Laboratory Studies on Trophic Effects and Fish Health

May, 1996

Prepared for:

TD 195

EIA

L12 1996 c.2

038 5814

Alberta Environmental Protection Librory

This report is one of a series of reports prepared for Suncor Inc. Oil Sands Group for the Environmental Impact Assessment for the development and operation of the Steepbank Mine, north of Fort McMurray, Alberta. These reports provided information and analysis in support of Suncor's application to the Alberta Energy Utilities Board and Alberta Environmental Protection to develop and operate the Steepbank Mine, and associated reclamation of the current mine (Lease 86/17) with Consolidated Tailings technology.

For further information, please contact:

Manager, Regulatory Affairs Suncor Oil Sands Group P.O. Box 4001 Fort McMurray, AB T9H 3E3

Reports Prepared for the Steepbank Mine Environmental Assessment

Technical Reports

LABORATORY STUDIES ON TROPHIC LEVEL EFFECTS AND FISH HEALTH EFFECTS OF SUNCOR TAR ISLAND DYKE WASTEWATER

Prepared for:

Suncor Inc., Oil Sands Group P.O. Box 4001 Fort McMurray, Alberta T9H 3E3

Prepared by :

HydroQual Laboratories Ltd. #3, 6125 - 12 Street S.E., Calgary, Alberta T2H 2K1

May 8, 1996

WRITTEN ON 95/12/01 BY MG/SG HYDROQUAL LABORATORIES LTD. REVISED ON 96/05/08 BY SG

FILE: 95030REV.DOC

EXECUTIVE SUMMARY

Laboratory studies were conducted on Suncor Tar Island Dyke wastewater and Athabasca River water to:

- assess effects on major trophic components of aquatic ecosystems,
- assess effects on the general condition and health of fish, and
- relate chemical characteristics to measured responses.

Trophic level effects were assessed with a battery of acute and chronic Environment Canada Test Methods with species representative of major trophic levels in aquatic systems. The test battery included a microbe, plant, invertebrates and fish. Three samples of Tar Island Dyke water and Athabasca River water were tested over a three month period. The samples were not toxic to algae and *Daphnia*. Tar Island Dyke water was moderately lethal to fish, inhibited bacterial luminescence and affected reproduction in *Ceriodaphnia*. Athabasca River water was marginally toxic to fish and inhibited reproduction in *Ceriodaphnia*. The toxicity measured in the trophic level effects tests was considered moderate, as opposed to extreme, and with dilution Tar Island Dyke water will have little or no impact on major trophic components of aquatic ecosystems.

Fish condition and health are recognized indicators of ecosystem conditions and overall health. Fish health effects were assessed by exposing fish to a range of Tar Island Dyke concentrations and Athabasca River water under controlled laboratory conditions for periods of 7 and 28 days (two tests). Positive and negative controls were included in the experimental design. Fish health effects were assessed based on a number of observations and biomarkers including a thorough internal and external examination, measurment of selected blood parameters (lactate, hemoglobin, glucose, protein, hematocrit), histopathological assessment of selected tissues and organs, and analysis of liver mixed function oxidase activity.

Challenge tests were conducted on fry reared in each treatment for 28 days and included disease resistance, swimming stamina, and growth. No growth effects were noted although the fish in Athabasca River water were larger overall (grew better). However, the fish and fry exposed to β -naphthoflavone were less able to resist the pathogen, *Vibrio anguillarum* and had less overall swimming endurance.

Short and long term exposures to Tar Island Dyke water and Athabasca River water had little to no effect on all external and internal morphological and anatomical characteristics assessed. There were some slight changes in blood and plasma constituents associated with the conditions that were visibly stressful to the fish (10% Tar Island Dyke and naphthenic acids in the 28 day test, and 50% Tar Island Dyke water in the 7 day test). However, these differences and observations of fish condition did not indicate a potential for longer term, chronic impairment of fish health.

Mixed function oxidase activity in fish livers were measured by Dr. J. Parrott of the National Water Research Institute and EnviroTest Laboratories (split samples from the 28 day test). Semipermeable membrane devices (SPMD) were deployed in each tank (7 and 28 day tests). Extracts were tested with hepatic cell cultures for MFO induction by Dr. J. Parrott.

Levels of mixed function oxidase activity were induced in livers from fish exposed to β naphthoflavone and 10% Tar Island Dyke, relative to the Athabasca River (28 day test). Very little induction was noted after the 7 day exposure. (results for fish livers from the 28 day test and the SPMD extracts were not available at the time of writing).

A histopathological assessment of the fish from the 28 day test exposed to Athabasca River, 10% Tar Island Dyke and naphthenic acids was done by Dr. C. Rousseaux and Dr. R. Muller. The pathology observed in the 10% Tar Island Dyke and naphthenic acids was consistent with but not diagnostic of toxicity. No conclusions were made on the condition of fish exposed to Athabasca River water.

These findings support the conclusion that with moderate dilution, Tar Island Dyke water will have little to no sublethal, chronic effects on fish health and condition.

WRITTEN ON 95/12/01 BY MG/SG HYDROQUAL LABORATORIES LTD.

TABLE OF CONTENTS

PAGE

EXEC		SUMMARY	i		
TABLE OF CONTENTS					
1.0					
2.0	QUALITY ASSURANCE				
3.0	TEST	METHODS	9		
	3.1	3.1 Sample Collection. Storage. and Disposal			
	3.2	Trophic Level Testing	. 11		
	3.3	Fish Health Effects	. 13		
	3.3.1	Fish Exposure Unit (FEU)	. 14		
	3.3.2	Exposure and Monitoring	. 16		
	3.3.3	Effects Assessment in Juvenile Trout and Walleye	. 18		
	3.3.3.1	1 Necropsy	. 19		
	3.3.3.2	2 Hematology	. 19		
	3.3.3.3	3 Tissue Residue Analysis and Dry Weights	. 22		
	3.3.3.4 Analysis of Fish Liver Mixed Function Oxidase Activity		. 22		
	3.3.3.5 Histopathological Assessment		. 23		
	3.3.4	Calling Test on Larval Trout	. 23		
	3.3.4 .1	I Growth	. 24		
	3.3.4.2	2 Disease Resistance	. 24		
	3.3.4.3 Swimming Stamina		. 26		
	3.4	Chemical Characterization	. 27		
4.0	RESULTS AND DISCUSSIONS				
	4.1	Sample Collection, Transport and Storage	. 28		
	4.2	Trophic Effects Assessment	. 29		
	4.3	Fish Health Effects	. 31		
	4.3.1	General Test Conditions and Observations	. 32		
	4.3.2	Effects Assessment in Trout and Walleye	. 34		
	4.3.2.1	Necropsy	. 35		

	4.3.2.2 Hematology	37		
	4.3.2.3 Induction of Liver Mixed Function Oxidases			
	4.3.2.4 Histopathological Assessment 4.3.2.5 Assessment of Growth, Disease Resistance, and			
	Swimming Stamina in Larval Fish	41		
	4.4 Chemical Characterization of Tar Island Dyke Water and Fish Analysis	44		
5.0	CONCLUSIONS AND RECOMMENDATIONS	45		
	5.1 Conclusions	45		
	5.2 Recommendations	46		
6.0	REFERENCES	48		
7.0	APPENDICES			
	Trophic effects test reports			
	Water quality data for 7 and 28 day exposures			
	Summary data sheets for 7 and 28 day exposures			
	Necropsy summary data sheets			
	Liver mixed function oxidase results for 7 and 28 day tests			
	Histopathological assessment by GlobalTox International Inc.			
	Challenge test data sheets			
	Chemical analyses of Tar Island Dyke water			

•

LIST OF TABLES

- **Study Specific Quality Assurance Practices** Table 1 Sample Collection Dates and List of Tests Performed Table 2 Battery of Acute and Chronic Tests Applied to Suncor Wastewater and Table 3 Athabasca River Water **Test Specific Quality Control Criteria** Table 4 Table 5 **Dilution Water Chemistry** Parameter List for Fish Autopsy Procedure Table 6 Selected Water Quality Data and Other Information on Test Samples Table 7 Summary of Acute and Chronic Test Results for Tar Island Dyke and Table 8 Athabasca River Water Samples Water Quality Data Summary for 7 and 28 Day Tests Table 9 Table 10 Survival of Walleye, Trout and Larval Trout Following the 7 and 28 Day Exposures Table 11 Summary of Necropsy Results on the Large Trout from the 7 and 28 Day **Exposures** Body Condition Factors and Liver Somatic Indices for Trout and Walleve Table 12 from the 7 and 28 Day Tests and Body Conditions for Larval Trout (28 Day Test) Table 13 Induction of Liver Mixed Function Oxidase Activity in Trout from the 7 and 28 Day Exposures Table 14 Summary of Challenge Test Results on Larval Trout from the 28 Day Exposure LIST OF FIGURES Figure 1. Method for the Transport and Handling of Large Samples
- Figure 2. General Overview of Fish Exposure Unit (FEU)
- Figure 3. Photographs of the Fish Exposure Unit (FEU)
- Figure 4. Fish Processing Flow Chart
- Figure 5. Disease Resistance Challenge Test
- Figure 6. Swimming Stamina Challenge Test

- Figure 7. Photographs of the Walleye (a) and Trout in the Laboratory Control Tanks
- Figure 8. Photograph of a SPMD Deployed in a Tank (a) and Removal from the Holding Net (b)

1.0 INTRODUCTION

A detailed understanding of the effects of release and discharge waters on major trophic levels in aquatic systems (i.e. algae, zooplankton and fish) is essential in gaining regulatory approval for the expansion of Suncor's Oil Sands Operation in Northern Alberta. The best method for assessing potential impacts is through a combination of field, laboratory and applied modeling studies. A major emphasis is placed on fish because of their position at the top of the food chain in aquatic systems. As such, they are generally considered excellent indicators of ecosystem health.

Biotic and abiotic factors can, indirectly and directly, individually and collectively be stressful to fish. Physiological stress diverts energy from other critical functions and can have a longer term effect on the general health and condition of the individual and in turn populations. No single parameter can be used to assess the general health and condition of fish. However, morphological and anatomical observations and measurements are extremely useful for derivation of health condition indices. Changes in these characteristics are often a result of longer term changes in biochemical and physiological processes.

Very few studies have unequivocally linked an environmental stressor on a molecular basis to longer term, higher level changes in morphological and anatomical characteristics, organism survival, population and ecosystem effects. This is a result of the complexity, interconnectiveness, and redundancy of biochemical and physiological process, in living organisms, and how these processes respond to changing environmental conditions (ecosystem structure and function).

The objective of the field study was to measure and document existing conditions around Suncor's operation with emphasis being placed on fish populations. The laboratory studies focused on 1) quantifying potential ecosystem effects through a battery of acute and chronic tests with species representative of major trophic levels in aquatic systems, and 2) assessment of fish health effects. The later was done by exposing fish to Suncor wastewater under controlled laboratory conditions. Information

from the laboratory exposures on potential stressors affecting fish health may also be used to verify field observations.

Results from both the field and laboratory studies were integrated through fate and effects simulation models.

The field and modeling studies will be reported elsewhere. This document covers laboratory investigations conducted on Suncor, Tar Island Dyke water and Athabasca River water. The objectives of the laboratory study reported were to:

- assess acute and chronic effects on species representative of major trophic levels in freshwater systems,
- assess sublethal effects on fish health and monitor selective biochemical and physiological responses, and
- provide a chemical characterization of the wastewater.

Trophic level effects were assessed using a test battery consisting of a microbe, plant, invertebrate, and fish. All major trophic levels were represented with the test battery. Plants convert chemical energy and light into biomass and they serve as a major food source for invertebrates and some fish. The invertebrates convert plant matter and detritus into biomass and they are a major food source for fish. Effects detected at each level could indicate potential impacts on receiving water ecosystem structure and function. However, the results must be interpreted in the context of site specific conditions.

The test battery applied to the Suncor wastewaters incorporated standard test methods developed by Environment Canada for assessment of acute or chronic toxicity in freshwater. The acute tests included:

- bacterial luminescence (Vibrio fischeri)
- survival of the crustacean, Daphnia magna
- survival of rainbow trout, Oncorhynchus mykiss

The chronic tests were:

- algal growth inhibition with Selenastrum capricornutum
- survival and reproduction in the crustacean, Ceriodaphnia dubia
- survival and growth of larval fathead minnows, Pimephales promelas

Acute effects are measured over relatively short time periods compared to the life span of the test organism (usually a time period less than 10% of the life span). Lethality is often measured as an endpoint in acute tests. Sublethal, chronic effects are manifested over longer exposure periods and can include developmental effects, growth and reproduction along with various other biochemical, physiological, behavioral, and genetic endpoints. The test battery was applied to each wastewater collected for the 7 and 28 day tests, along with all batches of Athabasca River water.

The sublethal, chronic effects on fish were assessed based on physiological, biochemical and health related indices. Short term biochemical and physiological responses can lead to longer term changes in anatomical and morphological characteristics. Health effect indicators incorporated in the study design included both short term responses and longer term effects on the organism. The short term response indicators were changes in liver mixed function oxidase activity, and levels of plasma glucose, protein and lactic acid. Longer term effects were assessed through and internal and external examination of exposed fish, changes in organ characteristics, tissue moisture contents, hematocrit and hemoglobin levels, differential cell counts and challenge test with larval fry (growth, disease resistance, and swimming stamina).

Analysis of MFO induction in the trout and walleye, and with extracts of the SPMD's (see below) were done by Dr. J. Parrott of the National Water Research Institute (NWRI), Burlington. Liver samples for MFO analysis were also sent to EnviroTest Laboratories for quality assurance purposes. Tissue samples of juvenile walleye and trout from the 28 day test were sent to Dr. C. Rousseaux for histopathological

assessment. Although these reports and data are included here, it is beyond the scope of this study to interpret third party results.

The final component of the study was a chemical characterization of the wastewaters. Samples were submitted to EnviroTest Laboratories Ltd. and Chemex Laboratories Ltd. for analysis of Oil Sands related target compounds. These data were required for interpretation of the biological response data.

An additional component of the characterization was the inclusion of semipermeable membrane devices in the experimental design (SPMD; Environmental Sampling Technologies, St. Joseph, MI). The device is a semipermeable membrane similar to dialysis tubing, roughly 25 mm wide and one meter long containing one gram of purified lipid material. The lipid material passively accumulates fat soluble substances; the final concentration or partitioning is determined by the solubility of the material. In a flow through test, accumulation of material is limited by the capacity of the lipid since the test solutions are continuously renewed. The SPMD provides an indication of potential bioaccumulable materials. Uptake is the first step in response initiation and a comparison of the type and amounts of materials accumulated in the SPMDs with tissue residues will help in assessment of measured short and long term health effects.

The overall study design included both short and long term exposures. The short term exposure was done over a 7 day period. The full battery of acute and chronic trophic level tests were conducted on the samples. Fish health effects were done on three sizes of trout, (5 to 10 g and 50 to 100g) juvenile trout, and larval sac fry and walleye (5 to 10 g) exposed to a broad range of wastewater concentrations (0.1%, 1%, 10%, and 50%), Athabasca River water, laboratory dilution water (negative control) and two positive controls (naphthenic acids and β -naphthoflavone or BNF). Semipermeable membrane devices were also included in the study design. The complete suite of fish health condition factors were examined at the end of the 7 day exposure. Challenge tests on the larval trout were, however, not done because the period of exposure was too short to obtain meaningful results (growth, swimming stamina and disease resistance).

The long term test (28 days) involved the same basic design. However, the number of walleye per treatment was increased from 3 to 10 and smaller juvenile trout (5 - 10 g) were omitted. The trophic effects tests and all components of the fish health effects were included in the 28 day study. Further, the 50% Tar Island Dyke treatment was replaced with a 0.01% treatment because 50% was acutely lethal to fish and the emphasis of the study was on sublethal, chronic effects.

The report is divided into four major sections dealing with Quality Assurance, Methods, Results and Discussion, and Conclusions and Recommendations. Each section is then divided into, trophic level testing, fish health effects and chemical analyses. Work completed by other agencies and individuals was incorporated into the appropriate sections and or appended.

2.0 QUALITY ASSURANCE

A Quality Assurance Plan was developed for the laboratory investigations and covered all aspects of every test from collection and receipt of sample to analyses of test data. The objective of the Plan was to ensure that test data met predefined performance standards. This was accomplished through a continuous review and update of methods, practices and policies. Control practices measure performance and allow independent assessment of quality assurance.

Components of the QAP developed for the laboratory investigations were:

- detailed methods document
- chain of custody forms
- in-life audits
- independent review and verification of data

The method document contains Standard Operating Procedures (SOP) for conducting each element of the laboratory investigation. This can include formal HydroQual SOP's

for routine tests and procedures, copies of standard test methods, generic methods, references and notes. It was a working document, subject to continual review and revision depending on study needs. There were also specific Quality Assurance practices built into each method (summarized in Table 1).

A complete paper trail was kept on all samples and biological materials. This covered the initial collection, holding and final disposal of water and test organisms. In some cases, tissues were forwarded to third parties for analysis and inspection. Chain of custody and shipping documents covering all movements were logged and archived.

In-life audits were conducted during both the short and long term tests. These were designed to insure that data collection procedures were being followed and that data quality objectives were being met. Data reviews were also conducted after test termination and all data was independently checked and verified.

3.0 TEST METHODS

Two tests were done on Tar Island Dyke and Athabasca River water. The short term, 7 day test was initiated on 95/08/30 and terminated on 95/09/07. All assessments of fish health and related parameters except differential blood cell counts and the challenge tests were completed on the exposed fish. Two sizes of juvenile trout (5- 10 g and 50 - 100 g), larval trout, and juvenile walleye (5-10 g) were used. Walleye were included in the test design because they were identified as an important native species in the Athabasca River.

The main objective of the 7 day test was to define optimal exposure conditions for the 28 day test. The range of test treatments extended from acute lethality to a level believed below the concentration that would have any measurable effect on aquatic life (NOEC). Positive and negative controls were also included in the study design. The positive controls were β -naphthoflavone (BNF) and naphthenic acids (1 mg/L). The β -naphthoflavone was injected into the peritoneal cavity at the commencement of the test

at an approximate dose of 10 μ g/g fish. The naphthenic acids were administered in solution through a peristaltic pump (constant flow).

The conditions and procedures in the 28 day test were the same as the 7 day test with the following exceptions:

- differential blood cell counts were made on blood from the large trout
- challenge tests were conducted on the exposed larval fry
- 10 g trout were not included
- the 50% Tar Island Dyke treatment was replaced with 0.01%

The methods section is divided into four parts dealing with each major study component and includes sample collection, trophic effects testing, fish health effects assessment, and chemical characterization.

3.1 Sample Collection, Storage, and Disposal

Sample collection dates and trophic test summaries are presented in Table 2. Tar Island Dyke water was the Suncor wastewater selected for the initial testing. This is water that seeps through the sand dyke holding tailings from the mining operation. It is collected in two physically separate areas and required compositing of the sample for testing.

The quality of the Tar Island Dyke wastewater can vary over time and it was important to obtain a representative sample. For this reason, smaller samples were tested before collection of the larger volume for the flow through test. This was to help establish upper treatment levels, confirm toxicity, and to determine volume requirements. Less volume would be required for more toxic samples and the emphasis was on sublethal rather than acute effects.

One trip was made to collect the large sample of Tar Island Dyke and Athabasca River water for the 7 day test; two trips were required for the 28 day test. The samples were

collected in 2 or 5 m³ polyethylene tanks. The tanks were shipped on a flatbed trailer by Bear Trucking Ltd. and the samples were received at HydroQual Laboratories Ltd. within 12 hours of collection. The samples were pumped immediately into polyethylene holding tanks located in the facility and stored under ambient conditions until used (Figure 1).

The tanks were precleaned before collection of the samples with Sparkleen followed by numerous rinses with laboratory dilution water. The tanks were not rinsed with an organic solvent. Each tank was labeled and specifically used for only one type of sample. The pumps and hose were thoroughly rinsed after each set of samples. The Athabasca River water was downloaded first, followed by the Tar Island Dyke sample. The pump and hose were completely drained after pumping the river water to minimize carryover.

During the test and at test termination all sample was discharged to sewer with dilution in compliance with the City of Calgary By-laws.

3.2 Trophic Level Testing

A battery of acute and chronic tests were run on each sample of Tar Island Dyke and Athabasca River water. The test organisms were species representative of major trophic levels in aquatic systems and included microbes, plants, invertebrates, and vertebrates. Two levels of testing were done; screening and definitive. Screening tests were done on the undiluted sample and they provided some indication as to whether the sample was toxic or not. The definitive tests included five or more treatment levels plus a control. These tests provide a measure of the intensity or potency of sample toxicity.

All trophic level tests were done according to established Environment Canada Test Methods all validity criteria were met (summarized in Table 3). Test validity criteria are performance standards for the acceptance of test data and results (Quality Control

program). Reference toxicants tests were run with each test monthly or more frequently (Table 4).

All endpoints were determined using computer programs and standard methods recommended by Environment Canada. The test concentration causing a 25 and 50% change in the response variable were calculated with the method appropriate to the data (Probit, binomial, Bootstrap, Logit, interpolation, etc.). The dose or response variables included lethality (LCx), inhibition (ICx), and effective concentrations (ECx).

The no observed and lowest observed effect concentrations (NOEC and LOEC) were also determined for all tests except bacterial luminescence. The NOEC and LOEC were obtained with the computer program TOXSTAT (Ver 3.4; West Inc. and Gulley, 1994). The statistical method was selected based on the distribution and variance of the data.

The test data, quality assurance information, endpoints and all statistical procedures were documented in the test reports.

3.3 Fish Health Effects

Fish health effects were assessed based on a number of biochemical and physiological measurements, and internal and external observations on selected features and characteristics, and challenge tests, along with survival and behavioral observations. All effects have a molecular basis which is manifested into biochemical, physiological and organismic level responses. Measurements at different levels provide greater insight into the chemical or physical nature of the stress. No single parameter can provide comprehensive information on the general health and condition of an organism exposed to environmental stress. Hence, a number of parameters (biomarkers) must be interpreted collectively.

Large trout were incorporated into the 7 day and 28 day tests to permit sampling and analyses of blood. These fish and the smaller juvenile walleye were measured and

weighed, examined externally and internally (necropsy), their livers were removed and the tissue preserved for histopathological assessment (28 day test only). Muscle samples were also taken for residue analysis and dry weights.

Sac-fry exposed and grown to swim up in each treatment were used to assess growth, disease resistance and swimming stamina in a series of challenge tests. These are more generic measurements of fish condition that are largely affected by many biochemical and physiological processes.

The following test conditions were assessed:

- Laboratory control
- Athabasca River water (undiluted)
- Tar Island Dyke water (0.01%, 0.1%, 1.0%, 10%, and 50%)
- mg/L naphthenic acids
- β -naphthoflavone (10 μ g/L)

The 50% Tar Island Dyke in laboratory dilution water was only included in the 7 day test because it was found acutely toxic and the focus of the study was on sublethal effects. This treatment was replaced with a 0.01% Tar Island Dyke treatment in the 28 day exposure.

β-naphthoflavone and naphthenic acids were incorporated into the study design as positive controls. β-naphthoflavone was injected into the peritoneal cavities of larger, juvenile trout in the 7 day test, at a dose rate of 10 µg per gram of fish. The β-naphthoflavone was solubilized and injected in a corn oil solution (controls were injected with corn oil alone). β-naphthoflavone was obtained from Aldrich Chemical Company Inc. (Lot No. 093103X). In the 28 day test, a solution of β-naphthoflavone in methanol was added daily to the tank to obtain a final nominal exposure concentration of 10 µg/L. This was the same procedure used by Dr. J. Parrott for induction of liver MFO in small trout.

The treatment level for naphthenic acids was set at 1 mg/L. In the short term exposure, a solution of naphthenic acids in tap water was metered into the treatment tank with dilution to obtain the final desired test concentration. Solutions had to be prepared fresh every one to two days. This method was changed in the 28 day exposure. A volume of a concentrated solution of naphthenic acids was added daily to achieve a 1 mg/L dose rate. The naphthenic acids salt was obtained from Syncrude Canada Ltd. and manufactured by Eastman Kodak Company (Lot No.B142134).

The fish exposure unit (FEU) is described first followed by details on each component of the fish health assessment.

3.3.1 Fish Exposure Unit (FEU)

The fish exposure unit consists of eight 200 L and eight 400 L glass aquaria fitted with standpipes to regulate water levels. A 20 L square acrylic container with a perforated bottom was held in place, half submerged on one side of the large tanks, to hold the fry (termed fry vessel).

The dilution water was dechlorinated City of Calgary water (chemical profile Table 5). Major physical and chemical parameters were similar to those for Athabasca River water.

A dilution water line was run from a 400 L header tank down along each set of eight test tanks and back to the header tank. A submersible pump connected to one end of the line was used to maintain a constant flow and back pressure. Above each tank, there was a line off the main dilution water loop fitted with an adjustable valve. Flow was directed into the fry vessel and then out through the side-wall mounted stand pipe. The stand pipes were connected with a flexible hose to a common drain.

The samples of Tar Island Dyke and Athabasca River water were delivered in a similar manner with submersible pumps connected to lines running around the treatment

tanks. Lines off the loop were fitted with adjustable valves for flow control. The sample and dilution water lines were connected in such a way as to facilitate complete mixing (dilution) of the influent streams before entering the tank.

Flows were measured with a calibrated flow meter and confirmed gravimetrically and volumetrically. Flow checks and adjustments were also done twice daily initially and then less frequently as required. Day to day variations in flow rates did not exceed 5%. Flow rates were adjusted to give two tank volume exchanges per day. Volume through puts were also confirmed from daily measurements of the amount of sample volume used (measured off of storage tanks).

All tanks were aerated at rates not exceeding 7.5 mL/min per liter of solution using oil free, compressed air. Two diaphragm pumps were dedicated to the FEU tanks (one pump for each set of eight tanks).

Dilution water temperature was regulated with a chiller unit on the header tank. The sample holding tanks were not fitted with chillers. Ambient conditions were close to the desired test temperature ($15 \pm 2^{\circ}$ C).

Overhead lighting was provided with cool-white fluorescent tubes with a sixteen hour light and eight hour dark photoperiod. Light intensity at the water surface was less than 400 lux. The entire FEU was in a specially constructed, elevated and insulated enclosure. Access was restricted and all attempts were made to minimize disruption throughout the tests. All activity was confined to one to two hours every morning and one hour in the late afternoon.

The basic layout of the FEU is illustrated in Figure 2. Photographs of the system and the fry vessel are shown in Figure 3.

3.3.2 Exposure and Monitoring

WRITTEN ON 95/12/01 BY MG/SG HYDROQUAL LABORATORIES LTD. REVISED ON 96/05/08 BY SG PAGE 12 FILE: 95030REV.DOC

The walleye were obtained from the Fisheries Branch of Saskatchewan Environmental Resource Management with the assistance of R. J. Sanden. The fish were picked up from the Edenwold Walleye Rearing Ponds on July 20, 1995 and transported back to HydroQual Laboratories Ltd. on the same day. They were initially held in a small swimming pool equipped with an external filter. Salt was added to a final concentration of 0.2% as precaution against disease. Mortality dropped to <1% after 2 weeks holding time. The fish were fed daily a diet of fresh snapper or cod purchased from a local supermarket. The fillets were cut into small pieces for feeding (roughly 5 to 10% body weight per day). The water in the holding pool was changed weekly.

Juvenile trout (5 to 10 g and 50 to 100 g) were obtained from Bob Allen's Trout Farm, Calgary, located 15 km from the test facility. The fish were collected and transported by HydroQual staff. Fertilized eggs were obtained from Spring Valley Trout Farm in Langley, BC. The eggs were shipped by air to Calgary and maintained at 15^oC until needed. Both operations were certified as disease free.

The tests were initiated when the sac fry were about 7 - 14 days from swim up. The objective was to maximize exposure of the fish to the test samples over the non-feeding to swim up stages. Feeding at swim up is a critical stage of trout development.

In the short term test (7 day), the small juvenile trout and walleye (5 to 10 g) were separately confined in nets suspended in the surface layer of the larger tanks. Large trout were also placed into the tanks and the larval fry were confined to the fry vessels. Three fish of each species (juvenile trout and walleye) were placed in the nets, ten large trout were put into the tank proper and 300 larval fry were placed in the fry vessels. Water quality conditions were monitored daily to ensure that flow rates were sufficient to prevent fouling from food and waste.

For the long term exposure (28 day), the walleye were kept in the smaller tanks (200 L) and only larger trout were exposed in the 400 L tanks along with the larval fry.

The fish were placed into the system approximately one week before test initiation. Laboratory dilution water was passed through each tank and sample lines were closed off. Moribund fish or fish showing signs of stress from handling were removed. After one week, the tests were initiated with the addition of sample to achieve the desired test concentrations. A volume equal to the volume added was initially removed to maintain a constant tank volume. Hence, the desired test concentration was obtained within a matter of minutes. The flow rate was then adjusted to give the final desired treatment levels.

Semipermeable membrane devices (SPMD) were deployed in each tank. Only a few SPMD's were used in the short term exposure and these were placed on the tank bottom. In the 28 day test, the SPMD's were suspended in the center of the tank which made it easier to clean the tanks and observe the fish. The SPMD's were contained in double layered, black fiberglass screen tubes to reduce exposure to light and prevent consumption by the test fish.

Conductance, pH, dissolved oxygen, temperature, ammonia, and flows were measured daily in the morning. Flow checks and adjustments were also made in the late afternoon (early evening). All activity was confined to this time to minimize disturbance of the fish during the test. The fish were also fed and the tanks cleaned once daily. The trout were fed a ration of trout chow (pellets or starter chow for the fry) and the walleye were given fresh snapper or cod equal to roughly 5% of their body weight per day. Signs of stress or abnormal behavior were recorded. Survival was also scored and dead fish removed from the tanks. Dead fish were examined, measured and weighed, and then frozen (archived).

At test termination, the fish were processed following the procedure outlined in Figure 4. The large fish were bled, then euthanized with a sharp blow to the head, measured, weighed, examined, and tissues removed. The smaller trout and walleye were euthanized, measured, weighed, examined and tissues removed for analysis. The small fry were transferred to tanks with laboratory dilution water for later disease resistance, and stamina tests, and assessment of growth (challenge tests).

Details on assessment procedures, test and analytical methods, are given in the following sections.

3.3.3 Effects Assessment in Juvenile Trout and Walleye

Walleye and trout roughly 5 to 10 g were used in the 7 day test; however only the small walleye were included in the 28 day exposure. Large, juvenile trout (50 - 100 g) were used in both tests.

3.3.3.1 Necropsy

The health and condition of each exposed juvenile fish were assessed following the standardized autopsy procedure of Goede (1993). This is a systematic procedure for obtaining quantitative morphological data and information on the external and internal condition of the fish (parameters summarized in Table 6). Many of the morphological and anatomical characteristics assessed provided little relevant information due to the fish being hatchery reared and hence in good condition. Further, changes in some features required exposures longer than 28 days or more severe conditions. However, the full autopsy procedure was followed to obtain data comparable to that collected on field populations to permit resolution of potential subtle effects caused by exposure conditions.

3.3.3.2. Hematology

Blood samples were removed from the caudal veins of the larger trout before euthanizing the fish. The syringe (3 mL with 22 1/2 gauge needle) was heparinized immediately before use with a freshly prepared heparin solution (50,000 IU/mL; the syringe was filled and emptied to coat the inner barrel). The whole blood was processed as follows:

- one drop placed on each of three slides for blood smears and manual counts of white and red blood cells
- mL removed for hemoglobin analysis
- of the volume (≈1 mL) was placed into a microfuge tube for separation and analyses of plasma constituents
- two hematocrit tubes were filled and plugged with putty

The hematocrit tubes were spun at full speed for five minutes. The hematocrit (%) was read directly on the rotor. The buffy zone volume was also noted and recorded (<1%, 1% or >1%).

The microfuge tube with 1 mL of whole blood was centrifuged at high speed in a bench top centrifuge for 5 minutes. The plasma was then removed and placed into a second microfuge tube.

Protein, lactate and glucose levels were measured in the plasma and total hemoglobin in the whole blood. All results were expressed in mass units per 100 mL volume (blood or plasma). The analyses were done in 16 x 100 mm glass tubes which were read directly in a Milton Roy Spectronic Model 21 spectrophotometer. Ten to twenty percent of the samples tested were duplicates and a blank and standard were analyzed for every 10 to 15 samples. The reagents and standards were freshly prepared on the day required. All attempts were made to complete the analyses on the day of sample collection. The whole blood and plasma were then frozen (-20° C) and archived.

Total hemoglobin was measured colormeterically at 540 nm following addition of Drabkin's solution (2.5 mL to 10μ L of sample; Sigma Diagnostics, Procedure No. 525). The reagent quantitatively converts total hemoglobin to cyanmethemoglobin which absorbs at 540 nm. Sample values were obtained against a cyanmethomoglobin standard curve (Sigma Catalogue No. 525-18).

Total plasma protein was measured with the dye, brilliant blue G on an aliquot diluted 100 times with deionized water (Coomassie blue; Sigma Diagnostic Procedure No.

610). The reagent was added to 10 μ L of the diluted plasma and the absorbence was read at 595 nm (10 μ L of sample plus 2.5 mL of reagent). The protein standard was prepared fresh on the day of analysis and discarded after use (Sigma Catalogue No. 610-30).

Total lactate was determined on 10 μ L of plasma with a quantitative, enzymatic assay (Sigma Diagnostic Procedure No. 735). Lactic acid was converted by lactic oxidase to pyruvate and hydrogen peroxide. The hydrogen peroxide catalyzed the oxidative condensation of chromogen precursors to produce a colored dye with an absorbence maximum at 540 nm. The lactate reagent was added to 10 μ L of plasma (2.5 mL of reagent diluted 2.5 x with deionized water). The reaction was allowed to proceed for one hour at room temperature. The absorbence was then measured at 540 nm and lactate levels calculated from a standard curve for lactate (Sigma Catalogue No. 735-11).

Plasma glucose levels were also determined enzymatically with the Trinder reagent (Sigma Diagnostic Procedure No. 315). Glucose was oxidized to gluconic acid and hydrogen peroxide by glucose oxidase. The hydrogen peroxide formed reacts in the presence of peroxidase with 4-aminoantipyrine and p-hydroxybenzene sulfonate to form quinoneimine dye with an absorbence maximum at 505 nm. The reagent (2.5 mL) was added to 10 μ L of plasma, the tubes were incubated at ambient temperature for one hour and the absorbence read at 505 nm. Glucose levels were obtained from a glucose standard curve prepared the same way (Sigma Catalogue No. 16-300).

The blood smears were air dried and then fixed with immersion in methanol for five minutes. The slides were stained for one minute with Wright-Griemsa after rehydration in deionized water for two minutes. Excess stain was removed with three to four rinses for one to two minutes each in deionized water. Three slides were prepared for each fish. The slides were examined at a magnification of 1,000 (oil immersion). The lymphocytes or white blood cells and erythrocytes (red blood cells) were counted in three fields containing from 50 to 100 cells. Slides for fish from two treatments were counted by two different technicians. The counts were done by technicians who had

no knowledge of the identity of the slides to assess consistency in scoring and data reliability.

3.3.3.3 Tissue Residue Analysis and Dry Weights

Tissue residue and dry weight data were not done on fish from the 7 day test. Tissues for residue analysis were taken from the walleye and larger trout after blood collection (trout only), liver removal, the necropsy, and gutting. Duplicate cross sectional pieces of the carcass were cut out with a scalpel and weighed. These tissues were then dried overnight at 95°C and reweighed for the determination of moisture content. An additional cross-sectional piece was removed along with the head for histopathological assessment. The remaining carcass was then wrapped in plastic wrap and immediately frozen (-20°C). Disposable latex gloves were used by all individuals handling the tissues and livers. The frozen carcass remains were sent to EnviroTest Laboratories for analysis of tissue residues and lipid content.

3.3.3.4 Analysis of Fish Liver Mixed Function Oxidase Activity

The livers from all juvenile fish were removed, weighed, split in two pieces, wrapped in aluminum foil, labeled and immediately frozen in liquid nitrogen. The gall bladders were removed from the livers before weighing and processing. The livers were thoroughly rinsed in 10% KCI to remove bile from ruptured gall bladders. However, less than 1% of the gall bladders ruptured during surgery. In the 7 day test, the livers were placed into 1.5 mL microfuge tubes. These were later found to be unacceptable storage containers and were substituted with solvent rinsed, aluminum foil.

Analysis of liver mixed function oxidase activity were done by Dr. J. Parrott of the National Water Research Institute, Burlington. The livers were transported frozen, in a fully charged dry shipper. Duplicate livers from the 28 day exposure were sent to EnviroTest Laboratories for Quality Assurance purposes.

3.3.3.5 Histopathological Assessment

WRITTEN ON 95/12/01 BY MG/SG HYDROQUAL LABORATORIES LTD. REVISED ON 96/05/08 BY SG PAGE 18 FILE: 95030REV.DOC

This work was not included in the original study design and was added only days prior to test termination. The histopathological assessment was done by Dr. R. Muller and Dr. C. Rousseaux.

Tissues for histopathological assessment were collected from the juvenile walleye and trout from the 28 day test and preserved following instructions provided by GlobalTox International Consultants Inc. The tissues were taken after the removal of the blood and the liver, the necropsy, and samples for moisture content.

The gut contents, head, samples of muscle and liver were preserved in buffered formalin in 250 mL Nalgene containers. The formalin solution was prepared as per instructions received from GlobalTox International Consultants Inc. and follows:

- sodium phosphate monobasic (NaH₂ PO₄ H₂0) 650 g
- sodium phosphate dibasic (Na₂ HPO₄) 1300 g
- formaldehyde (37%) 20 L
- tap water to a final volume of 200 L

Methanol was not added to the final mixture. The time required to process each fish was less than five minutes and the buffer volume was adjusted to give an approximate ten to one ratio of buffer to tissue. The preserved tissues were sent by Canadian Airlines International to GlobalTox International Consultants Inc. on November 24, 1995.

3.3.4 Challenge Tests on Larval Trout

Three hundred sac-fry were placed into the fry vessels located in the large tanks. These fish were 1 to 2 weeks from swim up, or actively feeding. Fry were used in both the short and long term exposures. They were not fed during the 7 day test. In the 28 day test, the fry were given a ration of roughly 5% body weight of starter chow per day. Mortality and the general condition of the fry were noted daily and the vessels were

also cleaned before and after feeding. The fry were used to assess effects on growth, disease resistance, and swimming stamina (challenge tests).

3.3.4.1 Growth

Three batches of 30 fish from each treatment were euthanized, fork lengths measured, weighed and then dried at 95°C overnight and re-weighed. Final moisture contents and dry weights were used to assess growth. Body condition factors, calculated from the wet weight and lengths, were also compared to tables for hatchery reared fish.

3.3.4.2 Disease Resistance

Disease resistance was assessed by exposing fry to the pathogen, *Vibrio anguillarum* serotype 02, following the procedure of G. Olivier (Personal Communication) and Lall et al. (1989). The pathogen was obtained from G. Olivier in September, 1995. Cultures were maintained on Tryticase Soy Agar (TSA) supplemented with 2% NaCI (wt/v). *Vibrio anguillarum* was selected for this test because it is a marine pathogen and will not survive in freshwater. This precautionary step was intended to minimize the potential for contamination of existing fish stocks and other cultures in the test facility.

The challenge tests were done at the end of the 28 day exposure. Groups of thirty fry were exposed to a range of pathogen densities for 45 minutes. They were then removed, rinsed in clean freshwater, and placed into flow through holding tanks (laboratory dilution water). Mortality was scored daily and observations on fish condition and behavior noted. Dead fish were removed, the nets cleaned. The fry were fed a ration of starter chow daily (roughly equal to 5% of body weight).

The fry were contained in small nets with an internal plastic frame. They were exposed in large tubs ($40 \times 60 \times 15$ cm deep) containing 5 L of laboratory dilution water supplemented with 2% NaCl. The treatments included a control, and four pathogen densities each separated by order of magnitude (basic design illustrated in Figure 5).

The *Vibrio anguillarum* was grown in Tryticase Soy Broth (TSB) supplemented with 2% NaCl (wt/v) in preparation for the challenge test as follows. One week prior to the test, bacteria were removed from the plates and placed into 200 mL of TSB in a 250 mL Erlenmeyer flask (one flask per plate). This culture was allowed to grow at $20 \pm 2^{\circ}$ C for 48 h with occasional shaking. Two mL of this culture was then placed into 200 mL of new saline TSB. These cultures were grown for 24 h then subcultured. The optical densities of the cultures were measured at 750 nm after each transfer. Daily subcultures were done until the same 24 h optical density measurement was attained three days in a row (constant growth). The optical density increased from zero (TSB blank) to 0.4 units in one day.

The culture was adjusted to 0.3 absorbance units with fresh media for the challenge test. The following volumes were added to each treatment vessel containing 5 L of saline laboratory dilution water; 0.75, 7.5, 75, and 750 mL. A volume equal to the volume added was removed before the addition to keep a constant treatment volume of 5 L.

The treatment vessels were large enough to accommodate the nets from eight treatments. Hence, all fish were exposed to the same pathogen density at the same time under the same conditions. After exposure, the nets and fish were rinsed and placed back into recovery tanks (Figure 5). Samples from each treatment tank were collected, serially diluted, and 0.25 μ L of each dilution drop plated on 2% NaCI TSA. The plates were incubated at 20 ± 2°C for 24 hours and the colonies counted. The applied dose was set to equal the number of colony forming units per mL of test solution (CFU/mL).

Disease mortalities can be confirmed by culturing the kidney of dead fish on saline TSA (Olivier, Personal Communication). Virulence can also be confirmed by injecting fish with the pathogen. These procedures were tried; however, it was too difficult to remove the kidney tissue from the fry.

The original method was developed with fish weighing 15 to 20 g. Virtually no work has been done on small and larval fish. Hence, the optimal post treatment time was determined by following mortality daily for ten days. Most deaths occurred 4 to 5 days after exposure. For this reason, a seven day post exposure period was deemed optimal for resolution and comparison of disease resistance effects.

3.3.4.3 Swimming Stamina

Stamina is an excellent, generic measure of the general condition and health of fish. This characteristic was assessed through swimming ability. The fry were placed into a current of fixed velocity and the number of fish able to remain swimming was scored over time.

A schematic of the fish swimming unit is shown in Figure 6. Water was pumped from a trough to a header tank equipped with an overflow to maintain a constant head. Three outflows in the tank bottom emptied into 4" diameter drain pipes. The top section of the pipes were removed in order to see the fish. Valves on the outflows permitted control over current flow. The upper end of each swimming tube was blocked with a net to prevent fish from swimming out and the lower end was open. A net $(30 \times 30 \times 50 \text{ cm} \text{ high})$ submerged in and attached to the lower end confined any fish that fell out of the tube. The tubes were photographed (slides) and videotaped at selected time intervals over a three hour swimming period. The fish in the tubes were counted by projecting the slides onto a white board.

The stamina tests were done as follows. The trough was first filled with fresh laboratory dilution water at the holding temperature suitable for the fish $(15 \pm 2^{\circ}C)$, the water was renewed for each test). Holding nets containing the fish were transferred from the holding tank to the trough and the top of the net was affixed to the end of the swimming tube (one test or treatment per tube). Flow was then started and measured using time of travel (float placed at top of tube and the time required to travel the length of the tube recorded). Adjustments were made to get 0.2 m/s. Higher flows were too overpowering and the fish could stay almost indefinitely in lower flows. After the flow

WRITTEN ON 95/12/01 BY MG/SG HYDROQUAL LABORATORIES LTD. REVISED ON 96/05/08 BY SG PAGE 22

FILE: 95030REV.DOC

check and adjustments, the fish from one holding and capture net were netted and placed in the upper end of the trough. This was repeated for all tubes and the entire process was done three times. In preliminary studies, the maximum number of fish remaining in the tube was obtained after three successive placements. The remaining fish simply did not exhibit rheotaxis (desire to swim as opposed to limnophilia).

Loading the tubes took 15 minutes, after which the test was deemed started (t=0). Photographs, videotape, and manual counts were taken at regular intervals. Sometimes reliable manual counts were not possible with large numbers of fish. However, the manual counts were used to confirm slide counts. The test was terminated after three hours, and the fish returned to the resting or holding tanks.

The data tabulated included number of fish swimming at time zero as a percentage of the total number of exposed fish, and the percentage remaining at hourly intervals.

3.4 Chemical Characterization

A sample of the Tar Island Dyke water from the 28 day test was submitted to EnviroTest Laboratories for detailed chemical characterization. Tissue samples were also submitted for residue analyses of Oil Sands related compounds. Details of the analytical methods are referenced in the results (appended).

4.0 **RESULTS AND DISCUSSIONS**

This section is divided into five main components dealing with:

- 1. trophic effects
- 2a. fish health effects
- 2b. histopathological assessment
- 2c. mixed function oxidases
- 3. chemical characterization and tissue residue analyses

A complete battery of acute and chronic tests was applied to all large samples of Athabasca River and Tar Island Dyke water collected on three separate occasions. Fish health effects were assessed in two separate studies conducted on samples collected over a three month period. The 7 day short term study was done with fewer walleye and all fish were exposed in the same tank (fry in fry vessels, 5-10 g walleye and trout in nets, and 50-100 g trout free ranging). In the 28 day test, the walleye were exposed in separate tanks and only the fry and large trout were used.

