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Abstract

This thesis is concerned with the methods of process monitoring and control loop per-
formance assessment. Statistical process control, as well as performance assessment
method based on minimum variance benchmark are discussed. Various measures
are developed to assist performing assessment for feedback and feedforward-feedback
control systems. Effect of deviation of process delay estimate on the feedback perfor-
mance measure is also investigated. In addition, a system identification based method
for assessing the performance of multivariate closed-loop systems is proposed. The
method uses a priori knowledge of the delays between different input-output pairs
of the process and performs assessment on each individual loop separately. Results
indicate that for cases with insignificant interaction between disturbances, this new
technique could be used in place of existing multivariate techniques that require a
priori knowledge of the unitary interactor matrix.

The practicality of the methods presented in this thesis are demonstrated using
simulated, experimental and industrial data.
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Chapter 1

Introduction

1.1 Overview of Control Loop Performance As-

sessment

Process and controller performance monitoring play important roles in determining
the success of control applications. Control engineers spend a significant amount of
time in the diagnosis of process variations, assessment of control application, and
development of corrective strategies. In industries where there are a large number of
control loops, having specialized tools for process monitoring and performance assess-
ment would help control engineers perform their jobs more efficiently and effectively.

Recently, the area of control loop performance assessment has gained a lot of at-
tention from researchers. Notable is the work of Harris (1989) who has shown that a
lower bound on the closed-loop process variance, based on the concept of minimum
variance control, could be obtained by analyzing routine closed-loop operating data.
Desborough and Harris (1993) further extended the idea and defined a normalized
performance index which indicates the performance of the overall feedback control
scheme relative to the minimum variance benchmark. Huang (1997) developed an
algorithm based on data filtering and correlation analysis to calculate a similar mea-
sure. Harris et al. (1996) applied the control performance analysis in an expert



system framework. The technique for feedback control loop has also been extended
to feedforward-feedback systems by Desborough and Harris (1993) and Stanfelj et al.
(1993).

Control loop performance assessment techniques have also been extended to mul-
tivariable processes. Huang et al. (1995) and Harris et al (1996) proposed a
methodology based on the estimation of the interactor matrix of the multiple-input
multiple-output (MIMO) system. Evaluation of controller performance is achieved

by comparing it to the performance of a MIMO minimum variance control system.

1.2 Objective of Study

The purpose of this thesis is:

1. to outline and discuss the use of traditional statistical process control methods

for process monitoring;

2. toreview univariate performance assessment method and develop the statistical

properties of the feedback control performance measure;

3. to introduce a feedforward “payout” measure and a feedforward plus feedback
control performance index for determining the potential benefit of implementing

feedforward control on an existing feedback control system;

4. to investigate the effect of process delay estimate on the univariate performance

measure; and

5. to propose an algorithm for assessing performance of multivariate systems with-

out the knowledge of the unitary interactor matrix.

1.3 Organization of Thesis

This thesis consists of seven chapters including this introductory chapter. It is rec-

ommended that Chapter 3 to 7 be read in the same numerical order since there are

2



some cross dependencies between these chapters. The contents of these chapters are
summarized as follows:

Chapter 2 Several popular statistical methods for process monitoring are summa-
rized, from basic assumptions to fundamental statistical concepts. The use of quality
control charts to monitor process quality is also discussed. Time series analysis in both
time and frequency domains are outlined and illustrated by an industrial example.
Chapter 3 Huang’s (1997) performance assessment strategy for single-input single-
output (SISO) feedback systems, as well as the FCOR algorithm for calculating the
performance measure, is given. The statistical properties of this performance measure
is also given and applied to an industrial process.

Chapter 4 A “payout” measure to determine the benefit of implementing feedfor-
ward control is introduced in this chapter. The method for predicting performance
of a feedback plus feedforward control system is also presented. These methods are
evaluated by applications to simulation, experimental and industrial examples.
Chapter 5 In this chapter, the performance index curve is introduced to investigate
the effect of the delay mismatch in the feedback control performance index. The 95%
confidence level bound given in Chapter 3 is also applied to determine the accuracy
of the estimated measure.

Chapter 6 A new approach to perform assessment of multivariate control systems,
without the need of knowing the interactor matrix in advance, is proposed. Simula-
tion examples are presented to illustrate the application of this proposed technique.
Results are compared tc those generated from Huang’s (1997) MIMO algorithm.
Chapter 7 This chapter summarizes the conclusions presented in Chapters 2 to 6,

and suggests future directions for follow-up in research.



Chapter 2

Statistical Analysis of Process Data

2.1 Introduction

Product quality has direct impact on the amount of profit a manufacturer can make.
Too low a product quality causes loss of sales whereas too high a quality results in
losses typically due to over-consumption of energy for production purposes. Therefore,
it is essential to maintain product quality within a range of target values. Various
statistical techniques have been devised over the years to achieve this purpose.

This chapter summarizes a few of the commonly used statistical methods for
process monitoring. The basic assumptions made in developing these techniques are
presented in Section 2.2. In Section 2.3, the fundamental statistical concepts are
reviewed. Quality control charts and time series analysis are discussed in Sections
2.4 and 2.5 respectively. Time series analysis techniques are demonstrated on an
industrial example in Section 2.6, followed by some concluding remarks in Section

2.7.

2.2 Basic Assumptions

Many statistical theories are based on two fundamental assumptions on the sampling

method and the nature of the continuous signal being sampled. One assumption



is that samples are taken at a fixed frequency; that is, the time interval between
each sample is constant. This assumption may not be exactly true but so long as
the variations in sampling rate are small relative to the basic sampling interval, it is
acceptable to assume constant sampling periods.

On a practical matter, one is often constrained to perform analysis based on
limited amounts of data. Here, the implicit assumption is that the data used for
analysis truly represent the long term nature of the signal being analyzed. This
assumption can only be made if the process is strictly stationary, or at least weakly
stationary (Pryor, 1982). This means that information acquired and analyzed today
will give the same results as the information acquired in the future.

In the following sections, the expressions for estimating statistical functionals
based on finite set of samples are introduced. The expressions for calculating the
exact values of these functionals will not be considered. However, they can be easily
found in most of the introductory statistics and time series analysis textbooks.

2.3 Fundamental Statistical Concepts

2.3.1 Mean and Error

Assume that a set of discrete data have been collected from a process. The simplest
and easiest piece of information that can be determined from these data is the average
value, which is also called the mean value. This is calculated by dividing the sum of
all the values by the number of data points. Mathematically, this value is represented

as
= Tt (2.1)

where T is the average value, z, is the value of ¢t-th sample, and n is the number of
samples. If the sampled variable is being regulated about a setpoint by a feedback
controller, the average value of the data set would be expected to be equal to the
setpoint. If the average is far from the control target, this indicates that the controller



does not perform well enough to have the process variable track the setpoint on
average.

In any process, variability of the output is unavoidable. Another piece of informa-
tion that can be obtained from process data is the variation about the average value
of the data set. In order to determine how far a data point deviates from the average
value, the error of that data point is calculated. The error is defined to be the differ-
ence between each data point and the average value of all the data points. The value
of these errors can be both positive and negative. The total of the absolute value of
the errors, that is, without regard to positive or negative deviations, divided by the
number of samples will give the average value of the absolute error. Mathematically,
this is

e =Ty — T (2.2)

1 < 1 < _
e==lel == |z -3 (2.3)
t=1 t=1

where € is the mean absolute deviation, and e, is the deviation of ¢-th measurement
from the average. A large mean deviation indicates that there is a lot of variation

about the average, while a small mean deviation reveals that the signal is fairly steady.

2.3.2 Variance and Standard Deviation

Two other most commonly used measures of data variation are the variance and the

standard deviation. The variance of a sample of n measurements is defined to be

1 1
2 _ 2 2
o° = T E e = 1 E (z: — ) (2.4)

t=1 t=1

where o2 is the sample variance. Squaring the errors automatically converts them
into positive numbers, and hence variance is always a finite positive number. The

sample standard deviation o is simply the square root of the variance:

o= | i(zt—i)z (2.5)
t=1

n—1



The sample standard deviation is of great interest only when the distribution of
values about the mean value of samples is assumed normal. That is, if a histogram
of the number of samples occurring with any given value of e, is plotted, a graph of

a bell-shaped curve will be obtained. This curve is related to the standard deviation

in the following manner:

e 68.3 percent of all values of e, lie within one standard deviation from the mean
z

e 95.4 percent of all values of e, lie within two standard deviations from the mean
z

e 99.7 percent of all values of e, lie within three standard deviations from the
mean T

As far as improving quality control is concerned, it is naturally targeted towards

reductions in standard deviation or the variance.

2.4 Quality Control Charts

Statistical process control charts such as the Shewhart and Cusum charts have been
used extensively to monitor product quality and detect special events that may indi-
cate out-of-control situations. Several of these techniques are highlighted below.

2.4.1 The Shewhart Chart

One important tool in statistical quality control is the Shewhart control chart. This
control chart consists of a plot of time-series of the data as shown in Figure 2.1. Its
most important merit is to ensure that data are displayed and not buried, with the
indication of how much variation about the target value 7" can be expected to occur.
This helps to avoid both over-reaction and under-reaction to apparent peculiarities

in the data.
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Figure 2.1: Example of a Shewhart control chart.

The control chart shown in Figure 2.1 has a solid line to indicate the target value.
It also consists of a pair of dash-dotted lines called the action limits and a pair
of dotted lines called the warning limits. If the measured quality characteristic is
assumed to vary normally with one standard deviation o, the action lines are usually
centered on the target value T" at T+ 30. These are the 99.7 percent limit lines. The
warning limits are usually the 95.4 percent lines at T' + 20. The value of o used in
drawing these control lines is calculated when the process is in control, that is, when
it is varying free of known disturbances (Box at el., 1978).

Both the action and the warning limits are essential parts of a Shewhart control
chart. Whenever a point lies outside the action limits, or two points in succession
fall outside the warning limits, a cause of variation is likely to have occurred, and the
performance target is not achieved. Investigation of the source and the mechanism
of the variation may be needed.

Details of routine construction and use of quality control charts can be found in
Grant and Leavenworth (1980).



2.4.2 The Cusum Chart

When changes of a specific kind are expected, additional charts that are more sensitive
to this particular kind of change may be employed. For detecting small changes in
mean level of an approximately normal process, the cumulative sum chart (Cusum)
is more sensitive than the Shewhart chart.

