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Abstract—Mobile objects can be equipped with sensors en-
abling them to collect data, as well as answer queries remotely
and in real-time. For that, one needs to be able to effectively
route queries from a base station to the queried object in an
efficient way, i.e., with minimum energy-cost and/or minimum
delay. Complicating factors in many domains are that the objects
in the network are mobile and that they may not form a
single connected component at all times. In this paper we
take advantage of periodically repeated encounters, where an
encounter is defined as a time-period long enough so that sensors
can communicate with each other. Possessing such encounter
patterns we show how to model routing as an optimization
problem in a graph with domain-oriented constraints. Further,
we propose polynomial time algorithms to find the optimal and
near-optimal routes to deliver the query from a source to one or
more query object(s). We also show that the proposed model is
flexible enough to support different assumptions about the nature
of the encounters. Experimental results, using both real and
synthetic datasets, show that our proposed approaches always
find better routes with regard to delivery delay and energy cost
comparing to other state-of-art protocols.

Index Terms—Mobility, Delay Tolerant Network, Regularity,
Periodicity, Routing

I. INTRODUCTION

New applications for wireless sensor networks have created
demand for novel techniques to effectively and efficiently dis-
seminate queries and collect data from sensors. Conventional
wireless sensor networks are usually assumed to be connected
as a single component at all times. In those networks, log-
ical structures such as trees and paths, built on top of the
physical topology, can be used to find routes between data
sources and sinks. However, in some application domains the
physical topology may change often and objects (or entire
sub-networks) may not always be connected. For instance,
mobile robots may circulate over wide areas and given typical
short wireless ranges, may often be disconnected. In another
example consider monitoring animals in a farm or even in
a determined area in the wilderness. The monitored animals
(thus objects) often roam around separately in physical clusters
that are disconnected from a central backbone infrastructure.

Because constructing logical structures on top of unstable
topologies is not efficient, routing protocols from mobile ad-
hoc networks are adopted to handle communications in mobile
wireless sensor networks under infrastructure-less environ-
ments. In mobile ad-hoc networks, routing protocols such
as AODV [33] and OLSR [19] can be used to periodically

discover new routes in order to establish communication.
These route-discovery protocols lead to overhead and add
delay to the communication task. A key constraint for sensor
networks is energy. Because each sensor has limited battery
capacity [2], the communication overhead of route discovery
is a severe drawback. The other constraint is query delay.
While some queries may be time-tolerant, others may have
strict deadlines. Finding routes with the minimum delay or
with the minimum energy consumption are thus both critical in
mobile wireless sensor networks. Directly applying protocols
from ad-hoc networks does not meet the specific requirements
of mobile wireless sensor networks. Thus, new techniques
are needed for the case of mobile wireless sensor networks
where disconnected components are the norm rather than the
exception.

In many domains, mobile objects often have relatively
periodic patterns of movement. They tend to have a repeated,
stable sequence of activities because of their social and/or
controlled behaviours. For example, mobile robots in an
automated factory have relatively invariant mobility traces
because they have predefined schedules and areas to work.
Farm animals and animals in the wild also exhibit mobility
behaviours in terms of paths followed, places to rest, feed, etc.
One outcome from these repeated activities is that each mobile
object may encounter a set of other objects periodically, for
example at approximately the same time every day. We call
these sequences of periodic encounters encounter patterns.
Hence, after some learning/training time each sensor can
obtain knowledge about which objects will be encountered in
the future and one can use this information to compute routes
for network packets that minimize energy and/or delay.

In order to illustrate the benefits of encounter patterns, an
example is presented in Figure 1 where we have four objects.
In this example, object o0 is a stationary base station, while
the other three are mobile objects. Encounters, represented by
directed lines, occur during four consecutive time intervals. In
the example, at the beginning of interval I0, object o0 wants to
send a query to object o3. If routing protocols from mobile ad-
hoc networks start route exploration immediately at interval I0,
no route will be found until interval I3. Until then the routing
discovery process is simply a waste of energy. In contrast to
those protocols, and assuming one knows the encounter pattern
for this scenario, two routes can be found to disseminate the
query from o0 to o3. The first route is that object o0 holds



(a) Snapshot at interval I0 (b) Snapshot at interval I1 (c) Snapshot at interval I2 (d) Snapshot at interval I3

Fig. 1. Encounters during four consecutive intervals

the query and sends it to destination o3 during interval I3. The
second route is that object o0 transmits the query to object o1,
and object o1 carries the query and disseminates it to o2. The
query is eventually delivered to object o3 by object o2 during
interval I2. The first route saves energy, but is not the most
efficient in terms of delay, whereas the second route has less
delay but consumes more energy.

In this paper, we address the problem of guaranteed query
delivery in a likely-disconnected mobile network. Towards
this goal, we introduce a graph model which integrates all
encounter patterns under the assumption that they have a
periodic behaviour. Using the graph model, both the minimum
delay and minimum energy consumption problems can be
modelled as optimization problems. The only change between
the graphs used to solve either problem is in the assignment
of weights for the edges. The minimum delay problem can
be modelled as the shortest path tree problem whereas the
minimum energy consumption problem can be modelled as the
minimum weighted Steiner Tree problem. With a modification,
we can use Dijkstra’s shortest path algorithm [9] to find an
optimal solution for the minimum delay problem. However,
because the minimum weighted Steiner Tree problem is NP-
hard, we propose a polynomial time approximation algorithm
to find a multicast tree for routing. The experiments show that
our algorithm can quickly find sub-optimal routes whose en-
ergy cost is typically 2-3 orders of magnitude smaller than the
cost of state-of-art solutions in delay tolerant networks [12].

The remainder of this paper is organized as follows. An
overview of existing techniques to handle queries in mobile
wireless sensor networks is discussed in Section II. We in-
troduce some preliminary terminology and background for
our graph models in Section III. In Section IV, we describe
our graph model and its domain constraints. Mathematical
optimization and optimal algorithms that capture the semantics
of the discovered encounter patterns are presented in Sec-
tion V. Experimental results shown in Section VI present
the performance of our algorithms regarding both unicast and
multicast routing. Finally, conclusions and suggestions for
future work are given in Section VII.

II. RELATED WORK

Research in mobile ad-hoc networks has been very active
in the past several years. Many routing protocols have been
developed to provide end-to-end, i.e., unicasting, communica-

tion under the assumption that there exists at least one route
connecting any pair of objects in the network [19, 21, 33].
However, this assumption is not always true: object move-
ments do impact the connectivity of the network [24], As a
result, such protocols can no longer guarantee that a route will
be found, even though one may exist. For instance, considering
Figure 1, if the query originator was object o1 instead of o0 and
the destination was o3, AODV would simply not find a route.
This is because during no given interval there is a complete
route between o1 and o3. Nonetheless one could clearly route
the query from o1 to o2 at interval I1 and then from o2 to o3
at interval I2 by taking advantage of the encounters between
the objects.

Recently, delay tolerant networks have been introduced to
address the challenge of sometimes-disconnected networks. As
noted earlier, end-to-end communication can be achieved by
storing data and then forwarding it later. To fully utilize oppor-
tunistic encounters without prior knowledge, epidemic routing
protocol was first introduced to provide promising delivery by
flooding the message into the network [43]. Because of a large
number of replications and retransmissions in the network,
this protocol is inefficient regarding network resources such
as bandwidth and storage. In contrast to epidemic routing,
in direct delivery [38] the source delivers the message if and
only if it encounters the destination where minimal storage and
energy usages are guaranteed. However, a low delivery ratio
is always expected because the probability of directly meeting
the destination could be low. Epidemic and direct delivery
routing protocols set upper and lower bounds on resource
usage and delivery ratio in delay tolerant networks.

