dynamics of the most common gaze

patterns. For clarity, the unconstrained nature of eye data is a problem in all eye-

tracking contexts, but introduces unique challenges with the dimensionality reduction

demanded by webcam eye-tracking data.

5.1.3 Chapter 4 - A practical guide to webcam eye-tracking

Our fourth chapter was a wholly methodological contribution, offering a wealth of

practical insights and empirical context for conducting webcam eye-tracking experi-

ments. Within Chapter 4, we deeply explored the various considerations we encoun-

tered and tested during Chapters 2 and 3, presenting a comprehensive guide on how

to maximize the potential of webcam eye-tracking. By employing real, remotely-

captured experimental data, we untangled the method’s limitations and anticipated

benefits, illuminating the challenges associated with participation (including partic-

ipation requirements and setting system thresholds), the expected quality of gaze

data (both temporally and spatially), and the prospective costs of running webcam

eye-tracking studies. Our fourth chapter goes beyond a technical validation of the

method, and instead addresses a wide range of practical considerations in order to

minimize the method’s barrier to entry for aspiring webcam eye-tracking researchers.
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The primary aim of Chapter 4 was to share our knowledge with prescriptive infor-

mation, thereby enhancing the utility of webcam eye-tracking as a research method.

To the best of my knowledge, no other publication offers this kind of comprehen-

sive guidance for navigating the intricacies of webcam eye-tracking experimentation.

Previously, this kind of information was fragmented, scattered across the discussion

or limitations sections within the limited collection of webcam eye-tracking papers.

Now, we’ve addressed this gap, offering an organized collection of practical informa-

tion in a guiding resource, in an effort to encourage the greater adoption of webcam

eye-tracking, and ultimately enhance its utility. This paper addresses this gap and

ideally will streamline the experiences of future webcam eye-tracking researchers, fos-

tering greater efficiency and satisfaction in their endeavors.

5.2 What is utility anyways?

Throughout this thesis, I’ve extensively explored and discussed the utility of webcam

eye tracking. When I’ve talked about its utility, I’ve described it in terms of its

usefulness – if it adequately serves as a tool to measure certain gaze behaviours or

if it empowers us to make specific assertions. This was how utility was discussed

in Chapters 2 and 3, but in the subtext of these studies, and when more deeply

interrogated in Chapter 4, it becomes clear that a method’s utility is defined by much

broader terms.

In practice, evaluating the utility of any tool, including webcam eye-tracking,

should not happen in a vacuum. Rather, its utility must be contextualized within a

broader framework that encompasses practical aspects like efficiency, user-friendliness,

and costs. In fact, it was this more broad and holistic form of utility that I unknow-

ingly assessed when I faced the challenge of continuing my PhD research during the

pandemic-induced shift to remote work. In early April 2020, as in-person research

was stalled, I scoured the internet for remote-friendly methods to proceed with my

eye-tracking research. Encountering options like Webgazer (an open-source offering
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from Papoutsaki et al., 2016), which I discussed in the Introduction (Chapter 1), was

underwhelming as I came to realize that its temporal and spatial accuracy was not

sufficient to let me ask the kinds of research questions I was interested in answering.

Importantly, this utility was a reflection of my needs as much as it was a judgment of

the tool - many others have found Webgazer sufficient for their purposes (e.g. Sem-

melmann and Weigelt, 2018; Slim and Hartsuiker, 2022; Vos et al., 2022; Yang and

Krajbich, 2021), speaking to how much of the utility is user-dependent.

For example, my evaluation of utility necessarily went beyond a data quality assess-

ment; I also considered whether I could effectively implement unfamiliar JavaScript

tools in an online experiment. For some with web development experience, immense

utility might be derived from a free open-source webcam eye-tracker like Webgazer

(Papoutsaki et al., 2016), providing the flexibility to optimize and modify the eye-

tracking algorithm (e.g. Yang and Krajbich, 2021). However, for me and many re-

searchers wanting to conduct online studies, practical utility is limited to user-friendly

tools that don’t require degrees in computer science. Thus, my preference shifted to

Labvanced (Finger et al., 2017), an alternative offering that employed advanced deep

neural network algorithms and included an entire online experiment-building ecosys-

tem. Actual utility in this case was achieved both because the data quality was

sufficient and because of the sufficiently intuitive programming interface. Neverthe-

less, as detailed throughout this thesis and highlighted in Chapter 4, this alternative

still presented its own challenges, necessitating considerations of its constraints and

data processing requirements.

Like my assessment of Webgazer’s utility, others may evaluate my chosen webcam

eye-tracking approach based on their ability to navigate its constraints. For some,

like a resource-strained business, the limitations of the current methods may make it

incredibly difficult to derive utility from webcam eye-tracking. In a business context,

without an eye-tracking expert on staff it would only be a matter of days before an

unaffordable return on investment of webcam eye-tracking was realized. However, in
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my case, prior experience handling noisy human timeseries data (i.e. EEG, motion

capture, and in-lab eye-tracking data) eased the data processing aspects, and the

academic context allowed for dedicated time to overcome these hurdles (so much so

that it became a central theme of this very thesis!). Therefore, the user’s expertise and

abilities, especially as they relate to handling methodological challenges or constraints,

are also important factors when considering the utility of a method.

Ultimately, webcam eye-tracking’s utility is in the eye, and expertise, of the ex-

perimenter (or other interested beholders). Utility is contingent on what questions

need to be answered or what outcomes need to be delivered by the tool as well as the

user’s flexibility and willingness to operate or work through the method’s imposed

constraints. In turn, in addition to judging what use a given tool like webcam eye-

tracking can provide, utility is also dictated by the expertise of the user - to wit almost

everyone can pick up a hockey stick, but almost no one can play hockey like Connor

McDavid. In the end, we need to take a comprehensive view of utility, including for

webcam eye-tracking and recognize that this judgment resonates with a major theme

of this thesis - there are tradeoffs to be considered both with respect to the demands

we place on our tools and on ourselves.

5.3 The future of webcam eye-tracking

At the very start of this thesis, I painted a picture of the future, where robot pups

and eye-tracking were a part of enriching our everyday lives. That picture was a

rosy one, and for the most part, this thesis has continued to paint a rosy image

of webcam eye-tracking. However, it’s easy (for me, at least) to get swept up in

all the excitement. I’m often reminded of the more realistic challenges for webcam

eye-tracking’s future when I’m asked by family or friends about this thesis. The

typical response to a thesis about webcam eye-tracking is usually something like “Oh!

Wow. . . like spying on people through their little computer screen cameras?!”. Of

course, I provide some important clarification, but it’s difficult to fully relieve their
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hesitations. I don’t blame anyone for having these concerns - we’ve witnessed massive

violations of user privacy from once-trusted technology companies (e.g. Facebook and

Cambridge Analytica; Isaak and Hanna, 2018), and efforts to protect consumers with

privacy regulations consistently fail to keep pace with emerging technologies (Hacker

et al., 2023). In fact, a recent global survey by the International Association of

Privacy Professionals (IAPP) found that 68% of the 4750 consumers surveyed were

either somewhat or very concerned about their privacy online (IAPP Privacy and

Consumer Trust Report, 2023).

Privacy concerns are further heightened when sensitive biometric data is at stake.

In May 2023, the American Federal Trade Commission (FTC) issued a policy state-

ment to address the high risk of misuse of biometric data technologies like fingerprint,

iris, and facial recognition (Policy Statement of the FTC on Biometric Information

and Section 5 of the FTC Act, 2023). The use of camera-captured biometric data for

facial recognition has received particular scrutiny, especially for its pervasive use in

law enforcement (e.g. half of the American adult population are in a law enforcement

facial recognition network; Georgetown Law Center on Privacy & Technology, Garvie

et al., 2016). This has raised concerns among public privacy advocates, particularly

alarmed by the potential for harm when facial recognition technology, with known

racial biases (e.g. significantly more false positive errors for West and East African

and East Asian faces than for Eastern European faces; Duewer, 2022), is deployed in

real-time with body-worn cameras (Ringrose, 2019). Given this current technology

and privacy ecosystem, it begs the question how we can imagine anything besides

a bleak future for a tool like webcam eye-tracking. This next section discusses the

pessimist’s view of webcam eye-tracking’s future, but also the optimist’s perspective

- the one I hope you, the reader, will share with me.
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5.3.1 The pessimist’s perspective

While the academic sphere benefits from established ethical practices and guide-

lines, concerns arise when envisioning the application of webcam eye tracking beyond

academia. Mishandled implementation of this technology in non-academic contexts

could pose significant challenges for society at large. In particular, webcam eye-

tracking’s integration with industrial purposes would demand meticulous considera-

tion, transparent explanations, and consumer awareness. This concern emerges in a

broader technological landscape where transparency around technology is increasingly

diminished, with artificial intelligence applications that make use of large language

models (e.g. ChatGPT) being an obvious example of this today. This lack of trans-

parency is coupled with the rising apprehension surrounding the rapidly growing

Internet of Things and technology’s omnipresence in our lives (Isaak & Hanna, 2018).

Therefore, it comes as no surprise that the use of webcam technology is uncomfortable

for some. In fact, looking around a coffee shop or a university library, it’s incredi-

bly common to see laptops with makeshift covers on the device-integrated webcams.

Amidst this landscape, worries about user privacy and security intensifies, including

fears of unauthorized camera access. Moreover, the use of computing devices has

only become more ubiquitous, interwoven with our daily activities and environments,

ensuring their constant proximity to us. This setting harbors both opportunities, as

I will explore from an optimistic perspective, and challenges, including the potential

misuse of this technology by ill-intentioned actors.

If we think back to the eye-tracking future envisioned in the Introduction (Chap-

ter 1), it’s not hard to fathom more dangerous uses of eye-tracking data that aren’t

as innocent as the suggestion of a smoothie based on your fridge perusing. Chap-

ter 3 demonstrated the (exciting) utility of webcam eye-tracking for understanding

decision-making processes, but there’s plenty of cases where you might not want

third parties privy to the ease or difficulty you experienced making a decision. Using
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a sobering yet plausible example, imagine your gaze data being deceptively cap-

tured while browsing on your own laptop, contemplating your options pertaining to a

highly-politicized (and in some places illegal) personal health choice. The notion that

your extended and repeated fixations on the “Book Your Appointment Now” button

could be exploited to discern your struggle in arriving at this private choice is unset-

tling. This becomes particularly alarming if such information were employed to detect

your susceptibility or receptiveness to the persuasions of organizations with histories

of dangerous, unethical, and exploitative initiatives. Even if webcam eye-tracking

data is technically collected with user consent, the current landscape is unfortunately

friendly to this kind of future. This is particularly concerning for vulnerable popu-

lations, who may fall victim to opaque attempts to satisfy user consent regulations

with ‘accept all cookies’ buttons and impenetrable terms and conditions, unknowingly

sharing their gaze data with ill-intentioned parties.

5.3.2 The optimist’s perspective

All technology is susceptible to bad actors and manipulative uses, but I believe the

glass is at least half full when it comes to webcam eye-tracking. In that future,

webcam eye-tracking as a technology will see exciting advancements, evolving to

include all forms of consumer cameras, as has been seen with recent advances in

smartphone eye-tracking (e.g. Khamis et al., 2018; Le et al., 2022; Namnakani et al.,

2023; Valliappan et al., 2020). With the promise of the Apple Vision Pro, and with

current virtual reality headsets, it’s clear that mobile, lightweight, and consumer-

friendly eye-tracking technology is here - and only in its infancy. This is exciting

for many reasons - it makes the technology accessible, and encourages its portability

to domains previously deemed unfeasible for applications of traditional eye-tracking

tools. For example, recent feasibility studies have explored the use of webcam eye-

tracking with populations like older adults with Alzheimer’s Disease (Greenaway et

al., 2021), infants (Bánki et al., 2022), and students in a neurodiverse classroom
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(Wong et al., 2023). It’s exciting to imagine the various instances where webcam eye-

tracking could be (or continue to be) used for good: as a powerful assistive technology

tool that can offer alternative, more accessible options for computer interaction (e.g.

eye-gaze or gaze-assistive technology; Donegan et al., 2009; Lariviere, 2015), as a

portable and practical diagnostic tool that could be used, for example, in a sport

context to perform real-time concussion assessments, or as a telehealth measurement

tool to remotely quantify and monitor rehabilitation efficacy after a traumatic brain

injury or stroke.