Growth measurements, disease resistance and swimming stamina were not done on fry from the short term study. All data from both studies are presented here for comparative purposes. The reports produced by third parties are incorporated in this document but not interpreted. These are the histopathological assessment and the analyses of fish liver, mixed function oxidases.

The chemical data are presented in a separate section. This information is referred to in other sections but kept separate for organizational clarity.

4.1 Sample Collection, Transport and Storage

No difficulties were encountered in the collection, transport, storage and disposal of all samples. The second sample was obtained and transported back to the testing facility in a blizzard. However, the sample was not frozen at time of receipt.

Information on each sample is summarized in Table 7. There were some obvious differences amongst individual samples as a result of seasonal and climatic factors. This was more apparent in the Athabasca River water following storm events and ice formation.

The river water sample collected on 95/09/29 was extremely turbid, had a mild organic odour and the conductance was 25% higher than the previous sample (collected on 95/08/11). The pH of both the Tar Island Dyke and Athabasca River samples ranged from 8.2 to 8.5 which was similar to laboratory dilution water. Dissolved oxygen levels

were at saturation for the sample temperature. There was no clear indication of a significant chemical or biological oxygen demand. Ammonium levels were low but significant in all samples.

The high conductance levels in the Tar Island Dyke wastewaters indicated a potential salt effect on invertebrate survival and reproduction, and algal growth. However, there were no other extreme values of concern in the data collected at sample receipt. It should be noted that the Tar Island Dyke sample for the 7 day test had a large population of chironomids and a distinct algal bloom (bluegreens). All Tar Island Dyke samples were cloudy and had distinct hydrocarbon odours.

4.2 Trophic Effects Assessment

A comprehensive acute and chronic battery of tests was applied to each Tar Island Dyke and Athabasca River sample. These tests included species representative of major trophic levels in aquatic systems. The methods were developed by Environment Canada as tools for assessment and management of toxic effects in freshwater aquatic systems for environmental conservation and protection.

The test battery consists of microbes, plants, invertebrate, and fish. Microbes and plants (algae) convert chemical energy and light (plants) into biomass and serve as major food sources for invertebrates. Invertebrates, such as the waterflea, feed on microbes, algae and detritus and they are a major food source for fish.

Individual test results are summarized in Table 8. Copies of all test reports are appended.

The Athabasca River water sample was not acutely toxic to trout, *Daphnia* or bacterial luminescence. Further, the river water had no effect on algal growth, and survival of *Ceriodaphnia*. A slight reduction in reproduction of *Ceriodaphnia* (roughly 30%) was noted in all samples. Athabasca River water was also acutely toxic to fathead minnows. The reasons for these marginal effects are unclear. *Ceriodaphnia* is
extremely sensitive to the many soluble salts. Fathead minnow is however, a relatively robust test species but appeared to be sensitive to constituents in Athabasca River water.

Tar Island Dyke water was more toxic to the test organisms than Athabasca River water. However, the toxicity was marginal to moderate as opposed to extreme. The alga, *Selenastrum*, and waterflea, *Daphnia magna*, were the most tolerant species with little or no effects measured. The concentration of Tar Island Dyke water reducing bacterial luminescence by 50% ranged from 42 to 65%. However, in the first sample of Tar Island Dyke water collected, only a screen test with bacteria was performed. This gave a result of 34% of the controls. The LC₅₀ for trout and fathead minnow ranged from 27 to 62% and 64 to 74 % respectively without any clear pattern. The ammonia present in Tar Island Dyke water could be a factor contributing to the toxicity. It is interesting to note that similar effects were obtained for both fish species. This could indicate that there is one class of compounds or compound responsible for the observed lethal effects on fish.

Survival of *Ceriodaphnia* was marginally affected along with reproduction. Again there was no clear and consistent trends in the data. There effects could be due to high salt levels in the Tar Island Dyke water (sodium in particular).

The order of increasing species sensitivity to Tar Island Dyke water was:

Daphnia=Selenastrum<trout=fathead minnow=bacteria luminescence<Ceriodaphnia

A five to ten fold dilution of Tar Island Dyke water would probably render it non-toxic to all life forms in the test battery.

The toxicity was not strong enough to justify a low grade toxicity identification evaluation. The effects were considered marginal at best and there was little variability and no obvious trends in the test data.

4.3 Fish Health Effects

Low grade, long term exposure to non-acutely lethal levels of environmental contaminants can be stressful. Different life forms will respond in different ways to stress depending on the nature of the stressor (level and mode of interaction), duration and intensity. Stress has been defined as the cumulative effect of all biochemical and physiological responses related to an animals attempt to maintain or re-establish homeostasis in response to changing environmental conditions (a more complete discussion of stress can be found in Adams, 1990a).

Stress can impair the general health and condition of an organism through diversion of energy and disruption of normal physiological functions. This has a potential to effect basic processes such as growth and reproduction and ultimately survival. The later has more profound consequences at the level of populations and community structure of aquatic ecosystems. Most impacts are discovered after the fact through changes in populations. Sublethal, chronic related responses can be measured but it is extremely difficult to unequivocally resolve cause and effect relationships. For this reason, laboratory studies were commissioned to examine a broad range of sublethal responses in fish populations exposed to Suncor wastewaters. The tests were conducted under controlled conditions over a range of treatment levels. This was intended to provide greater resolution over cause and effect relationships for individual responses and the collective effects on the general condition and health of exposed fish. Most of the responses measured in the laboratory studies have been assessed in natural fish populations in the area around the Oil Sands operations. Hence, the laboratory data can provide a level of validation of field observations.

Fish health effects were divided into two major components, the first component was the tests on the larger juvenile trout and walleye. This included the necropsy, blood work, moisture contents, liver mixed function oxidases, and histopathological assessments. The second component included the challenge tests on the fry and included growth, disease resistance and swimming stamina. Growth is a good indicator of overall fish health and condition (performance). Disease resistance provides some

insight into immune system integrity and response to a pathogen. Finally, swimming stamina provides a direct measure of the bioenergetic cost for maintaining a homeostatic condition in response to environmental stresses.

Monitoring data and general observations made during each test will be discussed first. This will be followed by the results for the large juvenile trout and walleye, and the larval trout. The chemical characterization and tissue residue analysis will be presented in the final section.

4.3.1 General Test Conditions and Observations

Flows were checked and adjusted at least once daily, and a number of water quality parameters were measured daily (pH, conductance, temperature, dissolved oxygen, and ammonium). Survival, signs of stress, and unusual behavior were also noted. There were no signs of stress exhibited by the fish in the short term, 7 day exposure except in the higher treatment levels (10 and 50%). The 50% Tar Island Dyke was lethal to trout and walleye. The fish in 10% Tar Island Dyke water also appeared stressed in both tests (7 day and 28 day). They were dark in color and less active than fish in the other treatments. All fish exposed to naphthenic acids were also visibly stressed. Photographs of walleye and trout in laboratory dilution water in the 28 day test are presented in Figure 7.

During the end of the 28 day exposure, it was noted that in some tanks one of the larger trout would become dominant. This fish would aggressively occupy the center of the tank. The remaining fish would remain near the bottom or at one end of the tank. Dominance was not noticed in the short term tests or with the walleye and fry.

All water quality monitoring data are appended for both tests. The mean and ranges are summarized in Table 9. All parameters were relatively constant on a day to day basis. Ammonia levels were consistently less than 1.0 - N/L. At the treatment pH, the proportion of NH₃ was below that known to be harmful to fish.

Over all treatments the pH ranged from 7.5 to 8.0. In the 7 day test the conductance ranged from 253 to 426 μ S/cm and in the 28 day test in all treatments from 307 to 499 μ S/cm. The temperature averaged $15 \pm 2^{\circ}$ C throughout the 28 day test. Dissolved oxygen levels were at saturation in the smaller, walleye tanks. However, levels were roughly 70 to 80% saturation in the larger tanks. This was due to an oxygen demand created by a build up of detrital materials on the nets holding the SPMDs. Dissolved oxygen levels quickly increased to saturation after the SPMDs were removed.

In the 28 day exposure, all large trout in the 0.01% Tar Island Dyke treatment were lost on day 20. The reason for this was not determined, although it persisted in the tank. Daily screening tests were done on the tank water with larval trout. Survival increased over time indicating that the substance was being diluted out. It should be noted that all inflows were diverted through the fry vessels and then into the tank. The fry were not affected and the walleye in the same treatment but in a different tank were not affected. This suggested that the source of the material was confined to this tank (possibly associated with the SPMD). A possible disease outbreak was also suspected but could not be confirmed. Although each treatment was equipped with separate nets, buckets and other cleaning implements, the walleye were not affected. Further, there was no mortality observed in adjacent tanks.

The large trout in the laboratory dilution water appeared unduly stressed on day 26. This was a sudden and highly visible change in behavior. For this reason, the fish were processed two days before test take down. The condition and appearance of the fish were similar to those that died in the adjacent tank (0.01% Tar Island Dyke). No signs or symptoms of disease were detected and the lethal agent appeared to be chemical in nature. It was suspected but not confirmed that it may have also been connected with the SPMD.

Most of the fry in the 10% Tar Island Dyke treatment were lost on day 14. The influent line fell out of the fry vessel into the tank and most of the fry suffocated due to lack of flow. Surviving fry were used for growth assessments and one disease challenge test.

Survival of walleye, trout and larval trout in the 7 day and 28 day tests is presented in Table 10. Although visibly stressed, all fish survived the 10% Tar Island Dyke, but not 50% (7 day test only). Some walleye mortality was observed across the test but this was not considered significant and very likely due to the handling of the fish. In general the fish in Athabasca River water appeared more active and they grew faster than in other treatments. It should be noted that only three 5 - 10 g walleye and trout were exposed in the 7 day test along with fry and larger trout. Ten walleye were exposed in the 28 day test and the smaller 5 - 10 g trout were omitted. The larval trout mortalities for the 7 day test were approximated from daily observations and fish counts.

4.3.2 Effects Assessment in Trout and Walleye

4.3.2.1 Necropsy

The necropsy data for the short and long term tests are summarized in Tables 11 and 12. The data on individual fish are appended. All trout were hatchery reared and in reasonably good condition at test initiation. The walleye had been reared by hand for roughly two months and they were also in excellent condition at the start of both tests. Hence, most internal and external features examined in the autopsy procedure were within normal ranges (Table 11). All fish were immature, there was little hemorrhaging or inflammation of body organs and glands.

There were no significant differences amongst final average fish weights for walleye in Tar Island Dyke treatments compared to controls. Although not significant, it is intriguing to note the higher average weights for walleye in Athabasca River water. Similar results were obtained for the larger trout although there was less of an increase in Athabasca River water due to the larger fish size and short duration of the test (28 days).

Condition factors are often used to compare growth amongst different treatments and against values established for fish reared under controlled conditions. Factors affecting feeding to the conversion of food into biomass (growth) will affect the body condition

REVISED ON 96/05/08 BY SG PAGE 30 FILE: 95030REV.DOC

factor. Hence, differences in condition factor need to be cautiously interpreted in light of other morphological and anatomical observations and measurements.

Body condition factors and liver somatic indices were derived from the fish and liver weights (Table 11). Condition factors were also calculated for the larval fry from the 28 day test. Few differences in body condition factors were noted between the 7 and 28 day test and amongst treatments, for all fish (juvenile walleye and trout, and larval trout). The juvenile trout exposed to naphthenic acids in the 28 day test had the lowest condition factor (0.8 compared to 1.4 for controls). These fish also appeared stressed and were not eating as well as the fish in other treatments. The liver somatic index is the ratio of liver weight to body weight. There were no obvious and consistent trends in the ratios for trout exposed in the 7 day test. The LSI for fish exposed in naphthenic acids in the 28 day test was the highest (twice the controls). A lower body weight from less active feeding will give a higher LSI and lower body condition factor.

The body condition factors were consistent with the trends in weight and length amongst all treatments. All trout were hatchery reared and in relatively good condition. The walleye had been hand reared for roughly two months and were all in good condition at test initiation. There was little to no erosion of fins and opercula. All fish were immature, and there was some swelling and inflammation of the pseudobranch.

The liver performs a number of functions including food metabolism, glycogen storage, bile and plasma protein synthesis, and metabolism and removal of materials from the blood. The size and colour of this organ can change relatively quickly in response to metabolic requirements.

The ratio of liver weight to body weight or liver somatic index (LSI also known as hepatosomatic indices or HSI) has been widely used in studies on stress. A change in liver weight in response to stress have been generally attributed to changes in glycogen levels. Liver weights can also increase due to increases in cell size and numbers (hypertrophy and hyperplasia)

There were no trends apparent in LSI's derived for the walleye. Values were general higher in the 28 day test compared to the 7 day test. Fish exposed to Athabasca River water had the lowest LSI in the 28 day test. This probably reflects the fact that these fish appear to do better than those in the other treatments.

The necropsy results did not reveal any individual features or group of characteristics that could be linked with the exposure conditions. This could indicate that the many stressors present in Tar Island Dyke water do not effect the endpoints examined or that the exposure duration was too short to observe these effects.

4.3.2.1 Hematology

The blood related parameters examined included hematocrit, hemoglobin, glucose, protein, lactic acid and differential blood cell counts. Hematocrit is the percent volume of cells in the blood (mostly red blood cells). Changes in hematocrit could indicate impairment of normal blood cell development. Lowered hematocrit could affect endurance, ultimately growth and survival, through restricted oxygen transport. However, hemoglobin levels provide additional information on the potential oxygen binding capacity.

Hemoglobin is responsible for the binding and transport of oxygen. Lower levels may indicate some impairment of normal blood cell development and it could affect stamina and endurance. Measured levels in the exposed fish ranged from 5 to 10 g/dL in the 7 day test and 6 to 9 g/dL in the 28 day test (Table 11). There were no differences amongst treatments.

Hematocrits ranged from 28 to 41% and 28 to 40% in the 7 and 28 day test respectively (Table 11). Levels were lower in the highest Tar Island Dyke treatments tested (50% in the 7 day and 10% in the 28 day test). However, all values were within the range considered normal for rainbow trout (24-43%; Wedemeyer et al., 1990).

The use of plasma protein levels as an indicator of stress is questionable. Reductions in some proteins are often offset by increases in other classes. Hence, this response needs interpretation in light of suitable control responses. Major functions of blood proteins are osmoregulatory, clotting factors, binding of hemoglobin and metals, and as enzymes and hormones (trace levels).

Plasma protein levels in hatchery reared trout ranged from 1 to 4 g/dL (Wedemeyer et al., 1990). The levels measured in the 7 day test ranged from 4 to 7 g/dL with no apparent correlation with the treatment conditions. Similar results were obtained for the 28 day exposure (4 to 6 g/dL, Table 11).

Lactic acid is a by-product of carbohydrate metabolism. High levels are produced in muscles under severe stress or due to fright (anaerobic metabolism). Lactic acid is removed from the blood by the liver. Hence, changes in plasma lactic acid levels are indicators of production and metabolism. Prolonged high levels of lactic acid can lead to weakness, fatigue and ultimately death.

Lactic acid levels ranged from 73 to 141 mg/dL and 27 to 69 mg/dL in fish from the 7 and 28 day exposures. The highest level was measured in severely stressed fish exposed to 50% Tar Island Dyke in the 7 day test (141 mg/dL). These ranges are higher than that reported for trout (20-30 mg/dL, Wedemeyer et al., 1990). However, many factors can affect lactic acid levels and it is essential to have a proper test control for interpretation of the results. In all cases, the variance in levels was relatively high within test treatment groups (roughly 20 to 50%).

It was interesting to not that lactic acid levels were lower in fish exposed for longer periods of time. This could reflect an adaptive response to the initial stress of placement in the system and exposure to the test conditions. There also appeared some correlation between observed levels of inactivity and lower lactic acid levels. This was evident in the fish exposed to naphthenic acids and 10% Tar Island Dyke. They were the most sedentary and did not feed as well as the other fish.

Glucose is a nutrient (energy source) in blood utilized by all cells. Plasma glucose levels are controlled by hormonal responses and intrinsically linked with carbohydrate metabolism in the liver (glycogen levels). Any factors affecting liver glycogen stores including feeding, diet, life stage, etc. will influence glucose levels. High levels (hyperglycemia) relative to a suitable control, can indicate hyperactivity of endocrine glands, and short term adaptive response to environmental stress. Low levels (hypoglycemia) control results from liver dysfunction, starvation or hormonal imbalance.

Blood glucose levels ranged from 67 to 116 mg/dL in the 7 day test and 85 to 155 mg/dL in the 28 day test (Table 11). Lower levels were evident in fish exhibiting signs of stress. The mean values for 50% Tar Island Dyke (7 day test) and 10% Tar Island Dyke (28 day test) were 67 and 76 mg/dL respectively. The fish exposed to naphthenic acids in the 28 day test also had lower plasma glucose levels (85 mg/dL).

Blood cell counts were done to obtain a white to red blood ratio. Differential white cell counts were not made. The relative proportion of white to red blood cells is a good indicator of immunological condition. Depressed levels may be associated with stress related factors including disease, exposure to xenobiotics, and spleenic disorders. White blood cells have major functions in coagulation to minimize blood loss from injury and phagocytosis and immune responses to infection.

There were no clear differences in white blood cell ratios amongst all treatments (Table 11)

4.3.2.3 Induction of Liver Mixed Function Oxidases

Recent work by Dr. J. Parrott on effluents discharged to the Athabasca River indicated that Suncor effluent induced high levels of EROD, notably in hepatic cell cultures. EROD, 7-ethoxyresorufin-O-deethylase is one of a class of hepatic monooxygenases or MFO. MFO are synthesized in response to the presence of foreign substances (xenobiotics). Many xenobiotics are not easily excreted in the parent form. MFO break these compounds down into derivatives that are more easily removed by natural bodily

processes. During metabolism, some compounds can be altered in such a fashion that they become more reactive. Some by-products can even react with DNA leading to tumor formation, although the frequency of this is extremely small and occurs over long time periods. The presence of elevated MFO has been used as an indicator of exposure to foreign substances. However, the ecological relevance of induction is not well understood.

The work of Dr. J. Parrott raised two issues 1) what is the relationship between SPMD induced tissue culture EROD activity compared to live fish and 2) what in Suncor effluent induces MFO. The original work was done on extracts of semipermeable membrane devices or SPMD's. The devices were deployed in the Athabasca River above and below effluent discharges. They were then extracted and the extracts tested with a cell culture line derived from fish livers.

To address the questions raised by this study, trout and walleye were exposed to the wastewater in the presence of SPMD's (deployment of SPMD illustrated in Figure 8). This permitted a direct comparison of induction in whole fish with that of cell cultures in response to extracts of SPMD's. The later will concentrate hydrophobic materials enhancing detection limits.

Some test results are presented in Table 13 and a copy of Dr. J. Parrott's report is appended. In the 7 day exposure, EROD levels in the walleye and small trout (5 - 10 g) did not increase with increasing wastewater concentrations (up to 10%). EROD was not induced in the larger trout surviving the 50% treatment. These fish were visibly stressed at test termination, and the condition was lethal to the walleye and small trout and 50% of the large trout. The positive control, β -naphthoflavone, effectively induced EROD in the large trout (the β -naphthoflavone was injected into these fish). Short term exposures to 1 mg/L naphthenic acids did not induce EROD in walleye and both the small and large trout.

At the time of writing this report, data had not been received from Dr. J. Parrott for the SPMD extracts (7 and 28 day) and livers from the 28 day test.

Data for the 28 day test are summarized in Table 13 and the reports are appended. Two enzyme systems were assayed by EnviroTest Laboratories, 7-ethoxyresorufin-Odeethylase (EROD) and aryl hydrocarbon hydroxylase (AHH). A three fold increase in activity was noted in fish exposed to 10% Tar Island Dyke. Similar results were obtained from AHH in livers of fish exposed to β -naphthoflavone. However, EROD activity in these livers was almost eight times higher than in livers from fish exposed to Athabasca River water.

4.3.2.4 Histopathological Assessment

A histopathological assessment of trout exposed to the Athabasca River water, 10% Tar Island Dyke and naphthenic acids was conducted by GlobalTox International Consultants Inc. Only fish from the 28 day exposure were assessed. The results are briefly summarized here and the report appended.

"The findings ranged from incidental changes that could be attributed to the method of euthanism or fixation to hepatic lipidosis and mild renal degeneration and regeneration. The findings associated with exposure to naphthenic acids consisted of mainly hepatic lipidosis. This hepatic lipidosis was more sever than that seen in 10% Tar Island Dyke treatment group. However, the findings in the kidney, indicative of mild renal toxicity were only found in this group. The findings on the gills could not be attributed directly to toxicity, but warrant further investigation."

The large trout exposed to naphthenic acids and 10% Tar Island Dyke were visibly stressed at test termination. Further, of all biomarkers examined, effects were only detected in these two treatment groups (plasma glucose levels were also low in fish exposed to β -naphthoflavone). The laboratory controls were not examined in the histopathological assessment.

4.3.2.5 Assessment of Growth, Disease Resistance, and Swimming Stamina in Larval Fish

The 7 day exposure was too short to merit investigation of growth, disease resistance, and stamina. Hence, all challenge tests were only done on larval fry from the long term, 28 day exposure.

Environmental stress can impair normal fish development, growth and condition by diverting energy resources and interruption of normal physiological functions (immune and reproduction systems, biochemical processes, etc.). These types of effects are extremely difficult to assess from selected measurements of biochemical, physiological and non-physiological indicators. However, challenge tests can provide insight into the capacity, performance and overall condition of an organism. These tests were designed to assess disease resistance, stamina and growth.

Growth is a measure of an organisms ability to convert food into biomass; an integration of a number of behavioral, biochemical and physiological processes critical to survival. Growth of fry was measured as an increase in dry weight and length. Condition factors were also derived based on length and wet weight data.

The fry exposed in Athabasca River water were significantly larger than fry from other treatments. Weight gain in the β -naphthoflavone treatment was the lowest. The Tar Island Dyke treatments were similar to or exceeded the controls (Table 14).

Condition factors for the fry indicated that they were all in reasonably good health compared to hatchery reared fish (Table 12).

Stress induced alteration of normal immunological functions are easily quantified. Many fish are asymptomatic carriers of pathogens. these are normally kept under control, but impairment can result in growth of the pathogen to lethal levels.

The disease challenge test was designed to asses the "health" of the immune system. Disease resistance is an integrated, whole organism response involving the functioning of numerous physiological systems (Schreck, 1990). The larval fish were reared in the

wastewater and Athabasca River water for 28 days. The fish were exposed to a range of pathogen densities and allowed to recover. Mortality was then scored over time. The actual mechanism of infection is not well understood. However, the test was designed to give a range of responses, from no effect to lethality.

Little mortality was noticed one to ten days after exposure to the pathogen. The greatest incipient mortality occurred after 3 to 4 days. The entire challenge test was repeated on fish that were held for 17 days following the 28 day exposure period. The results from those tests were qualitatively similar although the indices of mortality were less across all treatments (Table 14).

Mortality was highest in the exposure to Athabasca River water, followed by β naphthoflavone and then laboratory controls. All the mortality observed in fry exposed to Tar Island Dyke treatments and unexposed laboratory fry (externally reared controls) were lower but similar.

The results from the second test indicated that abilities of the fry to resist disease increased after a prolonged period of growth in laboratory dilution water. However, the fry from the Athabasca River water treatment did not fair as well as the other treatments.

Swimming stamina is a good general measure of fish condition and health. Stress related bioenergenic demands and disruption of physiological processes can affect stamina. Recovery following exercise can also provide insights on fish health.

The fry were placed into swimming tubes; in a constant flow condition. The number of fry exhibiting rheotoxis at test initiation and over time were recorded. The test was repeated after a 24 hour recovery period and again after a 72 hour recovery period. Fry reared in the laboratory and not in the fry vessels were also included as an additional control group (external controls reared in a separate system).

The number of fish exhibiting rheotoxis from the Tar Island Dyke and Athabasca River water exposures and controls were similar (Table 14). However, the fry from the β -naphthoflavone treatment performed poorly with less than 2% exhibiting rheotoxis. Most fry could maintain swimming for 60 minutes, but numbers tended to drop by the end of three hours. In previous tests, it was found that fish remaining after three hours could continue swimming for much longer time periods. Hence, the tests were terminated after three hours.

The number of fish exhibiting rheotoxis at test termination increased after the 24 hour recovery period. However, the same pattern in the data was noted. The fry exposed to Athabasca River water had less endurance than fry from other treatments. Similar results were obtained after the three day recovery period.

The fry from the Athabasca River water exposure were larger and appeared in better condition than fry from the other treatments. The difference in endurance could not be attributed to the metabolic diversion of energy into growth at the expense of overall stamina. This was consistent with reduced ability of these fish to resist disease. The size of the fish relative to crowding in the swimming tube could be an additional factor.

4.4 Chemical Characterization of Tar Island Dyke Water and Fish Analysis

A sample of Tar Island Dyke water was sent to EnviroTest Laboratories and Chemex for a complete chemical characterization. The fish carcasses from the 28 day exposure were also sent to EnviroTest Laboratories for residue analysis of target Oil Sands related compounds.

At the time of writing this report, only data for the chemical analysis of Tar Island Dyke water were available. These are appended.

5.0 CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

Laboratory Investigations were conducted to assess potential trophic level and fish health effects of Suncor Tar Island Dyke water. Experimental controls included standard reference toxicants, laboratory dilution water, Athabasca River water (field control), and study specific positive controls (β -naphthoflavone, naphthenic acids). The findings were:

- Tar Island Dyke water was not acutely toxic to Daphnia and did not inhibit growth of Selenastrum; some toxicity was detected with trout, fathead minnow, bacterial luminescence and survival and reproduction of *Ceriodaphnia*. These effects were considered moderate and with slight dilution, Tar Island Dyke water will have little or no effect on species representative of major trophic levels in aquatic systems.
- Athabasca River water was generally not toxic. However, some marginal effects were detected for fathead minnow and trout, and *Ceriodaphnia*.
- Tar Island Dyke water was not toxic enough to permit implementation of a low grade TIE.
- The pattern of toxicity of Tar Island Dyke water to the test organisms indicated that one group or class of compounds was responsible for the observed effects.
- A histopathological assessment was done by GlobalTox International Consultants Inc. on fish from the long term test exposed to Athabasca River water, naphthenic acids and 10% Tar Island Dyke water, tissue from trout exposed to 10% Tar Island Dyke and naphthenic acids revealed some pathology consistent with but not diagnostic of toxicity. No conclusions were made on the condition of fish exposed to Athabasca river water.
- Challenge tests were done on fry reared in the test treatments and included disease resistance, swimming stamina and growth assessments. Tar Island Dyke water had little effect on the growth, and general health and condition of the fry. Although fry reared in Athabasca River water had better overall growth, they were more susceptible to the pathogen and had less endurance. Exposure to diluted Tar Island Dyke water will have little or no impact on fry performance, health and condition.
- Fish health effects were assessed after short and long term responses. Similar results were obtained for the 7 and 28 day exposures. The necropsy did not reveal

REVISED ON 96/05/08 BY SG PAGE 40 FILE: 95030REV.DOC

any significant difference amongst treatments. The hematological assessment revealed lower hematocrit, and glucose, protein, and hemoglobin levels in fish exposed to 10% Tar Island Dyke water. The fish exposed to naphthenic acids also had lower hematocrit and glucose levels. These fish were also visibly stressed at test termination.

- Levels of EROD activity were increased in fish exposed to Tar Island Dyke water (10%) relative to Athabasca River water in both the short and long term tests. Data were not available for the SPMD extracts.
- The walleye responded in a similar way to that of the trout. No induction of EROD
 was detected in fish exposed to Tar Island Dyke water and Athabasca River water
 compared to laboratory controls in the 7 day test. Survival and the general
 condition of the walleye were also similar to the exposed trout. Data were not
 available for the 28 day test.
- Tissue residue data were not available at the time of writing this report.

5.2 Recommendations

Some variation in the toxicity of Tar Island Dyke water was noted in the battery of acute and chronic tests. However, the sample to sample variability was not high and all species responded in a similar fashion. Hence, the test battery can be reduced for more frequent monitoring with some confirmatory testing with an expanded battery. Bacterial luminescence was well correlated with and was as sensitive as the other test species. This test could be used for monitoring purposes.

- The responses of walleye and trout were similar. Hence, one species can be used for future testing and assessment of fish impacts.
- Necropsy on hatchery reared and laboratory reared fish did not reveal any qualitative or quantitative differences amongst treatments. These procedures should be modified and reduced. The hematological assessment and analysis of blood parameters should be retained along with liver and fish weights.
- Treatment levels separated by an order of magnitude were best suited for resolution of sublethal effects. More closely spaced treatments would tend to confound the data. However, a larger sample size would decrease variability.

- The SPMD's enclosed in nets tended to accumulate debris and were difficult to clean. In future exposures, the SPMD's should be located in the influent or effluent stream and not the tank.
- The challenge tests were relatively economical and provided useful information on the general health and condition of the fry. These types of tests should be expanded. Further, other biochemical responses in smaller fish should be investigated. There are many benefits for using smaller fish, including a greater sample size.
- The histopathological assessment should be retained but needs to be incorporated into the initial study design. The assessment should also include the fry.

6.0 **REFERENCES**

Adams, S.M., editor. 1990a. Biological indicators of stress in fish. Am. Fish. Soc. Symp. 8.

Adams, S.M. 1990b. Status and use of biological indicators for evaluating the effects of stress on fish. Amer. Fish. Soc. Symp. 8:1-8.

Biological Test Method: Reference Method for Determining Acute Lethality of Effluents to Rainbow Trout, 1990. Environ. Can. EPS 1/RM/13.

Biological Test Method: Reference Method for Determining Acute Lethality of Effluents to *Daphnia magna*, 1990. Environ. Can. EPS 1/RM/14

Biological Test Method: Test of Larval Growth and Survival Using Fathead Minnows, 1992. Environ. Can. EPS 1/RM/22

Biological Test Method: Toxicity Test Using Luminescent Bacteria (*Photobacterium phosphoreum*), 1992. Environ. Can. EPS 1/RM/24

Biological Test Method: Microplate Growth Inhibition Test Using the Freshwater Alga Selenastrum capricornutum, 1992. Environ. Can. EPS 1/RM/25.

Biological Test Method: Test of Reproduction and Survival Using the Cladoceran *Ceriodaphnia dubia*, 1992. Environ. Can. EPS 1/RM/21.

Folmar, Leroy C. 1993. Effects of Chemical Contaminants on Blood Chemistry of Teleost Fish: A Bibliography and Synopsis of Selected Effects. Environ. Toxicol. Chem. 12: 337-375.

Goede, R.W. 1993. Fish health / condition assessment procedures. Utah Division of Wildlife Resources. Fisheries Experimental Station. Logan. 31 pp.

Goede, Ronald, W. and Bruce A. Barton. 1990. Organismic Indices and an Autopsy-Based Assessment as Indicators of Health and Condition of Fish. Amer. Fish. Soc. Symp. 8:93-108.

Heath, A.G. 1987. Water pollution and fish physiology. CRC Press, Baco Raton, FL. Hodson, P.V., P.J. Kloepper-Sams, K.R. Munkittrick, W.L. Lockhart, D.A. Metner, P.L. Luxon, I.R. Smith, M.M. Gagnon, M. Servos, and J.F. Payne. 1991. Protocols for measuring mixed function oxidases of fish liver. Can. Tech. Rep. Fish. Aquat. Sci. 1829.

Munkittrick, K.R., M.R. van den Heuvel, D.A. Metner, W.L. Lockhart, and J.J. Stegeman. 1993. Interlaboratory Comparison and Optimization of Hepatic Microsomal Ethoxyresorufin-*o*-Deethylase Activity in White Sucker (*Catostomus Commersoni*) Exposed to Bleached Kraft Pulp Mill Effluent. Environ. Toxicol. Chem. 12:1273-1282.

Parrott, J.L., P.V. Hodson, D.E. Tillitt, D.T. Bennie and M.E. Comba. Semipermeable Membrane Devices (SPMDs) Accumulate Inducers of Fish Mixed Function Oxygenase (MFO) from Four Pulp Mills and One Refinery on the Athabasca River System, Alberta, Canada.

Schreck, C.B. 1990. Physiological, Behavioral and Performance Indicators of Stress. Amer. Fish. Soc. Symp. 8: 29-37.

Van Den Heuvel, M.I R., K.R. Munkittrick, J.J. Stegeman, and D. G. Dixon. 1995. Second-Round Interlaboratory Comparison of Hepatic Ethoxyresorufin-*o*-Deethylase Activity in White Sucker (*Catostomus* commersoni) Exposed to Bleached-Kraft Pulp Mill Effluent. Environ. Toxicol. Chem. 14:1513-1520.

Wedemeyer, Gary A., Bruce A. Barton, and Donald J. McLeay. Stress and Acclimation. Amer. Fish. Soc. Symp. 8:451-489.

West, Inc., and Gulley D., 1994. Toxstat 3.4. Western EcoSystems Technology Inc., Cheyenne WY.

TABLES

LIST OF TABLES

Table 1

Study Specific Quality Assurance Practices Table 2 Sample Collection Dates and List of Tests Performed Table 3 Battery of Acute and Chronic Tests Applied to Suncor Wastewater and Athabasca River Water Test Specific Quality Control Criteria Table 4 Table 5 Dilution Water Chemistry Parameter List for Fish Autopsy Procedure Table 6 Selected Water Quality Data and Other Information on Test Samples Table 7 Table 8 Summary of Acute and Chronic Test Results for Tar Island Dyke and Athabasca River Water Samples Table 9 Water Quality Data Summary for 7 and 28 Day Tests Table 10 Survival of Walleye, Trout and Larval Trout Following the 7 and 28 Day Exposures Table 11 Summary of Necropsy Results on the Large Trout from the 7 and 28 Day Exposures Table 12 Body Condition Factors and Liver Somatic Indices for Trout and Walleye from the 7 and 28 Day Tests and Body Conditions for Larval Trout (28 Day Test) Table 13 Induction of Liver Mixed Function Oxidase Activity in Trout from the 7 and 28 Day Exposures Table 14 Summary of Challenge Test Results on Larval Trout from the 28 Day Exposure

Table 1. Study Specific Quality Assurance Practices

STUDY COMPONENT

QUALITY ASSURANCE PRACTICE

TROPHIC EFFECTS TESTING

- in-life audits
- independent review and verification of reports
- negative controls run with each test
- reference toxicant tests and warning charts for each test species
- replication of test treatments
- controlled environmental conditions
- standard operating procedures

FISH HEALTH EFFECTS ASSESSMENT

- negative and positive controls (lab dilution water, BNF and NAP)
- daily chemical analysis and flow checks
- test repeated (short and long term)
- in-life audits
- controlled environmental conditions
- access to test area restricted

Necropsy

checklists used to ensure all data recorded

duplicates and certified reference standard

- samples preserved and clearly labeled immediately after processing
- training

.

.

• photographs (filem and videotape)

negative and positive controls

Biochemical Analyses (blood)

Biochemical Analyses (MFO)

- chain of custody forms
 split sample
 - negative and positive controls

standard test methods

- third party quality assurance practic
- third party quality assurance practices

Histopathological Assessment

- chain of custody forms
- third party quality assurance practices
- independent review

STUDY COMPONENT	QUALITY ASSURANCE PRACTICE
Disease Resistance	 tests repeated uniform exposure conditions large sample size broad range of treatment conditions external controls dose verification negative controls
Swimming Stamina	 tests repeated replication of selected treatments external controls flows calibrated at least daily in swimming tubes negative controls fish introduced to tubes three times to give all fish an equal chance to swim water in tubes renewed after each test to maintain temperature at 15 ± 2°C
CHEMICAL CHARACTERIZATION	
	 chain of custody forms internal data review

- split samples
- laboratory specific QA practices

WRITTEN ON 95/12/01 BY MG/SG HYDROQUAL LABORATORIES LTD.

REF	SAMPLE DATE	TYPE	DA(D)	TR(D)	BL(S)	BL(D)	AG(D)	CD(D)	FM(D)
Tar Islan	d Dyke Water								
95293 95320-1 95393 95404-1 95465-1	95/07/25 95/08/11 95/09/20 95/09/29 95/10/27	small large small large large	√ √ √	$\begin{array}{c} \checkmark \\ \checkmark $	√ √	\checkmark \checkmark	√ √ √	√ √ √	√ √ √
Athabasc	a River		DA(S)	TR(S)	BL(S)		AG(S)	CD(S)	FM(S)
95320-2 95404-2 95465-2	95/08/11 95/09/29 95/10/27	large large large	$ \checkmark \\ \checkmark $	$ \begin{array}{c} \checkmark \\ \checkmark \\ \checkmark \end{array} $	$ \checkmark \\ \checkmark \\ \checkmark $		$ \downarrow $	\checkmark \checkmark	\checkmark \checkmark

Table 2. Sample Collection Dates and List of Tests Performed

NOTES: DA, Daphnia; TR, Trout; BL, Bacterial Luminescence; AG, Algae; CD, Ceriodaphnia; FM, Fathead Minnows; D, definitive test with five treatment levels and a control; S, screening test on undiluted sample; small, 60 L; large > 1 m³

ORGANISM	SPECIES	RESPONSE	REFERENCE
	ACUTE TESTS	nyanyan ng mang pang ng kanang kan	n i sa na
Microbe	Vibrio fischeri	light inhibition	EPSI/RM/24 Nov 1992
Invertebrate	Daphnia magna	survival	EPSI/RM/14 July 1990
Fish	Oncorhynchus mykiss	survival	EPSI/RM/13 July 1990
	CHRONIC TESTS		
Plant	Selenastrum capricornutum	growth inhibition	EPSI/RM/25 Nov 1992
Invertebrate	Ceriodaphnia dubia	survival and reproduction	EPSI/RM/21 Feb 1992
Fish	Pimephales promelas	survival and growth	EPSI/RM/22 Feb 1992

Table 3. Battery of acute and Chronic Tests Applied to Suncor Wastewater and Athabasca River Water

LABORATORY TOXICOLOGICAL CHARACTERIZATION OF SUNCOR WASTEWATERS

 Table 4.
 Test Specific Quality Control Criteria

Test Organism	Reference Toxicant	Historical Mean	Frequency of Testing	Other Test Validaty Criteria
Vibrio fischeri	Zn ²⁺	0.9 mg/L	each reagent vial	 co-efficient of variation ≤ or = 30% regression co-efficient ≥ or = 0.995
Daphnia magna	NaCl	6.0 g/L	every 2 to 4 weeks	 control survival ≥ or = 90% test must be conducted at 20 ± 2⁰C
Oncorhynchus mykiss	phenol	9.3 mg/L	every 2 to 4 weeks	 control survival ≥ or = 90% test must be conducted at 15 ± 1°C
Selenastrum capricornutum	Zn ²⁺	73 μg/L	every 2 to 4 weeks	 co-efficient of variation in the control treatment ≤ or = 20% number of cells must increase by a factor of more than 16 in 72 hours
Ceriodaphnia dubia	NaCl	LC50 - 2.6 g/L IC50 - 1.3 g/L	every 2 to 4 weeks	 survival in controls must be ≥ or = 80% reproduction of neonates in controls must be ≥ or = 15 live young per surviving adult co-efficient of variation in results must be ≤ or = 30%
Pimephales promelas	NaCl	LC50 - 0.8 g/L IC50 - 1.5 g/L	every 2 to 4 weeks	 survival in control ≥ or = 80% final dry weights of control fish ≥ or = 230 µg/fish

WRITTEN ON 95/12/01 BY MG/SG HYDROQUAL LABORATORIES LTD.

Table 5.	Dilution	Water	Chemistry	(ANALYZED	95/09/18)
				`	,

GENERAL	alkalinity (as CaCO3)	154	TRACE METALS	aluminum	0.14
PARAMETERS	conductance (uS/cm)	371		antimony	0.003
	dissolved oxygen	saturated		arsenic	<0.0009
	hardness (as CaCO3)	199	•	barium	0.066
	pH (units)	7.5		beryllium	<0.0001
	total dissolved soilds	216		bismuth	0.022
	total organic carbon	2		cadmium	<0.0001
	total residual chlorine	<0.1		cobalt	<0.0009
	turbidity (NTU)	nd		copper	0.003
CATIONS	calcium	54		chromium	<0.0003
	magnesium	16		iron	<0.002
	potassium	0.7		lead	<0.001
	sodium	3.1		lithium	0.004
ANIONS	bromide	< 0.05		manganese	<0.0004
	chloride	3.4		molybdenum	0.003
	fluoride	0.8		nickel	0.001
	sulfate	47		phosphorus	0.008
	bicarbonate	188		selenium	0.004
NUTRIENTS	ammonium	<0.001		silver	<0.0002
	nitrate	<0.05		silicon	<0.002
	nitrite	<0.05		strontium	0.35
	phosphate	<0.05		sulphur	16
				thallium	0.005
				thorium	0.0012
				tin	nd
				titanium	0.003
		,		vanadium	0.001
				zinc	0.006
				zirconium	<0.0003

REVISED ON 96/01/05 BY MG/SG

ø

LABORATORY TOXICOLOGICAL CHARACTERIZATION OF SUNCOR WASTEWATERS

PARAMETER	FEATURES					
EXTERNAL						
length	n/a					
weight	n/a					
fins	evidence of and levels of erosion					
operculum	evidence of and levels of shortening					
eyes	normal, exopthalmic, hemorrhagic, blind, missing or other					
gills	normal frayed, clubbed, marginate, pale or other					
INTERNAL						
sex	male, female or immature					
pseudobranch	normal, swollen, lithic, inflamed or other					
thymus	evidence of and levels of hemorrhaging					
mesentary fat	percent internal body fat					
spleen	black, red, granular, nodular, enlarged or other					
hind gut	evidence of and level of inflammation					
stomach	empty or full					
kidney	normal, swollen, mottled, granular, crolithic or other					
liver	red, light red, cream (fatty), nodules, focal discoloration, general discoloration or other					
bile	yellow empty bladder, yellow full bladder, light green or dark green					

Table 6. Parameter List for Fish Autopsy Procedure

- 5

PARAMETER	T <i>A</i> 1	TAR ISLAND DYKE 1 2 3		A7 1	HABASCA RIV 2	ER 3				
collected on	95/08/11	95/09/29	95/10/27	95/08/11	95/09/29	95/10/29				
lab ref. no.	95320-1	95404-1	95465-1	95320-2	95404-2	95465-2				
pH (units)	8.3	8.5	8.3	8.2	8.5	8.2				
dissolved oxygen (mg/L)	SATURATED									
conductance (uS/cm)	1256	1462	1211	243	317	247				
ammonium (mg-N/L)	0.3	0.8	0.7	0.2	0.1	0.1				
hardness (mg-CaC0₃/L)	80	156	150	110	146	150				
colour	yellow	yellow	brown	colourless	brown	pale yellow				
odour	hydrocarbon	hydrocarbon	organic	odourless	mild organic	odourless				

Table 7. Selected Water Quality Data and Other Information on Test Samples

Table 8.	Summary of Acute and Chronic Test Results for Tar Island Dyke and
	Athabasca River Water Samples

	TAR ISLAND DYKE (LC50, IC50, or EC50)			ATHABASCA RIVER (% controls)			
SAMPLE REFERENCE	95320-1	95404-1	95465-1	95320-2	95404-2	95465-2	
ACUTE TESTS							
bacterial luminescence	34	42	65	not toxic	not toxic	not toxic	
48 h Daphnia survival	not toxic	not toxic	not toxic	not toxic	not toxic	not toxic	
96 h Trout survival	62	27	62	not toxic	not toxic	not toxic	
CHRONIC TESTS							
72 h algal growth inhibition	not toxic	not toxic	46	not toxic	65	not toxic	
7 d Ceriodaphnia survival reproduction	18 20	78 48	75 18	not toxic 67	not toxic 69	not toxic 78	
7 d fathead minnow survival growth	74	64 48	69 67	57 80	not toxic 91	60 107	

	Sma	all Tanks	(1-8)	Larg	Large Tanks (9-16)		
Parameter	Avg	min	max	Avg	min	max	
						<u></u>	
			7 Da	ay Test			
pH (units)				7.8	7.5	8.2	
conductance (uS/cm)				357	253	426	
dissolved oxygen (mg/L)				7.1	6.0	8.3	
temperature (oC)				19	18	22	
			28 D	ay Test			
pH (units)	8.3	8.3	8.3	7.9	7.7	8.0	
conductance (uS/cm)	393	307	499	393	313	475	
dissolved oxygen (mg/L)	9.0	8.6	9.1	7.4	6.4	8.0	
temperature (oC)	15	14	18	14	14	16	
ammonium (mg-N/L)	0.3	0.1	0.7	0.6	0.4	0.9	

Ϊ.