A Cusum chart provides a means of presenting visually at any instant, the appar-
ent mean of any group of consecutive points. In this chart, changes in the mean are
detected by keeping a cumulative total of deviations from the target value T', that is,

plotting the cumulative sum

S = zn:et = i(xt ~T) (2.6)
t=1 t=1

against n, the total number of samples recorded. Since the mean, relative to 7T, of the
last r points is (S, — S,-.)/r, it is obtained by joining the last point to the (n —r)th
point and measuring the slope of the line. When a process is on target, e, is a random
error with zero mean. Suppose that at some intermediate time, ¢ = m, the mean of
the process shifted to a new value T" + §. Then, at time m,

Se=) e+ (n—m)s (2.7)

t=1

for m < n. Besides the random sum, there is now a systematic component (n — m)§
increasing steadily with each new data point. Thus a change in mean value of the
process variable will be detected by a change in slope of the Cusum plot. In practice,
locating the change is remarkably useful in helping to discover its cause. The bottom
chart in Figure 2.2 shows the change in slope of the Cusum chart associated with the
change in its mean value.

In order to determine when corrective action should be initiated, some kind of
decision criterion is needed for the Cusum chart. The V-mask scheme, suggested
by Barnard (1959), provides a simple two-sided test for quality specifications. A V-
shaped mask is superimposed on the Cusum chart with the vertex pointing forwards,

and set at a distance d ahead of the most recent point, as shown in Figure 2.3. The

9
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Figure 2.2: Comparison of Shewhart and Cusum charts.

angle between the obliques and the horizontal is denoted by 4. If all the previous
plotted points fall within the V, the process is assumed to be in control. If some of
the points cross one of the limbs of the V, a search for causes of variation is initiated.

The construction of V-mask is described in Ewan (1963) and Wetherill (1969).

2.4.3 The Mosum Chart

Despite the Cusum chart being an effective and common tool for process monitor-
ing, it tends to “desensitize” as time progresses due to its very definition. All past
observations contribute to the test statistics, so that the relative weight of the obser-
vations after a violation of constancy decreases with increasing time of the onset of
the violation. Further, the form of the significance limits for the simultaneous test of
the Cusums are nonlinear over time (Bauer and Hackl, 1978).

These problems, however, can be overcome by using moving sums (Mosums) of

recursive residuals, with the sum of a fixed number of past residuals being taken as

10
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Figure 2.3: The use of a V-mask on a Cusum chart.

a test criterion at each point of time. Since a window of observations of fixed width
is tested at each point in time, the significance limits for the simultaneous test of the
Mosums can be assumed constant over time if the dependency between the Mosums
is ignored, and if the variance of the process is known (Bauer and Hackl, 1978).

There are other quality control methods, such as exponentially weighted mov-
ing average (EWMA) and exponentially weighted moving variance (EWMYV), that
provide useful tools for process monitoring. These schemes, in some situations, are
proved to outperform the Shewhart and the Cusum charts (Crowder and Hamilton,
1992, MacGregor and Harris, 1993).

2.5 Time Series Analysis

Consider two sinusoids, each with the same amplitude but different frequencies. In
other words, they have the same statistical mean, variance and standard deviation.
They, however, represent very different types of processes, and thus represent very

different control problems.

11



One needs to know whether the variability of a process is fast or slow, and how
fast or how slow. Before starting, the frequency of variations to be analyzed has to be
estimated so that the sampling period, together with the total time for sampling, can
be determined. The following two rules should be followed when sampling (Pryor,
1982):

1. Samples must be taken at least twice as often as the highest frequency to be
analyzed. For example, if disturbances up to one cycle per second are to be

analyzed, one must sample at least two times per second.

2. Samples must be taken for at least eight cycles of the lowest frequency to be
analyzed. That is, if disturbances down to one cycle per minute are to be
analyzed, samples must be taken for at least eight minutes.

Once the data have been collected, time series analysis can be carried out.

Time series analysis refers to techniques dealing with the analysis of data from
random observations with time or space as characteristic. It can be done either in
the time domain or in the frequency domain. Some of the most important functions

generated in a time series analysis are discussed in this section.

2.5.1 Autocovariance and Autocorrelation

Autocovariance is an indication of how fast a signal is varying. For a finite data
record, the equation for evaluating autocovariance is

n—j

Teel) = = 3 (ererns) (28)
t=1

where v, (j) denotes the autocovariance at j lags, and j varies from 0 ton — 1. If j

is equal to zero, then
1 n
Ye2(0) = = (ecer) =0” (2.9)
t=1

which is simply the process variance.

12



Since e, can be positive when e,_; is negative, there can be negative values in the
summation of Equation 2.8. Therefore, the more often the error changes sign, the
more likely the negative terms will occur in the summation equation, and the smaller
will the resulting autocovariance be. For this reason, all autocovariance values are
always smaller than the variance. In fact, autocovariance can be negative.

The results of autocovariance analysis can be presented graphically by plotting
the autocovariance functions against the lags as shown in the bottom graph of Figure
2.4. The time series plot is presented in the top graph for comparison. Inasmuch as
autocovariance is symmetric about the ordinate, the plot is usually shown for pos-
itive lags only. The positions of the peaks and valleys depend on the frequency of
the variations in the error. Therefore, major frequencies of the process disturbances
can simply be determined by inspecting the plot visually. For instance, if the sam-
ple interval is one second, and a peak occurs at 5 lags, then there is a disturbance
occurring at a rate of once every 5 seconds, or 0.2 Hz.

The autocovariance function is dependent on the unit of measurement and this
makes the comparison of different time series difficult. The autocorrelation function,
which is unitless, is therefore more widely used than the autocovariance function. It

is easily calculated by normalizing the autocovariance by the variance, that is,

Pzz(d) = ——;Y"g; (2.10)

where p__(j) is the autocorrelation at j lags.

The autocorrelation function quantifies the similarity between neighboring values.
A value of p__(j) close to +1 implies strong similarity or dependence in the same
direction between pairs of values of a variable separated by lag j. A value close to
zero indicates no similarity; whereas a value close to -1 indicates strong similarity but
in the opposite direction. The autocorrelation function is usually plotted against lag
J to generate an autocorrelogram.

Another use of the autocorrelation function is to show the effect of process control
applications. A control system is expected to reduce the magnitude and alter the
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Figure 2.4: Relationship between the frequency of a disturbance and the locations of

peaks in an autocovariance plot.
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nature of the process variations. Thus its effect should be reflected in a corresponding

change in the autocorrelogram of the process.

2.5.2 Power Spectrum

The introduction of the spectral density accomplishes a mapping of the properties of a
stochastic process from the time domain to corresponding properties in the frequency
domain. By taking the Fourier transform of the autocovariance function, one can
derive the power spectral density or simply the power spectrum which expresses the
energy content of a process signal as a function of frequency. Since the main interest
lies in the application of the power spectrum, the mathematics of the transformation
will not be discussed.

Peaks in the power spectrum curve show the frequencies at which there is a high
contribution to the variation. Thus, a single narrow peak suggests a possible period-
icity in the signal being studied. If there are harmonics, there will be a set of narrow
peaks at frequencies which have a common denominator. With random variations,
the spectrum will be flat across the frequencies.

One interesting characteristic of the power spectrum is that the area under the
curve gives the variance .. (0). The percentage of the total area which lies between
two frequencies is the same as the percentage of the variance that has been assigned to
that frequency band. Therefore, the overall frequency range can be broken down into
arbitrary bands to characterize the variation. By breaking down variations into com-
ponents at different frequencies, the power spectrum can help identify their sources.
In some cases the power spectrum may show cyclic components with periods, which
might be related to readily identifiable events in the operation or to dominant fre-
quencies identified in the power spectrum of another variable.

Comparison of power spectra can help identify relationships between variables.
If considerable variations occur in both variables at common frequencies, it is most
likely that either, one is causing the other or, they have a common cause. In case of

the latter, further investigation can be narrowed down to factors or inputs known to
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affect both variables.

2.5.3 Cross Correlation

The cross correlation function is a useful measure of similarity between two variables
taken at different time lags. Given two stochastic processes z; and y;, which are
Jjointly stationary, their similarity should only be a function of lag and is independent

of time. In such cases, the cross covariance function between z,; and y, is

Lo1E _
“/zy(J) = n ;(zt —Z) (Y45 — 7) (2.11)
in which T and 7 are the means of the z; and y, series, respectively.

The corresponding cross correlation is defined as

N 71 ¢))
Pll) = 0 ) (212)

It has similar usage to that of the autocorrelation except that pairs of values of two
different variables are analyzed. The cross correlation also takes values between -1
and +1. The greater the similarity at a particular lag, the higher the absolute value of
the cross correlation at that lag. The sign shows whether one increases or decreases
with an increase in the other. A cross correlogram is often used to plot the cross

correlation function against lag.

2.5.4 Coherence

Similar to the relationship between the power spectrum and the autocovariance, the
cross spectrum is the Fourier transform of the cross covariance. The amplitude of
the cross spectrum is known as the cross amplitude spectrum. The coherence or the
squared coherency is defined as the ratio of the squared cross amplitude spectrum to
the input spectrums. For a linear system, it can also be interpreted as the fraction of
the output variation which is related to, or contributed by, the input variation at the
given frequency. Coherence gives no indication of any phase difference between two

variables.
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Some salient properties and interpretations of coherence are (Nobleza, 1990):

1. It does not depend on the scales of measurement;
2. It does not show causality;

3. In an ideal case of a constant parameter linear system, that is, with a single
clearly defined input and output, coherence at all frequency is unity;

4. The cobherence function is zero for all frequencies if two processes are completely

unrelated.

2.5.5 Coherent Power

The power spectrum reveals the variance component of a process variable at each
frequency. On the other hand, the coherence function gives the fractional portion of
the variance component of a process variable related to the other at each frequency.
The coherent power (or sometimes coherent output power) which is the product of
the power spectrum and the coherence function, would therefore give the portion of
the variation in a process variable which is related to the other, at every frequency.
Coherent power highlights information of high coherence at frequencies which
contain substantial variation at the same time. It eliminates information of high
coherence at frequencies which do not have corresponding variation and also on vari-
ations which are not correlated. This function is useful because it is not only the
degree of correlation between two variables that is of interest, but also the incidence
of substantial variation that is highly correlated to the other variable. Inasmuch
as the area under the power spectrum curve gives the variance, the area under the
coherent power curve gives the part of the variance related to the other variable.
Some common functions in time series analysis, together with the information

they provide, are summarized in Table 2.1.
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Table 2.1: Functions generated by time series analysis (adapted from Nobleza et al.).

Autocorrelation - nature of variability: long term, short term
(time domain) - cyclic variations

- control loop performance

Power spectrum - distribution of variance over the frequency range
(frequency domain) - nature of the variability: long term, short term
- potential improvement from process control

- control loop performance

Cross correlation - degree of relationship between variables
(time domain) - time lag between two processes

- direction (sign) of the relationship

Coherence - degree of relationship between variables

(frequency domain)

Coherent power - proportion of the variance in a variable related to the

(frequency domain)  variability of the other
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2.6 Industrial Application

The above time series analysis techniques are demonstrated using data obtained from
an industrial NO, production process. In this process, the synthesis of nitrogen
dioxide from ammonia and air is carried out in a catalytic reactor. Ammonia is
preheated by process steam in a superheater before being fed to the reactor. The
variables being investigated are the catalyst temperature of the reactor (T106) and
its major disturbances including the ammonia feed temperature (T212X) and flow
rate (F128) and the pressure of the steam fed to the superheater (P007). The closed
loop data of the process, sampled at ten second intervals over one day, are shown in
Figure 2.5.