With respect to inter-contact times and reachability of nodes,
previous work has been shown that nodes mobility and pair-
wise encounters can benefit communications in disconnected
networks [4, 40, 46]. To strike a balance between epidemic
and direct delivery protocols, nodes mobility and pair-wise
encounters have been used to improve routing in delay tol-
erant networks [3, 11, 27, 35, 41]. Researchers focused on
developing or improving routing protocols to include mo-
bility statistics to achieve better performances. For example,
in [8] the authors improved epidemic routing by exploiting
object relative positions through their movements. A Mobile
Relay Protocol was proposed in [31] to handle end-to-
end communication through object mobility. In addition, [26]
presented a novel approach for communication in disconnected



networks by modifying object trajectories to deliver messages.
Beside utilizing nodes mobility, there are other protocols that
also take advantage of object’s social relationships to divert
communications [6, 7, 15, 16]. New architectures are also
proposed to model communications in disconnected networks.
For example, [20] presented a three-tier architecture by using
MULEs to disseminate queries and collect results between
sensors and access points. Instead of using MULEs, special
mobile objects called message ferries with scheduled move-
ments were introduced to improve data delivery in [47].

The previous work shows that object movements can be
exploited to create routing protocols for disconnected net-
works. However, they fall short in two ways: (1) they do
not present a formal model that is flexible enough to reflect
different assumptions and goals, and more importantly, (2)
they do not provide an algorithmic approach to solve the
problem optimally. This paper fills both gaps. We propose a
flexible graph-based model to solve the minimum delay and
minimum energy problems, and we present algorithms to solve
both problems in polynomial time not only for the cases of
unicasting, but also for multicasting.

III. PRELIMINARY DEFINITIONS

Given a set of mobile objects O = {o0,o1,o2, ....on−1}, we
assume that a set of periodic encounter patterns with period
length m is given. We have developed off-line techniques to
find these patterns, which are reported elsewhere [44]. The
encounter patterns are considered given information for the
purposes of this paper.

Definition 1: A periodic encounter pattern with period
length m for a pair of objects {x,y} is a binary time series
Pm

x,y where:

Pm
x,y = {pt}, t = 0,1, · · · ,(m−1) and

pt =

{
1 iff there is a periodic encounter during phase t
0 otherwise

The duration of each phase, and thus of each entry pt in the
time series, is τ .

The period length m of the encounter pattern indicates the
total time over which the pattern repeats itself. For example,
if the duration of each phase is one day and m = 21, the
encounter pattern represents the regular interactions between
objects x and y over a three-week period. The phase t indicates
the interval within the period where regular encounters occur.
For example, continuing the previous example, if p6 = 1 then
objects x and y encounter each other regularly on the first
Sunday in the three-week period, assuming p0 occurs on a
Monday.

During an encounter between two objects, and at no other
time, messages can be exchanged between the two encoun-
tering objects. For instance, in Figure 1(a), o0 encounters o1
during phase I0. Furthermore, mobile objects can relay packets
among themselves. For instance, as illustrated in Figure 1, a

message can be routed from o0 to o2 through o1 at the cost
of two transmissions.

Using encounter patterns, we can solve a variety of prob-
lems in routing a message from a source to one destination
(unicast), or from a source to a set of destinations (multicast),
such that either the energy cost or the time delay for message
delivery is minimized.

Definition 2: The encounter matrix summarizes all periodic
encounters for a given object. We define the encounter matrix
Mk = [mk

jt ] for mobile object ok as:

mk
jt =

{
1 iff pt = 1 ∈ Pm

k, j
0 otherwise

where 0≤ k ≤ (n−1), k 6= j and 0≤ t ≤ (m−1).
We note that the number of objects encountered by any given
object, and thus the number of rows in Mk, is expected to
be much smaller than n. The encounter matrices for the four
objects in Figure 1 are given in Tables I-IV.

TABLE I
ENCOUNTER MATRIX FOR OBJECT O0 .

p0 p1 p2 p3

O1 1 1 0 0
O2 0 0 0 0
O3 0 0 0 1

TABLE II
ENCOUNTER MATRIX FOR OBJECT O1 .

p0 p1 p2 p3

O0 1 1 0 0
O2 1 1 0 1
O3 0 0 0 0

TABLE III
ENCOUNTER MATRIX FOR OBJECT O2 .

p0 p1 p2 p3

O0 0 0 0 0
O1 1 1 0 1
O3 0 0 1 0

TABLE IV
ENCOUNTER MATRIX FOR OBJECT O3 .

p0 p1 p2 p3

O0 0 0 0 1
O1 0 0 0 0
O2 0 0 1 0

IV. THE ENCOUNTER GRAPH

If we combine the encounter matrices for all the mobile
objects in the network, we can create an encounter graph that
represents all the observed periodic patterns for a given set
of objects. For example, Figure 2 gives the encounter graph
corresponding to the behaviours shown in Figure 1.

There are four objects whose encounters are represented
in the graph. The objects are each represented by a different
shape (triangle, circle, trapezoid and diamond). There is an
implicit time axis in this graph, from left to right. The four
different solid-line instances of each shape represent the same
object during four successive time intervals. That is, the left-
hand solid triangle represents object o0 during period t = 0,
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Fig. 2. A graph model reflecting the encounter patterns in Figure 1

and the right-hand solid triangle represents o0 during period
t = 3.

The horizontal left-to-right directed edge from one solid-
line shape to the next instance of the same solid-line shape
to the right represents the possibility for an object to buffer
a message and carry it forward to successive instants in time.
The final edge, from the furthest right-hand instance of a
solid-line shape back to the furthest left version of the same
solid-line shape represents the possibility for a message to be
carried forward in time to the next repetition of the observed
behaviours.

In this example, all encounter patterns have a period length
of m = 4, so the graph has four instances of each solid-line
shape. If we had patterns with different period lengths, the
graph would have a width equal to the least-common multiple
of the periods.

There are four solid-line instances of each shape, and four
dotted-line instances. They enable us to differentiate between
the object in receiving mode (solid), and the same object in
transmitting mode (dotted). For example, the possibility of a
transmission from o0 to o1 during t = 1 is represented by
the directed vertical arc from the dotted triangle in interval
t = 1 to the solid circle in the same interval. Messages can
only be transmitted from one object to another during the

same interval. Thus, transmission arcs cannot cross intervals.
They may, however, be directed vertically either up or down,
depending simply on the relative positions where two objects
have been positioned in the graph. The vertical arcs represent
the encounters in the binary time series; it is these encounters
that make message transmission possible.

Lastly, there is a single ”darker solid” lined version of each
shape. This is a convenient representation of each object as a
potential destination vertex in the graph model. For example,
if our goal is to find the minimum delay path for a message
from o0 to o2, one possibility is to send it from o0 to o1 during
t = 1, and then from o1 to o2 during t = 2. This route could be
found algorithmically by asking for the shortest path (under a
few constraints) from o0 at t = 0 to oD

2 , i.e., to the destination
version of o2.

