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Abstract. By eavesdropping on a user’s query in a sensor network, an adversary
can deduce both the user’s location and his/her area of interest. In many domains
it is desirable to guarantee privacy of both places. Relying on the principle of k-
anonymity, we propose an effective way to measure how well a disperse set of k
queries protects the user’s area of interest. However, issuing k queries instead of
one facilitates the adversary determining the user’s location. To address that issue,
we define a quantitative measure of how much information the k queries leak
about the user’s location. Experiments reveal that how dispersed the k queries are
has no effect on the privacy of the user’s location. However, smaller k, randomized
routing, and non-broadcast transmission improve the user’s location privacy. We
also show that compromising nodes in the user’s network yields no significant
advantage to the adversary over an eavesdropping strategy.

1 Introduction

Privacy is an important challenge in many wireless sensor network applications. Con-
sider a sensor network where a user with a portable device interacts with the nodes,
for instance, querying a sensor’s data at a remote location. As a practical example, the
sensor network could be a military one that troops need to query in preparation for
an offensive. That query would be received by a nearby node and routed through the
sensor network to the location of interest, then processed and returned using one of
a large number of previously proposed algorithms. Given an assumed sensitive nature
of the information returned by the query, encryption should be used to protect against
eavesdropping. Either symmetric encryption or public-key encryption that is sufficiently
inexpensive to be performed by a low-power sensor node [1] could be used. However,
it is not just the information returned by the queried sensor node that has value to an
adversary. By listening to network traffic, using either compromised nodes in the user’s
sensor network or eavesdropping nodes, an adversary could learn: (a) where the queried
sensor is, thus providing significant insight into the user’s intentions; and (b) where the
query originated, thus revealing the user’s current location. Investigating the trade-off
between protecting these two locations is the main goal of this paper.

In the context of our aforementioned military scenario, we consider an adversary
that wants to learn the user’s current location or location of interest. In previous works,
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a common assumption was the adversary was a mobile single physical agent able to
move towards the user. We, on the other hand, assume that the adversary is not a single
physical agent; rather, it is virtually present at different points of the network by virtue
of being able to simultaneously eavesdrop on the on-going communication at those
points. This “omnipresence” makes our model of an adversary stronger than a single
mobile adversary. We also assume that the adversary has complete knowledge of all
possible routes that a message could take between two sensors in the user’s network
(i.e., complete knowledge of the routing tables), as this information could be obtained
through eavesdropping on legitimate traffic.

Considering this problem under this threat model, we offer the following contribu-
tions. We introduce novel metrics that enable the user to quantitatively evaluate how
well he/she can protect the privacy of his/her location of interest by issuing k queries,
one directed to the real location of interest and the others directed to k − 1 distinct fake
locations of interest. This technique for protecting location-of-interest privacy requires
no changes, hardware nor software, to an existing sensor network; it is implemented
entirely in software on the mobile device interacting with the sensor network, and in-
troduces a multiplicative overhead of factor k in terms of communication in the sensor
network. We also discuss in detail the trade-off yielded by the fact that issuing more
queries generates more traffic from the user’s current location, thus helping an adversary
discover that current location. Our experimental results show that how well dispersed
the k queries are has no effect on the privacy of the user’s current location. Nonetheless,
smaller values of k, randomized routing, and non-broadcast transmission between nodes
can significantly improve the user’s current-location privacy. Finally, we show the sur-
prising result that an adversary who gathers information from compromised nodes in
the user’s network has no significant advantage over an eavesdropping adversary when
broadcast transmission is used.

The remainder of this paper is structured as follows. Section 2 discusses related
work on anonymous communication. We then formalize the metrics that we use in Sec-
tion 3; these metrics define how well the user’s location of interest and current location
are protected by the k queries issued. Section 4 describes how the fake locations of
interest should be chosen. We then present experimental results in Section 5 to illus-
trate how various parameters affect the user’s privacy, before concluding and discussing
possible future work in Section 6.

