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Abstract 

Automatic item generation (AIG) is a field of research dedicated to the 

production of test items using computer technology. Despite dramatic 

developments on AIG in the past decade, there is little documentation on a 

general methodology for creating the models needed to generate items. The 

purpose of my dissertation is to introduce a three stage framework to guide the 

process of item generation and to present a proof-of-concept application 

demonstrating how items can be generated using this framework. The 

generative framework involves individual stages of development: cognitive 

modeling, item modeling and item generation. My unique contribution to the 

literature is threefold.  First, I present a modeling approach for extracting 

knowledge from content experts that can be used for item generation.  Second, I 

present a template-based item generation technique named n-layer modeling to 

minimize text similarity between generated items from the same model.  Third, I 

present a method for evaluating text similarity for generated items.  These 

methods and procedures are demonstrated in the context of medical education, 

specifically in the area of surgery.  Results generated test items in the domain of 

hernia and post-operative fever. The application of n-layer item modeling 

demonstrated a generation technique that can produce more test items, and 

test items with less text similarity.  By integrating test development processes 

with technology, the generation framework proposed in this study can combine 

a systematic and iterative process with the humanistic task of providing content 



 
 

 

expert knowledge to produce test items en masse for meeting current 

educational testing demands. 
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Chapter I: Educational Testing in the 21st Century 

Dramatic changes are shaping how we design and administer educational 

tests.  Large-scale tests, once intended exclusively to meet accountability and 

summative evaluation purposes, are now expected to also provide valuable 

formative information to guide teaching and promote learning (Ferrara & De 

Mauro, 2006).  To meet these teaching and learning directives, formative 

assessment principles are beginning to guide our educational testing practices.  

Formative principles include any assessment-related activities, such as 

administering tests more frequently, that yield constant and specific feedback to 

modify teaching and improve learning.  But when testing occurs frequently, 

more tests are required and these tests must be created both efficiently and 

economically.  With more frequent testing, exams no longer serve as an 

intermittent “rite of passage”, but are now considered to be an integral part of 

the teaching and learning process. 

Because testing occurs more frequently, more tests are required.  Tests 

that enhance instruction require more test forms and, ultimately, more test 

items.  Unfortunately, due to our current debt-laden economic climate, 

extensive cuts to public education have persuaded educators that they must 

achieve more with less (Camara, 2011).  To maintain or even improve the quality 

of testing without increasing costs, testing programs must operate in a more 

efficient and cost-conscious manner.  This seemingly contradictory idea—

educational testing occurring more frequently, satisfying more purposes, and 
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providing more information to students and teachers, but requiring the same, or, 

even less than, the cost of existing testing programs—is now a serious question 

that must be addressed by educators who develop 21st century educational 

assessments.  Fortunately, the demand for more timely and frequent 

educational testing coincides with a rise in the application and use of educational 

technology.  Computer and technology use has changed the way we live, learn, 

and interact with others.  Bennett (2001) predicted that no topic would become 

more central to innovation and future practice in educational testing than 

computers and the internet.  One decade after this bold but accurate claim, we 

are beginning to see two waves of change, enabled by technology, that affect 

the way we design and deliver educational tests.   

Assessment and Technology 

The first wave of technological change in educational testing improves 

how we deliver tests.  Large-scale tests are no longer feasible when delivered in 

a paper-based format.  The printing, scoring, and reporting of paper-based tests 

require tremendous efforts, expenses, and human resources (Parshall, 2002).  

Moreover, as the demand for more frequent testing escalates, the cost of 

administering paper-based tests will also increase, likely in direct proportion to 

the number of tests required.  One solution that can help curtail test 

administration cost is to transfer to a computer-based testing (CBT) system.  By 

administering tests on computers over the Internet, students no longer have to 

rely on their favourite “HB” pencil to answer each item.  More importantly, 



3 
 

 

educators are liberated from performing the time-consuming administration and 

scoring processes associated with disseminating, scanning, and scoring paper-

based tests.  Instead, tests can be administered by computers on-demand, 

scored automatically, thereby allowing students to receive immediate feedback 

on their performance.  Costs accrued from tasks such as printing and scanning 

test forms can now be shifted to improve other test-related activities, such as 

item development (Drasgow, 2002).  CBT also allows assessment specialists to 

implement new test designs such as adaptive testing (Weiss, 1982; Folk & Smith, 

2002) where items are administered to examinees based on their ability 

estimates, thereby allowing educators to meet different demands posed by a 

diverse set of testing purposes, but with less testing time and at lower test 

development and administration costs.  With more than 27 of the 50 US states 

now administering computer-based educational tests (as cited in Gierl & Lai, 

2011), and a large number of high profile exams such as the Graduate Records 

Exam (GRE), Graduate Management Achievement Test (GMAT), American 

Institute of Certified Public Accountants Uniform CPA examination (CBT-e), and 

National Council of State Boards in Nursing (NCLEX) administering exams 

electronically, computer-based testing has become standard practice. 

The second wave of change made possible through the use of computer-

based testing is in the area of test design.  Many examples of innovative test 

designs can be cited.  For example, tests can now be used to identify students’ 

cognitive-problem solving strengths and weaknesses as well as yielding 
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diagnostic information on these specific areas (Leighton & Gierl, 2007a; Huff & 

Goodman, 2007).  Tests can be designed to track the learning progress of 

students in a particular subject over time using multiple test administrations (Liu, 

2010).  Tests contain innovative item types that prompt student responses from 

a variety of stimuli thereby allowing educators to measure more complex 

performances as well as a broader variety of knowledge, skills, and competencies 

(Scalise & Gifford, 2006).  To implement these new and ambitious test design 

approaches, expert collaboration across disciplines such as educational 

psychology, computing science, mathematical statistics, educational technology, 

and cognitive psychology is required (Gierl & Lai, 2011).  In sum, diverse and 

dramatic advancements in educational testing today are all made possible by the 

emergence and use of technology.   

The transition to computer-based testing coupled with advances in test 

design permit educators to evaluate students more frequently (Drasgow, 2002).  

But the desirability to test students more frequently combined with the need to 

test for many different purposes has also exposed one fatal constraint with our 

current educational testing paradigm—the creation of new test items (Downing 

& Haladyna, 2006; Schmeiser & Welch, 2006).  Computer-based tests must be 

supported by a large bank of items because frequent testing means that items 

are continuously administered and, therefore, exposed to students.  A bank is a 

repository of test items along with their associated data.  Data recorded for each 

item include content and psychometric characteristics (e.g., difficulty level of the 
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item), which is required for test assembly, as well as usage (e.g., exposure rate), 

which is required for test security.  These banks must be frequently replenished 

with new test items to ensure that students receive a continuous supply of 

unique, content-specific, items while limiting item exposure to maintain test 

security within the testing environment to ensure fairness for all students.  Item 

exposure represents a serious problem for the integrity of the testing process.  

Examples of such compromise in a medical licensure (Zamost, Griffin & Ansari, 

2012) or student achievement (O’Brien, 2012) context immediately garner 

international media attention (O’Neil, 2012) and highlight the consequences of 

test security in a computer-based examination context.   

To minimize the risk of item exposure, large item banks must be 

developed.  Breithaupt, Ariel, and Hare (2010), for example, estimated that the 

number of items required for a 40-item adaptive test with two administrations 

per year was, at minimum, 2,000 items.  A much smaller number of items is 

needed for a paper-based test, largely, because these tests are only 

administered in fixed length forms (i.e., test was not adaptive) and with a small 

number of administrations per year (e.g., one administration every 12 months).  

Modern educational tests, by way of contrast, are administered multiple times 

per year using a design where the test provides detailed information on student 

performance.  These features of testing frequency combining with detailed 

feedback within a computer-based context can only be operationalized when 

thousands of test items are available.  In short, recent developments have 
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produced many exciting changes to how we conceptualize and develop 

educational tests.  But these important developments are also predicated on the 

assumption that we have large banks of items at our disposal.  Unfortunately, 

these item banks are not, in fact, currently available and the means by which we 

can create such banks in an efficient and cost-effective manner is unclear.  

Hence, the purpose of my dissertation is to develop and implement a 

methodology for generating test items. 

 Technology can be used to improve our test development practices.  

Research on automated test assembly demonstrates how items can be selected 

from banks to create test forms with precise content specifications and 

psychometric properties (van der Linden, 1998).  Computer-adaptive testing 

demonstrates how the administration of test items can be tailored to the ability 

of each examinee leading to highly reliable test scores using only a small number 

of test items (Weiss, 1982).  Computerized item banking demonstrates how 

items are stored, indexed, and accessed in an efficient manner (Flaugher, 1999).  

Despite these important advances in the use of test items, the process of 

creating new items using technology has remained, largely, unaddressed in the 

educational measurement literature.  Item development is a costly and time-

consuming process—this point cannot be over-emphasized.  Test items are 

currently written by a single content expert and then reviewed, edited, and 

revised by committees of content experts.  Using this content expert approach, 

the cost of developing a single item is estimated to range from $1,500-$2,000 
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USD (Rudner, 2010).  These cost estimates increase even further when the 

success of the item development process is considered.  Approximately 40% of 

expertly created items fail to perform as intended during field testing, meaning 

items must either be re-written entirely or discarded altogether (Haladyna, 

1994).  If we begin to combine the outcomes of these assertions, then we can 

conclude a testing program that requires a bank of 2,000 operational items will 

need to develop 3,334 items to account for the 40% level of attrition expected 

during item development.  Moreover, with development cost ranging from 

$1,500 to $2,000 per item, the program would need to allocate between $5 to 

$6.6 million for creating the item bank alone.  This estimate is staggering 

considering item development is only one of many processes in any testing 

program.  The prohibitive cost on item development poses serious challenges for 

testing programs motivated to implement new designs and administration 

methods that require large pools of items.  In short, the practices we currently 

use to develop test items simply cannot meet the growing demand for these 

items (Bejar et al., 2002). 

Item Generation 

 Automatic item generation (AIG; Irvine & Kyllonen, 2002; Drasgow, 

Luecht, & Bennett, 2006; Embretson & Yang, 2007; Gierl & Haladyna, 2012) is a 

research area dedicated to the production of test items using computer 

technology.  AIG, an idea described by Bormuth (1969) more than 40 years ago, 

is gaining renewed interest because large numbers of high-quality, content-
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specific, test items are needed for the transition to computer-based testing.  

Generally speaking, AIG can be characterized as the process of using models to 

generate items with the aid of computer technology.  The incorporation of 

technology as a staple for AIG was discussed by Millman and Westman (1989), 

when they first proposed item generation strategies contingent on the 

development of technology.  With technology being quite limited in 1989, they 

developed software to assist with item writing, but they also hypothesized that 

as technology improved, many more components in the item writing process 

would be automated.  Then, with noteworthy developments from Embretson 

(1998) on generating items to assess abstract reasoning and Bejar et al. (2002) 

on developing an “on-the fly” item generation system for computer-based 

testing, the progression for increased technology-based item development 

occurred, as Millman and Westman predicted. 

To generate items, AIG requires detailed instructions to guide how 

content should be assembled.  These instructions are captured within an item 

model.  An item model is a prototypical representation of a generated item 

(Bejar, 2002; Gierl & Lai, 2011; LaDuca, Staples, Templeton, & Holzman, 1986), 

and it serves as a guide to how the item should be structured when completed.  

Once the item model is specified, the content within the model must be 

organized and expressed via computer programming.  Item generation is the 

creation of items based on a systematic manipulation of content specified in 

each item model.  By combining item models with item generation, hundreds or 
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thousands of new items can be produced using a single item model (Gierl, Zhou, 

& Alves, 2008).  The modeling and generating process requires the combination 

of content expertise and computer technology, as test development specialists 

identify relevant content and create the models while computers assemble this 

information to produce new items.  Using this process, test developers can 

create models that yield large numbers of high-quality items in a short period of 

time.   

The transition to computer-based testing combined with the introduction 

of new test design methods has prompted significant developments in AIG 

research over the last decade.  Important areas of AIG growth include generating 

items from cognitive models (Embretson & Yang, 2007), item model 

development (Gierl, Zhou, & Alves, 2008), incorporating item generation into 

test designs (Huff, Alves, Pellegrino, & Kaliski, 2012; Luecht, 2012), statistical 

modeling (Embretson, 1999; Geerlings, van der Linden, & Glas, 2011; Glas & van 

der Linden, 2003; Sinharay, Johnson, & Williamson, 2003), and computer 

technology (Gierl et al., 2008; Gütl, Lankmayr, Weinhofer, & Höfler, 2011; 

Higgins, 2007; Higgins, Futagi, & Deane, 2005).  Because of these important 

developments, AIG has been used to create new items in diverse content areas, 

including but not limited to K-12 levels in subjects such as Language Arts, Social 

Studies, Science, Mathematics (Gierl et al., 2008) and advanced placement (AP) 

Biology (Alves, Gierl, & Lai, 2010) as well as psychological domains, including 

spatial (Bejar, 1990), abstract (Embretson, 2010), figural inductive (Arendasy, 



10 
 

 

2005), and quantitative reasoning (Arendasy & Sommer, 2007; Embretson & 

Daniel, 2008; Sinharay & Johnson, 2008), word fluency (Arendasy, Sommer, & 

Mayr, 2012), visual short-term memory (Hornke, 2002), and mental rotation 

(Arendasy & Sommer, 2010).  In licensure and certification testing, items were 

generated in areas such as architecture (Gierl et al, 2008), medicine (Gierl & Lai, 

2012), nursing (Wendt, Cao, Woo & Bergstrom, 2009), and insurance (Masters, 

2010).  Despite these important AIG research developments and applications, 

there is still little information available on a general methodology for creating 

the models needed to generate items.  More specifically, no researcher has yet 

presented an AIG study that articulates a framework for guiding the process of 

item generation.   

The ambiguity surrounding the item generation process may well be a 

result of commercial interests, meaning the corporate culture that surrounds 

testing often leads to the development of proprietary ideas that are not widely 

shared within the research community.  But, I contend, the innovations that 

currently surround the use of item generation will be fruitless unless a more 

generalized methodology is developed for use by both researchers and 

practitioners in the educational testing community.  To address this concern, I 

will develop a framework for guiding item generation and I will illustrate how 

this framework can be used to create new test items for my dissertation 

research.  There has been some recent attempts to incorporate item modeling 

into AIG, as a component of a larger assessment design (Bejar,2010).  For 



11 
 

 

instance, Alves, Gierl, and Lai (2010) generated items in the domain of Biology 

under the evidence-centered design framework (ECD; Mislevy et al., 2003).  Lai, 

Gierl, and Alves (2010) also demonstrated how item generation can be 

embedded within the assessment engineering framework (AE; Luecht, 2007).  

While these studies do illustrate how items can be generated from assessment 

design systems, the specific process of item model development still remains ill-

defined.  For example, there is no methodology for identifying content elements 

within the item models or for manipulating this content to produce meaningful 

items.  As researchers in cognitive science recognize the benefits of item 

modeling and requested more guidelines for the development and use of these 

models in educational measurement (Leighton & Gokiert, 2005; Bejar, 2010), no 

study has yet documented a process for item model development.   

Demand for Items in Medical Education 

 No other fields of study could benefit more from item generation than 

medical education.  Canadians are global leaders in medical education for 

providing innovative and leading edge training to medical professionals (AFMC, 

2009).  To train, assess, and certify the competencies of future medical 

professionals, medical education requires testing in many areas of training, 

administered in a variety of formats and media, with each test associated with a 

different type of student outcome.  As a result, many tests are created to assess 

student competencies across different levels of outcome, with multiple-choice 

items as the most common item type.  This item type can be used to evaluate 
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examinees’ knowledge and skills across diverse content areas in an efficient and 

economical manner.  However, multiple-choice items are challenging to develop 

because they require content specialists to combine their interpretations of the 

professional guidelines and standards of practice for item development with 

their experiences, expertise, and judgments to structure the knowledge, skills, 

and content required to solve medical problems in a specific domain.   

Medical educators must also attend to, and, eventually respond to the 

dramatic changes that are now occurring in the fields of educational and 

licensure testing.  All aspects of testing—from the design of assessments to the 

scoring of items, from the administration procedures to test score reporting—

are undergoing profound changes influenced by developments in assessment-

related disciplines such as cognitive science, statistics, medical education, 

educational psychology, operations research, educational technology, and 

computing science.  These changes require tremendous test development efforts 

that must result in an even greater number of new test items being developed.  

Coupled with the reality that content specialists for medical education are 

medical experts, a very constrained group in the population with many other 

professional tasks and responsibilities, current item writing approaches (see 

Chapter 4 for an example) are unsustainable for the current and future testing 

needs in medical education.   
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Purpose of Study 

I will develop, demonstrate, and document a systematic process for 

generating test items using an item modeling methodology.  Hence, the purpose 

of my dissertation is to introduce a framework to guide item generation and to 

present a proof-of-concept application demonstrating how items can be 

generated using this framework.  My unique contribution to the literature is 

threefold.  First, I will present a modeling approach for extracting knowledge 

from content experts that can be used for item generation.  Second, I will 

present an item generation technique that can be used to minimize text 

similarity between generated items from the same model thereby ensuring the 

new items are diverse in content.  Third, I will present a method for evaluating 

text similarity for the generated items.  These methods and procedures will be 

demonstrated in the context of medical education, more specifically in the 

content area of surgery.    

In short, educational test items are in severe demand.  The transition 

from paper to computer-based testing is dependent on the adequate supply (i.e., 

large numbers) of test items.  Research on innovative test designs also relies on 

the availability of test items.  AIG serves as one possible method to overcome 

the costly and time-consuming process that currently exists for creating test 

items.  AIG has the potential to minimize item development costs, eliminate item 

exposure concerns, promote effective test development, enable sophisticated 

and informative test designs to be implemented in operational testing programs, 
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and, most importantly, provide test items in a volume, quality, and manner that 

test developers now demand. 

Organization of the Dissertation 

My dissertation is organized into six chapters.  The current chapter, 

Chapter 1, is an introduction to my research area as well as an overview and 

justification for this study.  Chapter 2 is a literature review of past attempts and 

current perspectives on item generation.  Chapter 3 is a description of my 

proposed framework for modeling and generating test items.  This chapter 

includes a description of the item generation process required to transfer 

content expert knowledge into a modeling framework for item generation.  

Chapter 4 contains the application of the generative framework, where I 

demonstrate how the framework can be applied to generate test items in the 

medical content area of surgery.  In Chapter 5, I present a method to evaluate 

the quality of an item model by measuring item similarity after generation and 

providing a demonstration using items generated from the previous chapter.  

Chapter 6 contains a summary of this study, a description of the limitations of 

the study, and future directions on how the item generation framework can be 

realized in educational assessment.   

  



15 
 

 

Chapter II: Literature Review 

In this chapter, I present a summary of the item generation literature in 

four sections.  First, I present a short history of the ideas and developments that 

led to what is now commonly referred to as automatic item generation (AIG) in 

the educational measurement literature.  Second, I review developments 

associated with how information must be organized to generate test items.  

More specifically, I focus on the current approaches to item modeling.  Third, I 

review current developments in the technology-based processes required to 

actually generate the items.  Fourth, I present developments required after 

items have been generated, meaning the use of statistical methods to estimate 

the psychometric characteristics of the generated items.  After this four part 

review of the literature, I identify the limitations of our current AIG practices.  

These limitations will be addressed in my dissertation research.   

A Concise History of AIG 

The demand for large numbers of new test items began when developers 

(e.g., assessment practitioners, content specialists; item writers) of traditional 

paper-based tests began to address test security and test fairness issues (Roid & 

Haladyna, 1982).  Security concerns originally emerged when tests were 

administered on a single form.  The use of one form meant the content could 

easily become exposed because all examinees viewed the same set of items.  To 

address this potential security problem, parallel test forms were developed.  

Parallel forms are multiple tests containing different items that measure the 
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same content and construct but are designed to be administered concurrently to 

minimize item exposure.  Because parallel forms are used interchangeably, items 

on each form must be equivalent in their content and statistical (e.g., same item 

difficulty level) specifications.  Parallel form development requires large numbers 

of items with comparable content and statistical characteristics.  The demand for 

items to assemble parallel test form led to a predecessor of AIG called systematic 

item writing.   

Early Developments in Writing Educational Test Items 

In the process of writing items for parallel forms construction, an 

important limitation of the item development task itself was revealed: 

subjectivity.  When an item is written, it represents an expression of the content 

expert’s own concept of the knowledge, skills, and competencies within a 

particular content area.  This expression, unique to each expert, introduces 

subjectivity into the item development process and renders each item unique.  

Hence, item writing quickly became conceptualized as an “art” which relies on 

the knowledge, experience, and insight of the particular item author.  Parallel 

test forms construction, however, requires that items on different forms have 

comparable content and psychometric characteristics.  This need to produce fair 

tests using a subjective item development process prompted researchers to 

introduce item writing guidelines in an attempt to control for the potentially 

diverse outcomes that could be produced when item writers were asked to 

perform an identical task (Ebel,1951).  Guidelines provide a summary of best 
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practices, common mistakes, and general expectations of item writing to ensure 

content experts have a shared understanding of the task at-hand (Haladyna, 

1994; Case & Swanson, 1999).  Today, item writing guidelines are widely adopted 

in testing programs and popular among item writers (Haladyna, 2002).  Despite 

the use of these guidelines, the issue of subjectivity remains an inherent feature 

in the item writing process.   

Another way to minimize item writing subjectivity is systematize the 

process.  Systematic item writing was first proposed by Guttman in 1957 when 

he suggested that multiple test items can be created from the same facet of 

knowledge.  Guttman’s approach relied on facet theory, which is a systematic 

approach for organizing related knowledge into a common component known as 

a “facet” (Guttman, 1957).  Guttman’s approach led to the creation of new items 

using a method of knowledge substitution.  For example, if different types of 

acid are conceptualized under a common facet of knowledge, then multiple 

items can be created when different acid types (e.g., hydrochloric, bromic, 

sulfuric) are substituted into the same item structure.  Guttman’s approach 

highlighted how subjectivity in item writing can be minimized by restricting the 

item writing process so that a more standardized and, hence, objective test item 

would be created.   