Table 9. Water Quality Data Summary for 7 and 28 Day Tests

		Percent Mortality						2 2		
Parameter		Lab Controls	Ta	Tar Island Dyke Water (%)					aphthenic Acids	eta-Naphthoflav
			0.01	0.1	1	10	50	4	z	ñ
50-100 g trout	7-day	0	4008	0	0	0	60	0	0	0
	28-day	0	100~	0	8	0		0	0	0
5-10 g trout	7-day	0		67	0	0	100	33	0	
larval trout	7-day	<5		<5	<5	<5	100	<5	<5	<5
	28-day	10	8	4	1	92 ^b		8	3	13
walleye	7-day	0		0	0	0	100	0	0	
	28-day	8	0	0	23	0		8	13	0

 Table 10.
 Survival of Walleye, Trout, and Larval Trout Following the 7 and 28 Day Exposures

Notes: a. this was a sudden event that occurred on day 21 of the test

b. accidental mortality due to a faulty influent line

c. only three small walleye and trout (5 to 10 g) were used in the 7 day test

Table 11. Summary of Necropsy Results on the Large Trout from the 7 and 28 Day Exposures

Parameter	lab controls	T	"ar Islan	d Dyke V	Water (%)	Athabasca River	Naphthenic Acids	3eta-Naphthoflavor
		0.01	0.1	1	10	50			L
EXTERNAL FEATURES fin, operculum, eye, gill	all norm	al in all t	treatmer	nts from	both the	short an	d long te	erm tests	
INTERNAL FEATURES sex, pseudobranch, thymus, fat, spleen, gut, stomach, kidney, liver sex	no major differences or trends were noted; all fish were immature, there was little hemorrhaging or inflammation of the thymus and hind gut the spleens and kidneys were normal and the livers were not discolored or malformed							ind gut	
HEMATOLOGY - 7 DAY									
hematocrit	39		41	38	37	28	39	35	33
hemoglobin (g/dL)	8		10	5	7	6	9	7	9
protein (g/dL)	5		1	5	4	5	6	7	6
lactic acid (mg/dL)	88 407		94 100	92	/3	141	96	97	11
giucose (ing/uc)	107		109	90	102	67	97	106	110
HEMATOLOGY - 28 DAY									
hematocrit	40		36	38	28		39	29	35
hemoglobin (g/dL)	8		8	9	6		7	6	8
protein (g/dL)	6		5	6	3		5	5	5
lactic acid (mg/dL)	62		45	52	32		69	27	48
glucose (mg/dL)	139		155	112	76		122	85	85
white blood cells (%)	0.6		3.8	0.7	4.8		4.5	2.9	1.5

.

Parameter		Lab Controls	Tar Island Dyke Water				Athabasca River	Vaphthenic Acids	3eta-Naphthoflavd	
			0.01	0.1	1	10	50		_	
Body Condition Fac	ctor (klt; x10^3)									
trout	7-day 28-day	1.4 1.4	1.1	1.2 1.1	1.2 1.0	1.2 1.1	1.4	1.2 1.1	1.3 0.8	1.3 1.2
walleye	7-day 28-day	0.9 0.8		0.8 0.8	0.8 0.8	0.7 0.8		0.8 0.9	0.8 0.8	0.8
larval trout	28-day	0.9		1.0	1.0	0.9		1.1	1.0	0.9
Liver Somatic Index	x (LSI, x100)									
trout	7-day 28-day	1.6 1.1		1.1 1.5	1.1 1.2	0.9 1.6	1.1	1.2 1.1	1.2 2.3	1.5 1.6
walleye	7-day 28-day	1.1 2.2	2.2	1.7 2.0	1.5 2.0	1.3 2.0		1.3 1.5	1.7 2.0	2.0

Table 12.Body Condition Factors and Liver Somatic Indices for Trout and Walleye from
the 7 and 28 Day Tests and Body Condition Factors for Larval Trout (28 day Test)

Condition	National Water Research EROD-7 d Test EROD	Institute ¹ -28 d Test	EnviroTest Labor AHH	atories ² EROD
lab control	1.2			
Tar Island Dyke Wastewater (%) 0.01 0.1 1 10 50	1.5 2.1 2.5 1.4		3.5	3.3
Athabasca River Water	1.0		1.0	1.0
Naphthenic Acids	1.3			
Beta-naphthoflavone	12.4		3.1	7.6

Table 13.Induction of Liver Mixed Function Oxidase Activity in Trout from the 7 and 28 Day
Exposures (all activities expressed as a ratio to rates obtained from the river water
exposures)

Notes: 1. base rates of 29 pmol/min/mg for AHH and 64 pmol/mg/min for EROD

2. base rate of 1.3 pmol/min/mg for EROD

3. AHH, aryl hydrocarbon hydroxylase; EROD, 7-thoxyresorufin-O-deethylase

4. values missing were not done or reported
| Condition | Growth ¹
(mg) | Disease Resistance ²
(% mortality) | Swimming Stamina ³
(% remaining at 3 h) |
|--------------------------------|-----------------------------|--|---|
| lab control | 0.3 | 40 | 21 |
| Tar Island Dyke Wastewater (%) | | | |
| 0.01 | 0.4 | 33 | 13 |
| 0.1 | 0.5 | 20 | 35 |
| 1 | 0.4 | 27 | 27 |
| 10 | not done | 27 | not done |
| Athabasca River Water | 0.6 | 53 | 14 |
| Naphthenic Acids | 0.5 | 25 | 26 |
| Beta-naphthoflavone | 0.2 | 27 | 3 |

Table 14. Summary of Challenge Test Results on Larval Trout from the 28 Day Exposure

Notes: 1. growth is based on final dry weight at test termination 2. diseases resistance data from highest treatment (1 to 2 x 10⁶ CFU per mL)

3. swimming stamina data are from the first swim after 3 hours

FIGURES

LIST OF FIGURES

Figure 1.	Method for the Transport and Handling of Large Samples
Figure 2.	General Overview of Fish Exposure Unit (FEU)
Figure 3.	Photographs of the Fish Exposure Unit (FEU)
Figure 4.	Fish Processing Flow Chart
Figure 5.	Disease Resistance Challenge Test
Figure 6.	Swimming Stamina Challenge Test
Figure 7.	Photographs of the Walleye (a) and Trout in the Laboratory Control Tanks
Figure 8.	Photograph of a SPMD Deployed in a Tank (a) and Removal from the Holding Net (b)

LABORATORY TOXICOLOGICAL CHARACTERIZATION OF SUNCOR WASTEWATERS

Figure 1. Method for the Transport and Handling of Large Samples a. Flatbed and tractor; b. Off loading sample

WRITTEN ON 95/12/01 BY MG/SG HYDROQUAL LABORATORIES LTD. REVISED ON 96/01/05 BY MG/SG

FILE: 95030TBL.DOC

(tank numbers are as indicated; the walleye were exposed in tanks 1 to 8 and the trout in tanks 9 to 16)

LABORATORY TOXICOLOGICAL CHARACTERIZATION OF SUNCOR WASTEWATERS

Figure 3. Photographs of the Fish Exposure Unit (FEU)

a. Tanks 1 to 8 are on the left (200 L) and tanks 9 to 16 on the right (400 L); note the fry vessels (b) and SPMD,s suspended in the large tanks on the left

WRITTEN ON 95/12/01 BY MG/SG HYDROQUAL LABORATORIES LTD. REVISED ON 96/01/05 BY MG/SG

FILE: 95030TBL.DOC

Figure 4. Fish Processing Flow Chart

.

LABORATORY TOXICOLOGICAL CHARACTERIZATION OF SUNCOR WASTEWATERS

Figure 5. Disease Resistance Challenge Test

a. Fry are being exposed to the pathogen, rinse baths in foreground b. Close up of fry in box cages

WRITTEN ON 95/12/01 BY MG/SG HYDROQUAL LABORATORIES LTD. REVISED ON 96/01/05 BY MG/SG

FILE: 95030TBL.DOC

pump

Figure 6. Swimming Stamina Challenge Test

a. Schematic of test apparatus b. Close up of fish in swimming tubes

LABORATORY TOXICOLOGICAL CHARACTERIZATION OF SUNCOR WASTEWATERS

Figure 7. Photographs of the Walleye (a) and Trout in the Laboratory Control Tanks

WRITTEN ON 95/12/01 BY MG/SG HYDROQUAL LABORATORIES LTD. REVISED ON 96/01/05 BY MG/SG

FILE: 95030TBL.DOC

LABORATORY TOXICOLOGICAL CHARACTERIZATION OF SUNCOR WASTEWATERS

Figure 8. Photograph of a SPMD Deployed in a Tank (a) and Removal from the Holding Net (b)

WRITTEN ON 95/12/01 BY MG/SG HYDROQUAL LABORATORIES LTD. FILE: 95030TBL.DOC

APPENDICES

APPENDICES

- Trophic effects test reports
- Water quality data for 7 and 28 day exposures
- Summary data sheets for 7 and 28 day exposures
- Necropsy summary data sheets
- Liver mixed function oxidases results for 7 and 28 day tests
- Histopathological assessment by GlobalTox International Inc.
- Challenge test data sheets
- Chemical analysis of Tar Island Dyke water

Trophic effects test reports

Client: 95030 Sample: 95293

LIENT INFORMATION	
Client:	Suncor Inc., Oil Sands Group
Operation:	Ft. McMurray
Address:	P.O. Box 4001
City:	Ft. McMurray
Province/State:	Alberta
Country:	Canada
Postal/ZIP Code:	T9H 3E3
Billing Information:	lease 86 reclamation program - task 6127 (invoice to Suncor)
Contact:	Trina Hoffarth
Tel:	403-743-6715
Fax:	403-791-8339

SAMPLE INFORMATION

Sample Type:	water - Tar Island (site	: RW128,	, number: T004)	
Collected On:	95/07/25	At:	not given	
Collected By:	not given			
Shipped On:	95/07/26			
Shipped By:	Grimshaw Trucking			
Received On:	95/07/26	At:	0900	
Received By:	T. Befus			
Container:	20 L plastic carboys			
Seals:	not sealed			
Initials on Seals:	not applicable			

pH (units)

Conductance (uS/cm) Dissolved Oxygen (mg/L) Temperature (oC) Alkalinity (mg-CaCO3/L) Hardness (mg-CaCO3/L)

8.1	ammonium (mg-N/L)	not done
1302	residual chlorine (mg/L)	not done
5.5	Colour:	yellow
21	Odour:	organic
not done		
68		

COMMENTS

data sent to Chris Fordham with copies to John Gulley/Trina Hoffarth at Suncor Environmental Affairs (fax: 403-791-8399)

SAMPLE HISTORY Storage Conditions:

Disposed On:

____ Method:

TEST LOG

Test Type Number Started Ended Reported Faxed

TR(D)	BL(S)		
950593	950594		
95/07/28	95/07/27		
95/08/01	95/07/27		
95/08/10	95/08/10		

NOTES: TR, trout; FM, fathead minnows; DA, Daphnia; CD, Ceriodaphnia; AG, Selenastrum; BL, bacterial luminescence; D, definitive test; S, screening test

5oC in darkness

by

		obione and a second	and a second s	States and a state of the state
Client: 9503	0 Sample:	95293	Test:	950593

Test Method: Trout 96h Static Acute Test (LC50, five or more treatment levels plus a control) Reference: Biological Test method: Reference Method for Determining Acute Lethality of Effluents to Rainbow Trout, 1990. Environment Canada, EPS 1/RM/13.

Client Information:	Suncor Inc Ft. McMun	., Oil San ray	ds Group		
Sample Information:					
Description:	water - Tai	⁻ Island (si	te: RW128, n	umber: 1	⁻ 004)
Collected On:	95/07/25	At:	not given	By:	not given
Received On:	95/07/26	At:	0900	By:	T. Befus
Test Information:					
Started On:	95/07/28	At:	1315	By:	JR/JF
Ended On:	95/08/01	At:	1130	By:	JR/JF
Reported On:	95/08/10			By:	MG
Test Result: LC25	Value	Confiden	ce Limits	Units %	Method Calculated
LC50	35.4	25	50	%	Binomial
NOEC				%	
LOEC				%	

TEST D	ATA					Client:	9503	80	Sampl	e: 9	5293	Test:	950593	
	TION	-	not roc	irod										
time		\cap		11911 1	15	2	1							
	(1) (1)		0.0		1.9	<u> </u>	1							
comme	ents	none	I			J	L							
													·····	
Communication of the second		CHE	MISTR	Y					BIOL	OGY ·	NUMB	ER AL	IVE	
Treatment	рН (เ	units) I	Cond.(uS/cm)	DO ((mg/L) I	1	1 2	121			171	8 0 4	0
(%)		<u> </u>				<u> </u>		2		4	5 1 0		0 9	
Date:	95/07/2	.8	Time:	1315		Initials:	JR/J	F	Tem	p (oC)): 14.7	, 		
Control	8.0		350		8.6		10							
3.13	8.1		382		8.6	-	10	l						
6.25	8.1		413		8.6		10	1						
12.5	8.2		495		8.4	-	10							
<u></u> 50	83		867		0.3 7.8	{	10							
	0.5				1.0	1	—	1						
					········	1	 	1						
Date:	95/07/2	9	Time:	1230		Initials:	DM/	JF	Tem	p (oC)): 14.9)		
Control	8.1		348		7.7]	10	I						
3.13	8.1		388		7.5]	10	Į						
6.25	8.1		420		7.4	4	10	Į						
12.5	8.2		504		7.4	-	10	Į						
<u></u>	8.3		200 872		1.4	-	10	ł						
	0.4		072		0.0	-								
		ĺ				1								
Date:	95/07/3	0	Time:	1145		Initials:	DM/	ĴF	Tem	p (oC): 14.5	5		
Control	7.4		354		7.4		10							
3.13	7.6		389		7.0	4	10	1						
6.25	1.7	{	422		6.8	4	10	ł						
12.5	1.9 8 1	ł	505		0.0 60	-	10	-						
50	8.3	{	878		6.5	┨								
	<u> </u>	1				1	Ĕ							
						1								
Date:	95/07/3	31	Time:	1010		Initials	DM/	JR	Τε	emp:	14.4	ŧ I		
Control	8.1		355		7.7		10	1						
3.13	8.1		392		7.4	4	10	Į						
6.25		-	426		/.1	-	$\frac{10}{10}$							
12.5	0.2	4	509		6.9	-								
50	85	1	882		6.6	-		1						
	+	1			<u></u> -	1	Ĕ	1						
	1	1		1		4		1						

						Client:	9503	0	Sam	ple:	9529	3	Test	: 6	9 50 59	3
		сне	MICTR	~					BIO		V NI	IMR			**********	
Troatment	nH (i	unite)		I IS/cm)		mall)	T			PF	PLICA	ATE				****
(%)	pri(t			10/011)	00(ing//	11	2	3			16	17	8	9	l 10
						2	L				Anna anna anna anna anna anna anna anna			1	1	
Date:	95/08/0	1	Time:	1130		Initials:	JR/JI	~2		Temp):	14.4				
Control	8.1		360		7.6		10									
3.13	8.0		396		7.6]	10									
6.25	8.0		430		7.1		10									
12.5	8.1		513		7.0		10									
25	8.1	j	599		6.5		10									
50						J	0									
		1														
				ļ]										
SUI	MMARY	TABLE					1		Distantiant		REPL	ICAT	'E	20001000000000000000000000000000000000		1
TREATM	IENT	MORT	ALITY	mg Nł	-14-N/L	1	1	2	3	4	5	6	7	8	9	10
(%)		(°	%)	t=0	t=96 h	avg	lindiv	idual	fish v	weight	ts (g)	1		1		Å
Contr	rol	 	0	<0.1	0.5	Ť	1		Ī	Ť	<u> </u>	Γ	T	T	1	
3.1		 (0	nd	nd	1		9009709808800000000	İ			1	1	†		
6.3		(0	nd	nd	1	1		1	1	1		†	1	1	
12.5	5	(0	nd	nd	-	1			\uparrow	1			1	<u> </u>	
25.0)	1	0	nd	nd					1	Ì			1	1	
50.0)	1	00	1.2	1.4		t			1	ļ	1	1	1	1	
						1	1		, () 				1	1	1	
		1				1				T	1		1	1		
Responses and a second s		Announced the second				avg	indiv	idual	fish f	ork le	engths	(cm))			A
Contr	rol						Ĩ			I	1	Ι	[1
3.1							L					1]	1	
6.3									I	l		L		L	<u> </u>	
12.5	5						<u> </u>]	[Γ		
25.0	0]									
50.0)							ļ	ļ		ļ	ļ	<u> </u>			I
							Į	 	ļ	ļ	ļ		Ļ	ļ	<u> </u>	
									<u> </u>					L		
CONAMAENI'		-h addau	ط ۵۴۰	4040	Do	tob num	borrTC	2050	744	No	dava	hald		47	NTREES CONTRACTOR OF CONTRACTOR	
	Tost de	auueu			Da Da	CH HUIH	Det.ir	(900)	/]	INU.	uays	neiu.		17		
	1651.00			les usi	lg sman	IISH.		******					#7/1070#2010#400 0 #400g.			-
<u> </u>	*********		577 A Co 4 12 D Society (of several 777 777 777 777 777			*****	ANTER MERICAN AND AND AND AND AND AND AND AND AND A	,000,000,000,000,000,000,000,000,000,0	00000000000000000000000000000000000000	****		******	10+01-10120-00-00-00-00-00-00-00-00-00-00-00-00-0		5010505676000000000000000000000000000000	212400-0000000-00000000
48	Constant of the second se	**************	********	10000000000000000000000000000000000000				******				*********************				
ντυ 		**********	NUMBER OF CONTRACTORS OF CONTRACTORS			APRO 2010 100000000000000000000000000000000	New Association and a second second	***************************************						2000conaturo anno	******************************	
72	nath Zean (1997) Mineral Street (1999)	****			****	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		*****************	***************************************					by water the second		
1 60						****			MINIMPROVEMENT CONTRACTOR			sonawa Mianiwanawa		Tanya canada tanàn amin'ny faritr'i dia mandritry dia mandritry dia mandritry dia mandritry dia mandritry dia m		
96	All fish	in 25%	highly s	tressed	(lvina c	n sides	at bott	om o	f pail). Rer	nainir	na fisl	n app	ear no	ormal	

Client: 95030 Sample: 95293 Test: 950594

Test Method: Bacterial luminescence Test. Screening test (one treatment level plus a control) Reference: Biological Test Method: Toxicity Test Using Luminescent Bacteria (*Photobacterium phosphoreum*), 1992. Environment Canada, EPS 1/RM/24.

Client Information:	Suncor Inc.	, Oil San	ds Group		
	Ft. McMum	ay			
Sample Information:					
Description:	water - Tar	Island (si	te: RW128, n	umber: ⁻	Г004)
Collected On:	95/07/25	At:	not given	By:	not given
Received On:	95/07/26	At:	0900	By:	T. Befus
Test Information:					
Started On:	95/07/27	At:	1530	By:	JR
Ended On:	95/07/27	At:		By:	JR
Reported On:	95/08/10			By:	MG

Test Result: 15% expressed as a percentage of the controls.

ſ

#3, 6125 - 12 Street S.E. Calgary, Alberta Canada T2H 2K1 TEL: (403) 253-7121 FAX: (403) 252-9363 1-800-808-6942

TEST DATA	Client:	95030	Sample:	95293	Test:	950594

SAMPLE PRE	
pH adjustment	not required
preaeration	not required
turbidity	not centrifuged/filtered
other	none

LIGHT READI	VGS		
•		Time (min)
Treatment Level (%)	0	5	15
control	85	88	88
1.0	22	17	15

INHIBITIO	N (%CTLS)
5 min	15 min
100	100
19	17
a na sa	

				Client:	95030	Sample:	95320-1
CLIENT INFORMATION				******		*******	
Client:	Suncor Inc.	, Oil Sands	s Group		44000000000000000000000000000000000000	*****	
Operation:	Ft. McMum	ay			Notwork and the second		
Address:	P.O. Box 4	001					
City:	Ft. McMum	ay					
Province/State:	Alberta						
Country:	Canada						
Postal/ZIP Code:	<u>T9H 3E3</u>						
Billing Information:							
Contact:	Trina Hoffa	rth					
Tel:	403-743-67	15					
Fax:	403-791-83	31					
SAMPLE INFORMATION							
Sample Type:	effluent (Ta	r Island dy	ke)				
Collected On:	95/08/11		At:	not given		_	
Collected By:	not given						
Shipped On:	95/08/11						
Shipped By:	Grimshaw	Trucking					
Received On:	95/08/11		At:	2010			
Received By:	S. Goudey					· x	
Container:	3 x 500 gal	. containers	3				
Seals:	not sealed						
Initials on Seals:	not applica	ble					
INITIAL CHEMISTRY							
pH (units)	8.3		amm	nonium (mg	-N/L)	not done	
Conductance (uS/cm)	1256		residu	al chlorine	(mg/L)	not done	
Dissolved Oxygen (mg/L)	8.4		•	Colour:		yellow	
Temperature (oC)	19		•	Odour:		hydrocarb	on
Alkalinity (mg-CaCO3/L)	not done		•				
Hardness (mg-CaCO3/L)	80						
COMMENTS	sample cor	itainer leak	ed in shipm	ent			
SAMPLE HISTORY							
Storage Conditions:	5oC in dark	ness					
Disposed On:		by		Method:			
·				•			
TEST LOG							
Test Type	DA(D)	TR(D)	BL(S)	AG(D)	CD(D)	FM(D)	1
Number	950913	950679	950914	950671	950670	950672	1
Started	95/09/27	95/08/15	95/08/14	95/08/14	95/08/12	95/08/14	1
Ended	95/09/29	95/08/19	95/08/14	95/08/17	95/08/19	95/08/21	1
Reported	95/10/03	95/10/03	95/10/03	95/10/03	95/10/03	95/10/03	
Faxed							
	NOTES: TR, t	rout; FM, fathe	ad minnows; D	A, Daphnia; C	D, Ceriodaphr	nia; AG, Selena	strum;
	BL, bacterial lu	iminescence; [D, definitive tes	t; S, screening	test		-
		·		Ū			
Reported Faxed	95/10/03 NOTES: TR, t BL, bacterial lu	95/10/03 rout; FM, fathe	95/10/03 ead minnows; E D, definitive tes	95/10/03 0A, Daphnia; C t; S, screening	95/10/03 D, Ceriodaphr test	95/10/03	strum

4.

				THE REAL PROPERTY AND ADDRESS OF THE REAL PROPERTY ADDRESS OF THE REAL PRO
Client: 95030	Sample:	95320-1	Test:	950913

Test Method: Daphnia 48h Static Acute Test (LC50, five or more treatments plus a control) Reference: Biological Test Method: Reference Method for Determining Acute Lethality of Effluents to Daphnia magna, 1990. Environment Canada, EPS 1/RM/14.

Client Information: Suncor Inc., Oil Sands Group

	Ft. MCMUr	ray			
Sample Information:					
Description:	effluent (T	ar Island o	lyke)		
Collected On:	not given	At:	not given	By:	not given
Received On:	95/08/11	At:	2010	By:	S. Goudey
Test Information:					
Started On:	95/09/27	At:	1330	By:	SF/DM
Ended On:	95/09/29	At:	1420	By:	DM
Reported On:	95/10/03			By:	CG
Test Result:	Value	Confiden	ce Limits	Units	
LC25	>100			%	
LC50	>100			%	Not Toxic
NOEC	100			%	
LOEC	>100			%	

TEST D	ATA					Client:	9503	0	Sample:	95320)-1	Test:	9	5091:	3
		CHE	MISTR	Y					BIOLOG	GY - NU	IMBE	ER ALI	VE		
Treatment	pH (u	inits)	Cond.(uS/cm)	DO (mg/L)	1		RE	EPLICA	TE				
(%)							1	2	3 4	5	6	7	8	9	10
-	4.5 (0.0 /0)		angen b	1000			<u> </u>	8.4	· · · · · · · · · · · · · · · · · · ·	~~~	~~~				
Date:	95/09/2	/	Time:	1330		initials:		M	iemp (oC):	20				
Control	8.4		354		8.2		5	5							
6.25	8.4		416		8.2			5 6							
12.5	8.5		4/1 504		0.2			3 5							
20	0.4		204 810		0.1		5	5							
100	0.4		1252		67										
100	0.**		1232		0.7				1						
Date:	95/09/2	8	Time:	1020		Initials:	DM/S	s F	Temp (oC):	20				
Control							5	5	Ì			in the second			
6.25							5	5							
12.5	e						5	5							
25							5	5							
50							5	5	-						
100							5	5							
	1														
	1														
Date:	95/09/2	9	Time:	1420		Initials:	DM		Temp (oC):	20				
Control	8.6		371		7.7		5	5							
6.25	8.6		425		7.6		5	5							
12.5	8.7		485		7.4		5	5							
25	8.7		597		7.4		5	5							
50	8.9		819		7.2		5	5							
100	9.0		1283		7.2		5	5							
						ļ									
							L								
1 AT		TADLE	-	1					llh and a sec			3/1.3		400	
	IVIIVIARY	IABLE			you	ing :	buak	ot 4	Inaruness	(mg-Ca		5/L):		180	
					l wa	ier .	DUCK	ยเ 4	Aujustine	III.	none				
(%)	/	(7	<i>'0)</i>		COBARA	PAINO-									1
	101 E		J D			ENIS:	0.50.0000000000000000000000000000000000						*****	****************	
0.2	บ ผ		J N			ments	Nama					***			
25	J		n n						20 ⁻² 9994962009970040000000000000000000000000000000			00000000000000000000000000000000000000		austoor	

Notes: F, floating; I, immobile; B, stuck on bubbles; D, caught in debris

0

0

50

100

Client: 95030 Sample: 95320-1 Test: 950679

Test Method: Trout 96h Static Acute Test (LC50, five or more treatment levels plus a control) Reference: Biological Test method: Reference Method for Determining Acute Lethality of Effluents to Rainbow Trout, 1990. Environment Canada, EPS 1/RM/13.

Client Information:	Suncor Inc Ft. McMur	c., Oil Sand ray	ls Group		
Sample Information:					
Description:	effluent (T	ar Island d	yke)		
Collected On:	not given	At:	not given	By:	not given
Received On:	95/08/11	At:	2010	By:	S. Goudey
Test Information:					
Started On:	95/08/15	At:	1130	By:	JF
Ended On:	95/08/19	At:	1130	By:	DL
Reported On:	95/10/03			By:	CG
Test Result: LC25	Value	Confidenc	e Limits	Units %	Method Calculated
LC50	62	25	100	%	Binomial
NOEC				%	
LOEC				%	
LOLU				70	

PREAERATION not required time (h) 0 0.5 1 1.5 2 DO (mg/L) I I I I I comments none CHEMISTRY BIOLOGY - NUMBER ALIVE Treatment pH (units) Cond.(uS/cm) DO (mg/L) 1 2 3 4 5 6 7 8 9 10 Date: 95/08/15 Time: 1130 Initials: GD/JF Temp (oC): 17.3 Control 8.0 363 8.6 10 6 7 8 9 10 Date: 95/08/16 Time: 1500 Initials: DM/JF Temp (oC): 15.7 Control 8.6 358 8.9 10 10 6 25 8.7 423 9.0 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10	TEST D	ATA					Client:	9503	0	Sample:	95320-1	Test:	950679	
PHELAEKATION not required time (h) 0 0.5 1 1.5 2 DO (mg/L)		STICL.				1								
une (n) 0 0.3 1 1.3 2 comments none Ended BloLogy - NUMBER ALIVE CHEMISTRY BloLogy - NUMBER ALIVE Treatment pH (units) Cond. (uS/cm) DO (mg/L) 1 2 3 4 5 6 7 8 9 10 Chemistry BloLogy - NUMBER ALIVE Treatment pH (units) Cond. (uS/cm) DO (mg/L) 1 2 3 4 5 6 7 8 9 10 Control 8.0 363 8.6 10 12.5 7.8 478 8.6 10 Control 8.0 8.2 574 8.4 10 100 8.5 1294 7.5 10 Control 8.6 358 8.9 10 12.5 8.8 570 9.0 10 12.5 8.8 570 9.0 10 <th colspanew<="" td="" th<=""><td>PREAERA</td><td>(h)</td><td></td><td>not requ</td><td></td><td>1 5</td><td>1 2</td><td>1</td><td></td><td></td><td></td><td></td><td></td></th>	<td>PREAERA</td> <td>(h)</td> <td></td> <td>not requ</td> <td></td> <td>1 5</td> <td>1 2</td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td>	PREAERA	(h)		not requ		1 5	1 2	1					
Dot (nyr./) I <thi< th=""> I <thi< td=""><td></td><td>(II)</td><td></td><td>0.5</td><td></td><td>1.3</td><td><u> </u></td><td>-</td><td></td><td></td><td></td><td></td><td></td></thi<></thi<>		(II)		0.5		1.3	<u> </u>	-						
CHEMISTRY BIOLOGY - NUMBER ALIVE Treatment pH (units) Cond.(uS/cm) DO (mg/L) 1 2 3 4 5 6 7 8 9 10 Date: 95/08/15 Time: 1130 Initials: GD/JF Temp (oC): 17.3 Control 8.0 363 8.6 10 12.5 7.8 478 8.6 10 25.6 8.7 426 8.6 10 12.5 7.8 478 8.4 10 50 8.4 846 7.9 10 100 8.5 1294 7.5 10 Date: 95/08/16 Time: 1500 Initials: DM/JF Temp (oC): 15.7 Control 8.6 358 8.9 10 10 10 6.25 8.7 423 9.0 10 10 12.5 8.8 476 9.0 10 10 </td <td>comme</td> <td><u>y/L)</u> ents</td> <td>none</td> <td></td> <td></td> <td></td> <td>L</td> <td><u> </u></td> <td>economicantino de la constantino de la</td> <td>aročnečanačenicanacenocanvenecolivindol</td> <td></td> <td>**************************************</td> <td>*****</td>	comme	<u>y/L)</u> ents	none				L	<u> </u>	economicantino de la constantino de la	aročnečanačenicanacenocanvenecolivindol		**************************************	*****	
CHEMISTRY BIOLOGY - NUMBER ALIVE Treatment pH (units) Cond.(uS/cm) DO (mg/L) REPLICATE Replication Repl		51110	10110		din biling som stratingen til ander so	<u> </u>		******			*******			
Treatment (%) PH (units) Cond. (uS/cm) DO (mg/L) REPLICATE 1 2 3 4 5 6 7 8 9 10 Date: 95/08/15 Time: 1130 Initials: GD/JF Temp (oC): 17.3 Control 8.0 363 8.6 10			CHE	MISTR	Y					BIOLOG	<u> 37 - Numb</u>	ER AL	IVE	
(%) 1 1 2 3 4 5 6 7 8 9 10 Date: 95/08/15 Time: 1130 Initials: GD/JF Temp (oC): 17.3 Control 8.0 363 8.6 10 10 10 10 12.5 7.7 426 8.5 10 10 10 10 50 8.4 846 7.9 10 10 10 10 100 8.5 125 125 125 10 10 10 10 100 8.5 10 10 10 10 10 10 10 100 8.6 9.0 10	Treatment	pH (units)	Cond.(uS/cm)	DO	(mg/L)			RE	PLICATE	1 1		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(%)							1	2		5 6		8 9 10	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Date:	95/08/1	5	Time	1130		I Initials:	GD/.	IF	l Temp (oC): 17.3			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Control	80	1	363	1100	86	1	1 10	1		<u></u>			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	6.25	7.7	1	426		8.6	1	10						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	12.5	7.8	1	478		8.5	1	10						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	25	8.2	1	574		8.4	1	10						
100 8.5 1294 7.5 10 Date: 95/08/16 Time: 1500 Initials: DMJF Temp (oC): 15.7 Control 8.6 358 8.9 10 10 10 6.25 8.7 423 9.0 10 10 10 25 8.8 570 9.0 10 10 10 25 8.8 570 9.0 10 10 10 25 8.8 570 9.0 10 10 10 00 9.0 1285 8.9 0 10 10 100 9.0 1285 8.9 0 10 10 Date: 95/08/17 Time: 1500 Initials: DM/JF Temp (oC): 15.0 Control 8.4 655 8.9 10 10 10 10 12.5 8.6 565 8.9 10 0 10 10 10 100	50	8.4]	846		7.9]	10						
Date: 95/08/16 Time: 1500 Initials: DM/JF Temp (oC): 15.7 Control 8.6 358 8.9 10	100	8.5		1294		7.5		10						
Date: 95/08/16 Time: 1500 Initials: DM/JF Temp (oC): 15.7 Control 8.6 358 8.9 10		ļ			:		4							
Date: 95/08/16 Time: 1500 Initials: DM/JF Temp (dc): 15.7 Control 8.6 358 8.9 10 10 6.25 8.7 423 9.0 10 10 12.5 8.8 570 9.0 10 10 25 8.8 570 9.0 10 10 100 9.0 1285 8.9 0 10 100 9.0 1285 8.9 0 10 100 9.0 1285 8.9 0 10 100 9.0 1285 8.9 0 10 1100 9.0 1285 8.9 10 10 12.5 8.4 357 8.9 10 10 12.5 8.6 565 8.9 10 10 10 25 8.6 565 8.9 10 10 10 100	Data			Time	4500		 			I Taman /	- 0. 45 -	7		
Control 6.3 3.36 6.3 10 6.25 8.7 423 9.0 10 12.5 8.8 570 9.0 10 25 8.8 570 9.0 10 50 9.0 843 8.9 10 100 9.0 1285 8.9 0 100 9.0 1285 8.9 0 0 1285 8.9 0 0 0 1285 8.9 10 0 0 1285 8.9 10 10 0 1285 8.9 10 10 12.5 8.5 471 8.7 10 12.5 8.6 565 8.9 10 100 $$	Date:	95/06/1	10		1500		initiais:			l iemp (00): 15.7			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6 25	8.0	-	423		0.9	-	10						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	12.5	88		476		9.0		10						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	25	8.8		570		9.0	1	10						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	50	9.0	1	843		8.9	1	10						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	100	9.0	1	1285		8.9	1	0						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$]							
Date: $95/08/17$ Time: 1500 Initials: DM/JF Temp (oC): 15.0 Control 8.4 357 8.9 10 10 10 6.25 8.3 418 8.9 10 10 10 12.5 8.5 471 8.7 10 10 10 25 8.6 565 8.9 10 10 10 50 8.7 828 8.9 10 0 0 100 $$								L						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Date:	95/08/1	17	Time:	1500		Initials:	DM/	JF F	Temp (oC): 15.0)		
0.25 0.3 418 8.9 10 12.5 8.5 471 8.7 10 25 8.6 565 8.9 10 50 8.7 828 8.9 10 100	Control	8.4	-	357		8.9	4	10						
12.5 0.3 471 0.7 10 25 8.6 565 8.9 10 50 8.7 828 8.9 10 100 0 0 0 100 0 0 0 100 0 0 0 100 0 0 0 100 0 0 0 100 0 0 0 100 0 0 0 100 0 0 0 100 0 0 0 100 0 0 0 1100 0 0 0 1100 0 0 0 1100 0 0 0 1100 0 0 0 1100 0 0 0 1100 0 0 0	12.5	0.3	4	410		0.9	-	$\frac{10}{10}$						
100 100 50 8.7 100 828 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 101 0 102 0 1030 Initials: JF/DM 104 10 105 10 110 10 110 10 111 10 111 10 111 10 111 10 111 10 111 10 112 10 112.5 10 112.5 10 112.5 10 113 10 114 10 115 10 115 10 110 10 110 10 110 10	25	86	-	565		89	-	10						
100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 1100 0 1100 0 1100 0 1100 0 1100 0 1100 0 1100 0 1100 0 1100 0	50	8.7	-	828		8.9		10						
Date: 95/08/18 Time: 1030 Initials: JF/DM Temp: 15.3 Control 8.5 359 8.9 10 6.25 8.6 421 8.9 10 12.5 8.6 475 8.9 10 25 8.7 571 9.0 9 50 8.9 837 9.0 9	100		1				-							
Date: 95/08/18 Time: 1030 Initials: JF/DM Temp: 15.3 Control 8.5 359 8.9 10 6.25 8.6 421 8.9 10 12.5 8.6 475 8.9 10 25 8.7 571 9.0 90 50 8.9 837 9.0 9							1							
Date: 95/08/18 Time: 1030 Initials: JF/DM Temp: 15.3 Control 8.5 359 8.9 10 6.25 8.6 421 8.9 10 12.5 8.6 475 8.9 10 25 8.7 571 9.0 10 50 8.9 837 9.0 9]											
Control 8.5 359 8.9 10 6.25 8.6 421 8.9 10 12.5 8.6 475 8.9 10 25 8.7 571 9.0 10 50 8.9 837 9.0 9	Date:	95/08/1	18	Time:	1030		Initials	JF/D	M	Tem	p: 15.3	}		
6.25 8.6 421 8.9 10 12.5 8.6 475 8.9 10 25 8.7 571 9.0 10 50 8.9 837 9.0 9	Control	8.5	-	359		8.9	4	10						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6.25	8.6	4	421		8.9	-	10						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12.5	0.5	-	4/5			4	10						
	<u>ک</u> ۸۸	80	-	3/1		9.0	-							
	100	0.8	1	037		J	1							
	100	+	1				-	<u> </u>						
		1												

950679 Client: 95030 Sample: 95320-1 Test:

14.8

	CHE			BIO	LOG	Y - NI	UMBE	ER AL	IVE				
Treatment	pH (units)	Cond.(uS/cm)	DO (mg/L)				RE	PLIC/	ATE				
(%)				1	2	3	4	5	6	7	8	9	10

ľ	Date:	95/08/1	9	Time:	1130		Initials:	DL	T	emp:
Ī	Control	8.3		347		9.2		10		
	6.25	8.5		414		9.2] [10		
ľ	12.5	8.5		470		9.2] [10		
ſ	25	8.6		567		9.2		10		
ſ	50	8.8		834		9.1] [8		
	100] [0		
								o on an an airtí		

SUMMARY	TABLE							F	REPL	ICAT	E			
TREATMENT	MORTALITY	mg NI	14-N/L		1	2	3	4	5	6	7	8	9	10
(%)	(%)	t=0	t=96 h	avg	indiv	idual	fish w	<i>v</i> eight	s (g)					
Control	0	nd	nd	0.44	0.38	0.49	0.62	0.36	0.48	0.36	0.47	0.44	0.45	0.34
6.3	0	nd	nd	0.44	0.37	0.35	0.48	0.47	0.61	0.37	0.44	0.51	0.35	0.43
12.5	0	nd	nd	0.40	0.53	0.39	0.45	0.35	0.32	0.34	0.43	0.42	0.30	0.42
25.0	0	nd	nd	0.44	0.51	0.32	0.43	0.42	0.37	0.43	0.50	0.43	0.50	0.50
50.0	20	nd	nd	0.57	0.43	0.55	0.43	0.81	0.65	0.50	0.68	0.53	0.62	0.46
100.0	100	nd	nd	0.55	0.49	0.46	0.57	0.67	0.46	0.52	0.75	0.40	0.74	0.47
	_			avg	indiv	idual	fish f	ork le	ngths	(cm)				
Control				3.7	3.4	3.7	4.1	3.5	3.8	3.5	3.9	3.6	3.6	3.4
6.3				3.6	3.7	3.5	4.0	3.6	3.2	4.0	3.7	3.6	3.3	3.5
12.5				3.5	3.9	3.5	3.6	3.3	3.4	3.4	3.7	3.6	3.6	3.2
25.0				3.5	3.9	3.1	3.5	3.5	3.1	3.5	3.8	3.7	3.2	3.8
50.0				3.5	3.6	3.5	3.4	3.9	3.8	3.4	3.1	3.7	3.4	3.6
100.0				3.8	3.7	3.6	3.7	3.8	3.8	3.7	4.1	3.5	4.2	3.6
	1				I				I					

COMMENT	S: Fish added at:	1100	Batch number:TR950726	No. days held:	20	
Time (h)						
24						
48	one fish on side in 50)%, remaini	ng fish appear normal			
			·			
72	one dead in 50% (res	st of 50's slu	uggish); remaining fish appear	normal		
96	one dead, 3 swimmir	ng on side i	n 50%			

#3, 6125 - 12 Street S.E. Calgary, Alberta Canada T2H 2K1 TEL: (403) 253-7121 FAX: (403) 252-9363 1-800-808-6942 Client: 95030 Sample: 95320-1 Test: 950914

Test Method: Bacterial luminescence Test (screening test, one treatment level plus a control) Reference: Biological Test Method: Toxicity Test Using Luminescent Bacteria (*Photobacterium phosphoreum*), 1992. Environment Canada, EPS 1/RM/24.

Suncor Inc., Ft. McMurra	, Oil Sar iy	nds Group		
	- 			
effluent (Ta	r Island	dyke)		
not given	At:	not given	By:	not given
95/08/11	At:	2010	By:	S. Goudey
95/08/14	At:		By:	DL
95/08/14	At:		By:	DL
95/10/03			By:	CG
	Suncor Inc., Ft. McMurra effluent (Ta not given 95/08/11 95/08/14 95/08/14 95/10/03	Suncor Inc., Oil Sar Ft. McMurray effluent (Tar Island not given At: 95/08/11 At: 95/08/14 At: 95/08/14 At: 95/10/03	Suncor Inc., Oil Sands Group Ft. McMurray effluent (Tar Island dyke) not given At: not given 95/08/11 At: 2010 95/08/14 At: 95/08/14 At: 95/10/03	Suncor Inc., Oil Sands Group Ft. McMurray effluent (Tar Island dyke) not given At: not given By: 95/08/11 At: 2010 By: 95/08/14 At: By: 95/08/14 At: By: 95/10/03 By:

Test Result: 34% expressed as a percentage of the control.

		1031 233-1		14021 202	-2000 1	<u>-000-000-r</u>	19
1	Client	95030	Sample	95320-1	Test	950911	
	Oliciit.	90000	oampie.	30020-1	1651.	900914	1
							8

SAMPLE PR	ETREATMENT
pH adjustment	not required
preaeration	not required
turbidity	not centrifuged/filtered
other	none

LIGHT READINGS

	Time (min)					
Treatment Level (%)	0	5	15			
control	94	95	91			
100.0	67	46	31			

INHIBITION (%CTLS)						
5 min	15 min					
100	100					
48	34					

#3, 6125 - 12 Street S.E. Calgary, Alberta Canada T2H 2K1 TEL: (403) 253-7121 FAX: (403) 252-9363 1-800-808-6942 Client: 95030 Sample: 95320-1 Test: 950671

Test Method: 72h Algal Growth Inhibition Test (IC50, five or more treatments plus a control) Reference: Biological Test Method: Growth Inhibition Test Using the Freshwater Alga *Selenastrum capricornutum*, 1992. Environment Canada, EPS 1/RM/25.

Client Information:	Suncor Inc., Ft. McMurra	, Oil San Iy	ds Group		
Sample Information:					
Description:	effluent (Ta	r Island o	dyke)		
Collected On:	not given	At:	not given	By:	not given
Received On:	95/08/11	At:	2010	By:	S. Goudey
Test Information:					
Started On:	95/08/14	At:	1230	By:	JR
Ended On:	95/08/17	At:	1430	By:	DL
Reported On:	95/10/03			By:	SA
Test Results:	Value	Confide	nce Limits	Units	
IC25	>100			%	
IC50	>100			%	Not Toxic
NOEC	100			%	
LOEC	>100			%	

Client: 95030 Sample: 95320-1 Test: 950671

SAMPLE PRI	TREATMENT
pH adjustment	not required
preaeration	not required
turbidity	not centrifuged
other	none

TEST DATA

FINAL	CELL DEN	ISITIES (ce	lls/mL)					
Treatment		Replicate		Average	Standard	CV (%)	Percent	Inhibition
(%)	A	В	С	AVG	Deviation		Controls	(%Ctls)
control	1256877	1358769	1295693	1303780	51425	4	100	0
1.56	1298928	1619160	1832648	1583579	268633	17	121	-21
3.13	1468748	1531824	1594900	1531824	63076	4	117	-17
6.25	1468748	1837500	1604604	1636951	186492	11	126	-26
12.5	1638568	2026728	1827796	1831031	194100	11	140	-40
25	1568000	1916000	1772000	1752000	174860	10	134	-34
50	1400000	1644000	1556000	1533333	123569	8	118	-18
100	1168000	1514667	1422667	1368444	179581	13	105	-5

COMMENTS

- all cell numbers were based on particle counts	
- the initial cell density was 11,452 cells/mL	

Client: 95030	Sample:	95320-1	Test:	950670

Test Method: 7 d Ceriodaphnia Survival and Reproduction Test (5 treatment levels plus a control) Reference: Biological Test Method: Test of Reproduction and Survival Using the Cladoceran *Ceriodaphnia dubia*, 1992. Environment Canada, EPS 1/RM/21.