A future with webcam eye-tracking offers many opportunities to benefit the com-

mon good. While it’s perhaps a more nuanced example, our demonstration of the

utility of webcam eye-tracking in understanding digital object interactions illuminates

opportunities for better, and potentially safer, interaction design. Imagine a scenario

where efficient software use was a matter of life and death, like in disaster or emer-

gency response settings. Testing this software on the jobsite with webcam eye-tracking

for the presence of the ∼500 ms look-ahead gaze pattern might reveal opportunities

for critically improving the interaction design (e.g. adjustments to object sizing or

positioning, or incorporation of haptic feedback). As another example, the presence

of this pattern as an index of good interaction design might also be meaningful for

designing adaptive and accessible user experiences. Specifically, with webcam eye-

tracking, one could imagine a future where a user interface would dynamically adapt

its features in an optimization effort to achieve a near-500 ms look-ahead gaze pat-

tern. This would be particularly meaningful for software that serves a critical purpose

and diverse populations (e.g. tax preparation software), or for software with a user

base that relies extensively on it for their everyday job duties (e.g. specialized B2B

software). Beyond these applications, all three manuscripts, and especially Chapter 4,

serve to encourage and support further webcam eye-tracking research, contributing to

a foundation and ecosystem that encourages the application of webcam eye-tracking

technology to provide innovative solutions that can help address important issues like
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the accessibility of technology, workplace safety, and health diagnostics.

5.3.3 The realist’s perspective

In their review entitled “What Does Your Gaze Reveal About You? On the Privacy

Implications of Eye Tracking”, Kröger et al. (2020) write:

“According to the reviewed literature, eye tracking data may reveal information

about a user’s biometric identity, mental activities, personality traits, ethnic back-

ground, skills and abilities, age and gender, personal preferences, emotional state,

degree of sleepiness and intoxication, and physical and mental health condition.”

After discussing webcam eye-tracking with both pessimism and optimism, if it

weren’t for the title, this excerpt from Kroger et al.’s (2020) review could easily

resonate with either perspective. In fact, it helped me clarify my own more optimistic

(and perhaps naive) perspective as, despite reading it in-text, surrounded by the

authors’ alarm of eye-tracking’s “serious privacy concerns”, it only made me excited

to see the breadth of information eye-tracking affords us. Even if you, the reader,

don’t share in my (naive) optimism, it’s not hard to envision good and ethical use

cases for most of these qualities, with the potential of great benefits for the end

user. At the same time, the use of this data without the end user’s consent, or for

commercial purposes that only serve corporate shareholder objectives, is admittedly

terrifying.

In reality, both sides of this coin exist, and this thesis doesn’t aim to resolve this

tension. Instead, its purpose is to illuminate both the possibilities and the inevitabil-

ities as we navigate a future of webcam eye-tracking technology. As transformative

applications arise, so will instances of misuse, and sometimes, it will be difficult to

give absolute or stable assignments of “good” or “bad” to the various uses of webcam

eye-tracking technology. During my industry internship, I saw first hand just how

close we are to the broad use of webcam eye-tracking for commercial applications. In

fact, a commercial tool rooted in Chapter 3’s cursor-tracking predecessor (Ouellette
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Zuk et al., 2023) already exists today, using decision difficulty indices from cursor tra-

jectories for pre-interview job candidate screening, influencing hiring practices. These

sorts of tools clearly have life-changing implications, but in reality, their creators are

likely unaware or ignorant to the full scope of their tool’s consequences. In some ways,

my thesis has contributed to this problem, unintentionally unaware of all the possible

ramifications tied to webcam eye-tracking’s development. Nevertheless, this thesis

can also enlighten - it demonstrates the availability and utility of this technology, and

now, offers a realistic perspective on the good and the bad that come with webcam

eye-tracking.

5.4 My final thoughts: a reflection

I am very excited about the power of webcam eye-tracking, and its potential for

learning more about human behaviour and contributing to a more accessible and

efficient future. The challenges that I had to resolve while working my way through

Chapter 2 and 3, and even prior, as I transitioned my research from the lab to the

internet, seemed nearly impossible to overcome at the time. With little availability of

supportive resources, it took about one year to end up with my first complete webcam

eye-tracking dataset. Now, in retrospect, some of the challenges are no longer relevant,

totally dissolved by technological improvements or system advancements. Taking a

more big-picture view of it all, it’s likely that a lot of the limitations of webcam eye-

tracking that I worked through are going to lose their relevance given the accelerated

pace technology development moves at. This is exciting and daunting all at the same

time, as it only means new challenges will present themselves. Yet, however the

method evolves, its utility will only continue to grow, and for that I remain excited

and feel grateful to have made a contribution in service of that mission.

In the end, I hope these works have convinced you of the power of webcam eye-

tracking. In object interactions, decision-making, or other domains, webcam eye-

tracking offers a lot, and with each methodological contribution, like Chapter 4, the
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return on investment grows for researchers. It has been rewarding (albeit frustrating

at times) to dive deeply into a new method. There was no guidebook or manual

to this when I first embarked on this journey. Instead, my interest in exploring the

limits of webcam eye-tracking resulted in becoming an ‘advanced user’ of our chosen

webcam eye-tracking tool (Labvanced), where my ongoing contact with the system’s

creators evolved into a rewarding year-long internship experience with their company.

Being an ‘advanced user’ might be called ‘cutting edge’, like my supervisor describes

it, but understanding and working with this new method of eye-tracking was much

less glamorous that what I imagined the cutting edge landscape to be. Instead, it

involved working in the murky, under-defined frays, trying to make use of a tool

that was still itself being built. Its novelty, and perhaps also its confinement to the

online space made this experience particularly isolating, unlike my past experiences

of navigating a tool like EEG with my lab mates, other supportive EEG labs on

campus, online wikis and forums, or the manufacturer’s scientific consultants. But,

despite this, it’s exactly this novelty and online accessibility that has me so excited for

the future of this method. Moving beyond the laboratory will be a defining feature of

this modern human research era, and finding ways to do this with the most effective

tools is crucial. There is still a lot more to learn, but with eye-trackers (i.e. cameras)

built into most computers and smartphones, we’re well on our way to more deeply

understanding everyday human behaviour.
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Continuous Measures of Decision-Difficulty Captured Remotely: I.1

Mouse-tracking sensitivity extends to tablets and smartphones2

Alexandra A. Ouellette Zuk1 Jennifer K. Bertrand1,2 Craig S. Chapman1,2
3

1Neuroscience and Mental Health Institute, University of Alberta4

2Faculty of Kinesiology, Sport, and Recreation, University of Alberta5

Abstract6

As decisions require actions to have an effect on the world, measures derived from movements such as7

using a mouse to control a cursor on a screen provide powerful and dynamic indices of decision-making. In8

this first of a set of two studies, we replicated classic reach-decision paradigms across computers, tablets,9

and smartphones, we show that portable touch-devices can sensitively capture decision-difficulty. We see10

this in pre- and during-movement temporal and motoric measures across diverse decision domains. We11

found touchscreen interactions to more sensitively reflect decision-difficulty during movement compared12

to computer interactions, and the latter to be more sensitive before movement initiation. Paired with13

additional evidence for the flexibility and unique utility of pre- and during-movement measures, this14

substantiates the use of widely available touch-devices to massively extend the reach of decision science.15

We build upon this in the second study in this series (Bertrand et al., 2023) with the use of webcam16

eye-tracking to further elucidate, earlier in time, the decision process. This subsequent work provides17

additional support for tools that enable remote collection of rich decision data in ecologically-valid envi-18

ronments.19

20

Keywords: decision-making, mouse-tracking, tablets, smartphones, remote data capture21

1 Introduction22

Our lives unfold as an amalgamation of decisions made and actions taken to execute them. Ultimately, these23

enacted choices shape our lives and our societies. As a result, the study of human decision behaviour has24

inspired researchers for centuries, from interest in risk preference amongst gamblers [5], to willingness to pay25

given prior value contexts [27].26

Historically, most measures of decision-making use verbal reports (e.g., [38, 27]), observed choices (e.g.,27

[34]), or discrete measurements of behaviour such as reaction time and accuracy (see [41] for review). Reaction28

times, specifically, have been shown to reflect cognitive conflict during decision-making, with more difficult29

decisions leading to longer reaction times [32, 36, 40]. These approaches, which focus almost exclusively on30

the outcome of a decision, fail to account for the embodied nature of real-world decision-making. In the31

real-world, a decision is not made until a body physically enacts the choice. Recognizing that how we decide32

is likely as important as what we decide, researchers have started recording the dynamics of behaviour [9,33

22, 14, 15, 50]. Requiring and tracking movement to select between choices, reach-decision paradigms are a34

popular method for continuously measuring the factors that underlie and bias the decision process. These35

tasks have quantified decision behaviours across a variety of choice domains for both real 3-D reaching [8, 7,36

21, 22] and for 2-D computer-mouse tracking [20, 44, 26, 45].37

Computerized reach-decision tasks, with 2-D movements made by a computer-mouse are a particularly38

sensitive, flexible, and scalable technique for the examination of decision processes ([28, 33, 26, 17, 20, 44,39

31] and many more). Requiring participants to start with their mouse cursor centered at the bottom of the40

computer screen and necessitating the selection of one of two (most commonly) choice options located in41

the top left or right corners of the screen, classic mouse-tracking paradigms record the attraction toward42

each of the two choice options. This generates a vertical movement component relatively independent of the43

competition between options (though, movement speed has been related to different aspects of the decision44

1
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process [14, 15]) and a critical horizontal movement component that tracks either directly toward one of the45

two options when there is no choice-competition, or indirectly between the two options when the choice-46

competition is high [14, 15, 44]. The typical result is a continuum of direct to indirect trajectories, reflecting47

the strength of competition between choice options and thus the relative difficulty of the decision. Metrics48

quantifying relative reach directness include the maximum absolute deviation from a straight trajectory49

and movement times. Like pre-movement reaction times, these during-movement measures of movement50

time and curvature are also sensitive to decision-difficulty, with harder decisions resulting in longer duration51

movements and greater trajectory curvature (as seen in Figure 1 and [28, 26, 17, 20, 44, 31, 45]).52

Despite reach-decision trajectory-tracking being an important tool for the understanding of decision-53

making, these approaches remain relatively unused outside of research labs. Recognizing that research54

deployed online via portable devices could reach a wider and more diverse audience, there has been a recent55

movement to assess the reliability of cognitive task administration in these environments [2, 39, 37]. This has56

been fuelled by new tools allowing the development of online tasks (e.g., Labvanced [18], Gorilla [3], jsPsych57

[30]) that include easy deployment to diverse, crowd-sourced participant pools (e.g MTurk [1], Prolific [35])58

and can target a variety of devices [2].59

While cognitive tasks measuring accuracy and reaction time have been replicated on tablets [19, 42] and60

smartphones [4], it is largely unknown if and how motoric measures of decision-difficulty can be measured61

on these portable devices. To test this question, we developed a reach-decision task using Labvanced [18] to62

collect continuous cursor position data, and deployed it to over 300 crowd-sourced participants. Critically,63

each of these participants completed the task on one of three different devices (>100 participants per device)64

varying in size and user-interaction requirements: personal computers (mouse-based interactions), tablets65

(finger or stylus-based interactions) and smartphones (finger-,thumb- or stylus-based interactions).66

To provide evidence that a particular device is tracking decision-difficulty, we chose to replicate three67

unique reach-decision tasks. Each of these tasks has been shown to sensitively reflect decision-difficulty68

effects through mouse-tracking (see Figure 1A) and here we tested if those effects were replicable and then69

extensible to tablets and smartphones. The three tasks were: a Numeric-Size Congruity task [17], a Sentence70

Verification task [13] and a Photo Preference task [28]. Based on these previous publications, we were able71

to select trials in each task that reflected high decision-difficulty or low decision-difficulty choices (see Figure72