In summary, we use three types of vertices in our graph
model: receiving vertices V R, transmitting vertices V T and
destination vertices V D. The edges used to connect these
vertices can be grouped into four categories:
• Horizontal edges connect vertices with the same shape to

represent the possibility for an object to buffer and carry
a message from one phase to the next. We denote these
edges as eH

t,o. The first subscript gives the phase number
and the second subscript gives the object number.

• Internal edges connect an object’s receiver to its trans-
mitter. The weight on an internal edge can be used, for
example, to represent the energy cost of transmission.
These edges are denoted eI

t,o.
• Vertical edges link two objects in the same phase, and

represent an encounter between these two objects. They
are denoted eV

t,o1,o2, where o1 and o2 are the indices of
the two objects.

• Destination edges link receivers to their destination vertex
to capture the fact the message has been delivered to its
destination. They are denoted eD

t,o.
We now use this terminology to describe the situation where

an object can deliver a message to a set of destinations.
Here, we assume that each object at a particular phase ei-
ther broadcasts the message to all encountered neighbours
or does not transmit at all. Using the encounter matrices
Mk,0≤ k≤ n−1, the encounter graph is the weighted directed
graph G = (V,E,W ) where:
• V R = {vR

t,i | 0≤ i≤ n−1, 0≤ t ≤m−1} ∈V denotes the
receiving modules for a set of n objects during a period
of length m phases,

• V T = {vT
t,i | 0 ≤ i ≤ n− 1, 0 ≤ t ≤ m− 1} ∈ V denotes

the transmitting modules for a set of n objects during a
period of length m phases,

• V D = {vD
i | 0≤ i≤ n−1} ∈V denotes destination vertices

for a set of n objects,
• EH = {eH

t,i = (vR
t,i,v

R
t+1,i) ∀oi ∈ O, 0 ≤ t ≤ m− 1} ∈ E

denotes the horizontal edges,
• EV = {eV

t,i, j = (vT
t,i,v

R
t, j) ∀oi,o j ∈ O, 0 ≤ t ≤ m− 1} ∈ E

if and only if mi
jt = 1} denotes the vertical edges,

• EI = {eI
t,i = (vR

t,i,v
T
t,i) ∀oi ∈O, 0≤ t ≤m−1} ∈E denotes



the internal edges,
• ED = {eD

t,i = (vR
t,i,v

D
i ) ∀oi ∈ O, 0 ≤ t ≤ m− 1}} ∈ E

denotes the destination edges and
• W represents a function on an edge returning the weight

assigned to it.
This graph is generic enough to be used to represent both
energy and delay costs simply by adjusting the weights W
assigned to each edge in G. We discuss this next.

A. Communication delay

The encounter graph can be used to solve the minimum
delay problem as follows. If an object decides to store the

O2

O1

O0

0

O3

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0

0 0 0

0
0 0

0

000 0

0 0

t=0

0

0 0 0 0

0 0

0
00

0
0

0

D
0

o

Do
1

Do
2

D
3

o

t=3t=2t=1

Fig. 3. Graph model for the minimum delay problem

message and carry it on to the next phase to disseminate it in
the future, this yields a communication delay equal to τ , i.e.,
the duration of the current phase pt . Transmission preparation
(the weight for internal edges) yields a small amount of delay
between the receiving module and the transmitting module,
and signal propagation (the weight for vertical edges) also
introduces another delay. However, we can treat both delays
as zero because both are embedded within the weight of
the horizontal edges τ , which is the duration of each phase.
In addition, the weight of destination edges is always zero
because they are artificial edges which do not add any delay in
the physical environment. Therefore, the weights of the edges
for minimum delay routing are (see Figure 3):

• ∀eH ∈ EH , W (eH) = τ .
• ∀eV ∈ EV , W (eV ) = 0.
• ∀eI ∈ EI , W (eI) = 0.
• ∀eD ∈ ED, W (eD) = 0.

B. Energy consumption

The encounter graph can also be used to find the minimum
energy consumption for routing a message. If an object decides
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Fig. 4. Graph model for the minimum energy consumption problem

to carry the message on to the next phase and disseminate it
in the future, this requires a very small amount of energy for
data storage during the current phase pt . In this paper, we
let ε be the energy cost for an object to store data during
a phase with duration τ . If an object carries the message on
to the next phase, this results in an energy cost, ε , to store
the message. In contrast, if the object decides to transmit the
message immediately to a set of encountered objects during
the current phase, a certain amount of energy, depending on the
application, is required. In this paper, we assume homogeneous
networks where each transmission costs the same amount of
energy, ρ . However, our model can be used to model the case
where the energy required to transmit a message between two
objects depend on when and where they meet. For instance,
in some encounters the objects can be closer or further apart.
Formally, to model energy costs for routing, the weights of



horizontal and vertical edges can be defined as follows (see
Figure 4):

• ∀eH ∈ EH , W (eH) = ε .
• ∀eV ∈ EV , W (ev) = 0.
• ∀eI ∈ EI , W (eI) = ρ .
• ∀eD ∈ ED, W (eD) = 0.

C. Domain Constraints

In some scenarios, an intermediate object within two con-
secutive encounters during the same phase may participate in
the optimal route. For example, if object o0 has a query for
object o2 during phase p0, the route with the minimum delay
in Figure 2(a) is vR

0,0 → vT
0,0 → vR

1,0 → vT
1,0 → vR

2,0 → vD
2 with

zero delay if the propagation delay and processing delay are
negligible. In this route, the intermediate object o1 acts as
a bridge for two consecutive transmissions during the same
phase. However, because the encounters between object o1 and
objects o0 and o2 both take place during the same phase and
the order of encounters is unknown in the graph model, we
forbid such type of retransmissions during the same phase.
Therefore, we propose a domain-oriented constraint called
NOT (NO reTransmissions during the same phase in the
graph). However, if a retransmission is required for an object
during a particular phase, e.g., object o1 at phase p0 with
a transmission from object o0 during the same phase, it has
to wait for the same phase during the next repetition of the
periodic encounters. As a result, each retransmission costs an
additional delay that equals the total period of time of such a
periodic pattern. Because of this domain-oriented constraint,
conventional shortest path algorithms cannot be used to find
optimal routes satisfying the constraint. In the next section,
we discuss mathematical optimization and modifications of
Dijkstra’s algorithm [9] that enforce the NOT constraint in
their results for both the minimum delay and minimum energy
consumption problems.

V. MATHEMATICAL OPTIMIZATION AND ALGORITHMS

One of basic functions of a network is to distribute infor-
mation to various groups of destinations with the objective
to minimize the usage of resources including overall energy
consumption or/and communications delay. Given a set of
destinations, our objective is to distribute the query to them
using the minimum delay or the minimum energy consump-
tion. We need to find a tree structure rooted at the source that
connects desired destinations in the graph. The tree in our
graph model is a Steiner Tree. Our objective is to find the
minimum weighted Steiner Tree that connects the source to
all destinations [28, 29].

In this section, we introduce two approaches, binary integer
programming and optimal/approximate algorithms, to find
routes for communications in our graph model. We discuss
the multicast version of the problem as the unicast is a special
case of multicast.

A. Binary integer programming

Mathematical programming is a powerful tool that can
be used to solve optimization problems. Targeting both the
minimum energy consumption and minimum delay problems
by assigning different weights on our graph model, the optimal
route is a set of sequential edges where the summation of
weights on those edges is the minimum. If we treat all edges
as variables, an edge either does participate in an optimal
route (its value is 1) or does not (its value is 0). This general
approach is called the binary integer programming. In this
section, we define the formulation to find a minimum weighted
Steiner Tree that satisfies our constraints in the graph model.