Building on the logic of facet theory, Bormuth (1970) proposed a rule-

based approach to item writing.  Again, with the goal of minimizing subjectivity 
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and maximizing objectivity during the item writing process, Bormuth used prose 

transformations and algorithmic expressions to create items from prose that 

contained the knowledge to be assessed (see Figure 1).  With this approach, 

verbs and nouns are replaced to produce semantically diverse items.  Although 

Bormuth’s approach was recognized as a good solution for writing text-based 

items by some of his colleagues (e.g., Follman, 1971), the logic behind 

transformational grammar was little known to the test development community 

at the time.  Bormuth’s approach was also limited to text-based items.  Hence, 

with a lack of understanding and no broad utility in educational testing, at least, 

at the time few researchers or practitioners adopted or advocated for Bormuth’s 

approach to item development (Haladyna, 1995).   
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Prose: 

1. Chormium oxide is used as a polishing agent for stainless steel. 

2. Tin oxide is a pure white powder used extensively as a polishing 

agent in dentistry. 

Structure: 

[Key Noun] (Descriptor) [Application] [Context of Application] 

Item Structure: 

What is used as [Application] for/in [Context] ? 

Items: 

1. What is used as a polishing agent for stainless steel? 

2. What is used as a polishing agent in dentistry? 

 

Figure 1.  An example of Bormuth’s (1970) approach to item writing using 

transformational grammar, adapted from Roid and Haladyna (1982). 

The first simple framework that produced a systematic and generalized 

method to item writing was called item shell development (Roid & Haladyna, 

1982; Millman & Westman, 1989).  A shell contains an outline of the item’s 

syntactic structure.  This structure is then replicated to produce new items by 

manually substituting content into the shell to produce similar items.  Unlike 

Bormuth’s approach, item shells were concrete, more generalizable (e.g., could 

be used with text and numeric content), and hence more understandable to 

practitioners (Haladyna, 1995).  Test developers, for the most part, embraced 
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the use of item shells because it was clear how the structure could be 

manipulated to create similar items (see Figure 2).  Following Guttman’s (1957) 

logic for item writing, an item shell requires the substitution of content into 

variable slots so new items could be created.  Although shells yield items that 

look very similar to one another using a labour-intensive and manual 

substitution process, it serves as the first systematic approach to item 

development that can be considered a success among content specialists 

(Haladyna, 1995) to the task of generating test items.   

 

Parent Item: 

What is the distinguishing characteristic of hydrogen? 

Item Shell: 

What is the distinguishing characteristic of (gases studied in this 

unit)? 

Items: 

 What is the distinguishing characteristic of Nitrogen? 

What is the distinguishing characteristic of Oxygen? 

What is the distinguishing characteristic of Hydrogen? 

Figure 2.  An example of an item shell adapted from Haladyna (1994). 

Up to this point in the historical developments, item generation methods 

are focused on creating items on a one-by-one manner, where the mechanism of 
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generation automates the process of creating individual items.  With the 

introduction of item modeling (LaDuca, Staple,s Templton, & Holzman, 1986; 

Bejar et al., 2002), the unit of analysis change from the individual items during 

generation, to groups or sets of generated items.  Hence, item modeling serves 

as the first modern approach to automatic item generation.  Current item 

generation efforts can be categorized into three different areas relative to the 

temporal process used for item generation.  Before item generation, the focus is 

on item model development.  During item generation, the focus is on 

technology-based solutions for the actual production and assembly of items.  

After item generation, the focus is on statistically modeling the psychometric 

characteristics of the generated items so these items can be banked and used for 

test assembly (e.g., automated test assembly) or test administration (e.g., 

computer adaptive testing).  In the next three sections, I provide an overview of 

each aspect of item generation and describe the approaches currently available 

in the research literature.   

Before Item Generation: Item Modeling 

The distinctions between an item shell and model are subtle but 

important.  The purpose of both the shell and model is identical; that is, they are 

both structures used to create new items.  Shells, however, differ from models in 

how they are conceptualized.  In the past, existing test items were modified to 

form item shells (Haladyna, 1995).  Specifically, shells were created by manually 

substituting different but related pieces of information into a variable slot to 
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create items, one-at-a-time.  This approach ensures that the generated items 

have comparable statistical properties because the content used for the 

substitution process can be carefully selected.  This approach to item generation 

is also called cloning (Glas, 2006).  Conversely, item modeling is an inductive 

approach for generating items where structures of knowledge can guide the 

generation process.   

Item Model 

An item model is a knowledge structure used to generate test items.  It 

differs from an item shell by having a modular structure composed of elements 

and components.  First, there are parts of item models that may vary from one 

generated item to another.  This variable part is known as an element.  Second, 

different parts of an item model can be used to present different information 

within an item.  These sections, called components, also vary in how they are 

defined.  These key parts of the item model, elements and components, are 

described in more detail. 

Elements 

 To operationalize an item model, it must contain at least one element.  

An element can take on many different forms.  For example, an element can be a 

part of a sentence, a whole sentence, a key term, or a numerical value.  Most 

importantly, elements are parts of an item model that include variable content.  

This description of an element was first presented by Bejar et al. (2002).  In 
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Figure 3, element S1 describes different occupations.  In this case, the element is 

a string or non-numeric value.  Elements may also be numeric or integer values.  

This differentiation was needed because strings and integers are often treated 

differently within an item model.  String elements, for example, are usually 

denoted as a whole unit of information (e.g., text) whereas integers require 

calculations and ranges, often for quantitative manipulations.  The variable S1 in 

Figure 3 is a string variable containing text content (i.e., occupations).  We also 

define how S1 should vary between each instance of a generated item when we 

create the item model.  With numerical elements such as I1, I2 and I3, they vary 

within a specified range and this step range is manipulated systematically during 

item generation.  In short, this item model highlights the variations between 

integer and string elements.   
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Item Model Components 

Stem   

Gina works as a S1.  She works I1 hours per week and makes $I2 per hour.  She 

is paid weekly and I3% of her weekly wage is deducted for taxes.  If Gina saves 

1/4 of her paycheck every week, then how much money will she have saved at 

the end of 4 weeks? 

Elements  

S1 Range: “dishwasher”, “cashier”, “landscaper”, “receptionist”, “telemarketer” 

I1 Value Range: 25 – 40 by 0.5 

I2 Value Range: 9 – 12 by 0.25 

I3 Value Range: 5 – 9 by 1 

Options  

A.  I3/100*I2*I1 

B.  (I3/100) *I2*I1 

C.  (1-(I3/100))*I2*I1*4 

D.  (I3/100)*I2*I1*4 

Key 
C 

 

Figure 3.  Example of an item model in mathematics. 

Radicals 

Bejar (2002) claimed item generation can yield two types of items: 

variants or isomorphs.  Models that generate variants produce items that are 

expected to be psychometrically different from one another (e.g., items that 
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have different difficulty levels).  Since generated items only differ by their varied 

elements defined within the item model, elements that affect the psychometric 

properties are known as radicals.  That is, radicals directly affect the 

psychometric characteristics of items.  To ensure generated items are 

psychometrically comparable, LaDuca et al. (1986) claimed that item models 

should not contain radical elements to ensure the psychometric quality of the 

generated items are comparable (i.e., generated items are clones).  But with a 

wealth of psychometric information, radicals can now be used to generate items 

across a range of difficulty levels (Bejar, 2002).  An example of a radical can be 

found in Figure 3, where element I3 varies from 15% to 25%.  If information on 

the examinee’s performance level reveals that a particular skill, such as solving 

item with manipulations of 20% is easier than solving item with manipulations of 

odd percentages, then I3 would be a radical element.   

Incidentals 

 Incidentals are elements that perform in the opposite manner to radicals, 

meaning the variation of incidental elements should yield psychometrically 

similar or even identical generated items.  If an item model only contains 

incidentals, then the generated items from that model are known as isomorphs 

because the generated items are expected to have similar psychometric 

characteristics  (Gierl, Zhou, & Alves, 2008).  An example of an incidental 

element is shown in S1 of Figure 3, where variations of the S1 element should 

not change the psychometric properties of the generated items, as each 
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variation would only change the context but not the complexity, hence, difficulty 

level, of the item.   

To further Bejar’s (2002) claims, Embretson (2002) stated that two 

additional factors would influence how elements affect the psychometric 

characteristics of the generated items: the number elements used and 

differences between variations of each element.  For example, a smaller number 

of elements in a model should yield more similar items.  Conversely, if a large 

number of elements are manipulated, then the generated items should be more 

different from one another.  Generated items that are more diverse from one 

another are also expected to have more variable psychometric characteristics.  

Embretson also argued that element variation may produce different levels of 

cognitive complexity which, again, may affect the psychometric characteristics of 

the generated items.  The issue of how elements are manipulated and the effect 

of these manipulations on the psychometric characteristics of the generated 

items will be discussed further in the statistical calibration section of my 

literature review.   

Components 

 In addition to elements, item models are organized into different 

components for expressing information in a generated item.  The components 

used in an item model depend on the item type.  The most common item format 
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we currently use, selected response or multiple-choice items, typically contain 

two components: stem and options.   

Stem 

 The stem is a component of the item model where the question or 

prompt is posed to the examinee.  The stem contains information that allows the 

examinee to understand the prompt.  Gierl, Zhou, and Alves (2008) claimed the 

stem could be manipulated in four different ways to influence item generation.  

First, elements in a stem may be independent from one another, meaning 

variation of any elements in the item stem is not related to the variation of 

another element.  Second, elements may be deployed dependently, meaning 

variations in one element affects variation of other elements.  Third, the 

elements in the stem may be varied both dependently and independently in a 

mixed format.  This type of stem also implies that the model contains at least 

three elements.  Fourth, a stem is fixed, meaning no elements are used in the 

stem.  This implies the same stem would be used for all items generated from 

the model.   

Options 

 Options are a set of alternative responses examinees must select when 

answering the test item.  Along with the correct response known as the key, a 

set of plausible responses are presented to serve as distracters or incorrect 

options.  Since the generated item stem may change the keyed response for the 
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item, options in item generation often will need to be adjusted accordingly.  For 

example, the options in Figure 3 are defined such that the key and distracters are 

calculated based on each generated item stem.  Gierl et al. (2008) described 

three types of options: randomly assigned, constrained, and constant.  With 

randomly assigned options, distracters are chosen at random from a list of 

options.  Such options are ideal for generating items that do not require 

calculation.  Constrained options are limited by the elements of a generated 

item.  These options are often used when the solution for the generated item 

requires some type of calculation.  Constant options are fixed options presented 

in the same way for all generated items.   

 In sum, an item model is composed of different components, and each 

component contains a different number of elements.  To organize the possible 

variations in item models, Gierl et al. (2008) suggested a taxonomy of item 

model types based on an interaction of different stem and option characteristics.  

Figure 4 provides an illustration of the taxonomy.  The shaded boxes represent 

infeasible combinations because they only generate one item.   
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Options 

Stem 

Independent Dependent Mixed Fixed 

Randomly 

Selected 
    

Constrained     

Fixed     

 

Figure 4.  Illustration of the Item Model Taxonomy described in Gierl et al. 

(2008). 

Current Approaches to Item Model Development 

Two theoretical approaches are used to guide item model development.  

These approaches are called strong and weak theory (Bejar, 2002; Drasgow, 

Luecht, & Bennett, 2006).  These theories help conceptualize how content is 

identified and combined for the purpose of generating test items.   

Strong Theory 

Ideally, items are generated with precision such that they are designed 

to measure specific sets of skills and knowledge.  To do so, item generation 

requires a comprehensive knowledge structure that can help guide how the 

content within elements are varied and combined.  Therefore, in addition to 
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producing large numbers of items, it is also desirable to have an item generation 

process that can ensure the content in the items represent the knowledge 

structure and processing skills used by examinees to solve test items.  Strong 

theory refers to this deterministic approach to generating test items. 

To enable strong theory AIG, cognitive models offer an organization of 

the knowledge and skills that can be used to order complexity, typically 

operationalized as the difficulty level of the generated items (Drasgow et al., 

2006).  Therefore, strong theory refers to the use of any cognitive model or 

knowledge structure that provides an estimate of the psychometric property for 

each of the manipulated components in a set of generated items.  Drasgow et 

al. claimed that by modeling the interaction between the examinee and the 

content, it is possible to control and therefore predict the psychometric 

characteristics of the generated items.  This approach, when successful, has the 

added benefit of yielding a strong inferential link between the examinees’ test 

item performance in a specific content area with the interpretation of the 

examinees’ test score because the model features that elicit the item 

characteristics are predictive of test performance (Bejar, 2012). 

Cognitive models are beginning to play an important role in educational 

measurement (Leighton & Gierl, 2010).  Applications of strong theory AIG 

generated test items in the psychological testing domain (Embretson, 2002), 

where robust cognitive models exist.  For example, strong theory AIG has been 

used with spatial and analogical reasoning tasks to generate items (Bejar, 1990; 
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Janssen, 2010).  An example of strong theory AIG used in the domain of K-12 

testing was described by Gierl and Lai (2011), where items were generated in the 

domain of high school algebra.  Figure 5 illustrates how strong theory can be 

used to develop item models to generate items that measure factoring multiple 

variables in algebraic expressions.   

 

A3

A2

A1

A1: 
Arithmetic 

operations

Item 1: If 6(m+n)-3=15, then m+n=?
A. 2
B. 3
C. 4
D. 5
E. 6

Item 2: If (x+2)/(m-1)=0 and m≠1, what is the value of 
x?

A. 2
B. -1
C. 0
D. 1
E. -2

Item 3: If 4a+4b = 3c-3d, then (2a+2b)/(5c-5d)=?
A. 2/5
B. 4/3
C. 3/4
D. 8/15
E. 3/10

A1: 
Arithmetic 

operations

A1: 
Arithmetic 

operations

A2: 
Properties 

of Factors

A2: 
Properties 

of Factors

A3: 
Application 

of Factoring

 

Cognitive Model Hierarchy Level Sample Test Items 

Figure 5.  Diagram of a general description of developing item models with 

strong theory from Gierl & Lai (2011). 

As more test developers begin to realize the importance of cognitive 

modeling in test development, educational testing is beginning to apply strong 

theory to generate items in domains where few established models currently 

exist.  For example, to demonstrate the use of a strong theory approach for 

generating items in medical education, Gierl, Lai, and Turner (2012) introduced 

the concept of a cognitive modeling for AIG in the area of medical licensure 
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testing.  Despite a small number of demonstrations, strong theory has not been 

widely adopted in the test development community.  The problem of using 

strong theory AIG rests, in part, from the fact that we lack well-defined 

structures of knowledge for creating test items in some educational domains 

(Leighton & Gierl, 2010).  Also, the fact that we currently lack a methodology for 

strong theory AIG also helps account for its limited use.  In sum, strong theory 

item modeling is theoretically sound, but the required knowledge and resources 

are not yet available to researchers and practitioners to permit this approach to 

become widely applicable.   

Weak Theory 

 In lieu of a well-defined cognitive model or knowledge structure for 

generating items, guidelines from best practices are typically used to direct item 

generation.  These guidelines, developed largely from the experience of test 

developers, form the basis of a weak theory approach to AIG.  Recall that radicals 

are elements in an item model that affect the psychometric characteristics of the 

generated items.  In weak theory, radicals are developed at the discretion of test 

developers who identify features from existing items that are expected to affect 

difficulty.  An example of how weak theory AIG can be used for item model 

development is presented in Figure 6.  In this example, items are developed to 

probe Grade 3 examinees’ understanding in skip counting.  Integer I1 in Figure 6 

can be any number.  If this number was with strong theory, then there must be a 

cognitive model or knowledge structure to specify how counting backwards from 
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a different range of numbers require a different set of skills thereby altering the 

difficulty of the item.  In the absence of such explanatory knowledge, test 

developer and content specialists anticipate how students counting from 

multiples of 5s will solve this item.  Therefore, I1 and I2 are specified as integer 

values that are expected to yield items with similar psychometric properties.  

This expectation is not as theoretically defensible as it would be if an articulate 

strong theory approach was used.  Rather, this expectation about the 

psychometric characteristics of the generated items is based on the experience 

and judgement of the content specialists.   

 

Figure 6.  Illustration of developing item models using weak theory. 

Parent Item 

If the pattern continues, then the next three 
numbers should be : 

700 695 690 685 _____ _____ _____ 

Element 

Guidelines 

Starting element 

should be a large 3 
digit number 

Skip counting should 
occur in a multple of 

5s 

Item Model 

If the pattern continues, then 
the next three numbers should 
be I1   I1-I2 I1-(2*I2) I1-(3*I2) 

_____  _____  _____ 

 

I1: 700 to 800 by 5  

I2: 5 to 25 by 5 

Sample of 
Generated 

Items 

If the pattern 
continues, then the 
next three numbers 

should be : 
715 700 685 670 

_____ _____ _____ 

If the pattern 
continues, then the 
next three numbers 

should be : 
720 705 690 675 

_____ _____ _____ 

If the pattern 
continues, then the 
next three numbers 

should be : 
765 745 725 705 

_____ _____ _____ 
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An item model developed from weak theory is comparable to the item 

shell approach.  However, one key difference resides in how the elements are 

varied.  With an item shell, elements are created to address the purposes of test, 

meaning that item writers can insert any value in the element if it produces 

items that are suitable for the current testing situation.  Alternatively, with an 

item model, the developer is required to provide a range of all possible 

alternatives that are expected to yield generated items with similar 

psychometric characteristics.   

 Admittedly, it is less desirable for items to be generated from weak 

theory, as there is less evidence to justify the manipulation of elements for item 

generation.  There is also less evidence to draw on for predicting the 

psychometric characteristics of the generated items.  But, weak theory AIG is 

also a practical solution for item generation given that articulate cognitive 

models and knowledge structures typically do not exist to account for problem 

solving in many content domains.  The practicality of weak theory item 

generation was demonstrated in Lai, Alves, and Gierl (2009), where a panel of 

eight item writers were trained to create their own item models.  These models, 

in turn, were used to generate 64,280 items.  Items were also generated for a 

wide range of grade levels and across all curriculum-specific content areas in 

science, mathematics, and language arts.  This outcome is in contrast to 

generating items from strong theory AIG, where the generated items have a 

much narrower scope in content and skills.  For example, Lai, Gierl, and Alves 
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(2010) generated 10,278 items in Mathematics using strong theory, but the 

generated items were only designed to probe two areas in mathematics (applied 

word problems and exponential functions) under one topic (understanding 

algebraic solution).   

Summary of Item Modeling Approaches 

In this section, I presented aspects of item modeling, the current 

approach to organizing information prior to item generation.  I described how 

item models differ from previous approaches to item generation and I 

operationally defined the different components in an item model.  Then, I 

presented the two frameworks that can guide how item models are created.  

Baranowski (2006) likened the development of items as an “art” form, which is a 

sentiment shared by many researchers and practitioners in educational testing.  

In contrast, there is now growing support that suggests item writing should be a 

science (Bormuth, 1970; Hornke, 2002; Haladyna & Gierl, 2012).  The two 

approaches to item generation, strong and weak theory, parallels this ongoing 

struggle to determine whether item generation, an item writing approach 

designed to produce a larger pool of items, is an art or science.  In the next 

section, I review the technological aspects of item generation and describe how 

items can be generated from the models described in the current section. 
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During Item Generation: Technology and Content Assembly 

Producing multiple items from a shell did not require a generative 

mechanism because test developers simply substituted different values into the 

task using a manual process to produce new items.  But the demand for 

concurrent item generation led to technological innovations where content is 

combined within an item model using an automated process.  In this section, I 

first present an overview on the concepts that guide the technology necessary 

for item generation.  Then, I provide a review of the item generation software 

that is currently available.  Finally, I highlight the challenges that must be 

addressed to improve on the current technology used for generating test items.   

Key Concepts in Item Generation 

 The development of technological solutions to address item generation 

problems can be traced to fields outside of educational measurement, where 

each attempted solution was created, in part, to meet the challenges in their 

own respective fields.  In general, existing item generation solutions can be 

categorized into two distinctive types: artificial intelligence-based (AI-AIG) and 

template-based (T-AIG) AIG.  AI-AIG focuses on automating the entire traditional 

approach to item development.  Technology is used to replace item writers in 

order to gather, summarize, and generate test items from electronic sources of 

information.  The automated processes are designed to computationally mimic 

the tasks performed by an item writer.  Alternatively, T-AIG focuses on 

developing a hybrid approach to item generation, where content experts provide 
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information for the item models and technology is used to generate items from 

each model.  Both approaches to item generation are summarized next.   

Artificial Intelligence-Based Automatic Item Generation (AI-AIG) 

 In computer science, it is anticipated, by some, that item generation tasks 

will dominate research in the field of natural language processing for the next 

decade (e.g., Graesser, Rus, Cai, & Hu, 2012).  To enable this endeavor, computer 

scientists use recent advances in the field of natural language generation, 

information processing, and artificial intelligence (van den Bosch & Bouma, 

2011).  Advances in test item generation from computer science do not require 

the use of a template, as templates are not deemed to be a true approach for 

natural language generation (Deemter, Krahmer, & Theune, 2005).  One 

advantage of generating items without a template or item model is flexibility in 

item generation.  As a result, computer scientists have offered a diverse set of 

solutions in the past decade to the challenge of item generation.   

A review on the state-of-the-art in item generation techniques was 

recently presented in Graesser et al. (2012).  A common theme in all AI-AIG 

approaches is that they require similar efforts to question answering.  For 

example, when a computer is tasked with answering a question, AI programming 

is used to evaluate the content within the question, where both context and 

content must be assessed, and the list of likely responses is determined.  The list 

of likely responses are then reworded and analyzed based on the original 



38 
 

 

content and context to ensure the computer will respond in a coherent manner 

(Bosma, Marsi, Krahmer & Theune, 2011).  In AI-AIG, different sources of 

information are first processed using AI programming to search for likely content 

that can be used to generate a test item.  Related content and context are 

determined and used, along with human created sample questions, to formulate 

an item that is deemed to be appropriate.   

An example of how items can be generated directly from a corpus of text 

was demonstrated by Karamanis, Ha, and Mitkov (2006).  They presented a five-

step generation process to extract test items directly from textbooks.  First, a 

relevant text corpus is parsed into different units of analysis (e.g., sentences, 

segments of words).  Second, key terms appropriate to the domain are identified 

by content experts.  These key terms are highlighted throughout the corpus.  

Third, clauses within the corpus are categorized into different semantic 

knowledge types for use with potential questions.  Fourth, clauses of different 

types are transformed into item stems based on their semantic knowledge type.  

Fifth, distractors are selected from the correct answer based on appropriate 

levels of semantic distances.  Liu (2009), more recently, expanded on this 

approach by structuring the process as a modular framework of AI-AIG that can 

be used to generate items from a variety of electronic resources.   