1B). This established a clear benchmark for replication: a particular device was sensitive to decision-difficulty73

if high decision-difficulty trials displayed significantly greater reaction time, movement time and trajectory74

curvature scores compared to low decision-difficulty trials [28, 13, 17].75

In the Numeric-Size Congruity task, participants were asked to select which of two digits was larger in76

value, with the paired digits being either congruent in numeric and physical size (low decision-difficulty, e.g.,77

2 vs. 8) or incongruent in numeric and physical size (high decision-difficulty, e.g., 2 vs. 8). The Sentence78

Verification task asked participants to verify the truth of statements that could be non-negated (low decision-79

difficulty, e.g., ‘Cars have tires’) or negated (high decision-difficulty, e.g., ‘Cars do not have wings’). Finally,80

the Photo Preference task asked participants to select which of two dissimilarly-valenced (low decision-81

difficulty, e.g., High vs. Low pleasantness) or similarly-valenced (high decision-difficulty, e.g., High vs.82

High pleasantness) photos they preferred. Together, we ensured these tasks spanned a range of decision83

domains from objective perceptual judgments (e.g., digit discrimination), to semi-subjective conceptual84

judgements (e.g., truth value of a statement), and finally subjective preference judgements (e.g., preference85

for a particular photograph). These tasks also intentionally differed in stimulus characteristics (e.g., numeric,86

alphabetic, image), stimuli (e.g., numerical digits, written statements, photos), and processing requirements87

(e.g., perceptual discrimination, conceptual discrimination) allowing our results to be generalizable across88

remarkably distinct decision domains. Moreover, our experimental design allowed for a thorough exploration89

of the consistency of, and relationships between, metrics of decision-difficulty at different time points in the90

decision process (e.g., before and after movement-initiation). Finally, by building on previous mouse-tracking91

studies we are able to make strong a-priori predictions to provide a definitive test for using widely available92

touch-devices as a means of vastly extending the reach of decision science.93
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Figure 1: A) From left to right, a recreation of previous mouse trajectory results from the three task we
replicate. Shown are average trajectories for the low (green) and high (orange) decision-difficulty categories
for the Numeric-Size Congruity task (adapted from [17]), the Sentence Verification task (adapted from [31]’s
replication of [13]), and the Photo Preference task (adapted from [28]). B) A representation of trial conditions
falling within the low (green shading) and high (orange shading) decision-difficulty categories for each task,
with stimuli examples.
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2 Results94

2.1 Tablets and smartphones measure decision-difficulty as well as computer95

mouse-tracking during reach-decision tasks96

For all three tasks decision-difficulty was quantified as standardized reaction time, movement time and tra-97

jectory curvature (MAD) scores (see Methods subsection 5.3.2 - Dependent Measures). A replication of98

difficulty-driven effects was considered to have occurred should high decision-difficulty trials display signif-99

icantly greater standardized scores than low decision-difficulty trials [28, 13, 17]. Thus, for each device100

(computer, tablet, smartphone) a-priori comparisons (t-tests) were made between high and low decision-101

difficulty trials within each task. A summary of statistics, unstandardized means, and mean differences102

between standardized scores are reported in Table 1.103

For the Numeric-Size Congruity and Sentence Verification tasks, the paired samples t-tests replicated104

difficulty-driven for all three devices and for all three measures of decision-difficulty (see Table 1 and Figures105

2 and 3). The Photo Preference task similarly replicated expected difficulty-driven effects across all measures106

during computer use, as well as for movement time and trajectory curvature during tablet and smartphone107

use (see Table 1 and Figure 4). Together, these results suggest that tablets and smartphones are sensitive108

tools for capturing information-rich reach-decision data across a variety of decision domains. Given the109

consistency of results for the other two tasks we attribute the divergence between computer and touch-110

device reaction time results during Photo Preference decisions to task features. Only the Photo Preference111

task required the judgment of a picture and we believe the fidelity of the picture information is degraded112

as screen-size is reduced, driving down the sensitivity to difficulty-driven effects on smaller displays. The113

relative increase in sensitivity to decision-difficulty for Computer reaction times is consistent with the Device114

differences described in the next Results subsection.115

2.2 Mouse-tracking is more sensitive to decision-difficulty before movement116

while touch-device interactions are more sensitive during movement117

Having established that all three devices tested capture decision-difficulty, our second analyses tested how118

the measurement of decision-difficulty changed across devices. Mean standardized reaction times, movement119

times and trajectory curvature scores for each task were separately submitted to a mixed-model ANOVA120

where we focused on main effects or interactions involving the between-subjects factor of Device factor and121

explored any (simple) main effects with pairwise comparisons between levels of Device (for results from this122

analysis outside this specific scope, including those that fully support the a-priori decision-difficulty effects123

described above, see Supplementary Materials 1). These tests revealed that the sensitivity of the specific124

metrics of decision-difficulty differed between touch-device and computer interactions. Specifically, comput-125

ers showed increased sensitivity to decision-difficulty pre-movement (i.e., reaction time) while tablets and126

smartphones showed increased sensitivity during movement (i.e., movement time and trajectory curvature).127

2.2.1 Measure sensitivity pre-movement128

Within the Numeric-Size Congruity task, a 2 (Congruity) x 3 (Number Pairs) x 2 (Number Presentation129

Side) x 3 (Device) mixed-model ANOVA assessing standardized reaction times revealed both a main effect130

of Device (F (2,237) = 12.69, p = 5.81e-6, η2 = 3.16e-4) and an interaction between Number Pair and Device131

(F (4,237) = 14.23, p = 3.37e-10, η2 = .022). A significant main effect of Device was seen for both 1v2132

(F (2,237) = 17.79, p = 6.31e-8) and 8v9 Number Pairings (F (2,237) = 19.77, p = 1.15e-8). The 8v9 effect,133

which is the hardest number-pair to decide between because it has both the smallest numeric difference and134

the smallest relative difference (see Supplementary Discussion 2), is driven by Computer having the longest135

reaction times compared to the touch-devices (MeanComputer−Smartphone = 0.18, t = 5.74, p = 6.01e-7, d136

= 0.43; MeanComputer−Tablet = 0.20, t = 6.78, p = 1.30e-9, d = 0.50). Meanwhile, the 1v2 effect, which is137

much easier because of the larger relative difference and presence of small numbers, is driven by Computer138

having the shortest reaction times (MComputer−Smartphone = -0.13, t = 4.26, p = 8.77e-4, d = 0.32 and139

MComputer−Tablet = -0.16, t = 5.26, p = 7.74e-6, d = 0.39). Thus, for reaction time, Computers show140

greater differentiation between hard and easy trials.141
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Unstandardized Standardized
M SD

zHard-zEasy
Decision Difficulty Within Between

DeviceDevice EasyEasy HardHard EasyEasy HardHard EasyEasy HardHard M SE df t p Cohen’s d

Numeric-Size Congruity

Reaction Time (ms)
Computer 530.19 564.46 187.73 189.06 245.15 264.11 0.24 0.025 82 9.77 *** 1.07
Tablet 556.12 571.19 127.02 124.66 149.23 152.21 0.16 0.026 78 6.14 *** 0.69
Smartphone 503.24 526.08 121.35 135.78 169.16 184.01 0.18 0.034 77 5.15 *** 0.58

Movement Time (ms)
Computer 413.22 422.91 124.87 135.69 116.09 116.70 0.09 0.027 82 3.45 ** 0.39
Tablet 513.31 538.46 85.38 102.68 135.83 146.86 0.27 0.029 78 9.35 *** 1.05
Smartphone 469.64 498.98 89.62 109.12 120.13 119.29 0.31 0.029 77 10.55 *** 1.20

Maximum Absolute Deviation (px)
Computer 8.01 19.64 37.10 53.57 18.85 23.86 0.24 0.029 82 8.24 *** 0.90
Tablet 13.04 25.75 27.70 38.18 10.55 13.42 0.38 0.030 78 12.51 *** 1.41
Smartphone 12.90 26.92 30.72 41.87 8.93 14.10 0.37 0.027 77 13.94 *** 1.58

Sentence Verification

Reaction Time (ms)
Computer 961.78 1496.46 326.40 493.04 395.28 631.25 1.15 0.043 82 26.57 *** 2.92
Tablet 1013.20 1403.15 312.79 489.69 344.36 596.18 0.81 0.056 78 14.43 *** 1.62
Smartphone 1041.42 1448.34 340.22 508.72 414.00 802.53 0.82 0.061 77 13.33 *** 1.51

Movement Time (ms)
Computer 462.91 606.26 174.68 274.51 164.11 257.50 0.52 0.050 82 10.50 *** 1.15
Tablet 686.74 1056.88 215.76 413.78 241.59 631.90 0.79 0.055 78 14.26 *** 1.61
Smartphone 627.03 995.52 199.39 413.78 210.84 491.94 0.91 0.050 77 18.40 *** 2.08

Maximum Absolute Deviation (px)
Computer 16.09 30.09 37.90 56.15 31.13 43.45 0.25 0.048 82 5.07 *** 0.56
Tablet 16.70 35.64 27.31 36.12 27.79 42.43 0.44 0.054 78 8.13 *** 0.91
Samrtphone 7.06 28.12 32.39 41.64 32.02 41.78 0.48 0.059 77 8.13 *** 0.92

Photo Preference

Reaction Time (ms)
Computer 1024.93 1195.25 377.06 529.52 431.12 607.31 0.30 0.046 82  6.49 *** 0.71
Tablet 1012.67 1048.80 389.61 379.82 454.26 576.58 0.04 0.048 78 0.80 n.s. 0.09
Smartphone 930.96 983.36 319.14 349.04 594.18 627.82 0.08 0.046 77 1.72 n.s. 0.20

Movement Time (ms)
Computer 569.72 648.63 219.20 268.96 291.89 501.46 0.16 0.040 82 3.90 *** 0.43
Tablet 782.13 895.75 235.46 325.69 298.36 398.20 0.23 0.047 78 4.95 *** 0.56
Smartphone 722.06 796.08 231.83 308.75 258.66 373.29 0.16 0.044 77 3.28 * 0.37

Maximum Absolute Deviation (px)
Computer 15.43 22.41 34.72 47.05 33.65 38.87 0.15 0.045 82 3.43 ** 0.38
Tablet 20.90 30.89 33.85 36.08 21.71 20.35 0.32 0.057 78 5.87 *** 0.64
Smartphone 24.16 31.056 32.61 38..31 25.06 21.39 0.15 0.054 77 2.78 * 0.32

Table 1: Task-specific unstandardized and z-scored means, and a-priori comparison results. Note. *p < .05;
**p < .005; ***p < .0005
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Figure 2: Numeric-Size Congruity task results. A) From left to right, trajectory results for computer, tablet
and smartphone (phone) devices within screen size boundaries shown to scale of a representative physical
device size. Light gray lines are each participants’ average trajectory across all trials in this comparison.
Mean trajectories across participants are shown for low (green line, Congruent trials) and high (orange line,
Incongruent trials) decision-difficulty trials with the average location of maximum absolute deviation (MAD)
shown with a filled circle. Insets zoom-in on the average point of MAD. Rightward reaches were mirrored to
end left, and all reaches were space-normalized and standardized. Errors shown in the insets are the average
of within-subjects standard error. For full trajectory visualization details, see Supplementary Note 1. B)
From top to bottom, average of participant mean z-scored reaction times (yellow), movement times (pink),
and maximum absolute deviation (blue) for computer, tablet and smartphone use. Error bars represent the
averaged standard error of the difference between high and low difficulty means. C) Pearson’s correlations
(r) between measures of decision-difficulty for (from top to bottom) computer, tablet and smartphone use
calculated from each participant and shown as an average. Error bars represent the standard error of the
estimated marginal mean.
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A similar pattern emerged in the Sentence Verification task. A 2 (Truth Value) x 2 (Polarity) x 3142

(Device) mixed-model ANOVA revealed a three way interaction Truth x Negation x Device (F (2,237) =143

8.21, p = 3.57e-4, η2 = .005) within reaction time. Based on where we predicted decision-difficulty to differ144