2 Related Work

There are known ways to achieve anonymity of two communication endpoints in some
networks. The Tor network implementation of onion routing [2] has the source choose
a random route to the destination. The source uses layers of public-key encryption, al-
lowing each host in the route to see only the next host in the route, and none of the data
being transmitted. However, this approach demands many public-key cryptography op-
erations that may be too costly or even impossible for some sensor nodes. Finally, Tor
does not protect against eavesdropping at communication endpoints, which is a signifi-
cant threat in a broadcast medium. If an adversary were to overhear a query exiting the
Tor network, all privacy about the location being queried would be lost.



Misra and Xue [3] look at anonymity specifically for sensor networks. They show
how clusters of nodes can generate and share pseudonyms used as node identities when
communicating with a sink. Their work is extended by Ouyang et al. [4] to account
for shared keys being compromised. However, these works only look at nodes com-
municating with a sink, using pseudonyms known only to the endpoints to ensure that
eavesdroppers will not know which node is sending information. These schemes are not
applicable when nodes need to communicate with each other, as in our scenario.

Ozturk et al. [5] and Kamat et al. [6] examine a problem similar to our user’s queries
being tracked to their source. However, these papers have a different focus, namely an
adversary that moves over time towards a source node that produces a continuous stream
of data. They propose a solution called phantom routing, in which each epoch’s data is
routed in a random directed walk away from the source, before being flooded to the sink.
This solution would not be appropriate for our scenario; e.g., a message intercepted
during the directed walk phase carries enough information to immediately yield the
number of hops and direction to the source of the user’s query. A related problem, in
which the adversary moves towards the receiver of sensor network traffic over time, is
investigated by Jian et al. [7]. While these approaches are useful for protecting privacy
in certain situations, they are not applicable to the situation described in this study,
in which the adversary does not have to move towards the user’s current location or
location of interest. In a military scenario, for example, just learning either of these
locations could be sufficient for the adversary.

In our work, we rely on obfuscating the user’s location of interest by querying k
locations, an idea inspired by Sweeney’s concept of k-anonymity [8]. The goal then
was to allow a data holder (e.g., a hospital) to release personal data to researchers such
that no set of data could possibly belong to fewer than k individuals. To our knowledge,
no one has investigated the trade-off imposed by preserving the privacy of both the
location of interest as well as the user’s location, using the notion of k-anonymity.

3 Privacy Metrics

We begin by defining our notation. The sensor network consists of a set N of nodes,
where |N| = n. The user will issue k queries, Qi, each directed to a location Li, where
L = {L1, L2, . . . , Lk} ⊆ N . One node, L ∈ L, is the user’s real location of interest, and
the remaining k − 1 nodes are fake locations of interest.

To study how well this k-anonymity scheme preserves the privacy of the user’s loca-
tion of interest (LOI) and current location (CL), we require formal methods to measure
the privacy levels that result from any given set of k queries. In the following section, we
define the metric used to determine how well the LOI-privacy — and, more specifically,
the area in which the LOI lies — is protected. We then define how well the privacy of
the current location is protected in Section 3.2.

3.1 Privacy of the Location and Area of Interest

If it is equally probable that any of the k queried nodes is the real LOI, then the adversary
cannot learn which of the k nodes queried is the real LOI. Given this assumption (which



we revisit in Section 4), what is actually meant when we discuss protecting the privacy
of the user’s LOI? Consider the two scenarios in Figure 1. In both cases, the user’s real
LOI is the starred node in the northeast, and k − 1 = 3 fake LOIs are chosen to disguise
the real LOI. However, in Figure 1(a), all four LOIs are clustered in the east. While an
adversary who overhears these queries would not know which node is of interest to the
user, it would be obvious that the user is interested in the eastern region of the sensor
network. In Figure 1(b), the four LOIs are dispersed throughout the sensor network,
obfuscating the area of the network in which the user is interested. We need to define
a measure of how dispersed the k LOI choices are. That is, we want to measure how
well-protected the privacy of the user’s area of interest (AOI) is.

(a) A poor choice. (b) A good choice.

Fig. 1. A comparison of two choices for k − 1 = 3 fake LOIs (dark nodes) given one fixed real
LOI (starred node).