Client Ir	formation:	Suncor Inc., Oil Sands Group Ft. McMurray							
Sample Ir	nformation:								
	Description:	effluent (T	effluent (Tar Island dyke)						
C	ollected On:	not given	At:	not given	By:	not given			
R	eceived On:	95/08/11	At:	2010	By:	S. Goudey			
Test Ir	nformation:								
	Started On:	95/08/12	At:	1245	By:	DM			
	Ended On:	95/08/19	At:	1000	By:	DL			
R	eported On:	95/10/03			By:	CG			
Т	est Result:	Value	Confidenc	e Limits	Units	Method Calculated			
MORTALIT	Y LC25	15	14	15	%	Bootstrap			
	LC50	18	17	19	%	Bootstrap			
	NOEC	12.5			%	Estimated			
	LOEC	25			%	Estimated			
REPRODUC	TION								
	IC25	16	13	17	%	Bootstrap			
	IC50	20	18	21	%	Bootstrap			
	NOEC	12.5			%	Steel's Many-One			
	LOEC	25			%	Steel's Many-One			

Graph of Mortality and Reproduction at Seven Days Versus Treatment Level

inhibiting reproduction by 25 and 50%; NOEC & LOEC, no observed and lowest observed effect concentrations

TEST DATA		Client:	95030	Sample:	95320-1	Test:	950670
				ATION			
PREAERATION	not required		FILIR	ATION	not require	ed	
Comments none							

CHEMISTRY						BIOLOGY - NUMBER OF YOUNG										
Treatment	pH (i	units)	Cond.(uS/cm)	DO (mg/L)				REI	PLIC/	 <i> </i>				North International Providence of the Internationa
(%)	new	used	new	used	new	used	1	2	3	4	5	6	7	8	9	10
			demonstration of the second	Non-second second		Annennennennen		And a second	here and the second	2000000000000000		Janana and Anna and A	Antonio Constantina de Constantina de Constantina de Constantina de Constantina de Constantina de Constantina d		Michael (1997)	
DAY 0	95/08/1	2	Time:	1245	2010-0-1010-0-000-0-000-0-0-0-0-0-0-0-0-	Initials:	DM		Te	mp (o	C):	25.0		i		
Control	8.3		350		7.5		0	0	0	0	0	0	0	0	0	0
1	8.3		368		7.8		0	0	0	0	0	0	0	0	0	0
3	8.4		383		7.8		0	0	0	0	0	0	0	0	0	0
6	8.4		412		7.8		0	0	0	0	0	0	0	0	0	0
12	8.4		467		7.7		0	0	0	0	0	0	0	0	0	0
25	8.4		583		7.7		0	0	0	0	0	0	0	0	0	0
50	8.4		800		7.8		0	0	0	0	0	0	0	0	0	0
100	8.5		1247		8.4		0	0	0	0	0	0	0	0	0	0
.																
DAY 1	95/08/1	3	Time:	1215		Initials:	DM		Te	mp (o	C):	25.0				
Control	8.4	8.4	358	370	7.8	7.8	0	0	0	0	0	0	0	0	0	0
1	8.4	8.3	371	383	7.6	7.7	0	0	0	0	0	0	0	0	0	0
3	8.4	8.4	385	397	7.6	7.8	0	0	0	0	0	0	0	0	0	0
6	8.5	8.4	419	426	7.9	7.9	0	0	0	0	0	0	0	0	0	0
12	8.5	8.5	475	489	7.8	8.0	0	0	0	0	0	0	0	0	0	0
25	8.6	8.7	590	602	7.7	7.8	0	0	0	0	0	0	0	0	0	0
50	8.6	8.8	822	820	7.7	7.7	0	0	0	0	0	0	0	0	0	0
100	8.7	9.0	1278	1243	7.5	7.8		0			0	0	0			0
DAY 2	95/08/1	4	Time:	1200		Initials:	DM		Te	mp (o	(C):	25.0				
Control	8.3	8.3	358	362	7.6	7.8	0	0	0	0	0	0	0	0	0	0
1	8.2	8.2	366	371	7.7	7.5	0	0	0	0	0	0	0	0	0	0
3	8.3	8.3	383	386	7.6	7.5	0	0	0	0	0	0	0	0	0	0
6	8.3	8.3	420	417	7.7	7.5	0	0	0	0	0	0	0	0	0	0
12	8.4	8.5	472	493	7.7	7.4	0	0	0	0	0	0	0	0	0	0
25	8.5	8.6	585	608	7.5	7.6	0	0	0	0	0	0	0	0	0	0
50	8.5	8.7	816	814	7.4	7.6	0	0	0	0	0	0	0	0	0	0
100	1	8.8		1212		7.4										
						_								-		
DAY 3	95/08/1	5	Time:	1415		Initials:	DM			Temp	:	25.0			*****	
Control	8.3	8.4	358	376	7.6	7.8	0	0	0	4	5	6	4	5	6	4
1	8.3	8.5	373	383	7.5	7.8	0	0	0	6	6	5	3	5	6	7
3	8.4	8.4	389	403	7.6	7.8	0	0	0	6	6	6	6	0	5	6

8.4

8.5

8.6

8.6

8.4

8.5

8.6

8.6

7.5

7.5

7.5

7.5

7.9

7.9

7.7

7.5

Client: 95030

Sample: 95320-1 Test: 950670

CHEMISTRY					BIOLOGY - NUMBER OF YOUNG											
Treatment	pН (เ	units)	Cond.(uS/cm)	DO (mg/L)		*******		RE	PLICA	ATE				
(%)	new	used	new	used	new	used	1	2	3	4	5	6	7	8	9	10
									Renderstandigen						Andrewisen sportsering	
DAY 4	95/08/1	6	Time:	1345		Initials:	DM			Гетр		25.0				
Control	8.3	8.4	362	371	7.6	8.0	6	5	6	0	0	0	1	2	1	1
1	8.3	8.3	374	380	7.6	8.0	5	3	4	0	0	1	0	0	1	
3	8.3	8.4	390	398	7.6	8.0	5	5	5	0	1	2	0	0	0	0
6	8.4	8.4	423	429	7.7	7.8	4	4	0	0	1	1	0	1	1	0
12	8.5	8.5	482	487	7.4	7.7	5	5	5	0	1	1	1	1	1	0
25	8.6	8.6	597	630	7.6	8.0	4		4	6		1	2	6	6	5
50	8.7	8.9	837	856	7.5	7.8	1				1					2
					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						1992221023103					
	95/08/1	7	I Time	1345		Initials	DM		-	Temn	•	25.0				
Control	82	, 8 <i>1</i>	348	368	77	7 7		11	12	a	10	7	a	10	11	7
1	83	85	353	378	7.8	75	10	q	7	12	12	11	8	10	10	11
2	85	85	367	302	7.0	7.6	7	13	8	α α	12	11	10	11	12	10
6	8.5	85	307	425	7.8	7.5	10	8	12	10	12	11	11	10	0	
12	8.5	85	460	423	7.0	7.5	12	a	10	7	12	a	0	8	10	10
25	0.0	8.6		588	1.1	7.0	-14	~~~			·	~	<u> </u>	<u> </u>	10	- 10
50		0.0			****	1.4					******					
												-				
<u>, , , , , , , , , , , , , , , , , , , </u>	l	I	!			1										
DAY 6	95/08/1	8	Time:	1015		Initials:	DM			Гетр	:	25.0				
Control	8.2	8.4	351	344	7.8	8.3	0	0	0	2	1	13	14	0	16	14
1	8.3	8.4	353	358	7.7	8.0	1	0	0	0	13	0	0	0	13	20
3	8.3	8.5	372	374	7.7	7.9	0	1	0	12	13	15	16	13	14	14
6	8.4	8.5	401	405	7.6	8.2	0	1	1	14	12	14	0	15	16	0
12	8.5	8.6	462	462	7.5	8.0	0	0	0	5	14	12	8	5	14	11
25																
50																
	95/08/1	0	I Timo:	1000		Unitiale	n		1	Tomn	•	25.0				
Control	35/00/1		inne.	256		7 2		44	10	l 40	1 ງ	23.0		1		
	L			350		7.3		0	10			0	40	1 5		
2		0.4 8 E		333		72	0	ີ 2								
6	ļ	80		30U A11		7.3	10	о г	15						0	
10		0.9 87		↔11 //Q1		1.2	10	3	10						4	4
		0./		401		<u> 1.2</u>		3		U				U		
23																
	ļ			,			<u> </u>		 							
	1	L	1			L	L	L	L	l	L	L	L	1	L	L

		Client: 95030 S					Sample: 95320-1			Test: 950670		
SUMMARY TA	BLE	Reproduction			Daily Cumulative Young Production							
Treatment (%)	Mortality (%)	Young/Adult	% controls	0	1	2	3	4	5	6	7	
Control	0	27	100	0	0	0	34	56	143	203	269	
1	0	27	100	0	0	0	38	52	152	199	266	
3	0	28	104	0	0	0	35	53	157	255	281	
6	10	25	93	0	0	0	38	50	147	220	257	
12	0	26	96	0	0	0	39	59	155	224	259	
25	100	8	30	0	0	0	30	64	64	64	64	
50	100	2	7	0	0	0	10	14	14	14	14	
100	100	0	0	0	0	0	0	0	0	0	0	
												â în
COMMENTS:												
source of young:	in-house	culture media:	Bow river wa	ter		food	lots:	08/03	3, 08/	10		

Contraction of the second s			Construction of Control Construction of Control Contro	
Client: 95030	Sample:	95320-1	Test:	950672

Test Method: 7 d Fathead Minnow Survival and Growth Test (five treatments plus a control) Reference: Biological Test Method: Test of Larval Growth and Survival Using Fathead Minnow, 1992. Environment Canada, EPS 1/RM/22.

Client Inf	ormation:	Suncor Inc Ft. McMur	a, Oil Sano ray	ds Group		
Sample Inf	ormation:					
D	escription:	effluent (T	ar Island d	lyke)		
Col	lected On:	not given	At:	not given	By:	not given
Red	ceived On:	95/08/11	At:	2010	By:	S. Goudey
Test Inf	ormation:					
S	started On:	95/08/14	At:	1500	By:	DM/JF
Í	Ended On:	95/08/21	At:	1000	By:	DM
Re	ported On:	95/10/03			By:	CG
Те	st Result:	Value	Confidence	ce Limits	Units	Method Calculated
MORTALITY	r LC25	61	59	62	%	ICPIN
	LC50	74	72	75	%	ICPIN
	NOEC	50			%	Dunnett's
	LOEC	100			%	Dunnett's
GROWTH						
	IC25	11	8	24	%	Bootstrap
	IC50	52	47	58	%	Bootstrap
	NOEC	<6.25			%	Dunnett's
	LOEC	6.25			%	Dunnett's

Graph of Mortality and Growth at Seven Days Versus Treatment Level

Notes: LC25 & LC50, concentrations lethal to 25 and 50% of the test population; NOEC & LOEC, no observed and lowest observed effect concentrations

T	Έ	S	Т	D,	A	Т	Α	

Client: 95030 Sample: 95320-1 Test: 950672

PREAERAT	ION	not required	FILTRATION	not required	
Comments	none				

	CHEMISTRY							BIOLOGY - NUMBER ALIVE					
Treatment	pH (units)	Cond.(uS/cm)	DO (mg/L)		RE	PLIC	ATE		.	
(%)	new	used	new	used	new	used	1	2	3	4	5	6	l.
					hingediaterocomitation							tototo og onterte	
DAY 0	95/08/1	4	Time:	1500	Q <u>errana ana dia kaominina</u>	Initials:	DM/J	IF	Te	mp (o)C):	25.0	
Control	7.9		360		7.7		10	10	10	10	<u> </u>		
6.25	<u>8.1</u>		412				10	10	10	10	ļ		
12.5	8.2		470		7.7		10	10	10	10			
25	8.3		582		7.4		10	10	10	10			
50	8.5		829		7.2		10	10	10	10			
100	8.6		1246		6.9		10	10	10	10			
					·								
DAY 1	95/08/1	5	Time:	1100		Initials:	JF		Te	mp (o	C):	25.0	
Control	7.9	8.1	367	371	7.7	6.6	10	10	10	10			
6.25	8.1	8.2	413	420	7.6	6.9	10	10	10	10			
12.5	8.1	8.2	463	470	7.8	6.3	10	10	10	10			
25	8.2	8.3	579	593	7.6	6.7	10	10	10	10			
50	8.4	8.5	801	832	7.3	6.7	10	10	10	10			
100	8.6	8.6	1239	1239	7.0	6.5	2	0	1	0			
												11	
		L	1										
DAY 2	95/08/1	6	Time:	1400		Initials:	JF		Те	mp (o	C):	25.0	
Control	8.0	8.1	366	377	7.6	5.9	10	10	10	10			
6.25	8.2	8.0	421	419	7.6	5.5	10	10	10	10			
12.5	8.2	8.2	478	468	7.4	5.3	10	10	10	10		11	
25	8.4	8.4	590	604	7.3	5.1	10	10	10	10	-		
50	8.5	8.5	825	807	7.1	5.2	10	10	10	10		11	
100	8.7	8.8	1281	1326	6.7	6.7	1		0			<u> </u>	
····		+	- <u></u>									<u>†</u>	
												<u>+</u>	
12.5D one	fish ver	v small	and pale	لـــــا ع		I	·						

DAY 3 95/08/17 Time: 1430 Initials: DL Temp: 25.0 Control 8.1 8.1 365 387 7.7 6.0 10 10 10 10 6.25 8.2 423 424 7.6 6.1 10 10 8.0 10 10 12.5 8.3 8.2 483 491 7.6 10 10 6.1 10 10 25 8.5 8.5 593 616 7.5 6.1 10 10 10 10 50 8.6 8.7 809 838 7.4 6.9 10 9 9 10 100 8.9 1321 7.3 0

Client: 95030 Sample: 95320-1 Test: 950672

CHEMISTRY							BIO	LOG	Y - NI	JMBE	R AL	IVE.				
Treatment	pH ((units)	Cond.(uS/cm)	DO (I	mg/L)				RE	PLICA	ΛΤΕ				
(%) new used new used new used					1	2	3	4	5	6	7	8	9	10		

DAY 4	95/08/1	8	Time:	1130		Initials:	JF			Temp	25.0	
Control	8.0	8.0	369	383	7.7	5.2	10	10	10	10		
6.25	8.1	8.0	422	435	7.8	5.2	10	10	10	10		
12.5	8.3	8.1	482	498	7.8	4.7	10	10	10	10		
25	8.4	8.3	586	610	7.6	4.8	10	10	10	10		ĺ
50	8.6	8.5	816	835	7.4	4.8	10	9	9	10		
100		l						**************************************	[
				annaireannaineanairtigre.	[ſ			
							1					

DAY 5	95/08/1	9	Time:	1030		Initials:	DL			Temp):	25.0	******
Control	7.9	8.1	638	402	7.7	5.8	10	10	10	10			
6.25	8.3	8.0	395	430	7.7	5.3	10	10	10	10			
12.5	8.3	8.4	497	490	7.4	6.6	10	10	10	10			
25	8.5	8.4	620	596	7.4	6.4	10	10	10	10			
50	8.6	8.6	837	835	7.2	5.6	10	9	9	10			
100													
							I						
	T				[

DAY 6	95/08/2	20	Time:	1030		Initials:	DL			Temp):	25.0	
Control	7.4	8.0	374	376	7.7	5.5	10	10	10	10			
6.25	8.0	7.9	429	433	7.4	5.9	10	8	10	10			
12.5	8.2	8.3	484	503	7.1	6.7	10	10	10	10			
25	8.3	8.4	604	621	6.9	6.6	10	10	10	10			
50	8.4	8.4	828	842	6.3	5.4	10	9	9	10		[
100					1		1	1				1	
					[1	1						
							1						

DAY 7	95/08/21		Time:	1600	Initials:	JR/G	D		Temp	•	16.0	
Control		8.3		387	6.2	10	10	10	10			
6.25		8.3		441	6.1	10	8	10	10			
12.5		8.4		507	6.1	10	10	10	10			
25		8.5		624	5.9	10	10	10	10			
50		8.6		847	5.3	10	9	9	10			
100												
					I							

Client: 95030 Sample: 95320-1 Test: 950672

SUMMARY TA	BLE	Average Fish Weights						
Treatment (%)	Mortality (%)	mg/fish	% controls					
Control	0	0.61	100					
6	5	0.51	84					
12	0	0.44	72					
25	0	0.41	67					
50	5	0.32	52					
100	100							

COMMENTS:	
source of young: in house	
·	
·	
	-

FORM 95032 WRITTEN BY: SG ON 95/05/12 REVISED BY: SG ON 95/07/29

Client: 95030 |Sample: 95320-2

CLIENT INFORMATION			-				
Client:	Suncor Inc.	, Oil Sands	Group				
Operation:	Ft. McMum	ay					
Address:	P.O. Box 4	001					
City:	Ft. McMum	ау					
Province/State:	Alberta						
Country:	Canada						
Postal/ZIP Code:	T9H 3E3	n en altre ficture estrutes succestrandere estrutere est					
Billing Information:		***************************************					
Contact:	Trina Hoffa	rth	and a construction of the const	******		***************************************	018900900000000000000000000000000000000
Tel:	403-743-67	15					
Fax:	403-791-83	31					
SAMPLE INFORMATION	Athonoog	Divervetor					
Collected Op:	Allabasca	NIVEL WALE	∧ ا	pot aivon	5		
Collected On.	95/06/11		Λι.	not given			
Shinned On:	<u>101 given</u>						
Shipped On.	95/06/11 Crimebow	Trucking					
Bacaived On:	05/09/11	nucking	٨٠٠	2010			
Received On.	95/06/11 G. Dapiele		Μ.	2010			
Container:	$\frac{3}{3} \times 500$ gal	containers	、				
Container.	3 X 500 gai	. containers	>				
Initials on Soals:	not epolied	hla					
mindis on Seals.		ne					
INITIAL CHEMISTRY							
nH (units)	8.2		amm	onium (ma	_M/L \	not done	
Conductance (uS/cm)	2/2	51212272240720102020000000000000000000000	rosidu	al chlorine i	(ma/l)	not done	
Dissolved Oxygen (mg/L)	240		residu	Colour:	(ing/c)	colourdese	
Temperature (oC)	18			Odour:		odoudess	
Alkalinity (mg-CaCO3/L)	not done	040410-0004-000-0-0-0-0-0-0-0-0-0-0-0-0-		Ododi.		ododness	
Hardness (mg-CaCO3/L)	110	***				*****	
	(1)(0)(0)(0)(0)(0)(0)(0)(0)(0)(0)(0)(0)(0)					***************	
COMMENTS	sample cor	ntainer leak	ed in shipm	ent		1011-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	
CANDI E UICTADV	an-resonantesananananananananananananananananananan	01/22/000-000000000000000000000000000000	-		******	7500%040000%9%499990000000000000000000000	
SAMPLE HISTORY	EoO in dad						
Storage Conditions.	SOC IN dam			Mathadi	************	2017-9220830,002,000-00-00000000000000000000000000	
Disposed On.	In Constant and Const	ыy		Methou.			garaganananan ang manananananananana
TESTING							
Test Type	DA(S)	TD(S)	PIS	AC(S)	<u>(D(8)</u>		
Number	050013	950670	050014	050674	050672		
Started	950913	95/08/15	950914	950074	05/08/12	950075	
Ended	95/09/27	05/08/10	05/09/14	05/00/14	05/09/12	05/00/14	
Renorted	05/10/04	05/10/19	05/10/14	05/10/17	05/10/04	05/10/21	*****
Faved	55/10/04	30/10/04	35/10/04	30/10/04	95/10/04	95/10/04	*****
I DATU	L	rait ERA 6abl-	ad minnaux *	L Danhnin O	D. Coriedantes		
	101LO. IN, I	roat, i wi, rathe	aa minnows, L	m, Daprina, C	o, cenudaphin	ia, no, selenas	uum,

BL, bacterial luminescence; D, definitive test; S, screening test

Client: 95030 Sample: 95320-2 Test: 950913

Test Method: Daphnia 48h Static Acute Test (LC50, five or more treatments plus a control) Reference: Biological Test Method: Reference Method for Determining Acute Lethality of Effluents to Daphnia magna, 1990. Environment Canada, EPS 1/RM/14.

Client Information: Suncor Inc., Oil Sands Group

	Ft.	McMurray
Sample Information:		

Description:	Athabasca	River wat	ter		
Collected On:	not given	At:	not given	By:	not given
Received On:	95/08/11	At:	2010	By:	G. Daniels
Test Information:					
Started On:	95/09/27	At:	1330	By:	SF/DM
Ended On:	95/09/29	At:	1420	By:	DM
Reported On:	95/10/04			By:	CG

Test Result:

	% Mortality
Control	0
100%	0

0

|--|

Client: 95030 Sample: 95320-2 Test: 950913

		CHI	CHEMISTRY						BIO	LOG	Y - N	UMB	ER AL	IVE.		
Treatment	pH (units)	Cond.(uS/cm)	DO (mg/L)					RE	PLIC/	ATE				
(%)							1	2	3	4	5	6	7	8	9	10
														4		
Date:	95/09/2	27	Time:	1330		Initials:	SF/D	M	Ter	np (o	C):	20				
control	8.4		354		8.2		5	5								
100	8.1	ļ	277		9.0		5	5								
	ļ															
······		4			****											
Date:	1 95/09/2	28	Time:	1020		I Initials:	DM/S	L SF	Ter	np (o	C):	20				
control			L				5	5		p (o						
100							5	5								
	1															
]															
]															
	ļ															
							L							1		
Date:	95/09/2	<u>29</u>	lime:	1420		Initials:			ler	np (o	C):	20				
control	8.6	-	371		7.7		5	5								
100	8.5	-	281		7.5		5	5								
	<u> </u>	-				{										
	+	1				-	L	ļ								
	-	1				1										
	1	1				1										
	1	J		L		1	<u>H</u>	l								

SUMMARY TABLE								
TREATMENT	MORTALITY							
(%)	(%)							
control	0							
100	0							
Barray power and a second state of the								

young :	hardness (mg-CaCO3/L) : 180
water : bucket	Adjustment: none

COMMENTS: no comments

Notes: F, floating; I, immobile; B, stuck on bubbles; D, caught in debris

Client: 95030 Sample: 95320-2 Test: 950679

Test Method: Trout 96h Static Acute Test (LC50, five or more treatment levels plus a control) Reference: Biological Test method: Reference Method for Determining Acute Lethality of Effluents to Rainbow Trout, 1990. Environment Canada, EPS 1/RM/13.

Client Information:	Suncor Inc., Oil Sands Group Ft. McMurray
	•

Sample Information:

Description:	Athabasca	River wa	ter		
Collected On:	not given	At:	not given	By:	not given
Received On:	95/08/11	At:	2010	By:	G. Daniels
Test Information:					
Started On:	95/08/15	At:	1130	By:	JF
Ended On:	95/08/19	At:	1130	By:	DL
Reported On:	95/10/04			By:	CG
T					

Test Result:

	% Mortality
Control	0
100%	0

TEST D	ATA					Client:	9503	0	[Sample:	95320-2	Test:	95	5067	9
	TION		motion	inod										
PKEAERA					4 6	1 2	1							
		<u>↓ </u>		l	1.5	<u> </u>	-							
comme	ents	none	A		L		1	anagagana na managana ka	*****					
	~~ 11.		*****			24 YO		**************				*****************		
		CHI	EMISTR	Y					BIOLOG	Y - NUMB	ER AL	IVE		
Treatment	pH (units)	Cond.(uS/cm)	DO	(mg/L)	1		RE	PLICATE	1 1			
(%)	L							2		5 6	7	8	9	10
Date	95/08/1	5	Time [.]	1130		Unitials	GD/.	IF	I Temp ((\mathbf{C}) : 17.3				
Control	80	T	363	1100	86	Tinidais.	1 10	1	<u>[i cinp (</u>	00). m.c				
100	82		256		8.6	-	10							
		1												
	1	1				1								
	1	1				1								
]]								
							l							
Date:	95/08/1	16	Time:	1500		Initials:	DM/	JF	Temp (oC): 15.7	7			
Control	8.6	1	358		8.9	4	10							
100	8.5	-	244		9.0	4	10							
						4								
-		{				-	 							
		-	*******************************			-	 							
		1				1								
		1				1	 							
Date:	95/08/	, 17	Time:	1500	l	Initials:	DM/	JF	Temp (oC): 15.0)			
Control	8.4		357		8.9		10							
100	8.3]	245		8.9		10							
						-								
		1	*****			-	 							
						-								
						-	I	10000						
						1								
Date:	95/08/	18	Time:	1030	1	Initials:	JF/D	M	Tem	p: 15.3	3			
Control	8.5]	359	[8.9		10	[
100	8.4]	245		8.9]	10							
]]								
							Į							
		4				4								
9131010/00/00/00/00/00/00/00/00/00/00/00/00		4				-	ļ							
[1	1	1		1	1		8						

Client: 95030 Sample: 95320-2 Test: 950679

Temp:

14.8

CHEMISTRY						BIO	LOG	Y - N	UMB	ER AL	-IVE		
Treatment	pH (units)	Cond.(uS/cm)	DO (mg/L)	REPLICATE									
(%)				1	2	3	4	5	6	7	8	9	10

Date:	95/08/19	Time:	1130		Initials:	DL
Control	8.3	347	5	9.2		10
100	8.3	244	9	9.1		10
					1	

SUMMARY TABLE								F	REPL	ICAT	E			
TREATMENT	MORTALITY	mg NI	H4-N/L		1	2	3	4	5	6	7	8	9	10
(%)	(%)	t=0	t=96 h	avg	indiv	idual	fish v	veight	s (g)					
Control	0	nd	nd	0.44	0.38	0.49	0.62	0.36	0.48	0.36	0.47	0.44	0.45	0.34
100.0	0	nd	nd	0.45	0.47	0.52	0.49	0.49	0.48	0.40	0.34	0.37	0.37	0.52
				avg	indiv	idual	fish fo	ork le	ngths	(cm)				
Control				3.7	3.4	3.7	4.1	3.5	3.8	3.5	3.9	3.6	3.6	3.4
100.0			-	3.8	3.6	3.7	5.6	3.7	3.5	3.3	3.4	3.6	3.6	3.8
												L		

COMMENTS:	Fish added at:	1100	Batch number:TR950726	No. days held:	20
Time (h)					
24					
48					
72					
96					

 #3, 6125 - 12 Street S.E. Calgary, Alberta Canada T2H 2K1

 TEL: (403) 253-7121
 FAX: (403) 252-9363
 1-800-808-6942

 Client:
 95030
 Sample:
 95320-2
 Test:
 950914

Test Method: Bacterial luminescence Test (screening test, one treatment level plus a control) Reference: Biological Test Method: Toxicity Test Using Luminescent Bacteria (*Photobacterium phosphoreum*), 1992. Environment Canada, EPS 1/RM/24.

Client Information:	Suncor Inc., Ft. McMurra	, Oil Sar av	nds Group		
Sample Information: Description:	Athabasca I	, River wa	iter		
Collected On:	not given	At:	not given	By:	not given
Received On:	95/08/11	At:	2010	By:	G. Daniels
Test Information:					
Started On:	95/08/14	At:	1400	By:	DL
Ended On:	95/08/14	At:		By:	DL
Reported On:	95/10/04			By:	CG

Test Result: 114% expressed as a percentage of the control.

Client: 95030 Sample: 95320-2 Test: 950914

SAMPLE PR	ETREATMENT
pH adjustment	not required
preaeration	not required
turbidity	not centrifuged/filtered
other	none

LIGHT READIN	IGS				
	Time (min)				
Treatment Level (%)	0	5	15		
control	94	95	91		
100.0	114	115	104		

INHIBITION (%CTLS)				
5 min	15 min			
100	100			
121	114			

COMMENTS

#3, 6125 - 12 Street S.E. Calgary, Alberta Canada T2H 2K1 TEL: (403) 253-7121 FAX: (403) 252-9363 1-800-808-6942 Client: 95030 Sample: 95320-2 Test: 950674

Test Method: 72h Algal Growth Inhibition Test (IC50, five or more treatments plus a control) Reference: Biological Test Method: Growth Inhibition Test Using the Freshwater Alga Selenastrum capricornutum, 1992. Environment Canada, EPS 1/RM/25.

Client Information: Suncor Inc., Oil Sands Group Ft. McMurray

Sample Information:

Description:	Athabasca	River wa	ter		
Collected On:	not given	At:	not given	By:	not given
Received On:	95/08/11	At:	2010	By:	G. Daniels

Test Result: 4% inhibition compared to control growth.

Client: 95030 Sample: 95320-2 Test: 950674

SAMPLE PR	ETREATMENT
pH adjustment	not required
preaeration	not required
turbidity	not centrifuged
other	none

TEST DATA

FINAL	CELL DEN	ISITIES (ce	lls/mL)					
Treatment		Replicate		Average	Standard	CV (%)	Percent	Inhibition
(%)	А	В	С	AVG	Deviation		Controls	(%Ctls)
control	1648272	1395968	1298928	1447723	180331	12	100	0
100.00	1376560	1337744	1473600	1395968	69977	5	96	4

COMMENTS

- all cell numbers were based on particle counts - the initial cell density was 11,452 cells/mL

	and the second se	www.comerce.comerce.com/www.comerce.com/www.com		A CONTRACTOR OF
Client: 95030	Sample:	95320-2	Test:	950673

Test Method: 7 d Ceriodaphnia Survival and Reproduction Test (5 treatment levels plus a control) Reference: Biological Test Method: Test of Reproduction and Survival Using the Cladoceran *Ceriodaphnia dubia*, 1992. Environment Canada, EPS 1/RM/21.

Client Information: Su Ft	uncor Inc., O McMurray	il Sand	s Group		
Sample Information:					
Description: At	thabasca Riv	er wate	er		
Collected On: n	ot given	At:	not given	By:	not given
Received On: 9	5/08/11	At:	2010	By:	G. Daniels
Test Information:					
Started On: 95	5/08/12	At:	1245	By:	DM
Ended On: 95	5/08/19	At:	1000	By:	DL
Reported On: 95	5/10/04			By:	CG

Test Result:

	% Mortality
Control	0
100%	0

REPRODUCTION

MORTALITY

67% expressed as a percentage of the control.

TEST DATA		Client:	95030	Sample:	95320-2	Test:	950673
PREAERATION	not required		FILTR	ATION	not require	ed	
Comments none)						

СН	EMISTRY		BIOLOGY - NUMBER OF YOUNG
Treatment pH (units)	Cond.(uS/cm)	DO (mg/L)	REPLICATE 1 2 3 4 5 6 7 8 9 10
(%) new used	new used	new used	

DAY 0	95/08/1	2	Time:	1245	Contractor Contractor (Contractor)	Initials:	DM	1	Ter	mp (c	(C):	25.0				
Control	8.3		350		7.5		0	0	0	0	0	0	0	0	0	0
100	8.2		246		8.5		0	0	0	0	0	0	0	0	0	0
	1					1				[\square		1		

DAY 1	95/08/1	3	Time:	1215		Initials:	DM		Te	mp (c)C):	25.0	,			
Control	8.4	8.4	358	370	7.8	7.8	0	0	0	0	0	0	0	0	0	0
100	8.4	8.4	250	265	7.8	7.7	0	0	0	0	0	0	0	0	0	0
]												

DAY 2	95/08/1	4	Time:	1200		Initials:	DM		Те	mp (c):	25.0				
Control	8.3	8.3	358	362	7.6	7.8	0	0	0	0	0	0	0	0	0	0
100	8.3	8.3	251	255	7.7	7.9	0	0	0	0	0	0	0	0	0	0

DAY 3	95/08/1	5	Time:	1415		Initials:	DM		-	Temp	:	25.0				
Control	8.3	8.4	358	376	7.6	7.8	0	0	0	4	5	6	4	5	6	4
100	8.3	8.4	257	265	7.1	7.8	0	0	5	2	4	5	5	3	2	4

Client: 95030 Sample: 95320-2 Test: 950673

	CHE	EMISTRY		E	3IOLOG\	<u>- NUN</u>	IBER	OF Y	<u>OUN</u>	G	
Treatment	pH (units)	Cond.(uS/cm)	DO (mg/L)		F	EPLIC	ATE				
(%)	new used	new used	new used	1 2	3 4	5	6	7	8	9	10

DAY 4	95/08/1	6	Time:	1345		Initials:	DM			Temp	:	25.0				
Control	8.3	8.4	362	371	7.6	8.0	6	5	6	0	0	0	1	2	1	1
100	8.3	8.4	259	270	7.4	7.8	6	3	0	0	1	0	0	0	0	0

DAY 5	95/08/1	7	Time:	1345		Initials:	DM		-	Temp	:	25.0				
Control	8.2	8.4	348	368	7.7	7.7	1	11	12	9	10	7	9	10	11	7
100	8.2	8.4	261	263	7.5	7.6	12	6	9	9	7	3	0	7	6	1

DAY 6	95/08/1	8	Time:	1015		Initials:	DM	anter anna anna anna anna anna anna anna an		Temp	•	25.0				
Control	8.2	8.4	351	344	7.8	8.3	0	0	0	2	1	13	14	0	16	14
100	8.1	8.4	258	266	7.1	8.1	0	1	0	0	0	0	0	0	0	12
]															
	[l														
															ĺ	

DAY 7	95/08/1	9	Time:	1000	 Initials:	DL			Гетр	•	25.0				
Control		8.4		356	7.3	12	11	18	12	12	0	0	1	0	0
100		8.4		262	7.3	15	9	15	9	0	1	0	10	12	0

			Client: 9503	0	Sam	ple:	9532	0-2	Test:	ç	5067	3
SUMMARY TA	BLE	Reprod	luction		Daily	Cum	ulativ	ve Yo	ung P	roduc	ction	
Treatment (%)	Mortality (%)	Young/Adult	% controls	0	1	2	3	4	5	6	7	
Control	0	27	100	0	0	0	34	56	143	203	269	
100	0	18	67	0	0	0	30	40	100	113	184	

COMMENTS:				
source of young:	in-house	culture media: Bow river water	food lots: 08/03, 08/10	
	u			
				

					The second se
Oliand.	05000	Complex	05220 2	Tool	050075
Chem	90030	1 Sample	95370-7	l lest	9506/5
whom:	00000	1 a campion		1000	000010

Test Method: 7 d Fathead Minnow Survival and Growth Test (five treatments plus a control) Reference: Biological Test Method: Test of Larval Growth and Survival Using Fathead Minnow, 1992. Environment Canada, EPS 1/RM/22.

Suncor Inc.	., Oil Sand	ds Group			
Ft. McMurr	ay				
Athabasca	River wat	er			
not given	At:	not given	By:	not given	
95/08/11	At:	2010	By:	G. Daniels	
95/08/14	At:	1500	By:	DM/JF	
95/08/21	At:	1000	By:	DM	
95/10/04			By:	CG	
	Suncor Inc Ft. McMurr Athabasca not given 95/08/11 95/08/14 95/08/21 95/10/04	Suncor Inc., Oil Sand Ft. McMurray Athabasca River wat not given At: 95/08/11 At: 95/08/14 At: 95/08/21 At: 95/10/04	Suncor Inc., Oil Sands Group Ft. McMurray Athabasca River water not given At: not given 95/08/11 At: 2010 95/08/14 At: 1500 95/08/21 At: 1000 95/10/04	Suncor Inc., Oil Sands Group Ft. McMurray Athabasca River water not given At: not given By: 95/08/11 At: 2010 By: 95/08/21 At: 1500 By: 95/08/21 At: 1000 By: 95/10/04 By:	Suncor Inc., Oil Sands Group Ft. McMurray Athabasca River water not given At: not given By: not given 95/08/11 At: 2010 By: G. Daniels 95/08/14 At: 1500 By: DM/JF 95/08/21 At: 1000 By: DM 95/10/04 By: CG

MORTALITY		% Mortality	
	control	0	
	100%	43	

GROWTH 80% expressed as a percentage of the controls

TEST DATA		Client:	95030	Sample:	95320-2	Test:	950675
PREAERATION	not required		FILTR	ATION	not require	ed	
Comments none				*****			

		CHI	EMISTR			BIOL	.OGY	- NU	MBE	r al	IVE	_				
Treatment	pН (เ	pH (units) Cond.(uS/cm) new used new used				DO (mg/L) RE					EPLICATE					
(%)	new	used	new	used	new	used	1	2	_ 3	4	5	6				
													•			
DAY 0	95/08/1	4	Time:	1500		Initials:	DM/J	F	Te	mp (c	DC):	25.0				

Control	7.9	360	7.7		10	10	10	10	
100	8.3	242	7.4	_	10	10	10	10	
					<u> </u>				

DAY 1	95/08/1	5	Time:	1100		Initials:	JF		Те	mp (c):	25.0	
Control	7.9	8.1	367	371	7.7	6.6	10	10	10	10			
100	8.2	8.0	253	260	7.4	6.6	10	10	10	10			
											_		
					[
		[
								1					

DAY 2	95/08/1	6	Time:	1400		Initials:	JF		Te	mp (o):	25.0	
Control	8.0	8.1	366	377	7.6	5.9	10	10	10	10			
100	8.2	8.1	250	265	7.1	5.3	10	10	_10	10			
			<u> </u>										

12.5D one fish very small and pale

DAY 3	95/08/1	7	Time:	1430		Initials:	DL			Temp	:	25.0	
Control	8.1	8.1	365	387	7.7	6.0	10	10	10	10			
100	8.2	8.1	256	271	7.3	6.2	10	9	10	10			
													1
	<u> </u>				[
······							1			1			1
	1												1
													1

Client: 95030 |Sample: 95320-2 |Test: 950675

	CHE	EMISTRY				BIC	LOG	Y - NI	JMBE	R AL	IVE.		
Treatment	pH (units)	Cond.(uS/cm)	DO (mg/L)	1			RE	PLICA	TE			000000000000000000000000000000000000000	
(%)	new used	new used	new used	1	2	3	4	5	6	7	8	9	10

DAY 4	95/08/1	8	Time:	1130		Initials:	JF			Temp	1	25.0	
Control	8.0	8.0	369	383	7.7	5.2	10	10	10	10			
100	8.3	7.8	253	266	7.6	5.0	10	9	10	10			
	I									Γ			

DAY 5	7 5 95/08/19		Time:	1030	Initials: DL			Temp:			25.0		
Control	7.9	8.1	638	402	7.7	5.8	10	10	10	10			
100	8.3	7.9	253	262	7.3	5.7	10	9	10	10			
					l			[

DAY 6	DAY 6 95/08/20		Time:	ne: 1030			Initials: DL			Temp:			
Control	7.4	8.0	374	376	7.7	5.5	10	10	10	10			
100	8.1	7.9	247	261	7.2	6.1	7	4	9	9			
			i										

DAY 7 95/08/21		Time:	ne: 1600		Initials: JR/GD			Temp:			16.0		
Control		8.3		387		6.2	10	10	10	10			
100		8.1		289		6.1	7	0	9	7			
									[

Client: 95030 Sample: 95320-2 Test: 950675

SUMMARY TA	BLE	Average Fish Weights						
Treatment (%)	Mortality (%)	mg/fish	% controls					
Control	0	0.61	100					
100	43	0.49	80					
			1					

COMMENTS:	
source of young: in house	

/

Client: 95030 Sample: 95393

-

		Chern. 95050	Sample. 95595
CLIENT INFORMATION		C	
Client:	Suncor Inc., Oil Sands	s Group	
Operation:	Ft. McMurray		
Address:	P.O. Box 4001		
City:	Ft. McMurray		
Province/State:	Alberta	a	
Country:	Canada	04	
Postal/ZIP Code:	T9H 3E3	n.	
Billing Information:	Tar Island Reclamatio	n (Lease 86)	
Contact:	John Gulley/Trina Hof	farth	
Tel:	403-743-6715	-	
Fax:	403-791-8331	-	
		-	
SAMPLE INFORMATION			
Sample Type:	water (project task nur	mber 6127, site: RW127, numbe	<u>r: T059)</u>
Collected On:	95/09/20	At: not given	www.www.
Collected By:	Trina Hoffarth	×	
Shipped On:	95/09/20		
Shipped By:	Grimshaw Trucking	_	
Received On:	95/09/21	At: 1200	
Received By:	GD		
Container:	2 x 20L Jugs	···	
Seals:	not sealed	99 19	
Initials on Seals:	not applicable	aa 	
INITIAL CHEMISTRY			
pH (units)	8.2	ammonium (mg-N/L)	not done
Conductance (uS/cm)	1251	residual chlorine (mg/L)	not done
Dissolved Oxygen (mg/L)	8.4	Colour:	yellow
Temperature (oC)	13	Odour:	hydrocarbon (strong)
Alkalinity (mg-CaCO3/L)	not done		
Hardness (mg-CaCO3/L)	118	59	
	en Datardin Statige et even de la de la deservación de la deservación de la deservación de la deservación de la	oo	
COMMENTS			All Dirich & Simon management and a second as
SAMDI E LISTODV			
Storage Conditions:	50C in darknoss		
Disposed On:	JUC III UAI NIESS	Mathad:	
Disposed Off.	••••••••••••••••••••••••••••••••••••••	Metriou.	883/483/8666/8666/469/100110666/20000000000000000000000000000
TEST LOG			
Test Type	TR(D)	BL(D)	
Number	950853	950915	
Started	95/09/22	95/09/21	
Ended	95/09/26	95/09/21	
Reported	95/10/05	95/10/05	
Faxed			
1 67.04	NOTES TR trout EM fathe	ad minnows: DA Danhnia: CD Ceriodan	hnia: A.G. Selenastrum:
	BL hactorial luminoscopos:	D definitive test: S screening test	הווש, אש, ססופוומטנועונון,
		w, sommere cost, e, sereening teat	

Contraction of the second s			Contraction of the local division of the loc
Client: 95030	Sample: 95393	Test: 95085	3

Test Method: Trout 96h Static Acute Test (LC50, five or more treatment levels plus a control) Reference: Biological Test method: Reference Method for Determining Acute Lethality of Effluents to Rainbow Trout, 1990. Environment Canada, EPS 1/RM/13.

Client Information:	Suncor Inc Ft. McMun	., Oil Sanc ray	ls Group		
Sample Information:					
Description:	water (proj	ect task nu	mber 6127, i	site: RW	127, number: T059)
Collected On:	95/09/20	At:	not given	By:	Trina Hoffarth
Received On:	95/09/21	At:	1200	By:	GD
Test Information:					
Started On:	95/09/22	At:	1200	By:	DM/SF
Ended On:	95/09/26	At:	1200	By:	DM/SF
Reported On:	95/10/05			By:	CG
Test Result: LC25	Value	Confidenc	e Limits	Units %	Method Calculated
LC50	15	6.25	25	%	Binomial
NOEC				%	
LOEC				%	

.

TEST D	ATA					Client:	9503	0	Sample:	95393	Test:	950853
	TION		not real	uirod								
time	(h)	Λ		1	15	2	٦					
	(1)	<u> </u>	0.5	•	1.9							
comme	ents	none				<u>.</u>		99010000000000000			Martin Charles and a state of the later	
	onto	nono		*********	*****************				2000-1000000000000000000000000000000000	******	**	
		CHE	EMISTR	Y					BIOLOG	BY - NUME	BER ALI	VE
Treatment	pH (u	units)	Cond.(uS/cm)	DO	(mg/L)			RE	PLICATE	I 1	- 1 - 1
(%)							1	2		5 6		8 9 10
Date:	95/09/2	2	l Time [.]	1200		I Initials [.]	DM/S	SE	Temp (<u>oC): 13</u>	7	
Control	82		372		88		10		<u>1 iomp (</u>	<u></u>		
6 25	8 1	ļ	434		8.9	4	10					
12.5	8.2		490		8.8	1	10					
25	8.2		672		8.7	1	10					
50	8.3		862		8.3	1	10					
100	8.3		1320		7.5	1	10					
					*****	1						
					XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	1						
Date:	95/09/2	3	Time:	1130		Initials:	GD/[DL	Temp (oC): 13.	8	
Control	7.9		376		7.2		10					
6.25	8.0		436		7.1		10					
12.5	8.1		493		6.9		10					
25	8.2		626		6.8	-	10					
50	8.2		865		6.1	_						
100	8.3		1329		5.1							
······						-	Į					
Date	95/09/2	 PA	Time	1130		 Initials:		L	Tomn ($(1) \cdot 14$	7	
Control	7 9	• [277	1100	72	Tinuais.			[Temp (00). 14.		
6 25	80		440		60	-	10					
12.5	81		495		6.4	-	L g					
25	8.2		629		6.4	-	$\frac{1}{2}$	e T				
50		4				1	0					
100		1	240000 (100000) (10000) (10000)			1	0					
-						1	Bernerszerenderen					
	1	1										
Date:	95/09/2	25	Time:	1030		Initials:	: DM/I	٧G	Tem	p: 15.	6	
Control	8.0		376		7.2		10					
6.25	8.2		438		6.8	4	10					
12.5	8.2		496		5.8	_	8					
25	8.2		628		6.0		0					
50					8.9							
100						-	0					
		-	<u> </u>			-						
	1	1	1			1						

Client: 95030 Sample: 95393 Test: 950853

			BIO	LOG	Y - NI	JMBE	ER AL	_IVE					
Treatment	REPLICATE												
(%)				1	2	3	4	5	6	7	8	9	10

Ĩ	Date:	95/09/26	Time:	1200		Initials: DM/SF	Temp:	15.8
Ĩ	Control	8.0	378		6.5	10		
ſ	6.25	8.0	440		6.4	10		
ſ	12.5	8.0	499		5.7	7		
ſ	25	8.1	631		5.7	0		
ſ	50					0		
	100					0		

SUMMARY	TABLE				REPLICATE									
TREATMENT	MORTALITY	mg Ni	H4-N/L		1	2	3	4	5	6	7	8	9	10
(%)	(%)	t=0	t=96 h	avg	indiv	idual	fish w	veight	s (g)					
Control	0	nd	nd	0.71	0.66	0.78	0.71	0.96	0.85	0.68	0.53	0.38	1.05	0.46
6.3	0	nd	nd	0.67	0.67	0.80	0.59	0.43	0.51	0.84	1.01	0.64	0.49	0.67
12.5	30	nd	nd	0.71	0.92	0.47	0.65	0.93	0.54	0.98	0.73	0.31	0.89	0.65
25.0	100	nd	nd	0.69	0.77	0.60	0.87	0.91	0.51	0.62	0.65	0.52	0.77	0.65
50.0	100	nd	nd	0.75	0.67	0.77	0.76	0.74	0.77	0.77	0.95	0.69	0.57	0.77
100.0	100	nd	nd	0.77	0.87	0.90	0.75	0.67	0.84	0.93	0.66	0.43	0.92	0.72
	_			avg	indiv	idual	fish f	ork le	ngths	(cm)				
Control				4.2	4.2	4.5	4.3	4.7	4.4	4.1	3.9	3.6	4.8	3.8
6.3				4.1	4.1	4.4	3.9	3.7	3.8	4.4	4.6	4.1	3.7	4.1
12.5				4.1	4.5	3.7	4.1	4.4	3.9	4.8	4.2	3.1	4.5	4.2
25.0				3.9	4.0	4.0	4.1	4.2	3.5	3.6	3.9	3.5	3.9	3.9
50.0				3.9	3.8	3.9	3.8	4.0	3.8	4.0	4.0	3.7	3.7	3.9
100.0				4.0	4.3	4.0	3.9	4.2	4.2	4.4	3.8	3.4	4.1	3.9
					I					[

COMMENT	S: Fish added at:	1130	Batch number:TR950911	No. days held:	11	
Time (h)						
24	1 swimming on side in	12.5%. A	Il fish on side on bottom in 259	%.		
	All dead in 50 & 100%	•				
48	2 survivors in 25% are	black an	d laying on side on bottom			
72						
96						

				and the second se	Contraction of the second s
1 01 1	~~~~~	1 America Inc.	~~~~~	-	0
I CHANT	USITIAL	i Samnia	UNIC	1 001	060046
I ORCHL	30000	I VAILUIC.	00000	i ical	2010120120
					~~~~

**Test Method:** Bacterial luminescence Test (IC50, four or more treatment levels plus a control) Reference: Biological Test Method: Toxicity Test Using Luminescent Bacteria (*Photobacterium phosphoreum*), 1992. Environment Canada, EPS 1/RM/24.