It can be observed from the time plot that there is a big perturbation to the
catalyst temperature between 6000 and 7000 sample intervals. In order to identify
the source of this disturbance, time series analysis as discussed in the previous section
is performed. Figure 2.6 is the autocorrelogram of the catalyst temperature estimated
between 6000 and 7000 sample intervals. The curve decays from its maximum of unity
at lag zero to zero as the lag increases. The ripples indicate that the process has a
periodic component with a period of approximately 850 seconds, or equivalently,
0.0012 Hz, .

Characteristics and periodicity of the variation revealed by its autocorrelation
can be compared to that of the suspected source. In this NO, production process,
the three major disturbances, T212X, F128 and P007, are examined for any corre-
lation with the periodic component at T106. Their corresponding autocorrelograms
as estimated for observations 6000 to 7000 are presented in Figures 2.7, 2.8 and 2.9
respectively.

From figure 2.8, it is apparent that there is no similar characteristics between the
catalyst temperature and the ammonia flow. It only indicates that the ammonia flow
consists of many high frequency variations which could be caused by the action of
the flow controller. On the other hand, the peaks located at lag 85 in Figures 2.7
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Figure 2.7: Autocorrelogram of the amnmonia temperature.
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and 2.9 indicate that both the ammonia feed temperature and the steam pressure
possess a periodic component of 0.0012 Hz. The same phenomenon can also be seen
from the power spectrum plots of the process variables, as given in Figures 2.10, 2.11,
2.12 and 2.13. The power spectrum plots of the catalyst temperature, the ammonia
temperature and the steam pressure all reveal a narrow peak at 0.0012 Hz. This peak
indicates the presence of a periodic variation of 0.0012 Hz. Therefore, it is highly
probable that the ammonia temperature and the steam temperature, or either one of
them is the cause of the disturbance to the catalyst temperature between 6000 and
7000 sample intervals. With random variation, the spectrum of the ammonia flow
rate in Figure 2.12 is rather flat with power distributed across the frequencies.

Bivariate analysis is carried out to determine which of the two disturbances is the
cause of the variation. It is suspected that the root source of this periodic variation is
the steam pressure, which perturbs the ammonia temperature during the preheating
process, which in turn affects the catalyst temperature of the reactor. The cross
correlograms shown in Figures 2.14 and 2.15 prove that the catalyst temperature has
a stronger correlation with the ammonia temperature than that of the steam pressure
at lag 85. In addition, the coherence plot in Figure 2.16 reveals that more than 90
percent of the variation in the catalyst temperature having 0.0012 Hz frequency is
contributed by the ammonia temperature under the assumption of linearity of the
system.

The coherent power plot in Figure 2.17 shows the amount of variation in catalyst
temperature related to the ammonia temperature. Comparison of the power spectrum
of the catalyst temperature and its coherent power with the ammonia temperature
indicates that a good portion of the low frequency components in the catalyst tem-
perature are coherent to the ammonia temperature.

From the above univariate and bivariate statistical analyses, it can be concluded
that the direct cause of the variations in the catalyst temperature between 6000 and
7000 sample intervals is the ammonia temperature. The root cause would most likely

be the steam pressure since the steam is used to preheat the ammonia before the

23



Power speciral density (T106)

-
o
[
1

[ 0.0013 L . . , . .
[} 0005 001 0015 002 0025 003 0035 0.04 0045 0.05
Frequency, Hz

10*

Figure 2.10: Power spectrum of the catalyst termperature.

ammonia. is fed to the reactor.

2.7 Conclusions

It is frequently important to detect, identify and estimate major sources of variations
when monitoring a process. In this chapter, time and frequency domains statisti-
cal analysis techniques directed towards these goals are studied. Control charts are
especially helpful in detecting process variations. Time series analysis has proved
itself useful in studying and identifying sources of disturbances in an industrial NO,
production process. Both time domain and frequency domain analyses identified the
ammonia temperature as the direct cause of the variations in the catalyst tempera-

ture.
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Chapter 3

Performance Assessment of

Univariate Feedback Control Loop

3.1 Introduction

In industries where there are a great number of control loops operating automatically,
it would be convenient to have some formalized assessment tools to diagnose the
performance of the control loops. The process variability analysis summarized in the
previous chapter provides a means for monitoring control loop performance. There are
also other techniques that make use of performance benchmarks to determine whether
control systems are performing satisfactorily. These benchmarks can be user-specified,
observed from historical data, or deduced from optimal control theories. The choice
of a benchmark depends on the goals and requirements of the control application.
For instance, if the speed of the output response reaching the setpoint is the main
concern, one may wish to consider desired closed-loop dynamics such as settling time
or overshoot as a reference benchmark.

Among all the performance benchmarks available, the most popular one is the
minimum variance control. Its control objective is to minimize the variance of the
process output. Minimum variance control is impractical in reality because of its ex-

cessive control action but it is extremely useful in providing a theoretical lower bound



on the output variance under linear feedback control. The perfcrmance measure us-
ing minimum variance control as benchmark was first established by Harris (1989)
and was later modified by Huang in his Ph.D. thesis (1997). In Section 3.2 of this
chapter, the formulation of the performance measure defined by Huang (1997) for
single-input single-output case (SISO), as well as the FCOR algorithm for calculating
this measure, is introduced. The statistical properties of this performance measure is
discussed in Section 3.3. Finally, the technique is applied to an industrial process in
Section 3.4.

3.2 Feedback Controller Performance Measure

The idea of minimum variance control can be easily explained and understood by
considering a stable closed-loop system such as the one presented in Figure 3.1. Note
that d is the process delay, T is the delay-free process transfer function, @ is the
controller, N, is the disturbance model and a, is a white noise sequence with zero

mean. The output response of the system is

N,
Y= ————=a (3.1)
1+¢-4QT
Long division yields an infinite order impulse response, or
ve=(fo+ g™ + -+ famrg™ ' + fag ™ + - e (3-2)
where fo, fi, ..., fa—1, fa, -.. are the constant impulse response coefficients of y;

observed from a,. The first d terms of the right hand side of Equation 3.2 are inde-
pendent of the controller @, and therefore are known as feedback controller invariant.
These terms cannot be reduced or eliminated no matter what kind of controller is
used. Thus they remain unchanged as long as there is no alteration in the physical
configuration of the process, and the process delay is constant. The best a controller
can ever do is to eliminate all the remaining terms after f;—;. When this is the case,

the system is described to be under minimum variance control.
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Figure 3.1: Block diagram of a closed-loop system.

Multiplying Equation 3.2 by a;, a;—1, ..., a;_44+1 respectively and then taking

expectation on both sides results in the following equations:

75.(0) = Efya] = foo}
’Yya(l) = E[yta:-l] =f10'£

'Yya(d -1) = E[ytat—d+1] = fd—laz (3.3)

where v,,(k), k=0, 1, ..., d— 1 is the cross covariance between y, and a,. Applying

the above results in evaluating the minimum variance of the output gives

ore = (B+fi+--+f1))o?
[(7ya(0))2 (7ya(1))2 ('rya(d ))2]02

a

'Yya(o) + 7ya(1) + -+ 'Yya(d - 1)
02

(3.4)

Using minimum variance as benchmark, the controller performance index is de-

fined as

n(d) & me (3.5)



which is a function of pfocss delay. Since the output variance o2 can never be smaller
than the minimum variance ¢2,,, n(d) must be less than one. Indeed 0 < n(d) < 1is
always valid. Whenever 7(d) is close to zero, it indicates that the performance of the
current control loop is poor, and there is a great potential to reduce the process vari-
ance by retuning the controller. If n(d) is close to one, the process is almost operating
under minimum variance control, or at its optimal performance bound. Further im-
provement of the performance cannot be obtained by simply retuning the controller.
Other control schemes or reconfiguration of the process should be considered.

Let py,(0), pya(1), -- -, Pya(d — 1) be the cross correlation coefficients between y;
and a, for lags 0 tod — 1, or
Yya(F)

OyOa

k=0,1,...,d—1

Pya(k) =

Substituting Equation 3.4 into Equation 3.5 would yield

7§a(0) + ‘Y‘_:z/a(l) +---+ ’Ygz/a(d - 1)

n(d) =

o202
= pf/a(o) + pza(l) R o pga.(d - 1)
2 XTx (3.6)
where X is defined as , -
Pya(0)
1
xa f)ya( ) (3.7)
| pya(d - 1) §

The sampled version of the performance index is

ﬁ(d) = pya.(O) + ya(l) +---+ pya(d - 1) ‘?T‘? (3‘8)
where LN
Bpalk) = — A Limkr Wk 39)

\/N Zt_l yt N t—l a't

is the sample correlation and N is the sample size.

32



Since a; is unmeasurable, it must be estimated via time series analysis of the
process output variable y;. This procedure is known as Filtering and CORrelation
analysis (FCOR) by Huang (1997). The estimated innovations sequence @; can be
evaluated by pre-whitening y; by an AR or ARMA time series model or a Kalman

Filter based innovation model in state space representation.