Although AI-AIG approaches are technologically impressive, research 

often focuses on the techniques for how items can be generated, and rarely 
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describe the generated items as educational assessment tasks.  For instance, 

Karamanis et al. (2006) generated 279 items from a corpus of 32,043 words in 

the medical education domain.  But, after a review of the generated items, 

content experts determined that only 19% of the items were deemed useful for 

testing.  Karamanis et al. demonstrated that natural language processing (NLP) 

methods have the ability to synthesize test items from a passage of text, but it is 

also evident that a review process is needed to ensure the generated items are 

meaningful for testing.  To minimize item reviews and to increase the number of 

usable items generated from this process, Foster (2010) suggested the use of 

statistical NLP methods to measure semantic and syntactic similarities between 

two text passages to refine the corpus and reduce the number of unusable 

items.  Foster’s approach is comparable to the method used by Lai and Becker 

(2010) to identify items that measure similar content and therefore should not 

be administered together (i.e., enemy items) using statistical NLP methods.   

 Because current research on AI-AIG is focused on the generation process 

for commercialization, most software solutions are proprietary, meaning no 

comprehensive documentation or descriptions are available.  Two proprietary 

examples are presented to illustrate some aspects of an AI-AIG solution.  Gutl, 

Lankmayr, Weinhofer, and Hofler(2011) developed software called the Enhance 

Automatic Question Creator (EAQC) to generate test items under the AI-AIG 

framework.  Following other AI-AIG approaches, they outlined a prototype 

software that computes the AIG task in three steps.  First, information from 
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different sources (e.g., Internet, written documents, etc.) are processed into 

formats that can be used for item generation.  In this first section, the document 

is broken into segments of texts in different lengths where counts of 

occurrences, length of sentences, and relation of words within segments are 

calculated.  Second, different segments of the document are organized into 

concepts.  The concepts are separated using statistical analyses of the structural 

and semantic information of the text calculated in the first section.  Information 

is also calculated for weighting based on different sources (e.g., relation to other 

sections of text, relevance of words in each section of the text).  Third, using this 

information from each concept, items are generated based on the 

appropriateness to the item format.  Gutl et al. (2011) presented a pilot study 

using one essay as the information source to produce 16 generated test items.  

Although there were errors in the generated items (e.g., one item was “What do 

you know about Natural Language processing in the context of Natural language 

processing?”), the mechanism demonstrated the potential of the AI-AIG 

approach for educational testing.   

 The second software example for AI-AIG was developed at ETS.  It is called 

the Item Distiller (Higgins, 2007).  Rather than automating the entire process of 

item generation, the Item Distiller uses AI to gather and search information 

through a corpus of information to identify patterns for constructing item 

models.  To enable this process, users enter a search criterion such as a specific 

sentence pattern.  Then, the Item Distiller searches through different patterns of 
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information to formulate an item model that can be used to generate new items.  

This software demonstrates how AI-AIG can be implemented systematically 

without requiring the content specialists to initially create the item models.   

 To summarize, exciting and innovative research is now taking place on AI-

AIG.  Clearly, some hurdles remain before AI-AIG can be realized.  Excluding the 

obvious challenges of computational complexity and high development costs, AI-

generated items can be produced.  However, these items still require a 

traditional review process from content experts to determine their suitability for 

assessment.  With item requirements ranging in thousands or tens of thousands, 

the current approaches to AI-AIG would not reduce test development workload, 

but merely shift it from creating to reviewing items.   

Template-Based Automatic Item Generation 

In natural language processing, template-based solutions have long been 

used as an alternative approach for language generation.  Template-based 

technology requires a human to structure prototypes that are used, in turn, to 

propagate the language generation processes (Reiter & Dale, 1997).  Deemter, 

Krahmer, and Theune (2005) argued that, depending on the specificity of the 

required task, template-based approaches can be just as effectively as true AI 

approaches.  With a specific task such as generating test items, template-based 

automatic item generation (T-AIG) is an approach that has been described in 

educational measurement (Deane and Sheehan, 2003; Drasgow, Luecht & 
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Bennett, 2006).  Compared with AI-AIG, T-AIG is more constrained, where 

templates in the form of item models, are created to fulfill a specific set of 

requirements from the content domain.  Different mechanisms are then used to 

generate items.  For instance, Hornke (2002) summarized how items can be 

generated for mental rotation and pattern matrices.  Embretson (2002, 2010) 

demonstrated how items can be generated to probe object assembly and 

abstract reasoning skills.  Arendasy & Sommer (2010) generated items from 

continuous 3D images to assess spatial-rotation skills.  Bejar et al. (2002) 

developed a template-based AIG method for on-the fly testing in mathematics.   

T-AIG relies on the use of models for generating items.  A well-defined item 

model should minimize the psychometric variations and maximize the semantic 

differences between tasks generated from a single model (Deane & Sheehan, 

2003).  The use of item modeling also permits technologically simple and 

efficient approach to item generation.  Next, I describe a sample of T-AIG 

software programs that are currently available to generate items.   

 Compared to AI-AIG, more software have been developed to generate 

items using templates.  Although no program is commercially available yet, more 

choices are available for use compared with AI-AIG.  With a well-defined item 

model, generation can be a relatively straight-forward process (Lai, Alves, Zhou, 

& Gierl, 2009).  Generating items from a template-based approach is an exercise 
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in iteration, meaning computer programming can be used to instantiate every 

unique combination of elements in an item model, subject to constraints.   

Following this logic, ETS developed software to complete the item 

generation task.  Singley and Bennett (2002) used the Math Test Creation 

Assistant (MTCA) to generate items involving linear systems of equations.  By 

systematically manipulating numerical units and varying a range of variables 

(e.g., distance, temperature), the MTCA combined different elements to 

generate items in mathematics.  This template-based approach was later 

generalized to produce items in different languages using a program created by 

Higgins, Futagi, and Deane (2005) called ModelCreator.  ModelCreator requires a 

database of translated components used for item assembly, where templates for 

different languages are assembled using varying sentence structures.  Gierl et al. 

(2008) presented another T-AIG solution called Item Generator or IGOR, for 

short, to generate multiple-choice and constructed-response test items.  The 

software was developed using the JAVA programming language so it can be 

executed under different computing platforms.  All input and output files from 

IGOR are implemented in Extended Mark-up Language (XML), meaning data for 

each item model or generated items are stored in a hierarchically tagged text file 

(see Figure 7).  The use of this file type permits both the models and the 

generated items to be seamlessly transferred to different software (e.g., 

databases, word processors, item banking or spreadsheet applications).  To 

generate items using IGOR, an item model must be expressed in this 
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programmable format.  Figure 8 is an illustration of the graphical user interface 

(GUI) that can be used to program item models into IGOR.   

 

<Template> 

 <Stem> 

 <Value>I have [[I1]] tens, [[I2]] hundreds, [[I3]] ones.  What number am I?</Value> 

 </Stem> 

 

 <Variable name="I1" type="Number"> 

 <Range max="17.0" min="11.0" step="2.0"/></Variable> 

 <Variable name="I2" type="Number"> 

 <Range max="5.0" min="2.0" step="1.0"/> </Variable> 

 <Variable name="I3" type="Number"> 

 <Range max="29.0" min="15.0" step="2.0"/> </Variable> 

 

 <Option group="Key" type="Equation"> 

 <Value>([[I1]]*10)+([[I2]]*100)+[[I3]]</Value></Option> 

 <Option group="Distracter" type="Equation"> 

 <Value>([[I2]]*100)+([[I1]]+[[I3]])</Value></Option> 

 <Option group="Distracter" type="Equation"> 

 <Value>([[I1]]-10)+[[I3]]+(([[I2]]+1)*100)</Value></Option> 

 <Option group="Distracter" type="Equation"> 

 <Value>([[I2]]*100)+[[I1]]</Value></Option> 

</Template> 

Figure 7.  An item model formatted in XML. 
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Figure 8.  Graphical User Interface of IGOR. 

 The use of item models in T-AIG permits a simple generation process 

using an iterative approach.  The generation process can be applied to produce 

diverse items.  As the generation process iterates through all desirable 

combinations of elements in an item model, control over the quality of the 

generated items is dependent on the item model.  As a result, item quality is 

established through the scrutiny of content specialists and through the design 

considerations of the item models.  But the use of T-AIG methods for generation 

presents two limitations, generation of syntactically similar items and content 

area limitations.   

The use of T-AIG often leads to the criticism that generated items are too 

syntactically similar (Bejar et al., 2003).  To minimize item exposure and security 

risks, generated items from the same item model need to be semantically similar 
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but syntactically different.  If generated items are too syntactically similar to one 

another, then administering such items not only risks exposing the item model, 

but it yields large numbers of items that may not be usable in operational 

testing.  One solution to avoid the generation of overly similar items is the use of 

incidental elements to mask the similarity between generated items (Bejar, 

2002).  But incidental elements still limit variation in items because the number 

of potential elements in any one item model is, typically, small.  For example, if 

an item contains 15 words in the stem, then the maximum number of elements 

that can be manipulated is 15, assuming that each word can be made into an 

element.  The current solution to overcome similarity in generated items is to 

develop more complex item models.  But as item models become more 

sophisticated, additional constraints are required to produce feasible items.  

Alves, Gierl, and Lai (2010) developed item models for high school Biology that 

required five to seven separate programming constraints for each item model.  

Experienced test developers are aware of the rules and modifications needed to 

create comparable items (Haladyna, 1995).  But to express these rules in an item 

model, test developers may not have the necessary programming knowledge to 

operationalize these constraints (Singley & Bennett, 2002).  With no available 

guideline for developing item models (Gierl & Lai, 2011), ensuring quality and 

feasibility across the generated items becomes very challenging for test 

developers. 
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To-date, systematic item generation approaches in educational testing 

are limited to a few, somewhat predictable, content areas.  While impressive 

number of items can be generated in areas such as mathematics, other areas 

such as language arts have had little or no success.  Methods such as 

transformational grammar (Bormuth, 1970) or item design rules (Hornke, 2002) 

have been proposed for verbal analogies and reading comprehension item 

generation, but the number of items produced from these models are 

comparatively small and disappointing (Lai, Gierl, & Alves, 2010).  One possible 

reason for the lack of success in generating text-rich content areas like language 

arts and social studies may be related to the generation mechanism itself.  

Often, few components in a language art item can vary systematically because 

the task is based on facts (also called “factoids” in the AIG literature).  Factoids 

are highly constrained problems for the generation process as only a small 

amount of specific information can be manipulated for a single factoid.  

Therefore, item models generally yield fewer items with T-AIG when facts are 

used for item generation.  Moreover, language-based items may be more 

dependent on the gathering and presenting of information than items from 

other content areas.  For example, it is common to create multiple items from a 

single reading passage where different set of passage-based items can be 

administered on the same test.  However, the number of variations that can be 

extracted from this fixed, fact-based, passage is often small.  Therefore, the 

developments of item models have not been successful in all content areas and, 
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as a result, applying the current item generation solutions to different content 

domains is not uniformly successful.   

After Item Generation: Models for Statistical Calibration

The third section of my temporal-based review of different item 

generation methods focus on the analyses that are conducted after test items 

are generated.  The process of determining the psychometric property of the 

generated items is known as calibration.  In traditional item development, 

calibration generally takes place after items are administered to a field or pilot 

sample of examinees.  Field testing can be completed by either appending items 

to existing operational test forms or administering a separate testing process.  

Since item generation yields thousands of new items, traditional field testing 

methods are no longer feasible because large numbers of items would need to 

be administered.  The final research area I summarize, therefore, focuses on how 

statistical information can be estimated for generated items without the need 

for extensive field testing.  Drasgow et al. (2006) envisioned an ideal item 

generation process, where items are generated, calibrated with psychometric 

procedures, and assembled for administration, all without human intervention.  

To accomplish this goal, Bejar (2010) highlighted the research required to enable 

this ideal process in his summary of three future AIG developments:  

1.  A theoretical basis is required to account for the variability among the 

psychometric parameters (e.g., item difficulty) of the generated 

items from item models.   
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2.  A statistical method is needed to estimate the psychometric 

parameters for each generated item using key characteristics or 

features of the items.  This requires attention to the statistical 

procedures for estimating the effects of those characteristics or 

features.   

3.  A mechanism is required for generating items from item models.   

These research goals highlight the need for statistical calibration as part of the 

generation process because item difficulty is often used to assemble test forms 

for administration.  With AIG, an alternative approach to item calibration is 

required.  Depending on the type of psychometric information needed, items 

can be generated with their associated psychometric parameters thereby 

minimizing or even eliminating the need for field testing.  Current item 

calibration approaches follow the theory of a random item (de Boeck, 2006), 

where an item is an instance of the theoretical representation of the assessment 

task.  Two general approaches for calibrating generated items stem from this 

ideal: Item-family or skill-based approaches to AIG.  In the next section, I 

highlight how each approach can be implemented to estimate calibrated item 

difficulty and I summarize the statistical methods that are used to complete this 

process.   
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Item Family Calibration 

Item family calibration approaches posit that if a collection of items 

represent isomorphic instances of known parameters, then statistical 

approaches are available to estimate the psychometric properties for the similar 

set of items.  The existence of an item family comes from the literature on 

variability in statistical item calibration.  If we consider that a set of generated 

items is assumed to be identical, then one parameter can be used to estimate 

the characteristics of one item from the entire item family, given an expected 

level of variability.   

Item family calibration assumes that the generated items within the 

family consist of all incidental elements, where all items are assumed to be 

psychometrically comparable to one another.  To illustrate how relatedness 

within an item family can be conceptualized, Sinharay, Johnson, and Williamson 

(2003) outlined a spectrum of item family relatedness, describing three 

appropriate estimation approaches for different levels of relatedness.  On one 

end, there is the identical siblings model, where all generated items are identical 

to one another within the family.  To calibrate this family of items, only one 

estimate is needed to describe all items because all items are identical.  On the 

other end, there is the unrelated siblings model.  To calibrate this family of 

items, each item should be calibrated individually as each item is not predictable 

from other items of the family.  The third approach, named related siblings 

model (RSM), is a compromise between these two extremes.  If items are 
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generated from a set of incidental elements, meaning multiple items should 

represent the same concept as the original item, then items in the family are 

expected to have a similar level of difficulty.  From the perspective of estimating 

each item in the family, if all items are varied incidentally, then the difficulty of 

each item can also be estimated with a level of expected error.  The calibration 

process is illustrated in Figure 9.   

Generated Items

Item Family

Generate from expected variation

Item Item Item

Form item 

family 

characteristics

 

Figure 9.  Illustration of the item family calibration process. 

Using the related siblings family as the statistical model, items can be 

calibrated using Bayesian methods.  Examinee responses to items from the same 

family are used to calibrate the parameters of the family, where an expected 

level of variability is estimated to account for the incidental variation of items for 

one family (Sinharay & Johnson, 2003).  This Bayesian approach requires the 
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administration of items from the same families for estimating the psychometric 

properties of the item family.   

Estimating the RSM requires three levels of information: item, item 

family, and person.  Multiple items, each with a unique response function, can 

be represented as a subset of an item family.  To estimate the probability of 

correct response for item j, traditional item response theory can be used: 

 (    |          )=          
 

         (    ) 
 , 

where the probability of a correct response is a logistic function of the given 

item’s discrimination(  ), difficulty (  ) and its guessing parameter (   .  Once 

item responses have been estimated, parameters for all items with the same 

family are transformed and extrapolated into a normal distribution,  

(        )
 
                            

where for item family I, λ is the mean vector of the three parameters, T is the 

corresponding variance matrix for the three parameters, and the parameters are 

distributed under multivariate normal distribution.  With item family variations 

calculated (             and assumed under a distribution, the probability of a 

correct response to any item (j) within family I can be calculated by 

   |    )  

∫ ∫  ( |  )  (  |           )  
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where    is a vector of item characteristics for item j,    is the density function 

on the multivariate normal distribution for     and                  is the joint 

distribution of the means and variances of the family given the student response 

vectors.   

The item family estimation approach was also implemented with 

hierarchical IRT modeling (Janssen, Tuerlinckx, Muelder & De Boeck, 2000; Glas 

& van der Linden, 2003).  Glas and van der Linden(2006) demonstrated an 

application of this approach to calibrate generated items, and as its name 

implies, hierarchical IRT provide an item parameter through the estimation of 

the family parameters with an ordered level of specificity.  Moreover, Shu, 

Burke, and Luecht (2010) demonstrated an application of calibrating generated 

items using simulated response sets.  In sum, the item family approach of 

calibrating generated items is driven by the assumption that an expected level of 

variability can be estimated to predict the characteristic of generated items from 

the same family.   

Skill-Based Calibration 

An alternative approach to item family calibration is skill-based 

calibration.  With a skills-based method, items are expressed as a set of required 

skills.  Using strong theory AIG, a cognitive model or knowledge structure is 

composed of the knowledge, skills, processes, and competencies required by 

examinees to solve test items.  These prescriptive knowledge and skills serve as 
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the radical elements that are varied systematically to promote item generation.  

These cognitive features are also expected to affect the psychometric properties 

of the items.  Figure 10 presents a skill-based calibration process. 

Item Model

Skill Skill Skill

Generated Items

Generate from required skills 

and expected variation

Skills used in 

the model is 

calibrated

 

Figure 10.  Illustration of the skill-based calibrated item generation. 

Compared to item family approaches, skill-based calibration provides an 

explanation for how each required skill influences item difficulty.  The earliest 

approach for skills-based calibration was presented by Fischer in 1973.  It was 

called the linear logistic test model (LLTM; see also Embretson & Daniel, 2008).  

Instead of calibrating characteristics of each item using the examinee item 

response patterns, a logistic function is used to fit the likelihood of a correct 

response from a linear combination of required skills.  In LLTM, multiple items 

can represent a set of required skills, where the effects of each skill on an item’s 

difficulty is calibrated independently and each item is an instance of a set of 
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required skills.  Using this statistical model, the probability of correct item 

response for item i and person j can be expressed as  

 (     |         )= 
        ∑      

 
    

          ∑       
 
   

, 

where K is the collection of skills required in the assessment,     is a 

representation of the skill requirement on a given item, and    is the difficulty 

associated with skill k.  This approach implies that difficulty of an item can be 

determined by 

   ∑      
 
   , 

where items with the same set of required skills have the same difficulty 

parameter.  LLTM also implies that item difficulty can be perfectly predicted by 

the required skills (Janssen, Schepers & Peres, 2004).   

Embretson (2010) demonstrated a large proportion of the variance in any 

item response can be accounted for by two outcomes: the required skills needed 

to solve each item and the variation among items requiring the same set of skills.  

One model that can be used for skill-based calibration is an extension of the 

LLTM, proposed by Janssen et al. (2004), called the LLTM-RE, where RE are 

random effects.  By estimating variability between items from the same set of 

skills, LLTM can be extended to include a random item effect.  An illustration of 

the modification is presented in Figure 11.  This diagram illustrates how the two 

LLTM models differ from one another.  For the LLTM, the probability of an 
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LLTM-RE LLTM 

examinee’s correct response is estimated with an item difficulty parameter (Βi) 

and a person ability parameter (Θj).  The person parameter is estimated from the 

true ability of the examinee (μj) and the estimated error on the ability of the 

examinee (εj), while item parameters are estimated from the use of prerequisite 

skills (qiη).  The LLTM-RE, by comparison, estimates the parameter for items 

requiring the same set of cognitive features with a level of error in estimation 

thereby warranting an extra error term (εi) for each item.   

 

Figure 11.  An illustration of the modeling differences between LLTM and LLTM-

RE from Janssen (2010). 

In short, the LLTM-RE implies there is a level of variance among all items 

that is extraneous to the effects explained by the cognitive features.  The 

estimation of item difficulty can therefore be expressed as 



57 
 

 

   ∑      
 
        . 

Since the item error is distributed equally among all items, this implies the item 

difficulty parameter for a given set of cognitive features falls under a distribution 

       
    

  , 

where   
  is the item difficulty estimate from the LLTM model.   

Few studies have applied the LLTM-RE to calibrate generated items in 

recent years.  Arendasy (2010) demonstrated an application of LLTM-RE to 

calibrate generated items for spatial reasoning.  Gierl and Lai (2011) 

demonstrated an application in elementary mathematics.  Kubinger(2008) 

applied the LLTM-RE in an application to calibrate items written systematically.  

Lai and Gierl (2012) also described the required test design features to calibrate 

generated items using the LLTM-RE.   

Summary 

 In this chapter, I provided a review of item generation according to three 

temporal phases: before, during, and after item generation.  Researchers have 

conceptualized and improved on how information can be modelled for item 

generation.  Technological innovations have been described that help us with the 

generation process itself.  Statistical modeling methods have been proposed to 

estimate the psychometric properties of the items after they are generated.  



58 
 

 

Together, these three stages help us understand the current state-of-the-art in 

AIG.   

Limitations in Current Approaches to AIG 

 Despite research on different stages of item generation occurring in 

different fields of studies, item generation has remained an esoteric approach to 

item development with few operational applications.  In other words, 

researchers and practitioners tend to agree that AIG is a great idea, but the 

methods have rarely been used to create operational test items.  One reason for 

the lack of implementation may be traced to the dearth of guidance on the 

generation process itself.  As highlighted in my review, studies in item generation 

tend to focus on the psychometric aspects of AIG at the expense of content-

related issues (e.g., creating item models), focus on content-related issues while 

neglecting the required item generation technology, or use technology without 

considering content or psychometric issues.  An item generation framework is 

needed to consolidate and componentialize the required tasks starting from the 

first step of conceptualizing the content to the last step of generating 

operational items.  Currently, no framework exists.   

 Item quality, from the current content specialists approach, is established 

using item writing guidelines and through standards of practice.  Unfortunately, 

no comparable guidelines or standards exist for creating the item models 

capable of generating thousands of items.  Although researchers have described 

the structure of the item model, no researcher has described the process of how 



59 
 

 

content expertise is captured in these item models.  Moreover, with a 

preference for strong theory AIG, a cognitive modeling process designed 

specifically to facilitate item generation is needed to guide AIG practices.  A 

dedicated cognitive modeling process can provide researchers and practitioners 

with a structured approach for identifying the information that should be 

extracted from content experts as well as how this information can be 

manipulated for item generation.   

Template-based item generation is a systematic process for creating large 

numbers of test items.  However, this AIG approach tends to yield items that are 

very similar to one another.  Producing similar items limits the utility of AIG 

because items must be placed on test forms with diverse and variable content to 

increase test security and minimize item exposure.  Template-based item 

generation, therefore, must be modified to ensure the generated items are more 

diverse. 