(see Figure 1) our follow-up tests looked at Negation x Device for True and False statements. We found a145

significant interaction only for True statements (F (2,237) = 13.32, p = 3.30e-6, η2 = .022). Breaking this146

down, Device was significant for both True-Negated statements (F (2,238) = 8.22, p = 3.55e-4) and True-147

Non-negated statements (F (2,238) = 14.27, p = 1.40e-6), but in importantly different ways. For the more148

difficult True-Negated statements, Computer reaction times were the longest (MComputer−Tablet = 0.16, t =149

3.76, p = .003, d = 0.59; MComputer−Smartphone = 0.16, t = 3.82, p = .002, d = 0.60), but, for the easier150

True-Non-Negated statements, Computer reaction times were the shortest (MComputer−Tablet = -0.18, t =151

4.25, p = 4.19e-4, d = 0.67; MComputer−Smartphone = -0.17, t = 4.11, p = 7.53e-4, d = 0.65). These results152

confirm that computers show greater differentiation across levels of decision-difficulty.153

2.2.2 Measure sensitivity during-movement154

An opposite pattern of results can be found when analyzing standardized movement time. Using the same155

ANOVA model described above, for Numeric-Size Congruity we found an interaction between Congruity156

and Device (F (2,237) = 16.51, p = 1.93e-7, η2 = .009). Follow-ups showed Device was significant for157

both Congruent (F (2,237) = 18.15, p = 4.63e-8) and Incongruent trials (F (2,237) = 14.22, p = 1.47e-6).158

Here, Computer showed increased movement times for Congruent trials (MComputer−Smartphone = 0.11, t159

= 5.38, p = 2.61e-6, d = 0.26; MComputer−Tablet = 0.088, t = 4.34, p = 3.06e-4, d = 0.21) but decreased160

movement times for Incongruent trials (MComputer−Smartphone = -0.11, t = 5.20, p = 6.08e-6, d = 0.21;161

MComputer−Tablet = -0.087, t = 4.30, p = 3.67e-4, d = 0.21), resulting in less divergence in movement162

times between the two difficulty levels compared to touch-devices. In complete opposition to the pattern163

observed for reaction times, these results suggest Computer movement times are significantly less sensitive164

to decision-difficulty compared to Tablet and Smartphone movement times.165

Again Sentence Verification movement time results confirm this finding. Here the same task-specific166

mixed-model ANOVA described previously revealed a Negation by Device interaction (F (2,237) = 19.59, p167

= 1.34e-8, η2 = .027). Follow-ups revealed a main effect of Device both when statements were Non-negated168

(F (2,237) = 21.43, p = 2.78e-9) and Negated (F (2,237) = 16.82, p = 1.48e-7). Pairwise comparisons showed169

Computer having longer movement times compared to Tablets and Smartphones when statements were Non-170

negated (MComputer−Smartphone = 0.15, t = 5.76, p = 3.53e-7, d = 0.57; MComputer−Tablet = 0.12, t = 4.54,171

p = 1.33e-4, d = 0.44) and shorter movement times when statements were Negated (MComputer−Smartphone172

= -0.15, t = 5.96, p = 1.20e-7, d = 0.59; MComputer−Tablet = -0.11, t = 4.29, p = 3.85e-4, d = 0.42). This173

again results in less sensitivity in movement time between levels of Negation for the Computer condition174

compared to touch-devices.175

The during-movement sensitivity observed for touch-devices also extended to trajectory curvature, but176

was impacted by the biomechanical properties of using a hand to act directly on a screen. Specifically,177

both tablet and smartphone results displayed a side of space biases where rightward reaches show more178

trajectory curvature compared to leftward reaches, matching what is observed in real reaching experiments179

[21]. Within Numeric-Size Congruity, this effect is evident in the trajectory curvature results as a Number180

Pair Presentation Side x Device interaction (F (2,237) = 16.90, p = 1.38e-7, η2 = .049) where both Left181

and Right reaches showed main effects of Device (Left: F (2,237) = 17.07, p = 1.19e-7; Right: (F (2,237) =182

16.55, p = 1.86e-7), but in opposite directions. For Left reaches, Tablets and Smartphones show significantly183

less curvature than Computer trajectories (MComputer−Tablet = 0.27, t = 4.70, p = 6.47e-5, d = 0.52;184

MComputer−Smartphone = 0.30, t = 5.34, p = 3.30e-6, d = 0.59) while for Right reaches, Tablets and185

Smartphones show significantly more curvature than Computer trajectories (MComputer−Tablet = -0.26, t =186

4.66, p = 7.96e-5, d = 0.51; MComputer−Smartphone = -0.29, t = 5.20, p = 6.57e-6, d = 0.57). Appreciating187

that Sentence Verification choice stimuli were locked to a side of space, the Sentence Verification trajectory188

curvature results bolster these directional effect findings, revealing a Truth x Device interaction (F (2,237)189

= 15.16, p = 6.39e-7, η2 = .074). Here we also see main effects of Device for both Left/True (F (2,237) =190

13.96, p = 1.86e-6) and Right/False reaches (F (2,237) = 16.23, p = 22.47e-7) but in opposite directions. For191

Left/True reaches, Tablets and Smartphones show significantly less curvature than Computer trajectories192

(MComputer−Tablet = 0.25, t = 4.28, p = 4.06e-4, d = 0.59; MComputer−Smartphone = 0.30, t = 5.10, p = 1.03e-193
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Figure 3: Sentence Verification task results. A) From left to right, trajectory results for computer, tablet and
smartphone (phone) devices within screen size boundaries shown to scale of a representative physical device
size. Light gray lines are each participants’ average trajectory across all trials in this comparison. Mean
trajectories across participants are shown for low (green line, True Non-negated trials) and high (orange
line, True Negated trials) decision-difficulty trials with the average location of maximum absolute deviation
(MAD) shown with a filled circle. Insets zoom-in on the average point of MAD. Rightward reaches were
mirrored to end left, and all reaches were space-normalized and standardized. Errors shown in the insets are
the average of within-subjects standard error. For full trajectory visualization details, see Supplementary
Note 1. B) From top to bottom, average of participant mean z-scored reaction times (yellow), movement
times (pink), and maximum absolute deviation (blue) for computer, tablet and smartphone use. Error
bars represent the averaged standard error of the difference between high and low difficulty means. C)
Pearson’s correlations (r) between measures of decision-difficulty for (from top to bottom) computer, tablet
and smartphone use calculated from each participant and shown as an average. Error bars represent the
standard error of the estimated marginal mean.

8

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 7, 2023. ; https://doi.org/10.1101/2023.06.06.543796doi: bioRxiv preprint 

229



5, d = 0.70) while for Right/False reaches, Tablets and Smartphones show significantly more curvature than194

Computer trajectories (MComputer−Tablet = -0.24, t = 4.18, p = 6.12e-4, d = 0.58; MComputer−Smartphone =195

-0.30, t = 5.09, p = 1.06e-5, d = 0.70). Again, this suggests that a right hand bias is more prominent for real196

touch interactions compared to mouse cursor movements (see Supplemental Discussion 3 for confirmatory197

evidence from the analysis of Movement Time).198

Finally, the trajectory results from the Photo Preference task provide another example of how touch199

and mouse interactions differ. A 3 (Valence Pairing) x 3 (Device) mixed-model ANOVA revealed a main200

effect of Device (F (2,237) = 9.32, p = 1.27e-4, η2 = .022) with standardized trajectory values for Computer201

responses (M = -0.0263, SD = 0.267) found to be different than Tablet (M = -0.116 , SD = 0.322; t =202

3.50, p = .001, d = 0.31) and Smartphone responses (M = -0.132, SD = 0.036; t = 3.91, p = 3.64e-4, d =203

0.35), and no significant difference between the two touch-devices. This Device effect did not significantly204

interact with decision-difficulty, indicating that this is a difference in the shape of the produced trajectories205

based on input - an idea which aligns with our interpretation that reaches produced as a result of direct206

interaction are different than those mediated by a mouse (see section 3 - Discussion). Overall, the differences207

in trajectory shape and presence of a right-hand bias in the Tablet and Smartphone results in contrast to208

Computer results point to a similarity between touch-device responses and real-world reaching when making209

choice selections. Further, these results highlight the increased sensitivity of post-movement measures during210

touch-device use.211

2.3 Pre- and post-movement measures are flexible, non-redundant carriers of212

decision information213

Here, we assess the relationship between our decision-difficulty measures to demonstrate that pre- and during-214

movement measures carry unique decision information. To do so, we obtained a within-participant correlation215

coefficient (r) for each combination of measures (Correlation-Type: rMAD,MT vs. rMAD,RT vs. rMT,RT )216

within each task and device. These participant average correlation coefficients were then compared using a217

(3) Correlation Type x (3) Task x (3) Device mixed-model ANOVA. Where correlations between measures218

are positive, it would indicate that they carry redundant information. However, any inverse relationship219

would demonstrate a push and pull between measures showing that on any given trial, a best estimate of220

decision-difficulty should include both pre- and during-movement measures. The results of the ANOVA221

revealed a main effect of Task (F (2,237) = 22.06, p = 1.13e-9, η2 = .009), a very strong main effect of222

Correlation-Type (F (2,237) = 601.10, p = 1.10e-92, η2 = .45) and an interaction between Correlation-Type223

and Task (F (4,237) = 5.54, p = 6.47e-7, η2 = .004). To follow up, we examined each Task separately and224

found a strong Correlation-Type effect in all three (SC: F (2,239) = 302.94, p = 2.85e-69, η2 = .56; SV:225

F (2,239) = 242.55, p = 6.05e-53, η2 = 0.50; PP: F (2,239) = 358.29, p = 6.13e-76, η2 = .60). Mean r226

values revealed trajectory curvature and movement time (rMAD,MT ) to be moderately positively correlated227

(SC: M r = 0.30, SD = 0.24; SV: M r = 0.33, SD = 0.26; PP: M r = 0.36, SD = 0.23) which intuitively228

makes sense - traveling a longer distance (MAD) usually takes a longer time (MT). In contrast, in each task,229

reaction time was found to be weakly inversely correlated with both other measures (SC: M r = -0.092, SD230

= 0.14 and M r = -0.11, SD = 0.20 for rMAD,RT and rMT,RT correlations, respectively; SV: M r = -0.065,231

SD = 0.17 and M r = 0.006, SD = 0.20 for rMAD,RT and rMT,RT correlations, respectively; PP: M r =232

-0.065, SD = 0.15 and M r = -0.041, SD = 0.19 for rMAD,RT and rMT,RT correlations, respectively). This233

pattern meant that the Correlation-Type comparisons always showed differences between during-movement234

correlations (rMAD,MT , stronger and positive) and the pre- to during-movement correlations (rMAD,RT and235

rMT,RT , weaker and negative). By task, the results of these pairwise comparisons were, for rMAD,MT vs.236

rMAD,RT : SC: p = 3.5e-68, d = 2.00; SV: p = 1.06e-67, d = 1.86; PP: p = 8.23e-83, d = 2.19, and for237

rMAD,MT vs. rMT,RT : SC: p = 2.18e-73, d = 2.11; SV: p = 2.15e-50, d = 1.53; PP: p = 2.04e-76, d =238

