
University of Alberta

Faster Gradient-TD Algorithms

by

Leah Hackman

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

c© Leah Hackman
Fall 2012

Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of
this thesis and to lend or sell such copies for private, scholarly or scientific research purposes only.

Where the thesis is converted to, or otherwise made available in digital form, the University of
Alberta will advise potential users of the thesis of these terms.

The author reserves all other publication and other rights in association with the copyright in the
thesis and, except as herein before provided, neither the thesis nor any substantial portion thereof

may be printed or otherwise reproduced in any material form whatsoever without the author’s
prior written permission.

Abstract

Gradient-TD methods are a new family of learning algorithms that are stable and

convergent under a wider range of conditions than previous reinforcement learn-

ing algorithms. In particular, gradient-TD algorithms enable off-policy problems—

problems where the distribution of the data is different from the distribution the

learner seeks to learn about—while using function approximation in a data-efficient

on-line manner. Despite these positive features, previous empirical work, though

limited, suggests that gradient-TD methods are slower than they could be. One

example of this slowness is in on-policy problems, where gradient-TD methods have

been shown to be slower than conventional-TD methods in some cases (Maei, 2011).

In this thesis, we examine this slowness through on- and off-policy experiments and

introduce several variations of existing gradient-TD algorithms in search of faster

gradient-TD methods. We then introduce hybrid gradient-TD methods, a class of

algorithms unique in their ability to use conventional-TD and gradient-TD learning

updates when appropriate. We introduce three algorithms, two of which are hybrid

gradient-TD methods and close with the first experimental results. In particular,

we present promising results which indicate one of our new algorithms provides the

benefits of a hybrid gradient-TD method while outperforming previous gradient-TD

methods.

Acknowledgements

Perhaps before I acknowledge anyone, I should acknowledge the fact that the road

to this thesis has been longer and more winding than I, or any of my fellow travellers

could have predicted. And so I must thank everyone for staying the course with me

through thick and thin (and mixed metaphors).

Thank you to my supervisor, Rich Sutton, who always saw the path even when I

couldn’t.

From the lab, I want to thank Hamid Maei for going in circles with me when things

were going over my head. Thank you to Patrick Pilarski, for his endless enthusiasm

and research-uncle ways. Thank you to Gabor Bartok, and Martha & Adam White

for their humour and everyday kindness. Really, my time at the university has been

an absurdity of riches with regards to all the wonderful people I have met and so I

will leave the rest unnamed, but thank you to everyone who has made my time at

the UofA so much better.

Thank you Mike & Shayna Bowling and Joel Koop for all the Tuesdays. Thank

you to Michaela et al. for my sanity. Thank you to Anna Koop for her unwavering

friendship, support, and knitting advice. Thank you to Dan, Quinn, Arabesque,

Geoff, and Zak for being the lucky charms in my balanced breakfast. Thank you to

Hailey Markowski and Jeffrey Woodcroft for what can only be described as every-

thing. Thank you to Andrew Butcher for loving me through the good, the bad, and

stargaze. And lastly, thank you to my family for a lifetime of unconditional love,

support, and inside jokes.

Contents

1 Introduction 1

2 Reinforcement Learning and Off-Policy Learning 3

2.1 The Reinforcement Learning Problem 3

2.2 Sarsa and Expected Sarsa with Function Approximation 9

2.3 Off-Policy Problems in Reinforcement Learning 11

3 Gradient-TD Algorithms 16

3.1 An Argument for Bellman Error Based Objective Functions 17

3.2 Deriving GQ-NEU . 19

3.3 The Projected Bellman Error and the Derivation of GQ2 and GQ . . 20

3.3.1 The Projected Bellman Error 20

3.3.2 Deriving GQ and GQ2 . 21

4 Assessment on On-Policy Prediction Problems 25

4.1 Random Walk with Actions Problem 25

4.2 Experimental design . 27

4.3 Conventional-TD Methods . 30

4.4 Learning Rate of Conventional- and Gradient-TD Methods 30

4.5 Recomputed TD-error . 33

4.6 Conclusion . 38

5 Assessment on Off-Policy Prediction Problems 41

5.1 Algorithms . 41

5.2 Off-Policy Random Walk with Actions Problem 42

5.3 Experimental Settings . 43

5.4 Learning Rate of Conventional- and Gradient-TD Methods on Off-

Policy Problems . 44

5.5 Factored GQ and Double-Factored GQ 48

5.6 Learning Rate of Factored GQ and Double-Factored GQ on Off-policy

Problems . 51

5.7 Conclusions . 51

6 Hybrid Gradient-TD Methods 55

6.1 AB and Hybrid-GQ . 56

6.2 TDGQ . 59

7 Hybrid Algorithm Experiments 61

8 Conclusion 66

List of Tables

4.1 This table shows the three types of features used in the random walk

problem. Note that the feature vector for si, a0 and si, a1 are related:

the feature vector can be thought of having two halves corresponding

to the two actions, and the first half of si, a0 is equal to the second

half of si, a1 . 27

4.2 A table of agent parameters used where the gradient-td second learn-

ing rate β is a scalar multiple of α where (β = α ∗ η). Each unique α

and η pairing were tested. 28

5.1 A table of the behaviour and target policies used in this experiment.

Here B20 means the agent chooses the right action 20% of the time

and chooses left the remaining 80%. An experiment set was run for

every possible crosswise pairing of behaviour and target policy from

this chart. 43

5.2 A table of agent parameters used where the gradient-td second learn-

ing rate β is a scalar multiple of α where β = α ∗ η. Each unique α

and η pairing were tested. 43

List of Figures

2.1 The environment and policies for Baird’s Off-policy Counterexample.

This counterexample shows that TD algorithms using function ap-

proximation are not guaranteed to converge on off-policy problems.

In Baird’s counter example, the target policy selects the solid line

action with a probability of 1. The behaviour policy selects the solid

line action with probability of 1/7. The behaviour policy selects the

dotted line action with a probability of 6/7 (and the agent transitions

to each of the six states indicated with probability of 1/6). 14

4.1 The 5 state markov chain environment 26

4.2 Graphing the RMSPBE of Sarsa and Expected Sarsa for the first 200

episodes. Both algorithms use their best α parameter for each of the

three feature sets. 31

4.3 Graphing the RMSPBE of Sarsa and Expected Sarsa averaged over

1000 episodes when varying the setting of the step-size parameter α. 32

4.4 Graphing the average RMSPBE of the gradient-TD algorithms and

Expected Sarsa for the first 200 episodes 34

4.5 Graphing the average RMSPBE of the gradient-TD algorithms with

their recomputed TD-error variants and Expected Sarsa for the first

200 episodes . 36

4.6 Graphing the effect changing α and η have on the averaged RMSPBE

of GQ+. For some of the high values of α, where the graphs are very

yellow, the reported RMSPBE was either inf or became numerically

unstable and thus no valid data was attainable. Readers may question

why there are some parameters for which our methods are divergent:

while our gradient-TD methods are guaranteed to converge, this is

not for all parameter settings. In particular, the convergence guar-

antee for gradient-TD puts several constraints on α and β which are

violated by our use of fixed valued α and β parameters. Thus it is

not unreasonable that we see divergent behaviour with some of our

parameter settings. 37

4.7 Graphing the RMSPBE of GQ and GQ2 and Expected Sarsa over

various values of η. The best α for each η value is graphed here . . . 39

5.1 Using a fixed behaviour policy that chooses the actions left and right

with equal probability, these graphs show how modifying the target

policy (indicated as a probability of selecting the right action) affects

the RMSPBE averaged over all 50 runs and 500 time-steps. The

values for α and η used by each algorithm are the values which have

the minimum mean RMSPBE averaged over all target polices. We

omit some of the data points for GQ-NEU and GQ-NEU+ on the

dependent features problem as their performance was significantly

worse than the other algorithms and made presentation of all the

algorithms more difficult. Standard error bars are left off the graph

as the errors are smaller than the symbols used to mark data points. 45

5.2 Using a fixed target policy that chooses the actions left and right with

equal probability, these graphs show how modifying the behaviour

policy affects the RMSPBE averaged over all 50 runs and 500 time-

steps. The values for α and η are the values which have the minimum

mean RMSPBE averaged over all behaviour polices. Standard error

bars are left off the graph as the errors are smaller than the symbols

used to mark data points. 46

5.3 Using a fixed behaviour policy that chooses the actions left and right

with equal probability, these graphs show how modifying the target

policy (indicated as a probability of selecting the right action) affects

the RMSPBE averaged over all 50 runs and 500 time-steps. The val-

ues for α and η used by each algorithm are the values which have the

minimum mean RMSPBE averaged over all target polices. Standard

error bars are left off the graph as the errors are smaller than the

symbols used to mark data points. 52

5.4 Using a fixed target policy that chooses the actions left and right

with equal probability, these graphs show how modifying the target

policy (indicated as a probability of selecting the right action) affects

the RMSPBE averaged over all 50 runs and 500 time-steps. The

values for α and η used by each algorithm are the values which have

the minimum mean RMSPBE averaged over all behaviour polices.

Standard error bars are left off the graph as the errors are smaller

than the symbols used to mark data points. 53

7.1 Using a fixed behaviour policy that chooses the actions left and right

with equal probability, these graphs show how modifying the target

policy (indicated as a probability of selecting the right action) affects

the RMSPBE averaged over all 50 runs and 500 time-steps. The val-

ues for α and η used by each algorithm are the values which have the

minimum mean RMSPBE averaged over all target polices.Standard

error bars are left off the graph as the errors are smaller than the

symbols used to mark data points. Results for AB are omitted for

the inverted and dependent feature graphs as the algorithm performs

significantly worse, dwarfing the differences between the other algo-

rithms and making it difficult to interpret the graphs. 63

7.2 Using a fixed target policy that chooses the actions left and right with

equal probability, these graphs show how modifying the behaviour

policy affects the RMSPBE averaged over all 50 runs and 500 time-

steps of our Hybrid Algorithms. The values for α and η are the values

which have the minimum mean RMSPBE averaged over all behaviour

polices. Standard error bars are left off the graph as the errors are

smaller than the symbols used to mark data points. 64

Chapter 1

Introduction

Gradient Temporal-Difference (Gradient-TD) methods are a family of recently de-

veloped algorithms in Reinforcement Learning (RL). While seemingly simple in idea

and execution, these algorithms enable us to solve a very difficult and long-studied

sub-problem in the RL field. In RL, a decision-maker tries to learn how best to be-

have by observing the effects of its actions and changing its behaviour accordingly.

Gradient-TD methods enable the decision-maker (or agent) to efficiently learn the

value of a variety of different ways of behaving from one stream of experience, while

still guaranteeing that the agent’s estimate of the value is continually improving.

More formally, this sub-problem is called the off-policy learning problem.

In an off-policy problem, a learning agent ’s goal is to learn the value of behaving

according to a specific target policy, but must do so using data generated by be-

having according to a different behaviour policy. It has been a long-standing prob-

lem in RL to find an online algorithm which is provably convergent on off-policy

learning problems while using function-approximation. Solutions to this problem

have existed but have often suffered from practicality issues—be it that they are

computationally too slow, require too much memory, or that they have infeasible

requirements to ensure convergence (Bradtke & Barto 1996; Baird 1995; Precup,

Sutton, & Dasgupta 2001). The gradient-TD family of algorithms are unique in

that not only are they provably convergent on off-policy problems while using func-

tion approximation, but they have linear memory and computation-per-time-step

requirements, making them extremely lightweight and applicable methods.

While gradient-TD algorithms boast many desirable properties, the limited experi-

mental work using these methods thus far indicates that the trade off for the benefits

of gradient-TD algorithms is a slower convergence rate, particularly compared to the

performance of conventional-TD approaches on on-policy problems (problems where

the target and behaviour policy are the same)(Maei 2011).

1

In this thesis, we take a simple Markov Decision Process (MDP) environment—a

variation of the Random Walk problem with actions—and through a series of exper-

iments, explore how gradient-TD algorithms compare to conventional-TD methods

at solving the state-action prediction problem using linear function approximation.

We start by looking at GQ, GQ2, and GQ-NEU (the latter two methods are natural

action-valued extensions of the standard state-valued GTD2 and GTD algorithms),

using Expected Sarsa as a conventional-TD algorithm for comparison.This is the first

experimental work published using this state-action value methods. From there, we

successively explore variations on these methods in order to find faster gradient-TD

methods, with varying degrees of success.

Following this exploration of state-action value gradient-TD algorithms, we then in-

troduce the idea of hybrid gradient-TD methods—algorithms which automatically

use conventional-TD learning updates on on-policy problems and gradient-TD learn-

ing updates on off-policy problems. These algorithms solve the problem of gradient-

TD methods being slower than conventional-TD methods on on-policy problems

and show promise in providing faster convergence on off-policy problems. We then

introduce three algorithms, AB, Hybrid-GQ, and TDGQ: the first two algorithms

are briefly discussed in an appendix of Maei’s thesis (2011), and the third is a brand

new method, making its first appearance in this thesis. Both Hybrid-GQ and TDGQ

are hybrid gradient-TD methods. We present the first published results for all three

algorithms and end with exciting results which show that Hybrid-GQ successfully

solves our on-policy performance issue while out-performing all our gradient-TD

methods in our experiments.

Chapter 2 begins the thesis with an introduction to Reinforcement Learning, all the

associated necessary vocabulary and notation, and to the off-policy problem and

existing solutions. Chapter 3 then introduces gradient-TD methods, and in par-

ticular, gives derivations for the three base gradient-TD algorithms used predom-

inantly in this thesis: GQ, GQ2, and GQ-NEU. Following these two background

chapters, chapters 4 and 5 are experimental chapters, exploring the performance of

our gradient-TD algorithms on on-policy and off-policy problems using our Ran-

dom Walk with actions environment. In these chapters we also introduce several

new algorithms and algorithmic variations in search for faster performing gradient-

TD methods, with varying degrees of success. Chapter 6 introduces the concept

of hybrid-TD algorithms and presents three new algorithms—AB, Hybrid-GQ and

TDGQ. We then present results using these new hybrid gradient-TD algorithms in

chapter 7 on the same off-policy problem as used in chapter 5.

2

Chapter 2

Reinforcement Learning and

Off-Policy Learning

In this thesis, there are two background chapters: one to outline the fundamental

problem our work stems from, and a second to introduce the existing solution algo-

rithms we will be working with in this thesis. This chapter is the former, providing

background information on the reinforcement learning (RL) learning problem and

the off-policy learning problem. We begin with a brief introduction to reinforce-

ment learning and the standard notation used throughout this thesis, and we then

touch on several key topics from reinforcement learning that will be important in

this thesis: we discuss the difference between prediction and control problems, in-

troduce the basic ideas behind Temporal Difference learning, and briefly go into the

use of function approximation for learning value functions. In the second half of

this chapter we introduce off-policy learning, discuss why solving off-policy learn-

ing problems has been challenging, and briefly explore various existing off-policy

learning methods.

2.1 The Reinforcement Learning Problem

Reinforcement learning (RL) is an area of machine learning that focuses on online

learning algorithms for learning to select actions when interacting with a world in

order to maximize a scalar signal. The learning system is called the agent and

the world it interacts with is called the environment. The signal to be maximized,

which can have positive and/or negative values, is called the reward. The interaction

between the agent and the environment consists of a temporal sequence of states,

actions, and rewards. At each discrete time step t = 0, 1, 2, 3, . . ., the learning

agent receives a state st ∈ S, takes an action at ∈ A, and as a result receives

a reward rt ∈ R and the next state st+1 ∈ S. Experience is thus a sequence:

3

. . . st−1, at−1, rt, st, at, rt+1, st+1, Note that time is an inherent and important

aspect of experience in the RL framework, which is in stark contrast to many off-

line learning settings.