The purpose of my dissertation research is to address these limitations by 

presenting and demonstrating a framework for AIG.  The framework, named 

Systematic Item Generation (SIG), specifies how information can be identified 

and how item models can be used to generate large numbers of diverse items.  
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Chapter III: Systematic Item Generation 

In this chapter, I present my proposed framework for item generation.  

This framework is intended to improve on current practices as well as provide 

AIG practitioners with concrete guidelines and examples for generating items.  

The framework is divided into three development stages: cognitive modeling, 

item modeling, and item generation.  It should be noted that item calibration, as 

described in the previous chapter, will not be included in my framework.  I was 

not able to collect sufficient information for calibration.  This limitation will be 

further discussed in the final chapter of my dissertation.   

Systematic Item Generation 

 As argued in Chapter 2, a new perspective is needed on how to generate 

test items.  I contend a new item generation framework should be developed, 

not for the sake of technological demonstration or statistical purposes, but 

rather to address a real need for practical guidance in item generation.  By 

addressing this need, content specialists and test developers will participate and 

contribute to AIG in a more meaningful way.  Currently, much of the research on 

AIG is conducted by psychometricians who tend to focus on the statistical 

modeling or computing scientists who focus on the technological applications.  

My framework is intended fill this void by appealing to content specialists and 

test development practitioners.  Further, item generation approaches should be 

robust to address different needs across different content areas, item types, or 

purposes of testing.  To address the need for a generalizable and applicable 
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approach in generating items, I present a framework called systematic item 

generation (SIG).   

Few examples exist in the literature on demonstrating how items can be 

generated (Gierl & Haladyna, 2012; Irvine & Kyllonen, 2002).  When examples 

are presented, they are often constrained to a specific domain and developed to 

address a specific test development goal.  Never has a generalized framework 

been presented or described to facilitate item generation.  SIG is an attempt to 

provide a generalized framework for item generation that can be used for any 

content area.  SIG can be conceptualized as a three-stage development process 

that garners information to support a manufacturing process to produce test 

items.  The idea of a manufacturing process follows an assembly line model of 

systematic development, where dependent components are combined to 

produce a final product.  In this manufacturing process, each development stage 

takes information in one state, manipulates and appends new data, and 

transforms it into a new state of information just as one might expect as a 

product created using an assembly line.  Each stage of development is 

dependent on the outcome from the previous step.  Figure 12 is an illustration of 

the processes of SIG.  Detailed descriptions on each stage of the SIG framework 

are presented next.   
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Figure 12.  An illustration of the SIG process. 

Stage 1: Cognitive Model Development 

Although item writing guidelines are widely available, few instructions 

guide content specialists on how items can be generated and what type of 

information should be included to promote this generation process.  Unlike item 

writing, where content can be reviewed for each item, generating large numbers 

of test items require the content be expressed collectively by content experts.  

The first stage of SIG, also known as cognitive model development for AIG, 

involves translating item specifications into a concrete structure of knowledge 

that can be used to produce new items.  That is, content expert knowledge is 

extracted from the item specification to form a cognitive model that will be used 

to create new items.   

Test items are developed to address the demand from, and demand to 

fulfill, requirements of a test specification or content domain blueprint.  

Therefore, content specifications could be used as a starting point to form a 

structure of knowledge to organize and constrain the content for item 

generation.  Defining this structure is a challenging task, as content experts must 

narrow a large amount of relevant information into a knowledge structure while 
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ensuring numerous possible outcomes can still be used to generate a diverse set 

of items. 

 To address these complexities in modeling knowledge for item 

generation and provide guidance to content experts required to create such 

models, I introduce a knowledge structure to facilitate the cognitive modeling of 

content expertise used for systematic item generation (SIG)1.  Current item 

generation methods document the structure of the item model, but how such 

models can be created and what type of information content experts provide is 

not yet documented.  Using a cognitive modeling process that is designed 

specifically to facilitate item generation, this process could provide a structured 

approach to guide what type of information will be extracted from content 

experts and how their knowledge can be manipulated for item generation.   

 The knowledge structure I propose follows the abstraction-

decomposition representation often used for representing expert knowledge 

(Hoffman & Lintern, 2006).  The SIG knowledge structure consists of three parts: 

problem and scenario, sources of information, and features.  Problem and 

scenario describes the overall issue that all generated items should probe.  The 

problem is a general description, while scenarios are specific descriptions of the 

content related to the overall problem.  Together, the two components provide 

the broad coverage needed for an item model as well as the specificity of 

                                                           
1
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content needed for each item.  Sources of information organize the cues and 

features that relate to the problem.  Information source can be either general or 

specific to the problem, meaning whether an information source is varied for the 

sake of isomorphism (general) or varied conditionally on the presented scenario 

(specific).  The information source is used to organize knowledge for content 

experts, along with providing an additional layer of information needed for item 

modeling.  Moreover, as features are categorized into different information 

sources, it is also used to prompt content experts to think of other sources that 

may be related to the presenting problem.  Features are a set of clues or 

characteristics that are categorized under an information source.  For any 

cognitive model, multiple features may be presented under a single source of 

information, each feature may be presented differently depending on the 

presenting scenario, occurrence of other features, or other conditions.  This 

condition for each feature is expressed by content experts in the form of 

constraints.  Figure 13 is an illustration of the complete knowledge structure.   
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A general structure for organizing knowledge for Item generation.
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Figure 13.  An illustration of knowledge structure for item generation.   

 Using this knowledge structure, content experts are required to express 

knowledge in a systematic manner through an interview process to produce a 

cognitive model for AIG.  To start, content experts are asked to either define an 

overall problem that an item model should probe or a content specification that 

must be presented.  Then, content experts describe the features required to 

solve each problem.  These features have to be either relevant to the presenting 

scenario or include information that differs between scenarios.  The features are 

grouped into sources of information, as expressed by the content experts, where 
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information sources prompt content experts to provide more features to a 

source or create more sources.  Finally, experts define the relationships between 

scenarios and features.  These relationships are expressed as constraints in each 

feature.   

As knowledge is provided by content experts, this knowledge structure 

serves as a guide to ensure sufficient information has been provided to promote 

item generation.  This approach also overlaps with much of the current research 

in educational assessment, as there has been a renewed focus on the use of 

cognitive models in test development (e.g., Leighton & Gierl, 2011).  By outlining 

the knowledge, skills, and processes required to solve a problem in the form of a 

cognitive model, items can be generated based on the knowledge provided by 

content experts in this manner.   

Stage 2: Item Model Development  

In this step, information from the cognitive model is transformed into an 

item model.  This stage is needed to ensure all components defined in the 

cognitive model are represented in an item model.  Hence this second stage of 

SIG is known as item model development.  Recall, an item model is a prototypical 

representation of a test item that guides the generation process.  Examples of 

item models were presented in the last chapter and available in the literature 

(e.g., Bejar et al., 2003; Case & Swanson, 2002; Gierl et al., 2008).  In contrast to 

cognitive model development which focuses on incorporating information from 
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content experts, item model development is a systematic process that 

incorporates information from the cognitive model into a modular format 

suitable for item generation.  Lai, Gierl, and Alves (2010) demonstrated this 

systematic process of item model development using the assessment 

engineering approach to test design.  In the Lai et al. study, the demands of an 

assessment task were stated in the form of a first-order prose and item models 

were created by incorporating each demand in the prose into the item model 

iteratively using computer technology.   

Item models provide the prerequisite knowledge presented in the form 

of a cognitive model which is then transformed into a different knowledge state 

to provide a prototypical representation of a test item.  This representation, 

once created, will then lead to operational item generation in stage 3.  However, 

current item modeling techniques are often criticised for leading to generated 

items that appear too similar to one another.  To address this item modeling 

concern, I will propose and illustrate an alternative type of item model called an 

n-layer item model to allow for more text variability among the generated items 

thereby yielding heterogeneity in the item generation process.   

N-layer Item Model 

Cloning, in a biological sense, refers to any process where a population of 

identical units is derived from the same ancestral line.  Current approaches to 

generating items from models as described in the last chapter often yield 
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outcomes that are described by content specialists and test developers as 

“cloned” or “ghost” items.  The resulting similarity between generated items is 

due, in large part, to the number of elements in an item model which, typically, 

is limited by the word length of the item stem.  This limit on the number of 

elements has rendered current approaches to item generation as fixed and finite 

leading to item cloning outcomes.  Clones are perceived by content specialists to 

be generated items that are easy to produce, unlike more traditional items.  

Clones are often seen as a simplistic product from an overly simple item 

development process, compared to a more sophisticated traditional test item 

which is a complex product from a more sophisticated item development 

process.  Most importantly, clones are believed to be easily recognized by 

coaching and test preparation companies which limit their usefulness in 

operational testing programs.  As a result, content experts are rarely impressed 

with items produced from template-based AIG approaches, particularly when 

the underlying model is thought to be discernible through the generated items.  

While this restriction is inherent to the use of elements for item generation, the 

construct of the element can be changed to accommodate more variation.  In 

this study, I refer to current item models as a 1-layer item model, where an item 

model only contain elements as they are presented.  By conceptualizing 

elements as objects that can be embedded within other elements, a new type of 

item model can be created.  This new approach, called n-layer item model, 
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allows more elements to vary in an item model where manipulations can occur 

under two or more layers of elements.   

Much like the 1-layer item model, the starting point for the n-layer model 

is from a parent item.  But unlike the 1-layer model where the manipulations are 

constrained to a linear set of generative operations using a small number of 

elements at a single level, the n-layer model permits manipulations of a 

nonlinear set of generative operations using elements at multiple levels.  As a 

result, the generative capacity of the n-layer model is substantially increased.  A 

comparison of elements used in 1- and n-layer item models are presented in 

Figure 14.  In this example, the elements in a 1-layer model can provide a 

maximum of four different values for element A.  Conversely, the n-layer model 

can provide up to 64 different values using the same four values for elements C 

and D embedded within element B.  Because the maximum generative capacity 

of an item model is the product of the ranges in each element (Lai, Gierl, & Alves, 

2010), the use of an n-layer item model will always increase the number of items 

that can be generated relative to the 1-layer structure. 
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Value 1
Value 2
Value 3
Value 4

Element A

Value with [Element C] and Value with [Element D]
Value with [Element D]

[Element C] and [Element D]
[Element D] 

Element B

Value 1
Value 2
Value 3
Value 4

Element C

Value 1
Value 2
Value 3
Value 4

Element D

Example of  a 1-layer element Example of an n-layer element, with two layers
 

Figure 14.  A comparison of the elements in a 1-layer and n-layer item model. 

The concept of n-layer item generation is adapted from the literature on 

syntactic structures of language where researchers have reported that sentences 

are typically organized in a hierarchical manner (e.g., Higgins, Futagi, & Deane, 

2005).  This hierarchical organization, where elements are embedded within one 

another, can also be used as a guiding principle to generate large numbers of 

meaningful test items.  The use of an n-layer item model is therefore a flexible 

template for expressing different syntactic structures, thereby permitting the 

development of many different but feasible combinations of embedded 

elements.  In the natural language processing literature, our n-layer structure 

could be characterized as a generalized form of template-based natural language 

generation, as described by Reiter (1995). 
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In the past, item models are created directly by content experts for item 

generation.  As item model development required substantial computer 

programming knowledge as well as an in depth knowledge in the item 

generation capabilities, developing item models became a fruitless process for 

most content experts resulting in models that produced relatively few items (Lai, 

Alves, Zhou, & Gierl, 2009).  By developing item models systematically from the 

cognitive model contents, minimal input is needed from content experts during 

this stage.  The resulting item models enable the next stage of development, 

item generation.   

Stage 3: Item Generation 

The third stage of SIG involves how item models can be translated and 

extracted in the form of test items.  With item models produced from stage two, 

items can now be generated by iterating all unique combination of elements into 

new items.  The generation process for SIG requires two functions: the ability to 

iterate all unique combination of elements expressed in the item model and the 

ability to evaluate whether a specific combination of elements meet the 

requirements of constraints in the item model.  Based on these two 

requirements, the IGOR program, as described previously in Chapter 3, is used to 

demonstrate the generative stage of SIG in this study.   
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Summary 

The purpose of this chapter was to introduce the Systematic Item 

Generation (SIG) framework.  The three stages of SIG framework--cognitive 

modeling, item modeling and item generation--provide a guide for generating 

test items.  In addition, methods were also introduced to ensure test developer 

demands for test items were being met.  The knowledge structure for item 

generation was introduced to anchor content knowledge throughout the 

generation process.  The n-layer item model was introduced to improve item 

modeling approaches and increase text variability between generated items.  By 

conceptualizing item generation into a three-stage manufacturing process that 

moulds assessment knowledge into different states, the SIG framework can be 

applied to provide insights into how item generation can be realized in different 

content areas. 

However, with the focus of the SIG framework aimed at improving the 

quality of generated items, the scope of this framework is limited to describing 

the development process from extracting content expert knowledge to 

generating test items.  As a result, issues related to item generation such as the 

integration of the generation framework with the test design (i.e., curriculum or 

assessment system alignment), or generated item calibration are beyond the 

scope of this framework and this study.  In the next chapter, I apply the methods 

to my proof-of-concept application of the SIG framework in the medical 
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education domain and demonstrate how items can be generated from content 

expert knowledge.   

  



74 
 

 

Chapter IV: Application 

With an introduction to Systematic Item Generation (SIG), I now present 

a proof-of-concept application.  A proof-of-concept is the operationalization and 

implementation of a specific method—for my dissertation, this method is SIG—

to demonstrate its potential and feasibility for actual use.  In this chapter, I use 

SIG to generate test items in the domain of medical education with data and 

information collected through my collaborative work with the Medical Council of 

Canada.  The chapter is presented in two sections.  First, I provide some 

background information on the content area of this demonstration as well as an 

overview of cognitive modeling in the field.  Then, I present a demonstration of 

the SIG framework applied to generate test items in the surgical content areas of 

hernia and post-operation fever.  In presenting this application, I demonstrate 

how items can be generated from content expert knowledge and illustrate the 

three stages necessary for item generation.  The outcome from my proof-of-

concept demonstration is the production of new surgical test items. 

Medical Council of Canada Qualifying Examination–Part 1 

 The Medical Council of Canada Qualifying Examination-Part 1 (MCCQE-1) 

is a one-day, fixed-length, multi-stage computer-adaptive test used to assess the 

knowledge, clinical-reasoning skills, and attitudes specified by the Medical 

Council of Canada as key objectives and competencies for medical training.  

Required by the Licentiate of Canada, the MCCQE-1 is written by all medical 

students seeking entry into supervised clinical practice for postgraduate training 
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programs in Canada.  Section 1 of the MCCQE-1 is a 3.5-hour test containing 196 

multiple-choice items administered adaptively by computer across six content 

areas.  Section 2 of the MCCQE-1 is a 4-hour test containing clinical decision-

making items.  My demonstration is focused on generating multiple-choice items 

for section 1 of the exam.   

Each year, approximately 4,000 candidates who have completed their 

medical training attempt the MCCQE-1 in one of two testing windows (spring 

and fall).  The MCCQE-1 is composed of six different content areas: Internal 

Medicine, Obstetrics and Gynecology, Pediatrics, Psychiatry, Surgery, and 

Population Health.  Items in each area are developed by a panel of content 

experts specializing in each respective content area.  Prior to administration, 

items are classified into four levels of difficulty ranging from 1-easy to 4-difficult 

based on their psychometric properties.  Then, items are assembled into four-

item testlets according to the item difficulty estimates.  In total, 196 items are 

selected and administered to each examinee across the six content areas using 

the multi-stage computer adaptive testing process.   

Because the MCCQE-1 is administered in multiple sites across Canada 

with each administration window lasting up to one month, adaptive 

administration procedures are used to minimize exposure of test items to 

examinees.  The MCCQE-1 is administered with seven stages of adaptation 

known as panels (Luecht, 2002).  Test items are assembled into four-item testlets 

within each of the six content areas, then testlets from all six content areas, 
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along with a testlet of field test items, are administered to the examinee as a 

panel (see Figure 15).  After a panel of items has been completed by the 

examinee, results are scored and used to determine the next best set of items 

given their performance.  Seven panels of items are administered in this fashion 

for all examinees.   

Medicine
4 Questions

Surgery
4 Questions

OBGYN 
4 Questions

Psychiatry
4 Questions

Population Health, 
 Ethical, Legal, and 

Organization 
Knowledge (PHELO)

4 Questions 

Pediatrics
4 Questions

Pilot
4 Questions

7 Testlets
28 Questions 

 

Figure 15.  Composition of one panel of multiple choice items in the MCCQE-1. 

 Thousands of items are needed to operationalize computer adaptive 

tests.  To enable the procedure used in MCCQE-1, the current exam contains a 

bank of 2,803 test items.  These test items are developed using a traditional 

process of item writing (see Figure 16).  First, demand for test items are 

identified based on the test specification and an analysis of the resources in the 

existing item bank.  Second, a content expert within one of the six content areas 

is asked to write items based on these demands.  To ensure items are developed 
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in a uniform manner and adhere to a high standard of quality, a workshop is 

administered prior to item writing as a way of reminding the content experts of 

common item writing strategies and techniques.  Third, after item writing is 

completed, the newly created items are vetted and revised by a panel of experts.  

This revision process allows each item to be evaluated by different experts to 

ensure it meets the required specifications of content relevance and 

psychometric quality.   Fourth, after items are vetted for content and format 

adjustments by various reviewers, items are field-tested using a small sample of 

examinees to garner some evidence on the item’s psychometric properties.  

Items that are deemed to satisfy the psychometric demands are then inserted 

into the item bank for operational use.   

 

Test specification
demands

Item written by 
content experts

Item review by 
panel of experts

Format and style 
review

Field testing

 

Figure 16.  Current item writing process for MCCQE-1. 

The current method of item development for the MCCQE-1 is resource 

intensive and time consuming.  The content experts who develop items for the 

MCCQE-1 are also practicing physicians.  Hence, coordinating sufficient time for 

an expert panel to create test items is often challenging.  Moreover, item 

development is also limited by a lengthy review process, requiring every item to 
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be reviewed by each panelist.  For example, if a panel contained six medical 

experts, then the number of items they create is limited by how many items they 

can collectively write and review as a group.  While each content expert often 

creates 10 items in one day, time is also required for the panel to review all 60 

items (if each experts creates 10 items).  With relatively few items being 

developed from this time-consuming and expensive process, there is a constant 

demand for new MCCQE-1 items.  The demand for items is further complicated 

when there are curricular changes that require the development of new items.  

Simply put, there is a high demand for item generation with the MCCQE-1.   

Modeling Medical Education Knowledge 

Knowledge, procedures, and practices exist for conceptualizing and 

modeling medical knowledge.  Norman, Eva, Brooks, and Hamstra (2006) 

described different modeling approaches as causal (basic mechanisms of 

medicine), analytic (relationship of specific symptoms and features with specific 

conditions), and experiential (prior case experiences), where each type of 

modeling contributes unique knowledge to our understanding of how experts 

solve medical problems.  For tests in medical education, knowledge is often 

framed in problem-solving aspects (Norman, 1988; Custers, Stuyt, & De Vries, 

2000).   

There are two common approaches for modeling medical problem 

solving.  Diagnostic knowledge of a medical problem can be expressed in a 
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hypothetico-deductive manner, where physicians generate a hypothesis about a 

medical condition and collect information to support or refute the claim (Elstein, 

Shulman, & Sprafka, 1990).  For instance, if a physician is presented with a 

patient who has a fever after surgery, then the physician will actively seek 

patient information to deduce the most probable diagnosis.  Alternatively, 

medical problems can also be expressed in a schema-inductive manner.  

Coderre, Mandin, Harasym, and Fick (2003) claimed that under this method, a 

physician “seeks specific information from the patient … that will distinguish 

between the categories of conditions at the branching points on the scheme”.  In 

contrast to collecting patient information to deduce the correct diagnosis, the 

schema-inductive approach is driven by the physician’s use of patient 

information to fit any diagnostic schemas that best describes the patient’s 

scenario.   

The two prevailing methods of conceptualizing medical knowledge 

parallel the confirmatory and exploratory dyad of knowledge representation.  

Norman and Eva (2003) suggested there is no perfect approach in medical 

problem solving and, as a result, experts may use multiple problem-solving 

approaches at the same time.  To generate new test items that enable 

examinees to employ either problem-solving strategy, a third approach for 

modeling content knowledge can be described as pattern recognition.   
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Pattern recognition is a popular method used in machine learning.  It is a 

stochastic approach for modeling learning where a given set of inputs 

consistently produces a set of expected outcomes, even when the rules that 

generate the expected outcomes are not explicit.  In the context of medical 

problem solving, certain characteristics of a patient (input) often lead to the 

diagnosis of a specific medical condition (output).  The cognitive modeling 

approach outlined in this study focuses on having content experts identify a set 

of patient features for a given medical problem.  Pattern recognition then allows 

examinees to use features with different problem-solving strategies (e.g., 

inductive or deductive), but with a restrictive outcome where the presented 

features only yield one correct solution in the form of the keyed or correct 

multiple-choice item option.  Coderre et al. (2003) claimed that experts often use 

a pattern recognition approach because it often yields a correct diagnosis.  

Pattern recognition from clinical features is also a method that can be used to 

present hints about the correct solution during medical problem solving (Kazi, 

Haddawy, & Suebnukarn, 2012).   

In this study, it is imperative that the cognitive modeling approach in SIG 

is representative of the content areas presented on the MCCQE-1.  But in 

addition to modeling knowledge as expressed by content experts, the cognitive 

models must also yield test items.  In the next section, I demonstrate how 

content knowledge can be collected from experts to create a cognitive model for 

item generation.   
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Generating Items to Evaluate Medical Knowledge 

In this section, I describe how medical knowledge can be identified from 

content experts and then used for generating test items.  To begin, I 

demonstrate the first stage of SIG by extracting knowledge from content experts 

and placing this knowledge into cognitive models.  Specifically, I present the 

procedures and processes that were required to extract information from 

content experts for creating cognitive models in the surgical areas of hernia and 

post-operative fever.  Then, using the cognitive models, I demonstrate the 

second stage of the SIG and produce two item models, one for each cognitive 

model.  Finally, I demonstrate the third stage of SIG by using IGOR to generate 

items from the two item models.   