2.07. The only slight difference across tasks we observed was that rMT,RT in the Sentence Verification task239

was close to zero, rather than weakly negative, and as such, there was a pairwise difference between rMT,RT240

and rMAD,RT (p = 7.70e-04, d = -0.33).241

Taken together, this analysis reveals that pre- and during-movement measures display an intricate re-242

lationship independent of their role in indexing task-specific decision-difficulty. That is, while across all243

tasks and devices, reaction time, movement time and curvature increase with decision-difficulty (see Results244

subsection 2.1) on a trial-by-trial basis these measures adapt to the demands of the task and pre- and during-245
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Figure 4: Photo Preference task results. A) From left to right, trajectory results for computer, tablet and
smartphone (phone) devices within screen size boundaries shown to scale of a representative physical device
size. Light gray lines are each participants’ average trajectory across all trials in this comparison. Mean
trajectories across participants are shown for low (green line, High vs. Low pleasantness trials) and high
(orange line, High vs. High pleasantness trials) decision-difficulty trials with the average location of maximum
absolute deviation (MAD) shown with a filled circle. Insets zoom-in on the average point of MAD. Rightward
reaches were mirrored to end left, and all reaches were space-normalized and standardized. Errors shown
in the insets are the average of within-subjects standard error. For full trajectory visualization details, see
Supplementary Note 1. B) From top to bottom, average of participant mean z-scored reaction times (yellow),
movement times (pink), and maximum absolute deviation (blue) for computer, tablet and smartphone use.
Error bars represent the averaged standard error of the difference between high and low difficulty means. C)
Pearson’s correlations (r) between measures of decision-difficulty for (from top to bottom) computer, tablet
and smartphone use calculated from each participant and shown as an average. Error bars represent the
standard error of the estimated marginal mean.
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movement measures function as non-redundant carriers of decision information. Specifically, it appears that246

on trials where participants react more quickly (shorter RTs) there is a slight increase in movement time247

and curvature (see section 3 - Discussion for further interpretation). It is also notable that there were no248

significant Device differences and limited differences due to Task. This highlights the remarkable stability249

both of this interplay between measures and for reach-decisions to track decision-difficulty across a variety250

of interface types.251

3 Discussion252

We investigated whether measuring reach decision-difficulty could be extended beyond computer use to253

tablets and smartphones through the deployment of a three-task online experiment across the three devices.254

Each task replicated a prior mouse-tracking study used to observe decision processes (Numeric-Size Con-255

gruity task [17], Sentence Verification task [13, 31], Photo Preference task [28]), allowing us to make strong256

predictions about which trials in each task would have high versus low decision-difficulty (see Figure 1).257

Task-specific results replicated previous mouse-tracked outcomes, with high difficulty decisions displaying258

greater reaction times, movement times and trajectory curvature compared to low difficulty decisions. Most259

excitingly, all of these effects were replicated across all devices. Thus, this study demonstrates the robustness260

of dynamic measures of decision-making and offers validation for the use of small, portable devices to collect261

this movement information. For the Numeric-Size Congruity task [17], replication manifested as increased262

reaction time, movement time and trajectory curvature for incongruent trials compared to congruent trials263

(see Figure 2). For the Sentence Verification task [13, 31], the same metrics were increased on true-negated264

statements compared to true-non-negated statements (see Figure 3). Finally, for the Photo Preference task265

[28], movement time and trajectory curvature were increased for decisions requiring judgements between266

photos similar in pleasantness compared to decisions requiring judgements between photos dissimilar in267

pleasantness.268

However, these a-priori comparisons also suggested that not all tasks might be suitable for deployment269

on smaller devices. Results from the Photo Preference task show that tablets and smartphones have a270

reduced sensitivity to decision-difficulty effects, especially for reaction time (see Table 1). We believe that271

this is a reflection of stimuli salience as screen size is reduced. While the other two tasks presented decision272

information as text, the Photo Preference task required participants to distinguish between two detailed273

photos, which likely degraded in stimulus information as the stimulus size decreased. Therefore, our key274

message is that all devices are able to track decision-difficulty but device differences exist and are important275

to understand. Our second cluster of results then specifically interrogated device differences. The results276

were clear: computer responses were consistently different from tablet and smartphone responses. Computer277

responses showed an increased sensitivity to decision-difficulty within pre-movement measures (reaction time)278

while touch-device responses revealed greater sensitivity during movement (movement time and trajectory279

curvature). We speculate this might be due to the different user-interaction requirements of touch-devices280

that enforce different ‘reach’ biomechanics compared to computer-mouse interactions. This is supported by281

the right-hand bias effects observed when swiping a finger/thumb or sliding a stylus but not when moving282

a mouse. This right-hand bias, also evident in real reaching [7, 21], is thought to arise from preferential283

processing of stimuli presented on the right of a display you are interacting with, resulting in less trajectory284

curvature and faster movement times during rightward reaches.285

Why might smartphones and tablets show effects similar to a real reach movement? First, real-world286

movements made to enact mouse cursor changes on a screen are physically very small. While the cursor287

traverses a large on-screen distance, the hand moving the mouse travels a smaller distance in less time288

than even a finger on a smartphone (see non-standardized means in Table 1). These movements across289

less space and time produce more ballistic responses [24, 23]. As time and space during movement are at290

a premium with little of either available to express in indecision, this requires more of a decision to be291

resolved prior to movement initiation. [25, 52, 50]. The repercussions of front-loading the decision due292

to physical movement constraints align with results demonstrating that the demands of a motor task can293

directly influence cognitive processing (e.g., cognitive tuning [46, 10, 6, 33]). Here, it means that decision-294

differences arising in a computer task need to be more resolved prior to movement, leading to more sensitivity295

to difficulty being expressed by reaction time. More broadly, these results support the idea that the brain296

11

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 7, 2023. ; https://doi.org/10.1101/2023.06.06.543796doi: bioRxiv preprint 

232



is optimized to take advantage of the affordances of the world it navigates, when more time and space are297

available because a physical movement is longer, the final commitment to a particular choice can be withheld298

well into movement execution [50].299

A second explanation for the difference between pre- and during-movement sensitivity across computers300

compared to tablets and smartphones is the directness of the interaction. When moving a mouse to control a301

cursor to select a choice-option the action is physically dissociated from the target we are choosing - the hand302

is on the table rather than the screen. But, when we move our finger to touch a choice-option on a tablet or303

smartphone our action is directed toward the actual thing we are selecting. From the perspective of a brain304

controlling movement this is likely a profoundly different problem. For example, physically interacting with305

an object increases its appeal [51] and moving an object toward your own body can improve your ability to306

remember it [48]. These phenomena are likely related to the coordinate remapping required when moving a307

mouse in one plane to control a cursor in a different plane. This dramatically differs from the more direct308

planning available to the brain when mapping a touch screen target into the action space of the hand and arm309

[12, 53, 43, 49]. We would argue that it is this directness of interaction and movements that traverse longer310

distances over more time that explain why touch-devices show increased sensitivity in measures recorded311

during movement.312

This dynamic interplay between pre- and during-movement measures was the subject of our third category313

of results. Despite all three measures increasing as decision-difficulty increased, our correlational analyses314

revealed an inverse relationship between reaction time and during-movement measures (also seen in some315

previous real-reaching tasks [16]). This discrepancy between overall task-related effects and trial-by-trial316

effects on the measures is compatible with an evidence accumulation framework of decision-making. Within317

this framework, evidence is noisily accumulated over time until a decision threshold has been reached [45,318

50], signalling the onset of a movement. More difficult decisions require more evidence to be accumulated319

before support for one option reaches this threshold. This takes more time (i.e., longer reaction time), and320

unresolved competition impacts movements during choice selection (i.e., longer and less straight movements321

[47, 45, 50]), explaining the overall effects of decision-difficulty we report. However, when decision-difficulty322

is constant, there is still natural variation in reaction times. If decision processing requirements remain the323

same, but reaction time is reduced, there is more unresolved competition at movement onset. This necessarily324

shifts decision processes into the movement. As a result, on a trial-by-trial basis shorter reaction times will325

map to longer movement times and trajectories with more curvature - exactly the inverse relationship we326

report. Evidence accumulation thus accounts for both the a-priori main effects of decision-difficulty we report327

and the measure correlations we observe. Harder decisions result in increased reaction times, movement times328

and trajectory curvature because evidence accumulates more slowly in these cases. For any given decision329

where a set amount of evidence is required, however, there is a trade-off between pre-movement and during-330

movement decision resolution - abbreviating one elongates the other.331

4 Conclusion332

Across computers, tablets and smartphones, measured by reaction time, movement time and trajectory333

curvature, and capturing how these measures are dynamically related, reach-decision tasks provide a detailed334

read-out of decision-making. Given the ubiquitous use of touch-devices and websites, our validation of these335

metrics - across three diverse tasks and in a remote cohort of 240 participants - prove they are accessible336

outside the lab and impartial to the device used. The remarkable consistency of our results offers exciting337

new ways to apply these findings to research and industry, providing detailed knowledge of decision dynamics338

to domains such as corporate talent assessment and implicit bias measurement. Our results also offer the339

potential to optimize the collection of decision information, indicating that there are features of a decision340

and a device that make a certain combination the most sensitive for a particular task. Decisions and the341

movements we make to enact them literally shape our daily lives. By vastly expanding the accessibility of342

decision measures to include anyone with a touch-device we therefore hope to open new doors to the insights343

derived from this rich information.344

To build on the incredible opportunity of remote data collection used to investigate the detailed dynamics345

of decision processes, we also conducted a second companion study (Bertrand et al., 2023). In this subsequent346

study we replicate the current study but integrate webcam eye-tracking, a technique which is sensitive to pre-347
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movement decision processes. Together, this two-study series allows us a detailed description of the entirety348

of a decision - from the gaze deployed to gather information upon stimuli onset through the mouse-tracked349

movements produced to enact a final choice.350

5 Methods351

5.1 Participants352

All experimental procedures were approved by the University of Alberta Research Ethics Office. 305 naive353

Amazon Mechanical Turk (www.mturk.com) participants took part in the study using either a computer,354

tablet or smartphone for a payment of $7 USD. Participation was restricted on Mechanical Turk to Canada-355

or U.S-based participants between 18 and 35 years of age who had an approval rating above 95% on 100 or356

more study completions. Participants self-reported age, gender, handedness, visual acuity, English language357

proficiency, habitual activities requiring hand-eye coordination, chosen device specifications and typical use358

of their chosen device for participation (see Supplementary Tables 1-3 for a complete demographic and device359

use summary). Participants were excluded from analysis based on insufficient (< 50%) good trials within any360

of the experimental tasks or in any of the unique task conditions (see sub-subsection 5.3.3 - Data Cleaning).361

5.1.1 Computer362

101 participants completed the study using a personal computer. Of those, nine were excluded from analysis363

for not meeting device interaction requirements (i.e., did not use a wired or wireless mouse). A further nine364

computer users were excluded (see sub-subsection 5.3.3 - Data Cleaning), resulting in data from 83 computer365

users being analyzed (25 female, 56 male, and 2 who preferred not to say; M age = 33.75, SDage = 9.35).366

5.1.2 Tablet367

101 participants completed the study using a tablet. Four were excluded from analysis for not meeting device368

interaction requirements (i.e., did not use finger-, thumb- or stylus-based interactions). A further nineteen369

tablet users were excluded (see sub-subsection 5.3.3 - Data Cleaning), leaving data from 79 tablet users to370

be analyzed (27 female, 51 male, and 1 nonbinary; M age = 33.41, SDage = 6.25).371

5.1.3 Smartphone372

103 participants completed the study using a smartphone. Of those, twenty-five were excluded (see sub-373

subsection 5.3.3 - Data Cleaning), leaving 78 smartphone users for analysis (26 female, 52 male, and 1 who374

preferred not to say; M age = 33.73, SDage = 6.72).375

5.2 Procedure and apparatus376

The study was implemented using Labvanced [18], a graphical task builder offering built-in mouse- and377

finger-tracking, and temporal response recording compatible with computer, tablet and smartphone use for378

online study implementation. The study was distributed via Amazon Mechanical Turk, and devices used for379

study completion were uncontrolled except for requiring use of a separate mouse (wired or wireless) during380

computer use, or an Android operating system and touch-screen device interaction (via finger, thumb or381

stylus) during tablet or smartphone use (see Supplementary Tables 2-3 for selected device and interaction382

details).383

Participants completed three reach-decision tasks requiring them to choose one of two stimuli presented384

at the top left and top right corners of their device screen based on a question or statement appearing at the385

center of the testing interface (see Figure 5). The reach-decision tasks (see Figure 1) presented Numeric-Size386

Congruity (adapted from [17]), Sentence Verification (adapted from [13, 31]) and Photo Preference (adapted387

from [28]) paradigms, each consisting of 84 trials and taking approximately 15 minutes to complete.388