Typically when talking about an environment, there are two important things one

needs to know to define the dynamics of the world: how the environment selects

the next state, and how the environment generates the rewards. These two defining

questions are expressed as the next state transition probability distribution, which

gives the probability of being in a state s given an agent’s history of experience (

P (st+1 = s′ | st, at, st−1, at−1 =, . . . , s0, a0)), and the expected next reward, which

is the expectation of the next reward rt+1 given an agent’s history of experience

(E [rt+1 | st, at, st−1, at−1, . . . , s0, a0]).

In the case of reinforcement learning, one often assumes (and often requires when

proving the convergence of algorithms) that the environment can be modelled as a

Markov decision process (MDP). An MDP has one defining property:

P (st+1, rt+1 | st, at, st−1, at−1, . . . , s0, a0) = P (st+1, rt+1 | st, at) (2.1)

This property (the Markov property) asserts that the state st is sufficient information

to make decisions about the future—all future state transitions and rewards in an

environment are independent of any experience before time t. Accordingly, under the

Markov property, the next-state transition probability distribution can be simplified

so that it is only conditioned on the most recent state and action:

Pas,s′ = P
(
st+1 = s′ | st = s, at = a

)
. (2.2)

The expected next reward can be similarly simplified and notated as:

Ras,s′ = E
[
rt+1 | st = s, st+1 = s′, at = a

]
. (2.3)

Combining the next-state transition probabilities and the expected next reward with

knowledge of how the agent is selecting actions completely expresses the expected

stream of experience of an agent.

On a high level, a reinforcement learning problem is really two interrelated problems:

the control problem and the prediction problem. The control problem is focussed

4

on how an agent should behave. Ultimately, the agent’s goal is to behave in a way

that maximizes reward however, while learning, the agent may need to behave in an

exploratory manner in order to learn what actions are best. Formally, we refer to

an agent’s behaviour as its behaviour policy and we express a policy as a conditional

probability distribution of how likely an agent is to take an action when in a given

state: P (a | s). We refer to the behaviour policy as µ and use it in notation as

follows: µ (a | s) = P (a | s, µ). 1

The prediction problem is about predicting the expected return of the states—or

state-action pairs—of an environment. In this thesis we exclusively focus on learning

the expected return for state-action pairs and so our discussion will focus on this

case. The return of a state-action pair, < s, a >, is the sum of all rewards experienced

after taking action a leaving state s at time-step t:

Rt = rt+1 + rt+2 + . . .+ rT ,

This definition of the return makes sense when we consider problems that have a

fixed start and end point (and thus we have a final reward rT). Such problems are

referred to as episodic and the return is the sum of the rewards experienced until

the end of the episode. In the case where a problem has no end point we call the

problem continuous and in this case we must use a discounted return,

Rt = rt+1 + γrt+2 + γ2rt+3 + . . . =
inf∑
k=0

γkrt+k+1. (2.4)

The discounted return is also used in episodic problems with long episodes. From

this point on, we use the discounted return in all equations as it is the more general

case (note that when using a value of γ = 1, the discounted and non-discounted

return are one and the same).

Note that the return is dependent upon the actions the agent selects. As such, the

expected return of a state is dependent on a policy. We refer to the policy used in the

prediction problem as the target policy and refer to this policy as π. The expected

return of a state-action pair < s, a > can then be written as E [Rt | st = s, at = a, π];

1Note that using µ for the behaviour policy goes against traditional notational convention:
typically policies are abbreviated using the symbol π, where multiple policies are distinguished
using subscripts. Here, because of the importance of distinguishing between the behaviour and
target policy in off-policy problems, the symbol µ is used for the behaviour policy and π is reserved
for the target policy. We ask readers to suspend their curiousity about target policies and off-policy
problems for a moment longer and read on.

5

here t is any time-step and the expectation assumes that actions after time-step t

are selected according to policy π. In an on-policy problem, the behaviour policy µ

and target policy π are the same—the agent gathers data according to the policy

µ, and simultaneously learns to predict the expected return for that same policy.

This thesis is particularly concerned with off-policy problems—problems where the

behaviour and target policy are different—and we will discuss this case in greater

detail later in this chapter.

Returning again to our discussion of the prediction problem, it is the goal of the

prediction problem to learn the expected return for all possible state-action pairs.

We formulate this problem as needing to learn a value function, Qπ, which maps

state-action pairs to their expected return: Qπ : S ×A→ R. Accordingly, we often

refer to the expected return of a state-action pair as the value of the pair. The true

value function for the target policy π is defined as satisfying the following equation:

Qπ (s, a) = E [Rt | st = s, at = aπ] = E

[∑
i=t+1

γi−1ri | st = s, at = a, π

]
(2.5)

In this thesis, we denote the true target-policy value function as Qπ and denote

learned approximations of the value function as Q̂

In the full RL-problem, where we solve both the control and prediction problem

at once, these two problems are inherently interrelated—the value function informs

the policy about how valuable actions can be and, in turn, the policy is followed to

gather data in order to learn the value function. In practice, an agent interleaves two

learning steps: one step improving its value function and another step improving its

policy. This cycle is repeated, with changes in one component affecting the other

and vice versa, until convergence. When evaluating RL methods however, it is

sometimes clearer and more informative to look at the agent’s performance on just

the control or prediction problem. In the case of this thesis, we will only be looking at

our algorithms performance on the prediction problem. This simplification allows

for easier analysis of results and is also a necessity given some of the algorithms

presented in this thesis have not yet been proven to converge in the control case.

Before we can discuss gradient-TD methods in the next chapter, we pause here to

explore some of the basic foundational methods for solving prediction problems. One

approach to learning the value function, is to collect actual samples of the return

and use an average of the returns experienced to learn the value for each state-

6

action pair. This idea of averaging actual samples of the return is the Monte Carlo

approach to solving the prediction problem (Sutton & Barto 1998). A learning agent

using a Monte Carlo approach thus waits until a full return is sampled—at the end

of one episode, or when enough experience has passed that γt+k is sufficiently close

to zero— and then updates its estimate of the value for all states visited in that

episode. An example of a simple Monte Carlo value function update is as follows:

Q̂(st, at)← Q̂(st, at) + α
[
Rt − Q̂(st, at)

]
. (2.6)

Here, the value of the state action pair < s, a > is improved by using the difference

between the experienced return and the current estimate of the value. Monte Carlo

methods have the benefit of needing no knowledge of the dynamics of the environ-

ment, but have the disadvantage of needing to wait until a full return is experienced

before any learning can be done. This can be particularly problematic with long

episodes or continuous learning problems.

An alternative approach to solving the prediction problem is Temporal Difference

(TD) learning (Sutton 1984). TD-learning is one of the seminal reinforcement learn-

ing prediction methods. The core ideas of TD-learning are at the heart of many rein-

forcement learning methods, including the gradient-TD methods we will be looking

at in this thesis. To understand the fundamental idea behind TD-learning we must

first discuss the Bellman Equation2 (Sutton & Barto 1998):

Qπ(s, a) =
∑
s′

Pas,s′

[
Ras,s′ + γ

∑
a′

π(a′ | s′)Qπ(s′, a′)

]
(2.7)

where s′ is selected from the set of all possible next states given the agent is in state

s and has taken action a, and a′ is selected from the set of all actions possible in state

s′. This equation gives a recursive relationship between the value of a state-action

pair and the value of the next possible state-action pairs. 3

If the environment is an MDP and one has the underlying next-state transition dis-

2We are discussing the Bellman Equation for state-action values. Typical discussions of the
Bellman Equation will be phrased in terms of learning state values. For brevity and simplicity,
we will simply refer to this as the Bellman Equation, and refrain from restating that this is the
Bellman Equation for state-action values.

3To see why this recursive relationship works, consider that Q (s, a) = E [Rt | st = s, at = a, π].
We can expand the expected return and rewrite this equation as: Q (s, a) =

E [rt + γRt+1 | st = s, at = aπ]. From here, note that we can substitute our value function in for
Rt+1, arriving at Q (s, a) = E [rt + γQ(st+1, at+1) | st = s, at = aπ].

7

tribution, Pas,s′ , and expected next-reward, Ras,s′ , one could use dynamic program-

ming to solve the Bellman equation. Dynamic programming is often not a feasible

solution however, due to large state/action spaces and/or a lack of knowledge of the

underlying MDP for an environment. Regardless, the Bellman equation gives us the

pivotal idea of bootstrapping : using the relationship between neighbouring states

in order to learn the value of one state-action pair using the value of neighbouring

pairs.

One other important idea that we get from the Bellman equation is the Bellman

Error. The Bellman error is the difference between the estimate of Qπ(s, a) and the

expected next reward and next state-action value, (Ras,s′ +γQπ(s′, a′)). The Bellman

error measures how inconsistent the value function is: is the estimate of the value

for any state-action pair appropriate given the value estimates of its neighbours?

The concept behind TD-learning is to combine the idea of bootstrapping and min-

imizing the bellman error with the idea of using sampled rewards and state-action

transitions from Monte Carlo methods. For the purposes of this thesis, we will dis-

cuss the Sarsa algorithm, the state-action compliment to the basic TD-learning algo-

rithm (Rummery & Niranjan, 1994), to explain the fundamentals of TD-learning. At

every time-step, Sarsa takes the current sampled transition< st, at, rt+1, st+1, at+1 >

and updates its estimate Q̂(st, at) so that Q̂(st, at) and Q̂(st+1, at+1) are more con-

sistent with one another:

Q̂(st, at)← Q̂(st, at) + α
[
rt+1 + γQ̂(st+1, at+1)− Q̂(st, at)

]
(2.8)

The estimate Q̂(st, at) is moved by a small amount (dictated by the size of the

step-size parameter α) in the direction of a sample of the Bellman error. We refer

to this sample of the Bellman error as the TD-error and often notate it as δt =

rt+1 +γQ̂(st+1, at+ 1)− Q̂(st, at). Using δ in our notation, we can rewrite the Sarsa

update as:

Q̂(st, at)← Q̂(st, at) + αδt (2.9)

Sarsa is thus able to use samples, like Monte Carlo methods, but avoids having to

wait for the return of an episode. This means that Sarsa is able to update it’s value

function after ever step—learning is immediate. The use of the TD-error to gain

the benefit of both sampling and bootstrapping is a very pervasive idea in the field

8

of RL and many of the algorithms in the field draw their roots from this simple

principle, including the gradient-TD algorithms we will look at in this thesis.

2.2 Sarsa and Expected Sarsa with Function Approxi-

mation

Until this point, our discussion of value functions has implied that one learns a

unique value for each individual state-action pair. While a value function can be a

table of learned values, with a value learned for every state-action pair, the state

and action space of an environment is often too large for a table to be feasible. Value

tables become too large and a large state-action space requires a lot of experience

before an agent experiences every possible state-action pair at least once. Also, a

table of values does not lend itself easily to generalization between similar states

and actions. As such, some form of function approximation is often used.

When using function approximation, the learning problem includes a feature func-

tion, notated as φ(s, a), which maps states or state-action pairs to a vector of

features. There are no constraints on what these features may be—they may be

anything from binary values to labels—so long as they provide compatible input for

the chosen function approximation technique. In the case of linear function approx-

imation, which we focus on in this thesis, the agent learns a set of linear weights θ

so that the value of a state or state-action pair is approximated by the dot product

of θ and φ(s, a): Q̂(s, a) = θ>φ(s, a). In this thesis, we will be using linear function

approximation for learning the value function in all of our learning algorithms.

Using linear function approximation, our TD-error becomes δt = rt+1+γθ
>
t φ(st+1, at+1)−

θ>t φ(st, at) (Sutton & Barto 1998). Our Sarsa update then becomes:

θt+1 ← θt + αδtφ(st, at). (2.10)

This should look similar to our update for Sarsa without function approximation,

however, note that we multiply the TD-error by the current feature vector. In this

way, the weights in θ are updated proportionally to how influential they were in

generating the current TD-error: if a feature φi(st, at) was 0 for an update, the

i-th learned weight (θi) did not (and cannot) contribute to the value of the current

state-action pair, and thus that weight is not responsible for the TD-error generated

by that transition and should not be updated. Similarly, if φi(st, at) was non-zero,

9

then θi is able to impact the value of the current state-action pair, and thus that

weight should be adjusted according to the TD-error.

In this thesis, part of our evaluation of gradient-TD methods involves comparing

them to conventional-TD methods for on-policy problems. While Sarsa is truly

a foundational conventional-TD method, we also will be looking at a Sarsa variant

named Expected Sarsa (van Seijen, et al. 2009). We will address why Expected Sarsa

is appropriate for our experiments in our on-policy experiment chapter (chapter 4).

For now, we will only focus on presenting the algorithm.

While Sarsa takes it’s name from the full sampled transition< st, at, rt+1, st+1, at+1 >

used in its update, Expected Sarsa does not use a full sampled transition. In place

of the experienced next action at+1, Expected Sarsa uses an expectation over the

next action instead:

Q̂(st, at)← Q̂(st, at) + α

[
rt+1 + γ

∑
a

π(st+1, a)Q̂(st+1, a)− Q̂(st, at)

]
. (2.11)

To simplify the update for Expected Sarsa with linear function approximation,

we introduce a new piece of notation. When we use linear function approxima-

tion, the expectation term in our update
∑

a π(st+1, a)Q̂(st+1, a) is replaced with∑
a π(st+1, a)θ>φ(st+1, a). To simplify this, we introduce the notation4 φ̄π(s) =∑
a π(s, a)φ(s, a), allowing us to rewrite the expected next state value as θ>φ̄π(st+1).

Using this new notation, the update for Expected Sarsa with linear function approx-

imation is

θt+1 ← θt + α
[
rt+1 + γθ>t φ̄

π(st+1)− θ>t φ(st, at)
]
φ(st, at). (2.12)

Using this expectation over the next action, Expected Sarsa has been shown to help

reduce variance in updates, meaning larger values for the step size (α) are feasible

in practice (van Seijen et al. 2009). This can speed up learning.

Up until this point, we have refrained from discussing one key element of TD meth-

ods: the TD fixed-point. Sometimes referred to as the TD-solution, or the LSTD-

4We will continue to use this notation throughout the thesis as it is also used by our gradient-TD
methods. Here, we use the super script π to indicate that we’re taking the expectation according to
the target policy. Later, we will also use the superscript µ when discussing the expected state-action
feature vector using the behaviour policy µ.

10

solution, the TD fixed-point is perhaps most appropriately named the linear-TD

fixed-point as it is the fixed point of TD-learning when using linear function ap-

proximation. The TD fixed point occurs when learning effectively stops and the

expected update, E [δtφ(st, at)] is zero. As such, the TD fixed-point, θ∗, is the point

which satisfies:

0 = E
[
(rt+1 + γθ∗>φ(st+1, at+1)− θ∗>φ(st, at))φ(st, at)

]
= E [δtφ(st, at)] = −Aθ∗+b

where A = E
[
φ(st, at)(φ(st, at)− γφ(st+1, at+1)

>] and b = E [rt+1φ(st, at)].

Thus solving for θ∗ gives us that θ∗ = A−1b. Both Sarsa and Expected Sarsa

converge to this fixed point, as do our gradient-TD methods which we will see soon.

2.3 Off-Policy Problems in Reinforcement Learning

An off-policy learning problem is one where the agent solves the prediction problem

using one policy—the target policy π—while the agent is controlled by a different

behaviour policy µ. Fundamentally, off-policy problems are a subclass of the broader

learning problem: trying to learn to predict data drawn according to one distribution

using data drawn from a different distribution. Expressed as this more general idea,

this problem is not unique to reinforcement learning, however, we limit the breadth

of our discussion here to off-policy problems in the context of reinforcement learning.