Stage 1: Cognitive Modeling of Context Expertise 

 Content specifications from the MCCQE-1 were used to identify the 

content for the generated items.  Two content experts, who were both 

practicing surgeons and experienced medical item writers, provided their 

expertise.  Knowledge from the content experts was captured using a semi-

structured interview process.  The content experts start by reviewing a set of 

existing test items to select two surgery applications.  They selected hernias and 

post-operative fever.  Their knowledge and skills required to diagnose problems 

in these two areas were then identified in an inductive manner, meaning the 

content specialists were given an existing multiple-choice item and asked to 

identify and describe the key information that would be used by an examinee to 



82 
 

 

diagnose a specific problem and, hence, solve the item.  This knowledge was 

then expressed into a cognitive model.  The relevant cognitive components and 

the associated interview questions posed to the content experts are presented 

in Table 1.  From this extraction process, cognitive models in each content area 

were developed. 

Table 1. 

A list of questions used for extracting content expert knowledge into a cognitive 

model.    

Relevant Component Question 

Problem What is the overall problem this model is describing? 

Scenarios What are some of the different conditions or scenarios 

that may arise from this problem? 

Features What are some features of the patient that are typical of a 

patient with a given scenario? 

Sources of Information Can these features be organized under different sources of 

information? 

Features Are there any more features that are typical of patients 

under a given scenario? 

Features What are the relationships between each feature and 

scenario? 

Features Are there any relationships between each feature? 

Scenarios What is the key for these scenarios? 

Scenarios What are some distracters that are common to these 

scenarios? 
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Hernia 

 Cognitive modeling began with this parent item:  

A 24-year-old man presented with a mass in his left groin.  It appeared 

suddenly 2 hours ago while lifting a piano.  On examination he has a 

tender firm mass in the left groin.  Which one of the following is the 

next best step? 

 

 

 

From this item, the content experts summarized the problem specific to the item 

as surgical issues related to hernia.  Then, the experts identified four different 

scenarios related to that problem.  The identified scenarios were different 

subtypes of hernia: asymptomatic incarcerated, painful incarcerated, 

strangulated, and reducible symptomatic.  These scenarios are considered to be 

possible outcomes of a hernia surgical problem.  These scenarios are also 

representative of different issues related to hernia that will each be presented 

with a unique set of features (as described below).  The problem and related 

scenarios are presented in the top panel of Figure 17.  

After the problem and scenarios were identified, content experts 

identified 10 features that either vary across the different scenarios or are 

features that should be presented with the patient regardless of scenarios.  Of 

the set of 10 features, seven are specific or vary by scenario (i.e., scenario 

1. Immediate hernia repair 

2. Needle aspiration 

3. Ice packs to groin 
4. Reduction of mass 

5. Ultrasound of groin 
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dependent), while three are general or vary regardless of scenario (i.e., scenario 

independent).  To organize the 10 features expressed in the different scenarios, 

four sources of information were introduced to group these features.  The four 

information sources include patient presentation, location, physical examination, 

and laboratory results.  Next, patient characteristics that vary by scenario are 

expressed as constraints and are added to each corresponding feature.  To 

identify and structure this information, the two experts first identified the 

constraints for each feature.  For example, with the feature that describes pain, 

the nominal value for pain across all patients is that they have no pain.  The 

patient only presents with pain in the event of a painful incarcerated (presents 

with intense to severe pain), strangulated (presents with severe pain), and 

reducible symptomatic (presents with moderate-mild pain) hernia.  Then, the 

experts identified relationships in the model that needed to be accounted for in 

order to diagnose complications with hernias such as controlling co-occurrences 

of two features (e.g., only one of groin pain, umbilicus pain, and scars can be 

presented with the same patient), constraints between scenarios, and 

constraints between features.  Using this approach, the relationship between 

each feature and scenario was identified.  The resulting cognitive model is 

presented in Figure 17.   
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Structure of content knowledge for issues related to Hernia
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Figure 17.  The cognitive model for generating items in hernia.   

 After the modeling of the item stem is complete, information about the 

key and distracters needed to provide options for the generated items are 

extracted.  For the hernia example, each scenario is associated with a unique 

first-line treatment.  That is, asymptomatic incarcerated hernia does not require 

anything beyond ice applied to the mass; symptomatic incarcerated hernia and 

reducible symptomatic hernia require reduction of hernia; and strangulated 
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hernia requires hernia repair.  In addition to these hernia-specific options, 

exploratory surgery was identified as a good distracter that could be used with 

any one of the generated items.  Collectively, the information expressed in the 

cognitive model can be used to generate stems and options for a range of hernia 

items.   

Post-Operative Fever 

 The same process was used to create a cognitive model for generating 

items required to diagnose complications associated with post-operative fever.  

The content experts selected the following parent item as their starting point:  

A 65-year-old man has a right hemicolectomy for cancer.  On post-
operative day 2 he has a temperature of 38.2 C.  Which one of the 
following is the most likely diagnosis? 
 
1. Urinary tract infection 
2. Atelectasis 
3. Wound infection 
4. Pneumonia 
5. Deep vein thrombosis 
 

From this item, the content experts agreed that post-operative fever was the 

problem described in the item.  They identified six possible scenarios related to 

post-operative fever.  These scenarios are urinary tract infection, atelectasis, 

wound infection, pneumonia, deep vein thrombosis, and deep space infection.  

From these six scenarios, the content experts identified 12 features that could be 

manipulated in test items.  These features were age, gender, timing of fever, 

guarding and rebound, temperature of fever, abdominal examination, red and 
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tender wound, gastrectomy, left hemicolectomy, right hemicolectomy, 

appendectomy, and laparascopic cholestectomy.  Of the 12 features, three (age, 

gender, and temperature) were generically varied while the remaining nine 

features were surgery specific. 

After identifying all features, the experts then organized them into four 

sources of information: patient demographics, timing of fever, physical 

presentation, and type of surgery.  To define the constraints for each feature, 

the experts identified the relationship of each feature to each scenario.  The 

resulting cognitive model for post-operative fever is presented in Figure 18.   
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Timing of Fever Guarding and 
Rebound

Fever 

Abdominal 
Examination

Red and Tender 
Wound

Gastrectomy

Left Hemicholectomy

Right 
Hemicholectomy

Laparoscopic 
Cholecytectomy

Appendectomy

Age

Gender

Atelectasis 
(A)

Timing of Fever Physical Examination Type of Surgery

Post-Operation Fever

Element
No guarding or rebound
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Constraint
DSI: Present

Wound 
Infection (WI)

Deep Vein 
Thrombosis 

(DVT)

Deep Space 
Infection 

(DSI)

Pneumonia 
(P)

Element
Normal range of body temp
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

Constraint
38.5 C or slight fever for all 

scenarios

Element
Normal
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Constraint
DSI: Tenderness

Element
1-5 days

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
Constraint

A: 1-2 days
UTI: 2-3 days
WI,P, DVT: 2-3 days but may 
occur in 1-5 days
DSI: 4-5 days

Element
No red and tender wound
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Constraint
WI: Present

Element
Gastrectomy
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Constraint
UTI, A, WI, P, DVT: Very 
likely
DSI: Unlikely

Element
Left Hemicholectomy
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Constraint
DSI: Very likely

Element
Right Hemicholectomy
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Constraint
DSI: Less likely

Element
Laparoscopic
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Constraint
WI, DVT: Very likely
UTI, P, DSI: Unlikely

Element
Appendectomy
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Constraint
WI, DSI: Very likely
WTI, A, P, DVT: Unlikely

 
 

 

Urinary Tract 
Infection 

(UTI)

Patient 
Demographics

Element
40-65 years old
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Constraint
None

Element
Male or Female
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Constraint
None

Figure 18.  Illustration of the cognitive model for generating items in post-operative 

fever.   

 After modeling the item stem, the key and distracters were identified for 

all generated items.  Similar to the hernia item model, options are needed to 

prompt examinees not to diagnose the scenario at hand, but to select the best 

next step in managing the scenario (i.e., select a plausible but incorrect 

distractor).  The best management option for each scenario is presented in Table 

2.  For example, if post-operative fever is caused by a urinary tract infection, 

then the best management option would be to administer antibiotics.  A 

combination of options from each scenario served as the distracters for this 

model.   
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Table 2. 

Best patient management options for each scenario in post-operative fever 

model.   

Scenario Best management option 

Urinary tract infection Antibiotics 
Atelectasis Mobilize 
Wound infection Open wound 
Pneumonia Antibiotics  
Deep vein thrombosis Anti-coagulation medicine 

Deep space infection Drainage 

 

In sum, the content experts described their conceptualization of hernia 

and post-operative fever.  We use this conceptualization to identify and 

structure the content in the form of a cognitive model.  The cognitive model 

used in this framework consists of three components: problem and scenarios, 

sources of information, and features.  These components, in turn, will be used to 

generate test items.  Next, I demonstrate the second stage of the SIG framework 

by describing how content from cognitive models can be converted into an item 

model structure.   

Stage 2: Item Modeling 

 In the second stage of SIG, the information captured in the cognitive 

model guides the creation of the item models.  By incorporating each feature 

from the cognitive model into an item model using a systematic process, items 

can be generated (Lai, Gierl, & Alves,2010).  Each feature in the cognitive model 

is incorporated into the item model as an element.  Next, the scenarios and 
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information related to the options are incorporated into the item model.  Last, 

the constraint for each feature is organized and expressed in the item model to 

prevent the generation of undesired or nonsensical items.  In other words, I 

demonstrate how the two cognitive models from the first stage can be 

transformed into item models as part of the second stage.  In addition to the 

traditional 1-layer item model, this process can also be used to demonstrate my 

new n-layer item modeling approach as part of the proof-of-concept for my 

dissertation research. 

1-Layer Item Models 

Hernia 

 The starting point for generating hernia items is to append the ten 

features outlined in the cognitive model into the item model.  The resulting stem 

with features is presented in Figure 19.  Because information across features can 

sometimes be presented together, some features from the cognitive model in 

this example are collapsed and expressed as one element in the item model.  For 

example, in the physical presentation of the patient, all features are varied under 

different scenarios.  The three features of physical presentation are therefore 

expressed as one element in the item model to reduce model complexity.  Also, 

the location of the pain varies randomly in this example.  Therefore, the different 

location features were collapsed and expressed as one element that varies 

depending on the scenarios.  Finally, features about pain, nausea, and vomiting 
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were collapsed into one element to simply the item model.  The resulting item 

model for hernia is presented as five elements.  The content for each element is 

presented in Figure 19.   

A 24-year-old man presented with <Pain> <Location>. It appeared <Acuity 
of Onset>. On examination he <WBC><Physical Examination>. Which one 
of the following is the next best step?

Pain Location Acuity of Onset

WBC Physical Examination

- intense pain
- severe pain
- mild pain
- <empty>

- the umbilicus 
- the left groin
- the right groin area 
- an area where a recent surgery 
took place

- few months ago 
- few hours ago 
- yesterday
- In the past few days after 
moving a piano

- had an elevated white blood 
count
- normal results

- a protruding mass with no pain
- a tender mass
- a tender mass exhibiting 
redness in the area
- a tender and reducible mass

 

Figure 19.  Stem of hernia item model with features appended. 

 After the stem is created, options are incorporated into the item model.  

In this example, four options were used.  These options include ice applied to 

mass, hernia repair, reduction of mass, and exploratory surgery.  To ensure the 

item models generated plausible items, a constraint was added to restrict the 

presentation of physical examination, level of pain, and acuity of onset with the 

corresponding scenario for each item.  For example, when the scenario for an 

item is related to strangulated hernia, a patient should not be presented with 

mild pain or with a mass that is reducible.  The complete 1-layer item model is 

presented in Figure 20.   
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Stem 

A [AGE]-year-old [GENDER] presented with a mass [PAIN] in 
[LOCATION].  It occurred [ACUITYOFONSET].  On examination, the mass 
is [PHYSICALFINDINGS] and lab work came back with [WBC].  Which of 
the following is the next best step? 
 

 

Elements  

[AGE] (Integer): From 25.0 to 60.0, by 5.0 
 
[GENDER] (String): 1: man 2: woman 
 
[PAIN] (String): 1: 2: and intense pain 3: and severe pain 4: and mild 
pain 
 
[LOCATION] (String): 1: the left groin 2: right groin 3: the umbilicus 4: 
an area near a recent surgery 
 
[ACUITYOFONSET] (String): 1: a few months ago 2: a few hours ago 3: a 
few days ago 4: a few days ago after moving a piano 
 
[PHYSICALFINDINGS] (String): 1: protruding but with no pain 2: tender 
3: tender and exhibiting redness 4: tender and reducible 
 
[WBC] (String): 1: normal results 2: normal results 3: elevated white 
blood cell count 4: normal results 
 

 

Options  
exploratory surgery; reduction of mass; hernia repair; ice applied to 
mass 

 

Figure 20.  1-Layer Hernia item model. 

Post-operative Fever 

 The item stem with features for the post-operative fever example is 

presented in Figure 21.  Similar to the item modeling process for hernia, some 

features were combined and expressed as one element.  For example, the three 

features from the timing of fever are expressed under one element.  Also, the 

five features describing the type of surgery are combined and expressed as one 

element to simplify the item model.  Finally, different types of physical 
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examination results are combined and expressed as one element.  This 

truncation results in an item model with five elements.   

A <Age>-year-old <Gender> has a <Type of Surgery>. On post-operative 
day <Timing of Fever> the patient has a temperature of 38.2 C. Physical 
examination reveal <Physical Examination>.  Which one of the following 
is the best next step?

Timing Of FeverType Of Surgery Physical Examination

- gastrectomy
- right hemicholectomy
- left hemicholectomy
- appendectomy
- laparoscopic colecystectomy

- 1
- 2
- 3
- 4
- 5
- 6

- red and tender wound
- tender abdominal area 
- guarding and rebound
- fever

Age

- Range from 25 to 65

Gender

- Man 
- Woman

 

Figure 21.  Stem of an item model on post-operative fever with features 

appended. 

 After the stem has been modelled, options must be identified.  With six 

different scenarios highlighted in the cognitive model, five unique management 

outcomes can be identified and used as distractors.  These five outcomes include 

antibiotics, mobilize, open wound, anti-coagulation medicine, and drainage.  To 

ensure all generated items are plausible, constraints are defined in the item 

model. Three constraints were used with this item model.  First, the timing of 

fever needs to occur within the expected timeframe for each scenario.  Second, 

the procedure must be plausible for the given scenario.  Third, the physical 

examination findings should be plausible for the given scenario.  The 
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programming expression of the constraints are described in the next stage.  The 

final 1-layer item model for post-operative fever problems are presented in 

Figure 22. 

Stem  

A [Age] year-old [Gender] was readmitted to the hospital for pain in the 
abdominal area.  He was on post-operative day [Timing of Fever] after 
recovering from a [Type of Surgery].  The patient has a temperature of 
38.5 C.  Physical examination reveal [Physical Examination]  Which one 
of the following is the best next step for this patient? 

 

Elements  

[Age] (integer) : 40 to 65 years old 

[Gender] (string): male or female 

[Timing of Fever] (string): 1 to 6 days 

[Type of Surgery] (string): Gastractomy, Right Hemicholectomy, Left 
Hemicholectomy, Appendectomy, Laparoscopic Cholecystectomy 

[Physical Examination] (string): Red and tender wound, Guarding and 
rebound, tenderness in the area 

 

Options  Antibiotics, Mobilize, Reopen wound, Anticoagulation, Drainage 

 

Figure 22.  1-Layer Post-Operative Fever Item Model.   

N-Layer Item Modeling 

 N-layer item modeling helps address the problem of generating item 

clones by incorporating multiple layers of manipulation within an item model 

thereby resulting in more heterogeneity during the item generation process.  But 

to convert the 1-layer item models into an n-layer item model, information must 

be reorganized in the item model.  For 1-layer models, elements are composed 

of a list of values that can be replaced and substituted within the model.  As a 
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result, each value within an element can be checked to ensure it fits with the 

desired item.  With n-layer models, elements are embedded within one another 

resulting in a more complex verification process for each element.  For example, 

when an n-layer item model is created, elements must fit not only with the 

desired item at one level, but also with items generated at different layers in the 

model.  Because of the flexibility, but also complexity, associated with n-layer 

item modeling, a structure is needed to provide guidance on how n-layer item 

models can be realized to generate items.  Fortunately, the SIG framework helps 

guide n-layer item modeling.  Cognitive models organize features by the source 

of information.  As a result, these information sources form a secondary layer to 

help organize groups of elements presented together.  For example, sentences 

written in the item stem include a set of specific features.  These sentences can 

then be manipulated as a secondary layer of elements.  Moreover, different 

expressions of the same sentence allow for more variation in the item stem 

during generation.  Next, I demonstrate how 1-layer item models can be 

converted into n-layer item models for generating hernia and post-operative 

fever items.   

Hernia 

 The 1-layer item model presented in Figure 20 was expanded into an n-

layer item model.  From the 1-layer model, the three sentences expressed in the 

item stem were conceptualized as a second layer of elements.  The last sentence 
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of the item stem can be used to demonstrate how sentences become elements.  

“Which of the following is the next best step?” is a question prompt that did not 

contain elements in the 1-layer case.  But this question prompt can be reworded 

in the n-layer case and, as a result, be presented in different ways.  That is, in the 

n-layer item model, the question is defined as an element, where two phrases: 

“Which one of the following is the best diagnosis?” and “Given this information, 

what is the best course of action?” serve as a new question element containing 

three values, where each value contains a question prompt.  Different sentence 

structures can also be used to present patient findings.  Table 3 describes four 

alternative sentences that can be used to present the same information.  Within 

these sentences, three elements are embedded.   

Table 3. 

A table of values in the element of Patient Findings. 

Original Patient Findings Element on Patient Findings 

On examination, the mass is 
[PHYSICALFINDINGS] and lab work 
came back with [WBC]. 

1. On examination, the mass is 
[PhysicalFindings] and lab work 
came back with [WBC].   

 2. Upon further examination, the 
patient had [WBC] and the mass is 
[PhysicalFindings]. 

 3. With [WBC] and [PhysicalFindings] 
in the area, the patient is 
otherwise nominal. 

 4. There is [PhysicalFindings] in the 
[Location] and the patient had 
[WBC]. 
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The first sentence in the stem can also be modified and presented as an 

element.  In this sentence, five elements (age, gender, collated, pain, and acuity 

of onset) provide context for the examinee.  But four alternative expressions can 

also be used to present the same information (i.e., elements), but in different 

manner.  The values for this element are summarized in Table 4.  Taken together, 

three elements at the sentence level form an additional layer in the item model.  

The first layer of elements manipulates the sentence structure while a second 

layer of elements manipulates the features as defined in the cognitive model 

within each new sentence structure.  The complete n-layer hernia item model is 

shown in Figure 23.   
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Table 4.   

A table of values in the situation element.   

Original Situation Element on Situation 

A [AGE]-year-old [GENDER] presented 
with a mass [PAIN] in [LOCATION].  It 
occurred [ACUITYOFONSET]. 

1. A [AGE]-year-old [Gender] 
presented with a mass [Pain] in 
[Location].  It occured 
[AcuityofOnset].   

 2. Patient presents with a mass 
[Pain] in [Location] from 
[AcuityofOnset].  The patient is 
a [AGE]-year-old [Gender]. 

 3. Patient complaints of a mass 
[Pain] in [Location] which has 
been a problem since 
[AcuityofOnset]. 

 4. A [Gender] [AGE] years of age 
was admitted with pain in the 
[Location] from 
[AcuityofOnset]. 

  



99 
 

 

  

Stem 
[Situation] [TestFindings] [QuestionPrompt] 
 

Elements: 

Layer 1  

QuestionPrompt (Text): 1: What is the best next step? 2: Which one of the 
following is the best prognosis? 3: Given this information, what is the best 
course of action? 

TestFindings (Text): 1: On examination, the mass is [PhysicalFindings] and lab 
work came back with [WBC].  2: Upon further examination, the patient had 
[WBC] and the mass is [PhysicalFindings].  3: With [WBC] and [PhysicalFindings] 
in the area, the patient is otherwise nominal.  4: There is [PhysicalFindings] in 
the [Location] and the patient had [WBC]. 

Situation (Text): 1: A [AGE]-year-old [Gender] presented with a mass [Pain] in 
[Location].  It occured [AcuityofOnset].  2: Patient presents with a mass [Pain] in 
[Location] from [AcuityofOnset].  The patient is a [AGE]-year-old [Gender].  3: 
Patient complaints of a mass [Pain] in [Location] which has been a problem since 
[AcuityofOnset].  4: A [Gender] was admitted with pain in the [Location] from 
[AcuityofOnset]. 
 

Layer 2 

[AGE] (Integer): From 25.0 to 60.0, by 5.0 
 
[GENDER] (String): 1: man 2: woman 
 
[PAIN] (String): 1: 2: and intense pain 3: and severe pain 4: and mild pain 
 
[LOCATION] (String): 1: the left groin 2: right groin 3: the umbilicus 4: an area 
near a recent surgery 
 
[ACUITYOFONSET] (String): 1: a few months ago 2: a few hours ago 3: a few days 
ago 4: a few days ago after moving a piano 
 
[PHYSICALFINDINGS] (String): 1: protruding but with no pain 2: tender 3: tender 
and exhibiting redness 4: tender and reducible 
 
[WBC] (String): 1: normal results 2: normal results 3: elevated white blood cell 
count 4: normal results 
 

 

Options  exploratory surgery; reduction of mass; hernia repair; ice applied to mass 

 

Figure 23.  N-layer Hernia Item Model.  
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Post-operative Fever 

 To create an n-layer item model for generating items on post-operative 

fever, the 1-layer post-operative fever item model was modified.  The item stem 

of the 1-layer model was reconceptualised in two layers of elements.  In the first 

layer, the sentence structures of the stem are manipulated.  That is, each of the 

three sentences presented in the item stem is modified to form an element.  The 

modifications made to the first two sentences in the item stem are summarized 

in Table 5.  Variation of the third sentence demonstrate how n-layer item models 

can be used to change generated test items.  With the 1-layer item model, the 

prompt can only be used to ask examinees to choose the best next step given 

the information in the item.  But with n-layer modeling, different questions can 

be presented to examinees with this prompt.  In other words, by adding the 

sentence “Which one of the following is the most likely diagnosis for this 

patient?”, the n-layer item model can now generate items to probe students on 

management strategies and diagnoses of post-operative fever issues in addition 

to generating items that require examinees to select the next best step.  The 

final n-layer stem for the item model is presented in Figure 24.   
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Table 5.   