Each trial first presented a green circular start button labeled “Touch here” at the bottom center of the389

screen, requiring participants to navigate their mouse cursor to (Computer) or place their finger, thumb, or390

stylus on (Tablet and Smartphone) the button to start the trial. Touching the start button triggered a three391
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second countdown, centered on the display screen (Figure 5B). Removing the mouse cursor, digit or stylus392

from the start button or the surface of the screen paused the countdown until touch-contact within the start393

button had been re-established. For the Numeric-Size Congruity and Photo Preference tasks, countdown394

onset was accompanied by a task-specific question appearing centered at the top of the display (Figure 5B).395

Upon countdown completion, two choice boxes appeared at the upper-left and upper-right of the screen,396

each presenting trial-specific choice options. For the Sentence Verification task, the two choice options397

appeared coincident with countdown onset and presented a statement centered at the top of the screen398

upon countdown completion (Figure 5B). Participants were free to select either choice option immediately399

upon countdown completion. For Computers, choice selection required participants to move their mouse400

cursor inside the choice-box. For Tablets and Smartphones, participants were required to slide their finger,401

thumb, or stylus across the screen to touch their selected choice-box, keeping contact with the screen at all402

times. If touchscreen contact was lifted, that trial was removed from analysis and an error message would403

appear on the screen, reading “Your finger was lifted from the screen as you moved, and we were unable to404

track the movement. Please touch your option now and remember in the future to keep your finger on the405

screen.” When selected, a choice-box was highlighted with a blue border, the other option and start button406

disappeared, and a “Next” button appeared centered on the screen. Participants were then free to click or407

press on the “Next” button to continue to the next trial, allowing them to self-pace the experiment.408

Trials were randomized within each task and the order of task presentation was counterbalanced across409

participants. Participants were instructed to complete the study in its entirety in a single session and were410

provided with detailed instructions outlining each task before it started. Participants were encouraged to411

take short breaks between tasks but had a maximum time limit of ninety minutes to complete the study.412

Labvanced automatically scales the dimensions of the testing interface and its stimuli components to the413

screen size and resolution of the device in use, presenting a landscape (800 x 450 pixel, Labvanced coordi-414

nates) orientation for computer-based participation and a portrait (470 x 800 pixel, Labvanced coordinates)415

orientation for touch-device based participation. Stimuli-screen proportions remained consistent independent416

of device screen size (see Figure 5B for device-specific design details).417

5.2.1 Numeric-Size Congruity418

The Numeric-Size Congruity task in the current study was adapted from Faulkenberry, Cruise, Lavro and419

Shaki’s experiment [17] examining the dynamics of the size congruity effect. For each Numeric-Size Congruity420

trial, the question “Which number is larger in value?” appeared coincident with the onset of the countdown421

timer, centered at the top of the screen (Figure 5). Following countdown termination two numbers were422

displayed simultaneously, one in each of the upper-left and upper-right choice boxes, and participants could423

move to select their preferred choice. Stimuli consisted of the Arabic numerals 1, 2, 8 and 9 displayed in424

Arial font and presented in pairs of different physical size with a 2:1 font size ratio. From these, six choice-425

pairs were generated: 1v2, 2v8 and 8v9, with each pair either congruent in physical and numeric size (the426

numerically larger numeral appearing physically larger than its paired counterpart, e.g., 2v8), or incongruent427

in physical and numeric size (the numerically larger numeral appearing physically smaller than its paired428

counterpart, e.g., 2v8; see Figure 1). Within each condition, the numerically larger number was presented429

equally often on the left and the right, counterbalancing side of space effects. This created twelve conditions,430

each presented 7 times for a total of 84 trials.431

5.2.2 Sentence Verification432

Adapted from Maldonado, Dunbar and Chemla’s replication [31] of Dale and Duran’s linguistic negation433

experiment [13], each Sentence Verification trial presented a “True” and “False” response option in the434

top-left and top-right corners of the screen, respectively (Figure 5). Following countdown termination, a435

statement was displayed at the top-center of the screen, prompting participants to judge whether it was true436

or false by selecting the appropriate response option. Statement stimuli consisted of 21 simple declarative437

statements manipulated in truth value (true, false) and negation (non-negated, negated). Sentence negation438

was manipulated by adding “not” to statements (e.g., “giraffes are tall” is non-negated, while “giraffes are439

not tall” is negated). Truth value was manipulated by changing the adjective at the end of the sentence440

(e.g., “giraffes are not short” is true, while “giraffes are not tall” is false). Crossing these factors yielded four441

sentence conditions where each sentence could be a true or false statement in either negated or non-negated442

14

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 7, 2023. ; https://doi.org/10.1101/2023.06.06.543796doi: bioRxiv preprint 

235



Figure 5: A) Overview of study design. Each participant completed a Numeric-Size Congruity task (SC), a
Sentence Verification task (SV) and a Photo Preference Task (PP), with task order counterbalanced between
participants. Task-specific instructions were presented prior to each task. B) All three tasks presented a
classic reach-decision paradigm requiring participants to choose one of two stimuli presented at the top left
and top right of their device screen. For SC and PP tasks, countdown onset was accompanied by a question
specific to the task type appearing centered at the top of the display. The SV task presented the two choice
options coincident with countdown onset and presented a statement (rather than a question) upon countdown
completion. C) A comparison of interface arrangements between devices. Shown are representative examples
of a computer, tablet and smartphone (phone) testing interface. All values are reported in pixels. Specific
sizes of device screens and interface components observed by participants were dependent on the size of the
device used, but screen to interface component proportions remained constant within each device category.
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forms (see Figure 1 and Supplementary Table 4). Participants saw all four conditions of each statement,443

with the 84 resulting statements presented in a random order across trials.444

5.2.3 Photo Preference445

Adapted from Koop and Johnson’s experiment [28] examining the mental dynamics of preferential choice,446

each Photo Preference trial presented the question “Which photo do you prefer?” centered at the top of447

the screen coincident with countdown initiation (Figure 5). Following countdown termination two images448

were then simultaneously displayed in the choice boxes to the upper left and upper right corners of the449

screen. As in Koop and Johnson [28], the International Affective Picture System (IAPS [29]) was used to450

develop a stimulus set of paired images using pleasantness ratings as an analog to photo preference, given451

equal levels of arousal [28]. We therefore selected 168 pictures from the IAPS, categorized as being high in452

pleasantness (pleasantness rating between 7 and 8), average in pleasantness (referred to as Med; pleasantness453

rating between 4.50 and 5.50) or low in pleasantness (pleasantness rating between 2 and 3). Images scoring454

greater than 6.15 in arousal were excluded. Selected pictures were then matched for arousal (difference455

< 0.30) and paired to create all pairwise combinations of High, Medium and Low. Pairs not matched456

in pleasantness (e.g., High−Med, High−Low, Med−Low) were counterbalanced for side of presentation,457

while pairs matched in pleasantness (e.g., High−High, Med−Med, Low−Low) appeared equally as often as458

the unmatched conditions when ignoring side of space (see Figure 1). This allowed for 14 presentations459

of each pleasantness pairing (7 of each unmatched pairing for each presentation side and 14 for matched460

pairings), for a total of 84 trials. Photo choice selections revealed a global preference for photos rated as461

more pleasant (MMorePleasantSelected = 78.3%), substantiating claims that preference is roughly analogous462

with pleasantness ratings [28]. As a result, the analysis included only trials containing a High pleasantness463

photo and in which the High photo was selected. Due to experimental error, half of participants completed464

a version of this task that did not counterbalance for side of presentation (i.e., High photos were always465

presented on the left). A separate ANOVA showed no significant difference between these groups for any466

measure, so both groups were included in the reported analysis where we collapsed across photo presentation467

side.468

5.3 Data Treatment469

5.3.1 Operationalization of trajectory data470

Raw movement data was resampled to 60 Hz, then filtered using a 10 Hz lowpass filter. Reach onset was471

defined as the first time the mouse cursor (Computer) or finger/thumb/stylus (Tablet and Smartphone)472

ascended to 5% of its peak velocity within the start button and after countdown had terminated. Should473

this velocity threshold not be achieved prior to leaving the start button, this threshold was iteratively reduced474

by 5% until a reach onset could be defined. Reach offset was similarly defined as the first time the mouse475

cursor (Computer) or finger/thumb/stylus (Tablet and Smartphone) velocity descended below a velocity476

threshold of 5% peak velocity while within one of the two choice option boxes, with this threshold iteratively477

increasing by 5% if necessary.478

5.3.2 Dependent Measures479

For each trial, the following behavioural measures were obtained:480

Reaction time (seconds): time from countdown termination to reach onset.481

Movement time (seconds): time from reach onset to reach offset (choice selection).482

Trajectory curvature (MAD): Within each trial, the perpendicular distance of the observed trajectory rela-483

tive to a straight line connecting the trajectory start and end positions was calculated for each data point.484

Maximum absolute deviation (MAD) reports the maximum of these perpendicular distances. Straight tra-485

jectories produce values approaching zero while those curving toward the center of the screen were assigned486

positive MAD values and those moving away from the center were assigned negative MAD values.487

Within-participant and within-task z-scores were computed for each dependent measure (reaction time,488

movement time, trajectory curvature). This standardization of within-participant measures allows for489
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between-task and between-participant comparisons while controlling for participant variability and indi-490

vidual reach patterns. All analyses were conducted on these standardized values. See Table 1 for reporting491

of raw and standardized measure values.492

5.3.3 Data cleaning493

Data cleaning processes were identical independent of device and were conducted using customized MATLAB494

scripts. Errors on each trial could be a combination of reaches with recording errors, reaches with insufficient495

data points (fewer than seven unique positions), reaches with reaction times greater than 0.1s, reaches with496

movement times > 3 SD above a participants mean movement time, and reaches with reaction times > 3497

SD above a participants mean reaction time. For Numeric-Size Congruity and Sentence Verification tasks,498

incorrect trials were also removed from analysis. As these tasks previously demonstrated very high levels499

of accuracy [13, 17], incorrect responses were considered to arise from participant error, with sustained500

performance errors indicating participant unreliability. The average percentage of total participant trials501

falling within each of these error categories are reported in Supplementary Table 5. A participant was502

excluded from analysis if, after data cleaning, they failed to have at least four trials in each condition of503

analysis as reported per task. In total, participants whose data was included for analysis had a mean of504

95.6% usable trials for analysis (Range: 83.7%−98.4%).505

5.4 Analysis506

The main objective of this analysis was to determine whether task-specific decision-difficulty effects (as507

expected by previous studies, e.g., [17, 28, 13, 31]) were replicated and whether these effects were consistent508

despite differences in testing device. To that end, analysis proceeded in three primary stages: 1) a-priori509

comparisons to determine replication of antecedent results, 2) within-task, between-device omnibus analysis510

of variances (ANOVAs) to determine any effects or interactions arising due to device differences, and 3)511

between-device ANOVA to determine whether there are correlational relationships between measures of512

decision-difficulty and if these remain consistent across device.513

5.4.1 A-Priori Comparison Procedure514

To determine replication of the previous task-specific difficulty effects, a subset of trial conditions were515

selected to represent low and high difficulty decisions within each task (see Figure 1). For the Numeric-Size516

Congruity task, decision-difficulty followed size-congruity, with trials incongruent in numerical and physical517

size categorized as high in decision-difficulty, while congruent trials were categorized as low in decision-518

difficulty [17]. For the Sentence Verification task, decision-difficulty varied according to negation, with true519

statements the greatest negation-driven effects [13]. The current study therefore categorized true negated520

trials as representative of a high difficulty decision, and true non-negated trials as having low decision-521

difficulty. Finally, decision-difficulty in the Photo Preference task was driven by the similarity in pleasantness522

between photos [28]. The current study places trials comparing two photos high in pleasantness in the high523

decision-difficulty category, and trials comparing a photo high in pleasantness and one low in pleasantness524

in the low decision-difficulty category.525

Within each task, mean standardized reaction time, movement time and trajectory curvature scores for526

low and high decision-difficulty trials were compared using a paired t-test. As these were a-priori tests based527

on replicating known effects, significance was set to p≤.05 with no correction for multiple comparisons.528