3.3 Statistical Properties of the Performance Mea-
sure

!'The performance index is evaluated by using the correlations between the white
noise input a, and the process output y,. These correlation coefficients are directly
proportional to the impulse response coefficients in Equation 3.2. Séderstrém and
Stoica (1989) have shown that the estimated impulse response coefficients ﬁ have

the following asymptotic statistical properties:
i :Y\ a k) —
fom Tuoll) e (3.10)

a

where %,,(k) and 32 are the sample covariance and sample variance respectively. They

have also shown that

E[(Ez - f#)(}:’ - fu)] x~ %[Zfifiﬂu—yl + Z f-r+pfu-r - 2f#fu] (3'11)

i=0 T=—p

These results are useful in deducing the statistical properties of the performance
index.
From Equation 3.3, the impulse response coefficient can be expressed as

fo= Yia(k) _ oy Yya(k) _ ﬁpya(k) (3.12)

If the sample size N is large, @, and &, are approximately equal to o, and o, respec-
tively. Thus, the sampled version of the above equation is

Oy

-~ . —~
fk = a_—apya(k) = ;:'pya(k) (313)

1 This section is adapted from an internal report titled “Control Loop Performance Assessment
of SISO Processes” of Huang (1995).
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Substituting this relationship into the left hand side of Equation 3.11 yields

E[(ﬁya(ﬂ) — Pya (/‘L)) (ﬁya (V) pya (V) a [Z .ftfz-{-lv—p.l + Z f‘r+#.fu—r 2f;4fu]
y =0 T=—p
(3.14)
On the other hand, the autocovariance of ¥, is
Tyt —v) = Elyut] = 02 > _ fifistuon (3.15)
i=0
Therefore,
02
z fz.fz+|u-p| = 'Yy (l‘ ) -o_—gpy(/.t - l/) (3. 16)
=0 a

Substituting Equation 3.12 and Equation 3.16 into the right hand side of Equation

3.14 gives the covariance of the estimated correlation P,,, that is,

Pu 2 E((By(r) = pya(r)) Bya(¥) = pya(@))]

B0+ 3 0yalr+ Wpyalv =)~ 20a(W)Pa)] (B17)

T=—p

12

With the covariance of the estimated correlation available, the second moment of
the performance index 7j(d) = XTX can be approximated by its first order Taylor
Series (Wolter, 1985) expansion as

mse(f(d)) = E[XTX — XTX]? ~ TSl (3.18)
where
B(XTX )
T = COV(X)=[P,]
Po B - Pga
| P PBPap - Piga (3.20)
| Pac1o Fa1n oo Fao1aar |

In practice, the population values can be substituted by their corresponding sample
quantities. This gives
mse(7(d)) ~ TSl = 4XTEX (3.21)
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where

5 =[B.] (3.22)
and each element of & is given by:
~ ) . - -
Pl‘" = _ﬁ[py(# - V) + Z pya.(T + ”)pya(y - T) - 2’p\ya(/‘L)pya(l‘/)] (3'23)

T=—4
With Equation 3.21, it is convenient to calculate the confidence level of the feed-
back performance measure. For instance, the 95% confidence bounds of the measure
is +2 md)—) . The Matlab code for calculating the performance measure and the
confidence bounds is provided in Appendix A.

3.4 Industrial Application

The NO, production process studied in the previous chapter is utilized again to
demonstrate the technique of control loop performance assessment. The simplified
schematic and instrument diagram of the catalytic reactor is shown in Figure 3.2.

The catalyst temperature of the reactor (T106) is controlled by a PID controller
(TC3) which is cascaded to the ammonia flow controller (FC3). The sampling rate of
the process is 10 seconds, and the process time delay is approximately 2 sampling pe-
riods. A plot of the catalyst temperature collected over a one-day period is illustrated
in Figure 3.3.

It can be seen from Figure 3.3 that the process data is noisy. In order to deter-
mine whether the output variance can be reduced by retuning the feedback controller,
the performance of the outer loop of the catalyst temperature control is assessed by
estimating the feedback controller performance index as defined in Equation 3.5. By
applying the FCOR algorithm to a window of 1000 process data points, the per-
formance index and its 95% confidence bounds are calculated and plotted in Figure
3.4. The small values of the index, with an average of 0.161+0.067, indicate poor
performance of the catalyst temperature control loop. The sudden drop of perfor-
mance index during the sampling periods from 1000 to 2000, 3000 to 4000 and 6000
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Figure 3.2: Simplified schematic and instrument diagram of the catalytic reactor
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Figure 3.3: Time plot of the catalyst temperature.
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Figure 3.4: Performance of the outer loop of the cascade reactor control with 95%
confidence bounds.

to 7000 show that changes might have occurred in the system. It can be observed
from the time plot in Figure 3.3 that large process variations have erupted during
these periods. Further diagnosis of the process reveals that disturbances enter the
system through the temperature changes of the superheated ammonia and ambient
air. In this example, the control loop performance can be improved by retuning the
controller. If the disturbances can be measured on-line, they could be corrected by
feedforward control. The method to evaluate the feasibility of the addition of feed-
forward control to an existing feedback control system will be discussed in the next
chapter.

3.5 Conclusions

The performance of an existing control loop is often measured against some bench-

marks. There are many different measures of control performance, and the minimum
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variance control benchmark is one of the most popular. The feedback control loop
performance index defined by Huang (1997) is studied in this chapter. The FCOR
algorithm, as well as the statistical properties of the index, is also discussed, and
applied to an industrial NO, production process.
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Chapter 4

Payout Measure for Implementing

Feedforward Control

4.1 Introduction

Feedback control is a widely used control strategy in process industries due to its
simplicity of use and implementation. It requires little information about the source
or type of disturbance in the system, and corrective action occurs only when the con-
trolled variable deviates from the setpoint. This, however, also means that feedback
control is not able to provide predictive control action to compensate for the effects of
measurable disturbances and causes the process to suffer from frequent disturbances.
This kind of controller performance may not be acceptable in some cases, and hence
other control schemes should be considered to improve it.

With feedforward control, measurable disturbances are compensated for before
they upset the process. This control scheme is worth implementing only when the
time delay exists and the measurable disturbances significantly affect the system
response. Therefore, it is important to have an efficient and effective tool to evaluate
the “payout” for implementing a feedforward controller into an existing feedback
control loop.

In this chapter, a “payout” measure is introduced for the case of stochastic mea-



Figure 4.1: Block diagram of a closed-loop system with two disturbances.

surable disturbance. The performance prediction of a feedback plus feedforward con-
trol system is also discussed. Simulation, experimental and industrial examples are
presented to illustrate the application of the analysis.

4.2 Payout Measure of Feedforward Control

The closed-loop system in Figure 1.1 is modified such that the process is influenced
by two types of disturbances: measurable and unmeasurable. The block diagram of
this new system is depicted in Figure 4.1. The output response of the process is
N, —IN,
%= —a,+ ——— b (4.1)
14+ q-4QT 1+q4QT

where a; and b, are the driving forces of the unmeasurable and measurable distur-

bances respectively, N, and N, are the load models, and ! is the time delay of the
measurable load. Both a; and b, are sequences of zero mean. They are independently

and identically distributed random variates.
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Long division yields a sum of two infinite impulse responses, that is,

¥ = (fao+ faa@ '+ + faanr @+ faaq ™+ Ja + (4.2)

(foo + fouq™ + -+ + foam10 T + fouq™ +-- )bt
where f,; and f,; for j = 0, 1, 2, ... are the impulse response coefficients of y
observed from a; and b, respectively. Since a; and b, are independent and uncorrelated,

multiplying Equation 4.2 by a,, a;—1, ..., b, b1, ... respectively and then taking
statistical expectation yields the cross covariance coefficients

72(0) = Elyear] = fao0?
Ya(1) = Eeac-1] = far02

16(0) = Elyeb] = foooi
16(1) = Elybi1] = for03

(4.3)
Therefore, the variance of y; is
U§ = (ff,o + ff,l +---+ fz,d—l + fid +---)ol +
(foo + for + -+ foa1 + faa+ ")}
= 0‘5,, + oib (4.4)

where o2 and o} are the variances of the driving forces a; and b,. The first term of
Equation 4.4, af,a, is the variance contribution by the unmeasurable disturbance to
the total output variance, and the second term, 0'3,,, is the variance contribution by
the measurable disturbance to the total output variance.
The payout measure of feedforward control relative to the total output variance
is defined as
(ffo+ 21+ + fRa + foa+ - -)o}

2
Oy

Mrr =

o5
r) (4.5)
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This is simply to obtain a measure of the contribution of the measurable disturbance
towards the total output variance. Since the variance contribution of b; cannot be
greater than the total output variance, 7pr must always be less than one, or 0 <
Ner < 1. Unlike the feedback controller performance index 7(d), 7z is not a function
of the process delay d. Substituting the results from Equation 4.3 into the above
equation gives

Yoot Voat FVoar +Voat -

NMrr = 2 _2

= sz(o) + Pf,b(l) +-- 'Pib(d -1+ sz(d) +-- (4.6)

where p,,(0), p,5(1), ... are the cross correlation coefficients between y, and b;. The

sampled version of this payout measure is

e = Pop(0) + Pop(1) + -+ + Po(d — 1) + P2 (d) + - -- (4.7)
where . N
= b,_
5y () = — Ptk Uibe (48

\/1_}/' Zf; y?Klr’ iil b

In practice, the infinite summation in Equation 4.7 is truncated when additional
terms no longer make significant contribution to the measure. Since both 3, and &
are known, their correlation can easily be evaluated from routine closed-loop data.

This payout measure can be used to evaluate the significance of b, to the process.
When the measure is large, it indicates that b has a significant contribution to the
total output variance ‘7:21? and hence, most of the process variability can be eliminated
by removing b; before it upsets the process. Therefore, implementing feedforward
control is potentially effective in reducing the process variability in this case. For
instance, if npp > 0.5, it means that more than half of the total variance is induced
by b;. A perfect feedforward controller if implemented, which is only possible when
! > d, will result in a reduction of at least half of the total output variance. On
the other hand, if npp is small (e.g. 7z = 0.1), the process variance is mainly
contributed by other disturbances besides b;. Adding a feedforward controller in this

case to correct b, will not reduce the output variance very much.
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Although this payout measure can be used to predict how well a perfect feed-
forward controller would perform, the decision of whether to implement the feedfor-
ward control scheme still depends on the cut-off index. That is, a payout measure
of npr = 0.3, or 33 percent potential reduction of the process variance, does not
necessarily mean that adding feedforward control is economically unattractive. For
example, too low a catalyst temperature of a reactor would promote the yield of un-
desired by-products, whereas too high would cause premature catalyst degradation.
This limits a narrow temperature operation range (e.g. AT =+ 5°F). In this type
of situation, a small reduction of temperature variance would help maintain the cat-
alyst temperature within the narrow operating band, improving product yield and
increasing the life of catalyst. In some other cases, even a payout measure 1y = 0.7
would not justify the implementation of a feedforward controller. Therefore, there is
no well-defined threshold for this payout measure.

4.3 Performance Prediction of Feedback plus Feed-
forward Control

The payout measure indicates only the feasibility of incorporating feedforward control
to an existing feedback control loop. However, it is also of great interest to know
how the future feedback plus feedforward controller is going to perform beforehand.
The index introduced in this section predicts the performance of the future feedback
plus feedforward control without the need to actually implement the feedforward
controller. Two cases are investigated: (z) the measurable disturbance delay is greater
than the process delay [ > d; and (it) the process delay is greater than the disturbance
delay d > L.