To measure how well the set L of k LOIs preserves the user’s AOI-privacy, we
define a function σ (L,N) to measure how dispersed the LOIs are over the networkN .
To allow for comparisons of different methods of choosing the fake LOIs over networks
with different topologies, we normalize the score returned by σ. Let σmin(k,N) and
σmax(k,N) be the minimal and maximal values returned by σ, over all

(
n
k

)
possible sets

of k LOIs. The normalized measure of AOI-privacy is defined as

MAOI (L,N) =


1 if σmin (k,N) = σmax (k,N)
σ (L,N) − σmin (k,N)
σmax (k,N) − σmin (k,N)

otherwise.

The function σ must have the property that it returns large values for sets L with mini-
mal clustering of the LOIs, and small values otherwise. It must also be easy to compute
on the user’s low-powered, mobile device prior to issuing a query. Next, we discuss
some alternatives for σ.

Variance-Based σ. One straightforward approach is to compute a variance-like quan-
tity for the positions of the nodes in L, measuring the squared distance between LOIs:

σ (L,N) =

k−1∑
i=1

k∑
j=i+1

D
(
Li, L j

)2
,

where D is the Euclidean distance between two nodes. However, this definition of σ
does not penalize clustering properly. Consider the examples in Figure 2. The choice of



fake LOIs in Figure 2(a) has two of the LOIs clustered together. In Figure 2(b) the three
LOIs are dispersed evenly. However, the σ value for the first choice is higher.

(a) A choice of LOIs that results in
two clusters.

(b) A choice of LOIs that disperses
the LOIs across the entire network.

Fig. 2. A comparison of two choices for k = 3 LOIs in a five-node sensor network.

Union of Circles σ. Another approach is to determine how much overlap exists among
the regions around each LOI. Specifically, one can draw a circle of radius r around each
LOI and let σ be the area of the union of the k circles. The more clustered the LOIs, the
more overlap there would be among the circles, resulting in a smaller area. An example
is presented in Figure 3. With k clustered LOIs, shown in Figure 3(a), there is significant
overlap among the circles, unlike with the non-clustered choice shown in Figure 3(b).

(a) A choice of LOIs with signifi-
cant overlap among the circles.

(b) A choice of LOIs with minimal
overlap among the circles.

Fig. 3. A comparison of two choices for k = 4 LOIs in a sensor network, each surrounded by a
circle with a fixed, arbitrary radius.

One way to choose r is to define d as the maximum distance between any two
nodes in N , then set r = d

2 . This definition ensures that there is no overlap between the
regions of the two sensor nodes that are farthest apart, but the regions surrounding any
two sensor nodes that are closer together will overlap. While this σ properly penalizes
clustering, computing σ is computationally expensive. A Monte Carlo algorithm for
computing the area of the union of circles requires a large number of sample points. It
may not be practical for the user to run an expensive algorithm to compute the AOI-
privacy level of every set of k queries he/she poses. Even more expensive to compute
are σmin (k,N) and σmax (k,N), though these values could be precomputed, provided
the sensor network topology does not change.



Sum of Minima σ. Measuring the sum of minimum distances from each LOI to any
other LOI penalizes clustering properly and is easy to compute. Formally, let

σ (L,N) =

k∑
i=1

min
j,i

{
D

(
Li, L j

)}
,

where D is the Euclidean distance between two nodes. That is, the farther away each
of the Li are from each other, the higher the value of σ. Returning to the five-node
examples in Figure 2, this σ returns a higher value in the scenario where the LOIs are
non-clustered; and, it can be computed quickly, given the location of every node in L.

Considering these three possibleσ functions, we use the sum of minima function for the
remainder of the paper. We chose this σ since we assume that the user, prior to issuing
any set of k queries, will want to precompute the AOI-privacy that will result from the
queries using a mobile device with limited processing power. If processing power were
not a concern, the union of circles metric could be used instead.