5.4.2 Within-task ANOVA Procedure529

Mean standardized reaction time, movement time and maximum absolute deviation measures were separately530

submitted to mixed-model ANOVAs, with within-subject factors determined by individual tasks design and531

between-subject factors of device (computer, tablet, smartphone, see section 2 - Results). All multi-way532

mixed- and RM-ANOVAs were family-wise error corrected using a sequential Bonferroni procedure [11],533

and all repeated-measures main effects and interactions were Greenhouse-Geiser corrected to protect against534

violations of sphericity. The primary objective of this series of tests was to look for device differences. As a535

result, here we focus only on main effects or interactions involving Device. Full results outside this explicit536
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objective can be found in Supplementary Materials 1, including results that support the a-priori tests of537

decision-difficulty. Interactions involving Device first collapsed over factors that did not interact, then were538

followed up by separating by the factor(s) other than Device. Significant (simple) main effects of Device539

were explored with all possible pairwise comparisons which were Bonferroni corrected with significance set540

at a corrected p≤.01.541

5.4.3 Between-task ANOVA Procedure542

To explore the relationship between measures of decision-difficulty, a Pearson’s correlation coefficient (r) was543

calculated between each pair of measures (rMAD,MT , rMAD,RT and rMT,RT ) indicating the direction and544

strength of the relationship across trials for each participant within each condition, task, and device. Mean545

correlation coefficients were then submitted to a mixed-model ANOVA with Correlation-type and Task as546

within-subjects factors and Device as a between-subjects factor. Corrections and follow-up procedures were547

then conducted as described above, except here we were most interested in the pairwise comparisons between548

Task.549
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Appendix B: Supplemental Materials
from Chapter 2 Publication
(Bertrand & Chapman, 2023)

B.1 README
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README - Supplementary Materials

Dynamics of eye-cursor coordination (Submission#4263) CHI ‘23, April 23-28, 2023, Hamburg, Germany

In this zip folder, the following supplementary materials are included:



1.0 - Prolific Project Descriptio
 This is a screenshot, in PDF form, of the description, including requirements and 

hardware information, that is provided to participants prior to accepting participation in 
our study.  We provide this information in our supplemental materials as we believe, 
after extensive piloting, that this level of transparency and detail is important for 
minimizing participant and experimenter frustration or confusion.



2.0 - Instructional Vide
 This mp4 file is shown to participants as part of the task instructions. Because we 

require participants complete an eight-movement sequence in a particular order, we 
believe including a video for participants to best understand the task was useful. This is 
shown to participants during a series of instructions and is not the only information they 
are provided with.



3.0 - Data Processing Diagra
 This PDF file is a detailed visual representation of the data processing procedure, 

including our approach to gaze-data-driven AOI clusters, trial and participant rejection 
criteria, and our segmentation approach. This diagram also includes the number of 
participants rejected at each step, showing how we went from 51 datasets collected to 
the 29 datasets included in our analysis.



4.0 - Follow-up Pairwise Comparisons - Supplementary Statistical Test
 This PDF file is a text document that shares, in detail, the statistics associated with the 

pairwise results that were only summarized in the main text.  We also share the 
alternative follow-up approach to the Fixation Duration measure (for information 
purposes only), to highlight the potential for nuanced spatial biases in our eye-tracking 
data.



5.0 - Spatial Assessment of Clustering Proces
 This PDF file is a detailed visual representation of the process followed to assess the 

spatial qualities of the generated clusters, and also includes two figures that visualize 
the findings of this assessment. This spatial assessment is meant to complement the 
analogous temporal analysis shown in Figure 3 in the main text. 



6.0 - Labvanced Study Link
 We share, in a PDF file, the link for the Labvanced study within the Labvanced library. 

The study is for demonstration purposes only, and is able to be imported into a free 
account to explore the back-end, experimenter view of our task, or, without creating an 
account, is available to view as a participant. Please note the warning at the outset that 
the participant view is for demonstration purposes only (i.e. no payment information 
applies, and no data will be used). 

For the purposes of my thesis, the zip folder contents can be accessed in a Google Drive folder 
located here: ! https://drive.google.com/drive/folders/1WVIQ-PwAacwaMGgOI0LrfZumqhhYb7Sm?usp=sharing

(Please copy and paste link into browser - embedding not possible with combined PDFs in LaTeX)
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1.0 - Prolific Project Description

Dynamics of eye-cursor coordination (Submission#4263) CHI ‘23, April 23-28, 2023, Hamburg, Germany
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Data cleaning - pre-segmentation

Data cleaning - post-segmentation

Segmentation

Every trial:

first time 
cursor in 

Home area

last cursor 
coordinates

recorded

extract gaze 
coordinates

resample gaze 
coordinates to 60 Hz

Preliminary data cleaning

extract cursor 
coordinates

extract event flags 
and generate binary 
time-series streams

resample cursor 
coordinates to 60 Hz

resample binary 
streams to 60 Hz

experimental frame transitions < 35 m
 as built in Labvanced, if sequence 

completed properly, each frame 
corresponds to one movement and 
should take > 35 ms



any instance of a paused trial from the 
eye-tracking’s virtual chinres
 trial would pause if participant moved 

their head out of alignment. We reject 
paused trials as this is an interrupted 
movement sequence.

extra dragging of circles
 using FarCircleDragging and 

NearCircleDragging (should only 
have 4 instances per circle)




wrong circle-dragging orde
 using FarCircleDragging and 

NearCircleDragging (timing of Near/
Far instances should follow correct 
sequence order)

Our segmentation strategy relies on defining the onset and offset of Transport. We first create thresholds 
relating to both distance and velocity, and then use those to define Transport onset and offset:  

Distance Threshold:

Velocity Threshold:

Maximum Near/Far circle velocity during each movement

Transport Onset = The first time 
Distance or Velocity Threshold is met


(i.e. earliest of the two) 

Transport Offset = The last time 
Distance or Velocity Threshold is met


(i.e. latest of the two) 

20%

Minimum distance between Near/Far circles 
and AOIs during each movement

As a crude eye data quality check, we compared the total fixation duration at AOIs relevant 
to the movement (i.e. Pick-up or Drop-off location) to the total fixation duration at AOIs 
irrelevant to the movement (i.e. not Pick-up, Drop-off OR the next Pick-up location*). 



If, within a movement, irrelevant fixation duration > relevant fixation duration, then 
movement noted as having unexpected (bad) eye data.

If a trial has any noted ‘bad’ movements, the trial is noted as ‘bad’ (but not rejected).

*note: this is different from how we define Irrelevant fixation duration as a dependent 
measure. In this case, we take a more conservative approach to considering poor eye data.

+

*

A trial is rejected if:

Every subject:

A subject is rejected if:

Every trial:

Every movement:

Every subject (all 50 trials):

Streams created:



FarCircleClickedFlag

FarCircleDragging

NearCircleClickedFlag

NearCircleDragging

inFarCircleFlag

inHomeFlag

inNearCircleFlag

mouseclickDown

FarCircle_in_AOI_FR

FarCircle_in_AOI_FL

NearCircle_in_AOI_NR

NearCircle_in_AOI_NL

trials rejected > 2
 if trial count is below 50%, 

we reject a subject

A subject is rejected if:

6 subjects 
rejected for low 
trial count after 

trial cleaning

(Distance between the 2 most proximal on-
screen stationary elements, Home + NRAOI)

“Distance offset”

2

*from main text - Figure 1D

Pickup

Reach

phase

Release

phase

Dropoff

Cursor

Velocity
Circle

Velocity

Tr
an

sp
or

t

ph

as
e

The onset/offsets of the 
Reach and Release phases 
were determined with the 
same principles, but used 
the cursor distance and 
velocity since, by definition, 
the circles were stationary.

2 subjects 
rejected for poor 
eye data quality

(92% and 57% 
‘bad’ trials)

n = 31 --> n = 29 

Of their remaining trials, more than 50% of 
the trials are noted as having ‘bad’ eye data.

AOI cluster generation:

3.0 - Data Processing Diagram

Every trial:

first time 
cursor in 

Home area

last cursor 
coordinates

recorded

extract gaze coordinates

resample gaze 
coordinates to 60 Hz

extract ‘mouse clicked down’ 
event flags (as 1 time-series 

binary stream)

collect gaze coordinates for all times 
‘mouse clicked down’ = TRUE


trialData for 
clustering:


[x,y


...


...


...


...


...


...

...]

resample event stream 
to 60 Hz

Every subject 
(all 50 trials):

trialData for 
clustering


[...]

trialData for 
clustering


[...]

trialData for 
clustering


[...]

subjectData for 
clustering:

...

concatenate 
trialData for 
clustering 
across all 

trials

apply k-means clustering approach
 specify 4 cluster
 use Squared Euclidean distance metri
 set maximum iterations to 10,00
 run 100 replicates to clusterin
 also perform an online update to 

guarantee distance minimizatio
 compute iterations in parallel

generate 4 clusters as 
(x,y) coordinates

assign names based on sorting 
Left to Right (i.e. using X 
coordinate only, labelled 
relative to real task AOI names)

check if Far AOIs are 
higher than Near AOIs (i.e. 
using Y coordinate only)

if YES:

include subject in 
further analyses

examples of subjects 
with suitable clusters

examples of rejected 
subjects (bad clusters)

if NO:

reject subject

FL FR

NRNL

14 subjects were 
rejected for bad 

eye data
n = 51 --> n = 37 

FL->NL->FR->NR

Of n = 29,
Trials included in analysis:

M = 40.9, SD = 4.73

[M = 6.55 ‘bad’ but included trials, SD = 5.19]

Of n = 31,
Trials remaining:

M = 41.1, SD = 4.67

n = 37 --> n = 31 

620, 400

FLAOI
FRAOI

NLAOI NRAOI

620, 400

FLAOI FRAOI

NLAOI NRAOI

620, 400

FLAOI

FRAOI

NLAOI NRAOI

620, 400

FLAOI

FRAOI

NLAOI

NRAOI
Subject 3

Subject 8

620, 400

FLAOI

FRAOINLAOI

NRAOI

620, 400

FLAOI FRAOI
NLAOI

NRAOI

Subject 34

Subject 12

Subject 21

Subject 37

Dynamics of eye-cursor coordination (Submission#4263) CHI ‘23, April 23-28, 2023, Hamburg, Germany
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Dynamics of eye-cursor coordination (Submission#4263) - Supplementary Materials
CHI ‘23, April 23-28, 2023, Hamburg, Germany

4.0 - Follow-up Pairwise Comparisons - Supplementary Statistical Tests

Fixation Duration
Our primary comparison of interest, as described in the main text, was between Relevant

and Irrelevant AOIs. While it is not a recommended statistical practice to report both follow-up
approaches to understanding an interaction between factors, here in the supplemental we share
the alternative framing of the interaction follow-up (i.e. comparing across Position for each Task
Relevance state) for information purposes only to illuminate the nuances of potential spatial
biases. These spatial differences are secondary to the Relevant vs Irrelevant story, but may be
informative for considerations to task design and the data processing method.
Therefore, to explore whether any spatial biases were present in our gaze data, we present the
analysis of Relevant and Irrelevant gazes separately with two 4 x 1 (Position x
Relevant/Irrelevant) RMANOVAs. Both single-factor RMANOVAs did reveal significant main
effects of Position (Relevant: F(1.54, 43.08) = 17.4, p < .001; Irrelevant: F(1.73, 48.34) = 20.4, p
< .001).

When AOIs are Relevant to a given movement, all AOI Positions receive similar lengths
of looks except NRAOI, which receives significantly longer fixation time (M = 0.817 secs, all p’s
≤ .002). Given the spatial proximity of NRAOI to the Home area (a non-AOI for our analysis
purposes, but a “relevant” location during the task), this indicates that our clustering approach
may have resulted in partially-inflated fixation durations for the NRAOI Position.

