

SOFTWARE DEFINED NETWORKING SECURITY

Authored by

Oluwatola Adeniyi (142726)

Digvijay Chauhan (141807)

Ugochukwu Ezidonye (142046)

Mojisola Ayeni (142495)

Vishwa Patel (141259)

Research Project

Submitted to the Faculty of Graduate Studies,

Concordia University of Edmonton

In Partial Fulfillment of the Requirements for the Final

Research Project ISSM581(D)

Concordia University of Edmonton

FACULTY OF GRADUATE STUDIES

Edmonton, Alberta

Advisor: Dr Sergey Butakov (sergey.butakov@concordia.ab.ca)

April 2021

mailto:sergey.butakov@concordia.ab.ca

1

Table of Contents

List of Tables ... 2

List of Figures .. 3

Abstract... 4

I. INTRODUCTION ... 4

II. SDN ARCHITECTURE AND IMPLEMENTATION ... 4

III. REVIEW OF RELATED WORKS ... 5

IV. METHODOLOGY ... 6

A. Experiment Setup .. 6

B. Experiment Scenario .. 7

V. CONCLUSION ... 9

VI. REFERENCES .. 9

2

List of Tables

Table 1: Stride Threat Modelling .. 5

Table 2: Mitigation Techniques for SDN Attacks ... 6

3

List of Figures

Figure 1: Figure 1: Basic SDN Architecture .. 4

Figure 2: Average responses per second in ODL for one, two and five attackers .. 7

Figure 3: Average responses per second in Ryu using 5 attackers ... 8

Figure 4: Wireshark capture of this communication between the switches .. 8

Figure 5: Time/Request for ODL using two attackers ... 8

Figure 6: Time/Request for Ryu using two attackers. ... 8

Figure 7: Average requests per second for ODL using two attackers .. 9

Figure 8: Average requests per second for Ryu using two attackers .. 9

Figure 9: Result of DDoS with VPN using 5 attackers ... 9

4

Software-Defined Networking Security

Oluwatola Adeniyi; Digvijay Chauhan; Ugochukwu Ezidonye; Mojisola Ayeni; Vishwa Patel
Department of Information Systems Security Management

Concordia University of Edmonton
Alberta , Canada

oadeniyi@student.concordia.ab.ca; dchauhan@student.concordia.ab.ca; uezidony@student.concordia.ab.ca;
mayeni@student.concordia.ab.ca; vpatel1@student.concordia.ab.ca

Advisor: Dr Sergey Butakov; sergey.butakov@concordia.ab.ca

Abstract— The evolution of communication technologies led

to active virtualization of computer network solutions and

proliferation of the Software Defined Networks (SDN) as a

centralized network infrastructure management tool. The SDN is

a relatively new technology and rush to move products to the

market in some cases forces companies to overlook security

mechanisms. The proposed research provides assessment of the

susceptibility of some of the SDN solutions to the DDoS attacks.

The attacks on north- and south-bound communications have been

carried out using two SDN controllers on a public cloud. Detailed

analysis of the attack results indicated that even small-scale DDoS

floods can have devastating impacts on the SDN ecosystem if the

attacking botnet has access to communication channels that carry

out network management traffic. The research makes it is evident

that proper isolation is required, and it should not be limited to

standard mechanisms as encryption but should assume proper

authorization mechanisms to prevent such attacks.

Keywords—SDN, DDoS attack, Cbench, ODL, Ryu

I. INTRODUCTION

Networks have grown significantly in detail and size, which has

made the movement of hardware switches a very difficult task.

For companies that operate virtualized systems with large

networks, simply installing device switches through a manual

process has become a complicated and vulnerable task. Software

Defined Networking (SDN) is a networking process that allows

system administrators to control and run large networks more

reliably. It accomplishes this by separating the various layers of

a particular network, a process known as network abstraction.