Values of the situation and physical examination element.   

Element  Original sentence Values of the element  

Situation 

A [Patient Demographic] was 
readmitted to the hospital for pain in 
the abdominal area.  He was on post-
operative day [Timing of Fever] after 
recovering from a [Type of Surgery].  

The patient has a temperature of 38.5 
C. 

1. A [Age]-year-old woman has a 
[Surgery].  On post-operative day 
[TimingOfFever] she has a 
temperature of 38.5 C.   

2. A [Age]-year-old patient who had 
a [Surgery] had a fever of 38.6 C 
on post-operative day 
[TimingOfFever]. 

Physical 
Examination 

Physical examination reveal [Physical 
Examination] 

1. Physical examination reveal a red 
and tender wound at the opening. 

2. Physical examination reveal 
tenderness in the abdominal 
region with guarding and rebound. 

 

 

  



102 
 

 

Stem  [Situation] [PhysicalExamination] [Question] 

Elements: 

Layer 1  Question (Text): 1: Which one of the following is the most likely 
diagnosis for this patient? 2: Which one of the following is the best next 
step for this patient? 

Situation (Text): 1: A [Age]-year-old woman has a [Surgery].  On post-
operative day [TimingOfFever] she has a temperature of 38.5 C.  2: A 
[Age]-year-old patient who had a [Surgery] had a fever of 38.6 C on 
post-operative day [TimingOfFever]. 

PhysicalExamination (Text): 1: 2: Physical examination reveal a red and 
tender wound at the opening.  3: Physical examination reveal 
tenderness in the abdominal region with guarding and rebound. 

 

Layer 2  
Age : 40 to 65 years old 

Timing of Fever: 1 to 6 days 

Type of Surgery: Gastractomy, Right Hemicholectomy, Left 
Hemicholectomy, Appendectomy, Laparoscopic Cholecystectomy 

Physical Examination: Red and tender wound, Guarding and rebound, 
tenderness in the area 

Figure 24.  Stem of the n-layer post-operative fever item model. 

 Because the n-layer model can now be used to generate items that 

require examinees to either make a diagnosis or provide the best management 

options, the key and distracters of the generated items must be adjusted 

accordingly to match the questions from the stem.  As illustrated in Figure 25, 

the first layer of distracters present elements that either provide keys or 

distracters to either the diagnosis or management prompt.  That is, the key of 

the item model contains two values, one value for the diagnosis prompt 

(Key.diag) and one value for the management prompt (Key.man).  The second 

layer of elements for the distracters describe the content for each item.  For 
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example, the element Key.man contains the management key for each 

corresponding scenario (e.g., antibiotics, mobilize, reopen wound, 

anticoagulation medicine, drainage) and the element Key.diag contains the 

diagnosis key for each corresponding scenario (e.g., urinary tract infection, 

atelectasis, wound infection, deep vein thrombosis, deep space infection).  Using 

this coding approach, the distracters are defined for their corresponding item 

types.  With the four item models created from the hernia and post-operative 

fever cognitive models, items can now be generated in Stage 3.   

Layer1  
a. Key (Text): 1: [Key.diag] 2: [Key.man] 
b. Option1 (Text): 1: [Option1.diag] 2: [Option1.man] 
c. Option2 (Text): 1: [Option2.diag] 2: [Option2.man] 
d. Option3 (Text): 1: [Option3.diag] 2: [Option3.man] 

Layer2 Option3.man (Text): 1: Antibiotics 2: Mobilize 3: Reopen wound 4: Antibiotics 5: 
Anti coagulation 6: Drainage 

Option3.diag (Text): 1: Urinary tract infection 2: Actelectasis 3: Wound infection 
4: Pneumonia 5: Deep vein thrombosis 6: Deep space infection 

Option2.man (Text): 1: Antibiotics 2: Mobilize 3: Reopen wound 4: Antibiotics 5: 
Anti coagulation 6: Drainage 

Option2.diag (Text): 1: Urinary tract infection 2: Actelectasis 3: Wound infection 
4: Pneumonia 5: Deep vein thrombosis 6: Deep space infection 

Option1.man (Text): 1: Antibiotics 2: Mobilize 3: Reopen wound 4: Antibiotics 5: 
Anti coagulation 6: Drainage 

Option1.diag (Text): 1: Urinary tract infection 2: Actelectasis 3: Wound infection 
4: Pneumonia 5: Deep vein thrombosis 6: Deep space infection 

Key.man (Text): 1: Antibiotics 2: Mobilize 3: Reopen wound 4: Antibiotics 5: Anti 
coagulation 6: Drainage 

Key.diag (Text): 1: Urinary tract infection 2: Atelectasis 3: Wound infection 4: 
Pneumonia 5: Deep vein thrombosis 6: Deep space infection 

Figure 25.  Options of the n-layer post-operative fever item model. 
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Stage 3: Item Generation 

 In the third stage of SIG, items are generated.  Software is used to 

assemble all permissible combination of elements, subject to constraints 

articulated in the cognitive model.  IGOR, or Item GeneratOR, is a JAVA-based 

program designed for this assembly task.  IGOR iterates through all possible 

combinations of elements and options.  Without the use of constraints, all of the 

variable content (i.e., values for the integers and strings) would be systematically 

combined to create new items.  Unfortunately, some of these items would not 

be sensible or useful.  Hence, constraints serve as restrictions that must be 

applied to the assembly task so that meaningful items are generated.  In this 

section, I describe how item models can be programmed and generated in IGOR.  

Then, I demonstrate the generative outcomes from the hernia and post-

operative fever models.   

Programming Item Models 

 To generate items from IGOR, item models are entered through a user 

interface organized with the same structural labels as the model.  The stem 

section defines the content and programming required to create the item stems.  

Hypertext mark-up language (HTML) is used to format the stem.  For IGOR to 

recognize an element, double square brackets distinguish the elements from 

other parts of the stem.  Elements in IGOR can be defined as a numerical range 
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or a list of text variations.  Similarly, options can be presented as either a 

numerical value or text.   

To generate items using models, constraints are also required to 

eliminate meaningless items.  Item models require Boolean logic constraints so 

that only specific, logically coherent combinations of elements are joined to 

produce generated items.  For example, if two elements, I2 and I1, in an item 

model cannot be presented with the same value, then the item model is 

constrained from producing unwanted items by adding logic constraints in the 

form of [[I1]] != [[I2]].  Using common gate logic [e.g., AND (&&) or OR( || )] and 

Boolean comparison symbols, this type of constraint becomes more complicated 

if the elements are text (e.g., if the third variation of S1 cannot appear with 

second variation of S2, then ([[S1]] != 3)&&([[S2]] != 2)).  To ensure models only 

generate items from desired combination of elements, multiple constraints can 

also be added to IGOR to limit the generated instances of each item.  Constraints 

are also applied on distracters to minimize the presentation of unwanted 

combinations of options (i.e., if a pair of options should not be presented with 

the same outcome).  In IGOR, constraints are checked for every generated item 

to ensure elements in an item are logical and desired combinations.  Items that 

do not meet the demand of a constraint are removed by the program.   

 Practical multiple-choice item characteristics must also be considered 

when generating items.  These characteristics include the order of item options, 
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the number of options, presentation of option keys (e.g., A,B,C vs. 1,2,3), and the 

inclusion of any auxiliary information to the items such as passages, images, 

tables, or figures.  IGOR can accommodate these characteristics during 

programming.  For example, Figure 26 shows the number of ways options can be 

displayed.  Options can be presented with the key as the first option, key as the 

last option, ascending alphabetical order, descending alphabetical order, or a 

randomized order.  Also, IGOR can be used to generate items having no options 

(e.g., student-produced response items).   

 

Figure 26.  Options to modify item generation characteristics in IGOR. 

Generating Items from IGOR 

 After an item model is programmed, IGOR generates all logical instances 

of the item model.  Also, if the item model contains more options than required 
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in the item model (e.g., generating items with four options when there are five 

valid options in the item model), then the same item stem is reused to generate 

items with different options.  In an item model with no constraints, the number 

of generated items can be calculated by: 

  ∏    , 

where e is the number of elements within the item model, and c is the range 

(i.e., number of variations) for element e.  This equation demonstrates that the 

number of variations in each element dramatically increases the number of 

generated items.  Conversely, when constraints are added to the item model, 

the number of generated items will decrease.   

After generation, items are stored in a test bank that can be viewed in 

any word processor or Internet browser.  The bank is organized in an XML 

format.  Figure 27 is a generated item bank displayed in a web browser.  An 

answer key associated with the test bank can also be generated.   
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Figure 27.  An example of an item bank generated by IGOR. 

Hernia 

 Two item models were created to generate hernia items.  Using the 1-

layer hernia item model, information is entered through the IGOR user interface.  

Specifically, the stem, elements, options, and constraints are defined and saved 

in an extended markup language(XML) format.  Other features in IGOR are also 

defined.  For example, the generated options are randomized.  Recall that the 

total number of combinations in item generation is the product of all ranges in 

each element.  In the 1-layer item model with seven elements, a total of 16,384 

possible combinations are created by IGOR.  But, based on the required 

constraints of the model, only 256 combinations are permissible, hence, only 256 

items are generated.  A sample of the generated items is presented in Figure 28.   
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11.  A 35-year-old woman presented with a mass in the left groin.  It occurred a few months ago.  

On examination, the mass is protruding but with no pain and lab work came back with normal 

results.  Which of the following is the next best step?  

a. ice applied to mass* 
b. exploratory surgery  
c. reduction of mass  
d. hernia repair 

50.  A 30-year-old man presented with a mass in an area near a recent surgery.  It occurred a few 

months ago.  On examination, the mass is protruding but with no pain and lab work came back 

with normal results.  Which of the following is the next best step?  

a. ice applied to mass* 
b. exploratory surgery  
c. reduction of mass  
d. hernia repair 

175.  A 55-year-old woman presented with a mass and severe pain in the umbilicus.  It occurred a 

few days ago.  On examination, the mass is tender and exhibiting redness and lab work came 

back with elevated white blood cell count.  Which of the following is the next best step?  

a. ice applied to mass  
b. exploratory surgery  
c. reduction of mass  
d. hernia repair* 

137.  A 25-year-old woman presented with a mass and severe pain in the left groin.  It occurred a 

few days ago.  On examination, the mass is tender and exhibiting redness and lab work came 

back with elevated white blood cell count.  Which of the following is the next best step?  

a. ice applied to mass  
b. exploratory surgery  
c. reduction of mass  
d. hernia repair* 

*-correct option 

Figure 28.  Generated items from 1-Layer Hernia item model. 

With the n-layer item model in hernia, the stem, elements, options, and 

constraints are entered into IGOR.  This model produced a total of 786,432 

combinations, but only generated 12,287 items based on the constraints of the 
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model.  A sample of the generated items from the n-layer model is presented in 

Figure 29.  The XML code for both item models are presented in the Appendix A.  

5326.  A 50-year-old man presented with a mass and mild pain in the left groin.  It occurred a few 

days ago after moving a piano.  Upon further examination, the patient had normal vitals and the 

mass is tender and reducible.  Which one of the following is the best treatment?  

a. exploratory surgery  
b. reduction of mass  
c. hernia repair* 
d. ice applied to mass  
 

4610.  Patient complaints of a mass in the left groin which has been a problem since a few 

months ago.  On examination, the mass is protruding but with no pain and lab work came back 

with normal vitals.  Which one of the following is the best treatment?  

a. reduction of mass  
b. exploratory surgery  
c. hernia repair  
d. ice applied to mass* 
 

12010.  Patient complaints of a mass and mild pain in the umbilicus which has been a problem 

since a few days ago after moving a piano.  There is tender and reducible in the umbilicus and the 

patient had normal vitals.  Given this information, what is the best course of action?  

a. exploratory surgery  
b. ice applied to mass  
c. reduction of mass* 
d. hernia repair 
 

7325.  A 45-year-old man presented with a mass and severe pain in right groin.  It occurred a few 

days ago.  There is tender and exhibiting redness in the right groin and the patient had elevated 

white blood cell count.  Which one of the following is the best treatment?  

a. reduction of mass  
b. hernia repair* 
c. ice applied to mass  
d. exploratory surgery 

*-correct option 

Figure 29.  Generated items from N-layer Hernia item model.  
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Post-Operative Fever 

 With the 1-layer post-operative fever item model, five elements are 

required for the stem.  The options for this model require four variables resulting 

in a model with 1,399,680 possible combinations.  The addition of constraints 

restricted the model output to 1,248 items.  A sample of these generated items 

are presented in Figure 30.   
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1.  A 34-year-old woman has an appendectomy.  On post-operative day 6 he has a temperature 

of 38.2 C.  Physical examination reveal tenderness in the abdominal region with guarding and 

rebound.  Which one of the following is the best next step? 

a. Drainage* 

b. Reopen the wound 

c. Antibiotics 

d. Mobilize 

2.  A 46-year-old man was admitted to the hospital for an appendectomy.  On post-operative day 

4 he has a temperature of 38.2 C.  Physical examination reveal tenderness in the abdominal 

region with guarding and rebound.  Which one of the following is the best next step? 

a. Drainage* 

b. Anti coagulation 

c. Reopen the wound 

d. Mobilize 

3.  A 54-year-old woman has a laparoscopic cholecystectomy.  On post-operative day 4 she has a 

temperature of 38.2 C.  Physical examination reveal a red and tender wound at the opening.  

Which one of the following is the best next step? 

a. Reopen the wound* 

b. Mobilize 

c. Antibiotics 

d. Anti coagulation 

4.  A 62-year-old man was admitted to the hospital for a laparoscopic cholecystectomy.  On post-

operative day 1 he has a temperature of 38.2 C.  Physical examination reveal no other findings.  

Which one of the following is the best next step? 

a. Mobilize* 

b. Reopen the wound 

c. Antibiotics 

d. Drainage 

*-correct option 

Figure 30. Generated items from 1-Layer Post-Operative Fever item model. 

With the n-layer model, two layers of elements are used to manipulate 

sentence structure and options.  From a total of 201,553,920 possible 

combinations, the n-layer model generated 10,350 post-operative fever items.  A 
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sample of the generated items are presented in Figure 31.  The XML code used 

to generate items for both models are presented in Appendix B.   

1415.  A 43-year-old woman has a laparoscopic cholecystectomy.  On post-operative day 4 she 
has a temperature of 38.5 C.  Physical examination reveal a red and tender wound at the 
opening.  Which one of the following is the most likely diagnosis for this patient? 

a. Atelectasis. 
b. Wound infection.* 
c. Deep space infection. 
d. Urinary tract infection. 

4877.  A 47-year-old patient who had a left hemicholectomy had a fever of 38.5 C on post-
operative day 6.  Physical examination reveal tenderness in the abdominal region with guarding 
and rebound.  Which one of the following is the most likely diagnosis for this patient? 

a. Pneumonia. 
b. Wound infection. 
c. Deep space infection.* 
d. Urinary tract infection. 

8594.  A 55-year-old woman has a gastrectomy.  On post-operative day 3 she has a temperature 
of 38.5 C.  Which one of the following is the most likely diagnosis for this patient? 

a. Wound infection. 
b. Atelectasis. 
c. Deep vein thrombosis. 
d. Urinary tract infection.* 

9218.  A 55-year-old patient who had a laparoscopic cholecystectomy had a fever of 38.5 C on 
post-operative day 3.  Which one of the following is the best next step for this patient? 

a. Mobilize. 
b. Prescribe antibiotics. 
c. Reopen wound. 
d. Prescribe anti-coagulation medicine.* 

 

Figure 31.  Generated items from the n-layer post-operative fever item model.   
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Summary 

 In this chapter, I applied the SIG framework to item generation in the 

context of medical education.  I reviewed the Qualifying Examination Part 1 of 

the Medical Council of Canada (MCCQE-1) and I provided some cognitive 

modeling concepts from the field of medical education that were used for item 

generation.  Then, I presented an application of the three stages of SIG for 

generating items in hernia and post-operative fever.  To model the content 

expert knowledge, I used a cognitive model knowledge structure for item 

generation that captured relevant information from the content experts.  I also 

introduced the use of n-layer item models to vary the text similarity of the 

generated items.  In the next chapter, I describe methods that can be used to 

evaluate the text similarity among the generated items.   
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Chapter V: Measuring Similarity Among Generated Items 

 The purpose of automatic item generation is to produce large sets of new 

test items.  The SIG framework demonstrated how items, designed to measure a 

set of scenarios related to a common problem, can be generated using a 

systematic process.  These new items populate item banks which, in turn, lowers 

the exposure rate of each item in the bank.  Lowering exposure reduces item 

theft and helps ensure the testing process is fair for all examinees.  While a 

common step in development after generation is to estimate the psychometric 

properties of the items, another required task is to evaluate the similarity of the 

generated items.  If the goal of item generation is to minimize exposure, then 

the generated items should not be overtly similar to one another.  To help 

address the problem of homogeneity among the generated items, I developed n-

layer item models.  N-layer modeling yields generated items that are 

heterogeneous.  However, no quantitative method is currently available for 

evaluating the similarity of the generated items.  In this chapter, I present two 

new methods for comparing and evaluating the similarity of generated items.   I 

first summarize the current approaches used to evaluate text similarity.  One of 

the methods, called the cosine similarity index (CSI), is used to compare 

generated item similarity in this study.  Then, using the CSI, I present two levels 

of comparison, intra-model and inter-model differences, for evaluating the 

similarity of the generated items.  Finally, I apply these methods to the 

generated items presented in the previous  chapter.   
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Evaluating Text Similarity of Generated Items 

With the potential of generating thousands of items from a single item 

model, no researcher has yet attempted to quantify the text similarity of 

generated items.  To evaluate item similarity, a comparison of all unique item 

pairs within a set of items must be computed.  A holistic evaluation by raters can 

be used to judge the similarity of different test items (e.g., ask content specialists 

whether a set of items look similar to one another).  However, this approach 

quickly becomes ineffective because the number of required comparisons 

increases exponentially.  For example, pairwise comparisons for a set of 10 items 

require (
  
 
) = 45 unique comparisons, whereas pairwise comparisons between 

11 items require (
  
 

)    55 comparisons.  The exponential increase of pairwise 

comparisons render human ratings infeasible, particularly given that item 

generation has the ability to produce thousands of items from a single item 

model.  As result, an alternative method for systematically evaluating the text 

similarity of generated items is needed.  

Advances from natural language processing have offered some 

innovative quantitative methods for evaluating text similarity.  Currently, three 

general approaches exist for measuring the similarity of texts.  The three 

methods are n-gram similarity, semantic distances, and cosine similarity.  The 

three approaches vary in their computational complexity.  While all three 
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methods evaluate similarity based on pairwise comparisons between two strings 

of text, each method is suitable for comparing different types of text. 

The first approach is to count the number of overlapping words between 

two strings.  This approach, named n-gram similarity, is the proportion of 

overlapping words (i.e., grams) counted in different consecutive lengths (i.e., n-

length).  Take, for example, the following two sentences: 

a) What is your name? 

b) What is your favourite pet? 

If the two sentences are compared using bi-grams, meaning texts with 

consecutive word length of 2, then the similarity between the two sentences is 

one (e.g., What is) out of seven unique bigrams.  This n-gram approach relies on 

consecutive word overlap between two sentences.  However, some researchers 

have suggested that n-gram comparisons should only be used for long lengths of 

text because the co-occurrence of common words (i.e., stop words) in short texts 

would artificially inflate similarity (Lin, 2004).   

The second approach for evaluating text similarity is semantic distances.  

This complex approach measures the relatedness of words from one text to the 

other.  For example, consider the following three words: cat, dog, mock.  The 

semantic distance between cat-dog is relatively closer than cat-mock and dog-

mock, as both cat and dog are related to each other in many other words (e.g., 

animal, pet).  Although semantic distances is a powerful method to quantify and 
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measure text similarity, it requires a word net or common corpus that have 

established associations plotted between large sets of commonly used words 

(see Belov & Knezevich, 2008).  Because these associations are not readily 

available for different content areas in item generation (e.g., medical), the use of 

semantic distances requires substantial background research to establish 

relationships within a common corpus and, hence, is not suitable for the medical 

examples used in my dissertation research. 

The third method for measuring text similarity is called the cosine 

similarity index (CSI).  The CSI is a measure of similarity between two vectors of 

co-occurring texts, where the overall comparison is made by measuring the 

cosine of the angle between the two vectors in a multidimensional space of 

unique words.  The CSI can be expressed as 

cos( )
A B

A B




 , 

where A and B are two items expressed in a numerical vector of word 

occurrences.  For example, if A is a list of three words (dog, walk, talk) and B is a 

list of another (cat, walk, mock), then the length of both binary vectors is equal 

to the number of unique words used across both lists (dog, walk, talk , cat, 

mock).  To vectorize sentences A and B for comparing text differences, the 

occurrence of each word in the corresponding list is quantified with a value of 1.  

The resulting word occurrence vectors for A and B in this example is [1,1,1,0,0] 
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and [0,1,0,1,1], respectively.  With the dot product between vectors A and B 

being 1, and the vector length for both A and B being the square root of 3, the 

inner product of these two vectors result in a CSI of 
 

 
 ~ 0.33.  The CSI has a 

minimum value of 0, meaning no word overlapped between the two vectors and 

a maximum of 1, meaning the text represented by the two vectors are identical.  

Compared to n-gram approaches, the CSI is more sensitive to shorter lengths of 

text as it interprets co-occurring words into multidimensional space.  Compared 

to semantic distances, the CSI is a simplified approach of text comparison that 

does not account for word relatedness in calculating similarity.  With the only 

requirement being a list of common words between the compared texts, the CSI 

is suitable and generalizable for evaluating text similarity with different item 

types and also any number of generated items.   

Two Levels of Evaluating Item Similarity 

To evaluate item similarity, some operational definitions are needed 

before establishing this method of comparison.  First, a text similarity index such 

as the CSI is required to measure the similarity from one item to another.  

However, many pairwise comparisons are required when evaluating similarity 

among a large set of generated items.  Recall that the number of pairwise 

comparisons increases exponentially as the number of generated items 

increases.  Therefore, a new scale of analysis is required to summarize text 

similarity in an omnibus manner.  Second, as items are generated from models, 

the variation among the generated items is systematically manipulated by the 
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features within  the item model.  Therefore, similarity among the items 

generated from the same model should be related.  Given these two demands in 

evaluating item similarity, I propose two levels of evaluation for summarizing the 

CSI of generated items, intra-model and inter-model differences.  These two 

levels of analysis are designed to provide different types of information about 

the similarity among the generated items.   