Client Information: Suncor Inc., Oil Sands Group

	Ft. McMur	ray			
Sample Information:					
Description:	water (proj	ject task ni	umber 6127, s	site: RW	127, number: T059)
Collected On:	95/09/20	At:	not given	By:	Trina Hoffarth
Received On:	95/09/21	At:	1200	By:	GD
Test Information:					
Started On:	95/09/21	At:	PM	By:	JR
Ended On:	95/09/21	At:	PM	By:	JR
Reported On:	95/10/05			By:	CG
Test Result:	Value	Confidence	ce Limits	Units	Method Calculated
IC20 @ 5 min	2.8	1.0	4.5	%	regresssion analysis
IC50 @ 5 min	10.9	9.1	12.7	%	regresssion analysis
IC20 @ 15 min	2.3	1.3	3.3	%	regresssion analysis
IC50 @ 15 min	9.5	8.5	10.5	%	regresssion analysis





#### TEST DATA

Client: 95030 | Sample: 95393 | Test: 950915

SAMPLE PR	ETREATMENT
pH adjustment	not required
preaeration	not required
turbidity	not centrifuged/filtered
other	none

#### LIGHT READINGS

	Time (min)					
Treatment Level (%)	0	5	15			
control	93	88	89			
5.7	88	56	54			
11.4	92	41	38			
22.7	90	26	25			
45.5	88	17	16			

INHIBITION (%CTLS)					
5 min	15 min				
100	100				
64	61				
47	43				
30	28				
19	18				

#### ENDPOINTS [log(concentration) = a * log(gamma) + b] @ 15 min 5 min **Confidence Limits Confidence Limits** @ Lower Upper Value Lower Upper Value 12.7 IC50 IC50 10.9 9.1 9.5 8.5 10.5 IC25 3.7 1.8 5.5 IC25 3.1 2.1 4.1 IC20 2.8 1.0 2.3 1.3 3.3 4.5 IC20 IC10 1.2 -0.6 3.1 IC10 1.0 0.0 2.0 IC5 0.6 -1.7 2.9 IC5 0.5 -0.5 1.5 IC1 0.1 -7.3 7.6 IC1 0.1 -0.9 1.1 r^2 0.9909 r^2 0.9894 0.980 b = 1.036 b = a = 0.989 a = 1.022



#### COMMENTS



95030 Client: Sample: 95404-1

<b>CLIENT INFORMATION</b>							
Client:	Suncor Inc.	Oil Sands	Group				
Operation:	Ft. McMum	ay		****		***************************************	99999999999999999999999999999999999999
Address:	P.O. Box 4	001			*****	******	****
City:	Ft. McMurr	av		ana ana ana amin'ny faratra amin'ny faratra dia amin'ny faratra dia amin'ny faratra dia amin'ny faratra dia ami			****
Province/State:	Alberta						
Country:	Canada						
Postal/ZIP Code:	T9H 3E3						
Billing Information:		yęzywaji wajestę w cana na sanit w bir w sinit kiele w sa					
Contact:	John Gulle	/Trina Hoff	arth				10000000000000000000000000000000000000
Tel:	403-743-67	715	ann				
Fax:	403-791-83	10					
T ax.	400-791-00	558					
SAMPLE INFORMATION							
Sample Type:	effluent (Ta	ar Island Dy	ke)				
Collected On:	95/09/29		At:	not given			
Collected By:	not given					•	
Shipped On:	95/09/29						
Shipped By:	not given				****		
Received On:	95/09/29		At:	2030		***************************************	
Received By:	S. Goudy	n-9 40200040000000000000000000000000000000			•		
Container:	2 container	S					
Seals:	not sealed		***************************************	***************************************			
Initials on Seals:	not applica	ble					******
		107020110-000-000000-00-0000000-00-00000000	******	90000009000000000000000000000000000000		*********	1979-977-988-988-989-999-999-999-999-999-
INITIAL CHEMISTRY							
pH (units)	8.5		amm	ionium (mg	-N/L)	not done	
Conductance (uS/cm)	1462		residu	al chlorine	(ma/L)	not done	
Dissolved Oxvaen (ma/L)	7.8	****		Colour:	brown		
Temperature (oC)	18.0			Odour:	strong hydrocarbon		
Alkalinity (mg-CaCO3/L)	not done						
Hardness (mg-CaCO3/L)	not done						
naranoso (mg odooone)		*******					NA1+6010002129292929200020000000000000000000
COMMENTS							
				******			*****
SAMPI F HISTORY			******	******			
Storage Conditions:	4°C						
Disposed On:	n/a	hv	n/a	Method	n/a	*****	
Disposed off.	1170	. Sy	170	Tatodiod.	1100	*****	
TEST LOG	770001070000000000000000000000000000000						
Test Type	DA(D)	TR(D)	BL(D)	AG(D)	CD(D)	FM(D)	
Number	950901	950902	950904	950905	950900	950906	
Started	95/10/03	95/10/02	95/10/03	95/10/03	95/10/03	95/10/04	
Ended	95/10/05	95/10/06	95/10/03	95/10/06	95/10/10	95/10/11	
Reported	95/10/11	95/10/12	95/10/11	95/10/18	95/10/13	95/10/12	***************************************
							********
Faxed							
Faxed	NOTES: TR, 1	rout; FM, fathe	ad minnows; D	A, Daphnia; C	D, Ceriodaphn	ia; AG, Selenas	trum;



Client: 95030 Sample: 95404-1 Test: 950901

Test Method: Daphnia 48h Static Acute Test (LC50, five or more treatments plus a control) Reference: Biological Test Method: Reference Method for Determining Acute Lethality of Effluents to Daphnia magna, 1990. Environment Canada, EPS 1/RM/14.

Suncor Inc	c. Oil Sands	s Group		
Ft. McMur	ray			
effluent (T	ar Island D	yke)		
95/09/29	At:	not given	By:	not given
95/09/29	At:	2030	By:	S. Goudy
95/10/03	At:	1525	By:	DM
95/10/05	At:	1640	By:	SF
95/10/11			By:	CG
Value	Confidenc	e Limits	Units	
>100			%	Not Toxic
>100			%	
100			%	
>100			%	
	Suncor Ind Ft. McMur effluent (T 95/09/29 95/09/29 95/10/03 95/10/05 95/10/11 Value >100 >100 >100 >100	Suncor Inc. Oil Sands Ft. McMurray effluent (Tar Island D 95/09/29 At: 95/09/29 At: 95/10/03 At: 95/10/05 At: 95/10/11 Value Confidence >100 >100 >100 >100	Suncor Inc. Oil Sands Group Ft. McMurray effluent (Tar Island Dyke) 95/09/29 At: not given 95/09/29 At: 2030 95/10/03 At: 1525 95/10/05 At: 1640 95/10/11 Value Confidence Limits >100 >100 >100	Suncor Inc. Oil Sands Group           Ft. McMurray           effluent (Tar Island Dyke)           95/09/29         At: not given         By:           95/09/29         At: 2030         By:           95/10/03         At: 1525         By:           95/10/05         At: 1640         By:           95/10/11         By:         Sy:           Value         Confidence Limits         Units           >100         %         Sy:           >100         %         Sy:





TEST D	ATA					Client:	9503	0	Sam	ple:	9540	)4-1	Test:		95090	)1
		CHE	MISTR	Y					BIC	LOG	iY - N	UMBI	ER AL	IVE		
Treatment	pH (i	units)	Cond.(	uS/cm)	DO (	ma/L)	1			RE	PLIC	ATE	200 C		2018))) (Constanting of the Constanting of the Cons	
(%)		,		,	(		1	2	3	4	5	6	7	8	9	10
						<b></b>	<b>A</b>									
Date:	95/10/0	3	Time:	1525		Initials:	DM		Te	mp (c	DC):	20				
Control	8.4		346		8.1	I	5	5								
6.25	8.5		412		8.0	]	5	5								
12.5	8.6		482		8.0	]	5	5								
25	8.6		617		8.0		5	5								
50	8.7		889		7.9	ļ	5	5								
100	8.7		1409		7.1		5	5								
			-													
			- magnet t			<u> </u>	L		<u> </u>			~~~	and the second	1		
Date:	95/10/0	4	Lime:	1550		[Initials:	SF		10	mp (c	<u>5C):</u>	20				
Control							5	5								
0.25							5 5	2 E	1							
12.5							ວ 5	2 5								
<u> </u>							5	5								
100							5	5								
100								<u> </u>								
Date:	95/10/0	5	Time:	1640		Initials:	SF		Te	mp (c	DC):	20				
Control	8.4		347		7.8		5	5								
6.25	8.4		420		7.9	1	5	5								
12.5	8.5		498		7.9		5	5								
25	8.6		619		7.9	-	5	5								
50	8.6		840		7.9	-	5	5								
100	8.7		1315		7.8	1	5	5								
						1										
						1										
				1 -												
SU	MMARY	' TABLE			you	ing :	jar C	3	hard	ness (	(mg-C	aco	3/L) :		180	
TREAT	<b>JENT</b>	MORT	ALITY		wa	ter :	buck	et 3	Adju	stmer	nt:	none	)			

TENEATAAEAIT	MODTALITY
IREAIMENT	MORTALITY
(%)	(%)
Control	0
6.25	0
12.5	0
25	0
50	0
100	0

young	:	jar C3	hardness	(mg-C	aCO3/L)	•	180
water	:	bucket 3	Adjustme	nt:	none		

COMMENTS:
no comments

Notes: F, floating; I, immobile; B, stuck on bubbles; D, caught in debris



Client: 95030 Sample: 95404-1 Test: 950902

**Test Method:** Trout 96h Static Acute Test (LC50, five or more treatment levels plus a control) Reference: Biological Test method: Reference Method for Determining Acute Lethality of Effluents to Rainbow Trout, 1990. Environment Canada, EPS 1/RM/13.

Client Information:	Suncor Inc Ft. McMun	: Oil Sanc ray	ls Group		
Sample Information:					
Description:	effluent (T	ar Island 🛛	Dyke)		
Collected On:	95/09/29	At:	not given	By:	not given
Received On:	95/09/29	At:	2030	By:	S. Goudy
Test Information:					
Started On:	95/10/02	At:	1240	By:	JR/DM
Ended On:	95/10/06	At:	1731	By:	SF/DM
Reported On:	95/10/12			By:	CG
Test Result: LC25	Value	Confiden	ce Limits	Units %	Method Calculated
LC50	27	18	44	%	Logit
NOEC				%	
LOEC				%	





TEST D	ATA					Client:	9503	0	Sample:	95404-1	Test:	950902
	WIAN	-			1							
PREAERA	(h)	<u> </u>	not requ		4 5		1					
	$\frac{n}{\alpha(1)}$	0	0.5	1	1.5	<u> </u>						
comme	yrL) ents	none	L				<u></u>			90000-1123-0-0-2000-0-0-0-0-0-0-0-0-0-0-0-0-0-0-	849/169/189006666666666699 ₉₉₈₆	******
	511(5	none	1517517207407737008849155709507088980			99,000-09-09,000,000,000,000,000,000,000				****		
		CHE	EMISTR	Y				ana	BIOLOG	<u> 97 - NUME</u>	BER AL	IVE
Treatment	рН (ι	units)	Cond.(	uS/cm)	DO	(mg/L)			RE	EPLICATE	1	
(%)							1	2	3 4	5 6		8 9 10
Date:	95/10/0	2	Time:	1240		Initials:	JR/D	M	Temp (	oC): 15.0	D ]	
Control	8.2		373		9.0		10					
6.25	8.2		445		9.0	1	10					
12.5	8.3		506		9.0		10					
25	8.4		646		8.9	_	10					
50	8.5		948		8.6	_	3					
100	8.5		1462		7.8	-	0					
			ļ			-	L					
Date	95/10/0		l Time:	1520	L	  Initials:		L F	Temn (	O(1): 14	1	
Control	82	1 <u>.</u>	379	1020	70		10			00). 14.	·	
6 25	82		453		6.7	-	10					
12.5	8.2		514		6.4		10					
25	8.4		647		6.3	-	10					
50	8.4		932		5.7	1	0					
100	8.5		1407		4.8	]	0					
			-			<u></u>			-			
Date:	95/10/0	)4	I Ime:	1700	<u> </u>	Initials:	SF	1	lemp (	OC): 15.3	2	
Control	1.6		383		6.1	-	10					
12.5	$\frac{1.1}{7.7}$		409		5.0	-						
25	7.0		656		5.4	-	- 10 - G					
50	81		938		5.0	-	0					
100	8.1		1420		4.0	-	0					
	1					1						
Date:	95/10/0	)5	Time:	1705	•	Initials:	GD/S	SF	Tem	p: 15.	1	
Control	7.7		383		5.0		10					
6.25	7.8		459	1	4.9	-	10					
12.5	7.8		521	[		4	10					
25	8.0	1	654		<u> </u>	-						
100						-						
						-	$\vdash^{\cup}$					
		1		1		-						
	J	1		J	1		1	<u>u</u>				



Client: 95030 Sample: 95404-1 Test: 950902

15.1

CHEMISTRY						BIO	LOG	Y - N	UMB	ER AL			
Treatment	pH (units)	Cond.(uS/cm)	DO (mg/L)				RE	PLIC	ATE			and the second se	Suloscensored
(%)				1	2	3	4	5	6	7	8	9	10

Date:	95/10/06	Time:	1731		Initials: SF/D	M Temp:
Control	7.8	390		4.8	10	
6.25	7.8	465		5.2	10	
12.5	7.8	529		4.7	10	
25	7.9	660		5.3	6	
50					0	
100					0	
1						

SUMMARY TABLE					REPLICATE									
TREATMENT	MORTALITY	mg Ni	H4-N/L		1	2	3	4	5	6	7	8	9	10
(%)	(%)	t=0	t=96 h	avg	lindiv	idual	fish v	veight	s (g)					
Control	0	nd	nd	0.64	0.79	0.51	0.45	0.81	0.67	0.75	0.64	0.51	0.82	0.42
6.3	0	nd	nd	0.69	0.86	0.83	0.97	0.39	0.68	0.65	0.45	0.57	0.56	0.96
12.5	0	nd	nd	0.77	0.72	0.55	0.63	0.83	0.63	0.99	0.87	0.68	0,71	1.05
25.0	40	nd	nd	0.75	0.34	0.89	0.70	0.75	1.09	0.86	0.45	0.92	0.75	0.70
50.0	100	nd	nd	0.73	0.82	0.63	0.55	0.63	0.78	0.53	0.66	1.16	0.89	0.65
100.0	100	nd	nd	0.76	0.85	0.78	0.39	0.65	1.07	0.99	0.80	0.70	0.66	0.71
	_	7		avg	indiv	idual	fish fo	ork le	ngths	(cm)				
Control				4.1	4.1	3.9	3.8	4.5	4.4	4.3	4.2	3.8	4.4	3.8
6.3				4.2	4.5	4.5	4.6	3.6	4.2	4.2	3.8	3.9	4.0	4.5
12.5				4.5	4.3	3.9	4.3	4.6	4.4	4.9	4.6	4.4	4.4	5.0
25.0				4.2	3.4	4.3	4.0	4.1	4.2	4.5	4.0	4.6	4.4	4.3
50.0				4.3	4.2	4.2	4.1	4.2	4.0	3.8	4.0	4.8	4.9	4.4
100.0				4.4	4.5	4.4	3.7	4.3	4.6	4.7	4.7	4.2	4.1	4.4

 COMMENTS:
 Fish added at:
 1215
 Batch number:TR950911
 No. days held:
 22

 Time (h)
 24
 all dead in 50% & 100%, fish in 25% stressed, remainder appear normal
 48
 one dead in 25%, other 25% fish on sides at pail bottom. Remaining fish appear normal

 72
 two dead in 25%; other 25% fish on side at bottom. Remaining fish appear normal.

 96
 fish in 12.5% disoriented, 6.25% & control fish appear normal



				and the second se	Charles and the second s
Client:	95030	Sample:	95404-1	Test:	950904

**Test Method:** Bacterial luminescence Test (IC50, four or more treatment levels plus a control) Reference: Biological Test Method: Toxicity Test Using Luminescent Bacteria (*Photobacterium phosphoreum*), 1992. Environment Canada, EPS 1/RM/24.

<b>Client Information:</b>	Suncor Inc	. Oil Sands	s Group		
	Ft. McMun	ray			
Sample Information:					
Description:	effluent (Ta	ar Island D	yke)		
Collected On:	95/09/29	At:	not given	By:	not given
Received On:	95/09/29	At:	2030	By:	S. Goudey
Test Information:					
Started On:	95/10/03	At:	am	By:	JR
Ended On:	95/10/03	At:	am	By:	JR
Reported On:	95/10/11			By:	CG
Test Result:	Value	Confidenc	e Limits	Units	Method Calculated
IC20 @ 15 min	10.0	8.0	12.0	%	regression analysis
IC50 @ 15 min	42.0	38.0	45.0	%	regression analysis





#### TEST DATA

Client: 95030 Sample: 95404-1 Test: 950904

SAMPLE PR	ETREATMENT
pH adjustment	not required
preaeration	not required
turbidity	not centrifuged/filtered
other	none

#### LIGHT READINGS

	Time (min)
Treatment Level (%)	15
control	89
8.0	72
12.0	67
18.0	65
27.0	56
40.0	44
61.0	35
91.0	28

#### INHIBITION (%CTLS)

15 min
100
81
75
73
63
49
39
31

COMMENTS		 



CONTRACTOR OF PRIME CONTRACTOR CONTRACTOR CONTRACTOR	(All sector and s			and a second	
Client	95030	Sample	95404-1	Test	950905
Onora.	00000	j compic.	001011	1000	000000

**Test Method:** 72h Algal Growth Inhibition Test (IC50, five or more treatments plus a control) Reference: Biological Test Method: Growth Inhibition Test Using the Freshwater Alga *Selenastrum capricornutum*, 1992. Environment Canada, EPS 1/RM/25.

Client Information:	Suncor Inc Ft. McMun	: Oil Sand ray	ls Group			
Sample Information:						
Description:	effluent (T	ar Island D	) Dyke)			
Collected On:	95/09/29	At:	not given	By:	not given	
Received On:	95/09/29	At:	2030	By:	S. Goudy	
Test Information:						
Started On:	95/10/03	At:	РМ	By:	DL	
Ended On:	95/10/06	At:	PM	By:	DM	
Reported On:	95/10/18			By:	CG	
Test Result:	Value	Confiden	ce Limits	Units	Method Calculated	
IC25	57	38	69	%	ICPIN	
IC50	>100			%	ICPIN	
NOEC	50			%	Dunnett's Test	
LOEC	100			%	Dunnett's Test	




TEST DATA	Client:	95030	Sample:	95404-1	Test:	950905

SAMPLE PR	ETREATMENT
pH adjustment	not required
preaeration	not required
turbidity	not centrifuged/filtered
other	none

# TEST DATA

FINAL	CELL DEN	ISITIES (ce	lls/mL)					
Treatment		Replicate		Average	Standard	CV (%)	Percent	Inhibition
(%)	A	В	С	AVG	Deviation		Controls	(%Ctls)
control	1788384	1756384	1895051	1813273	72606	4	100	0
1.563	2001717	1831051	2172384	2001717	170667	9	110	-10
3.125	2343051	2001717	2268384	2204384	179441	8	122	-22
6.250	2567051	1980384	2065717	2204384	316963	14	122	-22
12.50	2599051	2545717	1991051	2378606	336691	14	131	-31
25.00	1735051	1745717	1777717	1752828	22204	1	97	3
50.00	1468384	1564384	2001717	1678162	284289	17	93	7
100.00	1009717	1052384	1116384	1059495	53688	5	58	42

## COMMENTS

- all cell numbers based on optical density readings obtained with a microplate reader - the initial cell density was 9,312 cells/mL.



Client: 95030 Sample: 95404-1 Test: 950900

**Test Method:** 7 d Ceriodaphnia Survival and Reproduction Test (5 treatment levels plus a control) Reference: Biological Test Method: Test of Reproduction and Survival Using the Cladoceran *Ceriodaphnia dubia*, 1992. Environment Canada, EPS 1/RM/21.

Client Info	ormation:	Suncor Inc Ft. McMun	. Oil Sand ray	s Group		
Sample Info	ormation:					
De	escription:	effluent (T	ar Island C	)yke)		
Colle	ected On:	not given	At:	not given	By:	not given
Rec	eived On:	95/09/29	At:	2030	By:	S. Goudy
Test Info	ormation:					
St	arted On:	95/10/03	At:	1400	By:	DM
E	inded On:	95/10/10	At:	900	By:	DM
Rep	orted On:	95/10/13			By:	CG
Tes	st Result:	Value	Confidence	ce Limits	Units	Method Calculated
MORTALITY	LC25	67	63	68	%	ICPIN
	LC50	78	75	86	%	ICPIN
	NOEC	50			%	Fisher's Exact
	LOEC	100			%	Fisher's Exact
REPRODUCT	ION					
	IC25	32	26	34	%	ICPIN
	IC50	48	43	50	%	ICPIN
	NOEC	25			%	Steel's Many One
	LOEC	50			%	Steel's Many One

Graph of Mortality and Reproduction at Seven Days Versus Treatment Level



Notes: LC25 & LC50, concentrations lethal to 25 and 50% of the test population; IC25 & IC50, concentrations inhibiting reproduction by 25 and 50%; NOEC & LOEC, no observed and lowest observed effect concentrations



## TEST DATA

Client: 95030 Sample: 95404-1 Test: 950900

PREAERATION

FILTRATION not required

Comments none

not required

		CHI	EMISTR	Y				B		)GY -	NUM	BER	OF Y	OUN	G	
Treatment	mg/L)				REF	PLICA	ATE			6404004000000000						
(%)	new used new used				new	used	1	2	3	4	5	6	7	8	9	10

DAY 0	95/10/03	Time:	1400		Initials:	DM	1	Te	mp (c	)C):	25.0				
Control	8.4	374		7.5		0	0	0	0	0	0	0	0	0	0
0.25	8.4	373		8.0		0	0	0	0	0	0	0	0	0	0
0.5	8.4	379		7.9		0	0	0	0	0	0	0	0	0	0
1	8.4	383		7.8		0	0	0	0	0	0	0	0	0	0
3	8.4	400		7.9		0	0	0	0	0	0	0	0	0	0
6	8.4	434		7.9		0	0	0	0	0	0	0	0	0	0
12	8.5	499		7.9		0	0	0	0	0	0	0	0	0	0
25	8.6	629		7.7		0	0	0	0	0	0	0	0	0	0
50	8.6	877		7.6		0	0	0	0	0	0	0	0	0	0
100	8.6	1379		7.5		0	0	0		0	0	0	0	0	0

DAY 1	95/10/0	4	Time:	1600		Initials:	DL		Te	mp (o	):	25.0				
Control	8.4	8.4	371	428	8.4	8.2	0	0	0	0	0	0	0	0	0	0
0.25	8.4	8.4	372	391	8.3	8.2	0	0	0	0	0	0	0	0	0	0
0.5	8.4	8.4	377	394	8.3	8.2	0	0	0	0	0	0	0	0	0	0
1	8.4	8.4	383	404	8.3	8.4	0	0	0	0	0	0	0	0	0	0
3	8.4	8.4	399	417	8.2	8.4	0	0	0	0	0	0	0	0	0	0
6	8.4	8.5	433	464	8.0	8.3	0	0	0	0	0	0	0	0	0	0
12	8.4	8.5	500	520	8.0	8.2	0	0	0	0	0	0	0	0	0	0
25	8.5	8.6	640	643	7.9	8.1	0	0	0	0	0	0	0	0	0	0
50	8.5	8.7	896	832	7.8	8.1	0	0	0	0	0	0	0	0	0	0
100	8.5	8.7	1368	1289	7.4	8.1			0	0		0	0	0		0

DAY 2	95/10/0	5	Time:	1600		Initials:	DL		Te	mp (c	oC):	25.0				
Control	8.3	8.3	372	432	7.8	8.2	0	0	0	0	0	0	0	0	0	0
0.25	8.2	8.4	371	389	7.6	8.1	0	0	0	0	0	0	0	0	0	0
0.5	8.2	8.3	376	393	7.4	8.0	0	0	0	0	0	0	0		0	0
1	8.2	8.3	384	403	7.3	8.1	0	0	0	0	0	0	0	0	0	0
3	8.2	8.3	399	418	7.2	8.1	0	0	0	0	0	0	0		0	0
6	8.3	8.3	435	453	7.1	7.9	0	0	0	0	0	0	0		0	0
12	8.3	8.4	502	516	7.0	7.9	0	0	0	0	0	0	0	0	0	0
25	8.4	8.6	631	648	6.9	7.9	0	0	0	0	0	0	0	0	0	0
50	8.4	8.7	878	862	6.7	7.8	0	0	0	0	0	0	0	0	0	0
100	8.5	8.9	1378	1340	6.8	7.7			0	0		0	0	0		



		CHE	EMISTR	Y				B	IOLC	GY -	NUM	IBER	OF Y	OUN	G	
Treatment	pН (เ	units)	Cond.(	uS/cm)	DO (	mg/L)				RE	PLIC/	ATE				
(%)	new	used	new	used	new	used	1	2	3	4	5	6	7	8	9	10
DAY 3	95/10/0	6	Time:	1000		Initials:	DM		Te	mp (c	):	25.0				
Control	8.0	8.2	369	417	7.5	8.1	0	0	0	0	0	0	0	0	0	0
0.25	8.1	8.2	371	393	7.8	8.1	0	0	0	0	0	0	0	0	0	0
0.5	8.1	8.2	378	400	7.9	8.1	0	0	0	0	0	0	0		0	0
1	8.1	8.2	384	395	7.8	8.1	0	0	0	0	0	0	0	0	0	0
3	8.2	8.3	399	408	7.9	8.1	0	0	0	0	0	0	0		0	0
6	8.2	8.3	439	464	7.9	8.1	0	0	0	0	0	0	0		0	0
12	8.3	8.4	501	510	8.0	8.0	0	0	0	0	0	0	0	0	0	0
25	8.4	8.5	631	637	7.9	7.7	0	0	0	0	0	0	0	0	0	0
50	8.5	8.6	893	874	7.9	7.6	0	0	0	0	0	0	0	0	0	0
100	8.5	8.7	1380	1327	7.3	7.9				0		0		0	1	
Bergenergen in Starfen in gestande in een en gestande starfen in de starfen in de starfen in de starfen in de s	Saayaya yaraya michani waki	11120-0120-01149-014-014-014-014-014-014-014-014-014-014		9		að mæs að en að sen er sen										
DAY 4	95/10/0	7	Time:	1105		Initials:	JR	teri fayo dar kan ta fabiya	Те	mp (c	C):	25.0				
Control	8.3	8.3	380	395	7.4	6.6	5	5	3	5	4	4	4	6	6	6
0.25	8.3	8.3	382	384	7.6	7.2	6	4	6	2	5	6	6		6	6
0.5	8.3	8.3	388	380	7.5	7.3	5	4	5	0	4	2	6	4	2	3
1	8.3	8.3	394	397	7.5	7.1	6	6	7	4	4	5	4		5	5
Constant of the local division of the local	**************************************						Concernmenter and the second	010000000000000000000000000000000000000	Q-++++++++++++++++++++++++++++++++++++	0*********************		ร้างการแหน่งการการการการการการการการการการการการการก	CONTRACTOR CONTRACTOR OF		****	

1	8.3	8.3	394	397	7.5	7.1	6	6	7	4	4	5	4		5	5
3	8.4	8.3	413	411	7.5	7.1	0	3	5	0	6	5	4		0	0
6	8.4	8.4	447	466	7.2	6.8	4	6	5	5	0	4	6	6	5	5
12	8.4	8.5	510	522	7.1	7.0	5	4	5	7	0	5	5	2	0	5
25	8.5	8.6	639	648	7.2	7.7	6	5	6	6	3	3	6	5	4	7
50	8.5	8.7	897	866	7.1	7.1	2	0	0	0	0	2	0	0	0	0
100	8.6	8.9	1405	1325	6.3	7.1				0		0		0		
									000000000000000000000000000000000000000					******		

DAY 5	95/10/0	8	Time:	1230		Initials:	JR		Te	mp (o	C):	25.0				
Control	8.5	8.5	400	402	8.3	7.3	5	10	12	9	12	10	9	11	8	10
0.25	8.5	8.6	391	391	8.0	7.2	9	13	11	9	9	10	10		9	7
0.5	8.5	8.5	395	396	7.3	7.2	12	10	10	9	7	8	10	9	10	6
1	8.5	8.6	398	403	7.4	7.2	9	8	11	12	11	9	9		8	9
3	8.5	8.6	415	419	7.6	7.2	8	6	8	9	9	12	7		3	10
6	8.5	8.6	447	462	7.6	7.1	10	10	12	12	9	12	11	7	11	13
12	8.6	8.6	512	513	7.3	7.1	12	10	9	12	5	13	10	12	8	9
25	8.6	8.8	638	640	7.3	7.0	9	9	7	13	9	8	14	9	11	10
50	8.7	8.9	894	864	7.0	7.0	5	4	2	5	2	0	5	2	5	2
100	8.8	9.0	1386	1334	6.8	6.8								0		



Client: 95030 Sample: 95404-1 Test: 950900

DAY 6	95/10/0	9	Time:	1100		Initials:	JR		Те	mp (o	C):	25.0				
Control	8.4	8.4	375	405	6.9	7.7	0	0	0	0	0	0	0	2	0	0
0.25	8.4	8.5	378	392	7.0	6.9	0	17	0	13	12	0	0		15	12
0.5	8.4	8.4	382	393	7.0	7.0	0	0	15	14	0	0	0	12	12	15
1	8.5	8.5	391	400	7.0	6.9	0	15	14	15	16	0	0		9	15
3	8.5	8.5	409	417	7.0	6.9	14	12	13	11	17	0	11		13	18
6	8.5	8.5	442	452	7.0	6.9	0	0	0	0	0	0	0	0	0	0
12	8.5	8.6	504	508	7.0	6.8	0	0	0	0	16	0	6	16	12	18
25	8.5	8.7	629	638	6.9	6.9	0	0	0	0	8	12	14	0	8	15
50	8.5	8.8	880	870	6.9	6.9	0	0	7	9	5	8	3	0	0	7
100	8.5	9.1	1355	1340	6.2	6.9								0		

DAY 7	95/10/10	Time: 900	 Initials:	DM	12/04/04/04/04	Те	mp (c	):	25.0				
Control	8.5	403	7.4	16	18	21	16	16	18	19	18	18	17
0.25	8.6	390	7.2	13	1	16	1	0	17	18		0	1
0.5	8.6	393	7.1	16	15	0	0	16	15	16	2	0	0
1	8.6	408	6.8	13	1		1	1	16	16		2	1
3	8.6	421	6.8	1	0	0	0	0	15	0		0	1
6	8.6	458	6.8	11	19	16	18		18	22	18	16	19
12	8.7	513	6.7	16	13	10	18	1	11	3	0	0	2
25	8.8	638	6.8	18	11	13	18	0	0	1	11	0	1
50	8.9	862	6.7	9	9	0	0	0	0	0	11	0	0
100	9.0	1283	6.9								0		

SUMMARY TA	BLE	Reprod	luction		Daily	Cum	ulativ	e Yo	ung P	roduc	ction	
Treatment (%)	Mortality (%)	Young/Adult	% controls	0	1	2	3	4	5	6	7	
Control	0	32	100	0	0	0	0	48	144	146	323	
0.25	10	30	94	0	0	0	0	47	134	203	270	
0.5	0	27	84	0	0	0	0	35	126	194	274	
1	20	30	94	0	0	0	0	46	132	216	267	
3	10	25	78	0	0	0	0	23	95	204	221	
6	10	31	97	0	0	0	0	46	153	153	310	
12	0	28	88	0	0	0	0	38	138	206	280	
25	0	28	88	0	0	0	0	51	150	207	280	
50	0	10	31	0	0	0	0	4	36	75	104	
100	90	0	0	0	0	0	0	0	0	0	0	

COMMENTS:

source of young: in house culture media: Bow River Water

food lots: 21/09 & 28/09

FORM 95032 WRITTEN BY: SG ON 95/05/12 REVISED BY: SG ON 95/07/29



Client: 95030 Sample: 95404-1 Test: 950906

**Test Method:** 7 d Fathead Minnow Survival and Growth Test (five treatments plus a control) Reference: Biological Test Method: Test of Larval Growth and Survival Using Fathead Minnow, 1992. Environment Canada, EPS 1/RM/22.

Client Inforr	nation:	Suncor Inc Ft. McMur	:. Oil Sano ray	ds Group		
Sample Inforr	nation:					
Desc	cription:	effluent (T	ar Island I	Dyke)		
Collec	ted On:	not given	At:	not given	By:	not given
Receiv	/ed On:	95/09/29	At:	2030	By:	S. Goudy
Test Inforr	nation:					
Star	ted On:	95/10/04	At:	1420	By:	SF
End	ded On:	95/10/11	At:	1200	By:	DM
Repor	ted On:	95/10/12			By:	CG
Test	Result:	Value	Confiden	ce Limits	Units	Method Calculated
MORTALITY	LC25	33	10	55	%	Bootstrap
	LC50	64	55	70	%	Bootstrap
	NOEC	50			%	Steel's Many-One
	LOEC	100			%	Steel's Many-One
GROWTH						, ,
	IC25	9	6	12	%	Bootstrap
	IC50	29	12	36	%	Bootstrap
	NOEC	6.25			%	William's
	LOEC	12.5			%	William's

Graph of Mortality and Growth at Seven Days Versus Treatment Level



Notes: LC25 & LC50, concentrations lethal to 25 and 50% of the test population; NOEC & LOEC, no observed and lowest observed effect concentrations



 T	E	S	T	D	A	T	A	

PREAERATION	not required	FILTRATION	not required	
Comments non	e			

IVE	BER ALI	- NUMBE	.OGY	BIOL			Y	EMISTR	СН				
	E	Cond.(uS/cm) DO (mg/L) REPLICATE							units)	reatment pH (units)			
6	4 5	3 4	2	1	used	new	used	new	(%) new used new				
CHRECOLD HILL HILL HILL HILL HILL HILL HILL HI							handling and a state of the sta				an a		
25.0	nitials: SF Temp (oC): 25.0						1420	Time:	DAY 0 95/10/04				
T	10	10 10	10	10		07	r T	276	T	76	Control		

Control	1.0	370	8.7	10	10			I	
3	8.0	408	8.2	10	10	10	10		
6	8.0	444	8.3	10	10	10	10		
12	8.1	503	8.4	10	10	10	10		
25	8.2	640	8.4	10	10	10	10		
50	8.3	904	8.0	10	10	10	10		
100	8.4	1387	7.2	10	10	10	10		
									1

DAY 1	95/10/0	)5	Time:	1500		Initials:	GD		Те	mp (o	oC):	25.0	
Control	7.8	8.2	379	398	7.8	7.3	10	10	10	10			
3	8.0	8.1	409	422	7.8	6.5	10	10	10	10			
6	8.0	8.2	441	457	7.8	6.7	10	10	10	10			
12	8.1	8.3	509	509	7.7	6.7	10	10	10	10			
25	8.2	8.4	623	635	7.5	6.5	10	10	10	10			
50	8.3	8.5	859	887	7.3	6.6	10	10	10	10			
100		8.6		1320		6.4	0	0	0	0			
						[	]						

DAY 2	95/10/0	6	Time:	1500		Initials:	SF		Te	mp (o	<b>C)</b> :	25.0	
Control	7.9	7.9	381	386	7.6	5.8	10	10	10	10			
3	8.0	7.9	403	415	7.4	5.9	10	10	10	10			
6	8.0	8.0	431	442	7.5	6.0	10	10	10	9			
12	8.0	8.1	489	512	7.3	5.9	10	10	10	10			
25	8.1	8.3	599	630	7.0	6.2	10	10	10	10			
50	8.2	8.4	835	834	6.2	5.9	10	9	10	10			
100							0	0	0	0			
	1		1	I		T							

DAY 3	95/10/0	)7	Time:	1100	0 Initials: SF					Temp	:	25.0
Control	8.1	8.2	387	400	8.0	5.7	10	10	10	10		
3	8.2	8.1	413	413	7.8	5.6	10	10	9	10		
6	8.2	8.2	445	446	7.7	5.7	10	10	10	9		
12	8.3	8.3	509	509	7.8	5.9	10	10	10	10		
25	8.3	8.4	620	617	7.4	6.3	10	10	9	10		
50	8.4	8.5	866	869	6.6	5.4	9	9	10	10		
100							0	0	0	0		
	1											



	CHE	EMISTRY				BIO	LOG	Y - NI	UMBE	ER AL	IVE.			
Treatment	pH (units)	Cond.(uS/cm)	DO (mg/L)				RE	PLICA	λΤΕ					
(%)	new used	new used	new used	1	2	3	4	5	6	7	8	9	10	

DAY 4	95/10/0	8	Time:	1210		Initials:	SF			Temp	:	25.0	
3	8.3	8.1	386	409	7.8	5.1	10	10	10	10			
6	8.4	8.2	410	430	7.5	5.3	10	10	9	10			
12	8.4	8.3	449	462	7.7	6.0	10	10	10	9			
25	8.4	8.3	509	535	7.4	5.6	10	10	10	10			
50	8.4	8.5	636	644	7.1	5.1	10	10	8	10			l
100	8.5	8.5	871	880	6.6	5.0	9	8	9	10			
							0	0	0	0			
	T						Ì						

DAY 5	95/10/0	9	Time:	1155		Initials:	SF			Temp	:	25.0	
Control	8.0	8.3	386	402	7.9	6.3	10	10	10	10			
3	8.2	8.2	406	428	7.5	6.2	10	10	8	10			
6	8.1	8.3	438	465	7.7	5.6	10	10	10	9			
12	8.2	8.4	481	529	7.5	6.5	7	10	10	10			
25	8.2	8.4	636	643	7.2	5.6	9	10	7	9			
50	8.3	8.5	886	870	6.4	5.6	8	7	8	10			
100							0	0	0	0			

DAY 6	95/10/1	0	Time:	1132		Initials:	SF		-	Temp	•	25.0	
Control	7.4	8.3	436	407	8.0	6.0	10	10	10	10			
3	8.2	8.3	411	439	7.7	6.2	7	10	8	10			
6	8.3	8.4	440	446	7.7	6.7	10	10	10	8			
12	8.3	8.5	508	497	7.7	6.2	5	10	10	8			
25	8.4	8.5	630	641	7.2	5.9	9	10	6	8			
50	8.5	8.6	886	866	6.3	5.4	8	5	7	10			
100			l				0	0	0	0			
	T				1								

DAY 7	95/10/11	Time:	1200		Initials:	DM			Temp	:	25.0	
Control	7.9		435		6.6	10	10	10	10			
3	7.9		439		6.7	7	10	8	10			
6	8.0		456		7.1	10	10	10	8			
12	8.1		530		6.3	3	10	10	7			
25	8.1		648	1	5.7	9	10	5	8			
50	8.1		890		5.2	7	4	7	10			
Propriation and a second s				1	1							



			Client: 95030	Sample:	95404-1	Test:	950906
SUMMARY TA	BLE	Average Fi	sh Weights				
Treatment (%)	Mortality (%)	mg/fish	% controls				
Control	0	0.32	100				
3	12.5	0.28	88				
6	5	0.27	84				
12	25	0.21	66				
25	20	0.17	53				
50	30	0.01	3				
100	100						
COMMENTS:							
source of vouna:	in house						

FORM 95032 WRITTEN BY: SG ON 95/05/12 REVISED BY: SG ON 95/07/29

FILE: REP-01.XLS



Client: 95030 Sample: 95404-2

<b>CLIENT INFORMATION</b>			8				
Client:	Suncor Inc.	Oil Sands	Group				
Operation:	Ft. McMum	ау					******
Address:	P.O. Box 4	201					
City:	Ft. McMurra	ау					
Province/State:	Alberta	*****					
Country:	Canada	2443474474747474747474747474747474747474					
Postal/ZIP Code:	T9H 3E3	*******					
Billing Information:		990000,0000,0000,0000,0000,000,000,000,					
Contact:	John Gulley	//Trina Hoff	arth		***************************************		
Tel:	403-743-67	15					
Fax:	403-791-83	39					
SAMPLE INFORMATION							
Sample Type:	Athabasca	River Wate	r				
Collected On:	95/09/29		At:	not given			2077/2070.000000000000000000000000000000
Collected By:	not given	*****	-			•	
Shipped On:	not given						
Shipped By:	not given				*****		
Received On:	95/09/29		At:	2030		***************************************	
Received By:	S. Goudey						
Container:	3 x 5600L o	ontainers					
Seals:	not sealed	*********					
Initials on Seals:	not applica	ble					
INITIAL CHEMISTRY							
pH (units)	8.5		amm	ionium (mg	-N/L)	not done	19 <b></b>
Conductance (uS/cm)	31/	00++++2+0++0+0++++0+0++0+0+0+0+0+0+0+++0++++0++++	residu	al chionne (	(mg/L)	not done	
Dissolved Oxygen (mg/L)	8.9			Colour:		brown	
Temperature (oC)	18.0			Odour:		mild organi	<u>.</u>
Alkalinity (mg-CaCO3/L)	not done					6+++++++++++++++++++++++++++++++++++++	
Hardness (mg-CaCO3/L)	not done					Q10100.5450.0019494999440-00-00197075757575757575757575	
COMMENTS							
OOIAIIAIF14 1 O	bound and an						
CAMPIE HICTORY							
OMMELE MOIURY	***************************************			******	*****	1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -	
Storage Conditions	********						
Storage Conditions: Disposed On:		by		Method:			
Sample HISTORY Storage Conditions: Disposed On:		by		Method:			
SaviPLE HISTORY Storage Conditions: Disposed On: TEST LOG		by		Method:			
SAMPLE HISTORY Storage Conditions: Disposed On: TEST LOG Test Type		by TR(S)	BL(S)	Method:	CD(S)	FM(S)	
SAMPLE HISTORY Storage Conditions: Disposed On: TEST LOG Test Type Number	DA(S) 950876	by TR(S) 950903	BL(S) 950881	Method: AG(S) 950886	CD(S) 950871	FM(S) 950891	
SAMPLE HISTORY Storage Conditions: Disposed On: TEST LOG Test Type Number Started	DA(S) 950876 95/10/03	by TR(S) 950903 95/10/02	BL(S) 950881 95/10/03	Method: AG(S) 950886 95/10/03	CD(S) 950871 95/10/03	FM(S) 950891 95/10/04	
SAMPLE HISTORY Storage Conditions: Disposed On: TEST LOG Test Type Number Started Ended	DA(S) 950876 95/10/03 95/10/05	by TR(S) 950903 95/10/02 95/10/06	BL(S) 950881 95/10/03 95/10/03	Method: AG(S) 950886 95/10/03 95/10/06	CD(S) 950871 95/10/03 95/10/10	FM(S) 950891 95/10/04 95/10/11	
SAMPLE HISTORY Storage Conditions: Disposed On: TEST LOG Test Type Number Started Ended Reported	DA(S) 950876 95/10/03 95/10/05 95/10/11	by TR(S) 950903 95/10/02 95/10/06 95/10/12	BL(S) 950881 95/10/03 95/10/03 95/10/11	Method: AG(S) 950886 95/10/03 95/10/06 95/10/18	CD(S) 950871 95/10/03 95/10/10 95/10/18	FM(S) 950891 95/10/04 95/10/11 95/10/12	
SAMPLE HISTORY Storage Conditions: Disposed On: TEST LOG Test Type Number Started Ended Reported Faxed	DA(S) 950876 95/10/03 95/10/05 95/10/11	by TR(S) 950903 95/10/02 95/10/06 95/10/12	BL(S) 950881 95/10/03 95/10/03 95/10/11	Method: AG(S) 950886 95/10/03 95/10/06 95/10/18	CD(S) 950871 95/10/03 95/10/10 95/10/18	FM(S) 950891 95/10/04 95/10/11 95/10/12	

NOTES: TR, trout; FM, fathead minnows; DA, Daphnia; CD, Ceriodaphnia; AG, Selenastrum; BL, bacterial luminescence; D, definitive test; S, screening test



Client: 95030 Sample: 95404-2 Test: 950876

Test Method: Daphnia 48h Static Acute Test (LC50, five or more treatments plus a control) Reference: Biological Test Method: Reference Method for Determining Acute Lethality of Effluents to Daphnia magna, 1990. Environment Canada, EPS 1/RM/14.