There can be many practical reasons why one might want to use different behaviour

and target policies. One common reason for separating the target and behaviour

policy is so that the agent can learn the value function for an optimal policy while

using an exploratory policy to gather data. Q-learning is a well known example of an

off-policy algorithm whose target policy is exploitative—using its current knowledge

of the world to pick the best actions—while allowing for a much more exploratory

behaviour policy (Watkins 1989). Another reason one may need to use different

target and behaviour policies is when data may be difficult, expensive or dangerous

to obtain. For example, one may want to learn the value of using a new control

policy for monitoring a large factory: trying the new policy directly in order to

learn whether the new policy is safe or profitable is somewhat counterproductive.

It would be preferable if one could learn the value of the new policy using readily

available existing data of the factory. Similarly, one may want to initially use data

11

generated by a human controller for a robot so that the human can make the robot

explore large parts of the space while avoiding damage to the robot. Lastly, off-

policy learning is useful for those interested in learning multiple things at once. An

agent may want to learn value functions for many possible target policies all at the

same time from the same behaviour stream.

To understand the difficulty in solving off-policy problems let us reconsider the

Bellman equation (equation 2.7) and how the Bellman equation factors into the

update for Sarsa. In the Bellman equation we need to know Pas,s′ and Ras,s′ in

order to relate Qπ(s′, a′) to Qπ(s, a). The Sarsa update relies on the fact that the

probability distribution of the transition from s to s′ is inherent in the frequency

of these transitions occurring: transitions from s to s′ will occur in our data with

a frequency proportional to the true dynamics of the problem. Therefore, if we

are twice as likely to transition to s′′ as s′ from state s, then we will see twice as

many samples transitioning to s′′, and we will update Q̂ twice as often using s′′,

thus the value function incorporates the state transition model inherently. Herein

lies the problem: our data is inherently selected according to the distribution µ but

we want to learn the value Qπ(s, a) according to the distribution π—thus we can no

longer rely on the proportional frequency of states and actions in our data to provide

an unbiased estimate of Qπ. Algorithms that try to solve this problem tend to fall

into one of two camps: methods that remove the bias and methods that reframe the

learning update.

The camp that wants to remove the bias is populated by methods that use the data

as given but corrects for the bias so that the end result is an unbiased estimate of

the value function according to π. Importance sampling techniques are an example

of methods that remove the bias. In importance sampling methods, all updates are

weighted according to a ratio of the likelihood of seeing the history of experience up

to the current state when following the target policy versus following the behaviour

policy (Precup, Sutton, & Dasgupta 2001). Unfortunately, importance sampling

suffers from the fact that as histories become longer, this ratio has incredibly high

variance which can cause computational issues where the ratio is too large or too

small to be accurately represented.

The alternative approach is to reframe the problem: instead of learning the value

for a state given the agent is always following policy π, we consider the problem

where the agent has been behaving according to policy µ up until the current state

and will henceforth follow policy π. We refer to this case as the excursion approach.

Algorithms like Q-learning fall into this camp. When updating the value function

12

using a single transition, these methods accept that s or < s, a > are drawn accord-

ing to µ and thus use the sample from the true data stream. Excursion methods

then select a different s′ or < s′, a′ > that follows the target policy and use this

half-real-and-half-imaged transition to update their value function. Such excursion

methods still learn biased value functions, however the fact that they do not suf-

fer from the computation issues that plague bias free methods makes the trade-off

seem favourable. This thesis exclusively examines excursion methods for off-policy

learning.

A potential problem for TD-based excursion methods arrises however when func-

tion approximation is used. Unfortunately, while TD learning has been shown to be

convergent on off-policy problems when using a table look up value function, coun-

terexamples exist to show that TD can diverge when using function approximation

on off-policy problems. One such counterexample is Baird’s Off-policy Counterex-

ample (Baird 1995; Sutton & Barto 1998). Figure 2.1 shows the 7-state MDP used

in Baird’s counterexample. The reward in this MDP is zero on all transitions, mean-

ing the true value function for any policy should be zero for all states. The target

policy for this problem selects the solid line actions with a probability of 1. The

behaviour policy selects the solid line actions with a probability of 1/7, and the

dotted line actions with a probability of 6/7. All actions are deterministic, meaning

selecting the action to move from si to sj is always successful.

The value function is approximated by a set of linear weights θ with 8 weights, one

more than the number of states in the MDP. For states {s1, . . . , s6}, the value of a

state i (where V notates the state value function, analogous to the use of Qπ for the

state-action value function) is V (si) = 2θ(i)+θ(0) and the value of the last state s7 is

V (s7) = θ(7)+2θ(0). The discount factor is γ = 0.99. The solution for this problem

is simple—θ(i) = 0, i ∈ {0, . . . , 7}—however, Baird has shown that both TD(0)

and dynamic programming with incremental updates (TD’s approximate dynamic

programming counterpart) will diverge when trying to solve this problem.

Until recently, almost all existing TD-based excursion methods that have been

proven to remain convergent when using function approximation on off-policy prob-

lems have suffered from potentially problematic algorithmic or convergence require-

ments. The Least Squares Temporal Difference (LSTD) method is one method that

solves for the TD solution and has been shown to be convergent on off-policy prob-

lems using linear function approximation, however LSTD requires O
(
n2
)

memory

and per-time-step computation, where n is the number of features used (Bradtke

& Barto 1996). The incremental version iLSTD, improves upon this, reducing the

13

S1 S2 S3 S4 S5

S7

S6

Figure 2.1: The environment and policies for Baird’s Off-policy Counterexample. This
counterexample shows that TD algorithms using function approximation are not guaranteed
to converge on off-policy problems. In Baird’s counter example, the target policy selects
the solid line action with a probability of 1. The behaviour policy selects the solid line
action with probability of 1/7. The behaviour policy selects the dotted line action with
a probability of 6/7 (and the agent transitions to each of the six states indicated with
probability of 1/6).

14

per-time-step complexity to O (kn), where k is a moderately chosen natural number,

but still requires O
(
n2
)

memory, which can be prohibitive in larger scale problems

(Geramifard, Bowling, Sutton 2006).

Another attempt at solving off-policy problems with function approximation has

been the residual gradient (RG) method (Baird, 1995). The residual gradient

method is a stochastic gradient descent algorithm that minimizes the expected

squared TD-error. Unfortunately, in order to sample the gradient on a given update,

the RG method requires two independent samples of the next state. We refer to

this requirement for two samples as double sampling. It is often difficult to obtain

double samples unless the agent has a model of the environment. Baird suggests

that one can ignore the need for double sampling and use only one sample for the

next state, however, the solution found in this case has been shown to be different

from the TD solution. Further more, when using function approximation, even if

the agent is able to double sample, the solution found is still different from the TD

solution.

In spite of all the previous work discussed above, there has long remained a need

for TD methods which use function approximation that are convergent on off-policy

problems while still maintaining a linear space and per-time-step complexity. In the

next chapter, we will introduce the gradient-TD family of algorithms which address

this long-standing need in the field.

15

Chapter 3

Gradient-TD Algorithms

In this chapter, we introduce the gradient-TD algorithms we will be looking at in this

thesis. For our purposes, we use the name gradient-TD family to refer to all methods

directly related to the relatively new GTD algorithm (Sutton, Szepesvári, & Maei

2009); accordingly, we are not referring to other gradient-descent based methods

such as residual gradient methods or policy gradient methods. In particular, in this

thesis we focus on three of the existing gradient-TD algorithms: GQ, GQ2, and GQ-

NEU. For readers familiar with the gradient-TD literature, the names GQ-NEU and

GQ2 will be unfamiliar however, the algorithms themselves shouldn’t be: GQ-NEU

and GQ2 are state-action versions of the GTD and GTD2 algorithms presented

by Sutton, Szepesvári, and Maei, (2009) and Sutton, Maei, Precup, et al. (2009).

GQ-NEU and GQ2 do not appear formally by name in any publications, though

GQ-NEU is briefly described under the name GQE(0), as an extension to GTD by

Sutton, Szepesvári, and Maei in their 2009 paper. GQ can be found originally in

(Maei, Sutton 2010).

The family of gradient-TD algorithms is a set of stochastic gradient descent methods

with convex objective functions that when minimized reach the TD solution for rein-

forcement learning problems. The gradient-TD family of algorithms is particularly

interesting as all of its methods are guaranteed to converge on off-policy problems

when using function approximation. Most excitingly, the gradient-TD algorithms

only require linear space and computation-per-time-step time complexity, and avoid

the need for double sampling, thus making them a simple light-weight solution meth-

ods for off-policy problems. As mentioned in chapter 2, remaining convergent on

off-policy problems while using function approximation has long been an elusive goal

in RL, thus gradient-TD’s light-weight solution for off-policy problems is an exciting

development.

Each gradient-TD method has three defining details which makes it unique. The first

of these is the choice of objective function. The second characteristic is the particular

16

derivation of the gradient from the objective function—while GQ2 and GQ have the

same objective function, they behave differently in practice due to differences in

how their gradients are derived. The third characteristic is how the gradient is

approximated. Typically in stochastic gradient-descent methods the gradient can

be sampled, however, all algorithms in the gradient-TD family discussed here have

objective functions whose gradients’ cannot be sampled in entirety without inducing

bias. To avoid this, our gradient-TD methods use a trick where the gradient is

divided into two pieces: one piece is sampled while the other piece is estimated by

a learned approximation of that portion’s expected value.

This work focuses on using linear function approximation, as such, the following

derivations are written using linear function approximation and not for the more

general case. Also, the following three algorithms are all state-action methods that

make use of the following two notations: the state-action features φ(st, at) are ab-

breviated as φt and we use the notation φ̄πt = φ̄π(st) =
∑

a π(st, a)φ(st, a) for the

expected-next-action feature set under policy π (similarly, φ̄µt is the expected-next-

action feature set under policy µ).

We will present our gradient methods chronologically—we begin with GQ-NEU as

its state-valued compliment, GTD, is the first gradient-TD method to have been

developed. We then introduce GQ2 and GQ, again in the order of their original

presentation in the literature. Before we can begin to look at the derivations of our

gradient-TD methods, we begin with a mini-meta-discussion about the selection of

objective functions.

3.1 An Argument for Bellman Error Based Objective

Functions

In this section, we will briefly discuss several potential objective functions, and how

they uniquely flavour learning, and discuss why we favour Bellman Error based

objective functions.

Looking to the problem at hand, our algorithms are trying to solve the prediction

problem of learning a value function to predict the expected return. Accordingly, a

natural objective function might be the mean squared error (MSE)1:

1As this thesis exclusively uses algorithms that learn state-action values, we use the notation for
the state-action value function Qπ, even when discussing concepts that are general to both state
and state-action value functions

17

MSE(θ) = ‖Q̂θ −Qπ‖2D (3.1)

Note, the norm ‖·‖2D is the outer product of a vector weighted by the matrix D.

In this case, D is a diagonal matrix whose diagonal values, ds,a correspond to the

relative frequency that each state-action pair is visited under the behaviour policy.

As the MSE requires having the true value function, Qπ, to compare with, the MSE

is not a feasible objective function for gradient methods. This poses a conundrum

as the true value function is what we are trying to learn. Another similar potential

objective function is the mean squared return error (MSRE). The MSRE uses a

sample of the return in place of the true value function, however, this has the

problem of having to wait for sampled returns to use the objective function for

learning. It is important to be aware that both of these methods favour precision

in the value function: when learning, they focus on making the value of individual

state-action pairs as accurate as possible.

In contrast to MSE and MSRE are objective functions based on the Bellman Error,

such as the Mean Squared Bellman Error (MSBE):

MSBE(θ) = ‖Q̂θ − T γπ Q̂θ‖2D

Here, T γπ is the Bellman operator, a matrix which projects the the value function

one step forward.The MSBE has the benefit of being computable without knowledge

of the true value function. Perhaps more subtle though, is the fact that the MSBE

prioritizes self-consistency in the learned value function over precision in the value

function. While the solution of the MSE, MSRE, and MSBE are ultimately all the

same when we are not using function approximation, this difference in priorities—

favouring a self-consistent value function versus a precise value function—impacts

how the value function evolves as it is being learned. In RL, it is generally acknowl-

edged that a self-consistent value function is more effective in practice for the full

RL problem with control. As such, the gradient-TD methods we present here all

use Bellman error based objective functions. We will return to this thought again

in chapter 4 when discussing our performance measure for experiments.

18

3.2 Deriving GQ-NEU

GQ-NEU uses the norm of the expected update (NEU) as it’s objective function

NEU(θ) = E [δφ]> E [δφ] (3.2)

Here δ is the TD-error using linear function approximation, state-action features,

and the expected next action notation introduced in chapter 2: δt = rt+1+γθ>t φ̄
π
t+1−

θ>t φt. Note this is the TD-error as used by Expected Sarsa as described in chapter

2. The NEU is exactly what it claims to be: it is the 2-norm of the expected TD-

update. As an objective function, the NEU has many desirable properties: it is

quadratic and unimodal and it achieves its minimum at the TD-solution. Also, the

TD-error is a sample based expression of the Bellman error, meaning the NEU is a

Bellman error based objective function.

The gradient of the NEU is:

∇θNEU(θ) = 2(∇θ E [δφ])E [δφ]

= 2E
[
φ(∇θδ)>

]>
E [δφ]

= −2E
[
φt(φt − γφ̄πt+1)

>
]>

E [δtφt] (3.3)

In stochastic gradient-descent approaches the gradient is sampled and θ is updated,

moving in the direction opposite to the gradient:

θt+1 = θt − α∇θNEU(θ) (3.4)

Unfortunately, the gradient of the NEU is a product of two related expected values.

We cannot use samples for both expected values without biasing the gradient. To

avoid this bias, one of the two expected terms can be sampled while the other can

be approximated with a learned estimate. At this point, there are two options: esti-

mate the first expectation E
[
φt(φt − γφ̄πt+1)

>]> or the second expectation E [δtφt].

Estimating the first expectation would involve learning a matrix of size n2 (where

n is the number of features in φ). To avoid the larger space complexity required to

store an estimate of the first term, GQ-NEU samples the first expectations. GQ-

19

NEU learns a vector of weights w such that w = E [δφ] when converged to estimate

the remaining portion of the gradient. A simple supervised learning update is used

to learn w. GQ-NEU uses its approximation of w in conjunction with samples to

approximate the gradient. The gradient is then used in a standard stochastic gra-

dient descent update for learning θ. The updates for θ and w for GQ-NEU are as

follows in equations 3.5 and 3.6:

θt+1 = θt + αt(φt − γφ̄πt+1)φ
>
t wt (3.5)

and

wt+1 = wt + βt(δtφt − wt) (3.6)

Note that the constant factor of 2 from the gradient can be dropped. αt and βt are

standard positive valued step-size parameters.

3.3 The Projected Bellman Error and the Derivation of

GQ2 and GQ

GQ2 and GQ are state-action value counterparts to GTD2 and TDC, which were

both developed to find a faster gradient-TD algorithm than GTD (Sutton, Maei,

Precup, et al. 2009). We present GQ2 and GQ together as they share one crucial

defining element—-their objective function. Both algorithms use the mean-square

projected Bellman error (MSPBE) as their objective function.

3.3.1 The Projected Bellman Error

There is one potential problem with the mean-square Bellman error which we did

not mention above. Ideally, when the value function is exactly learnable, an al-

gorithm minimizing the mean-square bellman error reaches the fixed point where

Q̂ = T γπ Q̂. Unfortunately, when we are using function approximation, T γπ Q̂ may not

be representable by our function approximation method. As such, it may be impos-

sible to reach the fixed point of the MSBE. The mean-square projected Belman error

(MSPBE) is a response to this limitation of the MSBE. The MSPBE introduces a

projection operator , Π, which will take any value function q and project it onto the

nearest value function that is representable by our function approximator:

20

Πq = Q̂θ where θ = argmin
θ
‖Q̂θ − q‖2D

With this projection operator, we can define a Projected Bellman Equation:

Q̂θ = ΠTQ̂θ

From here, we can naturally define the mean-square projected Bellman error as

follows:

MSPBE(θ) = ‖Q̂θ −ΠTQ̂θ‖2D (3.7)

The advantage of the MSPBE is that methods using function approximation can

always reach the point where the MSPBE is 0. This is not necessarily true of

the MSBE when using function approximation. While there is no strong general

claim that can be made about the comparative quality of the solution obtained

by minimizing the MSPBE versus minimizing the MSBE, the guarantee that the

minimum of the MSPBE is attainable is a desirable quality in an objective function.