Case (i) l>d

Whenever [ is greater than or equal to d, it is possible to design a perfect feed-
forward controller to completely eliminate b,. Consider the system in Figure 4.1 and
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Equation 4.2 again. Equation 4.2 can also be expressed as

¥ = Sf“'o + fa‘lq_l +---+ fa.d—lq_(d-l))aﬁ + gfa,dq—d + fa.d+1q_(d+1) +-- ’)at +

e

-

Va.mo Ya.non_mo
(foo+ fo g™ + -+ fraa1g”@ Db +
Yomo
(foaq™ -+ four g™ N + (foug ™+ + foranng VB +
w.EFL wrF2
ourdd™ " + foprarrg™ D +.. )b, (4.9)

Yb.non_mv

which consists of contributions from a; and b;. y, my is the contribution to minimum
variance from a;, whereas ¢, non_mv is due to the non-optimality of the feedback con-
troller. ¥, my is the contribution to minimum variance from b;. ¥» rr = Ys.rF1+ Yo.FF2
is due to the non optimality of the feedforward controller, and ¥s non_mv is due to the
non optimality of the feedback and/or feedforward controller. Since ! > d, the first {
terms of the contribution from b; should be zero, or simply ¥ m» and ys rr1 are zero.
The fifth term, y; pr2, could also be labelled as the feedback invariant term. However
it can be eliminated by perfect feedforward control when [ > d. Equation 4.9 is then
reduced to:

Y = (fao+fa1q '+ + faa1a ey + (faaq ™ + faarnng @) +--Jag +

>

s N

Ya,mv Ya,non_mv
fouag™ + forerg D + -+ frpg )b, +
w.Fr2
Sfb.l+dq_(l+d) + forrar1g Y £ )by (4.10)

Yb.non_mvu

It is important to notice that o2, is zero not due to correction from any kind of
feedforward controller but simply because of the nature of the process (I > d).
Assume that all the effect of the measurable disturbance is removed by a perfect
feedforward controller. That means y; pr2 and Ysnon_mv are eliminated. Then the
new process variance will be induced solely from the unmeasurable disturbance; that
Is,
ai(FB+FF) = Var[yamv + Yanon_mo]
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= (ff,o'*‘ :1+"'+.f3,d—1+f3,d+"')ai
= o2 (4.11)

ya

Therefore, the performance of the feedback controller with feedforward compensation,

using minimum variance feedback plus feedforward controller as benchmark, is given
by

Var(ys,mo)
Var[ye,mv + Ya,non_mv]
(fPo+ fo1+---+ f241)02
(FPo+ f2,+-- + f24 .+ fid+ ---)o?
foo+f2 i+ + i
sot fai e fRa Ffiat-
o2

=T (4.12)
0,2,,,

TIFB+FF(d) =

Here, ngp, rr is again bounded by [0,1]. This index indicates how close to minimum
variance will the feedback controller be operating with the correction from a perfect
feedforward controller. If the feedback controller is close to minimum variance, o2, =~
aga‘mv and hence 75, rr Will be close to one. Retuning of the feedback controller
will not provide any reduction of the output variance. On the other hand if g5, rp
is small or close to zero, the feedback controller should be retuned in order to further
reduce the output variance.

Without feedforward control, the performance of the feedback only controller mea-

sured against the minimum variance feedback plus feedforward controller would be

. Var|yeme
Nre+rr(d) = %_]
]
— (ff,o + fa21 +---+ fg,d-1)‘73
o3
o2
e (4.13)

y

Considering o2 > 02,, NFp+rp must indicate better controller performance than
Nre+rr- Lhe difference between their values indicates the best potential improvement

in the controller performance by incorporating feedforward control to the existing
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feedback control loop. The larger the difference, the greater the benefit from the
feedforward controller.

Since 02, .,
have to be estimated via identification of the closed-loop transfer functions of Equa-

and aga cannot be obtained directly from process measurement, they

tion 4.1. The procedure for evaluating nzz, rr is as follows:

1. Identify the closed-loop transfer functions in Equation 4.1 by time series models
such as ARMAX or Box-Jenkins models.

2. Calculate the impulse response coefficients f,o, fa1, --., and fs0, fo1, --- by
deconvolving 1 + ¢~¢QT out of N, and N, respectively.

3. Calculate npg, gp using Equation 4.12.
Case (it) d > 1

If the process delay d is greater than the load delay /, the output of the process
in Figure 4.1 will be

nw = Efa.o + fa,lq_1 +-e-+ fa,d—lq_(d_l))a£ + Sfa.dq-d + fa,d+1q_(d+1) +-- )a£ +

-~
Ya.mv Ya,non_muv

(foo+ fora™ + -+ fou1a D+ forg™ + - + fraag )b +

"~

Yb,me
(foaq™ + -+ forrrg V)b +
w.rF
(f ba+dq D + forrarrg YD - )be (4.14)

Ys.non_mv

The first ! terms in ys m, are zero and Equation 4.14 is reduced to

¥ = (faot+ farg '+ + faa1a"“ Da: + (faa@™* + faarrg™ @V +--Ja, +

7

N N

Ya,mv Ya,non_mv
(fouq™ 4+ foa-10" Vbt + (foaq™ + -+ + forrng V)b, +
yb?:u y!:;F'
(fourad™ D + foprarng 4D +-- )b, (4.15)

~—
Yb,non_mv
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Since a perfect feedforward controller is not physically realizable when d > I, a static
feedforward control, which will not be able to totally eliminate b,, has to be considered.
In this case, the index introduced in Equation 4.12, which is formulated based on the
assumption of complete removal of b, is no longer valid. Hence, it is impossible to
predict how much of &, can the future feedforward controller remove from the process.
The only information that can be obtained is the performance of the feedback only
controller compared to the minimum variance feedback plus feedforward controller.
2

Note, since only the first ! terms of the impulse response expression are zero, O o mu

is no longer zero for processes with d > [. As a result, the performance measure is

Var[ya,mu + yb,mv]

Mra+rr(d) = o2
v
(Fo+f21+- -+ f2a )02+ (fa+ g+ + fay)o?
o5
- o'ga,mv + agb.mv ( 4.16)
o}

This index also becomes the lower performance bound for the future feedback plus
feedforward control loop when the static feedforward controller is unable to reduce
the effect of b, at all. AIf at least part of b, is corrected, o2 will be smaller and hence
Nre.rr Will be a step closer to the best achievable performance.

Note that the above index is different from Huang’s SISO feedback performance
index. Recall the feedback performance index evaluated using FCOR algorithm in
the previous chapter, denoted as 7 5(d) here in this chapter, is calculated by filtering

the lumped disturbance 2, from the process output ;; that is

(Fo+ 2+ + f24y)0?
nFB(d) = o2
y

where z; is the lumped disturbance of a; and b,. In a situation where measurable
and unmeasurable disturbances can be distinguished from each other, Equation 4.16
provides performance evaluation against the minimum variance feedforward plus feed-

back control.
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4.4 Simulation Study

Performance assessment analysis as discussed in the previous sections is illustrated
on a simple process with a proportional and integral (PI) feedback controller. The
process is first order with a time delay of 3 sampling periods as shown in Figure 4.2.
In this case, the measurable load has a delay of 5 sampling periods. The driving
forces of the unmeasurable and measurable disturbances, a, and b, respectively, are
sequences of independent random noises with mean zero. The effect of the variance
of these noises on the performance index of the PI controller is investigated.

Five simulation runs were performed with the noise variance o2 changed. The
variance of the disturbances and their contribution on the output variance are listed
in Table 4.1. Table 4.2 summarizes the performance of the feedback only controller,
and the feedback plus feedforward controller measured against the minimum variance
feedback plus feedforward controller, N5, rr and 75, pr respectively, for the various
cases. The same table also provides the payout measure 7z and the percentage im-
provement in performance based on the difference between the values of the feedback
only and feedback plus feedforward control measures.

Assume that the threshold for implementing feedforward control of this process
is ngr = 0.5; this means that feedforward control should be employed whenever
b: contributes more than half of the total variance. In cases (i), (i) and (%) of
Table 4.2, g is greater than 0.5. Especially in case (i) where g = 0.935, more
than 90% of the output variance originated from b,. All these three cases have a
performance improvement over 100 percent of the original feedback only control loop
performance. Therefore, adding feedforward control to the existing feedback system
is recommended. On the other hand, both cases (iv) and (v) have 7z less than 0.5.
Their percentage performance improvement are 45.9 and 25.8 percent respectively.
This indicates that it may not be useful to implement feedforward control to reduce

the output variance.
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Figure 4.2: Block diagram of a closed-loop system used for simulation study.

Table 4.1: Analysis of variance of the simulated process.
Disturbance | Minimum | Contribution of | Output

Case variance variance disturbance variance
0’3 0% 0‘3'”“, ag,mu aga 012;6 03
7 025 144 | 0.113 0.231 1.30 1.39

0.285 | 0.883 1.10
0.389 | 0.589 0.970
0.691 | 0.328 1.01
0.836 | 0.226 1.05

iz | 1.00] 1.00 | 0.252
2t | 2.25 | 0.64 | 0.348
iv [4.00f 0.36 | 0.616
v |448| 0.25 | 0.745

o O O O o
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Table 4.2: Control performance of the simulated process.

FF payout FB only FB+FF Performance
Case | measure | performance | performance improvement
NFF NFB+FF NFB+FF nFH:;f;i“" x 100%

i 0.935 0.0813 0.488 501
i 0.806 0.230 0.886 285
1 0.608 0.358 0.893 149
w 0.325 0.611 0.892 45.9
v 0.215 0.709 0.891 25.8

4.5 Experimental Application

In this section, evaluation of the performance assessment technique is illustrated on
a pilot scale process, as presented schematically in Figure 4.3.

In this experiment, cold water and warm water enter the glass tank 1 through
control valves 1 (CV1) and 3 (CV3) respectively. The water inside tank 1 is heated by
steam. The heated water then flows out through a long copper tube. Thermocouples
are located at various distances from tank 1 along the tube to tank 2 for drainage. The
objective of this experiment is to control the water temperature of tank 1, measured
via thermocouple 2 (TT2), by manipulating the steam valve (CV2) position. A
PI controller is implemented on a real-time sensor based computer system through
Matlab and Simulink with a sampling time of 5 seconds. Signals are exchanged via
an OPTO 22 I/O subsystem. The water level is controlled automatically by a Fisher
DPRI00 PI controller. The level setpoint is tracked by manipulating CV1.

An artificially generated random noise signal was injected into CV3 to create a
source of unmeasurable stochastic disturbance. The water level setpoint was stepped
up and down to produce a series of measurable disturbances.

One of the most important piece of information about the process required for

performance assessment is the time delay of the process and the measurable distur-
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Figure 4.3: Schematic diagram of a pilot scale process.
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Table 4.3: Analysis of variance of the pilot scale process.

Sample Disturbance Minimum Contribution of | Output
intervals variances variances disturbances variance
03 0’% aﬁ.mv a?),m.u 0’;0 nglb 0324

210 - 1000 | 0.0761 | 0.528 | 0.000473 | 0 | 0.00398 | 0.00140 | 0.00687
1010 - 2000 | 0.284 | 0.527 | 0.00189 0 0.0165 | 0.000498 | 0.0208
2010 - 3000 | 0.657 | 0.527 | 0.00387 0 0.0376 | 0.000629 | 0.0399

bance. Both the process delay and the measurable disturbance delay are determined
to be 6 sample intervals through open loop bump tests.