Intra-Model Differences 

The intra-model difference is the first level of analysis used to describe 

text similarity.  By calculating the differences in the text for all unique item pairs 

using the same model, the mean of these CSIs provide an omnibus measure of 

text similarity.  Moreover, because the text of each generated item is 

systematically manipulated by the item model, the standard deviation of these 

CSIs can also help describe the variability of the text between different 

generated item pairs.  Because items are generated using systematic feature 

manipulations, a random sample of generated items can be used to calculate the 

intra-model differences for all the generated items.  A random sample of items is 

needed for practical reasons because pairwise comparisons increase 

exponentially as the number of generated items increases thereby causing 

memory problems for computation and as the number of generated items for 

each model differs, a common number of items is needed to compare between 

different item models.  In sum, intra-model differences can be summarized by 

the mean and standard deviation of the CSI from a random sample of pairwise-
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comparisons using items generated from the same model.  A high CSI mean 

represents an item model that generates highly similar items (i.e., 

homogeneous), whereas a low CSI mean represents an item model that 

generates items with low similarity (i.e., heterogeneous).  A low CSI standard 

deviation represent low variability in the generated item differences (i.e., 

homogeneity), whereas a high CSI standard deviation for a given model 

represent high variability in the generated item differences (i.e., heterogeneity).  

Inter-Model Differences 

 After intra-model differences are computed, a second level of analysis 

can be conducted to compare the differences between item models.  

Comparison of differences between models are computed based on the intra-

model differences (i.e., models are independent), rather than calculating a new 

set of CSI between items of different models (i.e., models are dependent) 

because the unit of analysis is text similarity between item model.  In other 

words, text differences are summarized as a distribution of text differences for 

each item model and these differences are then compared between item 

models.  In sum, information on inter-model differences can be used to evaluate 

whether the text similarity of an item model is significantly varied during 

generation or to provide evidence for evaluating whether different item models 

can generate items with comparable levels of variability.  Next, I demonstrate 

how these measures can be applied to the generated items from the previous 

chapter so conclusion about text similarity can be made.  Also, I evaluate 
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whether the use of n-layer item models reduced similarity among the generated 

items.  

Comparison of Generated Items 

 The purpose of n-layer item modeling was to provide an alternative to 

the current 1-layer item modeling approach as a way to increase variation 

among the generated items.  The benefits of n-layer modeling are obvious when 

it comes to increasing the generative capacity of the item model.  Compared to 

traditional 1-layer modeling approach, the n-layer item model generated 48 

times more items in hernia (12,287 compared to 256) and six times more items 

in post-operative fever (10,350 compared to 1,504).  However, to evaluate 

whether n-layer model provide more text variation among the generated items, 

comparisons of text similarity are needed.  To begin, I outline the procedures 

necessary for cleaning and organizing the generated items for analysis.  Then, I 

summarize the intra-model differences of each item model.  Finally, I statistically 

evaluate the inter-model differences using the same content but generated 

using the 1-layer and n-layer item model.   

To evaluate item similarity from any given model, a random-sample of 

100 generated items was selected from the entire generated item set.  This 

sample of items is then used to calculate a total of 4,950 unique pairwise 

comparisons.  The CSI value is calculated for each item-pair.  Using the statistical 
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programming language R (R Core Development Team, 2012), the following 

process was used to calculate the CSI between each pair of items.  First, the stem 

and options of each item were concatenated and formatted into a string of 

lower-cased words.  All characters in this analysis need to be in a lower-case 

form because the comparison process and identification of unique words are 

case-sensitive.  Second, common words (e.g., a, is, was), special characters (e.g., 

%, &, *), and punctuations are removed from the string.  Common words were 

removed based on a list of the 300 most commonly used words in English from 

the LSA program in R (Wild, 2011).  The removal of common words is a popular 

method in NLP to minimize the artificial inflation of similarity caused by words 

that are irrelevant to the context of the strings.  Special characters and 

punctuations also muddle the identification of unique words.  For example, if a 

word appended with a punctuation at the end of a sentence is not adjusted (e.g., 

fever.), then the word “fever.” would be recognized as a unique word from the 

original word “fever”.  Such errors would then artificially deflate the level of 

similarity in each item pair.  After adjustments are made to the words, a list of 

unique words from all generated items is compiled.  This process is completed 

using programming, where unique words are iteratively identified for all 

generated items and are then recorded into a list.  The unique word list is used 

to populate a word-occurrence matrix.  The word-occurrence matrix records the 

corresponding use of a given word for each string, where each item is 

represented as a row, each column represents a unique word, and the cell value 



124 
 

 

of the corresponding row and column is the appearance of the word on a given 

item.  In this study, I chose the use of binary vectors, meaning I only record 

whether or not a word was used within a given item.  The use of binary vectors 

in the word-occurrence matrix helps minimize the artificial inflation of similarity 

given to items that use the same term multiple times.  For example, if the word 

“patient” is used multiple times, then recording the count would inflate the level 

of similarity between item pairs.  Finally, to calculate similarity between an item 

pair, each row of the word-occurrence matrix becomes the vector used to 

calculate the CSI, where programming is again used to systematically calculate 

the CSI for all unique item pairs.   

Intra-Model Differences 

The intra-model differences for the four item models are presented in 

Table 6.  For the 1-layer item models, the CSI for hernia ranged from 0.55 to 0.98 

with an overall mean of 0.74 and a standard deviation of 0.11.  The CSI for post-

operative fever ranged from 0.54 to 1.00 with an overall mean of 0.77 and a 

standard deviation of 0.08.  The mean CSI for an item model represents the 

central tendency of the intra-model differences for all item pairs within the 

model.  Recall that a CSI of 1 represents an identical item pair while a value of 0 

represents a  completely unique item pair.  Hence, the means of 0.74 and 0.77 

suggest a relatively similar level of text similarity for both 1-layer surgery item 

models.  The standard deviations of 0.11 and 0.08 indicate that the similarity 

among the items within each model is high. 



125 
 

 

Table 6.   

Summary of Cosine Similarity Index as a Function of Content Area and Model 

Type 

 

  Min  Max Mean SD 

Post Op Fever 

   1-layer 0.54 1.00 0.77 0.08 

   N-layer 0.13 1.00 0.51 0.19 

Hernia 

   1-layer 0.55 0.98 0.74 0.11 

   N-layer 0.17 1.00 0.53 0.16 

 

For the n-layer item models, CSI for hernia ranged from 0.17 to 1.00 with 

an overall mean of 0.53 and a standard deviation of 0.16.  For post-operative 

fever, the generated items produced CSI values ranging from 0.13 to 1.00 with a 

mean of 0.51 and a standard deviation of 0.19.  Relative to the results from the 

1-layer item models, it appears that adding a layer of elements did reduce text 

similarity between generated items.  The means of 0.53 and 0.51 suggest a 

relatively dissimilar level of text similarity relative to the 1-layer surgery item 

models.  The standard deviations of 0.16 and 0.19 indicate that the similarity 

among the items within each model is low relative to the 1-layer surgery models. 
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Inter-Model Differences 

The inter-model differences can be illustrated with a histogram of the CSI 

values.  Figure 32 presents the distribution of CSI values for the 1-layer and n-

layer model for hernia.  From this graph, it is apparent that the n-layer item 

model increased text differences within the model.  Moreover, the spread of the 

CSI values increased between the 1-layer and n-layer models.  Results from 

Figure 33 demonstrate a comparable pattern of results when the similarities of 

1- and n-layer post-operative fever models are plotted.   

 

Figure 32.  Histograms of the CSI values for each item pair for Hernia item 

models.  
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Figure 33.  Histograms of the CSI values for each item pair for the Post-Operative 

Fever item models.  

 

To statistically evaluate the trends illustrated in the histograms, 

independent samples t-tests were conducted to determine whether the use of n-

layer item model significantly reduces text similarity relative to the 1-layer item 

model.  The t-tests used the intra-model differences, or CSI values of item pairs 

within its own respective model, as the dependent variable, and the item model 

type as the independent variable (1-layer or n-layer).  For items generated from 

the hernia models, the t-test revealed a statistically significant difference 

between the item model types, t(9899) = 77.18, p < 0.05.  A significant difference 

was also found on post-operative items between item model types, t(9899) = 

84.12, p < 0.05.  Taken together, these results provide evidence that items 

generated from the n-layer item models do, in fact, produce more 
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heterogeneous and diverse items compared to those generated from 1-layer 

item models. 

Summary 

 In this chapter, I introduced a method to evaluate item similarity and I 

demonstrated how this method can be used to compare the items generated 

using the 1-layer and n-layer models.  Results from my demonstration reveal that 

not only do n-layer item models generate more items, but they also create more 

heterogeneous items compared to traditional 1-layer models.  The methods 

presented in this chapter are beneficial for evaluating the generative capacity of 

an item model and for providing an alternative measure to evaluate the text 

similarity of items produced from different AIG modeling methods.   
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Chapter VI: Discussion 

Four years ago, I described an item generation process to an audience of 

educational experts at an academic conference (Lai, Alves, Zhou & Gierl, 2009).  

The audience members and session discussant viewed the idea as futuristic, but 

with little practical implication.  Admittedly, the item generation process at the 

time was cumbersome and complex, test developers were overwhelmed by the 

requirements of the task, and the generated items were criticized because they 

appeared too similar to one another.  A considerable amount of research on 

item generation has taken place since 2009.  Cognitive scientists have 

conceptualized and improved on how information can be modelled for item 

generation.  Computer scientists provided technological innovations on the 

generative process itself.  Psychometricians proposed different statistical 

modeling methods to estimate the psychometric properties of the generated 

items.  Together, these developments describe a new state-of-the-art for item 

generation that requires an application framework.  The purpose of my 

dissertation was to create an application framework and summarize the 

different stages of development required for generating items to demonstrate 

how a systematic process could be used to produce new test items.  To reduce 

the level of complexity required in the generation process, items can now be 

produced using the systematic development process describe in my dissertation 

research.  Test developers, who are essential for the success of AIG, are now 

charged with the task of designing and developing meaningful item models as 
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well as identifying the required content.  Computer technology, which is also 

essential for the success of AIG, is charged with combining large amounts of 

information in a systematic manner required to produce new test items.  By 

combining content expertise with computer technology, models can be created 

that yield large numbers of high-quality items in a short period of time.  In this 

chapter, I present a summary of the methods introduced in my study.  I discuss 

the potential limitations to my approach. I also provide an outlook on future 

developments required for item generation.   

Summary of Study 

For my dissertation research, I presented a systematic item generation 

framework (SIG) to produce medical test items.  The SIG framework consisted of 

three development stages to facilitate the modeling of content expert 

knowledge into cognitive models, the translation of cognitive models into 

prototypes for generation, and the generation of test items using computer-

based algorithms.  This framework is used to guide and support a manufacturing 

process to produce large numbers of test items.  Using this framework, I 

generated 22,637 test items in the content areas of hernia and post-operative 

fever for a medical licensure testing program.  The implications of these methods 

and their contributions to the field of item generation are discussed next.   
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Modeling Knowledge for Item Generation 

 Content experts rely on guidelines to produce items from a test 

specification or content domain blueprint.  In item generation, an intermediate 

modeling process is needed for translating item specifications into content that 

can be used to produce new items, as generating large numbers of test items 

require content experts to express their knowledge for multiple items 

collectively.  In my dissertation, I presented a cognitive model structure to 

capture information from content experts to identify the content, knowledge, 

and skills needed for item generation.  The cognitive model structure can be 

broken down into three components of content.  Problems and scenarios 

provide the issues, both general and specific, probed across an entire set of 

generated items.  Sources of information organize all cues and features for the 

generated items.  Features are the specific characteristics associated with each 

information source.  In any cognitive model, multiple features may be presented 

under a single source of information while the presentation of features vary for 

each generated item.  In my study, I demonstrated this cognitive modeling 

process by collecting the required information for generating test items in hernia 

and post-operative fever using a semi-structured interview format.  The outcome 

of this process produced a cognitive model for generating items related to 

managing four different hernia issues under the expression of ten features.  It 

also produced a cognitive model for generating items in six different scenarios 

under post-operative fever using 12 unique features.  In short, the process I 
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demonstrated in my study provides a description of how content expert 

knowledge can be captured for item generation.  Haladyna and Gierl (2012) 

predicted that the development of a knowledge structure to support item 

generation would become the main obstacle in item generation research.  The 

contribution of this study is to outline the required processes for developing 

such knowledge structures to enable future developments in item generation.  

Item Modeling and Generation 

 After knowledge has been extracted from content experts, I described 

and demonstrated item modeling, a process to structure content expert 

knowledge into a format that allows for item generation using a template-based 

automatic item generation (T-AIG) approach.  In contrast to a cognitive model, 

which captures a transfer of knowledge from content experts, item models 

incorporate information from the cognitive model into a modular format 

suitable for creating new test items.  An item model is therefore a prototypical 

representation of the set of test items to be generated.  Because current item 

modeling techniques are often criticised for producing items that appear too 

similar to one another, I also introduced and demonstrated the use of a 

modeling technique called n-layer that allows elements to be embedded within 

one another, thereby permitting larger variations between the generated items.  

In my dissertation, I demonstrated the production of four item models using 1-

layer and n-layer modeling techniques in both content areas.  Then, using the 

item generation software IGOR, I demonstrated the third and remaining stage in 
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the SIG framework and described how item models along with binary 

programming constraints can be used to generate desirable items that fit with 

the demands of the cognitive model.  The contribution of my study is to provide 

a comprehensive demonstration on the item modeling and generation processes 

required to produce large numbers of test items from content expert knowledge.  

Moreover, my dissertation results demonstrate how n-layer item models can 

increase both the number of generated items and the variability between 

generated items.  

Evaluating Item Similarity 

After items are generated, the next stage of development often involves 

field testing and evaluating the psychometric properties of the generated items.  

This psychometric analysis is problematic when thousands of test items are 

produced through the AIG process.  Moreover, the psychometric analysis 

provides the developer with information about the statistical characteristics of 

the items but no information is available about the similarity of the generated 

items.  In my dissertation, I proposed and demonstrated a method for evaluating 

text similarity among the generated items from the same item model.  The 

Cosine Similarity Index(CSI) is a measure of the similarity between text for the 

generated items.  To compare text similarity between items, word occurrences 

of each item are vectorized into a set of unique words common across all items.  

To analyze these differences, two approaches can be used.  By systematically 

comparing a random set of generated items in a pairwise manner, the resulting 
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comparisons across all items within a model provides a description of intra-

model differences, or variability of items within the model.  By conducting 

significance tests between results from different models, a summary of inter-

model differences, text variability can be compared between models.  These 

methods of comparisons were used to determine the similarity of each item 

model thereby providing evidence that n-layer models generate items with less 

text similarity.   

Limitations 

No Evaluation or Calibration of Generated Items 

 The purpose of my study was to demonstrate a process to generate test 

items.  Ideally, my study would have included field testing results to evaluate the 

quality of the generated items and provided estimates of their psychometric 

properties.  Item quality can be evaluated using judgments from content 

specialists where the guidelines, conventions, and standards of practice for 

creating multiple-choice items form the basis of scrutinizing the items.  Item 

quality can also be evaluated using a psychometric approach where the items 

are pilot tested to yield information about their statistical characteristics (e.g., p-

values).  The availability of field testing results would have also enabled the 

demonstration of related sibling family method for calibrating generated items.  

Unfortunately, the collection of field testing results required substantial 

resources beyond the scope of my dissertation.  Lai & Gierl (2012) outlined some 
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design features that should be considered when generated items require 

statistical calibration but, to-date, the calibration of generated items using SIG 

framework has not occurred.  As a result, a traditional investigation on 

generated item quality and a summary for estimating the psychometric 

properties of generated items was beyond the scope of this study.  Despite the 

apparent feasibility and potential usefulness of AIG as demonstrated in this 

study, future studies need to collect field test results on the generated items to 

determine the quality of these generated items relative to those items 

developed using a more traditional test development approach.  Moreover, a 

general framework for estimating the psychometric properties of the generated 

items is needed to complete the development process for generated items that 

allows for their operational use.  

Knowledge Modeling Reliant on Content Experts 

 Item writing relies on the knowledge and experience of the content 

experts.  Guidelines provide best practices, common mistakes, and general 

expectations of item writing to ensure content experts have a shared 

understanding of the task at-hand so high-quality test items can be produced 

(Haladyna, 1994; Case & Swanson, 1998).  Current item generation approaches 

assume that content experts are able to express their knowledge in the format 

of the cognitive model.  This assumption is also a limitation of my study and of 

the current approaches to AIG, more generally.  Content experts are assumed to 

be able to express their knowledge in a form that permits item generation.  But 
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more training may be required to extract their knowledge in a manner that is 

captured in the cognitive model.  In other words, while item writing is inherently 

an exercise of deduction (e.g., finding a precise combination of elements and 

expressing them in the form of a test item), content experts may not be 

adequately expressing the same set of required knowledge inductively for 

generation (e.g., defining all possible features given a specific set of diagnoses).  

Although the cognitive modeling methods have been replicated in other areas 

(Gierl, Lai, & Breithaupt, 2012), more evidence is needed to ensure content 

experts are able to elicit their knowledge inductively and provide knowledge in 

the proposed cognitive modeling approach.  In our experience, some content 

specialists are better than others at this inductive reasoning process.  However, 

we don’t know why these skills vary across content specialists or how to more 

effectively teach specialists to use these skills during the cognitive model 

development stage. 

Generation of Distracters 

The item generation process described in my dissertation explicitly 

models for the stem and correct option of each generated item, but it only 

implicitly models for the corresponding incorrect options or distractors.  

However, generating multiple-choice questions require items to not only include 

a stem with a corresponding correct response but also a set of options with the 

corresponding incorrect responses.  Hence, a limitation of this study is a lack of 

methodology for generating distracters.  Incorrect options for multiple-choice 
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items should be “plausible, grammatically consistent, logically compatible, and of 

the same (relative) length as the correct answer” (Case & Swanson, 2001).  In the 

context of item generation, incorrect options should be designed from a list of 

plausible but incorrect alternatives linked to common misconceptions or errors 

in thinking and reasoning.  In sum, when items are generated, a parallel 

generation process is needed to systematically produce the incorrect options for 

each generated item.  Some test development practices require content 

specialists to provide algorithms or sets of rules based on errors or 

misconceptions that can be used to produce distractors.  This type of practice 

allows for systematic distractor generation, which has been demonstrated in a 

small number of quantitatively-based content areas such as mathematics (e.g., 

Lai, Gierl, Alves, 2010).  But for domains such as medicine and for skills such as 

clinical reasoning and medical problem solving, simple rules or well-established 

algorithms are rarely available to model errors in thinking, reasoning, and 

problem solving needed to support systematic distractor generation.  In my 

dissertation, I compiled a list of distracters by presenting all treatment or 

management options associated with the scenarios within the cognitive model.  

With this approach, I was able to generate distractors that were related (e.g., 

through the problem in the cognitive model) but still different from the correct 

option.  Clearly, however, this approach is not sufficient for providing options as 

the availability of distracter, and the relatedness between distracters, are 

dependent on the structure of the cognitive model.  Hence, a more systematic 
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approach for producing distracters is needed.  Currently, no generalized 

approach for developing multiple-choice distracters exists.  Future research must 

therefore be undertaken to develop and evaluate a systematic approach for 

generating distracters which, in turn, can be incorporated into existing item 

generation frameworks. 

Future Directions 

 Item generation is still considered to be a young and promising topic of 

research despite developments in the past 50 years (Haladyna & Gierl, 2012).  

Researchers across different disciplines (e.g., computer science, psychometrics, 

and psychology) have all contributed specific solutions tailored specifically to 

meet the needs in each field.  However, research on item generation has also 

been segmented (Haladyna & Gierl, 2012), yielding many attempts, but little 

impact, to address the demand for new items and correct the deficiencies in our 

current item writing practices.  The goal of my dissertation was to develop and 

demonstrate a framework of item generation that componentializes different 

stages of AIG so test developers can implement the framework.  As the demand 

for item generation solutions become more popular, I foresee three future areas 

of research needed in this field.   

Establishing a Science for Item Generation 

Haladyna (2012, p. 19) noted that “given the gaps in theory and research 

on item generation and the slow and uneven development of AIG dating back to 
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the early 1960s, we have had periodic introductions of prescriptive methods for 

item generation.  These methods have no strong link to any theory but may 

resemble or capitalize on implied technologies from these past attempts at item 

generation”.  That is, Haladyna highlighted the vulnerability of item generation 

development to existing technologies.  He also noted that few theories are 

available to link developments between new AIG efforts.  Recognizing that 

sustained and continual efforts in item generation are needed to ensure its 

success, a science or organized form of development on a body of agreed upon 

knowledge is required.  In other words, a science of item generation is needed.  

This science will promote continual innovations and allow researchers to 

collaborate and refine a unified methodology that is robust to the constant 

change in technology.   

However, it should be noted that addressing the need for a science of 

item generation differs from the assumption that items can be scientifically 

generated.  Although item generation has often been thought of as a 

replacement of human involvement in the item development process, 

established roles of both technology and content experts would suggest that 

both are needed.  Item generation can be viewed as a hybrid approach that 

requires both technological sophistication and content expertise (Gierl & Lai, 

2011).  This collaborative approach requires the artistic expression of content 

expert knowledge in the form of cognitive models with the scientific expression 

of raw computing power to facilitate an iterative process of assembling large 
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numbers of items.  Simply put, item generation requires both the art and science 

in test development to produce large numbers of items.  Moreover, as a science 

of item generation begins to develop, researchers can begin to solve issues 

beyond a scope not limited to a specific, hence technologically dependent, 

generation approach thereby addressing Haladyna’s (2012) recent concern.   

Generating Different Item Types 

 The multiple-choice format is an essential item type for developing 

medical examinations across different content areas and scales of 

administration.  In my demonstration of the item generation framework, 

multiple-choice questions were generated because this format is used on the 

MCCQE-I. It is also the item type most commonly administered in medical 

education in 2012.  But as computer-based testing becomes more pervasive, 

different item types will appear and begin to influence our item development 

practices.  For example, Scalise and Gifford (2006) presented a taxonomy of 28 

innovative item types organized by two dimensions, seven levels student 

involvement was crossed with four levels of response complexity.  As item 

generation begins to produce test items, methods are needed to generate 

different item types.  Currently, generation methods are unique to each item 

type, where few studies have presented unique methods to generate probability 

word problems (Holling, Bertling, & Zeuch, 2009), figural reasoning, where 

unique images are generated for each item for examinees to match (Arendasy, 

2010), in addition to multiple-choice items.  Because the framework presented in 
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my dissertation is not limited to a single item type, future studies can attempt to 

modify the framework by adjusting the generation technology to produce 

different item types.  With a modular approach to the entire item generation 

process, the framework presented in my dissertation can also serve as the initial 

basis for enabling such development.  