SDN offers many significant benefits for organizations,

networks, and service providers by using a controller based

computerized environment. [1] [2] [3]. SDN has several

advantages which include [4]:

i. Offers a Centralized Network: It provides a standardized

view of the overall network and simplifying business

operations.

ii. Offers a Broad and Extensive Management: SDN allows

IT employees, managers, or supervisors to test

configuration settings without affecting the network.

iii. Offers a Compact and Efficient Security: it provides a

centralized point of control for administering security and

set of policies over the network. This could serve as a

weakness because it makes the SDN controller a point of

failure or target. If installed in a secure and correct manner,

it can effectively manage security all around the network.

iv. Lowers Operating Expenses: it allows device

improvement simple and straightforward. It lowers the

operating expenses of any organization, particularly in the

administrative area. This is because most of the

administrative matters or issues that occur from normal

routines can indeed be replaced by automation and

centralized.

v. Guarantees Content Delivery across the Network: One
of SDN's key advantages is its ability to monitor network

traffic. The ability to manage and improve traffic flow in a

network makes quality of service (QoS) and communication

simple to incorporate.

II. SDN ARCHITECTURE AND

IMPLEMENTATION

Unlike traditional networks, SDN is a better alternative because it

does not rely on the use of specific network devices like firewalls,

routers, switches etc. dedicated hardware devices such as routers,

switches, firewall etc. and lack of traffic management in the
network. [5]The SDN consists of following three layers:

• Infrastructure/Data Layer

• Control Layer

• Application Layer

Figure 1: Basic SDN Architecture [6]

mailto:oadeniyi@student.concordia.ab.ca
mailto:dchauhan@student.concordia.ab.ca
mailto:uezidony@student.concordia.ab.ca
mailto:mayeni@student.concordia.ab.ca
mailto:vpatel1@student.concordia.ab.ca

5

The SDN architecture is split into three different sections. The

control layer is recognized as the brain of the network. It is also

known as the centralized controller This same controller resides in

a server that manages the network's traffic rules and connections.
The infrastructure layer of a network is made up of physical

switches. These layers interact and establish communication

through the northbound and southbound application. [7] [8].

A. Application Layer
This layer can also be known as the application plane. All the

services, features, and policies are defined in this plane. These

applications are like programs that communicate and interacts its

network requirements directly to the controller dynamically

through the northbound interface. Depending on the network

modifications, these applications can generate end-to-end

functionalities.

B. Control Layer

This layer can also be known as the Control Plane. This layer

offers a systematic centralized method of control that regulates
network transmission operation through an accessible user

interface. The SDN controller manages all or most of the devices

that make up the network and enforces and deploys policies such

as packet forwarding, routing, and load balancing via the

southbound interface [9]. The Control layer is the most essential

part of the SDN layers.

C. Infrastructure/Data Layer

This layer can also be known as the data plane. All the

network devices are physically assembled and connected at this

layer. Its forwarding operation can be executed based on the

application layers policies or rules and actions from the controller.
This layer's devices are just forwarding devices with no control or

standard functions. The flow table in the network oversees

handling of each packet. [10]

D. Northbound Interface (NBI)

Applications communicate with the controller via this interface

as this can be shown in Figure 1. It oversees communicating

network requirements and behavioral patterns from the

application layer, as well as the SDN controller's view. The

commands used to configure the forwarding devices are

abstracted in the northbound interface. [11].

E. Southbound Interface (SBI)
This configurable interface is used by the controller to

dynamically control the network devices in the data layer. The

defined protocol for this interface is called OpenFlow. All

forwarding functions, alerts, tracking, and can be controlled

programmatically. Between both the data plane and the SDN

controller, OpenFlow creates a safe channel. [11].

 For administration of rules or policies across an organization or

network, the SDN does have a centralized control point which can

also be a major drawback, as it makes the SDN vulnerable to

an attack. The SDN is a new technology, and it is susceptible to
attacks because of lack of skilled personnel who might not

understand the new technology. It consists of new codes, thereby

increasing the vulnerability of the network. Most of the attacks that

will be carried out will be done against the NBI and SBI. This is

to prevent applications in the NBI from communicating with the

controller and network devices in the SBI from communicating

with the controller. Further details on steps that will be carried out
to perform these attacks will be explained in the next section.