1) The minimum delay problem: In the minimum energy
consumption problem, our goal is to find the Steiner Tree
whose total weight is the minimum. This is because the energy
cost on the path from the source to a destination is isolated
from other paths. The total weight of a tree is the cumulative
cost of all these paths. However, this strategy is incorrect
for the minimum delay problem where there are multiple
destinations in a query. The reason is that the time to deliver
a query to one destination may partially overlap the time to
deliver the query to other destinations. For example, as shown
in Figure 2 a), if object o2 has a query for objects o0 and
o3 at the beginning of phase p0, the minimum delay will be
2τ instead of 3τ because the delay (τ) to deliver the query
from o2 to o0 is embedded within the delay (2τ) of path from
o2 to o3. Therefore, when we count the minimum delay, it
is incorrect to simply add delays from all paths. This special
phenomenon cannot be modelled by linear programming, but
we can solve this problem algorithmically; this is discussed in
detail in the next subsection.
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2) The minimum energy consumption problem: In this
binary integer program, each edge in the graph has a weight.
Each edge either participates in the minimum weighted Steiner
Tree or it does not. Therefore, if we set each edge as a
variable, this variable has value either one or zero. Because
each edge also has a weight, our goal is to minimize the total
weight of the Steiner tree being used in order to connect all
desired destinations. To define the formulation of all edges,
we first have a look at different types of vertices. As we
described before, we have three types of vertices in our
graph model. Receiving and processing vertices have five



y = ∑
e∈E

w(e) · e

subject to

e =
{

1 if used in the minimum Steiner tree
0 otherwise (C1)

m−1

∑
t=0

eD
t,i =

{
1 if vD

i ∈ D
0 otherwise (C2)

∑
vT

t, j

eV
t, j,i + eH

t−1,i + eD
t,i = 0 where vR

t,i = vR
st,s (C3)

eI
t,i + eH

t,i ≥ 1 where vR
t,i = vR

st,s (C4)

∑
vT

t, j

eV
t, j,i ≤ 1 where vR

t,i 6= vR
st,s and ∀oi,o j ∈ O and 0≤ t ≤ m−1 (C5)

∑
vT

t, j

eV
t, j,i + eH

t−1,i ≤ eI
t,i + eH

t,i + eD
t,i where vR

t,i 6= vR
st,s and ∀oi,o j ∈ O and 0≤ t ≤ m−1 (C6)

eI
t,i ≤ eH

t−1,i where vR
t,i 6= vR

st,s and ∀oi,o j ∈ O and 0≤ t ≤ m−1 (C7)

∑
vT

t, j

eV
t, j,i + eH

t−1,i ≥ eH
t,i where vR

t,i 6= vR
st,s and ∀oi,o j ∈ O and 0≤ t ≤ m−1 (C8)

∑
vT

t, j

eV
t, j,i ≥ eD

t,i where vR
t,i 6= vR

st,s and ∀oi,o j ∈ O and 0≤ t ≤ m−1 (C9)

∑
vT

t, j

eV
t, j,i + eH

t−1,i ≤ eI
t,i +1 where vR

t,i 6= vR
st,s and ∀oi,o j ∈ O and 0≤ t ≤ m−1 (C10)

∑
vT

t, j

eV
t, j,i + eH

t−1,i ≤ eH
t,i +1 where vR

t,i 6= vR
st,s and ∀oi,o j ∈ O and 0≤ t ≤ m−1 (C11)

eI
t,i ≤∑

vR
t, j

eV
t,i, j where ∀oi,o j ∈ O and 0≤ t ≤ m−1 (C12)

eI
t,i ≥ eV

t,i, j where ∀oi,o j ∈ O and 0≤ t ≤ m−1 if mi
jt = 1 (C13)

Fig. 6. Binary Integer program for routing in our graph model

categories of edges in either incoming and outgoing directions.
Transmitting vertices have only incoming internal edges and
outgoing vertical edges. Lastly, destination vertices have only
incoming destination edges.

A vertex vR
t,i ∈V R has five types of incoming and outgoing

edges as shown in Figure 5: a set of vertical incoming edges, a
set of horizontal incoming edges, a set of horizontal outgoing
edge, a set of vertical outgoing edge to the transmitting module
and an edge to vD

i . The combinations of their corresponding
values are also presented in Table V. The total weight of all
incoming edges must be zero or one. Otherwise, it violates the
definition of a tree structure where there is only one path from
the root to every node on the tree. In addition, a vertex vR

t,i ∈V R

has four different roles in routing. First, it can be the source
vertex. As shown in the seventh column of Table V where the
cross sign represents the invalid combination of values, it has
no incoming edge, and the edge to its destination vertex must
not be enabled. Second, this type of vertex can be the vertex on

the tree which directly connects to its destination vertex. The
third role for this type of vertex is to be an intermediate vertex,
which does not directly connect to the destination vertex. The
last one is a vertex that does not participate to form the tree.
Similar to the last two roles, intermediate vertices and vertices
which are not on the tree also have some invalid combinations.
In Table V, the last column summarizes all invalid scenarios
for the last three roles of receiving and transmitting vertices.

A vertex vT
t,i has the following properties shown in Figure 5:

1) if vT
t,i ∈V T is an intermediate vertex on the tree, eI

t,i = 1
while ∑

vR
t,k

eV
t,i,k ≥ 1 for all ok ∈ O if mi

kt = 1.

2) if vT
t,i ∈V T is not on the tree, eI

t,i = 0 while ∑
vR

t,k

eV
t,i,k = 0

for all ok ∈ O if mi
kt = 1.

A vertex cD
i has the following properties shown in Figure 5:

1) ∑
m−1
t=0 eD

t,i = 1 if vD
i is one of the destinations

2) ∑
m−1
t=0 eD

t,i = 0 if vD
i is not one of the destinations



TABLE V
COMBINATIONS OF EDGE VALUES TO IDENTIFY i ∈V R

Constraint ∑vT
t, j

eT
t, j,i eH

t−1,i eI
t,i eH

t,i eD
t,i vR

st,s vR
t,i ∈V R

0 0 0 0 0 ×
√

C9 0 0 0 0 1 × ×
C8 0 0 0 1 0

√
×

C8,C9 0 0 0 1 1 × ×
C7 0 0 1 0 0

√
×

C7,C9 0 0 1 0 1 × ×
C7,C8 0 0 1 1 0

√
×

C7,C8,C9 0 0 1 1 1 × ×
C6 0 1 0 0 0 × ×
C9 0 1 0 0 1 × ×

0 1 0 1 0 ×
√

C9 0 1 0 1 1 × ×
0 1 1 0 0 ×

√

C9 0 1 1 0 1 × ×
0 1 1 1 0 ×

√

C9 0 1 1 1 1 × ×
C6 1 0 0 0 0 × ×

1 0 0 0 1 ×
√

1 0 0 1 0 ×
√

1 0 0 1 1 ×
√

C7 1 0 1 0 0 × ×
C7 1 0 1 0 1 × ×
C7 1 0 1 1 0 × ×
C7 1 0 1 1 1 × ×
C6 1 1 0 0 0 × ×
C6 1 1 0 0 1 × ×
C6 1 1 0 1 0 × ×
C10 1 1 0 1 1 × ×
C6 1 1 1 0 0 × ×
C11 1 1 1 0 1 × ×

1 1 1 1 0 ×
√

1 1 1 1 1 ×
√

To enforce all properties regarding different types of ver-
tices, we have the formulation shown in Figure 6. Given a
directed graph G, let w(e) be the cost of an edge e∈ E. Given
a source vertex vR

st,s and a set of destination vertices D, we
present our BIP formulation for the minimum edge-weighted
directed Steiner tree problem.