3.2 Privacy of the Current Location

The previous section described a static measurement for how well k queries protected
the user’s AOI-privacy. How much information these queries leak about the user’s cur-
rent location (CL), on the other hand, cannot be analyzed statically, as that depends
on how much information the adversary is able to overhear during the routing of the
queries. To determine the CL-privacy that results from a set of queries, we will simulate
the user issuing queries while malicious nodes (either compromised nodes in the user’s
network, or eavesdropping nodes outside the network) attempt to ascertain the origin of
those queries.

This section demonstrates how an adversary could use the information captured by
malicious nodes to narrow down the possible locations where the user could be. Central
to this technique is the concept of a possible route. In the sensor network, which we
assume to be connected, there must be a routing algorithm capable of routing messages
from any source node to any destination node. Consider a route R = (N1,N2, . . . ,Nl),
which is a sequence of l nodes. R is a possible route from N1 to Nl if it possible that the
routing algorithm used in the sensor network could have routed a message from N1 to
Nl along the path N1,N2, . . . ,Nl.

In this paper, we consider two routing algorithms: fixed shortest-path routing and
random shortest-path routing. Both guarantee that any message from N1 to Nl will arrive
in the fewest possible hops. In random shortest-path routing, each node maintains a
table indexed by the destination of a message, containing all possible next hops that the
message could take to arrive in the fewest hops. When a message arrives at a node Ni

destined for node Nl, Ni will look into its table at index Nl, and randomly choose one of
the entries as the next hop. In fixed shortest-path routing, each node stores only a single
next-hop choice for each possible destination. There is exactly one possible route from
N1 to Nl when fixed shortest-path routing is used, but there can be many possible routes
between N1 and Nl with random shortest-path routing.



Recall that the user uses a mobile device to communicate with a nearby sensor
node, in order to route queries through the sensor network to the LOIs. The user sends
the k queries, denoted Q1,Q2, . . . ,Qk, to the closest sensor node, C. We assume that
the mobile device and C communicate using low-power communication. That is, the
adversary will only overhear communication between the mobile device and C if C
is compromised. We also assume that the adversary knows k — the implication be-
ing that if the adversary overhears fewer than k of the user’s queries, the adversary
knows how many queries were not overheard. Each Qi takes a route Ri through the net-
work, starting at C and ending at Li. Denote Ri as a sequence of nodes with length li,
Ri =

(
Ni,1,Ni,2, . . . ,Ni,li

)
, where Ni,1 = C and Ni,li = Li. The goal of the adversary is to

determine C.
Clearly, a query message that is being routed from C to Li cannot contain refer-

ences to C, nor can a reply; otherwise, the adversary could easily determine C. Query
messages contain four pieces of information in addition to the query itself: a unique
query identifier for Qi; the destination Li (which may be the real location of interest
or a fake one); the identifier for the node currently transmitting the query, Ni, j; and,
the next hop in the route, Ni, j+1. When node Ni, j+1 receives the query, it remembers the
previous node in the route for query Qi, Ni, j. Replies to the query message contain only
the query identifier for Qi. When node Ni, j+1 receives a reply to the query, to be routed
back to C, Ni, j+1 uses its memory to identify Ni, j as the next hop in the reply path, and
sends the reply to Ni, j (without unnecessary information such as the identity of Ni, j or
Ni, j+1). However, we assume the worst case: the adversary is able to determine which
sensor node is transmitting a reply message if that reply is overheard.

If a query message for query Qi is overheard, the adversary learns one of the LOIs,
Li. Additionally, the adversary learns one hop that the query took along the route from
C to Li: Ni, j and Ni, j+1, for 1 ≤ j < li, where j and li are unknown to the adversary. That
is, the adversary learns two consecutive elements in the route, but neither their position
in the route nor the length of the route. If a reply message for query Qi is overheard, the
adversary learns only a single node that was involved in the route: Ni, j, for 1 < j ≤ li,
again with unknown j and li.