III. REVIEW OF RELATED WORKS

Several strategies have been used to assess the safety of SDN

controllers as a subset of the overall SDN architecture. Using

the STRIDE threat modeling, these assessments can be

better classified. Microsoft created the STRIDE threat modeling

system. Praerit and Loren oversaw identifying and classifying

computer security threats. It divides threats into six categories

as shown below[12].

Table 1: Stride Threat Modelling [12]

Threat Definition Property

Spoofing Imitate something or someone

else

Authenticati

on

Tampering Interfering with data Integrity

Repudiation Pretending to have completed a

procedure

Non-

repudiation

Information

Disclosure

Information being given to

someone who isn't supposed to

have it

Confidentia

lity

Denial of

Service

Users are being denied service. Availability

Elevation of

privilege

Obtaining access without

having appropriate

authorization

Authorizati

on

The threats discussed above can be performed against the

controller either directly or via the northbound or southbound

interface. As a result of this, securing the controller and the

communication channels is key to having a safe network. Below

are some of the techniques attackers may use to perform these

threats.

i. Spoofing – An attacker may forward packets with a source

address to the SDN controller showing that the packet is

originating from a port or device in the network. The

attacker can gain access to the network through ARP

spoofing.

ii. Tampering – if the network is not properly configured, an

attacker can intercept packets sent from the controller to the

NBI. These packets can be modified or redirected thereby

giving the malicious actor access to modify policies on the
flow table.

6

iii. Repudiation – Since all activities carried out by system

administrators are logged. If there is a malfunction in the

logs or tracking systems, interactors in the system can deny

their actions or even blaming others if anything goes wrong.

iv. Information disclosure – an attacker may gain
unauthorized access to sensitive information in the network

such as the topology, configuration details, flow table or the

cryptography key. The cryptography key is vital because it

can be used to verify the controller’s identity.

v. Denial of Service - an attacker may decide to forward a

huge amount of traffic to flood the NBI or controller in the

network thereby making the NBI and controller

unavailable.

vi. Elevation of Privilege – If there is a vulnerability with the

access control in the system, a malicious user can escalate

his privilege in the system which will then enable

unconfined access to restricted or sensitive data.

Table 2 below shows different proposed mitigation techniques

from different authors showing countermeasures to tackle the

spoofing, Man-in-the-Middle attack, and denial of service

attacks.

Table 2: Mitigation Techniques for SDN Attacks

Attacks

Impacted

SDN Layers

and

Interface

Affected

Security

Aspect

Mitigatio

n

Techniqu

es

DOS/DDo

S

Control,

Infrastructure
, SBI

Availability • Statesec [13]

• Openflow
Switch [14]

• Sguard [15]

• Avantguard

[16]

Spoofing Control,

Infrastructure

Confidential

ity, Integrity
• ARP

Spoofing

Mitigation

[17]

• SDSec [10]

• Hybrid SDN

[18]

Man-in-

the-middle

Control Availability,

Integrity
• Snort [19]

• ArpAlert [19]

Boite et. al. proposed using the Statesec. This is a security

management tool used for the detection of DoS attack. It

functions in three stages which are: Irregularities detection,

traffic management and remediation countermeasures. This uses

a stateful technique to employ switch processing, that can aid in
the precise detection and mitigation of DoS attacks. It also aids

by lowering the amount of connection overhead that occurs in

the south-bound interface. [13] Huang et. al. proposed using

the OpenFlow keeps track of the flow of traffic These data can

be regulated to see if there is a substantial increase in traffic,

which could indicate a DDoS attack. [14] Wang et. al. proposed

using the Sguard which is a powerful security software for

detecting DoS attacks. It is divided into two parts: classification

and access control. The Access control keeps a record of a

packet's actual source and matches it up to the Hash table as it

is entering a network. [15] Shin et. al. proposed using the

Avantguard. This issue is fixed with the support of a migration

module which slows down the TCP handshake by allowing the

switch serve as a proxy server, thereby forwarding the
completed connections to the controller. This technique can help

to prevent an attacker from completing the TCP handshake. [16]