3.3.2 Deriving GQ and GQ2

Before we derive GQ and GQ2 using the MSPBE, first let us establish some relevant

and necessary equalities, and then rewrite the MSPBE in terms that will be easier

to work with. First, when using a linear value function— Q̂θ = Φθ, where Φ is the

matrix whose rows are the feature vectors for each state or state-action pair—the

projection operator Π is linear and independent of θ and expressed as:

Π = Φ(Φ>DΦ)−1Φ>D (3.8)

Second, the following expectations can be expressed in vector-matrix quantities as

shown:

E
[
φφ>

]
=
∑
s,a

ds,aφs,aφ
>
s,a = Φ>DΦ,

21

E [δ, φ] =
∑
s,a

Rs,a + γ
∑
s′,a′

P as,s′π(a′ | s′)Q̂θ(s′a, a)− Q̂θ(s, a)


= Φ>D(TQ̂θ − Q̂θ),

Π>DΠ = (Φ(Φ>DΦ)−1Φ>D)>D(Φ(Φ>DΦ)−1Φ>D))

= D>Φ(Φ>DΦ)−1Φ>DΦ(Φ>DΦ)−1Φ>D

= D>Φ(ΦTDΦ)−1Φ>D.

Given these relationships, we can now rewrite the MSPBE to be in terms of expec-

tations:

MSPBE(θ) = ‖Q̂θ −ΠTQ̂θ‖2D
= ‖Π(Q̂θ − TQ̂θ)‖2D
= (Π(Q̂θ − TQ̂θ))>D(Π(Q̂θ − TQ̂θ))

= (Q̂θ − TQ̂θ)>Π>DΠ(Q̂θ − TQ̂θ)

= (Q̂θ − TQ̂θ)>D>Φ(Φ>DΦ)−1Φ>D(Q̂θ − TQ̂θ)

= (Φ>D(TQ̂θ − Q̂θ))>(Φ>DΦ)−1Φ>D(TQ̂θ − Q̂θ)

= E [δφ]> E
[
φφ>

]−1
E [δφ] (3.9)

Note here that the MSPBE only differs from the NEU (equation 3.2) by the inverse

of the expected feature-covariance matrix. From here, we can derive the gradient of

the MSPBE:

− 1

2
∇MSPBE(θ) = E

[
(φt − γφ̄πt+1)φ

>
t

]
E
[
φtφ
>
t

]−1
E [δtφt] (3.10)

It is at this point where GQ2 and GQ diverge. GQ2 uses the gradient as written in

equation 3.10, where GQ rephrases the gradient in a slightly different form :

22

− 1

2
∇MSPBE(θ) = E

[
(φt − γφ̄πt+1)φ

>
t

]
E
[
φtφ
>
t

]−1
E [δtφt]

=
(
E
[
φtφ
>
t

]
− γ E

[
φ̄πt+1φ

>
t

])
E
[
φtφ
>
t

]−1
E [δtφt]

= E [δtφt]− γ E
[
φ̄πt+1φ

>
t

]
E
[
φtφ
>
t

]−1
E [δtφt] (3.11)

Both of these two expressions of the gradient suffer from the same problem that

we also saw with the gradient of the NEU: they are made up of the product of

several related expectations, and we cannot use samples to approximate all three

expectations without introducing bias to our gradient. To avoid this, both GQ2

and GQ use the same trick as GQ-NEU and learn a set of linear weights, w to

approximate a portion of the gradient:

w = E
[
φtφ
>
t

]−1
E [δtφt] (3.12)

The choice of which expectations to approximate and which to sample is again made

to avoid having to store a matrix of size n2, where n is the number of features. Note

that w is in the form of a least squares estimate, and so we can learn w using a

standard least squares update:

wt+1 = wt + βt(δt − φ>t wt)φt. (3.13)

Using w and the two forms of the MSPBE gradient, we can define our updates for

GQ2 and GQ as follows:

θGQ2
t+1 = θGQ2

t + αt(φt − γφ̄πt+1)(φ
>
t wt), (3.14)

and

θGQt+1 = θGQt + αtδtφt − αtγφ̄πt (φ>t wt). (3.15)

The GQ update has one unique property particularly worth noting at this point: the

update has the form of an Expected Sarsa update with an added “correction” term

that adjusts the update to follow the gradient of the MSPBE objective function.

23

As such, when w = 0, GQ does a typical standard TD style update. Also worth

mentioning is the fact that when θ has converged for both GQ2 and GQ, w will

converge to zero.

24

Chapter 4

Assessment on On-Policy

Prediction Problems

With this chapter, we begin the experiments central to this thesis. The experiments

in this thesis are structured as a series, which incrementally modify the problem

and algorithms. In this chapter, we introduce the modified Random Walk with

actions environment which we will be using throughout this thesis. We then be-

gin with an on-policy experiment to determine whether it is more effective to use

Sarsa or Expected Sarsa as the representative conventional-TD algorithm for our

experiments. Finding Expected Sarsa to be the faster and more robust algorithm

of the two on this problem, we perform a second experiment comparing Expected

Sarsa and our gradient-TD algorithms, GQ, GQ2 and GQ-NEU. This experiment

gives the reader a simple, uncomplicated look at the relative convergence speeds of

our gradient-TD methods, and affirms existing results which show that gradient-TD

algorithms may be slower than conventional-TD methods (Maie 2011). With this

established, we begin our search for faster gradient-TD algorithms by introducing

new algorithms, and discuss the convergence speed and parameter sensitivity of our

current gradient-TD methods.

4.1 Random Walk with Actions Problem

For clarity, allow us to begin by making the distinction between our usage of the

environment and the problem in our discussion of the experiments in this thesis.

The environment refers to the markov decision process (MDP) that provides the set

of available states and actions, and the transition functions necessary to make up

the world dynamics. For the purposes of this thesis, a problem is more generally

thought of as the question one wants to ask; it includes the environment, but also

entails all the detailed settings of environment variables that can greatly change the

25

S0 S1 S2 S3 S4

start state

r = 1r = 0

r(a,s) = 0 ∀a,s

Figure 4.1: The 5 state markov chain environment

task at hand. In this thesis all the experiments use the same environment but each

experiment features different problems to investigate our algorithms’ ability to learn

in varied situations.

The environment we will be using is a variation of the random walk environment

(Sutton, Maei, Precup, et al. 2009; Maei 2011) which is modified to give the agent

the ability to select actions. For the sake of brevity, we will also call this environment

the random walk environment, due to it’s relation to the original random walk

environment. To begin with the environment, a visual depiction of the random walk

environment can be seen in figure 4.1. There are 5 states, with 2 absorption states,

which form a chain. The environment is episodic, where an episode ends whenever

an agent enters one of the two edge absorption states. Every non-absorption state

provides the agent with two possible actions: move left or move right. Movement is

deterministic so that choosing to move left always results in the agent moving to the

next state to its left, and accordingly, choosing the move right action always moves

the agent to the right. As such, all the randomness in the experiment comes from

an agent’s behaviour policy. The reward signal for the random walk environment

is 0 in all states except for the right absorption state, where the agent receives a

reward of 1 before termination of the episode.

The general form of the problems being tasked to our algorithms in this chapter is

to learn a linear state-action value function for the random-walk environment when

on-policy, using a fixed equally random behaviour/target policy. We look at three

different state-action feature sets, giving us three unique on-policy learning problems

for this experiment. The three feature sets, tabular features, inverted features, and

dependent features (shown in table 4.1) have been selected for their varying degrees

of difficulty.

The tabular feature set are the least complex of the three feature sets: each state-

action pair’s feature vector has only one non-zero element and no two feature vectors

share a non-zero element. As a result, there is no generalizing or aliasing between

state-action pairs. The tabular features are equivalent to the table-look up case and

require no approximation—the exact value of each state is learned.

26

state tabular inverted dependent

s0, a0 1 0 0 0 0 0 0 0 0 0 0 0.5 0.5 0.5 0.5 0 0 0 0 0 1 0 0 0 0 0

s1, a0 0 1 0 0 0 0 0 0 0 0 0.5 0 0.5 0.5 0.5 0 0 0 0 0 1√
2

1√
2

0 0 0 0

s2, a0 0 0 1 0 0 0 0 0 0 0 0.5 0.5 0 0.5 0.5 0 0 0 0 0 1√
3

1√
3

1√
3

0 0 0

s3, a0 0 0 0 1 0 0 0 0 0 0 0.5 0.5 0.5 0 0.5 0 0 0 0 0 0 1√
2

1√
2

0 0 0

s4, a0 0 0 0 0 1 0 0 0 0 0 0.5 0.5 0.5 0.5 0 0 0 0 0 0 0 0 1 0 0 0

s0, a1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0.5 0.5 0.5 0.5 0 0 0 1 0 0

s1, a1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0.5 0 0.5 0.5 0.5 0 0 0 1√
2

1√
2

0

s2, a1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0.5 0.5 0 0.5 0.5 0 0 0 1√
3

1√
3

1√
3

s3, a1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0.5 0.5 0.5 0 0.5 0 0 0 0 1√
2

1√
2

s4, a1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0.5 0.5 0.5 0.5 0 0 0 0 0 0 1

Table 4.1: This table shows the three types of features used in the random walk problem.
Note that the feature vector for si, a0 and si, a1 are related: the feature vector can be
thought of having two halves corresponding to the two actions, and the first half of si, a0 is
equal to the second half of si, a1

The inverted feature set is thusly named because it is the result of taking the tabular

feature vector for a state-action pair, inverting it, so that all 0’s are turned to 1’s

and all 1’s changed to 0’s, and normalizing the vector. The inverted feature set still

forms an independent set—one can still exactly solve the value function with these

features—but there are a large number of shared features between states, making it

significantly harder to learn the true value function using the inverted features than

when using the tabular features.

Lastly, the dependent feature set was constructed as a feature set that no longer

forms an independent set. As a result, an agent may not be able to learn the true

state-action value function. Note that the dependent feature vectors all have a norm

of 1, just as the tabular and inverted features. Ensuring the norm is 1 means there

is no question of magnitude effects causing differences in performance when using

these three feature sets.

4.2 Experimental design

In this experiment, we apply our gradient-TD and conventional-TD methods to

versions of the random walk with actions problem with various feature representa-

tions. To fully specify our experiment, there are several algorithmic and environ-

ment variables which must be set. The algorithms have step-size parameters—our

conventional-TD methods, Sarsa and Expected Sarsa, have α, and our gradient-TD

27

algorithms have both α and β. The performance of an algorithm can be quite sen-

sitive to the value of these step-size parameters and so it is important to try each

algorithm with a wide range of parameter values.

For α, preliminary experimentation showed that it is important to try both small

and large values up to 2; larger values always performed worse or diverged. The

specific set of α values used for all algorithms can be found in table 4.2.

The selection of β is largely dependent on the value of α an algorithm is using—a

value of β may be large when used with a small α, but may be much too small when

used with a large α. The relationship between α and β is extremely important.

Accordingly, one would want to try a different set of β parameters for α = 0.001

than for α = 2.0. To avoid having multiple tables of β values used, and to simplify

the reporting of our results, we introduce a variable η that we use to compute β:

β = α ∗ η. The practice of using the parameter η to relate α to β was also done

in (Sutton, Maei, Precup, et al. 2009). The values of η used for this experiment

were {0.1, 0.25, 0.5, 0.75, 1, 2, 4}. An experiment was run using the gradient-TD

algorithms for every combination of α and η. As a result, every α value was evaluated

using a set of proportionally smaller and larger values of β. A summary table of all

the α and η values can be found in table 4.2.

α 0.001 0.003 0.005 0.008 0.01 0.025 0.05 0.1 0.15 0.2
0.25 0.5 0.9 1.0 1.2 1.4 1.6 1.8 2.0

η 0.1 0.25 0.5 0.75 1 2 4

Table 4.2: A table of agent parameters used where the gradient-td second learning rate β
is a scalar multiple of α where (β = α ∗ η). Each unique α and η pairing were tested.

One final algorithmic variable affecting the performance of an algorithm is the initial

values of its learned components—θ for all our algorithms and w for our gradient-

TD algorithms. In a control experiment, where the agents actions can depend on

the current estimate of the value function, the initial setting of θ can have a large

impact on the performance of an algorithm. As all the experiments in this thesis use

fixed policies, the initial value of θ is less of a concern than in control problems. In

this experiment, we initialize θ to be a vector where all the weights are 0.5. Given

the limited work done with the gradient-TD algorithms to date, there exists little

information about how the initial values of w affect the algorithms and how other

parameters affect the initialization of w. We chose to initialize w to be a vector of

zeros.

Every instance of our algorithms with unique parameters was run for 30 runs of 1000

28

episodes each using each feature vector on each of the three random walk problems.

At the beginning of every run, the agent’s weights were reset to their initialization

values—and so each run is a fresh experiment of 1000 episodes. At the beginning

of every episode, the agent was placed in the middle state, (s2) and ran until the

agent reached one of the two terminal states on either end of the environment.

To measure the performance of our algorithms, we recorded the root mean square

projected bellman error (abbreviated as RMSPBE) of the weight vector θ at the

end of every episode. Recall that the mean square projected bellman error is the

objective measure minimized by GQ2 and GQ. A definition and explanation of the

root mean squared projected bellman error can be found in chapter 3.

Traditionally, much work has been done using the mean squared error (MSE(θ) =∑
s∈S D(s)

∑
a∈Actions π(a | s)‖Qπ(s, a)− Q̂t(s, a)‖2) or the mean squared Bellman

error (MSBE(θ) = ‖Q̂θ − T γπ Q̂θ‖2D) as performance measures. Before we discuss

why we chose to use the RMSPBE, let us first address the differences between the

MSBE/RMSPBE and the MSE. Ultimately, the Bellman based errors and the MSE

have the same solution if the value function can be represented exactly. Unfortu-

nately, this is not always the case when using function approximation and so it is

important to be mindful of the differences between these measures. The MSBE and

the RMSPBE encourages a more self-consistent value function, penalizing discrep-

ancies between related values. Alternately, the MSE encourages a more precise value

function, focusing on making each individual state-action value accurate, without

concern for the relationship between various state-action pairs. It is widely recog-

nized that for the RL problem, it is often more useful to make the value function

transitions more consistent than to make the value function more precise. It is the

general view that the Bellman based errors are more appropriate error measure of

the two for RL problems (Sutton 1984).

From there, let us look at the difference between the MSBE, and the RMSPBE. Both

measures, being based on the Bellman equation, look at the difference between the

value function and the value function for the next step—the difference between Q̂

and T γπ Q̂. What separates the Bellman error from the projected Bellman error, is

that the projected bellman error insists that the next step value function be repre-

sentable by our function approximator. When the value function is transformed by

the Bellman operator T γπ , the resulting next step value function may not be repre-

sentable by our function approximation method of choice. The projected Bellman

error tries to “correct” for this by using the projection operator Π to project the

next step value function back onto the closest representable value function. This is

an appealing property as it means that when an algorithm has converged, it should

29

have an RMSPBE of 0. This makes interpreting the performance of these algorithms

easy—there is no question about what the converged value of a given function ap-

proximation method should be on a given problem. This is why we ultimately chose

to use RMSPBE as our performance measure.

4.3 Conventional-TD Methods

One of the claims that we seek to investigate in this thesis is whether our gradient-

TD methods are slower than conventional-TD methods. For the purpose of this

work, we do not attempt an exhaustive comparison to all conventional-TD methods.