Client Information: Suncor Inc. Oil Sands Group

Ft. McMurra	y
-------------	---

# Sample Information:

Description:	Athabasca	<b>River Wa</b>	iter		
Collected On:	95/09/29	At:	not given	By:	not given
Received On:	95/09/29	At:	2030	By:	S. Goudey
Test Information:					
Started On:	95/10/03	At:	1525	By:	DM
Ended On:	95/10/05	At:	1640	By:	SF
Reported On:	95/10/11			By:	CG

#### **Test Result:**

	% Mortality
Control	0
100%	0



**n**.

TEST D	ATA					Client:	9503	0	Sample:	95404	-2  Test:		95087	'6
		СНЕ	EMISTR	Y					BIOLOG	3Y - NUI	MBER AL	.IVE		
Treatment	pH (u	units)	Cond.(	uS/cm)	DO (I	mg/L)	1		R	EPLICAT	٢E			
(%)					Ì		1	2	3 4	5	6 7	8	9	10
l														
Date:	95/10/0	3	Time:	1525		Initials:	DM		Temp (	oC):	20			
Control	8.4		346		8.1		5	5				•		
100	8.6		307		7.8		5	5						
			-											
								and an and a second						
Data	05/10/0	A	Timo	1550		Initialo	OE		L Tomp (		20	l		
Control	90/10/0	· • •	Linne:	1000		printais		a	i remp (	00).	20			
							5	5 5						
100														
									-					
Date:	95/10/0	5	Time:	1640		[Initials:	SF		Temp (	oC):	20			
Control	8.4		347		7.8		5	5	1			8		
100	8.4		305		7.9		5	5						
			19 martines relation and the second											
****														
			P*0						-					
							ļ							
					• • • • • • • • • • • • • • • • • • •	L	L							
	MMARV	TARI				ina ·	iar C	2	Ihardness	(ma Ca	CO3/L) ·		120	1
TREATA	AFNT	MORT			y00	ler ·	jai C huck	et 3	Adjustmo	nt n	one		100	
(%)	* • from 1 Ti I	100 (1	%)		444	. VI .	JUUN		րույսցան					
Cont	rol		0		COMM	FNTS								
100	)		- 0		no com	ments	*******	*****		******	~~			
									***************************************		1004/1000-004/10000000000000000000000000			
	*****		0000 care existent and existence of the second s					010010-00110111/1111					00000000000000000000000000000000000000	
			**************************************			1999 (marchide familie) (heideling or geschieder)	ennosones <del>na consola</del>	******						
								979000000000000		00000000000000000000000000000000000000				
								and a second			ann faichte Statemann ann an ann ann an Aonachanaine,			
L														

Notes: F, floating; I, immobile; B, stuck on bubbles; D, caught in debris



Client: 95030 Sample: 95404-2 Test: 950903

**Test Method:** Trout 96h Static Acute Test (LC50, five or more treatment levels plus a control) Reference: Biological Test method: Reference Method for Determining Acute Lethality of Effluents to Rainbow Trout, 1990. Environment Canada, EPS 1/RM/13.

Client Information: Suncor Inc. Oil Sands Group Ft. McMurray

# Sample Information:

Description:	Athabasca I	River Wa	ater		
Collected On:	95/09/29	At:	not given	By:	not given
Received On:	95/09/29	At:	2030	By:	S. Goudey
Test Information:					

Started On:	95/10/02	At:	1230	By:	DM/JR
Ended On:	95/10/06	At:	1730	By:	SF/DM
Reported On:	95/10/12			By:	CG

#### **Test Result:**

	% Mortality
Control	0
100%	0



TEST D	ATA					Client:	9503	80	Sample:	95404-2	Test:	950903
		-	-		8							
PREAERA			not requ	Jired	pa		٦					
	(n)		0.5	1	1.5	$\frac{2}{1}$	-					
	<u>g/L)</u>	none			L	<u> </u>	<u> </u>					
	51113			****				uteriorenitikiyood				***************************************
<b>2</b> 2		CHE	MISTR	Υ	-				BIOLOG	<u> 3Y - NUMB</u>	ER ALI	VE
Treatment	pH (ι	units) I	Cond.(	uS/cm)	DO	(mg/L)	4	10	RI	EPLICATE	1 7 1	9   0   10
(%)			l		l	L				1310		0 9 10
Date:	95/10/0	2	Time:	1230		Initials:	DM/	JR	Temp	(oC): 14.0	)	
Control	8.2		381		9.1		10					
100	8.5		317		8.9		10					
					ļ	4	Į					
	ļ					-	ļ					
·····						-						
						-	<b> </b>					
	+					-						
Date:	95/10/0	3	Time:	1520		Initials	JR/S	F	Temp	(oC): 14.1		
Control	8.3		377		6.9		10				anna an	
100	8.3		301		5.9	]	10					
	ļ						-					
	ļ				ļ	-	ļ					
						-	ļ					
						-						
Date:	95/10/0	L)4	Time:	1200	1	Initials	SF/I	B	Temp	(oC): 14.8	}	
Control	8.4		380		9.6		10				and the second se	
100	8.4		302		9.6	]	10					
	L											
	-					4	<b>.</b>	and here a				
						ni l	1					
*****						-						
						~						
Date:	95/10/0	)5	Time:	1705		Initials	; GD/	SF	Tem	ip: 15.6	6	
Control	8.4		371		8.9		10	1				
100	8.3	]	301		9.0	]	10					
		(										
					) 	_						
						4						
				1								
						-		ļ				
1	1	J	1	I	1	1	N.	H				



						Client:	9503	0	Sam	ple:	9540	4-2	Test:	g	5090	3
		CHE	EMISTR	Y					BIO	LOG	Y - NI	JMB	ER AL	IVE		
Freatment	pH (u	units)	Cond.(	uS/cm)	DO (	mg/L)				RE	PLICA	ΥE				
(%)							1	2	3	4	5	6	7	8	9	10
Data	05/40/0	G	Time	1720		Initiala		<b>N A</b>		Tomp	•	146		1		
Date:	95/10/0	0	201	1730	00	muais.				remp	•	14.0				
100	0.4		307		0.0		10									
100	0.4				0.0											
								-								
SUN	MMARY	TABLE			14 14					F			E 			
	IENI	MORI			14-N/L	0.40	lindiv		3 fich u	4 might	<b>5</b>	Ø	1	8	9	10
(%) Contr		(	/0)	0=j	(=96 II		1 27				S (g)	0.80	0.93	0.96	0.20	0.04
100 (			n n	nd	nd	0.00	0.83	0.73	0.70	0.92	0.87	0.89	0.83	0.83	0.59	0.94
100.			<u> </u>	110	<u> </u>	0.72	0.00	0.70	0.70	0.70	0.07	0.07	0.02	0.00	0.00	0.70
		1				avg	indiv	idual	fish fo	ork le	ngths	(cm)				
Contr						4.6	5.0	4.8	4.4	4.8	4.4	4.7	4.6	4.8	3.8	5.0
100.	0					4.3	4.4	4.2	4.3	4.6	4.3	4.0	4.2	4.3	4.0	4.3
								·	L		L		<b>.</b>			
COMMEN	<b>rs</b> : Fis	h addeo	i at:	1215	Ba	ich numl	per:TF	29509	11	No.	days	held:		22		
Time (h)																
24	all fish	appear	normal													
40	oll fich													·····		
48	an risn	appear	normal	·····		· · · · · · · ·										
70	all fich	annear	normal													
12	an non	чррса												•		
96	all fish	appear	normal													



				an a	
	00000	1 Openalas	0° 40 4 0	Tool	000004
( lienr	99130	i Samnie.	Madua-7	I PASI	<u>UNIXX1</u>
	00000	i oumpro.	00-ro-r &	1 1000	

**Test Method:** Bacterial luminescence Test (screening test, one treatment level plus a control) Reference: Biological Test Method: Toxicity Test Using Luminescent Bacteria (*Photobacterium phosphoreum*), 1992. Environment Canada, EPS 1/RM/24.

<b>Client Information:</b>	Suncor Inc. Oil Sands Group Ft. McMurray						
Sample Information:							
Description:	Athabasca I	River Wa	ater				
Collected On:	95/09/29	At:	not given	By:	not given		
Received On:	95/09/29	At:	2030	By:	S. Goudey		
Test Information:							
Started On:	95/10/03	At:	AM	By:	JR		
Ended On:	95/10/03	At:	AM	By:	JR		
Reported On:	95/10/11			By:	CG		

Test Result: 92% expressed as a percentage of the control.





100			10,230	PEANTINERALING	10.000	and been	1000	and the second second
	TE	S	Т	DA	Ĩ	`A		

95030 Client: Sample: 95404-2 Test: 950881

SAMPLE PR	ETREATMENT
pH adjustment	not required
preaeration	not required
turbidity	not centrifuged/filtered
other	none

#### LIGHT READINGS

	Time (min)						
Treatment Level (%)	0	5	15				
control	91	90	92				
100.0	94	85	85				

INHIBITION (%CTLS)								
_ 5 min	15 min							
100	100							
94	92							

## COMMENTS

ł



Client: 95030 Sample: 95404-2 Test: 950886

**Test Method:** 72h Algal Growth Inhibition Test (IC50, five or more treatments plus a control) Reference: Biological Test Method: Growth Inhibition Test Using the Freshwater Alga *Selenastrum capricornutum*, 1992. Environment Canada, EPS 1/RM/25.

Client Information:	Suncor Inc. Ft. McMurra	Oil Sand y	ls Group		
Sample Information:					
Description:	Athabasca F	River Wa	ater		
Collected On:	not given	At:	not given	By:	not given
Received On:	95/09/29	At:	2030	By:	S. Goudey
Test Information:					
Started On:	95/10/03	At:	PM	By:	DL
Ended On:	95/10/06	At:	PM	By:	DM
Reported On:	95/10/18			By:	CG

Test Result: 35% Inhibition compared to control growth significant growth inhibition (student's t-test)



#### TEST DATA

Client: 95030 Sample: 95404-2

Test: 950886

SAMPLE PR	ETREATMENT
pH adjustment	not required
preaeration	not required
turbidity	not centrifuged/filtered
other	none

# TEST DATA

FINAL CELL DENSITIES (cells/mL)			lls/mL)					
Treatment		Replicate			Standard	CV (%)	Percent	Inhibition
(%)	A	В	С	AVG	Deviation		Controls	(%Ctls)
control	2023051	1895051	1831051	1916384	97762	5	100	0
100.000	1425717	1265717	1073717	1255051	176242	14	65	35
						····		
				•				

### COMMENTS

all cell numbers based on optical density readings obtained with a microplate reader
the initial cell density was 9,312 cells/mL.