Abdelsalam et. al. proposed using the ARP Spoofing

Mitigation. This method involves monitoring port level ARP

packets by adding an ARP function in the control unit for

effective spoofing detection and prevention. It can also protect

a control system from overloading in the event of an attack. [17]

Darabseh et. al. proposed using the SDSec. This technique is

based on an open switch controller. To identify the active

connections in the network, it employs the Link Layer

Discovery Protocol (LLDP). [20] Fahad et. al. proposed using

the Hybrid SDN. This technique involves creating a new server
dedicated to receiving all ARP queries. By redirecting malicious

activity from attackers to the newly created server. [18] The use

of tools like Snort and ArpAlert can help to tackle the Man-in-

the-middle attack. These tools can be installed and used to detect

and prevent attacks from occurring. This would involve setting

up and configuring these tools on an interface in the same

network as the SDN controller. [19]

The authors above proposed different countermeasures to

effectively mitigate some of the security issues affecting the

SDN. Some of these analysis and assessment did not give a

detailed and comprehensive solution to some issues affecting

the northbound communication. Most of the proposed solutions

could handle simple DoS attacks but whenever the attacks

became stronger, detecting was possible but identifying the

attacker was not easy. Another common issue was detecting
slow DDoS attacks. This is because the slow DDoS attacks

attempts to completely slip through undetected. The idea behind

this research proposal is to tackle these issues and propose

possible solutions to better harden the network and make it less

prone to attacks.

IV. METHODOLOGY

The Software defined network was configured on a public

infrastructure with two opensource controllers and SDN

benchmarking tools to conduct the experiment. The

benchmarking tools used are cbench , apache bench (ab) tool,

and iperf. [21]

A. Experiment Setup

For this experiment, eight (8) virtual machines running ubuntu

20.0.4 were used to represent the application layer, control layer,

data layer, and external attackers. The two controllers used were

Opendaylight controller running on the sodium version, and Ryu

controller.

The first machine (3 vCPUs, 40 GB HDD, 4GB RAM) serving

as the application layer had the apache bench installed to
measure the impact of a DDoS attack on the northbound

communication. The second virtual machine (3 vCPUs, 40 GB

HDD, 4GB RAM) running Opendaylight sodium with all

required features installed (DLUX and L2), and Ryu controller.

The third VM running Mininet, (2 vCPUs, 40 GB HDD, 4GB

RAM) used to the emulate the data layer, and cbench the

performance monitoring tool used to measure the impact on

7

southbound communication. The other five (5) virtual machines

served as external attackers with hping3 and dsniff package

installed to perform DDoS and man-in-the-middle attacks,

respectively.

For attack at the data layer, Mininet was used to emulate the data

layer topology with seven (7) switches and eight (8) hosts. And

for attacks against the controller, the data layer topology was

emulated using cbench, where 16 switches and 1000 hosts were

tested to ascertain what the impact of the DDoS attack on the

controller would be on the southbound communication channel.

Since the northbound communication uses REST APIs to

retrieve the switch stats and update the switch stats for Ryu

controller, and get information on the network, flow statistics,
and host locations for ODL, Apache Bench [22]a benchmarking

and load-testing tool, was used to confirm how the controller

would behave when under attack. The tool uses http to send

requests on port 8080 of the Ryu controller and 8181 for the

ODL controller.

Cbench [21] is a benchmarking tool for controllers that support

OpenFlow 1.0 and 1.3. It supports two metrics i.e., throughput

and latency. Where cbench measures latency by forwarding a

single packet-in data to the controller and awaiting a response,

while for throughput, it repeatedly forwards as many packet-in

data as possible to measure the controller’s capability. Tests for

these two metrics can be done multiple times.