Rather, we select a representative of conventional-TD methods which perform well.

Our two selected candidates for a representative conventional-TD method are Sarsa

and Expected Sarsa. A brief introduction to both these algorithms can be found

in chapter 2. We chose Sarsa as it is a foundational state-action value TD method.

We chose Expected Sarsa for two reasons. Firstly, Expected Sarsa has been shown

to reduce variance in updates, allowing for the use of larger step-size (α) values in

practice. This in turn can speed up learning (van Seijen, et al. 2009). Secondly,

Expected Sarsa has a close relationship with GQ. When GQ is using a second step-

size (β) of zero, and has initialized its second weight vector w to zero, the algorithm

has the same update as Expected Sarsa.

We ran Sarsa and Expected Sarsa on the experiment described above. In figure

4.2, it can be seen that when using the best parameter setting (where the best

parameters have the lowest RMSPBE averaged over all 30 runs of 1000 episodes),

Expected Sarsa is significantly faster than Sarsa. In figure 4.3, we see that Expected

Sarsa outperforms Sarsa regardless of the parameter settings and is more robust to

parameter settings than Sarsa is on this problem. As Expected Sarsa appears to

have the faster and more stable performance on this problem, we will use Expected

Sarsa as our conventional-TD representative method for the remainder of this thesis.

4.4 Learning Rate of Conventional- and Gradient-TD

Methods

Having settled upon Expected Sarsa as our conventional-TD method for our experi-

ments, we then ran GQ, GQ2, and GQ-NEU through our random walk experiment.

Figure 4.4, shows the trajectory of the RMSPBE error for the first 200 episodes for

30

0

0.05

0.10

0.15

0.20

0 50 100 150 200
Episodes

R
M

SP
BE

Tabular Features

Expected Sarsa

Sarsa

0

0.075

0.150

0.225

0.300

0 50 100 150 200
Episodes

R
M

SP
BE

Inverted Features

Expected Sarsa

Sarsa

0

0.05

0.10

0.15

0.20

0 50 100 150 200
Episodes

R
M

SP
BE

Dependent Features

Expected Sarsa

Sarsa

Figure 4.2: Graphing the RMSPBE of Sarsa and Expected Sarsa for the first 200 episodes.
Both algorithms use their best α parameter for each of the three feature sets.

31

0E+00

2.00E-02

4.00E-02

6.00E-02

8.00E-02

0 0.5 1.0 1.5 2.0
α

Tabular Features

Expected Sarsa

Sarsa

0.08

0.06

0.04

0.02

0.00

R
M

SP
BE

0

0.02

0.04

0.06

0.08

0 0.5 1.0 1.5 2.0
α

Inverted Features

Expected Sarsa

Sarsa

R
M

SP
BE

0

0.02

0.04

0.06

0.08

0 0.5 1.0 1.5 2.0
α

Dependent Features

Expected Sarsa

Sarsa

R
M

SP
BE

Figure 4.3: Graphing the RMSPBE of Sarsa and Expected Sarsa averaged over 1000
episodes when varying the setting of the step-size parameter α.

32

the gradient-TD algorithms and Expected Sarsa when using their best parameters

for each of the three feature representations. These graphs show a clear ordering

of the basic algorithms from slowest to fastest: GQ-NEU, GQ2, GQ, and Expected

Sarsa. This result unsurprisingly mirrors results which were first presented by Sut-

ton, Maei, Precup, et al. (2009), and again appear in Maei’s thesis (Maei 2011).

These earlier results showed an ordering of strict improvement when comparing

GTD, GTD2, TDC and TD at learning state value functions on the no-actions ver-

sion of random walk problem used in this experiment. The reader may recall that

GTD, GTD2, TDC and TD are state-value function relatives of GQ-NEU, GQ2,

GQ, and Expected Sarsa respectively and so it is unsurprising that our results show

the same trends as the earlier work using the state-value based algorithms. While

this experiment is hardly conclusive, it does add to previous evidence that suggests

GQ is the fastest of our gradient-TD algorithms, and may be our best starting point

for developing faster gradient-TD algorithms. This data also lends support to the

idea that gradient-TD methods are currently slower than conventional-TD meth-

ods on on-policy problems. That our gradient-TD methods are indeed slower than

conventional-TD methods further motivates our goal of finding faster gradient-TD

algorithms.

4.5 Recomputed TD-error

Having looked at our three base gradient-TD algorithms, we now begin the quest

for faster gradient-TD methods. Our first step towards this goal is a variation that

can be applied to all our gradient-TD methods called the recomputed TD-error

trick. The TD-error is an integral part of most TD algorithms, as discussed in

chapter 2. The recomputed TD-error trick exploits the fact that all our gradient-

TD methods use the TD-error (notated as δ in equations) in the updates for both

of their primary weight vectors θ and w. The typical update for our gradient-TD

methods involves computing δ and then update both θ and w. Note however, that

δ depends on θ, and thus it may be advantageous to recompute δ after updating θ

but before updating w, to allow the algorithm to take full advantage of the most

up-to-date value estimates. It is this minor tweak which is what we will refer to

as the recomputed TD-error trick. To test how useful this seemingly small change

is, we ran the previous experiment again, using recomputed TD-error variants of

our three gradient-TD algorithms (we add a plus sign to the end of the names

of our algorithms when using the recomputed TD-error trick, thus we re-ran our

experiments using the algorithms GQ+, GQ2+, and GQ-NEU+).

33

R
M

SP
BE

Episode

Tabular Features

0

0.05

0.10

0.15

0.20

0 50 100 150 200

GQ-NEU

GQ2

GQ

Expected
Sarsa

R
M

SP
BE

Episodes

Inverted Features

0

0.0625

0.1250

0.1875

0.2500

0 50 100 150 200

GQ-NEU

GQ2

GQ

Expected
 Sarsa

0

0.05

0.10

0.15

0.20

0 50 100 150 200

R
M
SP

BE

Episodes

Dependent Features

GQ-NEU

GQ2

GQExpected
Sarsa

Figure 4.4: Graphing the average RMSPBE of the gradient-TD algorithms and Expected
Sarsa for the first 200 episodes

34

In figure 4.5 we again show the error trajectory for the first 200 episodes for the

gradient-TD algorithms and Expected Sarsa when using their best parameters, this

time including our new gradient-TD variations that use the recomputed TD-error

trick. Perhaps the most important thing to note here is that in the case of GQ2

and GQ there were no negative consequences to recomputing the TD-error in this

experiment. In fact, GQ+ shows such a benefit as to achieve a performance level

which is not statistically significantly different from that of Expected Sarsa on the

problems using tabular and inverted features. It is only in the case of the dependent

features that we see no improvement from GQ+. While recomputing the TD-error

is a very simple modification of our original gradient-TD methods, it provide a non-

trivial speed up on this simple problem. These results are of course very limited—it

is not clear that this effect will continue to be significant on larger more difficult

problems, or off-policy problems—but it is promising to see noticeable improvement

from such a small change to the algorithms.

There is one major thing which must not be overlooked when comparing our gradient-

TD methods with Expected Sarsa: our gradient-TD methods have the disadvantage

of having two step-size parameters which must be tuned (α and η), over Expected

Sarsa’s one (α). In figure 4.6, we can see how GQ+’s performance is affected by the

selection of its parameters α and η(note that we omit showing the same graphs for

GQ as the results are very similar). What is particularly concerning in this figure is

how erratic the relationship between α and η can be: while there are values of α for

which the value of η is inconsequential, often the best performing α values are very

sensitive to η. A slight change to η may result in a drastic change in performance.

The unfortunate conclusion that we can draw from this is that our gradient-TD

methods may require great care when setting the second learning weight η in order

to ensure good performance.

One other thing to note about these results is that GQ+ consistently performs best

when η is small in this experiment. This result is unsurprising if one recalls that

when β is 0, because our weight vector w is initialized to 0, GQ and GQ+ are

the same as Expected Sarsa. Thus it makes sense that our performance is closest

to Expected Sarsa, which we have already shown to be faster than our gradient-

TD methods, when η is small. For GQ, the second weight vector w contributes

a “correction term” to our updates of θ, and so in an off-policy problem where a

conventional-TD method would be divergent, having too small of an η value can have

disastrous results: if η is small, and w is not learned quickly, an agent may become

numerically unstable. The natural concern from this then is that the optimal value of

η may be extremely different for on-policy and off-policy problems. This sensitivity

35

0

0.05

0.1

0.15

0.2

0 50 100 150 200

Tabular Features

R
M
S
P
B
E

Episodes

GTD

GTD2

GQ

Expected Sarsa

Dotted Lines for Algorithm

with Recomputed δ

0

0.1

0.2

0.3

0.4

0 50 100 150 200

Inverted Features

R
M
S
P
B
E

Episodes

GTD

GTD2

GQ

Expected Sarsa

Dotted Lines for Algorithm

with Recomputed δ

0

0.05

0.1

0.15

0.2

0 50 100 150 200

Dependent Features

R
M
S
P
B
E

Episodes

GTD

GTD2

GQ

Expected Sarsa

Dotted Lines for Algorithm

with Recomputed δ

Figure 4.5: Graphing the average RMSPBE of the gradient-TD algorithms with their
recomputed TD-error variants and Expected Sarsa for the first 200 episodes

36

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Al
ph

a

Eta

GQ+ using Tabular features

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

R
M

SP
BE

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Al
ph

a

Eta

GQ+ using Inverted features

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

R
M

SP
BE

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Al
ph

a

Eta

GQ+ using Dependent features

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

R
M

SP
BE

Figure 4.6: Graphing the effect changing α and η have on the averaged RMSPBE of
GQ+. For some of the high values of α, where the graphs are very yellow, the reported RM-
SPBE was either inf or became numerically unstable and thus no valid data was attainable.
Readers may question why there are some parameters for which our methods are divergent:
while our gradient-TD methods are guaranteed to converge, this is not for all parameter
settings. In particular, the convergence guarantee for gradient-TD puts several constraints
on α and β which are violated by our use of fixed valued α and β parameters. Thus it is
not unreasonable that we see divergent behaviour with some of our parameter settings.

37

is thus a major caveat to GQ+’s success. Ideally, we would like an algorithm where

little knowledge about the problem is needed to set the algorithm’s parameters. On

this note, the next chapter explores GQ+’s performance in an off-policy version of

this experiment to determine if GQ+’s parameter settings really are significantly

different in off-policy problems in practice.

It is, however, not entirely fair to dismiss GQ and GQ+’s superior performance

when compared to the other gradient-TD methods as a mere trick of parameter

optimization. In figure 4.7 we look at the RMSPBE averaged over all episodes and

runs for each value of η using the corresponding best α value. In this graph, we can

see that even with larger values of η, even as large as η = 2, the performance of

GQ beats GQ2 (and GQ-NEU is omitted from these graphs as the performance is

significantly worse than the other algorithms and is difficult to display on the graphs

without eclipsing the differences between our other algorithms). We conducted

further experiments using GQ2 with larger values of η. The results are not shown

here as GQ2’s performance either plateaus or worsens with values of η larger than

4 on all three feature sets. We mention it, however, as it confirms that GQ2’s

performance is not the result of poor parameter selection. Even with larger values

of η, GQoffers superior performance when compared to GQ2 on this domain.

4.6 Conclusion

In this simple on-policy experiment we are able to find support for the claim that

gradient-TD methods are slower than conventional-TD methods on on-policy pre-

diction problems. This claim is a large motivating factor for our goal to find faster

gradient-TD methods in this thesis. Aside from the comparison between gradient-

and conventional-TD methods, this experiment also gives us a couple of promising

observations about our gradient-TD methods. First, amoung our original gradient-

td algorithms, GQ offers consistently faster convergence than GQ2 and GQ-NEU

in this problem. This trend motivates us to focus primarily on algorithms related

to GQ for the remainder of this thesis. The second promising observation is that

the modified algorithm GQ+ shows noticeable improvement on GQ. We cautiously

note that despite good performance in this experiment, further experimentation is

necessary to show how effective our recomputed TD-error trick is on larger and more

difficult problems. We also hold reservations about our gradient-TD method’s need

for two learning parameters and how robust these algorithms are to the setting of

these parameters. In particular, we wonder if optimal parameter settings for our

38

0

0.0015

0.0030

0.0045

0.0060

0 1 2 3 4

Tabular Features

R
M

SP
BE

η

GQ2

GQ2+

GQ

GQ+ Expected Sarsa

0

0.00875

0.01750

0.02625

0.03500

0 1 2 3 4

Inverted Features

R
M

SP
BE

η

GQ2

GQ2+

GQ
GQ+ Expected Sarsa

0.020

0.025

0.030

0.035

0.040

0 1 2 3 4

Dependent Features

R
M

SP
BE

η

GQ2

GQ2+

GQ

GQ+

Expected Sarsa

Figure 4.7: Graphing the RMSPBE of GQ and GQ2 and Expected Sarsa over various
values of η. The best α for each η value is graphed here

39

gradient-TD methods will be greatly affected by switching to an off-policy problem

and whether our recomputing TD-error trick will improve performance on off-policy

problems as they have done on this on-policy problem. In the next chapter we will

explore the performance of our gradient-TD methods on off-policy problems in order

to examine these concerns further.

40

Chapter 5

Assessment on Off-Policy

Prediction Problems

In this chapter we continue to explore the performance of GQ, GQ2, and GQ-

NEU, testing their performance on off-policy problems based on the random-walk

environment seen in the previous chapter. This experiment explores the question of

how changes in behaviour and target policy affect the performance of our gradient-

TD algorithms. We also explore whether the relative performance of our gradient-

TD methods in an off-policy setting is consistent with our on-policy results. We

will also take a look at the performance of our gradient-TD methods using the

recomputed TD-error trick, to see if this modification still improves performance.

In addition, in a final section of this chapter, we introduce two new GQ variants—

Factored GQ and Double-Factored GQ–and present negative results showing that

they may not be the faster gradient-TD we are looking for.

5.1 Algorithms

In this experiment we will evaluate the performance of our gradient-TD algorithms

(both the originals, and the recomputed TD-error variants). To avoid unnecessary

repetition, a detailed introduction to GQ, GQ2, and GQ-NEU appears in chapter

3, and an introduction to GQ+, GQ2+, and GQ-NEU+ can be found in chapter

4. We also include Expected Sarsa in our experiments. While it is not strictly

fair to compare our gradient-TD methods to Expected Sarsa on off-policy problems,

given Expected Sarsa is not guaranteed to converge, we continue to include Expected

Sarsa in these experiments as an optimistic reference point of comparison. Expected

Sarsa remains convergent on the problems used in this experiment and, as we will

see, performs well. An introduction to the Expected Sarsa algorithm can be found in

chapter 2, and a discussion of why Expected Sarsa is used to represent conventional-

41

TD algorithms in our experiments, can be found in the algorithms section of chapter

4.

5.2 Off-Policy Random Walk with Actions Problem

The experimental design for this chapter is very similar to the experiment pre-

sented in the previous chapter: GQ, GQ2, GQ-NEU, GQ+, GQ2+, GQ-NEU+,

and Expected Sarsa algorithms are all tasked with learning a linear state-action

value function for the random-walk environment used in the previous chapter. We

again look at problems using three different state-action feature sets—however, in

this experiment we look at a larger set of problems, now introducing a variety of

possible behaviour and target policies. A description of the random walk environ-

ment and the three feature sets (tabular, inverted and dependent features) used in

this experiment is provided in the problem section of the previous chapter.

As discussed, the purpose of this chapter is to evaluate the behaviour of the gradient-

TD algorithms and Expected Sarsa on off-policy problems. Where in the previous

chapter, our agents behaved with an equal 50-50 chance of moving left and right

and learned the matching value function, in this experiment we now independently

vary the behaviour and target policies across problems. In each unique problem, an

agent now has a unique behaviour and target policy, both are kept static throughout

the experiment.