The adversary can also construct a list of sensor nodes that were certainly not in-
volved in routing Qi. Because the adversary has complete knowledge of every message
that was routed through compromised nodes in the user’s sensor network, the adversary
knows which compromised nodes were not involved in routing Qi. An additional con-
sideration for the adversary is that the malicious nodes (either compromised nodes in
the user’s network, or the adversary’s own nodes eavesdropping on the network) could
monitor all communication by honest sensor nodes in their communication range. An
adversary may conclude that if a malicious node that is monitoring an honest node
within its range, H, did not hear H produce any traffic regarding query Qi, then H must
not have been involved in routing Qi. However, the malicious node may not have heard
a message transmitted by H due to interference or a collision. As such, we assume that
the adversary will restrict the list of nodes that certainly were not involved with query
Qi to the set of compromised nodes in the sensor network that did not route Qi.

The key insight for the adversary, having collected information on the routes of the
queries, is that if no possible route from a sensor node N to the known destination of



Qi, Li, is consistent with the known information about Qi, then N could not have been
the origin of the query. Formally, a route R = {N1,N2, . . .Nl} from N to Li is consistent
with that information, assuming the destination Li of Qi is known, if:

1. R is a possible route from N to Li (i.e., N1 = N, Nl = Li, and the routing algorithm
could have used this route);

2. For every query message about Qi overheard by the adversary, sent by Ni, j to Ni, j+1,
there is some k < l such that Nk = Ni, j and Nk+1 = Ni, j+1;

3. For every reply message about Qi overheard by the adversary, sent by Ni, j, there is
some k > 1 such that Nk = Ni, j; and,

4. No node that is known not to have routed Qi appears in R.

There is a second insight, about queries for which the adversary does not know the
destination. The adversary may still know some information about such a Qi (e.g., over-
heard reply messages, or knowledge about compromised nodes that did not route Qi).
LetD be the set of all possible destinations for the queries with unknown destinations.
Specifically, D is the set of all nodes in N that are not compromised and are not the
destination of a query with a known destination. Let U be the set of queries for which
the destination is unknown to the adversary, where 0 ≤ |U| ≤ k. If it is not possible to
assign a unique destination fromD to each query inU, in such a way as to ensure that
there is a possible route from sensor node N to the destination of each query inU that
is consistent with all of the known information about that query, then N cannot be the
origin of the user’s queries.

In summary, an adversary who eavesdrops on the user’s network can overhear nodes
that are involved in routing queries; an adversary who is able to compromise nodes in
the user’s network can also know for certain if those compromised nodes were not in-
volved in routing a particular query. Pseudo-code for the algorithm the adversary can
use to narrow down the user’s possible current locations is presented in Figure 4. This
algorithm will narrow down the possible current locations of the user to P ⊆ N . Denot-
ing Nhonest =

{
N ∈ N | N is not compromised

}
, it is guaranteed that 1 ≤ |P| ≤ |Nhonest |.

Normalizing between these two bounds defines the metric for evaluating CL-privacy,

MCL (P) =


0 if |P| = 1
|P| − 1

|Nhonest | − 1
otherwise.

4 Choosing the Fake LOIs

Given the metrics necessary to measure how well a set of k queries preserves the privacy
of the user’s area of interest (AOI) and current location (CL), we now investigate how
the user should choose the k − 1 fake locations of interest (LOIs) to query, given one real
LOI. Regardless of how the fake LOIs are chosen, recall our assumption that, from the
point of view of the adversary, it is equally probable that any of the k queried nodes is the
real LOI. Any implementation of k-anonymity for sensor network queries must take into
account real-life limitations. For example, if the troops using a military sensor network



function Narrow-Possible-CLs
if the node C with which the user is communicating is compromised then

return P = {C}
Nhonest ←

{
N ∈ N | N is not compromised

}
P ← Nhonest

for all queries Qi for which the destination is known do
for all p ∈ P do

if Possible-Consistent(p,Qi) = False then
Remove p from P

U ← {Qi | Li is unknown}
D ←

{
N ∈ Nhonest | N is not a destination for any Qi with known destination

}
for all p ∈ P do

foundAssignment ← False
forD′ ← all

(
|D|

|U|

)
choices of |U| destinations fromD do

for all |D′|! assignments of nodes inD′ as destinations for the queries inU do
if Possible-Consistent(p,Q) = True ∀ Q ∈ U then

foundAssignment ← True
if foundAssignment = False then . Note: vacuously never happens if |U| = 0

Remove p from P
return P

function Possible-Consistent(src,Q)
L← the destination of query Q
if ∃ a possible route from src to L, consistent with all known information about Q then

return True
else

return False

Fig. 4. Pseudocode for finding all possible current locations for the user.

queried one node at a location of strategic importance, but k − 1 nodes at strategically
irrelevant positions, the adversary could guess the real LOI with high probability. In this
paper we assume a homogeneous environment where each node is equally important.