B. Experiment Scenario

i. Attack at the data layer

For the first attack, a distributed denial of service attack was

simulated where the attacker is a host in the same network as the

victim in the data layer. The type of DDoS attack used in this

scenario is syn flood attack where h1 sends SYN packets to h8.

Prior to the attack, the bandwidth of the victim needed to be
verified and this was done using the iperf utility tool. Using the

iperf command, the bandwidth was at 10Mbit/s when a

connection was established from a normal user, h2 to the victim

h8. To perform the attack, the hping3 tool was used to perform

a SYN flood attack. Once the attack begins from h1, the

bandwidth reduces drastically from 10Mbits/s to an average of

250 Kbits/s.

ii. Attack at the Southbound Interface

a. Distributed Denial of Service Attack

The southbound interface is responsible for controller-data layer
communication. An attack against the controller would impact

the request and response times for openflow packets sent from

the openflow switches to the controller, flowmod or packet out

messages from the controller to the switches.

To perform an effective DDoS, five attackers were used at

various attack speeds. To configure the attack with these

intervals, the hping3 tool was used, these tools allow for the

speed of DDoS to be configured by setting the -i value, and in

this case, it was calibrated from the slowest to fastest. This

means the interval or speed value was set to u1000 to indicate

slow attack, that is, the attacker would send approximately 100

packets per second to the victim, while a value of u10 would be
a very fast attack. For the purpose of this attack, these intervals

were calibrated as follows: u1000, u750, 500, 300. 200, 150,

100, 50, 25, 10.

Cbench was used to measure the impact of the DDoS attack at

these intervals on the throughput on the southbound interface. It

was configured with 16 switches and 1000 mac addresses per

switch. 110 iterations were executed per switch at 10000 ms per

test. The first 10 iterations and loops are ignored from the
results.. This was done to cater for any variance in the results.

The results from using cbench are an average of the number of

responses per second from all switches against the speed or

intensity of the attack.

It is seen that both controllers can withstand the attack from one

attacker but when the number of attackers and speed of attack

are increased, the average responses per second decreases, that

is, how long it takes the controller to respond to a packet_in

message sent by the cbench tool.

From figures 2 and 3 , the average response per second when the

DDoS is executed on the ODL controller using 5 attackers is

26.58 and this will decrease further as the speed of attack and

number of attackers increases, while for the Ryu controller the

average response per second is 135 during attack with high

intensity using five attackers.With one attacker, this result varies

a little, as the controller is able to withstand the attack even if

the speed increases, hence the increase in the response per

second. From the graphs, the variation can be noticed in both

controllers and this is due to how both controllers handle DDoS,
ODL handles this fairly as the responses per second is more than

the Ryu, even with five attackers.

Figure 2: Average responses per second in ODL for one,

two and five attackers

 -

 5,000.00

 10,000.00

 15,000.00

 20,000.00

 25,000.00

Average Response per second

One Attacker Two Attackers Five Attackers

8

Figure 3: Average responses per second in Ryu using 5

attackers

b. Man- in-the-Middle Attack.

To intercept SBI channel communication, man-in-the-middle

attack was performed by poisoning the ARP cache of the

controller VM. The attacker intercepts the exchange of packet-

in and packet-out messages between the controller and the
OpenFlow switches and uses this information to get an overview

of the topology. It can take it a step further by modifying the

flow of information sent to the controller which could lead to

rerouting information or traffic to a compromised host. Figure 4

shows the Wireshark capture of this communication between the

switches and ODL controller. Here, 192.168.209.6 is the

controller VM and 192.168.209.4 is the mininet VM.

Figure 4: Wireshark capture of this communication

between the switches

iii. Attack at the Northbound Interface

a. Distributed Denial of Service Attack

Two attackers were used to perform a DDoS attack on the

controller and apache bench tool was used to measure the impact

on the application-controller communication. The parameter

used to analyze the behavior was the request per time value
from apache bench. Prior to the attack, this average requests per

second for ODL was approximately 1185 while for Ryu the

average requests per second was 677. With similar intervals as

mentioned in b above, the number of connections were set to

100 with a concurrency level of 10. For the two attackers, the

average request per time for ODL and Ryu are seen in figures 5

and 6.