Our policies always choose the right and left action with a fixed probability, regard-

less of the state they are in. For example, the behaviour policy used in the previous

chapter always chooses the right action 50% of the time, no matter which state the

agent is in. Because the policies can be summed up by their probability of moving

right, we can use the shorthand notation B50 to refer to the behaviour policy that

moves right 50% of the time. Similarly, T20 would be the target policy that moves

right 20% of the time.

As the behaviour and target policies become more different, an agent spends more

time learning about actions which may not be taken often by the target policy, and

less time learning about taking the action the target policy cares about. In the

most extreme case, the behaviour policy never chooses an action that the target

policy would choose. In such a situation, it is impossible for the agent to learn the

value of the action. We do not look at any such extreme cases. In our experiment, a

problem is made for each possible pairing of the behaviour and target policies shown

42

behaviour policy B20 B30 B40 B50 B60 B70 B80

target policy T10 T20 T30 T40 T50 T60 T70 T80 T90

Table 5.1: A table of the behaviour and target policies used in this experiment. Here B20
means the agent chooses the right action 20% of the time and chooses left the remaining
80%. An experiment set was run for every possible crosswise pairing of behaviour and target
policy from this chart.

α 0.001 0.01 0.1 0.25 0.5 0.9 1.0 1.5 2.0

η 0.25 0.5 1 2 4

Table 5.2: A table of agent parameters used where the gradient-td second learning rate β
is a scalar multiple of α where β = α ∗ η. Each unique α and η pairing were tested.

in table 5.1. Note that most of the possible pairings are off-policy, however pairings

like B20-T20 remain in the set, giving us results from on-policy problems with more

varied behaviour policies than in our previous chapter’s experiment.

5.3 Experimental Settings

As in the previous chapter, to fully specify our experimental settings, we must look

at the algorithm parameter settings. Recall that Expected Sarsa has one learning

rate parameter α, where all the gradient-TD algorithms have both α and β. As was

discussed in the previous chapter’s experiment section, an appropriate value of β is

relative to the value of α being used. Therefore, to avoid having to provide multiple

tables of β values, and to make the reporting of results easier, we use a variable η

to calculate appropriate β for each α, where β = α ∗ η. Relying upon experience

gleaned in the previous chapter, we are able to cull the set of α and η values used in

our experiments—the newly trim list of values can be found in table 5.2. Expected

Sarsa was tested on all α values, and the gradient-TD algorithms were tested on all

possibly combinations of α and η.

The algorithms were run on the random walk environment using every possible

behaviour and target policy pairing from table 5.1 for each of the three state-action

feature sets. Each of these experiments ran for 50 runs of 500 time-steps each (again,

after each run the agent’s learned weights were reset). The reader may note that we

are now running for a fixed number of time-steps, as opposed to the 1000 episodes

long runs done in the on-policy experiment. This change to a fixed number of time-

steps is necessary as a fixed number of episodes has a drastically different number

43

of time-steps when using different behaviour policies. For example, if we compare a

B50 policy, which chooses to go left or right with equal probability, to a B80 policy,

which goes right 80% of the time and left the other 20% of the time, the expected

number of time-steps per episode for the B50 policy is larger than that of the B80

policy. As such, to make sure each agent will see the same amount of data, these

experiments are run for a fixed number of time-steps. Using only 500 time-steps may

seem low given our previous experiment was run over 1000 episodes. However, 1000

episodes was vastly excessive as fewer than 200 episodes were needed in our previous

experiment to get our algorithms to a steady point very close to convergence of 0.

After every time-step in our experiments, the root mean squared projected Bellman

error (RMSPBE) of the agent was recorded. For a more detailed explanation of the

RMSPBE, please see chapter 3, and for a discussion on why we use RMPSBE for

our performance measure over other error measures, see chapter 4.

5.4 Learning Rate of Conventional- and Gradient-TD

Methods on Off-Policy Problems

In analyzing the results of this experiment, we ask ourselves three questions:

1. How does varying the behaviour policy affect algorithmic performance?

2. How does varying the target policy affect algorithmic performance?

3. Is there, ultimately, a “fastest” algorithm?

To address these three questions, we present figures 5.1 and 5.2. In figure 5.1, we

look at how the mean RMSPBE (the RMSPBE averaged over all runs and time-

steps) is affected when the behaviour policy is kept constant, using B50, while the

target policy is varied. Each algorithm uses a single pair of α and η values for all

target policies; the value of α and η were chosen to minimize the mean RMSPBE

averaged over all the target policies. We chose to keep α and η constant to give a

better representation of each algorithm’s general performance. We also looked at

the results when the best parameters were selected for each target policy and found

that the trends amongst the data were unchanging. Similarly, figure 5.2 shows how

the mean RMSPBE is affected when the target policy is kept constant, using T50,

while the behaviour policy is varied. Again, we used the average best parameter

settings, which performed best on average over the behaviour policies.

44

0

0.0375

0.0750

0.1125

0.1500

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

The Effects of Changing the Behaviour
Policy Using Tabular Features and a Fixed

Equal Random Target Policy

R
M

SP
BE

Behaviour Policy

Expected Sarsa

GQ-NEU GQ-NEU+

GQ2 GQ2+

GQ

GQ+

0

0.075

0.150

0.225

0.300

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

The Effects of Changing the Behaviour
Policy Using Inverted Features and a Fixed

Equal Random Target Policy

R
M

SP
BE

Behaviour Policy

Expected Sarsa

GQ-NEU
GQ-NEU+

GQ2 GQ2+

GQ GQ+

0

0.075

0.150

0.225

0.300

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

The Effects of Changing the Behaviour
Policy Using Dependent Features and a

Fixed Equal Random Target Policy

R
M

SP
BE

Behaviour Policy

Expected
Sarsa

GQ-NEU
GQ-NEU+

GQ2
GQ2+

GQ
GQ+

Figure 5.1: Using a fixed behaviour policy that chooses the actions left and right with equal
probability, these graphs show how modifying the target policy (indicated as a probability of
selecting the right action) affects the RMSPBE averaged over all 50 runs and 500 time-steps.
The values for α and η used by each algorithm are the values which have the minimum mean
RMSPBE averaged over all target polices. We omit some of the data points for GQ-NEU
and GQ-NEU+ on the dependent features problem as their performance was significantly
worse than the other algorithms and made presentation of all the algorithms more difficult.
Standard error bars are left off the graph as the errors are smaller than the symbols used
to mark data points.

45

0

0.04

0.08

0.12

0.16

0.20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

The Effects of Changing the Target Policy
Using Tabular Features and a Fixed Equal

Random Behaviour Policy

R
M

SP
BE

Target Policy

Expected Sarsa

GQ-NEU GQ-NEU+

GQ2 GQ2+

GQ
GQ+

0

0.06

0.12

0.18

0.24

0.30

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

The Effects of Changing the Target Policy
Using Inverted Features and a Fixed Equal

Random Behaviour Policy

R
M

SP
BE

Target Policy

Expected Sarsa

GQ-NEU

GQ-NEU+

GQ2
GQ2+

GQ

GQ+

0.04

0.06

0.08

0.10

0.12

0.14

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

R
M

SP
B

E

Target Policy

GQ-NEU GQ-NEU+
GQ2

GQ2+

Factored GQ
Double Factored GQ

GQ+

Expected Sarsa

GQ

The Effects of Changing the Target Policy
Using Dependent Features and a Fixed Equal

Random Behaviour Policy

Figure 5.2: Using a fixed target policy that chooses the actions left and right with equal
probability, these graphs show how modifying the behaviour policy affects the RMSPBE
averaged over all 50 runs and 500 time-steps. The values for α and η are the values which
have the minimum mean RMSPBE averaged over all behaviour polices. Standard error bars
are left off the graph as the errors are smaller than the symbols used to mark data points.

46

Before comparing the relative performance of the various algorithms, we need to

comment on several algorithmic independent trends in the data. One trend amongst

these two figures shows that varying the behaviour policy has a much more drastic

effect on the performance of our algorithms than the target policy. This is perhaps

unsurprising, as the unavailability of data can be an extremely limiting factor—if

a behaviour policy does not take certain actions frequently, the agent is severely

limited in how well it can learn the value of those actions. Conversely, if the target

policy does not take certain actions, but the behaviour policy does, the agent’s

ability to learn is only hindered in so far that it has extra unnecessary data.

While changes in the behaviour policy seems to have the strongest effect on algorith-

mic performance, the distance between our target and behaviour policies unsurpris-

ingly relates to the performance as well. As the target and behaviour policy become

more divergent, the performance of all the algorithms goes down. This trend was

previously observed by Delp in his master’s thesis (Delp 2011).

There is an asymmetry in our results that may cause some readers to pause. In

figure 5.1, we see that performance on problems with target policies that choose the

left action more frequently have poorer results than those problems with right-action

dominant target policies. Similarly, figure 5.2 has an asymmetry where problems

with behaviour policies that favour moving right seem to have poorer results than

problems with behaviour policies that are left action dominant. It seems important

to point these asymmetries out as a likely unanticipated artifact of how the value

functions for each feature representation is initialized. Recall that the agent is given

a reward of 1 for reaching the right most terminal state, and a reward of 0 for

reaching the left most terminal state. If the initial value estimate for all states is

0, then this value function is already closer to the true value function for problems

where the target policy moves left more frequently. An optimistic value function

is therefore closer to the true value function for problems with target policies that

move right more frequently.

Using θ(i) = 0.5, ∀i as the initial weight vector gives a positive estimate for the value

of all state-action pairs for all three feature functions—the tabular case starts with

an initial value of 0.5 for all state-action pairs, the inverted case starts with an ini-

tial value of 1.0 for all state-action pairs, and the dependent case has initial values of

Q̂(s0, aleft) = Q̂(s0, aright) = 0.5, Q̂(s1, aleft) = Q̂(s1, aright) = 0.70711, Q̂(s2, aleft) =

Q̂(s2, aright) = 0.86603, Q̂(s3, aleft) = Q̂(s3, aright) = 0.70711, Q̂(s4, aleft) = Q̂(s4, aright) =

0.5. If the target policy is heavily biased to move left, these initial value functions

are significantly optimistic, where as they would be closer to the true value func-

47

tion for target policies which favour the right most action. This bias in our initial

value function thus explains the asymmetry seen in figure 5.1. Similarly, when the

behaviour policy is biased to move right, the agent will see more samples with the

terminal reward of 1, which means it will take longer to deflate an overly optimistic

initial value function which explains the trend in figure 5.2 for agents to take longer

to solve the problems with behaviour policies that are biased towards moving right.

As such, the asymmetries in figures 5.1 and 5.2 show us the potential effects of

selecting good and bad initial value functions.

Regardless of these effects, there is however a clear, consistent trend in the relative

performances of all the gradient-TD algorithms. Similar to the on-policy results

from the previous chapter, we see that GQ is the clear winner over GQ-NEU and

GQ2. We also see that the recomputed TD-error algorithms continue to be provide

an improvement in performance, however the effect is again most noticeable in the

case of GQ+.

One lingering question from the previous chapter is whether GQ and GQ+ will

continue to be robust to parameter setting in the off-policy setting.There was concern

that GQ and GQ+’s performance was overly dependent on the value of η chosen and

that the range of acceptable values for this algorithm were narrow. In particular,

there was concern that the optimal parameter values of GQ and GQ+ may be highly

problem dependent—would changing our problem to be off-policy affect the range

of well-performing parameter values? In the context of this experiment, the answer

appears to be no: when looking at results using a given feature set, the optimal

parameter values for GQ and GQ+ rarely change, and when they do, the difference

in performance is slight. This seems to suggest that while it is still necessary to find

good parameters, that these parameters are not greatly affected by changing our

policies, which is a desirable quality to have in the more difficult control problem

where the behaviour policy may be changing as the agent learns. This is also

desirable in situations where the agent is learning about multiple target policies at

once from the same data—one would not want to have to find the optimal parameters

for each target policy.

5.5 Factored GQ and Double-Factored GQ

Factored GQ and Double-Factored GQ are two new variations of GQ that we devel-

oped as hopeful contenders for the title of faster GQ. These algorithms take their

name from the fact that they are variations of GQ where we have factored the gra-

48

dient used by GQ into smaller terms, allowing us to use samples to approximate a

larger portion of the gradient. Recall that GQ uses the following expression of the

gradient of the mean squared projected Bellman error:

−1

2
∇MSPBE(θ) = E [δtφt]− γ E

[
φ̄πt+1φ

T
t

]
E
[
φtφ

T
t

]−1
E [δtφt] .

Unfortunately, because the GQ gradient involves multiplying several expectations

with shared random variables, this gradient cannot be sampled in its entirety without

inducing bias. As such, GQ only uses samples to approximate a portion of the

gradient. The remaining portion of the gradient is approximated by a learned set

of linear weights. GQ replaces the term E
[
φtφ

T
t

]−1 E [δtφt] in the gradient with the

learned weights w:

−1

2
∇MSPBE(θ) = E [δtφt]− γ E

[
φ̄πt+1φ

T
t

]
w.

This allows GQ to use samples in place of the rest of the gradient. Factored GQ

has the same derivation of GQ up until this point where the gradient is divided into

sampled and estimated segments. At this point, Factored GQ takes the portion of

the GQ gradient estimated by w and factors it into smaller terms—some of which

can be sampled without worry of inducing bias into our gradient. To begin, we

replace δ with its expanded form:

w = E
[
φtφ

T
t

]−1
E [δtφt]

= E
[
φtφ

T
t

]−1
E
[
(rt + γθTt φ̄

π
t+1 − θTt φt)φt

]
Once we replace δ with its long form, a small amount of algebraic manipulation

allows us to isolate a lone E [θ] term.

w = E
[
φtφ

T
t

]−1
E
[
(rt + γθTt φ̄

π
t+1 − θTt φt)φt

]
= E

[
φtφ

T
t

]−1
E
[
rtφt + (γθT φ̄πt+1)φt − (θTt φt)φt

]
= E

[
φtφ

T
t

]−1 (
E [rtφt] + E

[
γθTt φ̄

π
t+1)φt

]
− E

[
(θTt φt)φt

])
= E

[
φφT

]−1
E [rφ] + E

[
φφT

]−1
E
[
γθT φ̄πt+1)φ

]
− E

[
φφT

]−1
E
[
φ(φT θ)

]
= E

[
φφT

]−1
E [rφ] + E

[
φφT

]−1
E
[
γθT φ̄πt+1)φ

]
− E [θ]

49

We can sample this θ term without worrying about inducing bias to our gradient

estimate and so Factored GQ can sample a larger part of the gradient and learn a

set of weights w̃, just like GQ learns w:

w̃ = w − E [θt]

w̃ = E
[
φtφ

T
t

]−1
E [rtφt] + E

[
φtφ

T
t

]−1
E
[
γθTt φ̄

π
t+1)φt

]
The learning update for Factored GQ is as follows:

δt = rt − γθT φ̄πt + θTφt

θt+1 = θt + α(δφ− φ̄pit (φT (w̃t − θt)))

w̃t+1 = w̃t + β
[
(r + θT φ̄πt)φ− (w̃Tt φt)φt

]
(5.1)

Double-Factored GQ applies a very minor change to Factored GQ: Double-Factored

GQ breaks up w̃ into two separate learnable weight vectors ẇ = E
[
φtφ

T
t

]−1 E [(rtφt]

and v̇ = E
[
φtφ

T
t

]−1 E [(θTt φ̄πt+1)φt
]
. The gradient written using ẇ and v̇ is as follows:

−1

2
MSPBE(θ) = E [δtφt]− γ E

[
φ̄πt+1φ

T
t

] [
E
[
φtφ

T
t

]−1
E [rtφt] + γ E

[
φtφ

T
t

]−1
E
[
(θTt φ̄

π
t+1)φt

]
− E [θt]

]
= E [δtφt]− γ E

[
φ̄πt+1φ

T
t

]
[ẇ + v̇ − E [θt]]

The corresponding updates for the Double-Factored GQalgorithm are:

δt = rt − γθT φ̄tπ + θTφt

θt+1 = θt + α(δφ− φ̄tpi(φT (ẇt + v̇t − θt)))

ẇt+1 = ẇt + βẇ
[
rφ− (ẇTt φt)φt

]
v̇t+1 = v̇t + βv̇

[
(θφ̄πt)φ− (v̇Tt φt)φt

]
At this point, the reader should note that when βẇ and βv̇ are equal, Double-

Factored GQ is the same algorithm as Factored GQ. As Double-Factored GQ intro-

50

duces yet a third free parameter, we choose not to focus heavily on Double-Factored

GQ in this thesis. We include Double-Factored GQ in the following experiment in a

very limited capacity—setting βẇ to be half of βv̇ for all experiments—to show that

Double-Factored GQ can have different performance from Factored GQ. However,

we leave a thorough study of this difference to future work.