During moments when AOIs were Irrelevant to the task (i.e. not Pickup or Dropoff areas),
pairwise comparisons showed significantly shorter gaze duration to the FLAOI than anywhere
else (M = 0.0767 secs, all p’s < .001), and FRAOI exhibited the longest fixation duration (M =
0.2791 secs; significantly longer than NLAOI and FLAOI (both p’s ≤ .018), but not NRAOI (p =
.393)). The pattern of longer Irrelevant gazes to FRAOI indicate perhaps again some effects of
nearby “non-AOI” spillover, where the starting fixation point, closest to FRAOI, was to be gazed
at at the beginning of the trial. These brief fixation gazes may count as FRAOI-Irrelevant gazes
given FRAOI’s non-involvement during the first movement of the trial. The shortest fixation
durations towards FLAOI when FLAOI is Irrelevant may also reflect spatial spillover effects, but
in the opposite way: FLAOI is the least likely to be gazed upon “in passing” on the way to a
Relevant location as it’s the furthest from the repeatedly-returned-to Home area. Together, these
results suggest some limited misattribution of non-AOI fixations as a function of the task’s
properties (i.e. an AOIs spatial proximity to other “relevant” areas like Home and the fixation
point) and the scope of the AOIs examined (i.e. not including other task-related AOIs). Most
importantly, however, these results serve to confirm our eye-tracking method (both in the data
collection and the data processing) as one that can be used to meaningfully explore more
complex measures like EAL and ELL during online, screen-based, object interactions.

Phase Duration
Reach: Pairwise comparisons for the Reach phases show prolonged Reach phase

durations for Moves 3 (longest), 5, and 7 compared to Moves 1,2,4,6 and 8 (all p’s ≤ .011,
except 2 > 7, p = .279). Of the longer Reach phase movements, Move 3’s Reach phase (M =
0.939 secs) is also significantly longer (p = .049) than Move 7’s Reach phase (M = 0.815
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secs).We can attribute a longer Reach of Move 3 than of Move 7 to a proximity to Home effect,
where a reach from Home to the FLAOI (Move 3) is a further distance to travel than the
Home-NLAOI reach, following Fitts’ law. Notably, Lavoie et al. (2018) also find, for their Reach
(only) phase, a longer phase for Movement 3, citing the longest distance to traverse.

Transport: Move 8’s Transport phase is significantly shorter in duration than any other
Transport (M = 0.143 secs; all p’s ≤ .01). Of the remaining movements, the Transport phases
are relatively similar (M’s range from 0.205 to 0.255 secs), however Moves 3 and 7 are
significantly shorter than Moves 5 and 6 (all p’s ≤ .047 ). The results suggest that Left-to-Right
Transports are completed in a shorter duration, and that these Left-to-Right Transports get
shorter as the trial continues, with the two final Left-to-Right Transports (and final movements -
Moves 7 and 8) reflecting shorter and shorter durations.

Release: Pairwise comparisons between movements for the Release phase show
significantly longer Release phase durations for Moves 2,5,6 and 7 (M’s range from 0.658 to
0.710 secs) compared to Moves 1, 3, 4, and 8 (M’s range from 0.441 to 0.570 secs; all p’s ≤
0.045). Move 3 is also significantly faster than Moves 4 and 8 (both p’s ≤ 0.002).

Eye Arrival Latency (EAL)
Pick-up: The eye arrives at the Pick-up location earlier if the Reach phase is longer (e.g.

Moves 3, 5 and 7), and less early (i.e. closer to the Pick-up time; shorter in preceding latency) if
the Reach phase is shorter (e.g. Moves 1, 2, 4, 6, 8). Move 4’s EAL were the least early,
significantly shorter than the EAL of all other movements (M = -0.337 secs, all p’s ≤ 0.047), and
Moves 1, 2, 6 and 8’s EAL values were the next shortest (M’s range from -0.439 to -0.398 secs;
no pairwise differences: all p’s > 0.438). Move 5 EAL was significantly earlier than all other
movements (M = -0.535 secs, all p’s ≤ .041) except Move 3, the next earliest EAL (M = -0.482, p
= .280). Move 7’s EAL value was also earlier (M = -0.457), and showed no difference in EAL to
Move 3 (p = 1.00).

Eye Leaving Latency (ELL)
Pick-up: At Pickup, ELL remains relatively similar across movements (M’s ranging from

0.0362 to 0.1366 secs). Move 6 has the longest ELL (M = 0.1366), and is significantly longer
than Moves 1 and 3 (both p’s ≤ .008). Move 1’s ELL at Pickup is the shortest (M = 0.0362), but
besides the aforementioned Move 6, only Move 2 tested significantly longer than Move 1 (p =
.025). These few significant differences represent a subtle push-pull effect of the duration of the
Transport phase, and the preceding EAL values.

Drop-off: Moves 2, 5, 6, and 7 elicited the longest (and same; M’s range from 0.613 to
0.635 secs; all p’s = 1.00) ELL values, and were all significantly longer than any other moves (all
p’s ≤ .018) except the pairwise comparison of Move 1 and Move 6 (p = .112). Next longest ELL
at Drop-off was during Move 3 (M = 0.517 secs), which was significantly longer than Moves 4
and 8 (both p’s ≤ 0.013). EAL at Move 1 (M = 0.488 secs) showed no difference in EAL to
Moves 3, 4 or 8 (all p’s = 1.00). These results follow the results of the Release phase, where
longer Release phases show longer ELL values.
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per subject:

x_AOI_offset = 300 px

y_AOI_offset = 120 px

calculate average distance between cluster centroids

take true (i.e. task-designed) offset between 
AOIs in pixel space

for both X & Y independently: 

for both X & Y independently: 

X_distancefar

X_distancenear

X_average_cluster_distance =  

Y_average_cluster_distance =  

X_scalingFactor =  

Y_scalingFactor =  

Y_distancerightY_distanceleft

( )

( )2

+ X_distancefarX_distancenear

2

+

Y_distancerightY_distanceleft

2

+

x_AOI_offset

x_average_cluster_distance ( )

( )
y_AOI_offset

y_average_cluster_distance 

620, 400

generate X and Y scaling factors
for both X & Y independently: 

X_scaled data =  X_min + ((all X data points - X_min) .* X_ScalingFactor)

Y_scaled data = 

raw data scaled

Y_min + ((all Y data points - Y_min) .* Y_ScalingFactor)

scale all gaze data by anchoring to X/Y minima
for both X & Y independently: 

for both X & Y independently: 

calculate an average coordinate 
to anchor to for re-orientation

for both X & Y independently: 

calculate average offsets between true 
AOI centers + average cluster centers

for both X & Y independently: 

shift all eye data using average offsets

for each AOI independently: 

calculate the bivariate normal probability 
density function of the transformed eye data

for each AOI independently: 

X_average_offset =  

Y_average_offset =  ( )

( )+

4

+ +

++ +

4

scaled scaled + shifted

X_average_offset =  

Y_average_offset =  

Averaged across subjects (n=29), for each AOI, we present the bivariate normal 
probability density functions of the transformed eye data in a single plot

Averaged across subjects (n=29), for each AOI, we present the cumulative 
bivariate normal probability densities of the transformed eye data when that data 

falls within its Assigned (by clustering) AOI or Non-assigned AOI

We can also calculate the cumulative normal probability density over the AOI area. Here, we can 
ask what the probability density is over the AOI for which that eye data was assigned to (via 

clustering), and can also ask what the probability density is over the other non-assigned AOIs. 
This tells us if we are at risk of misclassifying our data to the wrong cluster (i.e. whether the 

transformed data would actually fall within a different AOI’s bounds.
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To illustrate an example with the FLAOI 
bivariate normal probability density function:

Assigned AOI

Non-assigned 
AOIs

FLAOI FRAOI

NLAOI NRAOI
0

0.5
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Error bars represent 95% Confidence Intervals in the same fashion as our in-text Figure 3.

FLAOI-Assigned   = 
probability density falling within the 
bounds of the 80 x 80 pixel FLAOI 

FLAOI-Non-assigned   = 
probability density falling within the 

bounds of the FR, NR, or NLAOI 

5.0 - Spatial Assessment of Clustering Process
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6.0 - Labvanced Study Link

Dynamics of eye-cursor coordination (Submission#4263) CHI ‘23, April 23-28, 2023, Hamburg, Germany

The study can be accessed here: https://www.labvanced.com/page/library/39818 



If the study link becomes broken, please use information from attached screen shot to 
search for thew study in the Labvanced library. Please contact the corresponding author 
if there’s any issue with accessing the study.



The study is for demonstration purposes only, and is able to be imported into a free 
account or inspected to explore the back-end, experimenter view of our task, or, without 
creating an account, is available to view as a participant. Please note the warning at the 
outset that the participant view is for demonstration purposes only (i.e. no payment 
information applies, and no data will be used). 
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Continuous Measures - Bertrand, Ouellette Zuk & Chapman

Supplemental Materials 1 - Prolific Description

Welcome to the experiment! This study should take approximately 65 minutes, and needs to be
completed in one sitting. You will be required to stay very still during the entirety of the experiment
for eye-tracking purposes.

Some people may not have the internet speed, graphics card, and/or hard drive system
performance that this study requires - many factors contribute to this. If you've closed other
internet tabs etc. and you still get an error that says the face/video processing is not working
well enough, you will not get past the very first screen. You will be unable to participate and
will need to RETURN THE STUDY. PLEASE DO NOT KEEP TRYING - it will not work.

A WIRED OR WIRELESS COMPUTER MOUSE IS ALSO REQUIRED. NO
TRACKPADS/TOUCHPAD/TOUCHSCREEN/STYLUS. Do not try - it will not work for the experiment
(please do not waste your time trying). Thank you!

We are conducting an academic study about decision-making. To study this, we need participants to
choose between two presented options on the computer while a webcam-based eye-tracking system
determines where the participants eyes are looking. While you complete this decision task, your eye
gaze position will be recorded. While the webcam is used to calculate your eye gaze position in
numerical form, no webcam video data is recorded.

Warning: some images shown may contain potentially explicit or offensive content (e.g. blood,
violence) that some viewers may find disturbing. Participant discretion is advised.

We appreciate your interest in participating! This scientific data will be used to help us develop a
better understanding of the eye-gaze in decision-making.
Still interested? Here's the important details:
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Continuous Measures - Bertrand, Ouellette Zuk & Chapman

**Very important - please read the following
requirements carefully**
To participate, make sure you:
-- Use Chrome as your browser
-- Use a computer MOUSE (NOT A TRACKPAD OR LAPTOP TOUCHPAD ETC - WILL FAIL)
-- Use only a laptop or desktop computer (tablets/phones will fail)
-- Can do a computer task without needing to wear glasses (contacts OK)
-- Have a connected webcam (either built-in or external device is fine)
-- Have your laptop or desktop computer on a stable table top (not on your lap), in a well-lit
room - with light in front of you (not behind) so that your face isn't shadowed. Cannot be in a
dark room with only light coming from the computer screen (eye-tracking system will fail)
-- Are aged 18 to 35
-- Have the ability to keep a consistent, still head position for the full duration of the study
-- Can keep the study full screen for the full study duration (approx. 60 mins)
-- Close all other internet tabs before starting the study (experiment will fail)

The task will take approximately 60 minutes to complete. Complete the task in one sitting. You will not
receive payment if you do not complete the task fully and in one sitting.

DO NOT exit from full screen mode during the experiment. If you are not using the Chrome browser,
please swap browsers before beginning the study. The study will take 2-3 minutes to load at the
beginning of the study.

VERY IMPORTANT: Please close all tabs before beginning the study. You will receive an error
if your background activity is impeding the performance requirements of the eye-tracking
system and you'll need to return the study if the performance threshold is not met at the
beginning of the study (you will get an error screen that tells you this). Some people may not
have the internet speed or system performance that this study requires. If you've closed other
internet tabs etc. and you still get an error that says the face/video processing is not working
well enough, you will not get past the very first screen. You will be unable to participate and
will need to return the study - do not keep trying. Thank you.
-------
This research is carried out by researchers from the University of Alberta, in Edmonton, Alberta,
Canada. The plan for this research has been reviewed for its adherence to ethical guidelines and
approved by Research Ethics Board 2 at the University of Alberta (Pro00087329).

Devices you can use to take this study: Desktop
You will also need: Camera
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Supplemental Materials 2 - Labvanced Study Link

Experimental Task on Labvanced (for viewing purposes): https://www.labvanced.com/page/library/48965
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