There is a total of 13 constraints in our formulation.1

• Constraint C1 treats each edge as a variable to determine
whether that edge is on the optimal Steiner tree.

• Constraint C2 controls destination vertices. All desired
destination vertices on the tree must have one incoming
edge. Other destination vertices that do not belong to the
destination set D must not have any incoming edge at all.

• Constraints C3 and C4 are used to constrain the source. A
source has no incoming edge (see C3). In addition, it must
have at least one outgoing edge except the destination
edge (see C4).

• Constraints C5 to C11 are used to regulate receiving and
processing vertices. For example, constraint C5 requires
that every receiving and processing vertex can only have
one incoming vertical edge.

1Table V provides details about the functionalities of each constraint in this
group. In that table, cross signs represent violations; check signs represent
valid scenarios.

• Constraints C12 and C13 are used to control each trans-
mitting vertex. If its internal edge is on the tree, at least
one of the vertical outgoing edges must also be on the
tree. Otherwise, both incoming and outgoing edges must
not be included on the tree.

Even though we have discussed the domain-oriented con-
straint in the previous section, no constraint in our formulation
is dedicated to it. However, if we have a close look at Table V,
our domain-oriented constraint is enforced by combining dif-
ferent constraints in the formulation. We know that in a logical
tree, each vertex has only one incoming edge and at least one
outgoing edge. However, if we look at two valid scenarios
presented by the last two rows in Table V, both incoming
vertical and horizontal edges can be included on the tree. It
seems that they are contradictions to the definition of a logical
tree, but this is valid because of our domain constraint and the
repetition of periodic encounters. For example, if an object
receives a packet from another object (one of the incoming
vertical edges is enabled), this object can store the packet and
transmit it in the future. If the best time to transmit this packet
is at the same phase during the next period, as a result, both
incoming horizontal and vertical edges will be included on the
tree.



B. Optimal and approximate algorithms
We have to treat the minimum energy consumption and

minimum delay problems slightly differently. This is because
the nature of time in the minimum delay problem is quite
different from that of energy usage in the minimum energy
problem. In this section, we present approaches that address
these two problems separately.

1) The minimum delay problem:
The minimum delay problem in routing is relatively simple.

The main result can be found in the following theorem.
Theorem 1: The minimum delay in routing for a set of

destinations equals the maximum of all pair-wise minimum
delays between the source and destinations.

Proof: We prove this theorem by induction. Let us use d
to represent the number of destination objects in the graph.

If d = 1, then a path with minimum delay from the source to
that object must also yield the the minimum delay for unicast
routing.

If d = 2, we can pick one object first and find a path with
the minimum delay from the source to it. Then, we find a path
with the minimum delay from the source to the second object.
If the delay to reach the second object is less than the delay to
reach the first object, the delay to reach the second object must
be embedded in the delay to reach the first object. Otherwise,
the minimum delay to reach the second object must include
the delay to reach the first object. Therefore, in either case,
the maximum of the minimum pair-wise path delays among
two objects is the minimum delay in multicast routing.

Let us assume our theorem is true when d = n−1.
If d equals n, for every combination of n− 1 destination

objects, the minimum delay to reach those n−1 destinations is
the maximum of all minimum path delays between the source
and n− 1 destinations. By introducing one extra destination
object, we need to show that the theorem statement holds as
well. We can now use the same argument for the case where
d = 2 to complete the induction argument.

From our theorem, many classical shortest path algorithms
can be used to solve the minimum delay problem with
small modifications. The algorithm used in this paper for
the minimum delay problem is a modification of Dijkstra’s
algorithm [5]. Its pseudo-code is presented as Algorithm 1.
There is one difference with respect to the original algorithm
in [5]: the if-statement at lines 18 to 21 is inserted to enforce
the NOT constraint. This if-statement does not re-direct the
optimal route; it only adjusts the weight of related vertices
to avoid transmissions that violate the NOT constraint. For
example, in line 19, if the predecessor and successor of the
current vertex on the route are from the same phase, it is a
violation of the NOT constraint. If the retransmission must
be part of the optimal route, that means the edge in the
graph for the retransmission represents the only encounter
between both intermediate objects. In other words, there is
only one path between the source and the destination. Because
of our domain-oriented constraint, the retransmission to its
successor has to wait, or the packet has to be held until
the same phase in the next period. As shown in line 20,

data storage requires an additional energy cost, ε ×m units
of energy, to store the message for a whole period with m
phases. The principle of the modification in Algorithm 1 is:
whenever there is a violating retransmission, we eliminate the
retransmission by having the object to store the query until the
same encounter at the next period in time. Because the cost
of storing the message has already been included in the final
cost in Algorithm 1, the route returned is an optimal route that
does not violate the NOT constraint. Note that if we remove
lines 18 to 21 from the algorithm, this part of the algorithm
is exactly the same as Dijkstra’s algorithm. In other words,
the path to each destination generated by the algorithm which
satisfies our constraint is guaranteed to be the optimal route,
and furthermore, it can be found in polynomial time (c.f.,
Theorem 2). In summary, our modified Dijkstra’s algorithm
finds a shortest-path tree for a given set of destinations. Based
on Theorem 1, the minimum delay to reach all destinations
equals the weight of the longest shortest path on the tree.

In order to prove the correctness of Algorithm 1, we prove

Algorithm 1 ModifiedDijkstra(G,D,w,s)
1: for each vertex v ∈V [G] do
2: d[v]← ∞ //initialize the distance to be infinite
3: p[v]← null //set the predecessor to be empty
4: end for
5: d[s]← 0 //initialize the source distance
6: S← /0
7: Q←V [G] //initialize the priority queue
8: while Q 6= /0 do
9: u = EXTRACR-MIN(Q)

10: if u ∈ D then
11: D← D\{u}
12: end if
13: if D == /0 then
14: break
15: end if
16: for each vertex v ∈ Ad j[u] do
17: if d[v]> d[u]+w(u,v) then
18: //check whether the predecessor/successor and the

current vertex are from the same phase
19: if phaseOf(v) == phaseOf(p[u])

&& phaseOf(v) == phaseOf(u) then
20: d[v]← d[u]+ ε ∗m
21: else
22: d[v]← d[u]+w(u,v)
23: end if
24: p[v]← u
25: end if
26: end for
27: end while
28: // retrieveTree function retrieves the tree by traversing the

predecessor recorded at each destination back to the source
29: T = retrieveTree(G,D,s)
30: return T



that the tree returned from that modified algorithm is the
shortest path tree.

Theorem 2: Given a source and a set of destinations, Al-
gorithm 1 returns a shortest path tree satisfying the NOT
constraint.

Proof: As we discussed before, the only difference be-
tween Algorithm 1 and Dijkstra’s algorithm is that we enforce
the NOT constraint from line 18 to 21. As a result, Algorithm 1
only examines paths that satisfy the NOT constraint, and does
not change the logic of Dijkstra’s algorithm. Therefore, the
path to each one of the destinations returned by Algorithm 1
satisfies the NOT constraint, and must be the shortest based
on the correctness of Dijkstra’s algorithm. Because all optimal
paths originate from the same source, if we combine those
optimal paths, the tree returned must also be a shortest path
tree satisfying the NOT constraint.