~ E**



and a set of the set o	Contraction of the second s			construction of the operation of the second s	the second s
	~~~~		0° 40 4 0	·····	000074
1 (1) (1)	1.165(1.21)	somnia.	UN/11/1/2/	I DOT	UB()92/1
I CARCIEL	20000		JJAUATL	1031.	20.31/07/1

Test Method: 7 d Ceriodaphnia Survival and Reproduction Test (5 treatment levels plus a control) Reference: Biological Test Method: Test of Reproduction and Survival Using the Cladoceran *Ceriodaphnia dubia*, 1992. Environment Canada, EPS 1/RM/21.

Client Information:	Suncor Inc Ft. McMurr	. Oil Sand ay	ls Group		
Sample Information:					
Description:	Athabasca	River Wa	ter		
Collected On:	not given	At:	not given	By:	not given
Received On:	95/09/29	At:	2030	By:	S. Goudey
Test Information:					
Started On:	95/10/03	At:	1400	By:	DM
Ended On:	95/10/10	At:	0900	By:	DM
Reported On:	95/10/18			By:	CG
Test Result:					
MORTALITY		% M	ortality		
	Control		0		

100%

REPRODUCTION

69% expressed as a percentage of the control.

0

Notes: LC25 & LC50, concentrations lethal to 25 and 50% of the test population; IC25 & IC50, concentrations inhibiting reproduction by 25 and 50%; NOEC & LOEC, no observed and lowest observed effect concentrations

Т	E	S	T	D	A	T	A	L	

		CHE	MISTR	Y				B	IOLC	GY -	NUM	BER	OF Y	OUN	G	
Treatment pH (units) Cond.(uS/cm) DO (mg/L)										RE	PLICA	ATE			20200000000000000000000000000000000000	
(%)	new	used	new	used	new	used	1	2	3	4	5	6	7	8	9	10

DAY 0	95/10/0	3	Time:	1400	our dis minim pu ment	Initials:	DM		Te	mp (c	ю С) :	25.0				
Control	8.4		374		7.5		0	0	0	0	0	0	0	0	0	0
100	8.4		309		8.0		0	0	0	0	0	0	0	0	0	0
	1															
				_												

DAY 1	95/10/0	4	Time:	1600		Initials:	DL		Te	mp (c	oC):	25.0				
Control	8.4	8.4	371	428	8.4	8.2	0	0	0	0	0	0	0	0	0	0
100	8.4	8.4	313	330	8.3	8.3	0	0	0	0	0	0	0	0	0	0
						J										

DAY 2	95/10/0	5	Time:	1600		Initials:	DL		Te	mp (o):	25.0				
Control	8.3	8.3	372	432	7.8	8.2	0	0	0	0	0	0	0	0	0	0
100	8.3	8.4	386	339	7.4	8.3	0	0	0	0	0	0	0	0	0	0

DAY 3	95/10/0	6	Time:	1000		Initials:	DM		-	Temp	:	25.0				
Control	8.0	8.2	369	417	7.5	8.1	0	0	0	0	0	0	0	0	0	0
100	8.0	8.2	307	330	7.6	7.6	0	0	0	0	0	0	0	0	0	0

FORM 95032	WRITTEN BY: SG	ON 95/05/12	REVISED BY: SG	ON 95/07/29

		CHE	EMISTR'	Y				B	IOLC	GY -	NUM	IBER	OF Y	'OUN	G	
Treatment	pH (units)	Cond.(uS/cm)	DO (mg/L)			-	RE	PLIC	ATE		-	-	
(%)	new	used	new	used	new	used	1	2	3	4	5	6	7	8	9	10
												1				
DAY 4	95/10/0)7	Time:	1105	Initials:	JR			Гетр		25.0					
Control	Y 4 95/10/07 Time: 1105 Ini htrol 8.3 8.3 380 395 7.4 6							5	3	5	4	4	4	6	6	6
100	8.4	5/10/07 Time: 1105 Initi 8.3 8.3 380 395 7.4 6. 8.4 8.3 314 320 7.8 7.						6	5	3	5	6	6	4	3	5
									ļ						<u> </u>	ļ
													Ļ	ļ		
							l						ļ	ļ	ļ	
												L			L	
													L	1	l	

DAY 5	95/10/0	8	Time:	1230		Initials:	JR		-	Гетр	:	25.0				
Control	8.5	8.5	400	402	8.3	7.3	5	10	12	9	12	10	9	11	8	10
100	8.5	8.5	325	327	8.1	7.3	4	5	8	6	8	6	6	6	5	4
							Ĺ	l								

DAY 6	95/10/0	9	Time:	1100		Initials:	JR			Гетр	•	25.0				
Control	8.4	8.4	375	405	6.9	7.7	0	0	0	0	0	0	0	2	0	0
100	8.5	8.5	310	326	6.8	7.2	0	0	0	0	0	0	0	0	0	0
			[
P																

DAY 7	95/10/1	0	Time:	0900	Initials:	DM			Гетр	•	25.0				
Control		8.5		403	7.4	16	18	21	15	16	18	19	18	18	17
100		8.6		323	7.5	10	9	13	13	10	12	10	11	13	12
													[

SUMMARY TA	BLE	Reproc	luction		Daily	Cum	ulativ	ve Yo	ung P	roduc	tion	
Treatment (%)	Mortality (%)	Young/Adult	% controls	0	1	2	3	4	5	6	7	
Control	0	32	100	0	0	0	0	48	144	146	322	
100	0	22	69	0	0	0	0	47	110	110	223	

COMMENTS:				
source of young:	in house	culture media: Bow River Water	food lots: 21/09 & 28/09	
		·····		
			· · · · · · · · · · · · · · · · · · ·	

	once we consider the second		Y	
00000	Complex	05404 2	Tool	00004
Chem Mausu	I Samole	90404-7	I LEST	<u>Manuxua</u>
0110111. 00000	1 00000		1 1000	000001

Test Method: 7 d Fathead Minnow Survival and Growth Test (five treatments plus a control) Reference: Biological Test Method: Test of Larval Growth and Survival Using Fathead Minnow, 1992. Environment Canada, EPS 1/RM/22.

Client Information:	Suncor Inc Ft. McMurr	. Oil Sanc ay	ls Group		
Sample Information:		-			
Description:	Athabasca	River Wa	iter		
Collected On:	not given	At:	not given	By:	not given
Received On:	95/09/29	At:	2030	By:	S. Goudey
Test Information:					
Started On:	95/10/04	At:	1420	By:	SF
Ended On:	95/10/11	At:	1200	By:	DM
Reported On:	95/10/12			By:	CG
Test Result:					
MORTALITY		% M	ortality		

	% Mortality
Control	0
100%	3

GROWTH

91% expressed as a percentage of the control.

TEST	DATA

PREAERATION	not required	FILTRATION	not required	
Comments non	е			

	CHE	MISTR	Y			BIOL	.OGY	- NU	MBE	R ALI	VE
Treatment	pH (units)	Cond.(uS/cm)	DO (r	ng/L)	- Internet of the second	RE	PLICA	TE		
(%)	new used	new	used	new	used	1	2	3	4	5	6

DAY 0	95/10/0)4	Time:	1420		Initials:	SF		Te	mp (c):	25.0	
Control	7.6		376		8.7		10	10	10	10			
100	8.1		305		7.8		10	10	10	10			
	1												
	1										1		
	1									1			
	1		[
	1											1	

DAY 1	95/10/0)5	Time:			Initials:	GD		Те	mp (o):	25.0	
Control	7.8	8.2	379	398	7.8	7.3	10	10	10	10			
100	8.2	8.1	306	329	7.5	6.6	10	10	10	10			
					1								
	1		1										
			1			1							

DAY 2	95/10/0	6	Time:	1500		Initials:	SF		Те	mp (o	C):	25.0	
Control	7.9	7.9	381	386	7.6	5.8	10	10	10	10			
100	8.3	7.9	308	317	7.1	5.4	10	10	10	10		-	
]

DAY 3	95/10/0)7	Time:	1100		Initials:	SF			Temp	:	25.0
Control	8.1	8.2	387	400	8.0	5.7	10	10	10	10		
100	8.3	8.2	308	344	7.4	5.8	10	10	10	10		
						1						
	1		1			1						
	1					[
	1		1			1					1	

	CHEMISTRY						LOG	Y - NI	UMBE	R AL	IVE.		
Treatment	pH (units)	Cond.(uS/cm)	DO (mg/L)				RE	PLICA	\TE			Keekeese soon allowed and a second so on allowed and a second so on allowed a	
(%)	1	2	3	4	5	6	7	8	9	10			

DAY 4	95/10/0	8	Time:	1210	0 Initials: SF				Temp	:	25.0		
Control	8.3	8.1	386	409	7.8	5.1	10	10	10	10			
100	8.3	8.2	314	344	7.1	4.9	10	10	10	10			
							[
			1			1							
			ļ			ĺ							

DAY 5	95/10/0	9	Time:	1155		Initials:	SF			Temp	25.0	
Control	8.0	8.3	396	402	7.9	6.3	10	10	10	10		
100	8.1	8.3	310	382	7.0	6.0	10	10	10	10		
			ĺ									
	T											
		[
	Ι											
										1		
							l					

DAY 6	95/10/1	0	Time:	1132		Initials:	SF			Temp	25.0	
Control	7.4	8.3	436	407	8.0	6.0	10	10	10	10		
100	8.4	8.3	308	352	7.2	6.1	9	10	10	10		

DAY 7	95/10/1	1	Time:	1200		Initials:	DM			Temp	•	25.0	
Control		7.9		435		6.6	10	10	10	10			
100		7.9		329		6.8	9	10	10	10			
	1												
					****		1						
							1		Î			Ì	
							1						

Statement of the second statement	and the second	and the second	and the second	Conversion of the second s	
	05000		0 1 4 0 4 0	Tool	00004
R lient	95030	isample:	95404-2	LI est	950891
	00000	Compro.		11000	000001

SUMMARY TA	BLE	Average Fis	h Weights
Treatment (%)	Mortality (%)	mg/fish	% controls
Control	0	0.32	100
100	3	0.29	91
]
			[
		1	

COMMENTS:	
source of young:	in house

Client: 95030 Sample: 95465-1

			1		00000	Joumpio.	00-00-1
CLIENT INFORMATION			E				
Client:	Suncor Inc.	Oil Sands	Group				
Operation:	Ft. McMum	ay					
Address:	P.O. Box 4	001					
City:	Ft. McMum	ay					
Province/State:	Alberta						
Country:	Canada	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					
Postal/ZIP Code:	T9H 3E3						
Billing Information:	were controled and a processing of the commentance						
Contact:	John Gulle	y/Trina Hoff	arth				
Tel:	403-743-67	'15					
Fax:	403-791-83	39					
SAMPLE INFORMATION							
Sample Type:	Effluent (Ta	ar Island Dy	rke)				
Collected On:	95/10/27		At:	not given	*********	•	
Collected By:	not given	*****					
Shipped On:	95/10/27	******	***************************************				
Shipped By:	not given						
Received On:	95/10/27		At:	2030			
Received By:	S. Goudey						
Container:	not given		****	10-00-00-00-00-00-00-00-00-00-00-00-00-0			
Seals:	none		****				
Initials on Seals:	not applica	ble	****	****	10000000000000000000000000000000000000		
INITIAL CHEMISTRY							
pH (units)	8.3		amm	nonium (mg	-N/L)	not done	
Conductance (uS/cm)	<u>1211</u>		residu	al chlorine	(mg/L)	not done	
Dissolved Oxygen (mg/L)	8.4	****		Colour:		brown	****
Temperature (oC)	<u>18</u>	****		Odour:		organic	
Alkalinity (mg-CaCO3/L)	not done					AMERICALIZATION	
Hardness (mg-CaCO3/L)	150	***				Constantingueses and an and an and an and	
COMMENTS	874444		*****		****	NEW TO	****
		***************************************		*****			
SAMPLE HISTORY							
Storage Conditions:	<u>5°C</u>						
Disposed On:	n/a	by	n/a	Method:	n/a		
7F07100							
IESI LOG		atter prog. / prog. /	P31 / 755 5				
lest lype	DA(D)	IR(D)	BL(D)	AG(D)	CD(D)	FM(D)	
Number	951020	951021	951022	951023	951024	951025	
Started	95/10/31	95/10/30	95/11/01	95/11/03	95/10/31	95/11/06	
Ended	95/11/02	95/11/03	95/11/01	95/11/06	95/11/07	95/11/13	
Reported	95/11/03	95/11/06	95/11/03	95/11/07	95/11/07	95/11/15	
Faxed						L	
	NOTES: TR, I	trout; FM, fathe	ad minnows; E)A, Daphnia; C	D, Ceriodaphn	ia; AG, Selenas	strum;
	BL. bacterial li	uminescence [,] I), definitive tes	t: S. screening	test		

Client: 95030 Sample: 95465-1 Test: 951020

Test Method: Daphnia 48h Static Acute Test (LC50, five or more treatments plus a control) Reference: Biological Test Method: Reference Method for Determining Acute Lethality of Effluents to Daphnia magna, 1990. Environment Canada, EPS 1/RM/14.

Client Information:	Suncor Inc	c. Oil Sand	s Group		
	Ft. McMur	ray			
Sample Information:					
Description:	Effluent (T	ar Island D)yke)		
Collected On:	95/10/27	At:	not given	By:	not given
Received On:	95/10/27	At:	2030	By:	S. Goudey
Test Information:				_	
Started On:	95/10/31	At:	1500	By:	DM
Ended On:	95/11/02	At:	1450	By:	SF
Reported On:	95/11/03			By:	CG
Test Result: LC25 LC50 NOEC LOEC	Value >100 >100 100 >100	Confidenc	e Limits	Units % % % %	Not Toxic

TEST D	ATA					Client:	9503	0	Sam	ple:	954	65-1	Test:		951	020	
		CHE	EMISTR	Y					BIC	LOG	iY - M	IUMB	ER AL	IVE			
Treatment	pН (เ	units)	Cond.(uS/cm)	DO (I	mg/L)	T			RE	PLIC	ATE					
(%)				Í	`	Ŭ,	1	2	3	4	5	6	7	8	9		10
Date:	95/10/3	1	Time:	1500		Initials:	DM	na ana ana ana ana ana ana ana ana ana	Te	mp (d	SC):	20					
Control	8.2		329		7.9		5	5									
6.25	8.3		390		7.8		5	5									
12.5	8.3		443		7.7		5	5									
25	8.3		560		7.8		5	5									
50	8.4		/81		7.9			ວ 									
100	0.4		1219		7.9			<u>э</u>	1								
							L										
Date:	95/11/0	1	Time:	1325		Initials:	SF		Te	mp (o	DC):	20					
Control							5	5	İ		*****						
6.25							5	5									
12.5							5	5									
25							5	5									
50							5	5									
100							5	5									
							ļ										
Data	05/11/0	2	Timo	1450		Unitiolog				<u>mn (</u>			1				
Control	95/11/0	2	260	1430	02	miliais.		E	10	mp (t	<u>, jc</u>	20					
6 25	0.4 8.4		<u> </u>		81		5	5 5									
12.5	84		481		83		5	5									
25	85		612		83		5	5									
50	8.7		838		8.3		5	5									
100	8.8		1299		8.2	1	4	5									
									in the second second second second second second second second second second second second second second second								
		7 TOTO 10 1000 N -		8									7 . 44				
					you	ing :	jar D	4	hard	ness	(mg-	CaCO	3/L) :	****	19	90	
					l wa	ter :	buck	et 4	Adju	stmer	าเ:	none	;				
(%)) rol	<u>(`</u>	70) A		008484	ENTO-									ienen automone	asadaaadaa	1
	5		0			ENIS:							Célevini, a National and a second second	1949/1942/1942/1949-1949			
126	5		0			ments	*****	*****		040020042404404944020000							
25	<u>,</u>		0										*****				
50			<u> </u>					****		078290\$WIRD7860WIII099						40000000000	
100)	-	10			*****							****				
	nyan additirin deryteinin anner sin						****					0467242/4477779242424/449949999					
						******	*****							******			
				~													l

Notes: F, floating; I, immobile; B, stuck on bubbles; D, caught in debris

Client: 95030 Sample: 95465-1 Test: 951021

Test Method: Trout 96h Static Acute Test (LC50, five or more treatment levels plus a control) Reference: Biological Test method: Reference Method for Determining Acute Lethality of Effluents to Rainbow Trout, 1990. Environment Canada, EPS 1/RM/13.

Client Information:	Suncor Inc Ft. McMun	: Oil Sand ray	s Group		
Sample Information:					
Description:	Effluent (T	ar Island E	Dyke)		
Collected On:	95/10/27	At:	not given	By:	not given
Received On:	95/10/27	At:	2030	By:	S. Goudey
Test Information:					
Started On:	95/10/30	At:	1200	By:	JR/SF
Ended On:	95/11/03	At:	1200	By:	SF
Reported On:	95/11/06			By:	CG
Test Result: LC25	Value	Confidenc	ce Limits	Units %	Method Calculated
LC50	62	25	100	%	Binomial
NOEC				%	
LOEC				%	

0

TEST D	ATA					Client:	9503	0	Sample:	95465-1	Test:	951021
	TION		20 min.	those 1	1							
time	(h)	0			15	2	٦					
DO (m	(II) a/L)	0	0.0		1.5	<u> </u>	1					
comme	ents	none	L			1	.L	******			***************************************	******
									*****	294694444444444444444444444444444444444	*****	
r		CHE	EMISTR	Y	97.112.117.117.117.117.117.117.117.117.11				BIOLOG	SY - NUMB	ER AL	IVE
Treatment	pH (u	units)	Cond.(uS/cm)	DO	(mg/L)	1	1 2	RE		1 7 1	0 0 10
(%)	l		I			1				1310		0 9 10
Date:	95/10/3	0	Time:	1200		Initials:	JR/S	F	Temp (oC): 14.0)	
Control	8.0		376		9.6		10					
6.25	8.1		440		9.9		10					
12.5	8.1		496		9.8	4	10					
25	8.2		612		9.8	4	10					
50	8.4		875		9.8	-	10					
100	8.5		1306		9.7	4	10					
						-	Į					
Date:	95/10/3	1	Time:	1030	L	Initials:	JR/D	M	Temp (oC): 14.0		
Control	8.1		382		8.3		10					
6.25	8.1		445		8.0	1	10					
12.5	8.6		495		9.1		10					
25	8.6		607		9.1]	10					
50	8.6		852		8.7	_	10					
100	8.7		1265		9.1		0					
						4						
Date:	l 95/11/0	1	Time [.]	1355		 Initials ⁻		l SF	Temp (O(C): 14 (2	
Control	81		392		88	Thirds.			[romp (00). 14.0	<u> </u>	
6.25	8.0		458		7.9	1	10					
12.5	8.5		505		10.0	-	10					
25	8.6		622		10.0		10					
50	8.7		880	ļ	9.6]	10					
100	8.8		1301		9.5		0					
	<u> </u>					4						
Date	95/11/0	12	 Time:	1030		Initiale		L SF	l Tom	n· 111	3 1	
Control	83	·	393		80					p. 19.(<u> </u>	
6 25	8 1		462		82	-	10					
12.5	8.5	1	515	1	9.1	-	10					
25	8.7		634		9.2	1	10					
50	8.7	1	891	1	9.1	1	9					
100]]		~~~~	0					
				ļ				(pressure of				
					L							

						Client:	9503	80	Sam	ple:	9546	i5-1	Test	:	35102	21
		CHE	EMISTR	Y					BIO	LOG	Y - N	JMBI	ER AI	IVE		
Treatment	pH (units)	Cond.(uS/cm)	DO (mg/L)	l	-		RE	PLIC	ATE				
(%)		ļ					1	2	3	4	5	6	7	8	9	10
														1		
Date:	95/11/0)3	Time:	1200		Initials:		l		l emp	-	14.7				
Control	8.4		395		8.8	-	10									
6.25	8.2	ļ	462		7.0	-	10									
12.5	8.6		542		9.0		10									
25	8.7	4	629		8.9	-	10									
50	8.7	4	882		8.7	4	8									
100	8.7		1230		8.7	ļ	0									
							L									
		J	L			J										
<u></u>		TADIE		1			<u> </u>		National Statement				C	*********		ana kati da kata da sa
TREATA				ma Ni		1	1	12	2	^	\ 5			l s	1 0	1 10
(%)		/0	%)	t=0	t=06 h	av.a	indiv	idual	fish v		<u>s (n)</u>		<u> </u>			10
Cont	rol		<u>,,,,</u>	nd	<u>1-9011</u>	0.69	1 00	0 14	0 58	0.67	0 36	0 55	0.86	0 72	0.87	10 70
63			0	nd	nd	0.00	0.60	0.44	0.00	0.07	0.00	0.00	0.00	0.72	0.07	1 15
12	 5		0	nd	nd	0.02	0.00	1 22	0.00	0.40	0.00	1 17	0.02	0.54	0.40	0.33
25.0			0	nd	nd	0.75	0.07	0.62	0.40	0.07	0.00	0.59	1 02	0.01	0.00	0.55
50.0	<u>ן</u> ר		20	nd	nd	0.56	0.41	0.54	0.00	1 04	0.49	0.53	0.70	0.00	0.70	0.07
100	<u></u>	1		nd	nd	0.00	0.50	0.37	0.00	0.30	0.40	0.00	0.50	0.01	0.54	0.41
100.	<u> </u>					0.40	0.00	0.01	0.00	0.00	0.41	0.47	0.00	0.41	10.04	
		<u> </u>				1		<u> </u>								
L		1,,			1	avo	indiv	idual	fish fo	ork le	naths	(cm)	I	L	I	I
Cont	rol	1				4.2	4.9	3.6	4.3	3.9	3.4	4.0	4.7	4.3	4.4	4.2
6.3						4.1	4.2	3.8	3.6	3.7	4.2	4.2	4.1	4.4	3.8	5.1
12.5	5					4.3	4.8	4.8	3.8	4.2	4.7	4.8	4.1	4.2	4.3	3.5
25.0	<u>)</u>					4.3	4.3	4.2	4.5	3.6	4.4	4.2	4.8	4.3	4.4	4.0
50.0	2	1				4.1	3.6	4.1	3.5	4.8	4.1	4.1	4.3	4.2	4.1	3.8
100.	0	1				4.0	4.0	3.8	4.1	3.6	3.9	4.1	4.2	3.6	3.8	4.5
		1						1						1		
		1														1
		-									A	******				
COMMEN	TS: Fis	h addeo	at:	1130	Ba	tch num	ber:TF	29509	919	No.	days	held:		41		
Time (h)																
24	all dead in 100%, fish dark in 50%, one in 50% flushing, remaining fish appear normal															
48	48 50% fish very dark, 3 are swimming upside down. Fish in other concentrations appear normal															
72	one de	ad, 7 sv	imming	on side	in 50%	. All ren	nainin	g fish	appe	ar no	rmal.					
96	96 in 50% fish swimming on sides. All other fish appear normal															

Client: 95030 Sample: 95465-1 Test: 951022

Test Method: Bacterial luminescence Test (IC50, four or more treatment levels plus a control) Reference: Biological Test Method: Toxicity Test Using Luminescent Bacteria (*Photobacterium phosphoreum*), 1992. Environment Canada, EPS 1/RM/24.

Client Information:	Suncor Inc Ft. McMun	. Oil Sands ray	Group		
Sample Information:		•			
Description:	Effluent (T	ar Island Dy	'ke)		
Collected On:	95/10/27	At:	not given	By:	not given
Received On:	95/10/27	At:	2030	By:	S. Goudey
Test Information:					
Started On:	95/11/01	At:	AM	By:	DL
Ended On:	95/11/01	At:	AM	By:	DL
Reported On:	95/11/03			By:	CG
Test Result:	Value	Confidence	Limits	Units	Method Calculated
IC20 @ 5 min				%	
IC50 @ 5 min				%	
IC20 @ 15 min	28	18	42	%	regresssion analysis
IC50 @ 15 min	65	41	105	%	regresssion analysis

Notes: IC20 & IC50, concentrations that inhibit light output relative to controls by 20 and 50%

the work of a lot of the target states of the	4 No. 100 TELEVISION OF THE PARTY OF THE PAR		10000000
TES	T DA	TA	

Client: 95030 | Sample: 95465-1 | Test: 951022

SAMPLE PR	RETREATMENT
pH adjustment	not required
preaeration	not required
turbidity	not centrifuged/filtered
other	none

LIGHT READINGS

		Time (min)					
Treatment Level (%)	0	5	15				
control	90	96	97				
17.96	91	93	88				
26.94	82	77	71				
40.40	73	67	61				
60.61	64	56	50				
90.91	65	51	46				

INHIBITION (%CTLS)					
5 min	15 min				
100	100				
97	91				
80	73				
70	63				
58	52				
53	47				

COMMENTS

ſ

		and a second second second second second second second second second second second second second second second		Martin Contraction of
Client: 95030	Sample:	95465-1	Test:	951023

Test Method: 72h Algal Growth Inhibition Test (IC50, five or more treatments plus a control) Reference: Biological Test Method: Growth Inhibition Test Using the Freshwater Alga *Selenastrum capricornutum*, 1992. Environment Canada, EPS 1/RM/25.

Client Information:	Suncor Inc Ft. McMur	c. Oil Sand rav	ls Group		
Sample Information:					
Description:	Effluent (T	ar Island [Dyke)		
Collected On:	95/10/27	At:	not given	By:	not given
Received On:	95/10/27	At:	2030	By:	S. Goudey
Test Information:					
Started On:	95/11/03	At:	1600	By:	JR
Ended On:	95/11/06	At:	1100	By:	DM
Reported On:	95/11/07			By:	CG
Test Result:	Value	Confiden	ce Limits	Units	Method Calculated
IC25	32	27	36	%	Bootstrap
IC50	46	43	49	%	Bootstrap
NOEC	25			%	Dunnett's Test (square root trans.)
LOEC	50			%	Dunnett's Test (square root trans.)

TEST DATA		Client:	95030	Sample:	95465-1	Test:	951023
SAMPLE PR	ETREATMENT						
pH adjustment	not required						······
preaeration	not required						
turbidity	not centrifuged/filtered	t					
other	none						

TEST DATA

FINAL	CELL DEN	ISITIES (ce	lls/mL)				_	
Treatment		Replicate		Average	Standard	CV (%)	Percent	Inhibition
(%)	А	В	С	AVG	Deviation		Controls	(%Ctis)
control	1319051	1308384	1649717	1425717	194063	14	100	0
1.563	1585717	1479051	1905717	1656828	222044	13	116	-16
3.125	1404384	1628384	2140384	1724384	377274	22	121	-21
6.250	1521717	1617717	1895051	1678162	193867	12	118	-18
12.50	1681717	1436384	1799051	1639051	185060	11	115	-15
25.00	1297717	1361717	1607051	1422162	163285	11	100	0
50.00	679051	668384	775051	707495	58747	8	50	50
100.00	689717	657717	540384	629273	78625	12	44	56

COMMENTS

- final pH was 8 in the highest treatment level (control pH was 7)

- all cell numbers based on optical density readings obtained with a microplate reader

- the initial cell density was 11,267 cells/mL.

12	CONTRACTOR CONTRACTOR OF CONTRACTOR		Construction and the construction of the const			and the second se
time t	Client [.]	92030	Sample	95465-1	Test	951024
	Onome.	00000	oumpic.	00-100-1	1 1000.	301024

Test Method: 7 d Ceriodaphnia Survival and Reproduction Test (5 treatment levels plus a control) Reference: Biological Test Method: Test of Reproduction and Survival Using the Cladoceran *Ceriodaphnia dubia*, 1992. Environment Canada, EPS 1/RM/21.

Client	Informa	ation:	Suncor Inc Ft. McMun	c. Oil Sand ray	s Group		
Sample	Informa	ation:					
	Descri	ption:	Effluent (T	ar Island [Dyke)		
	Collecte	d On:	95/10/27	At:	not given	By:	not given
	Receive	d On:	95/10/27	At:	2030	By:	S. Goudey
Test	Informa	ation:					
	Starte	d On:	95/10/31	At:	1330	By:	DM
	Ende	d On:	95/11/07	At:	0815	By:	DM
	Reporte	d On:	95/11/07			By:	CG
	Test R	esult:	Value	Confiden	ce Limits	Units	Method Calculated
MORTAL	.ITY	LC25	63			%	Fisher's exact
		LC50	75			%	Fisher's exact
	ľ	VOEC	50			%	ICPIN
		LOEC	100			%	ICPIN
REPROD	UCTION						
		IC25	14	12	15	%	Steel's many-one
		IC50	18	17	19	%	Steel's many-one
	f	VOEC	12.5			%	ICPIN
		LOEC	25			%	ICPIN

Graph of Mortality and Reproduction at Seven Days Versus Treatment Level

Notes: LC25 & LC50, concentrations lethal to 25 and 50% of the test population; IC25 & IC50, concentrations inhibiting reproduction by 25 and 50%; NOEC & LOEC, no observed and lowest observed effect concentrations

TEST DATA

Sample: 95465-1

Test:

951024

									-							
PREA	ERATIC	DN	not requ	uired			F	ILTR	ATIO	N	not r	equire	ed			
Comme	ents	none	••••••••••••••••••••••••••••••••••••••						-					·····		
								_							~	
		CHE	MISTR	Y				b)GY -	NUM	IBFK	OF Y	OUN	G	*****
Treatment	pΗ (ι	units)	Cond.(uS/cm)	DO (mg/L)				RE	PLIC	ATE				
(%)	new	used	new	used	new	used	1	2	3	4	5	6	7	8	9	10
								160.830.0 000000000000 000								
DAY 0	95/10/3	1	Time:	1330		Initials:	DM		le	mp (c): 	25.0				n and a start of the start of the start of the start of the start of the start of the start of the start of the
Control	8.4		354		7.5		0	0	0	0	0	0	0	0	0	0
6.25	8.4		_408		7.6		0	0	0	0	0	0	0	0	0	0
12.5	8.4		465		7.5		0	0	0	0	0	0	0	0	0	0
25	8.4		568		7.6		0	0	0	0	0	0	0	0	0	0
50	8.4	.,	784		7.8		0	0	0	0	0	0	0	0	0	0
100	8.4		1200		8.2		0	0	0	0	0	0	0	0	0	0
	05/11/0	4	Timoi	4446		Initialat	DM		Ta	<u>mn (c</u>		25.0		I		
DAYI	95/11/0		Time:	1145	7.0	muais:			16	mp (c	<u>, , , , , , , , , , , , , , , , , , , </u>	25.0				
Control	8.5	8.4	3/2	387	7.6	7.9	0	0	0	0			0	0	0	0
6.25	8.5	8.5	428	440	7.6	7.8	0	0	0	0		0	0	0	0	0
12.5	8.5	8.6	486	502	7.4	7.6	0	0	0	0		0	0	0	0	0
25	8.6	8.7	602	606	/.4	7.5	0	0	0	0		0	0	0	0	0
50	8.7	8.9	849	841	7.6	7.6	0	0	0	0			0	0	0	0
100	8.7	8.9	1280	12/9	1.4	1.5		0	0	0	<u> </u>	0		0		0
						l										
DAY 2	95/11/0	2	Time [.]	1330		Initials	DM		Te	mp (c	C):	25.0		l		
Control	8.3	8.4	375	390	77	7.8	0	0	0	0	0	0	0	0	0	0
6.25	8.4	8.5	434	444	7.7	7.8	Ō	Ō	Ō	Ō	ō	ō	Ō	0	Õ	0
12.5	8.5	8.5	495	507	7.8	7.8	0	0	0	0	Ō	ō	0	0	0	0
25	8.5	8.7	613	624	7.6	7.9	Ō	0	0	Ō	Ō	0	0	0	0	0
50	8.6	8.8	850	866	7.5	7.9	Ō	Ō	0	Ō	Ō	Ō	Ō	0	0	0
100	· · ·	8.9		1271		7.7					<u> </u>	<u> </u>	_			
					L											
												1				

Client: 95030

DAY 3	95/11/0	3	Time:	1100		Initials:	DM			Гетр	:	25.0				
Control	8.3	8.5	371	396	7.7	7.9	0	0	0	0	0	0	0	0	0	0
6.25	8.5	8.6	434	448	7.9	7.9	0	0	0	0	0	0	0	0	5	0
12.5	8.6	8.6	492	509	7.8	7.8	0	0	0	0	0	0	0	0	0	0
25	8.7	8.7	613	625	7.8	7.6	0	0	0	0	0	0	0	0	0	0
50	8.7	8.9	845	867	7.8	7.6	0	0	0	0	0	0	0	0	0	0
100																

4.

Client: 95030 Sample: 95465-1 Test: 951024

	CHEMISTRY						BIOLOGY - NUMBER OF YOUNG									
Treatment	pH (u	inits)	Cond.(uS/cm)	DO (mg/L)				REI	PLIC/	ΛTE				
(%)	new	used	new	used	new	used	1	2	3	4	5	6	7	8	9	10
P																
DAY 4	95/11/0	4	Time:	0930		Initials:	DM		-	Гетр	•	25.0				
Control	8.5	8.5	389	391	7.8	7.5	6	6	6	6	6	6	6	6	6	6
6.25	8.6	8.6	442	446	7.7	7.3	6	7	5	4	6	5	5	5	0	0
12.5	8.6	8.7	498	509	7.6	7.4	4	4	3	3	4	5	4	5	5	5
25	8.6	8.8	616	628	7.6	8.5	1	0	0	2	0	1	3	0	0	0
50	8.7	9.0	850	864	7.4	7.3	0	0	0	0	0	0	0	0	0	0
100																
DAY 5	95/11/0	5	Time:	0945		Initials:	DM			Гетр	•	25.0				
Control	8.5	8.5	374	398	7.8	7.8	0	0	0	1	1	0	0	11	9	12
6.25	8.5	8.6	433	444	7.9	7.9	0	12	9	12	10	0	11	11	12	10
12.5	8.6	8.7	493	512	7.8	7.9	0	6	8	6	4	0	1	8	10	9
25	8.7	8.8	614	626	7.9	7.9	0	0	0	7	0	0	2	0	2	0
50	8.7	8.9	853	860	7.7	7.8	0	0	0	0	0	0	0	0	0	0
100																
						-										

DAY 6	95/11/0	6	Time:	1030		Initials:	DM		-	Гетр	:	25.0				
Control	8.4	8.5	384	401	7.8	7.8	11	12	12	12	10	7	9	1	1	0
6.25	8.5	8.6	444	448	7.7	7.7	12	0	1	0	0	13	0	0	1	0
12.5	8.6	8.7	501	517	7.6	7.6	8	0	0	1	0	9	6	0	0	2
25	8.7	8.8	626	630	7.6	7.8	4	0	0	1	0	0	0	0	0	0
50	8.8	8.9	863	837	7.5	7.7	0	0	0	0	0	0	0	0	0	0
100							1									
	I														·	

DAY 7	95/11/0	7	Time:	0815	Initials:	DM			Гетр		25.0				
Control		8.5		413	7.6	10	15	0	0	12	10	15	12	14	13
6.25		8.6		458	7.4	0	19	6	13	15	16	10	16	9	11
12.5		8.7		524	7.4	10	13	9	11	10	12	6	9	10	11
25		8.8		638	7.5	0	0	0	2	2	1	1	0	2	0
50		8.9		864	7.4	0	0	0	0	0	0	0	0	0	0
100															

			60	Sam	ple:	9546	5-1	Test:	Ę	5102	4	

SUMMARY TA	BLE	Reprod	uction		Daily	Curr	nulativ	e Yo	ung P	roduc	ction	
Treatment (%)	Mortality (%)	Young/Adult	% controls	0	1	2	3	4	5	6	7	
Control	0	27	100	0	0	0	0	60	94	169	270	
6.25	0	28	104	0	0	0	5	48	135	162	277	
12.5	0	22	81	0	0	0	0	42	94	120	221	
25	0	3	11	0	0	0	0	7	18	23	31	
50	0	0	0	0	0	0	0	0	0	0	0	
100	100	0	0	0	0	0	0	0	0	0	0	

COMMENTS:				
source of young:	in house	culture media: Bow River water	food lots: 10/27	

Construction of the second second second second second second second second second second second second second		An an an an an an an an an an an an an an			
Ol: a make	05000	Complex	OFACE A	Took	OF A DOF
i Chenr	900.00	annoie	80400-1	I IESI	ອງມູບທາ
	00000	good and a second secon	001001	1000	

Test Method: 7 d Fathead Minnow Survival and Growth Test (five treatments plus a control) Reference: Biological Test Method: Test of Larval Growth and Survival Using Fathead Minnow, 1992. Environment Canada, EPS 1/RM/22.

Client Info	ormation:	Suncor Inc Ft. McMur	c. Oil Sanc ray	ls Group		
Sample Info	ormation:					
De	escription:	Effluent (T	ar Island l	Dyke)		
Coll	ected On:	95/10/27	At:	not given	By:	not given
Rec	eived On:	95/10/27	At:	2030	By:	S. Goudey
Test Info	ormation:					
St	larted On:	95/11/06	At:	1500	By:	DM/SF
E	Ended On:	95/11/13	At:	1330	By:	SF
Rep	orted On:	95/11/15			By:	CG
Те	st Result:	Value	Confiden	ce Limits	Units	Method Calculated
MORTALITY	LC25	52	6	60	%	ICPIN
	LC50	69	61	75	%	ICPIN
	NOEC	50			%	Fisher's Exact
	LOEC	100			%	Fisher's Exact
GROWTH						
	IC25	41	32	56	%	ICPIN
	IC50	67	59	80	%	ICPIN
	NOEC	25			%	Dunnett's
	LOEC	50			%	Dunnett's

Graph of Mortality and Growth at Seven Days Versus Treatment Level

Notes: LC25 & LC50, concentrations lethal to 25 and 50% of the test population; NOEC & LOEC, no observed and lowest observed effect concentrations

TEST D	DATA					Client:	9503	0	San	nple:	9546	5-1	Test:	951025
		-					r							
PREA	AERATIO	ON	not requ	uired			F	ILTR	ATIO	N	not r	equire	<u>d</u>	
Comm	ents	none			·····			******						
-		СНЕ	MISTR	Y		BIOLOGY - NUMBER ALIVE						l		
Treatment	pH (u	units)	Cond.(uS/cm)	DO (I	mg/L)		RE	PLICA	ATE				
(%)	new	used	new	used	new	used	1	2	3	4	5	6		
DAY 0	95/11/0	6	Time:	1500		Initials:	DM/S	SF	Те	mp (c	DC):	25.0		
Control	8.2		346		8.1		10	10	10	10			n franken fan ste kerne skrive	
6.25	8.3		405		8.0		10	10	10	10				
12.5	8.3		460		7.8		10	10	10	10				
25	8.3		580		7.1		10	10	10	10				
50	8.3		820		6.0		10	10	10	10				
100	8.3		1287		5.5		10	10	10	10				
											<u> </u>			
	l									[
DAY 1	95/11/0	7	Time:	1450		Initials:	SF		Te	mp (c	C):	25.0		
Control	8.0	8.2	394	384	8.1	5.3	10	10	10	10	T Ó			
6.25	8.1	8.3	461	418	7.2	5.3	10	10	10	10	<u> </u>			
12.5	8.2	8.3	523	467	6.9	5.3	10	10	10	10	1			
25	8.2	8.4	640	597	6.3	5.2	10	10	10	10				
50	8.3	8.5	848	823	5.0	5.2	9	10	10	10				
100	8.3	8.5	1294	1257	2.0	5.4	6	9	8	6				
DAY 2	95/11/0	8	Time:	1450		Initials:	SF		Te	mp (c): T	25.0		
Control	8.1	8.4	401	398	8.0	6.7	10	10	10	10	<u> </u>			
6.25	8.3	8.5	456	458	7.7	6.7	10	10	10	10	ļ			
12.5	8.3	8.5	515	513	7.6	6.5	10	10	10	9	ļ			
25	8.4	8.6	634	647	7.4	6.2	9	10	10	10				
100	0.5	8.1	845	1216	7.0	5.8	9	10	10	9				
100	0.1	0.0	1305	1310	0.0	5.7	4	5	0	3				
						<u> </u>								
	L	1	1				t	1		I		J		
DAY 3	95/11/0	9	Time:	1500		Initials:	GD			Temp):	25.0		
Control	8.3	8.4	399	401	8.2	7.3	7	10	10	10				
6.25	8.5	8.5	453	461	8.0	7.1	7	9	9	9				
12.5	8.5	8.6	514	515	8.0	7.2	8	9	9	9	<u> </u>			
25	8.5	8.7	636	633	7.6	7.3	8	10	9	9	ļ	ļ		
50	8.6	8.7	852	829	6.9	7.1	9	9	9	7	<u> </u>			
100	8.6	8.8	1303	1266	5.7	6.6	3	2	4	3	<u> </u>			
	ļ					L	 	ļ			<u> </u>	ļ		

1

8						
A NUMBER OF COLUMN	Client:	95030	Sample:	95465-1	Test:	951025
н					1.000	

			BIC	LOG	Y - NI	UMBE	ER AL	IVE.					
Treatment pH (units) Cond.(uS/cm) DO (mg/L)					REPLICATE								
(%)	new used	new used	new used	1	2	3	4	5	6	7	8	9	10

DAY 4	95/11/1	0	Time:	1525		Initials:	SF			Temp):	25.0	
Control	8.0	8.2	401	424	8.0	6.0	7	10	9	10			
6.25	8.2	8.4	419	473	7.8	6.1	7	8	8	7			
12.5	8.2	8.3	476	538	7.8	5.5	7	8	8	9			
25	8.3	8.4	587	656	7.6	5.3	6	7	5	8			
50	8.4	8.6	772	864	7.0	5.4	8	8	10	7			
100	8.6	8.7	1343	1314	5.2	5.0	1	1	0	1	1		
							[Γ					
		1					1					1	

DAY 5	95/11/1	1	Time:	1130		Initials:	GD			Temp	:	20.3	nonicooo
Control	8.2	8.4	394	405	8.2	6.7	7	8	9	10			0.0000000000
6.25	8.3	8.5	451	442	7.7	6.6	7	9	8	6			
12.5	8.4	8.5	508	495	7.7	6.4	7	7	8	9			
25	8.4	8.5	617	604	7.4	6.3	6	6	4	8			
50	8.5	8.6	858	772	6.6	6.0	8	7	10	7			
100	8.6	8.7	1310	1283	5.1	4.9	1	0		0			
	1												
	1					1	1						

DAY 6	95/11/1	2	Time:	1100		Initials:	SF			Temp	:	25.0	
Control	7.9	8.3	401	412	7.9	6.7	7	7	9	10			
6.25	8.0	8.3	459	462	7.6	6.5	7	9	7	6			
12.5	8.1	8.3	516	514	7.5	6.3	6	7	7	8			
25	8.1	8.4	640	626	7.3	6.2	5	6	4	8			
50	8.2	8.4	878	855	6.6	5.9	7	7	10	7			
100	8.4	8.6	1319	1318	4.9	5.8	1	0	0	0			
			[[1	
	1			and and an an an an an an an an an an an an an									

DAY 7	95/11/13	Time:	1330	Initials:	SF			Temp):	16.0	
Control	8.1		406	6.7	7	6	9	10			
6.25	8.2		469	6.6	7	8	7	6			
12.5	8.2		522	6.4	6	4	6	8			
25	8.3		646	6.5	3	6	4	8			
50	8.5		877	6.4	7	7	9	7			
100	8.6		1332	5.3	1	0	0	0			
								T	[
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					1	1		

SUMMARY TA	BLE	Average Fish Weights					
Treatment (%)	Mortality (%)	mg/fish	% controls				
Control	20	0.28	100				
6.25	30	0.25	89				
12.5	40	0.26	93				
25	48	0.23	82				
50	25	0.19	68				
100	98	0.14	50				

COMMENTS:	
source of young: in house	

Client: 95030 Sample: 95465-2

CLIENT INFORMATION			6				
Client:	Suncor Inc.	Oil Sands	Group				
Operation:	Ft. McMurra	ау				********	Philippinia and a second second second second second second second second second second second second second se
Address:	P.O. Box 4	001	9999999 CANTER CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACT	*****			
City:	Ft. McMurra	ay	<u></u>	**************************************			
Province/State:	Alberta						
Country:	Canada						
Postal/ZIP Code	T9H 3E3	************					
Billing Information:							
Contact:	John Gulley	/Tring Hoff	arth	***************************************			
Tel:	403 743 67	715	arti				
	403-743-07	20					
Fax.	403-791-03	09					
SAMPLE INFORMATION							
Same Type:	Athahasaa	Divor Mato	r				
Collected Op:	Allabasca	river vvale	۸ ۵۰	not given	****		
	90/10/27	and a subscription of the	AL	notgiven			
Collected By:		******					
Shipped On.	95/10/27						
Shipped By:	not given		A.L.	0000			······
Received On:	95/10/27		AC .	2030			
Received By:	S. Goudey						
Container:	not given				1975 W 1997 BARRING GU QU DU		
Seals:	none						
Initials on Seals:	not applica	ble					*****
181174 & 1 ALTESIATS/							
INITIAL CHEMISTRY				. ,			
pH (units)	8.2	******	amm	ionium (mg	-N/L)	not done	
Conductance (uS/cm)	247	***	residu	al chlonne ((mg/L)	not done	
Dissolved Oxygen (mg/L)	9.0	******		Colour:		pale yellow	-
Temperature (oC)	18			Odour:		odourless	
Alkalinity (mg-CaCO3/L)	not done						****
Hardness (mg-CaCO3/L)	150						
COMMENTS						990/100/001/101/101/101/101/101/101/101/	177793536001000000000000000000000000000000000
SAMPLE HISTORY	_						
Storage Conditions:	<u>5°C</u>						Galandarian ya maaraa ya ahaa ya ahaa
Disposed On:	n/a	by	n/a	Method:	n/a		
TEST LOG		10111111110111111111111111111111111111			,		
Test Type	DA(S)	TR(S)	BL(S)	AG(S)	CD(S)	FM(S)	
Number	951026	951027	951028	951029	951030	951031	
Started	95/10/31	95/11/03	95/11/01	95/11/03	95/10/31	95/11/06	
Ended	95/11/02	95/11/07	95/11/01	95/11/06	95/11/07	95/11/13	
Reported	95/11/07	95/11/07	95/11/02	95/11/17	95/11/09	95/11/15	
Faxed							
					Company of the second	And a second second second second second second second second second second second second second second second	

BL, bacterial luminescence; D, definitive test; S, screening test; n/a, not applicable

Client: 95030 Sample: 95465-2 Test: 951026

Test Method: Daphnia 48h Static Acute Test (LC50, five or more treatments plus a control) Reference: Biological Test Method: Reference Method for Determining Acute Lethality of Effluents to Daphnia magna, 1990. Environment Canada, EPS 1/RM/14.

Client Information: Suncor Inc. Oil Sands Group

Ft. McM	urray
---------	-------

Sample Information:

Description:	Athabasca	River Wa	ter		
Collected On:	95/10/27	At:	not given	By:	not given
Received On:	95/10/27	At:	2030	By:	S. Goudey
Test Information:					
Started On:	95/10/31	At:	1500	By:	DM
Ended On:	95/11/02	At:	1450	By:	SF
Reported On:	95/11/07			By:	CG

Test Result:

	% Mortality
Control	0
100%	0

FORM 95032 WRITTEN BY: SG ON 95/05/12 REVISED BY: SG ON 95/07/29

TEST D	ATA					Client:	9503	0	Sam	ple:	954	65-2	Test		9	5102	26
		СНЕ	MISTR	Y					BIC	LOG	6Y - N	NUMB	ER A	LIV	/E		
Treatment	рН (ц	inits)	Cond.(uS/cm)	DO (mg/L)	1			RE	PLIC	ATE		-			
(%)							1	2	3	4	5	6	7		8	9	10
														ang			
Date:	95/10/3	1	Time:	1500		Initials:	DM		l le	mp (o	C):	20					
Control	8.2		329		7.9		5	5									
100	8.2		254		9.0		_ ງ	5									
							[
									L	****							
Date:	95/11/0	1	Time:	1325		Initials:	SF		Te Te	mp (d	oC):	20					
Control							5	5									
100																	
·····																	
									1								
														5552			
Date:	95/11/0	2	Time:	1450		Initials:	SF		Te	mp (d	oC):	20					
Control	8.4		369		8.3		5	5									
	0.3		283		8.4		2	<u> </u>									

					******	1											
									direction of								
	with the second s						L										
		TADI				ina :	ior D	A	Ibord	0000	(ma	$\sim \sim \sim \sim$	2/1 \ .			200	
TREATA	MENT 1				you wa	ing . ter :	jai D buck	et A	Adiu	stme	ting	non	<u></u>	-		∠UU	
(%)	1 Dawn 1 '0 8	(0	%)		1 140		DUON	~. ~	<u>, aja</u>	Sanoi				19173607803			
Contr	rol		<u>,</u>		COMM	ENTS:										in de la la la la la la la la la la la la la	
100)		0		no com	ments		100000000000000000000000000000000000000		99999999999999999999999999999999999999		*********				4-1-1-1-1-1-1	
			999			****		*****	*****		*****						
							(14)001111111111111111111111111111111111										
						77 MAR DI BUDONO DI MARONI MARONI MARONI	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	to here we also and and and and and and and and and and		linimairy or Aggregation of			****				
	****											20110-0-10-0-10-0-0-0-0-0-0-0-0-0-0-0-0-		Naryaa maarja			
								~~~~	1979 (1979) (1979) (1979) (1979) (1979) (1979) (1979) (1979) (1979) (1979) (1979) (1979) (1979) (1979) (1979) (1								
Laurana				a				Denostranovosorovostan		honennon an		******		secondaria co	LOCKELOWINS	1240.004000.0040	

Notes: F, floating; I, immobile; B, stuck on bubbles; D, caught in debris



95030 Client: Sample: 95465-2 Test: 951027

Test Method: Trout 96h Static Acute Test (LC50, five or more treatment levels plus a control) Reference: Biological Test method: Reference Method for Determining Acute Lethality of Effluents to Rainbow Trout, 1990. Environment Canada, EPS 1/RM/13.

<b>Client Information:</b>	Suncor Inc.	Oil Sands Group
	Ft. McMurra	ау

#### Sample Information:

Description:	Athabasca	River Wa	ater		
Collected On:	95/10/27	At:	not given	By:	not given
Received On:	95/10/27	At:	2030	By:	S. Goudey
Test Information:					
Started On:	95/11/03	At:	1620	By:	JR/SF

otartoa on.	00/11/00	7.00.	1020	<b>Dj</b> .	01001
Ended On:	95/11/07	At:	0850	By:	JR/SF
Reported On:	95/11/07			By:	CG

### **Test Result:**

	% Mortality
Control	0
100%	0



·9.

TEST D	ATA					Client:	9503	0	Sample	: 954	35-2	Test:	951027	
	TION		not roce	uired 1	1									
time (	(h)			liteu 1	15	2	1							
DO (m	a/L)		0.0		1.0		1							
comme	ents	none				1								
		СНЕ	EMISTR	Y					BIOLC	)gy - N	UMB	ER AL	IVE	
Treatment (%)	pH (ι	units) 	Cond.(	uS/cm)	DO	(mg/L)	1	2	F   3   4	REPLIC 4   5	ATE   6	7	8 9 -	10
Date	05/11/0	13	Time	1620		Unitiale		F	I Tomr		14.0	,		
Control	5,110	/3 	378	1020	91		100		l temb	(00).	14.2			
100	8.1		274		9.6		10							
					***********	]								
	<u> </u>					-	<b> </b>							
						-								
	<u> </u>													
Date:	95/11/0	)4	Time:	1030		Initials:	GD/	DM	Temp	o (oC):	15.0	)		
Control	8.4		382		8.7		10	1						
100	8.4		268		8.8		10							
······						-								
		Ì				-	<u> </u>							
	1					-								
		1					<b>[</b>							
									-			Conference of the second		
Date:	95/11/0	)5	Time:	1200		Initials:	GD/I	DM	Temp	) (oC):	14.5	5		
Control	8.5		385		9.0	-	10							
100	0.4		270		9.1	-	10							
						1								
	an an an an an an an an an an an an an a	1				1								
						]								
******														
Data [,]	95/11/0	 )6	   Time:	1615		Initiale				mn	117	, 1		
Control	85		392		90			Γ	l iei	mh [,]	14.1			
100	8.4	1	272		9.1	1	10							
						1								
		~												
	ļ	-				-	Į	saulansandans						
01101101111111111111111111111111111111		-	<u></u>			-								
						-	L							



Client: 95030

030 |Sample: 95465-2 |Test:

16.0

Fest: 951027

CHEMISTRY						BIO	LOG	Y - N	UMBI	ER AI	IVE		
Treatment	pH (units)	Cond.(uS/cm)	DO (mg/L)				RE	PLIC/	ΑTE				
(%)				1	2	3	4	5	6	7	8	9	10

	Date:	95/11/0	7	Time:	0850		In
	Control	8.6		394		8.9	
Γ	100	8.4		274		8.9	

	Initials: JI	Temp:	
		10	
	Ĺ	10	
	L		
_			

SUMMARY	TABLE							F	REPL	ICAT	E			
TREATMENT	MORTALITY	mg N	H4-N/L		1	2	3	4	5	6	7	8	9	10
(%)	(%)	t=0	t=96 h	avg	indiv	idual	fish v	veight	s (g)					
Control	0	nd	nd	0.8	0.6	0.6	1.2	1.5	0.7	0.7	0.5	0.8	0.6	0.4
100.0	0	nd	nd	0.8	0.7	1.2	0.8	0.8	0.6	0.6	0.6	0.8	0.6	1.0
							L			<u> </u>	L			
	-			avg	indiv	idual	fish f	ork le	ngths	(cm)				
Control				4.2	4.1	4.0	4.8	5.3	4.0	4.2	3.8	4.4	3.9	3.6
100.0				4.5	4.2	5.1	4.2	4.6	4.2	4.4	4.2	4.5	4.3	4.8
							L							
							L	[						
												L		ļ
1					1									

COMMEN	TS:	Fish added at:	1530	Batch number:TR950919	No. days held:	45
Time (h)						
24	all	fish appear normal				
48	all f	fish appear normal				
72	all	fish appear normal				
96	all	fish appear normal				
			Contraction of the second second second			



Client: 95030 Sample: 95465-2 Test: 951028

**Test Method:** Bacterial luminescence Test (screening test, one treatment level plus a control) Reference: Biological Test Method: Toxicity Test Using Luminescent Bacteria (*Photobacterium phosphoreum*), 1992. Environment Canada, EPS 1/RM/24.

Client Information:	Suncor Inc. Ft. McMurra	Oil San av	ds Group		
Sample Information:		~ <b>,</b>			
Description:	Athabasca	River W	ater		
Collected On:	95/10/27	At:	not given	By:	not given
Received On:	95/10/27	At:	2030	By:	S. Goudey
Test Information:					
Started On:	95/11/01	At:	AM	By:	DL
Ended On:	95/11/01	At:	AM	By:	DL
Reported On:	95/11/02			By:	CG

Test Result: 104% expressed as a percentage of the control.



FORM: 95032 WRITTEN BY SG ON 95/05/12



Т	ES	Т	DA	١T	Ά	

SAMPLE PRI	ETREATMENT
pH adjustment	not required
preaeration	not required
turbidity	not centrifuged/filtered
other	none

#### LIGHT READINGS

	Time (min)				
Treatment Level (%)	0	5	15		
control	101	104	106		
100.0	102	107	110		

INHIBITION (%CTLS)						
5 min	15 min					
100	100					
103	104					

COMMENTS	 	·	



Client: 95030 Sample: 95465-2 Test: 951029

**Test Method:** 72h Algal Growth Inhibition Test (IC50, five or more treatments plus a control) Reference: Biological Test Method: Growth Inhibition Test Using the Freshwater Alga *Selenastrum capricornutum*, 1992. Environment Canada, EPS 1/RM/25.

Client Information: S	Suncor Inc. Oi ^s t. McMurray	I Sands	Group		
Sample Information: Description: A	thabasca Riv	er Wate	÷r		
Collected On: 9 Received On: 9	95/10/27 95/10/27	At: At:	not given 2030	By: By:	not given S. Goudey
<b>Test Information:</b> Started On: 9 Ended On: 9 Reported On: 9	95/11/03 95/11/06 95/11/17	At: At:	1600 1100	By: By: By:	D. Lintott D. Lintott D. Lintott

Test Result: 8% inhibition compared to control growth.



TEST DATA	Client:	95030	Sample:	95465-2	Test:	951029
SAMPLE PRETREATMEN	IT I					

pH adjustment	not required
preaeration	not required
turbidity	not centrifuged/filtered
other	none

# TEST DATA

FINAL CELL DENSITIES (cells/mL)								
Treatment	Replicate			Average	Standard	CV (%)	Percent	Inhibition
(%)	А	В	С	AVG	Deviation		Controls	(%Ctls)
control	1479051	1308384	1223051	1336828	130349	10	100	0
100	1404384	1180384	1105717	1230162	155431	13	92	8

# COMMENTS

- all cell numbers based on optical density readings obtained with a microplate reader - the initial cell density was 11,000 cells/mL.



		and a second second second second second second second second second second second second second second second	Construction of the second second second second second second second second second second second second second	
Client: 95030	Sample:	95465-2	Test:	951030

**Test Method:** 7 d Ceriodaphnia Survival and Reproduction Test (5 treatment levels plus a control) Reference: Biological Test Method: Test of Reproduction and Survival Using the Cladoceran *Ceriodaphnia dubia*, 1992. Environment Canada, EPS 1/RM/21.

Client Information:	Suncor Inc. C Ft. McMurray	Dil Sano V	ds Group		
Sample Information:					
Description:	Athabasca R	iver Wa	ater		
Collected On:	95/10/27	At:	not given	By:	not given
Received On:	95/10/27	At:	2030	By:	S. Goudey
Test Information:					
Started On:	95/10/31	At:	1330	By:	DM
Ended On:	95/11/07	At:	0815	By:	DM
Reported On:	95/11/09			By:	CG

#### Test Result:

	% Mortality
Control	0
100%	0

REPRODUCTION

MORTALITY

78% expressed as a percentage of the control.



Notes: LC25 & LC50, concentrations lethal to 25 and 50% of the test population; IC25 & IC50, concentrations inhibiting reproduction by 25 and 50%; NOEC & LOEC, no observed and lowest observed effect concentrations



TEST	DATA	
------	------	--

PREAERATION	not required	FILTRATION	not required	
Comments no	ne			

	CHE	EMISTRY		BIOLOGY - NUMBER OF YOUNG
Treatment	pH (units)	Cond.(uS/cm)	DO (mg/L)	REPLICATE
(%)	new used	new used	new used	1 2 3 4 5 6 7 8 9 10

DAY 0	95/10/3	31	Time:	1330		Initials:	DM	T	Ter	mp (c	ν <b>C</b> ):	25.0				
Control	8.4	ſ	354		7.5		0	0	0	0	0	0	0	0	0	0
100	8.2		258		9.0	1	0	0	0	0	0	0	0	0	0	0
	/															
	<u> </u>															
	<u> </u>															
															<u> </u>	
	· · · ·		,					$\square$			[	$\square$			<b></b> '	

DAY 1 95/11/01		1	Time: 1145			Initials: DM			Temp (oC):			25.0				
Control	8.5	8.4	372	387	7.6	7.9	0	0	0	0	0	0	0	0	0	0
100	8.3	8.5	260	306	8.2	7.8	0	0	0	0	0	0	0	0	0	0
			1													

DAY 2	95/11/0	2	Time: 1330		Initials:	DM		Temp (oC):			): 25.0					
Control	8.3	8.4	375	390	7.7	7.8	0	0	0	0	0	0	0	0	0	0
100	8.3	8.4	275	326	8.0	7.4	0	0	0	0	0	0	0	0	0	0
				[												

DAY 3	95/11/0	3	Time:	1100		Initials:	DM		-	Гетр	:	25.0				
Control	8.3	8.5	371	396	7.7	7.9	0	0	0	0	0	0	0	0	0	0
100	8.4	8.5	279	305	8.0	7.6	0	0	0	0	0	0	0	0	0	0



	CHEMISTRY									)GY -	NUM	IBER	OF Y	'OUN	G	
Treatment	pH (	units)	Cond.(	uS/cm)	DO (	mg/L)			20000000000000000000000000000000000000	RE	PLIC/	ATE				
(%)	new	used	new	used	new	used	1	2	3	4	5	6	7	8	9	10
														H		
DAY 4 95/11/04 Time: 0930 Initia							DM			Гетр	:	25.0				
Control	8.5	8.5	389	391	7.8	7.5	6	6	6	6	6	6	6	6	6	6
100	8.4	8.5	280	308	7.8	7.3	4	4	2	2	2	2	3	4	4	5
									L			[	L			
										ļ		ļ				
													L			
										Į		Ļ		ļ		
		}														

DAY 5	95/11/0	5	Time: 0945		Initials: DM			Temp:			25.0					
Control	8.5	8.5	374	398	7.8	7.8	0	0	0	1	1	0	0	11	9	12
100	8.5	8.5	287	312	7.9	7.9	0	0	5	8	7	0	0	0	0	10

DAY 6	95/11/0	6	Time:	1030		Initials:	DM			Гетр	•	25.0				
Control	8.4	8.5	384	401	7.8	7.8	11	12	12	12	10	7	9	1	1	0
100	8.5	8.5	318	322	7.6	7.6	8	8	0	0	0	9	9	10	0	0
								[								

DAY 7	95/11/0	7	Time:	0815	Initials:	DM			Гетр	•	25.0				
Control		8.5		413	7.6	10	15	0	0	12	10	15	12	14	13
100		8.6		323	7.0	15	12	13	6	14	0	0	13	10	16



SUMMARY TA	BLE	Reproc	luction		Daily	Cum	ulativ	ve Yo	ung F	roduc	tion	
Treatment (%)	Mortality (%)	Young/Adult	% controls	0	1	2	3	4	5	6	7	
Control	0	27	100	0	0	0	0	60	94	169	270	
100	0	21	78	0	0	0	0	32	62	106	205	
										_		
	ļ											
			<u> </u>									

COMMENTS:			
source of young:	in house	culture media: Bow River water	food lots: 10/27

. i.a



. ι

Client: 95030 Sample: 95465-2 Test: 951031

**Test Method:** 7 d Fathead Minnow Survival and Growth Test (five treatments plus a control) Reference: Biological Test Method: Test of Larval Growth and Survival Using Fathead Minnow, 1992. Environment Canada, EPS 1/RM/22.

Client Information: Suncor Inc. Oil Sands Group Ft. McMurray

#### Sample Information:

Description:	Athabasca	River Wa	ater		
Collected On:	95/10/27	At:	not given	By:	not given
Received On:	95/10/27	At:	2030	By:	S. Goudey
Test Information:					
Started On:	95/11/06	At:	1500	By:	DM/SF
Ended On:	95/11/13	At:	1330	By:	SF
Reported On:	95/11/15			By:	CG

#### Test Result: MORTALITY

	% Mortality
Control	20
100%	40

GROWTH

107% expressed as a percentage of the control.



Notes: LC25 & LC50, concentrations lethal to 25 and 50% of the test population; NOEC & LOEC, no observed and lowest observed effect concentrations



 T	E	S	Т	D	A	Т	Α	
						_		

PREAERATI	ON	not required	FILTRATION	not required	
Comments	none				

	СН	<b>BIOLOGY - NUMBER ALIVE</b>							
Treatment	pH (units)	Cond.(uS/cm)	DO (mg/L)	REPLICATE					
(%)	new used	new used	new used	1 2 3 4 5 6					

DAY 0	95/11/0	)6	Time:	1500		Initials:	DM/S	SF	Те	mp (o	):	25.0	
Control	8.2		346		8.1		10	10	10	10			
100	8.3		320		8.2		10	10	10	10			
												Ι	

DAY 1	95/11/0	)7	Time:	1315		Initials:	SF		Te	mp (o	C):	25.0	
Control	8.0	8.2	394	384	8.1	5.3	10	10	10	10			
100	8.3	8.3	335	355	8.1	5.7	10	10	10	10		1	
									· • •				
	1								<b></b>			1	
												1	

DAY 2	95/11/0	8	Time:	1450	Initials: SF				Temp (oC):			25.0	
Control	8.1	8.4	401	398	8.0	6.7	10	10	10	10			
100	8.5	8.5	350	351	7.3	6.7	9	10	10	10			
												•	
												Ι	

DAY 3	95/11/0	9	Time:	1500		Initials:	GD			Temp	:	25.0	
Control	8.3	8.4	399	401	8.2	7.3	7	10	10	10			
100	8.5	8.5	347	355	8.0	7.4	6	6	7	8			



CHEMISTRY				<b>BIOLOGY - NUMBER ALIVE</b>
Treatment	pH (units)	Cond.(uS/cm)	DO (mg/L)	REPLICATE
(%)	new used	new used	new used	1 2 3 4 5 6 7 8 9 10

DAY 4	95/11/1	0	Time:	1525		Initials:	SF			Temp	:	25.0	
Control	8.0	8.2	401	424	8.0	6.0	7	10	9	10			
100	8.4	8.3	331	370	7.4	6.1	6	6	7	7			
						1			[			l	
										1			
										l			

DAY 5	95/11/1	1	Time:	1130		Initials:	GD			Temp	):	25.0	
Control	8.2	8.4	394	405	8.2	6.7	7	8	9	10			
100	8.5	8.5	341	343	7.2	6.7	6	6	7	6			
				**********************************									]
								[				-	1
					1					1			1
		Contraction of the optimized state				Ì	1		[	1			
Demonstration consistence on the demonstration of the demonstration of the demonstration of the demonstration of the demonstration of the demonstration of the demonstration of the demonstration of the demonstration of the demonstration of the demonstration of the demonstration of the demonstration of the demonstration of the demonstration of the demonstration of the demonstration of the demonstration of the demonstration of the demonstration of the demonstration of the demonstration of the demonstration of the demonstration of the demonstration of the demonstration of the demonstration of the demonstration of the demonstration of the demonstration of the demonstration of the demonstration of the demonstration of the demonstration of the demonstration of the demonstration of the demonstration of the demonstration of the demonstration of the demonstration of the demonstration of the demonstration of the demonstration of the demonstration of the demonstration of the demonstration of the demonstration of the demonstration of the demonstration of the demonstration of the demonstration of the demonstration of the demonstration of the demonstration of the demonstration of the demonstration of the demonstration of the demonstration of the demonstration of the demonstration of the demonstration of the demonstration of the demonstration of the demonstration of the demonstration of the demonstration of the demonstration of the demonstration of the demonstration of the demonstration of the demonstration of the demonstration of the demonstration of the demonstration of the demonstration of the demonstration of the demonstration of the demonstration of the demonstration of the demonstration of the demonstration of the demonstration of the demonstration of the demonstration of the demonstration of the demonstration of the demonstration of the demonstration of the demonstration of the demonstration of the demonstration of the demonstration of the demonstration of the demonstration of the demonstration of the demonstration of t		l			ĺ		Î		ĺ	Ì			

DAY 6	95/11/1	2	Time:	1100		Initials:	SF		-	Temp	25.0	
Control	7.9	8.3	401	412	7.9	6.7	7	7	9	10		///////////////////////////////////////
100	8.3	8.3	363	355	7.2	6.5	6	6	7	6	l	
									l			

DAY 7	95/11/1:	3	Time:	1330	Initials:	SF			Гетр	•	25.0	
Control		8.1		406	6.7	7	6	9	10			
100		8.1		366	6.5	6	6	6	6			
										20030004039.p.		
										1.000 (000) (000) (000) (000) (000)		
						1						
						1						



Client: 05020	Complet	05465 2	TTACH	054024
Chent. 95050	Sample.	90400-2	prest.	951031

SUMMARY TA	BLE	Average Fish Weights				
Treatment (%)	Mortality (%)	mg/fish	% controls			
Control	20	0.28	100			
100	40	0.30	107			

COMMENTS:	
source of young: in house	



### QUALITY ASSURANCE INFORMATION

test species batch number date obtained holding temp. analyzer model no. incubation section temp. Photobacterium phosphoreum AMO37A 95/05/24 -20 to -25oC model 500 analyzer 15oC

Quality Assurance Information:

All criteria have been met for a valid test and the test data and result are verified correct.



HydroQual Laboratories Ltd.



#### **QUALITY ASSURANCE INFORMATION**

	TEST DESIGN AND CONDITIONS	
Daphnia magna	vol. of test vessel (ml)	120
in-house	test volume (ml)	90
9	replicates per treatment	2
28	neonates per replicate	5
no	volume per neonate (ml)	18
< 24 hrs	sample preaerated	yes
20	hardness adjustment	no
16h light:8h dark	dilution water hardness	200
	Daphnia magna in-house 9 28 no < 24 hrs 20 16h light:8h dark	TEST DESIGN AND CONDITIONSDaphnia magnavol. of test vessel (ml)in-housetest volume (ml)9replicates per treatment28neonates per replicatenovolume per neonate (ml)< 24 hrs

Dilution water source - dechlorinated tap water

#### **Quality Assurance Unit:**

All criteria have been met for a valid test and the test data and result are verified correct.



HydroQual Laboratories Ltd.



#### **QUALITY ASSURANCE INFORMATION**

# TEST ORGANISMtest speciesOncoculture sourceRockholding systemtemperature (oC)dissolved oxygenstock mortality (last 7d)

Oncorhynchus mykiss Rocky Mountain Brood Stock flow through 15 saturated < 1%

TEST DESIGN AND CO	NDITIONS
vol test vessel (L)	22
test volume (L)	20
replicates per treatmen	t 1
fingerlings per replicate	e 10
loading (g fish/L/4days)	) < 0.5
temperature (oC)	15
photoperiod	16h light: 8h dark
light level (water surfac	ce) < 500lux
dilution water	dechlor. tap water

# Qualty Assurance Unit:

All criteria have been met for a valid test and the test data and result are verified correct.

t-coordy

# WARNING CHART

TOXICANT: CURRENT TEST: RESULT:	phenol - C started: 10.6	6H5OH 95/10/30 mg/L		ended:	95/11/03	
HISTORICAL MEAN: CHART LIMITS:	9.2 warning: (95% - 2S	std. dev: 7 D)	1 11	CV (%): control: (99% - 3S	12 6 D)	13



HydroQual Laboratories Ltd.



#### **QUALITY ASSURANCE INFORMATION**

TEST ORG	NISM	TEST DESIGN AND CONDITIONS			
test species	Selenastrum capricornutum	culture age	exponential		
culture source	in-house	test vessel	96 well microplate		
culture vessels	4L glass jars	no. of replicates	3		
dilution water	deionized water	test volume (uL)	200		
growth medium	nutrient solution	temperature (oC)	24 - 26		
cultivation method	continuous light (>4000 lux)	lighting	4-5000 lux		
,	25oC, filtered, oil free air				

#### **Quality Assurance Unit:**

All criteria have been met for a valid test and the test data and result are verified correct.

Mang Ca

#### WARNING CHART

Zinc - as zinc sulphate (ZnSO4*7H2O)									
started:	95/11/03		ended:	95/11/06					
89	ugZn++/L								
73	std.dev:	13	CV(%):	18					
warning: (95% - 2S	46 D)	99	control: (99% - 3S	33 D)	113				
	Zinc - as z started: 89 73 warning: (95% - 2S	Zinc - as zinc sulphate ( <b>started:</b> 95/11/03 89 ugZn++/L 73 <b>std.dev:</b> warning: 46 (95% - 2SD)	Zinc - as zinc sulphate (ZnSO4* started: 95/11/03 89 ugZn++/L 73 std.dev: 13 warning: 46 99 (95% - 2SD)	Zinc - as zinc sulphate (ZnSO4*7H2O)   started: 95/11/03   89 ugZn++/L   73 std.dev: 13 CV(%):   warning: 46 99 control:   (95% - 2SD) (99% - 3S)	Zinc - as zinc sulphate (ZnSO4*7H2O)   started: 95/11/03   ended: 95/11/06   89 ugZn++/L   73 std.dev: 13 CV(%): 18   warning: 46 99 control: 33   (95% - 2SD) (99% - 3SD)				





**HydroQual** Laboratories Ltd. #3, 6125 - 12 Street S.E. Calgary, Alberta Canada T2H 2K1 TEL: (403) 253-7121 FAX: (403) 252-9363 1-800-808-6942

# **QUALITY ASSURANCE INFORMATION**

### **TEST ORGANISM**

#### **TEST DESIGN AND CONDITIONS**

test species	Ceriodaphnia dubia	vol of test vessel (ml)	30
culture source	in-house	test volume (ml)	15
ephippia in stock culture	none	test cover	clear glass
mortality in culture (last 7d)	< 1.0%	replicates per treatment	10
culture fecundity (last 7d)	23	organisms per replicate	1
age of test organisms	< 24h	test solution renewal	daily
food source	yeast/alfalfa/	temperature (oC)	24-26
	trout chow	photoperiod 16h	light:8h dark
		light level (water surface)	< 600 lux
		light source cool wi	nite fluorescent
		sample preaerated	yes
		hardness adjustment	no

#### **DILUTION WATER CHEMISTRY**

not used		
source mod. hard reconstituted water	source	Bow river water
pH (units)	pH (units)	8.2
conductance (uS/cm)	conductance (uS/cm)	376
dissolved oxygen (mg/L)	dissolved oxygen (mg/L)	7.6
NH4+ (mg/L)	NH4+ (mg/L)	< 0.1
hardness (mg CaCO3/L)	hardness (mg CaCO3/L)	148
total residual chlorine (mg/L)	total residual chlorine (mg/L)	< 0.1

**Quality Assurance Unit:** 

All criteria have been met for a valid test and the test data and result are verified correct.

Manifaceoury



#### WARNING CHART (fecundity - IC50 at 7 days)

TOXICANT:	Sodium - a	nloride (N	vaCl)			
CURRENT TEST: RESULT:	started: 1.3	95/12/08 gNaCl/L		ended:	95/12/15	
HISTORICAL MEAN:	1.3	std. dev:	0.2	CV (%):	18	
CHART LIMITS:	warning:	0.8	1.8	control:	0.6	2.0
	(95% - 2S	D)		(99% - 35	D)	



TEST#

WARNING(95%) -

∾CONTROL(99%)

TEST RESULT ---- MEAN

6



#### **QUALITY ASSURANCE INFORMATION**

### **TEST ORGANISM**

#### **DILUTION WATER CHEMISTRY**

test species	Pimphale	s promelas	water source	treated city	water
culture source	in - house	<u>}</u>	pH (units)		7.8
water source	treated cit	ty water	conductance (uS	/cm)	405
temp of breeding aquaria	23 - 26 00	5	dissolved oxyger	n (mg/L)	9.6
food type	frozen bri	ne shrimp	NH4+ (mg/L)		<0.1
frequency of feeding	daily		alkalinity (mg Ca	CO3/L)	120
breeding colony mortality	<1	(% last 7d)	hardness (mg/Ca	CO3/L)	200
hatching success (%)	80		total residual chl	orine (mg/L)	<0.1
age of test organisms	<24 hours	6			

#### **TEST DESIGN AND CONDITIONS**

test type	static renewal	feeding	twice daily
volume of test vessel (ml)	450	temp. (oC)	24 - 26
test volume (ml)	250	photoperiod	16 light : 8 dark
depth of test vessel (cm)	>3	light level (water surfa	ce) <500 lux
replicates per treatment level	4	light source "cool whit	e" fluorescent
no. of animals per replicate	10		
renewal of test solution	daily		

**Quality Assurance Unit:** 

All criteria have been met for a valid test and the test data and result are verified correct.

Mans Googony



				WAF	RNIN	IG CH	IAR	<mark>r (</mark> n	nort	ality	LC50 at 7	' days	)		
TOXICA	NT:			Sodi	um -	Sod	lium	Chl	oride	e (NaC	CI)				
CURRAN	NT TE	ST:		star	ted:	95/	/11/2	4	end	ed:	95/12/0	1			
RESULT	:			C	).7	g١	laCl/	′L							
HISTOR	ICAL	MEAN	l:	C	9.8	sto	d de	/:	C	).15	CV (%)	•	19		
CHART I	LIMIT	S:		warr	ning	:	0.5			1.1	contro	l:	0.3	1.2	
(				(95%	5 - 28	SD)					(99% -	3SD)			
F	1.50	T													
NaCI	1.25	-		an tan selamatan ang selamatan ang selamatan ang selamatan ang selamatan ang selamatan ang selamatan ang selama	Reisigenische						ter digingin timbet in the second				
7d,g	1.00	•	20307	33/15	• 1412	1	54				ъ				
20 Ø	0.75 -		<u></u> ду _	<u>- 8</u>	- 14		95/08/	12	6,,	/11/24		ANNANIN'I BANA		REAGAN' PROVIDEN	arcento
LC (LC	0.50 -	-				8		95/0	95/10	8					
	0.25 -								901E023067752					ad in second in the second in the	aniar maaning.
L d	0.00 -		-+		-1										1
U U U	(	D	2		4	6		8		10	12	14	16	18	20
	ſ	۲	TE	ST RE	SULT	-	N	IEAN	l	N	/ARNING(9	5%) 💳	CON	TROL(99	%)

	VVARINING	<b>J CHARI</b>	<u>growin ic</u>	<u>ou al 7 uays</u>			
TOXICANT:	Sodium -	Sodium Ch	loride (Na	CI)			
CURRANT TEST:	started:	95/11/24	ended:	95/12/01			
RESULT:	1.3	g NaCl/L					
HISTORICAL MEAN:	1.5	std dev:	0.3	CV (%):	19		
CHART LIMITS:	warning:	0.9	2.1	control:	0.6	2.4	
	(95% - 2S	D)		(99% - 3SD)			

MADNING OLIADT James the JOEA at 7 de



Water quality data for 7 and 28 day exposures
DAY				ТА	NK				DAY				ТА	NK			
	9	10	11	12	13	14	15	16		9	10	11	12	13	14	15	16
<u>Holdon an in Aprod</u>		S <u>assan</u> en provinsi kirki ki	pł	H (uni	ts)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	nen aven de la factoria de	767 <u>009999</u> 092692692692	<b>Vilian and Andrewson</b>		Co	onduc	ance	(uS/c	m)		Warden of Papers and Andrews
1	7.7	7.8	7.8	7.9	8.0	7.9	7.9	7.9	1	255	356	358	360	359	360	359	362
2	7.6	7.7	7.7	7.8	8.0	8.3	nd	nd	2	252	349	365	377	443	nd	nd	nd
3	7.6	7.6	7.8	7.8	8.0	8.2	nd	nd	3	266	358	356	378	433	nd	nd	nd
4	7.6	7.8	7.8	7.8	8.1	8.3	nd	nd	4	247	363	365	380	435	nd	nd	nd
5	7.5	7.5	7.8	7.5	7.8	8.1	nd	nd	5	257	367	359	381	439	nd	nd	nd
6	7.3	7.6	7.7	7.7	7.9	8.3	nd	nd	6	250	360	364	381	440	nd	nd	nd
7	7.5	7.6	7.8	7.7	7.9	8.2	nd	nd	7	247	355	360	373	432	nd	nd	nd
0)/0	75	76	7 9	77	70	<b>0</b> 7	70	70	01/0	252	259	261	276	406	260	250	262
avy min	7.5	7.0	7.0	7.0	7.9 Q 1	0.2	7.9	7.9	avy	200	240	256	260	420	260	328	30Z
may	73	7.0	7.0	75	7.8	70	7.9	7.9	may	247	267	265	281	309	260	209	30Z
шах	7.5	1.5	1.1	7.5	7.0	1.5	1.5	1.5	max	200	507	303	301	440	300	339	302
		Diss	olved	Oxyg	jen (m	ng/L)					-	Гетр	eratur	e (oC	)		
1	72	83	85	87	9.0	8.1	83	8.0	1	22	10	18	18	18	18	18	10
2	5.5	6.6	6.2	6.8	72	5.6	nd	nd	2	22	19	18	18	18	10	nd	nd
3	6.1	6.9	6.8	6.8	74	63	nd	nd	3	22	19	19	18	18	20	nd	nd
4	6.2	7.1	7.4	6.9	7.7	5.9	nd	nd	4	22	19	18	18	18	20	nd	nd
5	5.6	6.4	6.8	6.2	7.1	4.1	nd	nd	5	21	19	19	18	18	20	nd	nd
6	5.1	6.4	6.3	6.2	7.2	6.2	nd	nd	6	22	20	19	19	18	20	nd	nd
7	5.7	6.4	6.8	6.3	7.2	6.1	nd	nd	7	23	20	19	18	19	21	nd	nd
avg	5.9	6.9	7.0	6.8	7.5	6.0	8.3	8.0	avg	22	19	19	18	18	20	18	19
min	5.1	6.4	6.2	6.2	7.1	4.1	8.3	8.0	min	21	19	18	18	18	18	18	19
max	7.2	8.3	8.5	8.7	9.0	8.1	8.3	8.0	max	23	20	19	19	19	21	18	19
		_															

 Table 1. Summary of Water Quality Monitoring Data for the 7 Day Test

.

DAY								ТА	NK							
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1	8.7	8.6	8.6	8.6	8.6	8.6	8.6	8.6	8.1	8.3	8.4	8.3	8.3	8.4	8.2	8.2
2	8.0	8.1	8.1	8.2	8.2	8.2	8.2	8.2	7.8	7.8	7.9	7.8	7.8	7.9	8.0	7.9
3	8.4	8.4	8.4	8.4	8.4	8.5	8.4	8.4	7.9	8.0	8.0	7.9	7.9	8.2	8.1	8.0
4	8.5	8.6	8.6	8.6	8.6	8.7	8.6	8.6	8.2	8.4	8.4	8.2	8.2	8.5	8.4	8.4
5	8.1	8.2	8.2	8.2	8.3	8.3	8.3	8.2	7.9	8.0	8.0	7.9	7.9	8.1	8.2	8.0
6	8.3	8.2	8.2	8.3	8.3	8.3	8.2	8.2	7.9	7.ð	0.1	٥.٨ ٥.٥	1.1	7.8	7.8	7.8
1	0.3 0.3	შ.ა ი₄	0.3 0.3	<u>ბ.</u> კ	0.3 0.3	0.4 0.2	0.3 0.3	0.3 0 0	1.1	0.0	8.0 7.0	8.0 7 0	7.9	8.1	8.1	0.8
0	0.Z 0.2	0.1 Q 1	0.∠ ຊາ	0.Z	0.Z	0.3	0.2	0.∠ 0.4	1.1 7 6	7.9	1.9	1.0 7.6	1.0 77	0.U 70	8.0	7.8
9 10	0.∡ 8.1	0.1 8.0	0.Z 8.1	0.1 8.0	0.Z 8 1	0.∠ 8.3	0.1 8.0	0.1 8.0	7.0	76	76	7.0	76	7.0 7.8	7.9	7.0
11	83	8.2	83	8.2	83	0.5 8 3	83	8.2	7.8	7.0	7.0	7.0	7.0	7.0 7.0	7.7 8.0	7.0
12	8.3	8.2	8.3	8.3	8.3	83	8.2	83	78	7.9	79	7.8	7.8	7.0	8.0	7.0
13	8.3	8.3	83	8.2	8.3	8.3	8.3	83	7.8	7.9	7.9	78	7.8	8.0	8.0	78
14	8.3	8.3	8.3	8.2	8.3	8.3	8.3	8.3	7.8	7.9	7.9	7.8	7.8	8.0	8.0	7.8
15	8.2	8.2	8.3	8.2	8.3	8.3	8.3	8.2	7.7	7.8	7.9	7.8	7.8	8.0	7.9	7.8
16	8.2	8.3	8.3	8.2	8.3	8.3	8.3	8.3	7.7	7.8	7.9	7.7	7.8	8.1	7.9	7.8
17	8.2	8.2	8.2	8.2	8.3	8.3	8.3	8.3	7.7	7.8	8.0	7.7	7.8	8.1	7.9	7.8
18	8.2	8.2	8.3	8.2	8.3	8.3	8.3	8.2	7.7	7.8	8.0	7.7	7.8	8.1	7.9	7.8
19	8.2	8.3	8.3	8.3	8.3	8.4	8.3	8.2	7.6	7.8	8.0	7.9	7.9	8.0	7.9	7.8
20	8.3	8.3	8.4	8.3	8.4	8.3	8.3	8.3	7.6	7.8	8.0	7.9	8.0	8.0	7.9	7.9
21	8.3	8.4	8.4	8.4	8.4	8.3	8.3	8.3	7.7	7.8	8.2	7.9	8.0	8.0	7.9	7.8
22	8.3	8.4	8.4	8.4	8.4	8.3	8.4	8.3	7.8	7.9	8.3	8.0	8.0	8.0	7.9	7.9
23	8.3	8.3	8.4	8.3	8.4	8.3	8.3	8.3	7.7	7.9	8.3	7.9	8.0	8.0	8.0	7.8
24	8.1	8.3	8.2	8.3	8.3	8.3	8.3	8.2	7.6	7.8	8.2	7.9	7.9	8.0	8.0	7.8
25	8.3	8.4	8.4	8.4	8.4	8.4	8.4	8.3	7.7	8.0	8.3	7.9	8.0	8.0	8.1	7.9
26	8.3	8.4	8.4	8.4	8.4	8.4	8.4	8.3	7.8	8.0	8.3	7.9	8.0	8.0	8.0	7.8
27	8.3	8.4	8.4	8.4	8.4	8.4	8.3	8.3	7.7	8.2	8.3	7.9	8.0	8.0	8.0	7.8
28	8.3	8.4	8.4	8.4	8.4	8.4	8.3	8.4	7.6	8.2	8.3	7.9	8.1	8.0	7.9	7.9
avo	8.3	8.3	8.3	8.3	8.3	8.3	8.3	8.3	7.7	7.9	8.0	7.8	79	8.0	8.0	7.8
min	8.7	8.6	8.6	8.6	8.6	8.7	8.6	8.6	8.2	8.4	8.4	8.3	83	8.5	84	8.4
max	8.0	8.0	8.1	8.0	8.1	8.2	8.0	8.0	7.6	7.6	7.6	7.6	7.6	7.8	7.7	7.6

 Table 1.
 Water Quality Monitoring Data for 28 Day Test: pH (units)

DAY					····			TA	NK							
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
										<u> </u>			004	450		
1	353	368	369	3//	380	470	3/2	3/4	326	345	340	360	364	456	365	368
2	208	358	378	300	393	400	305	376	306	375	386	400	396	404	304 385	300 383
4	300	376	386	399	400	511	387	383	306	378	383	396	393	484	387	381
5	303	363	364	380	391	495	381	379	324	378	379	392	390	485	382	381
6	303	361	360	374	385	484	371	373	328	372	372	386	383	476	376	381
7	320	372	368	386	388	489	378	379	331	371	373	385	383	477	376	382
8	305	388	386	401	386	512	386	385	315	383	389	403	398	486	389	391
9	311	380	382	396	399	488	390	391	325	390	390	401	406	484	391	392
10	328	388	388	402	391	505	393	389	334	382	396	394	397	484	398	391
11	303	388	387	399	400	473	391	390	313	392	393	405	402	485	399	396
12	298	389	387	400	400	527	389	388	309	393	393	406	404	467	397	393
13	299	390	388	400	398	502	395	388	310	391	392	404	398	471	394	392
14	298	391	386	396	397	505	404	388	286	386	381	402	398	473	401	393
15	279	393	392	383	407	532	394	392	279	385	384	404	401	471	396	394
16	272	393	392	403	406	507	397	392	278	396	396	409	405	493	397	398
17	275	389	389	398	406	547	396	390	280	390	392	408	406	477	397	396
18	277	387	387	396	407	584	404	392	278	387	391	402	401	454	403	395
19	280	385	390	401	400	541	395	395	289	394	396	407	407	442	401	398
20	283	382	385	394	391	460	394	380	285	387	393	410	407	423	395	396
21	303	303	301	390	397	452	397	392	210	392 290	392	400	407	409	390	397
22	211	281	200	208	207	412	407 207	201	310	309	201	403	400	4/4	200	401
23	311	388	300	A02	397 ANA	475	306	305	324	394	391	407	400	4/5	200	403
25	331	395	390	403	403	492	399	400	338	397	395	409	409	480	401	400
26	336	389	391	401	410	491	397	396	345	391	389	407	410	478	397	401
27	339	389	391	402	403	494	399	397	342	381	389	406	405	489	397	401
28	343	398	399	409	406	510	413	402	346	392	395	410	410	485	402	404
ava	307	382	384	396	398	499	392	389	313	385	387	401	400	475	393	393
min	272	358	360	374	380	452	371	373	278	345	346	360	364	423	365	368
max	353	398	399	409	410	584	413	402	346	397	396	411	410	493	403	404
		-							-		-					

 Table 2.
 Water Quality Monitoring Data for 28 Day Test: Conductance (uS/cm)

DAY	*******	******			<del>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</del>			TAI	٧K					******	********	
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
	82	8.8	89	Q 1	8.8	9.0	8.8	92	47	6.8	78	74	7.0	78	69	63
2	8.0	87	8.9	9.0	9.1	8.8	9.0	9.0	6.4	7.5	7.8	6.7	6.9	7.7	79	77
3	7.9	8.5	8.7	8.8	8.9	8.8	8.9	8.8	6.5	7.1	7.4	6.5	7.1	7.9	7.8	7.3
4	7.8	8.7	8.8	8.7	8.8	8.6	8.8	8.8	6.6	7.3	7.5	6.9	7.2	8.1	7.9	7.5
5	7.8	8.7	8.7	8.8	8.8	8.8	8.8	8.9	7.0	7.8	7.9	7.2	7.3	8.1	8.9	7.5
6	8.2	8.9	8.9	9.0	8.9	9.0	8.8	8.9	6.8	7.7	7.6	7.8	7.2	7.8	8.0	7.2
7	8.4	8.9	9.0	9.0	9.0	9.0	9.0	9.0	6.9	7.8	7.8	6.7	7.4	7.9	8.4	6.6
8	8.2	9.1	9.1	9.2	9.1	9.0	9.0	9.0	6.1	7.8	7.7	5.9	6.5	7.6	8.1	6.7
9	7:9	8.7	8.7	8.6	8.8	8.7	8.7	8.7	5.9	7.2	7.3	5.8	6.4	7.2	7.6	6.6
10	8.2	9.1	9.1	9.1	9.0	9.1	8.9	8.9	5.6	6.7	7.2	5.6	6.8	7.8	7.4	6.5
11	8.2	9.1	9.1	8.9	9.1	9.1	8.9	8.9	6.3	7.4	7.6	6.2	6.8	7.5	7.9	6.4
12	8.9	9.3	9.2	9.2	9.2	9.2	9.1	9.0	7.7	7.6	7.8	6.4	6.7	7.9	8.2	6.9
13	8.6	9.2	9.1	9.1	9.1	9.2	9.0	9.1	6.9	7.2	7.6	6.2	6.6	7.7	7.9	6.9
14	8.9	9.2	9.2	9.2	9.1	9.2	9.0	9.0	7.1	7.3	7.8	6.4	6.6	7.6	7.9	6.7
15	9.1	9.2	9.2	9.2	9.1	9.1	9.0	9.0	7.2	7.3	7.9	6.4	6.7	8.1	7.9	6.9
16	9.1	9.3	9.2	9.2	9.1	9.1	9.0	9.0	1.2	7.4	7.9	6.3	7.1	8.1	8.0	7.0
17	9.1	9.3	9.2	9.2	9.1	9.2	9.0	9.0	6.8	7.2	8.0	6.1	6.8	8.1	8.1	6.8
18	9.1	9.3	9.2	9.2	9.1	9.1	9.0	8.9	6.8	1.2	8.0	6.2	6.7	8.2	8.0	7.1
19	9.2	9.4	9.4	9.4	9.4	9.4	9.3	9.1	5.6	6.9	0.∠ 0.⊑	7.9	1.1	8.2	8.0	6.9
20	9.0	9.3	9.3	9.3	9.3	9.3	9.2	9.1	5.9 6.4	0.0	0.0	7.0	7.1	7.9	7.9	0.0
21	9.2	9.3	9.3	9.3	9.3	9.3	9.2	9.1 0.2	0.4 6 0	1.2	9.0	7.9	7.9	7.9	0.0	0.9
22	9.2 0 N	9.3 Q 2	9.3 Q 2	9.3 Q 2	9.3 0.2	ສ.ວ 0.1	9.3 Q 1	9.2 0 N	63	7.3	9.2. Q1	7.5	7.9	7.5	70	66
23	9.0 8 Q	9.2	9.2 0 1	9.Z Q 1	ອ. <u>~</u> ຊ 1	9.1 Q (1	9.1	9.0 Q ()	6.0	7.6	9.1	7.5	7.3	7.6	79	6.5
25	9.0	9.2	9.1	9.1	9.1	9.0	9.0	9 14	67	79	9.0	77	78	7.8	8.2	7.0
26	8.8	9.2	91	91	9.1	9.0	91	9.0	6.0	7.7	9.0	7.6	7.8	77	8.0	6.8
27	8.9	9.3	9.2	9.2	9.3	9.1	9.2	9.0	6.1	8.9	9.0	7.7	8.2	7.9	8.0	7.0
28	8.9	9.3	9.2	9.2	9.2	9.1	9.2	9.2	6.0	9.2	9.1	7.9	8.3	8.0	8.1	7.6
~~~~	06	0.4	∩ 4	<u>0</u> 4	0.4	0.4	<u>م م</u>	0.0	6 4	7 5	Q 4	60	70	70	0 0	60
avy	0.0	ษ.1 ഉ മ	ଅ.1 ହ 7	9.1 8 c	୬.୮ ହୁତ	ษ.1 ഉഭ	ອ.U ຊ 7	9.U 27	0.4 17	0.1 0 0	0.1 アウ	0.9 5 6	1.Z. 6 A	1.0	0.0	0.9 6.2
may	1.0	0.5 Q /	0.7 Q.A	0.0 0 A	0.0 Q A	0.0	0.1	0.1	∾./ 77	0.0 Q 2	1.Z	70	0.4 8 2	≀.∠ ຊາ	0.9	0.3
шах	3.6	9.4	J.4	3.4	3.4	9.4	9.3	IJ.L	1.1	J.L	9.L	1.9	0.5	0.2	0.9	1.1