Another situation that could leak the real LOI is if the user issues multiple queries
to the real LOI. Any algorithm used to choose the k − 1 fake LOIs based on the real
LOI is required to choose the same k − 1 fake LOIs each time the user issues a real
query. Otherwise, if the user first queries the k nodes in L1 then later issues queries
to the k nodes in L2 , L1, and if the adversary can correctly guess that the user was
issuing repeat queries to the same node (it is overly optimistic to assume otherwise),
the adversary would learn that the real LOI is in L1 ∩ L2.

Let F be the choice function that takes the real LOI L and returns a set L of k
LOIs to query, with L ∈ L. If F is deterministic, repeat queries are of no concern, since
F (L) = L for each call to F (L). If F is a random function, taking L and a random
seed sL as parameters (and using a cryptographically secure pseudo-random number
generator [9]), the user should encapsulate F in a deterministic function. For example,



the user could call F′ (L) = F (L, sL), where sL = H (s ◦ L) is computed using a stored
secure seed, s, and cryptographic hash function H, with ◦ representing concatenation.

It is not only multiple queries to the real LOI that pose a problem; even a single set
of k queries could leak the real LOI. Knowledge of how F works could be sufficient
for the adversary to determine the real LOI, given the set L of all k nodes queried.
Consider a deterministic F that takes the real LOI L and returns a list L that contains
L and the k − 1 fake LOIs, such that σ(L,N) is maximized over all possible choices
of k − 1 fake LOIs. This function, which maximizes the user’s AOI-privacy, may leak
the user’s real LOI. Consider the example in Figure 5. If the k = 3 nodes illustrated
in Figure 5(a) are queried, the adversary would know that the interior LOI is the real
LOI. Were the westernmost node the real LOI, the central node and the easternmost
node would have been chosen by F as the fake LOIs, as illustrated in Figure 5(b), to
maximize σ. Similarly, the easternmost node could not be the real LOI.

(a) The k = 3 sensor nodes that
were actually queried by the user.

(b) The nodes that would have
been chosen asLwere the western-
most node the real LOI.

Fig. 5. An example of the σ-maximizing choice function leaking the real LOI.

For F not to leak information in this fashion, F must generate a set L ⊆ N that
is closed under F. For a deterministic F, this closure requirement means: if F (L) = L

for some L ∈ N , then F (Li) = L for all Li ∈ L. For a non-deterministic F, this closure
requirement means that there must be no candidate L ∈ L that was more likely than the
other elements in L to have generated L. Define P (F,L, Li) as the proportion of all
seeds in the seed space for which F will generate L, given Li and a seed as arguments.
The closure property necessary for a non-deterministic F is: if F (L, s) = L for some
L ∈ N and seed s, then P (F,L, Li) = P (F,L, L) for all Li ∈ L. An unbiased random
choice of the k − 1 fake LOIs — the method of choosing fake LOIs we use for the
remainder of this paper — meets this closure requirement. Future work should examine
how to generate fake LOIs in such a way that guarantees a minimum AOI-privacy level,
without leaking the real LOI.

5 Experimental Results

The area-of-interest (AOI) privacy that results from a set of queries to k locations of
interest (LOIs), k − 1 of which are fake, can be computed by the user before he/she
issues the queries. The resulting current-location (CL) privacy, on the other hand, is
dependent on how much information the adversary overhears, and cannot be computed
by the user. Ideally, the user would like to predict the CL-privacy that will result from
his/her queries, based on information that can be known ahead of time.