Using Theorems 1 and 2, the weight of the longest path be-
tween the source and any destination returned by Algorithm 1
is the minimum delay in order to deliver a query to multiple
destinations.

It is obvious that the if-statement from line 18 to 21 only
updates the weight of the corresponding vertices. It does
not bring additional complexity into the algorithm. Therefore,
based on the complexity of Dijkstra’s algorithm, our algorithm
has polynomial complexity.

2) The minimum energy consumption problem:
As we mentioned before, the minimum energy consumption

problem can be solved by finding the minimum weighted
Steiner Tree in the graph where the destination vertices are
leaf nodes [32]. However, the minimum weighted Steiner Tree
problem is a classical NP-hard problem [13] and has been
well studied [17, 18, 45]. The minimum weighted Steiner
tree problem can be further divided into two categories: node-
weighted Steiner tree and edge-weighted Steiner problem. The
minimum energy consumption problem in our graph model
falls into the second category. In graph theory, the minimum
weighted Steiner tree problem is NP-hard in general; however,
studies have shown that the Steiner tree problem can be solved
in polynomial time in many special graph types such as Series-
Parallel graph, Halin graph, K-planer networks and strongly
chordal graphs [39, 45]. Unfortunately, our graph model does
not belong to any one of these graph types.

Previous works have presented both exact algorithms and
approximation algorithms that are based on some heuristics.
The exact algorithms that have been proposed are all expo-
nential algorithms [10, 14, 25]. They are not practical for
graph models with a large number of vertices. Therefore, we
focus on approximation algorithms which can find the result
faster, although without the guarantee of optimality. Many
works have been conducted on heuristics [22, 34, 36, 42].
The most well-known heuristics are from Kou et al. [22]
and Takahashi and Matsuyama [42]. In their paper, Kou et al.,
used the minimum spanning tree heuristic on source and
destinations; Takahashi and Matsuyama used the minimum
cost paths heuristic. Both algorithms can achieve a O(kn logn)
complexity where k is the number of destinations; however,

these algorithms do not work on directed graphs.
In order to find a heuristic for directed graphs, we decided

to modify previous heuristic algorithms for undirected graphs.
The minimum spanning tree heuristic cannot be applied to
our graph model because the destination vertices has no
outgoing edges. The algorithm cannot construct a complete
graph among the source and all destination vertices. Therefore,
we focus on the minimum cost path heuristic.

In the minimum path cost heuristic [42], the algorithm first
finds a path from the source to one of the destinations that has
the minimum cost among all destinations. Using the path as
the base of a tree, the algorithm selects the next destination
that is the closest to the base tree and merges the selected
path to that tree. The algorithm keeps doing this until the
last destination vertex has been included in the tree. This
is why the algorithm has O(kn logn) complexity. There are
k destinations in the tree, and each one of them is required
to run Dijkstra’s algorithm once. As we just mentioned, the
destination vertices in our graph model have no outgoing edge.
Thus, there is no path to any vertex in the graph by using the
destination vertex as the source. To change that, we make
a small modification from the original algorithm. Instead of
running Dijkstra’s algorithm from destination vertices, the next
closest destination vertex can be used by running Dijkstra’s
algorithm from all intermediate vertices on the result tree.
A detailed algorithm is described in Algorithm 2. In the

Algorithm 2 Shortest Path Heuristic to find minimum
weighted directed Steiner tree(G,D,w,s)

1: T ← {s} //initialize the result tree
2: shortestPathTree = null
3: while D 6= /0 do
4: minCost ← ∞

5: P ← /0 //the set used to hold the selected path
6: v̂← null
7: d̂← null
8: for each vertex v ∈ T do
9: if shortestPathTree[v] == null then

10: shortestPathTree[v]←ModifiedDijkstra(G,D,w,v)
11: for each destination d ∈ D do
12: if cost(path(v,d)∈shortestPathTree[v])<minCost

then
13: minCost = cost(path(v,d))
14: v̂←v
15: d̂←d
16: P←path(v,d)
17: end if
18: end for
19: end if
20: end for
21: T←T∪P\{v̂}
22: D←D\{d̂}
23: end while
24: return T



algorithm, we introduce a storage space, shortestPathTree,
to store the shortest-path tree rooted at each intermediate
vertex that is returned by our modified Dijkstra algorithm in
Algorithm 1. In addition, path(v,d) represents the shortest path
from vertex v to destination d in the shortest-path tree rooted at
v. In summary, Algorithm 2 incrementally builds the heuristic
tree by inserting a path to one of the destinations at a time.

In the following analysis, we show that our algorithm is a
k-approximation algorithm in the worst case.

Theorem 3: Given any directed graph G = (V,E), a source
vertex s and a set of destinations D where D∈V , Algorithm 2
always provides a solution to the minimum weighted directed
Steiner tree problem that is at most k times the optimal
solution.

Proof: According to Algorithm 2, there is an order among
all destinations for the sequence that each one has been added
into the tree. For simplicity, we name the destination vertices
as d1,d2, · · ·dk. A destination vertex with a smaller index is
inserted into the result tree earlier. Correspondingly, the same
sequence can be used to name the destination vertices in the
optimal directed Steiner tree.

Given the optimal tree for the minimum weighted directed
Steiner tree problem for k destinations, T OPT , let cOPT (u,v) be
the weight of the path between vertices u and v on the optimal
tree. For the tree that is incrementally built by Algorithm 2,
let c(x,y) be the weight of the path between vertices x and
y. Vertices without OPT notation are in the tree built by
Algorithm 2, and the ones with OPT notation are from the
optimal tree.
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vOPT

d1

T
OPT

2

d 3 d k

vOPT

3

vOPT

k

.............

Insert     into our treed1

Fig. 7. Subtrees Partial tree T1 and T OPT

At the beginning, our algorithm creates a path with the
smallest cost connecting the source and one of the destinations.
As a result, our partial tree T1 is a single path as shown in the
left part of Figure 7 2.

Because the path selected by Algorithm 2 is the shortest path
between the source and any one of the desired destinations,
the following inequality holds.

c(s,d1)≤ cOPT (s,d1) (2)

Next, the algorithm adds another destination d2 into the
tree. For illustration, please refer to Figure 8. When our
algorithm adds the second destination d2 into the tree, there

2All the figures in this proof are for demonstration only, vertices such as
v2, vOPT

2 and so on can be any vertex on the corresponding trees.

is an intermediate vertex on the path (s,d1) in the left part of
Figure 7 that has the smallest cost to connect d2. Let us call
this vertex v2. Both v2 and d2 in this example can be mapped
to v̂ and d̂ in Algorithm 2 at each iteration. Similarly, there is a
corresponding vertex on the optimal tree, T OPT , that connects
d2 to the path between s and d1. Let us call it vOPT

2 . Because
the path between v2 and d2 has the smallest cost over all paths
between s and d2, we have the following inequality.

c(v2,d2) ≤ c(shortestPath(s,d2))

≤ cOPT (s,vOPT
2 )+ cOPT (vOPT

2 ,d2)

(3)
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Fig. 8. Partial tree T2 and T OPT

When our algorithm adds the third destination d3, with the
same argument before, there are vertices v3 and vOPT