For both controllers, during the attack, the time taken to process

one request from the application layer increases slightly as the

speed of the attack increases, when the attack is executed with

one attacker. The only significant change is at u25 and u10,

where it takes the controller a longer time to process a single
request. When the number of attackers is increased, there is a

major rise at the fastest point, and this is seen in figures 5 and 6.

Figure 5: Time/Request for ODL using two attackers

Figure 6: Time/Request for Ryu using two attackers.

The number of requests each controller can handle declines as

the intensity and number of attackers increases. In figure 7, the

number of requests ODL processes per second decreases from

approximately 2000 requests/second to almost 190

requests/second. This indicates that at high intensity attack and

a high number of attackers, ODL will not be able to withstand

the DDoS attack.

A similar observation is made for the Ryu controller in figure 7,

Ryu can handle an average of 650 requests per second when the
attack intensity is low. As the intensity increases, it is seen that

Ryu struggles to handle the number of request it receives.

0

10

20

30

40

50

60

70

Time/Request

one attacker Two attackers

0

500

1000

1500

2000

2500

3000

Request/Second

one attacker Two attackers

9

Figure 7: Average requests per second for ODL using two

attackers

Figure 8: Average requests per second for Ryu using two

attackers

In addition to the experiments above, DDoS attack was executed

against the controller while a VPN was configured between the
control plane and data plane, to identify if this control will

prevent the attack. 5 attackers were used at the same time with

the maximum intensity reduced from the previous experiments.

Figure 9: Result of DDoS with VPN using 5 attackers

It was observed that despite the presence of the VPN, it did not

prevent the DDOS from impacting the infrastructure negatively.

Here, the throughput when measured with cbench decreased

drastically while DDoS was executed. And a similar result to

figure 9 above was gotten. Therefore, it can be said that despite

the ability of the VPN to mitigate man-in-the-middle attack, it

cannot prevent DDoS attacks.

V. CONCLUSION

This paper assessed the susceptibility of SDN infrastructure to

various forms of attack and how they impact confidentiality,

integrity, and availability in software defined networks. It

examined the effect on communication between the various

layers, with attacks such as, distributed denial of service, and

man-in-the middle executed at the various layers. From the

analysis presented above, it is seen that DDoS floods have a

tremendous impact on both the Northbound and Southbound

communication channels.

With respect to the small scale DDoS attack executed, the results

from the evaluation, using the benchmark tools (cbench, apache

benchmark, iperf), show that both Opendaylight and Ryu

controllers would not withstand an attack if the intensity of the

attack was increased significantly, by increasing the number of

attackers in the botnet. This is seen in the decline in the number

of responses to requests sent from the application and data layers

to the controller.

As there is no silver bullet solution to mitigate against any

attack, future research can be done in analysing the integrity

and confidentiality of the communication channels with the use

of different VPN or other encryption methods, as well as using

some virtual network isolation approaches as VLANs under

different penetration techniques. Also, seeing as this experiment

was performed at low scale with a single controller, more

experiments should be done with a distributed arrangement for

the controllers to test a fault tolerance system that ensures

availability of SDN infrastructure.

VI. REFERENCES

[1] M. Cooney, "Network World," 2020. [Online]. Available:

https://www.networkworld.com/article/3209131/what-sdn-is-

and-where-its-going.html. [Accessed 23 May 2020].

[2] Q. Monnet, "Qmonnet.github.io," 8 July 2016. [Online].

Available: https://qmonnet.github.io/whirl-

offload/2016/07/08/introduction-to-sdn/. [Accessed 23 May

2020].

[3] M. Rouse, "denial-of-service attack," September 2018.

[Online]. Available:

https://searchsecurity.techtarget.com/definition/denial-of-

service. [Accessed 5 June 2020].

[4] MICROINGRAM, 08 August 2017. [Online]. Available:

https://imaginenext.ingrammicro.com/data-center/7-

advantages-of-software-defined-networking. [Accessed 05 06

2020].