Item Model Characteristics  

As item generation becomes capable of producing large numbers of test 

items, more information is needed to describe the generated items.  Currently, 

psychometric methods are available for describing statistical information at the 

item level, but as mentioned in Chapter 2, such information is troublesome to 

produce when large numbers of generated items are available.  Examples of 

estimating and summarizing item model properties do not yet exist.  Therefore, 

methods are needed to describe the characteristics of the generated items at 

the item model level to allow effective administration of the items as an instance 

of the item model.  Further, item model characteristics that go beyond providing 

psychometric information can also allow item models to be used for continuous 

testing.  One example of such information is demonstrated in Chapter 5, where 

text similarity information was summarized between the generated items and 

presented at the item model level.  Information on text similarity can be used to 

avoid the administration of enemy items or items with similar outcomes.  As 

item models created from my framework are expected to generate items that 

probe a set of scenarios related to the same problem, future studies can develop 
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methods to map the content required to enable systematic administration of 

generated items.  In sum, more information is needed at the item model level if 

generation is to be used for testing.   

Conclusion 

Technology is changing the way students interact and learn.  As a result, 

educational testing is also undergoing dramatic changes.  Testing is no longer a 

rite of passage.  Rather, tests can be administered online, regardless of location, 

at any time.  Testing is no longer a summation of the learning process.  Rather, 

testing is used throughout educational process to initiate, refine, and encourage 

learning specific to each student’s needs.  These new demands for testing will 

also affect how we develop test items.  In the future, an unprecedented need for 

testing items, measuring more specific skills and providing more information 

about student learning, will arise.  Item generation is an emerging methodology 

for developing large number of items in an efficient and cost effective manner.  I 

presented and demonstrated a systematic process for generating items that 

begins with content expert knowledge and ends with the creation of new test 

items.  As aspects of test development become well integrated with technology, 

the addition of a systematic generation process to the humanistic task of 

providing content expert knowledge allow items to be created en masse to meet 

assessment demands of the 21st century. 
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Appendix A  

1-Layer Hernia Model 

<?xml version="1.0" encoding="UTF-8"?> 
<Template> 
    <Stem> 
        <Value>A [[AGE]]-year-old [[Gender]] presented with a mass [[Pain]] in [[Location]]. It occured [[AcuityofOnset]]. On 
examination, the mass is [[PhysicalFindings]] and lab work came back with  [[WBC]]. Which of the following is the next 
best step?</Value> 
    </Stem> 
    <Variable name="WBC" type="String"> 
        <Value key="1">normal results</Value> 
        <Value key="2">normal results</Value> 
        <Value key="3">elevated white blood cell count</Value> 
        <Value key="4">normal results</Value> 
    </Variable> 
    <Variable name="PhysicalFindings" type="String"> 
        <Value key="1">pertruding but with no pain</Value> 
        <Value key="2">tender</Value> 
        <Value key="3">tender and exhibiting redness</Value> 
        <Value key="4">tender and reducible</Value> 
    </Variable> 
    <Variable name="AcuityofOnset" type="String"> 
        <Value key="1">a few months ago</Value> 
        <Value key="2">a few hours ago</Value> 
        <Value key="3">a few days ago</Value> 
        <Value key="4">a few days ago after moving a piano</Value> 
    </Variable> 
    <Variable name="Location" type="String"> 
        <Value key="1">the left groin</Value> 
        <Value key="2">right groin</Value> 
        <Value key="3">the umbilicus</Value> 
        <Value key="4">an area near a recent surgery</Value> 
    </Variable> 
    <Variable name="Pain" type="String"> 
        <Value key="1"/> 
        <Value key="2">and intense pain</Value> 
        <Value key="3">and severe pain</Value> 
        <Value key="4">and mild pain</Value> 
    </Variable> 
    <Variable name="Gender" type="String"> 
        <Value key="1">man</Value> 
        <Value key="2">woman</Value> 
    </Variable> 
    <Variable name="AGE" type="Number"> 
        <Range max="60.0" min="25.0" step="5.0"/> 
        <Constraint key="1">([[WBC]]==[[PhysicalFindings]])</Constraint> 
        <Constraint key="1">([[AcuityofOnset]]==[[Pain]])</Constraint> 
        <Constraint key="1">([[WBC]]==[[Pain]])</Constraint> 
    </Variable> 
    <Option group="Key" type="String"> 
        <Value>ice applied to mass </Value> 
    </Option> 
    <Option group="Distractor" type="String"> 
        <Value>hernia repair</Value> 
    </Option> 
    <Option group="Distractor" type="String"> 
        <Value>reduction of mass</Value> 
    </Option> 
    <Option group="Distractor" type="String"> 
        <Value>exploratory surgery</Value> 
    </Option> 
</Template> 
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N-Layer Hernia Model 

<?xml version="1.0" encoding="UTF-8"?> 
<Template> 
    <Stem> 
        <Value>[[Sentence1]] [[Sentence2]] [[Sentence3]]</Value> 
    </Stem> 
    <Variable name="Sentence3" type="String"> 
        <Value key="1">What is the best next step?</Value> 
        <Value key="2">Which one of the following is the best prognosis?</Value> 
        <Value key="3">Given this information, what is the best course of action?</Value> 
    </Variable> 
    <Variable name="Sentence2" type="String"> 
        <Value key="1">On examination, the mass is [[PhysicalFindings]] and lab work came back with  [[WBC]].</Value> 
        <Value key="2">Upon further examination, the patient had [[WBC]] and the mass is [[PhysicalFindings]].</Value> 
        <Value key="3">With [[WBC]] and [[PhysicalFindings]] in the area, the patient is otherwise nominal.</Value> 
        <Value key="4">There is [[PhysicalFindings]] in the [[Location]] and the patient had [[WBC]].</Value> 
    </Variable> 
    <Variable name="Sentence1" type="String"> 
        <Value key="1">A [[AGE]]-year-old [[Gender]] presented with a mass [[Pain]] in [[Location]]. It occured 
[[AcuityofOnset]].</Value> 
        <Value key="2">Patient presents with a mass [[Pain]] in [[Location]] from [[AcuityofOnset]]. The patient is a [[AGE]]-
year-old [[Gender]].</Value> 
        <Value key="3">Patient complaints of a mass [[Pain]] in [[Location]] which has been a problem since 
[[AcuityofOnset]].</Value> 
        <Value key="4">A [[Gender]] was admitted with pain in the [[Location]] from [[AcuityofOnset]].</Value> 
    </Variable> 
    <Variable name="WBC" type="String"> 
        <Value key="1">normal vitals</Value> 
        <Value key="2">normal vitals</Value> 
        <Value key="3">elevated white blood cell count</Value> 
        <Value key="4">normal vitals</Value> 
    </Variable> 
    <Variable name="PhysicalFindings" type="String"> 
        <Value key="1">pertruding but with no pain</Value> 
        <Value key="2">tenderness</Value> 
        <Value key="3">tender and exhibiting redness</Value> 
        <Value key="4">tender and reducible</Value> 
    </Variable> 
    <Variable name="AcuityofOnset" type="String"> 
        <Value key="1">a few months ago</Value> 
        <Value key="2">a few hours ago</Value> 
        <Value key="3">a few days ago</Value> 
        <Value key="4">a few days ago after moving a piano</Value> 
    </Variable> 
    <Variable name="Location" type="String"> 
        <Value key="1">the left groin</Value> 
        <Value key="2">right groin</Value> 
        <Value key="3">the umbilicus</Value> 
        <Value key="4">an area near a recent surgery</Value> 
    </Variable> 
    <Variable name="Pain" type="String"> 
        <Value key="1"/> 
        <Value key="2">and intense pain</Value> 
        <Value key="3">and severe pain</Value> 
        <Value key="4">and mild pain</Value> 
    </Variable> 
    <Variable name="Gender" type="String"> 
        <Value key="1">man</Value> 
        <Value key="2">woman</Value> 
    </Variable> 
    <Variable name="AGE" type="Number"> 
        <Range max="60.0" min="25.0" step="5.0"/> 
        <Constraint key="1">([[WBC]]==[[PhysicalFindings]])</Constraint> 
        <Constraint key="1">([[AcuityofOnset]]==[[Pain]])</Constraint> 



166 
 

 

        <Constraint key="1">([[WBC]]==[[Pain]])</Constraint> 
    </Variable> 
    <Option group="Key" type="String"> 
        <Value>ice applied to mass </Value> 
    </Option> 
    <Option group="Distractor" type="String"> 
        <Value>hernia repair</Value> 
    </Option> 
    <Option group="Distractor" type="String"> 
        <Value>reduction of mass</Value> 
    </Option> 
    <Option group="Distractor" type="String"> 
        <Value>exploratory surgery</Value> 
    </Option> 
</Template> 
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Appendix B 

1-Layer Post-Operative Fever Model  

<?xml version="1.0" encoding="UTF-8"?> 
<Template> 
    <Stem> 
        <Value>A [[Age]]-year-old [[Gender]] has a [[Surgery]].  On post operative day [[Day]], the patient has a temperature 
of [[Temperature]] C.[[Cue]]  Which one of the following is the most likely diagnosis?</Value> 
    </Stem> 
    <Variable name="Cue" type="String"> 
        <Value key="1"/> 
        <Value key="2"/> 
        <Value key="3">Physical examination reveal a red and tender wound at the opening. </Value> 
        <Value key="4"/> 
        <Value key="5"/> 
        <Value key="6">Physical examination reveal tenderness in the abdominal region with guarding and rebound. 
</Value> 
    </Variable> 
    <Variable name="Surgery" type="String"> 
        <Value key="1">gastrectomy</Value> 
        <Value key="2">right hemicholectomy</Value> 
        <Value key="3">left hemicholectomy </Value> 
        <Value key="4">appendectomy</Value> 
        <Value key="5">laparoscopic cholecytectomy</Value> 
    </Variable> 
    <Variable name="Day" type="String"> 
        <Value key="1">3</Value> 
        <Value key="2">2</Value> 
        <Value key="3">4</Value> 
        <Value key="4">3</Value> 
        <Value key="5">4</Value> 
        <Value key="6">6</Value> 
    </Variable> 
    <Variable name="Gender" type="String"> 
        <Value key="1">man</Value> 
        <Value key="2">woman</Value> 
    </Variable> 
    <Variable name="Option3" type="String"> 
        <Value key="1">Urinary tract infection</Value> 
        <Value key="2">Actelectasis</Value> 
        <Value key="3">Wound infection</Value> 
        <Value key="4">Pneumonia</Value> 
        <Value key="5">Deep vein thrombosis</Value> 
        <Value key="6">Deep space infection</Value> 
    </Variable> 
    <Variable name="Option2" type="String"> 
        <Value key="1">Urinary tract infection</Value> 
        <Value key="2">Actelectasis</Value> 
        <Value key="3">Wound infection</Value> 
        <Value key="4">Pneumonia</Value> 
        <Value key="5">Deep vein thrombosis</Value> 
        <Value key="6">Deep space infection</Value> 
    </Variable> 
    <Variable name="Option1" type="String"> 
        <Value key="1">Urinary tract infection</Value> 
        <Value key="2">Actelectasis</Value> 
        <Value key="3">Wound infection</Value> 
        <Value key="4">Pneumonia</Value> 
        <Value key="5">Deep vein thrombosis</Value> 
        <Value key="6">Deep space infection</Value> 
    </Variable> 
    <Variable name="Scenario" type="String"> 
        <Value key="1">Urinary tract infection</Value> 
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        <Value key="2">Atelectasis</Value> 
        <Value key="3">Wound infection</Value> 
        <Value key="4">Pneumonia</Value> 
        <Value key="5">Deep vein thrombosis</Value> 
        <Value key="6">Deep space infection</Value> 
    </Variable> 
    <Variable name="Temperature" type="Number"> 
        <Range max="38.5" min="38.0" step="0.5"/> 
    </Variable> 
    <Variable name="Age" type="Number"> 
        <Range max="70.0" min="40.0" step="30.0"/> 
        <Constraint key="1">[[Scenario]]!=[[Option1]]</Constraint> 
        <Constraint key="1">[[Scenario]]!=[[Option2]]</Constraint> 
        <Constraint key="1">[[Scenario]]!=[[Option3]]</Constraint> 
        <Constraint key="1">[[Option1]]!=[[Option2]]</Constraint> 
        <Constraint key="1">[[Option2]]!=[[Option3]]</Constraint> 
        <Constraint key="1">[[Option1]]!=[[Option3]]</Constraint> 
        <Constraint key="1">([[Cue]]==[[Scenario]])</Constraint> 
        <Constraint 
key="1">(([[Scenario]]!=6)||(([[Scenario]]==6)&amp;amp;&amp;amp;(([[Surgery]]==3)||([[Surgery]]==4))))</Constraint> 
        <Constraint 
key="1">(([[Scenario]]!=1)||(([[Scenario]]==1)&amp;amp;&amp;amp;([[Surgery]]&amp;lt;4)))</Constraint> 
        <Constraint key="1">(([[Scenario]]!=2)||(([[Scenario]]==2)&amp;amp;&amp;amp;([[Surgery]]!=4)))</Constraint> 
        <Constraint 
key="1">(([[Scenario]]!=3)||(([[Scenario]]==3)&amp;amp;&amp;amp;([[Surgery]]&amp;gt;3)))</Constraint> 
        <Constraint 
key="1">(([[Scenario]]!=4)||(([[Scenario]]==4)&amp;amp;&amp;amp;([[Surgery]]&amp;lt;4)))</Constraint> 
        <Constraint 
key="1">(([[Scenario]]!=5)||(([[Scenario]]==5)&amp;amp;&amp;amp;(([[Surgery]]==1)||([[Surgery]]==5))))</Constraint> 
        <Constraint key="1">([[Day]]==[[Scenario]])</Constraint> 
    </Variable> 
    <Option group="Key" type="String"> 
        <Value>[[Scenario]]</Value> 
    </Option> 
    <Option group="Distractor" type="String"> 
        <Value>[[Option1]]</Value> 
    </Option> 
    <Option group="Distractor" type="String"> 
        <Value>[[Option2]]</Value> 
    </Option> 
    <Option group="Distractor" type="String"> 
        <Value>[[Option3]]</Value> 
    </Option> 
</Template> 
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N-Layer Post-Operative Fever Model 

<?xml version="1.0" encoding="UTF-8"?> 
<Template> 
    <Stem> 
        <Value>[[Situation]] [[Scenario.PhysicalExamination]] [[Question.cue]]</Value> 
    </Stem> 
    <Variable name="Question.cue" type="String"> 
        <Value key="1">Which one of the following is the most likely diagnosis for this patient?</Value> 
        <Value key="2">Which one of the following is the best next step for this patient?</Value> 
    </Variable> 
    <Variable name="Situation" type="String"> 
        <Value key="1">A [[Age]]-year-old woman has a [[Surgery]].  On post operative day [[Scenario.TimingOfFever]] she 
has a temperature of 38.5 C.</Value> 
        <Value key="2">A [[Age]]-year-old patient who had a [[Surgery]] had a fever of 38.6 C on post-operative day 
[[Scenario.TimingOfFever]].</Value> 
    </Variable> 
    <Variable name="Scenario.PhysicalExamination" type="String"> 
        <Value key="1"/> 
        <Value key="2"/> 
        <Value key="3">Physical examination reveal a red and tender wound at the opening. </Value> 
        <Value key="4"/> 
        <Value key="5"/> 
        <Value key="6">Physical examination reveal tenderness in the abdominal region with guarding and rebound. 
</Value> 
    </Variable> 
    <Variable name="Surgery" type="String"> 
        <Value key="1">gastrectomy</Value> 
        <Value key="2">right hemicholectomy</Value> 
        <Value key="3">left hemicholectomy </Value> 
        <Value key="4">appendectomy</Value> 
        <Value key="5">laparoscopic cholecytectomy</Value> 
    </Variable> 
    <Variable name="Scenario.TimingOfFever" type="String"> 
        <Value key="1">3</Value> 
        <Value key="2">2</Value> 
        <Value key="3">4</Value> 
        <Value key="4">3</Value> 
        <Value key="5">4</Value> 
        <Value key="6">6</Value> 
    </Variable> 
    <Variable name="Option3.man" type="String"> 
        <Value key="1">Antibiotics</Value> 
        <Value key="2">Mobilize </Value> 
        <Value key="3">Reopen wound</Value> 
        <Value key="4">Antibiotics</Value> 
        <Value key="5">Anti coagulation</Value> 
        <Value key="6">Drainage</Value> 
    </Variable> 
    <Variable name="Option3.diag" type="String"> 
        <Value key="1">Urinary tract infection</Value> 
        <Value key="2">Actelectasis</Value> 
        <Value key="3">Wound infection</Value> 
        <Value key="4">Pneumonia</Value> 
        <Value key="5">Deep vein thrombosis</Value> 
        <Value key="6">Deep space infection</Value> 
    </Variable> 
    <Variable name="Option2.man" type="String"> 
        <Value key="1">Antibiotics</Value> 
        <Value key="2">Mobilize </Value> 
        <Value key="3">Reopen wound</Value> 
        <Value key="4">Antibiotics</Value> 
        <Value key="5">Anti coagulation</Value> 
        <Value key="6">Drainage</Value> 
    </Variable> 
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    <Variable name="Option2.diag" type="String"> 
        <Value key="1">Urinary tract infection</Value> 
        <Value key="2">Actelectasis</Value> 
        <Value key="3">Wound infection</Value> 
        <Value key="4">Pneumonia</Value> 
        <Value key="5">Deep vein thrombosis</Value> 
        <Value key="6">Deep space infection</Value> 
    </Variable> 
    <Variable name="Option1.man" type="String"> 
        <Value key="1">Antibiotics</Value> 
        <Value key="2">Mobilize </Value> 
        <Value key="3">Reopen wound</Value> 
        <Value key="4">Antibiotics</Value> 
        <Value key="5">Anti coagulation</Value> 
        <Value key="6">Drainage</Value> 
    </Variable> 
    <Variable name="Option1.diag" type="String"> 
        <Value key="1">Urinary tract infection</Value> 
        <Value key="2">Actelectasis</Value> 
        <Value key="3">Wound infection</Value> 
        <Value key="4">Pneumonia</Value> 
        <Value key="5">Deep vein thrombosis</Value> 
        <Value key="6">Deep space infection</Value> 
    </Variable> 
    <Variable name="Scenario.man" type="String"> 
        <Value key="1">Antibiotics</Value> 
        <Value key="2">Mobilize </Value> 
        <Value key="3">Reopen wound</Value> 
        <Value key="4">Antibiotics</Value> 
        <Value key="5">Anti coagulation</Value> 
        <Value key="6">Drainage</Value> 
    </Variable> 
    <Variable name="Question.Scenario" type="String"> 
        <Value key="1">[[Scenario.diag]]</Value> 
        <Value key="2">[[Scenario.man]] </Value> 
    </Variable> 
    <Variable name="Question.Op1" type="String"> 
        <Value key="1">[[Option1.diag]]</Value> 
        <Value key="2">[[Option1.man]] </Value> 
    </Variable> 
    <Variable name="Question.Op2" type="String"> 
        <Value key="1">[[Option2.diag]]</Value> 
        <Value key="2">[[Option2.man]] </Value> 
    </Variable> 
    <Variable name="Question.Op3" type="String"> 
        <Value key="1">[[Option3.diag]]</Value> 
        <Value key="2">[[Option3.man]] </Value> 
    </Variable> 
    <Variable name="Scenario.diag" type="String"> 
        <Value key="1">Urinary tract infection</Value> 
        <Value key="2">Atelectasis</Value> 
        <Value key="3">Wound infection</Value> 
        <Value key="4">Pneumonia</Value> 
        <Value key="5">Deep vein thrombosis</Value> 
        <Value key="6">Deep space infection</Value> 
    </Variable> 
    <Variable name="Age" type="Number"> 
        <Range max="58.0" min="43.0" step="4.0"/> 
        <Constraint key="1">[[Scenario]]!=[[Option1]]</Constraint> 
        <Constraint key="1">[[Scenario]]!=[[Option2]]</Constraint> 
        <Constraint key="1">[[Scenario]]!=[[Option3]]</Constraint> 
        <Constraint key="1">[[Option1]]!=[[Option2]]</Constraint> 
        <Constraint key="1">[[Option2]]!=[[Option3]]</Constraint> 
        <Constraint key="1">[[Option1]]!=[[Option3]]</Constraint> 
        <Constraint 
key="1">(([[Scenario]]!=6)||(([[Scenario]]==6)&amp;amp;&amp;amp;(([[Surgery]]==3)||([[Surgery]]==4))))</Constraint> 
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        <Constraint 
key="1">(([[Scenario]]!=1)||(([[Scenario]]==1)&amp;amp;&amp;amp;([[Surgery]]&amp;lt;4)))</Constraint> 
        <Constraint key="1">(([[Scenario]]!=2)||(([[Scenario]]==2)&amp;amp;&amp;amp;([[Surgery]]!=4)))</Constraint> 
        <Constraint 
key="1">(([[Scenario]]!=3)||(([[Scenario]]==3)&amp;amp;&amp;amp;([[Surgery]]&amp;gt;3)))</Constraint> 
        <Constraint 
key="1">(([[Scenario]]!=4)||(([[Scenario]]==4)&amp;amp;&amp;amp;([[Surgery]]&amp;lt;4)))</Constraint> 
        <Constraint 
key="1">(([[Scenario]]!=5)||(([[Scenario]]==5)&amp;amp;&amp;amp;(([[Surgery]]==1)||([[Surgery]]==5))))</Constraint> 
    </Variable> 
    <Option group="Key" type="String"> 
        <Value>[[Question.Scenario]]</Value> 
    </Option> 
    <Option group="Distractor" type="String"> 
        <Value>[[Question.Op1]]</Value> 
    </Option> 
    <Option group="Distractor" type="String"> 
        <Value>[[Question.Op2]]</Value> 
    </Option> 
    <Option group="Distractor" type="String"> 
        <Value>[[Question.Op3]]</Value> 
    </Option> 
</Template> 

 