3 in our
tree and the optimal tree connecting d3. Because of the shortest
path heuristic in Algorithm 2, the cost between path v3 and d3
in our tree must be less than or equal to the any path between
s and d3 in the graph. Therefore,

c(v3,d3) ≤ c(shortestPath(s,d3))

≤ cOPT (s,vOPT
3 )+ cOPT (vOPT

3 ,d3) (4)
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Fig. 9. Partial tree T3 and T OPT

The same analysis applies to each insertion of one desti-
nation. When the last destination dk is inserted, we have the
inequality shown in Equation 5.

c(vk,dk) ≤ c(shortestPath(s,dk))

≤ cOPT (s,vOPT
k )+ cOPT (vOPT

k ,dk) (5)

After including all destinations, the cost of our tree, T , is:

c(T ) = c(s,d1)+ c(v2,d2)+ · · ·+ c(vk,dk) (6)



Similarly, the cost of the optimal tree, T OPT , is:

cOPT (T ) = cOPT (s,d1)+ cOPT (vOPT
2 ,d2)

+ · · ·+ cOPT (vOPT
k ,dk) (7)

By applying the inequalities in Equations 2, 3, 7 and so
on, we have:

c(T ) ≤ cOPT (s,d1)+ cOPT (s,vOPT
2 )+ cOPT (vOPT

2 ,d2)

+ · · ·+ cOPT (s,vOPT
k )+ cOPT (vOPT

k ,dk)

= c(T OPT )+
k

∑
i=2

cOPT (s,vOPT
i )

and
c(T )

c(T OPT )
≤ 1+

∑
k
i=2 cOPT (s,vOPT

i )

c(T OPT )
(8)

Therefore, our algorithm is a 1+ ∑
k
i=2 cOPT (s,vOPT

i )

c(T OPT )
approxi-

mation where c(s,vOPT
i ) is the shared weight with the existing

subtree in the optimal solution for a destination when it
is added into the tree. There are two extreme cases for
this shared weight. First, the newly added destination does
not use any edge from existing subtree; second, the newly
added destination fully utilize edges on existing subtree to
be reachable by the source s. Therefore, it is easy to see
that 0≤ cOPT (s,vOPT

i )≤ c(T OPT ). In the worst case scenarios
where all cOPT (s,vOPT

i ) = c(T OPT ), we have

c(T )
c(T OPT )

≤ 1+
(k−1)∗ c(T OPT )

c(T OPT )
= k

As a result, c(T ) ≤ k ∗ c(T OPT ) and Algorithm 2 is a k-
approximation algorithm.

C. Unicast, Broadcast Versus Multicast

In the previous discussion, distributing queries aiming at
a set of destinations is called multicast whereas unicast and
broadcast are just special cases of multicast. When there is
only one destination, finding the minimum Steiner tree is to
find the shortest path between the source and the destination.
Both the minimum delay and minimum energy consumption
problems in unicast routing are relatively easy to solve by
using Algorithm 1. To achieve broadcast in our model, our
objective is to connect the source to all destination vertices
with the minimum Steiner tree rather than finding the mini-
mum spanning tree to connect all vertices in the graph. With
some variations, our graph models can also solve unicast and
broadcast routing by treating them as special cases of multicast
routing.

VI. PERFORMANCE EVALUATION

In order to evaluate our method, we propose two sets of
experiments where one set uses synthetic traces, and the other
one uses real traces.

A. Evaluation Metrics

The complexity of the network is controlled by two different
parameters: the number of objects in the network and each
object’s radio range. Increasing the number of objects will
increase the number of vertices and horizontal edges. In
addition, increasing the radio range increases the coverage
area of each sensor, which leads to more encounters. In this
section, we first present experiments using synthetic traces
in which we evaluate the effectiveness and efficiency of our
algorithms with respect to two parameters: (1) the number
of objects, n, and (2) the radio range, r. In addition, a third
parameter that is the number of destinations in a query, d,
is introduced for multicast routing. Next, experiments using
real mobile traces are presented. We compare our algorithm
to those results obtained via two straightforward delay tolerant
network routing protocols, epidemic [43] and direct deliv-
ery [38] protocols, because both protocols exhibit optimal
bounds on either delivery ratio or network resources. In order
to make a fair comparison, we make the assumption that there
are unlimited buffers and energy supply in each objects to
guarantee the maximum delivery ratio.

Two metrics are examined in our experiments: (1) Delivery
delay and (2) energy cost. Regarding both metrics, the lower
their values are, the better the performance is. In addition, in
order to have accurate results, each measurement is calculated
by taking the average of each metric from running 100 queries
individually with different sources and destinations.

In our experiments, we evaluate both unicast and multicast
communications. This is because in some application one type
of communications may be preferred over the other.

B. Experiments using synthetic traces

First, we examine the running time of our algorithm. Our
experiments are implemented in Java with JDK 1.6. All
mobility traces are generated using NS2 [1] Random Way-
Point mobility model. Because this mobility model is not
suitable to generate traces for a large number of objects, the
maximum number of objects used in our experiments is 250. In
addition, experiments are conducted within a 400×400 square
meters area whereas artificial objects have the radio range up
to 50 meters. Finally, we make the reasonable assumption that
transmitting a message is much more expensive than simply
holding on to a message during a phase. This is related to
how one assigns cost to the vertical and horizontal edges in
our graph model, respectively. We set the ratio of the energy
cost to transmit a message over the energy cost to store-and-
carry a message to be 1000:1. In our experiments, the energy
cost grows quadratically with the radio range. In addition, the
duration of each phase is set to be 60 seconds.

1) Unicast: In unicast routing, we focus on a special case
of multicast where there is one destination per query. As
we mentioned earlier, both the number of objects in the
network, n, and object’s radio range, r, are controlled in our
experiments. By default, n= 150 and r = 30. The performance
of our algorithm is presented in Figure 10 that contains two
sets of experiments. The first column presents experimental
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Fig. 10. Unicast performance regarding delay and energy cost

results with varying n while maintaining a fixed 30 meters
radio range. The second column shows results by varying radio
range while keeping 150 objects in the network. We compare
our algorithm with direct delivery and epidemic routings. In
order to be as fair as possible to epidemic routing we just
accounted for the energy and delay spent until a route is found.
This applies to the rest of our experiments.

Figures 10(a) and (b) show the end-to-end delay obtained
by running our algorithm. Recall that both our approach and

the epidemic routing provably yield the optimal delay, thus a
comparison is not relevant in this case. As expected the more
the objects (larger the radio range) the larger the number of
encounters and the higher the probability that a shorter route
is found. This causes descending trends in all three approaches
in both experimental settings. However, the direct delivery
method has the highest delay because the source has to wait
until it meets the destination directly. In addition, this method
does not have obvious declining trends because of the random
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Fig. 11. Multicast performance regarding delay and energy cost

mobility model where the probabilities to meet other object
do not vary significantly.

Figure 10(c) shows that the obtained energy cost is fairly
insensitive to the the number of objects in the network. It
turns out that for a given default radio range, all queries can
be optimally delivered in a fairly small number of hops. We
believe this is an artifact, rather than a characteristic, due
to the size of the area of interest. In this experiment, direct
delivery uses the least amount of energy because only one

transmission is required to deliver the query whereas epidemic
protocol costs the most because of flooding the query to
every encountered object that does not have a copy of the
query. Our algorithm has a performance very similar to that
of direct delivery. When the radio range increases as shown in
Figure 10(d), the energy cost increases for both direct delivery
and our algorithm.