Routine closed loop data were collected over 3000 sample intervals. These data
are divided into three portions: 210 to 1000, 1010 to 2000 and 2010 to 3000 sam-
ple intervals. Performance assessment is applied individually to these three sets of
data. The variance of the measurable disturbance remains approximately the same
throughout the experiment while that of the unmeasurable disturbance increases from
one portion to another. The output responses of the system is plotted in Figure 4.4.

The first step of the performance analysis is to evaluate the payout measure for
feedforward control from the closed-loop data. After the closed-loop transfer function
of the process is identified by an ARMAX model, the performance measures of the
feedback only control and the feedback plus feedforward control are also calculated
using Equations 4.12 and 4.13 respectively. The analysis of variance and the value of
the performance measures are summarized in Tables 4.3 and 4.4 respectively.

As shown in Table 4.4, the payout measure for 210 to 1000 sample intervals is
0.204. This indicates that over 20 percent of the output variance is contributed by
the measurable disturbance. Although the contribution looks small, comparison of
Nrg+rr 80d Npg, pp reveals that more than 70 percent of improvement over the
feedback only control can be obtained if the measurable disturbance is eliminated
by a perfectly-designed feedforward controller. Hence, it is worthwhile to implement
feedforward control for this time period even though 7 is not particularly large.
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Figure 4.4: Output responses of the pilot scale process.
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Table 4.4: Control performance of the pilot scale process.

Sample FF payout FB only FB+FF Performance
intervals measure | performance | performance improvement
NFF NFB+FF NFB+FF npaj;:f:*‘" x 100%
210 - 1000 0.204 0.0689 0.119 72.7
1010 - 2000 | 0.0239 0.908 0.114 25.8
2010- 3000 | 0.0158 0.970 0.103 6.05

The analysis also shows that feedforward control is not necessary for the last two
portions as o2 is increased to make the contribution of b, to the output variance
relatively smaller. Changes in level setpoint is not as significant to the process as
changes in valve opening of CV3 to the water temperature in these two portions. The
payout measure indicates that only 2.39 and 1.58 percent of the output variance is
contributed by the measurable disturbance; that is, the level setpoint changes. The
improvement in performance, a feedback plus feedforward controller can provide is
also small (25.8 and 6.05 percent respectively). Therefore, feedforward control is not

recommended in these two cases.

4.6 Industrial Application

In this section, performance analysis is applied to the industry example that has
been discussed in the previous two chapters. A complete schematic and instrument
diagram of the NO, production process, including the ammonia preheating section,
is shown in Figure 4.5.

The main function of this process is to produce NO, which is used by subsequent
processes to produce urea. Subcooled liquid ammonia enters E1 where it is heated to
a saturated vapor by 50 psig process steam. A proportional, integral and derivative
(PID) controller is used to regulate the pressure of the saturated ammonia. The
saturated ammonia enters E2a, E2b and E2c and is heated to about 290°F by the
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Figure 4.5: Simplified schematic and instrument diagram of the NO, production

process.
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185 psig process steam. The existing superheated ammonia temperature controller
TC2 is also a PID controller. Superheated ammonia and compressed air enter the
highly exothermic reactor R3, which produces NO; and NO, in a yield of less than 50
percent. TC3 is a DMC controller which is cascaded to the ammonia flow controller
FC3. All control loops are implemented on a Honeywell TDC2000 control system.

The operation of the catalytic reactor R3 is limited to a narrow range of catalyst
temperature (+5°F). If the temperature drops too low, undesired by-products such
as NO, will be produced in significant quantities. If the temperature is too high,
the catalyst will degrade prematurely. Control of the catalyst temperature is further
complicated by disturbances to the ammonia temperature and the ambient air tem-
perature. Heat exchangers E1 and E2 use process steam which has a significantly
higher variance in pressure than utility steam. Although the pressure of the steam
header is regulated, there are numerous disturbances caused by load changes in adja-
cent processes. Interactions between E2 and R3 result in additional disturbances to
the ammonia temperature.

The objective of the analysis is to determine the benefits of implementing a feedfor-
ward controller to minimize the effect of the disturbance to the ammonia temperature
(T212X) at the merged exit of E2 on the catalyst temperature (T106). The sampling
time is 10 seconds. Both the process delay and the load delay are two sampling
periods. Time plots of the catalyst and the ammonia temperatures are provided in
Figure 4.6. The process variation composes of continuous stochastic noise and some
infrequent fluctuations. It can be observed that these fluctuations strongly affect the
catalyst temperature, especially during the period from 6300 to 6700 sample intervals.
Performance analysis is applied to the data at different time intervals to determine
the effect of the variation in the ammonia temperature to the catalyst temperature.
The results are tabulated in Table 4.5.

The low payout measure during the periods from 1200 to 3500 and 4000 to 6200
sample intervals reflects that the background stochastic noise in the ammonia tem-
perature does not affect the catalyst temperature very much. This noise contributes
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Table 4.5: Control performance of the industrial process.

Sample | FF payout| FB only FB+FF Performance
intervals measure | performance | performance improvement
NFF NFB+FF NFB+FF nmtg;:_f:wp x 100%
1200 - 3500 [ 0.0176 0.210 0.215 2.40
3600 - 4000 0.317 0.0713 0.181 154
4000 - 6200 | 0.00576 0.169 0.194 14.6
6300 - 6700 0.913 0.0129 0.237 1.74 x 103

only 1.76 and 0.576 percent of the total variance respectively.

The high payout measure during the periods from 3600 to 4000 and 6300 to 6700
sample intervals, on the other hand, indicates that the fluctuations in ammonia tem-
perature contributes significantly to the variance of the catalyst temperature (31.7
and 91.3 percent respectively). As seen in the bottom graph of Figure 4.6, the mag-
nitude of this infrequent disturbance is greater than the continuous noise. So the
payout measure and the percentage performance improvement are expected to be
higher whenever the fluctuations occur. Removing these fluctuations by implement-
ing feedforward control is potentially effective in reducing process variability. It is,
therefore, worthwhile to incorporate a feedforward controller into the existing system
if wide fluctuations occur frequently, or if these fluctuations cause fatal consequences
to the process. Note that the feedback plus feedforward control performance index
will still be low (9zg, pr = 0.2). This small index indicates that the tuning of the
feedback controller is relatively poor.

4.7 Conclusions

Feedforward controllers improve control loop performance by reducing or eliminating
the effect of measurable disturbances. Implementing feedforward control, however, is

feasible if and only if the measurable disturbance has relatively significant effect on the
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process output. A payout measure which estimates the contribution of a measurable
disturbance to the process variance is introduced in this chapter. It serves as a
useful tool to evaluate the potential benefit from implementing feedforward control
to an existing feedback system. Performance prediction of the future feedback plus
feedforward is also discussed. The proposed performance analysis is demonstrated
by simulations, on a pilot scale process and an industrial process. The industrial
application of the analysis confirms the conclusions made in the previous two chapters:
the poor performance of the reactor control loop in the NO, production process is
caused by the wide fluctuations in the ammonia temperature. It is also concluded
that feedforward control scheme could be considered to remove these fluctuations in

order to reduce the process variability.
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Chapter 5

Sensitivity of Feedback Control
Performance Measure to Time

Delay Mismatch

5.1 Introduction

Minimum variance control serves as a useful benchmark for assessing control loop
performance. One of the most important pieces of information required for this
performance assessment method is the process delay. It is defined as the number of
control intervals elapsed between a change in the manipulated variable and its effect
on the process output. Process delay can usually be obtained from an open loop
step test; however, this test is generally undesirable due to the risk of production
upsets. Despite this, a rough estimate of the process delay is often accessible from
experienced personnel.

The feedback control performance measure defined in Chapter 3 is a function of
the process delay d. Thus, its accuracy in indicating the control loop performance
depends on the precision of the estimate of d. If d is poorly estimated, the performance
measure may not reflect the true feedback controller performance, and the indicated

potential for improvement by retuning the controller may be incorrect. Therefore, it



would be of interest to investigate the sensitivity of the performance measure to the
accuracy of d.

In this chapter, the effect of the delay mismatch on the performance index, 7(d),
is discussed via a simulation example. The performance index curve or PI curve is
introduced to study the sensitivity of 1(d) to the delay mismatch Id - 2[ The 95%
confidence level bound is also used to determine how accurate the estimated measure

is.

5.2 Over- and Under-estimation of Process Delay

In Chapter 3, the feedback control loop performance index 7(d) is defined as the sum

of the squared cross correlation coefficients of y; and a; between lags 0 tod — 1, or
1(d) = p(0) + pla(1) + - - - + plo(d — 1) (5.1)

It is obvious that the number of terms in the calculation of 7(d) depends on the
process delay d. When the estimated process delay d is over-estimated, that is if
d> d, d- d) more terms are added to the right hand side of Equation 5.1. The
calculated performance index 7(d) is therefore greater than the actual value 7(d). On
the other hand, if the delay is under-estimated, or d < d, (d - 2) fewer terms are
included in the calculation. In this case, 7(d) would be smaller than 7(d).

How much 7(d) deviates from 7(d) depends not only on how much d differs from d,
but also on the magnitude of the cross correlation terms included in or excluded from
the index calculation due to inaccurate estimation of the delay. For instance, even if
the delay mismatch is large, the error terms due to mismatch could still be negligible
if the magnitude of the cross correlation terms is small. In this case n(c?) would still
be fairly accurate in indicating the control performance. However, if the magnitude
of these terms are large, the difference between n(c’i\) and n(d) will be significant. In

other words, the sensitivity of 7(d) to process delay mismatch is dependent on the

rate of decay of the cross correlation response.
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Figure 5.1: Block diagram of the simulated process.

For a minimum variance type controller, the performance index is not affected
by the over-estimation of process delay. It is because the remaining cross correlation
coefficients after the first d terms are all zero in the minimum variance case; that is,

p2.(d) = p2,(d+ 1) = --- = 0. This will be illustrated in the following example.

5.3 Simulated Example

A simulated example is presented to illustrate how the index due to delay mismatch
is affected by the cross correlation between y; and a,. Figure 5.1 shows a process
under regulatory control with d = 4. a, is a white noise sequence with 02 = 1, and
@ represents the feedback controller. Simulation runs were conducted for each of
the controllers A, B, C and D, and the output responses 3, obtained. 17(2) for each
controller, estimated from the cross correlation coefficients of v, and a,, can be plotted
against d to form a performance index (PI) curve. The cross correlation responses
and their corresponding PI curves are shown in Figures 5.2 and 5.3 respectively.

Controller A in this example is a minimum variance controller. The derivation of
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its control law can be fdund in Appendix B. Figure 5.2 shows that the cross correlation
response of A decreases steadily from 0.844 at lag 0 to —6.07 x 1073 at lag 4, and it
remains close to zero thereafter. Thus, 17({1\) is expected to be d invariant after lag
4. This is verified by the PI curve in Figure 5.3. The index attains a constant value
after rising from 0.712 at d =1t00.997 at d = 4. This indicates that over-estimation
of process delay has minimal effect on the performance index of a minimum variance
controller. In addition, one could also determine the process delay of a system with
minimum variance control by plotting either the cross correlation response or the PI
curve.