5.6 Learning Rate of Factored GQ and Double-Factored

GQ on Off-policy Problems

We ran Factored GQ and Double-Factored GQ on the same experiment as above,

running our algorithms for 50 runs of 500 time-steps on all of our problems varying

the target and behaviour policies. We used the same α and η values—using β = α∗η
for Factored GQ and βv̇ = α ∗ η and βẇ = 1

2βv̇ for Double-Factored GQ. Similar

to our previous experiment, we graph how the averaged RMSPBE of Factored GQ

and Double-Factored GQ is affected when the behaviour policy is held fixed, and

the target policy is changed in figure 5.3, and how things change when the target

policy is held fixed and the behaviour policy is changed in figure 5.4. The average

best parameters were used in each graph, meaning that α and η were the parameters

which had the lowest average RMSPBE when averaged over all the behaviour policies

in the case of figure 5.3, and all the target policies in the case of figure 5.4.

In general, these graphs show that Factored GQ and Double-Factored GQ perform

worse than GQ. Of course, this experiment did not look at the effects of varying the

third step-size parameter βẇ for the Double-Factored GQ algorithm and so further

study is necessary to truly evaluate Double-Factored GQ’s potential. However, from

these limited results, we do not believe the addition of the third step-size parameter

can yield improvements significant enough to compensate for the extra complexity

added by the need to optimize a third parameter.

5.7 Conclusions

In this chapter, we have seen the continued dominance of GQ and GQ+ over our

other gradient-TD methods. While the performance of GQ+ is mostly on par with

Expected Sarsa in these experiments, the results on the dependent feature problems

shown in figure 5.1 show some that there are cases where GQ+ is still slower than

Expected Sarsa. As the dependent feature set is arguably a difficult feature set to

51

0

0.0375

0.0750

0.1125

0.1500

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

The Effects of Changing the Behaviour
Policy Using Tabular Features and a Fixed

Equal Random Target Policy

R
M

SP
BE

Behaviour Policy

Expected
Sarsa

GQ

Factored GQ

Double Factored GQ

0

0.075

0.150

0.225

0.300

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

The Effects of Changing the Behaviour
Policy Using Inverted Features and a Fixed

Equal Random Target Policy

R
M

SP
BE

Behaviour Policy

Expected
Sarsa

GQ

Factored GQ

Double Factored GQ

0

0.075

0.150

0.225

0.300

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

The Effects of Changing the Behaviour
Policy Using Dependent Features and a

Fixed Equal Random Target Policy

R
M

SP
BE

Behaviour Policy

Expected
Sarsa

GQ

Factored GQ

Double Factored GQ

Figure 5.3: Using a fixed behaviour policy that chooses the actions left and right with equal
probability, these graphs show how modifying the target policy (indicated as a probability of
selecting the right action) affects the RMSPBE averaged over all 50 runs and 500 time-steps.
The values for α and η used by each algorithm are the values which have the minimum mean
RMSPBE averaged over all target polices. Standard error bars are left off the graph as the
errors are smaller than the symbols used to mark data points.

52

0

0.014

0.028

0.042

0.056

0.070

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

The Effects of Changing the Target Policy
Using Tabular Features and a Fixed Equal

Random Behaviour Policy

R
M

SP
BE

Target Policy

Expected
Sarsa

GQ

Factored GQ

Double Factored GQ

0

0.024

0.048

0.072

0.096

0.120

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

The Effects of Changing the Target Policy
Using Inverted Features and a Fixed Equal

Random Behaviour Policy

R
M

SP
BE

Target Policy

Expected
Sarsa

GQ

Factored GQ

Double Factored GQ

0.04000010

0.06000008

0.08000006

0.10000004

0.12000002

0.14000000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

The Effects of Changing the Target Policy
Using Dependent Features and a Fixed

Equal Random Behaviour Policy

Target Policy

Expected
Sarsa

GQ

Factored GQ

Double Factored GQ

R
M

SP
BE

0.14

0.12

0.1

0.8

0.6

0.04

Figure 5.4: Using a fixed target policy that chooses the actions left and right with equal
probability, these graphs show how modifying the target policy (indicated as a probability of
selecting the right action) affects the RMSPBE averaged over all 50 runs and 500 time-steps.
The values for α and η used by each algorithm are the values which have the minimum mean
RMSPBE averaged over all behaviour polices. Standard error bars are left off the graph as
the errors are smaller than the symbols used to mark data points.

53

use for this problem, this may suggest that on harder problems, there may be a

larger gap between Expected Sarsa and GQ+. This suggests that future work on

more difficult problems is needed.

Lastly, we note that our factored methods, Factored GQ and Double-Factored GQ,

did not provide a faster gradient-TD method as we had hoped. With this in mind,

we continue in the next chapter in our search for faster gradient-TD methods by

introducing a set of new hybrid gradient-TD algorithms.

54

Chapter 6

Hybrid Gradient-TD Methods

In chapter 4, we saw that the performance of Expected Sarsa seemed to act as a

lower bound for the performance of our gradient-TD agents in on-policy problems

and while it was possible to obtain equitable performance under favourable condi-

tions, we were unable to beat Expected Sarsa on on-policy problems. From this

observation, an idea was born: what we would like are algorithms whose update

on on-policy problems is the same as Expected Sarsa (or other fast on-policy algo-

rithms) and then, on off-policy problems, the update changes to be more like GQ,

to ensure the algorithm converges on off-policy problems. We have already seen

that GQ has the same update as Expected Sarsa when w and β are set to 0, how-

ever we desire an algorithm that behaves like Expected Sarsa on on-policy problems

automatically, without intervention on the part of the experimentor. We refer to al-

gorithms that have this ability—to switch between on-policy updates and off-policy

updates automatically when necessarily, without external intervention—as hybrid

gradient-TD algorithms.

This chapter introduces three new algorithms, two of which are hybrid gradient-TD

algorithms. Our new algorithms are named AB, Hybrid-GQ, and TDGQ and were

developed by Hamid Maei and Rich Sutton. At time of publication, AB and Hybrid-

GQ appear only in a brief discussion in the appendix of (Maei 2011), and TDGQ

has never before appeared in publication. No experimental results exist with any of

these three algorithms. In this chapter, we will provide a more formal presentation of

these algorithms, and provide some intuition to why these algorithms are convergent

and may be effective. The next chapter then presents initial experimental results

using these new algorithms.

55

6.1 AB and Hybrid-GQ

In this section we present two new gradient-TD algorithms: AB and Hybrid-GQ.

While we began this chapter discussing our interest in creating hybrid gradient-TD

methods, the development of AB and Hybrid-GQ is initially not related to hybrid

gradient-TD methods: these two algorithms find their beginning in a simple idea

for modifying GQ to find new convergent gradient-TD methods, an idea which is

unrelated to hybrid gradient-TD methods. It is only a happy coincidence that

Hybrid-GQ is a hybrid gradient-TD algorithm.

The inspiration and development of AB and Hybrid-GQ, can best be summarized as

an exercise in cleverness, optimism and luck. The initial cleverness lies in two obser-

vations about the gradient of the mean-square projected Bellman error (MSPBE).

For the purpose of this discussion, let us rewrite the MSPBE in a different form

than usual:

MSPBE(θ) = E [δtφt]
> E

[
φtφ
>
t

]−1
E [δtφt]

= (−Aπθ + b)>C−1(−Aπθ + b)

Where Aπ = E
[
(φt − γφ̄πt+1)φ

>], b = E [rtφt], and C = E
[
φtφ
>
t

]
. Note we include

the subscript π on Aπ to indicate that the next state, φ̄πt+1 is drawn according to the

target policy π. The MSPBE gradient, written in terms of these matrices is then:

−1

2
∇MSPBE(θ) = E

[
(φt − γφ̄πt+1)φ

>
t

]
E
[
φtφ
>
t

]−1
E [δtφt]

= A>πC
−1(−Aπθ + b),

The first key observation that we must make here is to first realize that to ensure

convergence, A>πC
−1Aπ must be positive semi definite, and to ensure that this is

true, we only need guarantee that C−1 is positive semi definite (Maei & Sutton

2010). The second key observation to make is that the fixed-point of the MSPBE

is independent of C−1. Accordingly, we could replace C−1 with any semi positive

definite matrix that is independent of θ and our algorithm will still be guaranteed

to converge to the same fixed-point. Note however that while replacing C−1 does

not affect the fixed-point, it does affect the rate of convergence. Recall that the

56

norm of the expected update (NEU) (see equation 3.2), the objective function of

GQ-NEU, is equivalent to replacing C−1 with the identity matrix. As we have seen

in our experiments with GQ-NEU and GQ, this difference is enough that GQ-NEU

converges significantly slower than GQ.

This is where optimism comes into the development of AB and Hybrid-GQ: the

idea behind both algorithms is to find a matrix to replace C−1 in the expected

update which will improve on GQ’s rate of convergence. Note we are talking about

substituting C in the gradient (the update for θ, ∆θ), thus the new update produced

by changing C is not necessarily the gradient of anything. Thus, while any new

update produced by replacing C is guaranteed to converge to the same value of θ,

it is no longer a gradient descent method.

AB and Hybrid-GQ are the bi-product of replacing C−1 with matrices A−1µ and

A−1µ
> respectively (where Aµ is the same as Aπ except that φ′ is now φt+1, drawn

according to the behaviour policy µ). Note, we cannot use the matrix Aπ itself, as

Aπ is not necessarily positive definite (Tsitsiklis & Van Roy, 1997). Aµ is positive

definite because φt and φ̄µt+1 are both drawn according to the behaviour policy

(Sutton 1988).

Looking at AB first, we being by replacing C−1 with A−1µ to create a modified

gradient Aπ
>A−1µ (−Aπθ+ b). We then set about rearranging this modified gradient

so that it has two distinct terms: one term which is the standard TD-style update

and a second that is a correction term, just as in the update for GQ. We refer to

updates which have a TD-update term, and a correction term as modular updates.

Using the knowledge that Aπ = C − E
[
γφtφ̄

π
t+1
>] and Aµ = C − E

[
γφtφ̄

µ
t+1
>], we

can rearrange this modified gradient as follows:

A>πA
−1
µ (−Aπθ + b) = (Aµ −Aµ +A>π)A−1µ (−Aπθ + b)

= (−Aπθ + b) + (−Aµ +A>π)A−1µ (−Aπθ + b)

= E [δφ]− γ(−C + E
[
φtφ̄

µ
t+1
>
]

+ C − E
[
φ̄πt+1φ

>
t

]
)A−1µ (−Aπθ + b)

= E [δφ]− γ(E
[
φ̄πt+1φ

>
t

]
− E

[
φtφ̄

µ
t+1
>
]
)A−1µ (−Aπθ + b) (6.1)

Here it is important to pay careful attention to which expectations use the target

policy distribution and which use the behaviour policy distribution. By default, all

the previously discussed gradient-TD algorithms have been excursion methods, and

57

as such all expectations have used the behaviour distribution for selecting φt and

the target distribution for selecting the next state-action pair (φ̄πt+1). In these new

algorithms, we are explicitly adding Aµ into the equation, which means that both

φ̄µt+1 and φ̄πt+1 will be present.

From here, AB follows a similar pattern as our other gradient-TD methods. First,

we introduce a linear weight vector w that approximates part of the gradient to avoid

the bias introduced by taking the product of related expectations. For the algorithm

AB, w = A−1µ (−Aπθ + b). Then we can define a stochastic gradient descent style

update for θ and an update for w.

θt+1 = θt + αt

[
δtφt − γ

(
φ̄πt+1φ

>
t w − φtφ̄

µ
t+1wt

)]
(6.2)

wt+1 = wt + βt

(
δt + γ w>t φ̄

µ
t+1 − w

>
t φt)

)
φt (6.3)

To understand where the update for w comes from, notice that w = A−1µ (−Aπθ+ b)

resembles the analytic TD solution using r = δ. As such, we can learn w using a

TD-style update using δ in lieu of the reward.

Here we see that while AB is not a hybrid gradient-TD method, it is in fact, very

close: when µ and π are the same, if φ̄πt+1φ
>
t was symmetric, the correction term

would be zero. With the thought that we are but a mere transpose away from having

a hybrid gradient-TD algorithm, we switch to the derivation of Hybrid-GQ. Again,

we start by finding a form of the modified gradient A>πA
>
µ
−1

(−Aπθ + b) which will

give us a modular update:

A>πA
>
µ
−1

(−Aπθ + b) = (A>µ −A>µ +A>π)A>µ
−1

(−Aπθ + b)

= (−Aπθ + b) + (−A>µ +A>π)A>µ
−1

(−Aπθ + b)

= E [δφ]− γ(−C + E
[
φtφ̄

µ
t+1
>
]

+ C − E
[
φtφ̄

π
t+1
>
]
)A>µ

−1
(−Aπθ + b)

= E [δφ]− γ(E
[
φ̄πt+1φ

>
t

]
− E

[
φµt+1φ

>
t

]
)A>µ

−1
(−Aπθ + b), (6.4)

From here, we can introduce a learned weight w = A>µ
−1

(−Aπθ + b) and create a

gradient-descent style update for θ, and update w as follows:

58

θt+1 = θt + αt

[
δtφt − γ(φ̄πt+1 − φ̄

µ
t+1)φ

>
t wt

]
wt+1 = wt + βt

[(
δt − φ>t wt

)
φt + γ(φ>t wt)φ̄

µ
t+1

]
. (6.5)

From the update of θ, it is clear that when µ and π are the same distributions, that

(φ̄′
π − φ̄µt+1) = 0 and thus the correction term disappears and the update becomes

a TD-update. As the two policies become increasingly divergent, the difference

between (φ̄′
π − φ̄µt+1) becomes larger, meaning the correction term has a larger

affect on the update. This is exactly the kind of behaviour we used to define hybrid

gradient-TD algorithms. As such, by a stroke of luck, Hybrid-GQ is our first hybrid

gradient-TD algorithm.

6.2 TDGQ

There is no simple motivating story to explain the creation of TDGQ: the algorithm

was born from the desire to create a hybrid gradient-TD method. Instead of trying

to slowly build TDGQ, we will present the algorithm in whole and then dissect it

to provide some intuition on how this algorithm works, and finally sketch a proof

showing that TDGQ converges to the TD fixed-point.

The update for TDGQ is as follows:

θt+1 = θt + α
[
rt+1 + γθGQ >t+1 (¯φt+1

π − φ̄µt+1) + γθ>t φ̄
µ
t+1 − θ

>
t φt

]
φt (6.6)

where θGQ is the weight vector θ learned by GQ on the same data. We can see

intuitively that this algorithm may be a hybrid gradient-TD method, as when our

target and behaviour policy are the same, (φ̄πt+1 − φ̄
µ
t+1) = 0, and so our update

becomes the Expected Sarsa update. What remains to be shown is that this method

converges.