We first investigated how CL-privacy is correlated with the AOI-privacy of the
queries, and also how CL-privacy is correlated with the amount of communication gen-
erated by the k queries. As a measure of the communication generated by a set of k
queries, we define its sum of hops as

∑k
i=1 (|Ri| − 1). We simulated a user issuing a set

of k = 3 queries in a sensor network with 400 nodes, arranged in a 20 × 20 grid. The
nodes communicate over a broadcast medium, using fixed shortest-path routing. The
adversary has compromised 10 random nodes in the network, but is guaranteed not to
have compromised the node with which the user is directly communicating. We ran
1000 trials in which the user was placed at a random location in the sensor network and
queried a random LOI, along with k − 1 = 2 fake LOIs chosen at random. In each trial,
we recorded the resulting CL-privacy, AOI-privacy, and sum of hops. The results of this
experiment are illustrated as scatterplots in Figure 6.
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Fig. 6. Scatterplots comparing precomputed metrics to the resulting CL-privacy over 1000 trials.

These results indicate that the AOI-privacy level from a random selection of k − 1
fake LOIs is highly variable, as seen in Figure 6(a). That scatterplot also shows that the
user cannot predict the resulting CL-privacy of his/her queries based on the precom-
puted AOI-privacy. While there is an inverse correlation between these two metrics, it
is not a strong correlation (R2 = 0.0109, meaning that only 1.09% of the variance in
the CL-privacy can be explained by variations in the AOI-privacy value). From both the
value of R2 and visual inspection of the scatterplot, it is apparent that we cannot fit a
function to the graph that could predict CL-privacy based on AOI-privacy. While the
correlation between CL-privacy and the sum of hops metric is slightly stronger, as seen
in Figure 6(b), it is still not a strong one (R2 = 0.0861).

There is no clear method for predicting the resulting CL-privacy given a set of k
queries. However, there are numerous factors that do affect the resulting CL-privacy. In
order to investigate the effect of k, we repeated our earlier experiment, but using k = 2
and k = 4. The results, illustrated in Figure 7(a), show that incrementing k from 2 to
3 and from 3 to 4 did significantly decrease the CL-privacy.1 A conclusion that can
be drawn from this set of experiments is that if the privacy of his/her current location

1 Significance tests, except where otherwise noted, use Kruskal-Wallis ANOVA with Dunn’s
multiple comparison test [10], with significant results having P < 0.001 and non-significant



is important, the user should sacrifice some of the privacy of the location of interest
(measured as the number of fake LOIs queried).
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Fig. 7. The effect of various parameters on the resulting CL-privacy, with error bars representing
the 95% confidence interval around the mean over 1000 trials.

Until now, we have assumed that fixed shortest-path routing is used; however, the
nodes may use random shortest-path routing to prevent messages from being traced
back to their source as easily, which we hypothesize will increase CL-privacy. We have
also assumed that the nodes communicate over a broadcast medium (e.g., radio). We hy-
pothesize that migrating to a point-to-point (P2P) medium (e.g., optical transmissions)
would reduce opportunities for an adversary to intercept traffic, increasing CL-privacy.
We assume that point-to-point transmissions are only heard by the two communicating
nodes; so, an adversary would only overhear traffic that involves a compromised node.

Next, we re-ran our previous experiment with k = 3, but used either random
shortest-path routing, a point-to-point medium, or both. The results of this experiment,
illustrated in Figure 7(b) suggest that moving from fixed shortest-path routing to random
shortest-path routing, regardless of the transmission medium, significantly increased the
resulting CL-privacy. Similarly, moving from a broadcast medium to a point-to-point
medium, regardless of the routing algorithm, significantly increased CL-privacy.

To determine which of the two possible changes is more valuable, we performed
a two-way ANOVA test. The routing method and transmission medium are not inde-
pendent changes — the transmission medium used will have an effect on how much
the routing method affects the CL-privacy, and vice versa. The choice of transmission
medium was more important to the resulting CL-privacy, though. This result means
that migrating to a point-to-point transmission system is more important for protecting
the user’s CL-privacy. However, using random shortest-path routing (which may be an
easier change to make, as new hardware might not be required) still helps.

results having P ≥ 0.05. This test compares three or more means without assuming Gaussian
distribution, then analyzes significance between any desired pairs of means.
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Fig. 8. The effect of compromised nodes and eavesdropping nodes on the resulting CL-privacy,
with error bars representing the 95% confidence interval around the mean over 1000 trials.