Controllers B, C and D are non-optimal feedback controllers of the form

K.
1—-0.5¢g71

with increasing controller gain K.. The respective controller gains are shown in
Table 5.1. As illustrated in Figure 5.2, a larger K. makes the process response more
oscillatory. In Figure 5.3, the increasing slope of PI curves between lags 5 and 8 for
controllers B to D show that increasing K, also makes n(c?) more sensitive to over-
estimation of d. Figure 5.4 is a plot of the deviation of index, 17(2) — n(d), versus
delay mismatch, (2 — d), with d = 4. The delay mismatch seems to have a more
apparent effect on the index when lg - dl > 1; that is, when the process delay is
over- or under-estimated by more than one unit. Furthermore, as K, increases, the
deviation becomes even larger. This proves that the sensitivity of n(d) to process
delay mismatch is dependeut on the rate of decay of the cross correlation response.

The PI curve shown in Figure 5.4 is also useful in the following situation. For
instance, if the range of d is estimated to be [3, 5], it is unnecessary to have a more

accurate estimation of the delay in order to calculate 17(2). The close performance

Table 5.1: Controller gains selected for the simulation.
Controller | B C D
K. 0.10 0.15 0.20
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Figure 5.4: Effect of delay mismatch on the performance index.

measures at d = 3,4 and 5 all provide good indications of the control performance.

5.4 Confidence Limits of the Performance Mea-
sure

While the PI curve gives an idea of how 5(d) changes with |d - 2‘, it does not provide
information on how accurate the measure is. In view of this, the statistical properties
of the index that have been introduced in Chapter 3 are applied here to calculate the
confidence intervals for the estimated index.

Figure 5.5 is the performance index curve of a closed-loop system with d = 5. The
dash-dotted lines are the 95% bounds. The bounds get wider at bigger d because
the number of cross correlation terms taken into calculation is larger, and hence the
measure becomes less accurate. n(d = 5) is calculated as 0.67 +0.13, or [0.54,0.79].
Note that the confidence bounds only indicate for a given value of d the range in
which 7 would lie due to errors of chance, that is 95 times out of 100, within the
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specified bounds. They, however, do not indicate how accurate d is.

5.5 Conclusions

The performance measure 7(d) is a function of d. It is important to have an accurate
estimate of d in order to have an index to indicate the control loop performance
correctly. If the estimate of d is unreliable, the effect of the time delay mismatch
should be investigated. The sensitivity of 1](2) to 'E - d’ has been discussed in this
chapter. A simulation example has shown that the sensitivity is dependent on the
cross correlation response of a system. The use of performance index curve and its

-~

confidence level bounds to determine the accuracy of 7(d) has also been illustrated.
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Chapter 6

Performance Assessment of

Multivariate Control Systems

6.1 Introduction

Since most industrial processes are inherently multivariate in nature, performance as-
sessment of multivariate processes has been attended and studied. Huang (1997) has
developed a performance assessment algorithm for multi-input multi-output (MIMO)
processes using multivariable minimum variance control as benchmark. However, the
approach of Huang requires a priori knowledge of the MIMO time delay matrix,
also called the interactor matrix. The interactor matrix, a non-trivial extension of
the single-input single-output (SISO) time delay, characterizes the most fundamental
performance limitation of a linear multivariable feedback system. It can be simple,
diagonal or general. Determination of a simple or diagonal interactor matrix requires
only information of the pure process delays. However, factorization of a general inter-
actor matrix needs a complete knowledge or at least the first few Markov parameters
of the process.

The objective of this chapter is to present a performance assessment technique
which does not require any information of the interactor matrix. The strategy uses

knowledge of the delays between different input-output pairs and the manipulated



inputs of the process instead. Two simulation examples are presented to demonstrate
the application of the proposed technique. Results are compared to those generated
from Huang’s MIMO algorithm

6.2 Assessment Strategy based on Multi-loop Con-
trol Structure

Figure 6.1 shows a 2 x 2 multivariable process under regulatory control. The ma-
nipulated inputs and process outputs are denoted by u; and y; respectively. f’,-,— are
the delay-free process transfer functions from u; to y; with d;; as the time delays of
each individual loops. NV;; are the transfer functions of the zero-mean white noise
sequences a; to y;. Q; are the feedback controllers for the two loops. It follows from
Figure 6.1 that

y(t) = Tu(t) + Na(z) (6.1)

where y = [y; vl ,u=[u up], and a = [a1 02],.

The MIMO performance assessment method of Huang (1997) is to view the system
as a whole and develop multivariable minimum variance control benchmark from
Equation 6.1. The procedure uses the unitary interactor extracted from T to represent
the limitation on the achievable performance of the multivariable feedback controller.
Hence, the strategy requires a priori knowledge of the interactor matrix.

In order to avoid dealing directly with the interactor matrix, an alternate approach
is proposed to develop for assessing performance of MIMO systems. The control
performance of the system shown in Figure 6.1 is investigated one loop at a time. For
the first loop, output y; is expressed as following:

—d12T N N
n(t) = ———2—w(t) + ——=—a1(t) + 2

1+ g T Qy 1+q T, Qy 1+ ¢ 9T Qy
Assume the effect of a; on y; is very small, that is, Ny ~ 0. Then Equation 6.2 is

az(t) (6.2)

simplified to

—d2 T, N,
y(t) = —2—12 _up(t) + 1 () (6.3)
1+ g 9uTQ, 14+ ¢ uT,Q,

68



Q, u, gt " Y1,
Ny 2,
qmzfm N,
qdm?m N ><
N,, a,
Pl 14 - Vo

Figure 6.1: Block diagram of a 2 x 2 closed-loop system.

This information, that is the weak interaction between a; and y;, may be available
through a priori knowledge of the process. In the absence of this information, the
performance of the multivariate controller cannot be estimated without the knowledge
of the interactor. The first term in Equation 6.3 represents the loop interaction

between u; and ;.
In the special case when ﬁg equals zero, there will be no interaction between u,
and y;, and Equation 6.3 will simply become
N

1+ q_d“TuQ1
In this case, the univariate FCOR algorithm introduced in Chapter 3 can be applied

u(t) = a;(t) (6.4)

to evaluate the performance index of the l_oop.

For cases with T3 # 0 and is significant, the univariate FCOR algorithm will not
be able to provide an accurate estimation of the innovations sequence @;. Hence,
the calculated performance index will be inaccurate. Since u; is usually known or

measurable, it could be utilized to estimate @;. The procedure is similar to the
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one used for calculating feedforward payout measure in Chapter 4 except that the
measurable disturbance &, is now replaced by u;. The closed-loop transfer functions
between y; and u, in Equation 6.3 can be identified using time series models. Note
that d,, is required in this identification step. With the model available, it is then
possible to estimate @; from the residual term. The final step would be to evaluate

the performance index based on the following equation:

02,
n(dy) £ = L=p2 5 (0)+p25 (1) +---+pl s (di —1) (6.5)

y1
where p2 - (k) is the cross correlation coefficient between y; and @;.

This technique actually simplifies a MIMO problem into a MISO system, with u,
and a; as the inputs and y; as the only output. The loop interaction is taken care
of while estimating @; with this MISO method. Another advantage of this algorithm
is that no information of the interactor matrix is required. All it needs is a prior:
knowledge of the delays d;; between different input-output pairs of the process. This

procedure can be repeated for the remaining outputs.

6.3 Simulation Examples

In order to compare the univariate FCOR algorithm and the proposed MISO method
with Huang’s MIMO algorithm, two examples of 2 x 2 processes with open loop
transfer function matrix T and disturbance transfer function matrix N are studied.
In each example, g, a two-dimensional normally-distributed white noise sequence with

Y. = I and a multi-loop controller without interaction compensation

0.5-0.2¢~} 0
Q — 1-0.5¢—t
0 0.25-0.2¢~!

(1-0.5¢=1)(1+0.5¢1)
are used. Process gains are altered to generate different process conditions for inves-

tigation.

Although Huang’s method is used, only the performance measure of each individ-
ual control loop is calculated and compared. His measure of the overall performance
of all the outputs will not be calculated or discussed here.
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Example 1: This example illustrates the effect of process interaction on

the SISO and the MISO indices.

In this example, T and N are given as

- -y

gt Kyi2g~2
T = | 1-04¢" 1-0.1q7!
Kojq~t g~2

1-03¢g-T 1-0.8¢-t

N = 1 —O.Lq- ¥ 0

1
0 1—0.3¢g— 1

-l

K, is arbitrarily set at 0.2, 0.4 and 0.7, and the corresponding unitary interactor

matrices D can be determined as:

—0.981q —0.196q
D= for K21 = 02,

—0.196¢% 0.981¢> |

—0.928 -0.371
D= 7 q for K9y = 0.4,

—0.371¢> 0.928¢

e =

r -
—0.819 —0.573
D= ? 1 for K21 =0.7

—0.573¢> 0.819¢>
For each of the three cases when K3; = 0.2,0.4 and 0.7, K, is varied from O to

10 to increase process interaction. The calculated indices are plotted against K, to
determine the effect of interaction.

Figure 6.2 shows the result for K5; = 0.2. Performance assessment techniques,
namely MIMO and SISO, are applied separately on y; and y,. The performance
indices calculated by MIMO technique are denoted by ‘0’, whereas those estimated
with SISO technique is represented by ‘*’. The dash-dotted and the dotted lines
distinguish the performance indices of y; and y, respectively.

From Figure 6.2, when K, is zero, both multivariate and univariate performance
measures are close to unity indicating good control loop performance due to the
weak interaction of the control loops. Furthermore, the univariate measure is close

to the multivariate measure at K;2 = 0. However, as interaction, or equivalently,
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K, increases, the performance deteriorates. This is especially noticeable in y,. The
multivariate measure of 3, drops rapidly because of its high sensitivity to the increase
in control loop interaction caused by changes in K;;. Even though the multivariate
and the univariate measures are still close for 3., the two measures of y; deviate
significantly. This is due to the fact that loop interactions of the system is ignored
when applying the univariate FCOR algorithm.

The proposed MISO method is now applied to the same system and is compared
to the MIMO technique. Figure 6.3 shows the performance curves generated using
these two strategies. As observed from the figure, there is a good match between
the indices calculated by the MISO and the MIMO algorithms for both y; and .
Even though the loop interactions become stronger when K;o increases, the MISO
algorithm still provides accurate measure on the control performance.

Same comparisons are made for the other two cases: K5, = 0.4 and 0.7. The cal-
culated performance indices are plotted in Figures 6.4, 6.5, 6.6 and 6.7. As before, the
dash-dotted and the dotted lines represent the performance of y; and y, respectively.
For the case of K5; = 0.7, the system becomes unstable as K, increases beyond 7,
and therefore the simulation stops at K = 7.