In essence, this algorithm is treating rt+1 + γθGQ >t+1 (φ̄πt+1 − φ̄
µ
t+1) conceptually as

a new reward signal. This new reward signal becomes increasingly different from

the original reward signal as the updates become more off-policy. Treating rt+1 +

γθGQ >t+1 (φ̄πt+1 − ¯φt+1
µ
) as a new reward signal, we can see that after θGQ converges,

our new modified reward signal becomes stable and the learning system becomes an

59

ordinary on-policy Expected Sarsa system.

This means that θ is guaranteed to converge to a stable unique fixedpoint θinf . The

question remains however, what does this algorithm converge to? Ideally, we would

like our algorithm to converge to the TD fixpoint θ∗. If we can show that θ∗ is a

fixed point of TDGQ, this is sufficient to show that θinf must be θ∗, thus proving

that TDGQ convertes to the TD fixed-point. First, let us note that if we rearrange

the update for TDGQ] slightly, we can write our update as:

θt+1 = θt + α
[
rt+1 + γ(θt − θGQt+1)

>φ̄µt+1 + γθGQ >t+1 φ̄πt+1 − θ>t φt
]
φt. (6.7)

From here, if we can substitute θ∗ for both θt and θGQ (given we know that θ∗ is

the fixed point of GQ), and show that this is a fixed point, we will have shown that

θinf = θ∗. Once we substitute in θ∗, we get

θt+1 = θ∗ + α
[
rt+1 + γ(θ∗ − θ∗)>φ̄µt+1 + γθ∗>φ̄πt+1 − θ∗>φt

]
φt. (6.8)

which simplifies to be the update for Expected Sarsa. Given we know that Expect

Sarsa’s fixed-point is the TD fixed-point, then this update is at its fixed-point when

θ = θ∗. Thus, θ∗ is necessarily the fixed point for TDGQ.

We have now seen that the update for TDGQ becomes the Expected Sarsa update

when encountering an on-policy update, and we’ve given a brief sketch for a proof

that TDGQ will converge to the TD-fixed point, making TDGQ our second hybrid

gradient-TD algorithm.

60

Chapter 7

Hybrid Algorithm Experiments

This final experiment chapter is a brief look at how our hybrid gradient-TD algo-

rithms (Hybrid-GQ and TDGQ), and Hybrid-GQ’s non-hybrid relative AB, compare

to GQ and Expected Sarsa in the same off-policy problem as presented in chapter 5.

We use the same experimental design as detailed in that off-policy experiment chap-

ter, including the parameter values for α and η, the different behaviour and target

policies evaluated, and the number of runs and time-steps for each experiment. To

avoid repetitiveness, we point the reader to chapter 5 for a detailed description of

the problem and instead focus only on presenting results here.

Note, that in this experiment, we do not compare our algorithms to GQ+, nor do

we run variants of our hybrid algorithms that recompute the TD-error. This may

surprise readers, given that GQ+ has continually outperformed GQ, and all of our

gradient-TD algorithms have seen some degree of improvement from recomputing

the TD-error. In truth, we did experiment with variants of the hybrid algorithms

that recompute the TD-error between updates, however, the results showed that,

with the exception of AB+, all our enhanced algorithms performed very similarly

on this problem, suggesting that the problem may be too simple to show differences

in their performance. We note that recomputing the TD-error seems to have a

similarly beneficial effect on our hybrid algorithms. We leave such an assessment

through further experimentation to future work.

Figures 7.1 and 7.2 are analagous to figures 5.1 and 5.2 presented in the off-policy

experiment chapter. In these graphs, we look at the effect on performance of fixing

our behaviour/target policy and then changing the target/behaviour policy. For

a given algorithm on a given feature set, the values for α and η used were kept

constant on each of the two figures: the parameter values selected for each of the

two graphs were the average best parameters, showing the best performance when

averaged across all behaviour/target policies explored in each graph. For example,

in the case of figure 7.1, we select the parameters that had the lowest MSPBE

61

averaged over all the target policies.

When the hybrid algorithms were introduced, the intuitional motivation behind

these algorithms was that when a problem was on-policy, these algorithms would

perform a conventional-TD update, and as a problem became increasingly off-policy,

the algorithm’s update would become more like a gradient-TD algorithm. In the

case of Hybrid-GQ, we are able to express our update in terms of two separable

terms: a traditional-TD update (the update for Expected Sarsa in the case of our

two algorithms) and then a correction term. As the target and behaviour policies for

a problem become more divergent, the weight put on the correction term increases.

Accordingly, we hypothesized that the performance of our hybrid methods would

lie between Expected Sarsa and GQ: being equal to Expected Sarsa when facing an

on-policy problem, and growing ever closer to GQ as the problems become more

off-policy.

In reality, we see that this hypothesis is close, but not always true. Looking at

figure 7.1, we see that TDGQ’s performance is worse than GQ on the inverted

and dependent features problems in the extreme cases of the target policy T10.

Remembering that TDGQ involves learning the set of weights learned by GQ to

use in its own learning update, the poor performance of TDGQ may be caused by

GQ’s own difficulty with these problems. Again looking at figure 7.1, Hybrid-GQ

and TDGQ perform worse than GQ in the dependent feature problems when the

target policy is right dominated—with the probability of selecting the right action

being 0.8 or higher. This may be attributable however to the effect of the value

function initialization. As discussed in chapter 5, our initialization of θ means the

agent begins with a highly optimistic value function, particularly in the inverted

and dependent feature problems, and this in turn seems to make problems where

the target policy heavily favours right actions easier.

In spite of this, Hybrid-GQ shows great promise in these results. Being a hy-

brid gradient-TD method, Hybrid-GQ automatically matches the performance of

Expected Sarsa on on-policy problems, without any external intervention from the

experimentor. Additionally, in these results we see that Hybrid-GQ practically dom-

inates GQ in terms of performance on this problem. When we began this thesis, our

two main goals were to find gradient-TD algorithms which could match conventional-

TD level performance on on-policy problems, and to provide faster off-policy per-

formance than existing gradient-TD methods. In these experiments, Hybrid-GQ

has been shown to do both amply well, promising that not only is Hybrid-GQ an

excellent gradient-TD method, but more generally, a fast RL method. While further

62

0

0.02

0.04

0.06

0.08

0.10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

The Effects of Changing the Target Policy
Using Tabular Features and a Fixed Equal

Random Behaviour Policy

AB

Hybrid-GQ

GQ

TDGQ

Expected Sarsa

Target Policy

R
M

SP
BE

0.030

0.044

0.058

0.072

0.086

0.100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

The Effects of Changing the Target Policy
Using Inverted Features and a Fixed Equal

Random Behaviour Policy

Hybrid-GQ

TDGQ

Expected Sarsa

GQ

Target Policy

R
M

SP
BE

0.040

0.052

0.064

0.076

0.088

0.100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Hybrid-GQ

GQTDGQ

Expected Sarsa

The Effects of Changing the Target Policy
Using Dependent Features and a Fixed Equal

Random Behaviour Policy

R
M

SP
BE

Target Policy

Figure 7.1: Using a fixed behaviour policy that chooses the actions left and right with equal
probability, these graphs show how modifying the target policy (indicated as a probability of
selecting the right action) affects the RMSPBE averaged over all 50 runs and 500 time-steps.
The values for α and η used by each algorithm are the values which have the minimum mean
RMSPBE averaged over all target polices.Standard error bars are left off the graph as the
errors are smaller than the symbols used to mark data points. Results for AB are omitted
for the inverted and dependent feature graphs as the algorithm performs significantly worse,
dwarfing the differences between the other algorithms and making it difficult to interpret
the graphs.

63

0

0.03

0.06

0.09

0.12

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

The Effects of Changing the Behaviour Policy
Using Tabular Features and a Fixed Equal

Random Target Policy

AB

Hybrid-GQ

GQ

TDGQ
Expected Sarsa

Behaviour Policy

R
M

SP
BE

0

0.075

0.150

0.225

0.300

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

The Effects of Changing the Behaviour Policy
Using Inverted Features and a Fixed Equal

Random Target Policy

AB

Hybrid-GQ

GQ

TDGQ

Expected Sarsa

Behaviour Policy
R

M
SP

BE

0

0.05

0.10

0.15

0.20

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

The Effects of Changing the Behaviour Policy
Using Dependent Features and a Fixed Equal

Random Target Policy

AB

Hybrid-GQ
GQ

TDGQ

Expected Sarsa

Behaviour Policy

R
M

SP
BE

Figure 7.2: Using a fixed target policy that chooses the actions left and right with equal
probability, these graphs show how modifying the behaviour policy affects the RMSPBE
averaged over all 50 runs and 500 time-steps of our Hybrid Algorithms. The values for α
and η are the values which have the minimum mean RMSPBE averaged over all behaviour
polices. Standard error bars are left off the graph as the errors are smaller than the symbols
used to mark data points.

64

results are necessary to make stronger claims, Hybrid-GQ shows great promise and

calls for further experimentation.

65

Chapter 8

Conclusion

This thesis is about testing the limits of the new gradient-TD family of algorithms.

While we recognize that gradient-TD algorithms have many desirable properties—

providing a versatile, usable solution for the long-standing difficult problem of find-

ing convergent a off-policy algorithm which works with function approximation—we

question whether these methods can stand up against conventional-TD methods

in terms of convergence speed when solving on-policy problems. We began this

thesis with the belief that there is a need for, and a potential to develop, faster

gradient-TD algorithms. Therefore and so we set out to find answers as to whether

gradient-TD algorithms were truly slower than conventional-TD methods, and if so,

by how much? Finally, could we find a way to overcome this slowness.

Our methodology focused on comparing GQ-NEU, GQ2, and GQ to one another

and to compare each to Expected Sarsa on a simple Random Walk with actions

environment, looking at on- and off-policy settings to determine how gradient-TD

methods compared to basic conventional-TD methods. This is the first experimental

work done with GQ-NEU and GQ2. We concurrently began introducing several

variants of these algorithms: observing the effects of recomputing the TD-error

between the updates for the two weight vectors of our gradient-TD methods in GQ-

NEU+, GQ2+, and GQ+, and refactoring the GQ gradient to get a more sample-

able gradient in Factored GQ and Double-Factored GQ. We found that recomputing

the TD-error offered improvement on all our gradient-TD methods, with GQ+ being

particularly effective. While results with GQ+ have been positive, there is a need for

future work testing its effectiveness on a larger scale, with more difficult problems.

The second contribution of this thesis is the introduction of Hybrid Gradient-TD

algorithms. Chapter 6 introduced the concept of algorithms with blended updates,

which can automatically do a conventional-TD update on on-policy samples, but

change its update to be increasingly more like gradient-TD methods when encoun-

tering off-policy data. We presented two new hybrid algorithms—Hybrid-GQ and

66

TDGQ—as well as a third related non-hybrid method AB. AB and Hybrid-GQ were

hitherto previously described briefly in the appendix of Maei’s thesis (2011), though

we provide the first formal full description of the methods and their derivation here.

This thesis is the first publication introducing TDGQ. We then then showed pre-

liminary results for these three algorithms on the same off-policy chain-like MDP

used throughout this thesis. These were the first results published for all three algo-

rithms. From this experiment, we saw that Hybrid-GQ, being a hybrid gradient-TD

method, was able to match Expected Sarsa’s performance on on-policy problems.

Also, Hybrid-GQ dominated GQ’s performance on our off-policy problem, provid-

ing exciting results indicating that Hybrid-GQ is the fastest of the gradient-TD

methods evaluated in this thesis. These highly favourable initial experiments show

Hybrid-GQ to be a very promising hybrid gradient-TD algorithm, and a suitable

answer to our call for faster gradient-TD methods.

67

References

Baird, L.C. (1995). Residual algorithms: Reinforcement learning with function

approximation. In Proceedings of the 12th Int. Conf. on Machine Learning, pp.

30-37.

Bradtke, S., Barto, A.G. (1996). Linear least-squares algorithms for temporal dif-

ference learning. Machine Learning 22 :33-57.

Bellman, R. E. (1957). Dynamic Programming. Princeton University Press.

Geramifard, A., Bowling, M., Sutton, R. S. (2006). Incremental least-square tem-

poral difference learning. In Proceedings of the Twenty-First National Conference

on Artificial Intelligence, pp. 356-361.

Maei, H. R., and Sutton, R. S. (2010). GQ(λ): A general gradient algorithm for

temporal-difference prediction learning with eligibility traces. In Proceedings of the

Third Conference on Artificial General Intelligence, pp. 91-96. Atlantis Press.

Maei, H. R. (2011). Gradient Temporal-Difference Learning Algorithms. PhD thesis,

University of Alberta.

Precup, D., Sutton, R. S., and Dasgupta, S. (2001). Off-policy temporal-difference

learning with function approximation. In Proceedings of the 18th International Con-

ference on Machine Learning, pp. 417-424.

Rummery, G., and Niranjan, M. (1994). ”On-line Q-learning using connectionist

systems,” Cambridge University, Tech. Rep. CUED/F-INFENC/TR 166, 1994.

Sutton, R. S. (1984). Temporal Credit Assignment in Reinforcement Learning.

Ph.D. Dissertation. University of Massachusetts.

Sutton, R. S. (1988). Learning to predict by the method of temporal differences.

68

Machine Learning, 3:9-44.

Sutton, R. S., Barto, A. G. (1998). Reinforcement Learning: An Introduction. MIT

Press.

Sutton, R. S., Szepesvári, Cs., Maei, H. R. (2009). A convergent O (n) algorithm for

off-policy temporal-difference learning with linear function approximation. Advances

in Neural Information Processing Systems 21. MIT Press.

Sutton, R. S., Maei, H. R., Precup, D., Bhatnagar, S., Silver, D., Szepesvári, Cs. and

Wiewiora, E. (2009). Fast gradient-descent methods for temporal-difference learning

with linear function approximation. In Proceedings of the of the 26th International

Conference on Machine Learning. pp. 993-1000.

Tsitsiklis, J. N., and Van Roy, B. (1997). An analysis of temporal-difference learning

with function approximation. IEEE Transactions on Automatic Control, 42: 674-

690.

van Seijen, H., van Hasselt, H. P., Whiteson, S., Wiering, M.A., (2009). A theoretical

and empirical analysis of Expected Sarsa. Proceedings of the IEEE International

Symposium on Adaptive Dynamic Programming and Reinforcement Learning, pp.

177-184.

Watkins, C.J.C.H. (1989). Learning from delayed rewards. Ph.D. Dissertation.

University of Cambridge.

69

	1 Introduction
	2 Reinforcement Learning and Off-Policy Learning
	2.1 The Reinforcement Learning Problem
	2.2 Sarsa and Expected Sarsa with Function Approximation
	2.3 Off-Policy Problems in Reinforcement Learning

	3 Gradient-TD Algorithms
	3.1 An Argument for Bellman Error Based Objective Functions
	3.2 Deriving GQ-NEU
	3.3 The Projected Bellman Error and the Derivation of GQ2 and GQ
	3.3.1 The Projected Bellman Error
	3.3.2 Deriving GQ and GQ2

	4 Assessment on On-Policy Prediction Problems
	4.1 Random Walk with Actions Problem
	4.2 Experimental design
	4.3 Conventional-TD Methods
	4.4 Learning Rate of Conventional- and Gradient-TD Methods
	4.5 Recomputed TD-error
	4.6 Conclusion

	5 Assessment on Off-Policy Prediction Problems
	5.1 Algorithms
	5.2 Off-Policy Random Walk with Actions Problem
	5.3 Experimental Settings
	5.4 Learning Rate of Conventional- and Gradient-TD Methods on Off-Policy Problems
	5.5 Factored GQ and Double-Factored GQ
	5.6 Learning Rate of Factored GQ and Double-Factored GQ on Off-policy Problems
	5.7 Conclusions

	6 Hybrid Gradient-TD Methods
	6.1 AB and Hybrid-GQ
	6.2 TDGQ

	7 Hybrid Algorithm Experiments
	8 Conclusion