[5] Vmware, 2018. [Online]. Available:

https://www.vmware.com/topics/glossary/content/software-

defined-networking.

[6] M. Rouse, "SearchNetworking," August 2019. [Online].

Available:

https://searchnetworking.techtarget.com/definition/software-

defined-networking-SDN. [Accessed 23 May 2020].

[7] D. Kreutz, R. M. V. Fernando, P. E. Verı´ssimo, C. E.

Rothenberg and S. Azodolmolky, "Software-Defined

Networking:A Comprehensive Survey," Proceedings of the

IEEE, vol. 103, p. 31, 2015.

10

[8] L. Yifan, Z. Bo, P. Zhao, P. Fan and H. Liu, "A survey:

Typical security issues of software-defined networking," vol.

16, no. 7, pp. 13-31, July, 2019.

[9] D. B. Hoang, "Software Defined Networking ? Shaping up for

the next disruptive step?," 2015. [Online]. Available:

http://doi.org/10.18080/ajtde.v3n4.28.. [Accessed 01 06 2020].

[10] J. Manar, T. Singh, A. Shami, R. Asal and Y. Li, "Software-

Defined Networking: State of the Art and Research

Challenges," Computer Networks, June 2014.

[11] M. Fakoorrad, "Application Layer of Software Defined,"

Tallinn, 2016.

[12] . L. Kohnfelder and . P. Garg, "The Threat to our Products,"

Microsoft, 1 April 1999. [Online]. Available:

https://adam.shostack.org/microsoft/The-Threats-To-Our-

Products.docx. [Accessed 5 June 2020].

[13] J. Boite, P.-A. Nardin, F. Rebecchi, M. Bouet and V. Conan,

"Statesec: Stateful monitoring for DDoS protection in software

defined networks," 2017 IEEE Conference on Network

Softwarization (NetSoft), pp. 1-9, 2017.

[14] X. Huang, X. Du and B. Song, "An effective DDoS defense

scheme for SDN," IEEE International Conference on

Communications (ICC), no. 978-1-4673-8999-0, 2017.

[15] T. Wang and H. Chen, "SGuard: A Lightweight SDN Safe-

Guard Architecture for DoS Attacks," vol. 14, no. 6, pp. 113-

125, 2017.

[16] S. Shin, V. Yegneswaran, P. Porras and G. Gu, "AVANT-

GUARD: Scalable and Vigilant Switch Flow," ACM SIGSAC,

November 2013.

[17] A. Abdelsalam and El-Sisi, "Mitigating ARP spoofing attacks

in software-defined networks," pp. 25-27, 2016.

[18] F. Ubaid, R. Amin, F. B. Ubaid and M. M. Iqbal, "Mitigating

Address Spoofing Attacks in Hybrid SDN," International

Journal of Advanced Computer Science and Applications, vol.

8, no. 4, 2017.

[19] M. Brooks and B. Yang, "A Man-in-the-Middle Attack

Against OpenDayLight," Proceedings of the 4th Annual ACM

Conference on Research in Information Technology,

September 2015.

[20] A. Darabseh, M. Al-Ayyoub, Y. Jararweh, E. Benkhelifa, M.

Vouk and A. Rindos, "SDSecurity: A Software Defined

Security experimental framework," 2015 IEEE International

Conference on Communication Workshop (ICCW), no. 2164-

7038, 2015.

[21] R. Sherwood, "Github," [Online]. Available:

https://github.com/mininet/oflops/tree/master/cbench.

[Accessed 20 03 2021].

[22] D. Singer, "How to Benchmark a Website Using Apache

Bench," Liquidweb, 18 November 2020. [Online]. Available:

https://www.liquidweb.com/kb/how-to-benchmark-a-website-

using-apache-bench/. [Accessed 20 March 2021].

[23] G. V. Nikolaev, "Network Monitoring with Software Defined

networking Towards: OpenFlow network monitoring," 2013.