Figures 6.4 and 6.6 indicates that the deviation between the two measures becomes
more obvious in y, as the interaction of the second loop increases. As Ks increases,
the deviation at y; becomes more significant. This again proves that univariate tech-
nique is not applicable to processes with strong loop interaction. In addition, multi-
loop controllers no long perform well under the influence of loop interactions, and
hence performance of both loops deteriorates as Ko increases.

On the other hand, the MISO method provides result that agrees to the MIMO
FCOR algorithm regardless of loop interaction. Figures 6.5 and 6.7 show once again
that the MISO technique is reliable in estimating control performance of multi-loop

processes.
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Table 6.1: Values of n;, and n,; for Example 2.

Case | ny2 | no;
a (0200

b 05|00

c 08|00
d |0.0{0.2

e [00[05
0.0 0.8

g |08}08

Example 2: This example illustrates the effect of interaction between dis-
turbances on the MISO index.

In this example, T and N are given as

= Kiag—*
T = 1-0.4¢—% 1-0.1¢q—1
0_2q-1 q—S
| T-033—T T=08¢—' |
1 nio
N = 1-0.4¢-! 1-0.5¢"1
n2j 1

1-0.5¢-! 1-0.3¢~!

where n;s and n,; are selected differently as shown in Table 6.1. K, varies from 1 to

10 in each case as in the previous example. The unitary interactor matrix D in all

cases is approximately equal to:

D 0.019¢° — 0.196¢* 0.004¢° + 0.980g*
0.980g + 0.004¢> 0.196q — 0.019¢>

The indices calculated from MIMO and MISO methods are plotted against K,
to demonstrate the effect of increasing interaction within N. Figures 6.8 to 6.14 show
the results of each case respectively.

Comparison of these figures reveals the significant effect of the interaction between
disturbances on the accuracy of MISO method. When the disturbance interaction n,2
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Nig = 0.0 and Mo = 0.8.
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Figure 6.14: Comparison of MISO and MIMO performance assessment methods for

N1 = 0.8 and Noy = 0.8.

is small in (a), the MISO indices of both y; and y» still match the MIMO indices. As
ny2 increases while keeping n,; zero in (b) and (c¢), the MISO indices of y; start to
deviate from the MIMO indices. Performance indices of y, are also affected due to the
two-way loop interaction of the process. The deviation originates from the assumption
made when developing the MISO strategy that interaction between disturbances is
negligible. Since the effect of a; on y; is no long negligible, using the MISO method
to calculate the performance index will not be accurate. It is also interesting to see
that as K, increases, the gap between the two types of indices tightens. This is due
to the fact that a; becomes relatively less significant on y; as K, increases.
Similarly, as n,; increases while keeping n;» zero in (d), (e) and (f), the MISO
indices of y, begin to deviate from the MIMO indices. As the effect of a; on y»
becomes significant, the MISO method cannot be used to provide the performance

measure of the process.
Figure 6.14 shows that when the interaction between the disturbances is strong
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both ways, the MISO indices of both y; and y, do not agree to the MIMO indices.
Therefore, whenever the interaction due to disturbances is strong, Huang’s MIMO
algorithm should be used to obtain control performance information.

6.4 Conclusions

Huang’s MIMO FCOR algorithm provides a means of assessing control performance
for MIMO systems using multivariable minimum variance control as benchmark.
However, the knowledge of the unitary interactor matrix poses difficulties for this
technique to be applied. In this chapter another technique which does not require any
information of the interactor matrix is presented. Instead of using a priori knowledge
of the interactor matrix, this technique uses only knowledge of the delays between
different input-output pairs and the manipulated inputs of the process. It is shown
via simulation that the proposed performance assessment technique generates results
that agree to those of the MIMO performance assessment technique when interaction

due to the disturbances is insignificant.
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Chapter 7

Conclusions and Recommendations

7.1 Conclusions

Process variations exist in almost all variables in an industrial environment. It is
therefore important to have effective tools for monitoring and extracting information
from these variations in order to improve quality control. In this thesis, methods for
process monitoring and control performance assessment are presented and discussed.

The methods outlined in Chapter 2 are useful for process monitoring. Basic statis-
tical concept, quality control charts and sophisticated time series analysis techniques
in both time and frequency domains can be used together to detect and identify major
sources of variations on-line or off-line.

Other than external sources of disturbances, process variations can be caused by
poor tuning in controllers. In order to distinguish between these two causes, the
univariate performance assessment technique presented in Chapter 3 can be utilized.
This technique uses minimum variance control as benchmark to define a normalized
performance measure for feedback control. The interpretation of this performance
measure is useful for establishing whether process variations can be reduced by con-
troller retuning, or should other control schemes or reconfiguration of the process be
considered. If feedforward control is being considered for removing or reducing the

effect of a measurable disturbance, the payout measure introduced in Chapter 4 would



be helpful in determining the feasibility of implementing feedforward control to an
existing feedback system. The analysis of variance allows the variance contributions
of the measurable and the unmeasurable disturbances which enter the process to be
evaluated. At the same time, the potential benefits from implementing a feedback
plus feedforward control scheme can also be estimated by calculating the performance
index of the future feedback plus feedforward control system.

One of the most important pieces of information required for the univariate per-
formance assessment method of Chapter 3 is the process delay. However, the process
delay, which could have a significant effect on the accuracy of the performance mea-
sure, is usually obtained through a rough estimate from experienced personnel. In
this case, plotting the performance index curve as discussed in Chapter 5 would be
useful to obtain information on how dependent the performance measure is on the
process delay mismatch. The 95% confidence level bound given in Chapter 3 can also
be used to determine the accuracy of the measure.

In industries where most processes are inherently multivariate in nature, the MISO
performance assessment strategy described in Chapter 6 would be of practical use.
With estimates of the delays between different input-output pairs and the manipu-
lated input of the process available, and by assuming the interaction between dis-
turbances to be negligible the performance indices of the control loops can be eas-
ily calculated. It has been shown that this MISO technique generates results that
agree to those of the MIMO performance assessment technique without requiring the

knowledge of the unitary interactor matrix if the interaction of the disturburances is
insignificant.
7.2 Recommendations

1. The application of the MISO performance assessment method introduced in
this thesis produces results that are close to the MIMO performance assess-
ment without the knowledge of the interactor matrix. However, it is restricted
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to processes with minimal interaction between disturbances. To extend the
strategy to processes with strong interaction between disturbances, it would
be worth exploring if information about disturbances from other control loops
could be obtained from closed loop data of those loops.

. Since the accuracy of performance measure relies on process delay estimate, it
would be of interest to develop a method to estimate process delays from routine
closed-loop data.

. Although the most desirable control objective is usually to minimize process
output variance in most practical control problems, it is limited by the presence
of constraints on manipulated variables due to physical limitations of plant
equipment such as pumps and control valves. Using minimum variance control
as a benchmark may not be fair enough in assessing control performance of
systems with constraints on control input. Extension of performance assessment
techniques with control constraints as part of the control objectives is an area

worthy of further investigation.

. Cascade control can provide improvement over conventional feedback control
when both master and slave controllers are well tuned. A method to assess
controller performance of both controllers in a cascaded control structure would

be appealing, especially in industry where a lot of cascade control loops exist.
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Appendix A

Matlab code for calculating SISO
feedback performance measure and

its confidence bounds

%SISO FCOR Algorithm (with calculation of 95% bound)
%leta,deta,etal etau,ir] = sfcorbd(d,ndata,nfiltr,y)

% d - order of time-delay

% ndata - number of data (i.e. output) points

% nfiltr - order of armax filter

% y - output data sequence.

% eta - performance index (PI)

% etau - upper limit of PI

% etal - lower limit of PI

% deta - confidence limit

% ir - vector of impulse response coefficients
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function [eta,deta,etal etau,ir] = sfcorbd(d,ndata,nfiltr,y)
y = dtrend(y);

nn = [ofiltr,nfiltr];

th = armax(y,nn);

aa = resid(y,th);

%********************* eta LR 222222222222 2 22 2 22 23
eta=0;

for i=1:d

tem = corrcoef(y(i:ndata),aa(1:(ndata-i+1)));

rho(i) = tem(1,2);

eta = eta + rho(i)~2;

temp = corrcoef(y(i:ndata),y(1:(ndata-i+1)));

rhoy(i) = temp(1,2);

end

%****************** etau etal Aok ek ek ek ek sk ek Kk ke ke ok
X = rho’;

Rya = zeros(d);

Ry = zeros(d);

M = zeros(d);

fori=1:d

Rya(i,1:d) = rho(i)*rho(1:d);

Ry(i,i:d) = rhoy(1:d-(i-1));

forj =1d

Ry(j.i) = Ry(i);
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fort =1ij

templ = rho(t)*rho(i+j-t);
M(,i) = M(j,i) + templ;

end

end

end

fori = 1:d

for j = 1:d

M(ij) = M(ii);

end

end

CM = (Ry - 2*Rya + M)/ndata;
mse = 4*X’*CM*X;

deta = 2*(mse)".5;

etau = eta + deta;

etal = eta - deta;
%******************* R coeﬁ ek e e ook ok e e e ke ok ok ok ke k ke ok
for i = 1:30

temp2 = corrcoef(y(i:ndata),aa(1:(ndata-i+1)));
r(i) = temp2(1,2);

end

ir = r*(cov(y)/cov(aa))~0.5;
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Appendix B

Derivation of minimum variance

controller

A minimum variance controller is designed based on assuming the output variance
after lag d is zero. In order to demonstrate the derivation of the minimum variance
control equation, consider the regulatory control in Figure 3.1 again. The closed-loop

response of this process is

N,

= ——a_.,,a B.l
. 1+¢9QT ‘ (B1)
Let
Na(@™') = F(q™") +q7*R(¢™") (B.2)
where F(q~!) is the feedback control invariant term. Then
g = [Fg™") + ¢ L{g™)] a (B.3)
where ~
_ R—- FQT
Lig)=—7—= (B-4)
1+q4QT
Minimum variance control is obtained when L = 0, or equivalently
R-FQT =0 (B.5)
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Rearranging Equation B.5 gives

Q= (B.6)

B
FT
which is the minimum variance control law.

Example

In section 5.2, an example with

~ 1.2
T=1Z 0.54¢-!
and
0.31
Na 1 —-0.54¢1
was presented. N, could be expanded into the same format as Equation B.2 as
0.026
_ -1 -2 -3, -4
N, =0.31+0.17¢"" + (EJQOq +0.049¢7° +¢ (1 — 0.54q_1)
F | S
R

Substituting the corresponding transfer functions into Equation B.6 yields the mini-

mum variance controller

0= 0.026
"~ 1.2(0.31+ 0.17g~! 4 0.090g—2 + 0.049¢~3)

a3
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