This may sound contradictory as larger radio ranges lead
to more encounters and thus more chances of creating better



TABLE VI
REAL USER TRACES

Source Users Duration Type Analysed Users Analysed Duration
Milano [30] 44 19 days PMTR encounters 44 19 days
UMPC [23] 36 12 days iMote encounters 36 12 days
Cambridge [37] 12 6 days iMote encounters 12 6 days
Milano = University of Milano
PMTR = Pocket Mobility Trace Recorder
UMPC = University Pierre et Marie Curie

routes. However, as in the case of Figure 10(c), the actual
number of hops in the optimal is fairly constant. The curves
goes up due to the well known fact that the energy cost
increases quadratically (at least) with the radio range. This
increase in energy usage itself dominates any energy savings
by having better routes. In contrast, the energy cost for
epidemic algorithm increases at the first, then it drops after
a certain point of time. It is because the increasing usage of
energy first dominates the performance, then as the number
of encounters increases, the saving from having better routes
dominates the energy cost. If we keep increasing the radio
range to a certain point of time where all objects encounter
each other during the same phase, epidemic protocol will
always find a route with only one transmission just like direct
delivery.

In Figure 10(e), direct delivery has only approximately 60%
of successful delivery ratio because of the random mobility
model. This ratio increases to approximately 75% as the radio
range increases in Figure 10(f) because more encounters in
the network increases the probability to meet a certain object.
The performance of direct delivery in the previous studies
is calculated on successful deliveries whose total number is
much less than that of our algorithm and epidemic protocol.
Therefore, its performance could be overestimated. To cancel
such effect, we compare three approaches only with the
queries that are deliverable using direct delivery. The result
in Figures 10(g) and (h) shows that our algorithm performs
just as good as direct delivery.

2) Multicast: In addition to the number of objects in the
network, n, and object’s radio range, r, we introduced the
number of destinations, d, in each query in our experiments
for multicast routing. By default, n = 150, r = 30 and d = 50.
The experimental results are presented in Figure 11 that
contains three sets of experiments. The first column presents
experimental results with varying the number of destinations in
a query while maintaining 150 objects in the network and the
radio range to be 30 meters. The second column shows results
by varying the number of objects in the network while keeping
30 meters radio range and each query with 50 destinations. The
third column gives experimental results by varying radio range
where we use 150 objects in the network and queries with 50
destinations. In general, the experimental results are similar to
the results for unicast routing except multicast routing costs
more time and energy.

Figures 11(a), (b) and (c) show the query delay obtained
by running different methods when varying three parameters.

Results show that direct delivery has the highest delay in all
circumstances because of the random mobility model where
the probabilities to meet other object do not vary significantly.
As the number of destinations increases, both our algorithm
and epidemic protocol spend more time searching in the
network to deliver the query to all destinations. For the other
two parameters, as expected the more the objects and larger
the radio range cause more encounters in the network leading
to less time to reach all destinations.

For energy cost, epidemic routing has the highest energy
cost in all three settings because of its nature of flooding,
and direct delivery always has the lowest cost. Figure 11(d)
shows that more energy is required in order to reach more
destinations whereas experimental results in Figures 11(e) and
(f) are very similar to the results in unicast routing. As shown
in Figure 11(e), energy cost is fairly insensitive to the the
number of objects in the network because of the artifact from
random mobility model due to the size of the area of interest.
The energy cost increases as the radio range increases because
the energy cost is quadratically related to the radio range while
the actual number of hops in the result is fairly constant. In
general, our algorithm has a close performance as the direct
delivery.

Similar to what we have discussed in unicast routing, direct
delivery is not able to reach all destinations, Figures 11(g),
(h) and (i) present the percentage of reachable destinations
for each of method. We can see that direct delivery can
only reach approximately 60% of destinations in average
if we vary the number of destinations and the number of
objects in the network. This probability is determined by the
random mobility model. However, the percentage of reachable
destinations increases as the radio rang increases because of
more encounters in the network for direct delivery. Because
our results are calculated by taking an average of delivering
queries to all reachable destinations, only delivering to a
portion of destinations makes direct delivery to be the best
approach. For fair comparisons, we compare the results of
three approaches prorated to the percentage of reachable
destinations in direct delivery. In Figures 11(j), (k) and (l)
our algorithm has either an equal or a better performance
comparing to direct delivery after prorating the result.

C. Experiments using real mobile trace

In this section, we use traces collected from real mobile
objects. There are total three traces being used in our experi-
ments. Table VI presents the details of these traces. We derived
encounters from each trace and assume derived encounters are
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Fig. 12. Unicast and multicast performance regarding delay and energy cost in real mobile traces

periodic encounters which repeat themselves at every analysed
duration along the time.

In our experiments, we again compare our algorithm to
epidemic and direct delivery routing protocols. Again, each
measurement is calculated by taking the average of 100 uni-
cast/multicast queries where queries are generated randomly.
For each trace, we use the same set of queries across three
routing approaches to guarantee the fair comparison.

1) Unicast: Regarding delay in the optimal results found
by our algorithm are equal to the ones returned by epidemic
routing protocol. This is suggested by experimental results
shown in Figure 12(a). However, when we compare our
method to direct delivery routing, the routes found by direct
delivery always have longer delays than our method.

For the energy cost, an object has to transmit whenever there
is an encounter in epidemic protocol. This approach causes
much more redundant transmissions comparing to directly
delivery and our optimal routing in the graph model. As shown
in Figure 12(c), average energy cost from epidemic routing is
an order of multiple magnitude higher from direct delivery

and our optimal algorithm. In theory, our algorithm can find
an optimal route which is less or equal to the energy cost from
direct delivery protocol. The prorated energy cost is presented
in Figure 12(e).

2) Multicast: For the delay problem, our algorithm finds
the shortest path tree whose delay equals the delay of the
longest branch. This delay is the same as the delay returned
by the epidemic protocol. As shown in Figure 12(b), the result
of our algorithm is the same as the epidemic algorithm. In
the direct delivery protocol, it always has to wait for the
directly encounter. In general, the source has to wait until all
reachable destinations are encountered. Therefore, the delay
for each query in direct delivery protocol is longer than the
delay to deliver the message to destinations in our algorithm
and epidemic algorithm.

For the energy cost in the multicast, our algorithm and direct
delivery consume much less energy comparing to epidemic
protocol as shown in Figure 12(d). Experimental results show
that our heuristic multicast tree works better than direct
delivery in all three traces. Again, prorated energy analysis



is presented in Figure 12(f).

VII. CONCLUSION

Assuming a scenario of a mobile wireless network where
disconnections are more the norm than an exception, we
explored the ways mobility patterns of objects can be used to
improve routing in such networks. We modelled the problem
with a graph that is flexible enough to accommodate several
different assumptions. We developed algorithms to solve opti-
mally the complementary problems of forwarding a query with
minimum delay, and with minimum energy, both in polynomial
time. Our experiments show the effectiveness and efficiency
of our solutions.

In order to simplify our model, we assume that each mobile
object has the same mobility behaviours during every consec-
utive period in time. However, mobility behaviours are often
disturbed by unexpected events. How to handle these sudden
incidents requires our further studies. Also, all calculations
and computations are currently performed in a centralized
approach. In applications where there are thousands of mobile
objects, this centralized approach may be not practical. Like
conventional routing protocols, mobile objects should be able
to make local decisions based on their mobility patterns. How
to distribute this process is another interesting direction for
further research.
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