To investigate whether the number and type of malicious nodes would affect the
resulting CL-privacy, we re-ran our previous experiment with k = 3 using a broadcast
medium and fixed shortest-path routing. This time, we varied the number of malicious
nodes among 1, 5, 10, 15, and 20; we also changed whether the malicious nodes were
compromised sensor nodes in the user’s network or eavesdropping nodes deployed ran-
domly within the range of at least one of the user’s nodes. The results of this experiment
are illustrated in Figure 8. Each increase in the number of compromised nodes signif-
icantly decreased CL-privacy, as did each increase in the number of eavesdroppers,
i.e., more malicious nodes will result in decreased CL-privacy. Surprisingly, there is no
statistically significant difference between any pair of results with a given number of
malicious nodes for all five pairs. That is, there is no significant difference between the
resulting CL-privacy when there are ten compromised nodes and when there are ten
eavesdropping nodes, and so forth. While there does appear to be a small numerical dif-
ference between the resulting CL-privacy when there are compromised nodes and when
there are eavesdropping nodes, based on visual inspection of Figure 8, these statistical
results tell us that the extra information gained from compromised nodes is not that
meaningful overall. This result does not bode well for a user interested in protecting
the privacy of his/her current location; an adversary could deploy eavesdropping nodes,
and gain essentially the same amount of information about the user’s current location as
if the adversary had performed the more complex task of compromising sensor nodes.

6 Conclusions and Future Work

The k-anonymity method for protecting the privacy of a location of interest allows the
user to control the trade-off between privacy and communication cost. Both the pri-
vacy of the location of interest and the communication cost increase with the number
of queries sent, k. We demonstrated a simple metric, based on the sum of minimum
distances between queried nodes, that allows a user to know how well his/her selection
of k nodes protects the privacy of the area of interest — that is, the area of the sensor
network that contains the location of interest. Best of all, this k-anonymity scheme can
be implemented over existing query mechanisms in a sensor network, with no need for
any changes (hardware or software) to the sensors. This scheme is controlled entirely
from the user’s mobile device, which interacts with the sensors, and the scheme imposes
a multiplicative overhead of factor k to sensor network communications.



However, the adversary can use the traffic generated by the k queries to find the
user’s current location. There was no clear way for the user to predict, prior to issuing
a set of k queries, how much information will be leaked about his/her current loca-
tion. However, we found factors that, in general, result in higher privacy for the user’s
current location: lower values for k, random routing approaches, avoiding the use of a
broadcast medium, and having fewer malicious nodes available to the adversary. Sur-
prisingly, an adversary that is able to compromise nodes in the user’s sensor network
does not have a significantly improved ability to locate the user, compared to an ad-
versary who simply scatters eavesdropping nodes that do not participate in the sensor
network. This observation provides important insight into the task of securing sensor
network communications in sensitive areas.

This paper sheds some light on the trade-off between preserving the privacy of the
queried and current locations simultaneously. Future work should examine how the k-
anonymity method can be extended to further protect the user’s privacy. For example,
a user may add random delays in between sending each of his/her k queries into the
sensor network. These random delays could make it more difficult for an adversary to
know if any queries were not overheard by the malicious nodes.

Another topic for future work is to compare CL-privacy results from networks that
use geographic routing to the results in this paper from shortest-path-routing networks.
Changing the nature of the adversary could also yield interesting results. Our adver-
sary, for example, only used compromised nodes in the user’s sensor network to gain
information about what routes queries did or did not take. An active adversary may ad-
ditionally drop query packets, either as a denial of service attack, or as an effort to make
the user re-route queries, generating more traffic. Understanding how different types
of adversary could interact with this k-anonymity approach could provide additional
insight into privacy in sensor networks.
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