 Table 3.
 Water Quality Monitoring Data for 28 Day Test: DO (mg/L)

DAY								ТА	NK							
-	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1	18	15	15	15	15	15	15	15	17	15	15	15	15	15	15	15
2	19	14	13	14	14	14	15	15	20	13	13	14	14	13	15	15
3	19	14	14	14	14	14	15	15	20	13	13	13	13	13	15	15
4	19	13	14	14	14	14	15	15	19	13	13	13	13	13	15	15
5	18	15	15	15	15	15	15	15	18	15	15	15	15	15	15	15
6	18	14	14	114	14	14	14	14	18	14	14	14	14	14	14	14
7	18	15	15	15	15	15	15	15	18	15	14	15	14	14	14	14
8	18	14	13	14	13	14	14	13	19	13	13	13	13	13	13	13
9	17	14	14	14	14	14	14	14	18	14	14	14	14	14	14	14
10	18	14	14	14	14	14	14	14	18	14	14	14	14	14	14	14
11	17	14	14	14	14	14	14	14	17	14	13	14	14	14	13	14
12	15	14	13	13	14	14	14	14	15	13	13	14	14	14	13	13
13	16	15	14	14	14	14	14	14	16	14	14	14	14	14	14	14
14	15	14	14	14	14	14	14	14	15	14	14	14	14	14	14	14
15	15	14	14	14	14	14	14	14	15	14	13	14	14	14	14	14
16	14	13	13	14	14	14	14	14	14	13	13	13	13	13	13	13
17	14	13	13	13	13	13	13	13	14	13	13	13	13	13	13	13
18	14	13	13	13	13	14	13	13	14	13	13	13	13	13	13	13
19	14	13	13	13	13	13	13	13	14	13	13	13	13	13	13	13
20	14	14	13	13	13	13	13	13	15	13	13	13	13	13	13	13
21	14	13	13	13	13	13	13	13	14	13	13	13	13	13	13	13
22	14	14	13	13	13	13	13	13	14	13	13	13	13	13	13	13
23	15	13	13	13	13	13	13	13	15	13	13	13	13	13	13	13
24	15	14	14	14	14	14	14	14	15	14	14	14	14	14	14	14
25	15	14	14	14	14	14	14	14	15	14	14	14	14	14	14	14
26	15	14	14	14	14	14	14	14	15	14	14	14	14	14	14	14
27	15	14	14	14	14	14	14	14	16	14	14	14	14	14	14	14
28	15	14	14	14	14	14	14	14	15	14	14	14	14	14	14	14
avg	16	14	14	18	14	14	14	14	16	14	14	14	14	14	14	14
min	14	13	13	13	13	13	13	13	14	13	13	13	13	13	13	13
max	19	15	15	114	15	15	15	15	20	15	15	15	15	15	15	15

 Table 4.
 Water Quality Monitoring Data for 28 Day Test: Temperature.(oC)

-

	****		~~~~							*****				*0***2+*************************		
DAY								TA	NK							
enti	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1																
2	~ ~	0.0	<u> </u>	0.0	0.0	0.0	0.0	0.0	07	0.6	0.6	0.5	0.0	07	0 5	0.5
3	0.0	0.2	0.2	0.3	0.3	0.8	0.2	0.2	0.7	0.0	0.0	0.5	0.0	0.7	0.5	0.5
4 C	0.5	0.3	0.3	0.3	0.3	0.0	0.2	0.2	0.7	0.5	0.5	0.4 0.6	0.7	0.4 A 0	0.4	0.2
5	0.0	0.3	0.3	0.3	0.4	0.0	0.1	0.2	0.0	0.5	0.0	0.0	0.0	0.0 1 2	0.3	0.3
7	0.4	0.2	0.2	0.2	0.3	1.1	0.2	0.1	0.0	0.5	0.5	0.5	0.4 0.5	1.5	0.3	0.2
8	1.0	0.3	0.Z	0.2	0.5	1.0	0.3	0.2	16	0.0	0.5	0.5	0.0	1.J 1 A	0.5	0.5
9 9	1.0	0.3	0.3	0.4	0.4	1.1	0.5	0.3	22	0.9	0.9	0.8	0.0	1.4	0.5	0.4
10	0.7	0.2	0.2	0.2	0.3	0.8	0.3	0.2	1.3	0.6	0.6	0.4	0.4	1.0	0.4	0.3
11	0.6	0.2	0.2	0.2	0.2	0.6	0.2	0.2	1.2	0.5	0.6	0.5	0.5	1.0	0.4	0.4
12	0.4	0.2	0.2	0.1	0.2	0.6	0.2	0.1	1.0	0.5	0.4	0.4	0.5	0.7	0.4	0.4
13	0.6	0.2	0.2	0.2	0.3	0.4	0.2	0.1	1.4	0.6	0.6	0.6	0.6	0.9	0.6	0.4
14	0.4	0.2	0.2	0.2	0.2	0.4	0.2	0.1	0.8	0.6	0.6	0.7	0.6	0.8	0.6	0.6
15	0.8	0.3	0.4	0.3	0.3	0.6	0.3	0.2	1.0	0.6	0.6	0.6	0.8	1.0	0.6	0.7
16	0.5	0.2	0.2	0.2	0.2	0.3	0.2	0.2	0.6	0.4	0.4	0.4	0.4	0.6	0.4	0.4
17	0.4	0.2	0.2	0.2	0.2	0.1	0.2	0.1	0.6	0.4	0.4	0.4	0.4	0.4	0.4	0.3
18	0.4	0.2	0.3	0.2	0.2	0.1	0.3	0.2	0.6	0.5	0.4	0.4	0.5	0.5	0.4	0.4
19	0.2	0.2	0.2	0.2	0.2	0.9	0.2	0.1	0.8	0.6	0.6	0.6	0.6	0.5	0.4	0.4
20	0.5	0.2	0.2	0.2	0.2	0.9	0.2	0.1	1.1	0.6	0.6	0.6	0.7	0.9	0.6	0.6
21	0.5	0.4	0.3	0.3	0.4	1.1	0.3	0.1	1.7	0.8	0.4	0.8	1.0	1.8	0.8	0.9
22	0.2	0.1	0.1	0.1	0.1	0.5	0.1	0.1	0.4	0.4	0.1	0.4	0.5	0.6	0.5	0.4
23	0.1	0.1	0.1	0.2	0.2	0.5	0.1	0.1	0.4	0.5	0.1	0.6	0.6	0.6	0.4	0.5
24	0.1	0.2	0.2	0.2	0.3	0.7	0.2	0.1	0.1	0.5	0.1	0.6	0.6	0.7	0.4	0.5
25	0.2	0.2	0.2	0.2	0.2	0.8	0.2	0.1	0.3	0.7	0.1	0.7	0.6	0.7	0.5	0.6
26	0.3	0.2	0.2	0.2	0.2	0.7	0.2	0.1	0.6	0.5	0.2	0.5	0.6	0.7	0.4	0.5
27	0.1	0.2	0.2	0.2	0.3	1.3	0.2	0.1	0.3	0.3	0.2	0.6	0.6	1.0	0.5	0.5
28	0.1	0.1	0.2	0.2	0.2	0.9	0.2	0.2	0.3	0.3	0.3	0.3	0.5	0.9	0.5	0.5
.			*****		0-10-10-10-10-10-10-10-10-10-10-10-10-10								*****	*****		
avg	0.5	0.2	0.2	0.2	0.3	0.7	0.2	0.1	0.9	0.5	0.4	0.5	0.6	0.9	0.5	0.4
min	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.3	0.1	0.3	0.4	0.4	0.3	0.2
max	1.3	0.4	0.4	0.4	0.4	1.3	0.4	0.3	2.2	0.9	0.9	0.8	1	1.8	0.8	0.9

۰.

 Table 5.
 Water Quality Monitoring Data for 28 Day Test: Ammonium (mg NH4+-N/L)

Summary data sheets for 7 and 28 day exposures

DATE:	95/09/0	6	TIME:	11:50-1	2:15	INITIAL	.S:	GB/SS/	SG/MG		FISH S	OURCE:		Rocky N	/tn.			TREAT	MENT:	Athabas	sca River	Cti		TANK:	9				
<u> </u>																		_						EXPOS	URE PE	RIOD:	7 day:	s	
								NECRO	SY (see	below	for expl	anation	of codes	5)															
					EXTE	RNAL		1				INTE	RNAL								OTHEF	DATA					ş	31	
SAMPLE (D	length (mm)	weight (g)	body condition	lîn	operculum	eye	liį6	sex (M, F, I)	pseudobranch	thymus	fat	spleen	hind gut	stomach	kidney	liver	bile	wet weight (g)	dry weight (g)	moisture (%)	liver weight (g)	blood volume (mL)	hematocrit (%)	leucocrit (%)	protein (mg/dL)	lactate (mg/dL)	glucose (mg/dL)	hemoglobin (mg/dL)	white blood cells (%)
21	196	93	1.24	1 0	0	I N	N	IM	N	0	2	В	0	F	N	В	0	1		J	0.88	ND	46	1	8.3	47	81	9.2	,,
22	199	90	1,14	0	0	N	N	IF	S	0	4	В	0	ND	N	B	1			<u> </u>	0.68	ND	34	1	6.2	37	83	9.2	<u> </u>
23	167	55	1 18	0	0	N	N	IF	S	0	3	R	0	F	N	В	0			<u> </u>	0.61	ND	41	1	7.2	93	88	10.3	
24	192	84	1,19	1	0	N	N	IM	S	0	1	В	0	F	N	В	0			<u> </u>	0.7	ND	28	<1	5.6	81	103	7.6	
25	184	75	1.20	0	0	N	N	IF	S	0	3	Ŕ	0	F	N	В	1	1	· · · · ·	1	0.67	ND	36	1	6.6	115	99	8.0	
26	194	91	1.25	1	0	N	N	IF	S	0	4	В	0	ND	N	В	3			1	0.58	ND	43	1	7.7	82	91	8.7	
27	188	96	1.44	0	0	N	N	M	S	0	4	R	0	F	N	В	1				1.35	ND	43	<1	8.9	112	95	12.9	
28	169	58	1.20	0	0	N	N	IM	S	0	4	В	0	Ę	N	В	1				0.53	ND	36	<1	5.2	119	97	6.8	
29	191	85	1.22	0	0	N	N		N	0	2	R	0	F	N	B	1				1.08	ND	42	1	4.6	132	99	11.6	
30	196	85	1,13	1	0	N	N	IM	N	0	4	В	0	F	Z	В	1				0.62	ND	38	<1	3.7	142	134	6.3	
97	56	1.4	0.80															1.15	0.23	80	0.019						i		
98	75	4.5	1.07		L													4.18	1.15	72	0.053								1
99	85	4.4	0.72	<u> </u>	I	L	L											4.23	0.90	79	0.054								
100	84	4.8	0.81	ļ	ļ	1										<u> </u>		4.64	1.02	78	0.076								
101	84	4.5	0.76	ļ	ļ	ļ	ļ	L										4.30	0.94	78	0.051								[
	L	L	L	1	I	1	İ			L		l	L	L		<u> </u>	l	L	<u> </u>	I							i i i		
Comm	ents	21-30,	arge trou	ıt; 97-98	, small tro	out; 99-1	01 walle	/e										·····											
											<u> </u>																		
L	EYES	<u></u>	GI	LLS	PSE	UDOBR	ANCH		тнүми	S (herrio	orrhage))	MES	ENTARY	FAT	SPL	EEN	KID	NEY		LIVER			BILE		<u> </u>	<u></u>	SEX	
	N, norma	l	N, n	ormal		N, norma	al 🛛		OPERCL	JLA (she	ortening)		0, none		B. 5	olack	N, no	ormai		A, red		0, yello	w empty	bladder		М, п	nale; F, fe	emale
E1/E	2, exoptf	almia	F, fi	rayed		S, swolle	n	ł	IND GU	T (inflat	mmatior	1)		1, <50%		R,	red	S, sv	vollen	£	3, light re	d	1. yel	ow full b	ladder		1	immatu	re
H1/H	2, hemor	rhagic	C, cl	ubbed		L, lithic			FIN	S (erosi	ion)			2,50%		G, gr	anular	M, m	ottled	С,	cream (fa	itty)	2,	light gre	en .				
В	1/B2, bli	nd	M, ma	rginate	١,	inflamm	ed			0, none				3, >50%		NO, n	odular	G, gra	anular	ſ), nodule	s	3.	dark ore	en			Stomac	h
M1	M2. mis	sina	P.	pale		OT, othe	r			1. mild				4. 100%		E. en	larged	Uur	olithic	E foc	- al discolo	ration						E amob	
	OT othe	, . <u>.</u>	OT n	ther						2 sever	e					_,	other	01	other	E gene	ral disco	loration						E full	1
	e /, ouic		0.,0							_,	-					÷.,		U 1,		., yene					dator:-	ad		r, iuli	
																					or, oulei			NU, NOL	uetennin	ed.			

WRITTEN BY MG ON 95/08/28

REVISED BY SG ON 95/09/13

FILE: FORM035,XLS

.

DATE	95/09/0	7	TIME:	13:25-1	4:10	INITIAL	_S:	GB/SS/	SG/MG		FISH S	OURCE:		Rocky N	Atn			TREAT	MENT:	diltuion	water cor	ntrol		TANK:	10				
****																								EXPOS	URE PE	RIOD:	7 days	\$	
								NECRO	PSY (see	e below	for expl	anation o	of codes	;)]											
					EXTE	RNAL						INTE	RNAL					·					OTHER	DATA					
<u> </u>	Ĭ	<u> </u>	T	1		1	1		[1	I	tonese		1	1	[1	1	1				1		P-4400	1			
SAMPLE ID	length (mm)	weight (g)	body condition	uy	operculum	eye	gill	sex (M, F, I)	pseudobranch	thymus	fat	spleen	hind gut	stomach	kidney	liver	bile	wet weight (g)	dry weight (g)	moisture (%)	liver weight (g)	blood volume (mL)	hematocrit (%)	leucocrit (%)	protein (g/dL)	lactate (mg/dL)	glucose (mg/dL)	hemoglobin (g/dL)	white blood cells (%)
—	105	02	1 1 25		0		[h:	1 15						e	N			r		T	0.89	16	20	~1	71	0.4	101		·
	195	33	1.25	<u> </u>	<u> </u>		N	15		<u>⊢⊸</u>	<u> </u>	PCE		- <u>-</u>	N			<u> </u>		<u> </u>	0.00	1.0	34	<1	53	30	04	10.9	J{
02	162	54	1.15			N	N	15				BGE			N						0.33	1.1	33	<1	5.0	55	04 00	7.2	
84	167	53	1 1 1 4			N	N	 				86	.	- <u>-</u>	N		<u> </u>			<u> </u>	0.01	0.1	40	<1	5.5 ND		33 ND	7.5	<u> </u>
85	203	110	1 31		0	N	N	IF					<u> </u>	F							1.52	1.0	36	<1	50	113	120	8.4	
86	155	56	1.50	0	0	N	N	M		0	4	R	0	F	N	B	0	ł			0.61	11	40	<1	44	107	104	77	i
87	165	49	1 09	0	0	N	N	M		0	2	BG	ō	E	N	c	3			†	0.32	0.8	31	<1	4.0	77	84	5.8	——
88	182	88	1,46	0	0	N	N		i	0	3	R	0	F	N	A	0	t			1.37	ND	35	<1	6.1	139	95	8.2	
89	133	61	2.59	0	0	N	N	M	5	ō	2	R	0	F	N	В	1	<u>†</u>			0.51	0,5	43	<1	4.7	ND	134	8.4	
90	138	29	1.10	0	0	N	N	IF	1	0	2	R	0	Ε	N	В	2	1		1	0.24	0.5	30	<1	4.8	ND	138	4.5	
91	55	2.0	1.20	[1	[<u> </u>	11					1	3.59	0.82	77	0.026								
92	90	9.0	1.23							1	1	1				I	1	1.44	0.32	78	0.078								
93	75	4.0	0.95					1			1	1					1	8.59	2.36	73	0.072				F				
94	89	7.0	0.99	[l	[5.88	1.32	78	0.068				[
95	85	5.0	0.81				L				[4.52	1. 00	78	0.049								
96	85	5.0	0.81	l			L	L										4.48	0.95	79	0.069								
Comm	ents	81-90,	arge trou	t; 91-93,	small tro	out; 94-96	6, walley	e																					
																												·	
l	EVEC		<u></u>		Deci	10000		·	*1 11/0 01 1	0 /1																·····-			
	E7E3		G <u>IL</u>	-13	PSE	JUUBRA	ANCH		IHYMU	is (nem	ormage		MESI	ENIARY	FAI	SPL	EEN	KID	NEY		LIVER			BILE				SEX	
	N, norma	1	N, N	ormal	3	N, norma	31	(OPERCI	JLA (shi	ortening)		0, none		B, 5	black	N, no	ormal		A, red		0. yello	w empty	bladder		M, m	ale; F, fe	:male
E1/E	2, exopth	almia	F, fr	ayed	5	S, swollei	n	ł	HND GU	IT (infla	mmation)		1, <50%		R,	red	S, sv	vollen	8	3, light re	đ	1, yell	ow full bl	ladder		١,	immatu	re
H1/H	2, hemor	rhagic	C, ch	ubbed		L, lithic			FIN	IS (erosi	ion)			2,50%		G, gr	anular	M, m	ottled	C, (cream (fa	itty)	2,	light gree	en .				
8	1/82, blir	nď	M, ma	rginate	1,	inflamme	ed			0, none				3, >50%		NO, n	odular	G, gra	anular	0), nodule:	5	З,	dark gre	en		5	Stomact	n
M1	M2, mis	sing	Ρ, ρ	bale	(OT, othe	r			1, mild				4, 100%		E, en	larged	U, ur	olithic	E, foc	al discolo	ration						E, empty	/
	OT, othe	r	OT, ot	her						2, sever	e					OT,	other	OT,	other	F, gene	ral disco	loration						F, full	
																				- (DT, other			ND, not	determin	ied		, 4	

WRITTEN BY MG ON 95/08/28

REVISED BY SG ON 95/09/13

DATE:	95/09/0	7	TIME:	09:15-1	0:05	INITIAL	.S:	GB/SS/	SG/MG		FISH S	OURCE:		Rocky N	ltn			TREAT	MENT:	0.1% TI	D			TANK:	11				7
<u> </u>																								EXPOS	URE PE	RIOD:	7 days		
				1			l	NECROF	PSY (see	below	for expla	nation o	of codes	;)				L	-										
				1	EXTE	RNAL						INTE	RNAL										OTHER	DATA					
SAMPLE ID	length (mm)	weight (g)	body condition	uj	operculum	eye	lig	sex (M, F, I)	pseudobranch	thymus	fat	spleen	hind gut	stomach	kidney	liver	bite	wet weight (g)	dry weight (g)	moisture (%)	liver weight (g)	biood volume (mL)	hematocrit (%)	leucocrit (%)	protein (mg/dL)	lactate (mg/dL)	giucose (mg/dL)	hemoglobin (mg/dL)	white blood cells (%)
	105		1 1 20	1	0	N		1			1		0	ND	N	<u> </u>		T	<u> </u>	1		ND	29		72	65		06 1	
51	165	77	1.39			N		M	8	0			0	F	N	8	1				0.5	15	41	<1	67	74	90	9.5	
53	196	93	1 24		0		N	M	s		4	R	0	F	N	В	$\frac{1}{1}$			<u> </u>	1.26	1.6	37	<1	6.1	95	104	10.5	
54	163	53	1.22	0	1	N	N	IF	s	0	3	RE	0	F	N	В	1				0.32	0.9	37	1	7.0	91	93	6.1	
55	220	128	1.20	0	0	N	N	IF	N	0	1	R	0	F	N	В	1			1	15	2.2	42	1	10.7	128	108	13.8	
56	178	76	1.35	1	0	N	N	IF	S	0	4	R	0	F	N	В	1				15	1.4	39	<1	5.5	103	92	8.8	
57	210	97	1.05	1	0	N	N	IF	N	0	1	R	0	E	N	В	1				0.61	1.9	36	<1	6.8	98	96	8.1	
58	177	79	1.42	0	0	N	N	IF	S	0	4	R	0	F	N	В	1				1 13	1.3	44	<1	8.2	94	127	12.5	
59	182	63	1.05	0	1	N	N	IF	S	0	3	R	0	E	N	В	2				0.53	1.4	48	1	5.5	80	127	12.3	
60	168	49	1.03	0	0	N	N	IF	S	0	4	BÉ	0	E	N	В	1	I		ļ	0.34	1.0	48	<1	7.1	_107	134	4.3	
102	66	3.5	1.22	<u> </u>	ļ	ļ					 						ļ	3.12	0.74	76	0.06								
103	75	2.9	0.69	ļ	ļ						ļ						_	3.38	0.71	79	0.02								
104	87	5.9	0.90	<u> </u>	[{	[{			 						 	5.58	1.25	78	0.11								
105	/5	3.0	0.85			ł					 						<u> </u>	2.71	0.60	/8	0.08								
Com	ente	51-60	arge troi	t: 102 si) mall trou	1 t: 103-10	5 walley)	1	L	L	l				I	1	L	L	L	L	i			L			}	
		01.001	ange noe				o, <i>m</i> anoj	-																			····		
												·······															-		
																											·		
	EYES		Gl	LLS	PSE	UDOBR	ANCH		THYMU	S (hem	orrhage)		MES	ENTARY	FAT	SPL	EEN	KID	NEY		LIVER			BILE			<u>-</u>	SEX	
	N, norma	d	N, n	ormal		N, norma	al 🛛		OPERCI	JLA (sh	ortening)		0, none		8, t	black	N, n	ormal		A, red		0, yetio	w empty	bladder		M, m	ale; F, fe	male
E1/E	2, exopth	almia	F, f	rayed		S, swolle	n	ł	HIND GU	T (infla	mmation	1)		1, <50%		R,	red	S, sv	voilen	E	3, light re	d	1, yell	ow full bl	ladder		1.	immatur	e
H1/H	2, hemor	rhagic	C, cl	ubbed		L, lithic			FIN	S (eros	ion)	•		2,50%		G, gr	anular	M, m	ottled	С, с	cream (fa	itty)	2.	light are	en .		•		
в	1/B2, blir	nd	M, ma	rginate	١.	inflamm	eđ			0, none	•			3, >50%		NO, n	odular	G, gra	anular	C), nodule	s	3.	dark ore	en		9	Stomach	,
M1	M2 mis	sina	Ρ.	pale		OT, othe	r			1, mild				4, 100%		E, en	larged	U, ur	olithic	E, foc	al discolo	ration	-,					Femoty	
	OT othe	r	OT n	ther						2 sever	e					OT	other	OT	other	F. gene	ral disco	loration						E fut	
			÷.,•	=-						_,	-					÷ · ·				(OT othe			ND not	determin	eđ		1,100	
																	_ ,												

WRITTEN BY MG ON 95/08/28

REVISED BY SG ON 95/09/13

DATE:	95/09/07	,	TIME:	10:25-1	1:10	INITIAL	.s:	GB/SS/	SG/MG		FISH S	OURCE:		Rocky M	<i>A</i> tn	_		TREAT	MENT:	1% TID				TANK:	12				
°																								EXPOS	URE PE	RIOD:	7 days		
								NECROF	SY (see	below	for expl	anation o	of codes)				7											
					EXTE	RNAL			•		•	INTER	RNAL										OTHER	DATA					
SAMPLE ID	length (mm)	weight (g)	body condition	IJ	operculum	eye	gill	sex (M. F. I)	pseudobranch	thymus	fat	spleen	hind gut	stomach	kidney	liver	bile	wet weight (g)	dry weight (g)	moisture (%)	liver weight (g)	blood volume (mL)	hematocrit (%)	leucocrit (%)	protein (mg/dL)	lactate (mg/dL)	glucose (mg/dL)	hemoglobin (mg/dL)	white blood cells (%)
L	l		1	1]	<u> </u>	J	l	L		<u> </u>	II			l	L	<u> </u>	1		[]	1		L						
61	160	44	1.07	0	0	N	N	IF	S	0	2	в	0	F	N	В	2	1			0.61	0.8	32	<1	6.1	66	85	3.6	
62	180	67	1.15	1	1	N	N	М	N	0	4	BNOE	0	F	N	В	1	1			0.57	1.5	36	1	5.1	62	99	6.4	
63	210	115	1.32	1	0	N	N	М	S	0	2	В	0	F	N	В	2				1.19	1.1	41	1	6.3	79	90	7.8	1
64	190	67	0.98	1	1	N	N	IF		0	4	BG	0	F	N	В	1				0.56	0.7	42	<1	5	67	95	6.2	
65	160	58	1.42	0	0	N	N	M		0	· 3	R	0	F	N	В	2				0.84	0.9	44	<1	7.2	124	91	7.2	
66	170	83	1.60	1	0	N	N	M	S	0	4	R	0	F	N	В	0				1.31	1.3	44	1	4.2	122	108	3.9	
67	170	55	1.22	1	0	N	N	١F	1	0	1	В	0	F	N	8	1				0.68	0.9	39	<1	7.2	131	84	4.1	
68	180	53	0.96	0	1	N	N	IF	1	0	3	BGE	0	E	N	В	1				0.46	1.4	36	<1	3.5	82	102	9.5	
69	120	19	1.10	0	1	N	N	1		0	1	В	0	<u> </u>	N	В	1				0.18	0,4	30	<1	4.4	ND	123	2.9	
70	170	51	1.10	1	1	N	N	M		0	4	R	0	<u> </u>	N	8	1	ļ			0.35	1.2	32	<1	2.5	94	86	3.3	
106	82	6.9	1.25		ļ							ļļ				ļ		3.28	0.79	76	0.06								
107	61	2.6	1.15				ļ					ļļ				L		2.41	0.55	77	0.04		[]						
108	70	3.5	1.02								L	ļļ				l		6.45	1.80	72	0.05								
109	90	6.4	0.88									Ļ					L	6.03	1.39	77	0.11								
110	83	4.3	0.75													L		2.84	0.61	79	0.05								
111	74	3.0	0.74		L	L	L				L			·	L	L	L	3.77	0.84	78	0.04								
Comme	nts:	61-70, 1	arge trou	t; 106-10	8, small	trout; 10	9-111, w	alleye						·····															
·~				<u></u>																									
	EYES		GIL	LS.	PSE	JDOBR/	NCH		THYMU	S (hemo	mhade)	MESI	INTAR	FAT	SPL	EEN	KID	NEY		LIVER			BILE				CEY	
1	l, normal		N, na	ormal	i	N, norma	1	c	OPERCU	LA (sho	ortening	, 1)		0, none		8, b	lack	N, no	rmal		A, red		0, yellov	v empty l	bladder		M. m	ale F fe	male
E1/E2	, exoptha	almia	F, fo	ayed	5	S, swolle	n	ŀ	IND GU	T (inflar	nmatio	n)		1, <50%		R.	red	S. sv	olien	В	light re	đ	1. vell	ow full bl	adder		1	immatur	
H1/H2	, hemorri	hagic	C, clu	ubbed		L, lithic			FIN	S (erosi	on)	,		2, 50%		G, gra	anular	M, m	ottled	C, c	ream (fa	- tty)	2,	light gree	en ,		•,	in marca	.
B1	/82, blin	d	M, mai	rginate	L.	inflamme	ed			0, none				3, >50%		NO, n	odular	G, gra	nular	D	, nodule:	5	3.	dark gree	en		,	tomach	'n
M1/	M2, miss	ing	P. 1	ale		OT, othe	r			1. mild				4. 100%		E eni	aroed	U, um	dithic	E. for	al discolo	ration	-1				•		-
C	T, other	5	OT, ot	her						2, sever	e			.,		OT.	other	OT. C	other	F, gene	ral discol	oration						F full	
																				c	DT, other			ND, not i	determin	ed			

WRITTEN BY MG ON 95/08/28

. .

REVISED BY SG ON 95/09/13

DATE:	95/09/0	7	TIME:	11:30-1	1:50	INITIAL	.S:	GB/SS/	SG/MG		FISH S	OURCE:		Rocky N	/tn			TREAT	MENT:	10% TI)			TANK:	13				
L						A					*													EXPOS	URE PE	RIOD:	7 days	5	
				[NECROF	PSY (see	below	for expla	nation o	of codes	;)]											
					EXTE	RNAL					-	INTE	RNAL										OTHER	DATA					
SAMPLE ID	length (mm)	weight (g)	body condition	E	operculum	eye	lig	sex (M, F, I)	pseudobranch	thymus	fat	spleen	hind gut	stomach	kidney	liver	bile	wet weight (g)	dry weight (g)	moisture (%)	liver weight (g)	blood volume (mL)	hematocrit (%)	leucocrit (%)	protein (mg/dL)	lactate (mg/dL)	glucose (mg/dL)	hemoglobin (mg/dL)	white blood cells (%)
		T				1					<u>, </u>							r		1	0.54								
71	176	63	1.16	0	0		<u>N</u>		<u> </u>	0	$\frac{1}{2}$	BG	0		N	В					0.51	1.2	34		4.9	- 22		3.1	
72	168	68	1.43			N	N	M		0		8	0	<u>г</u> с	N	B	2				0.91	1.6	41		1.0	51	92	6.9	
74	190	70	1.02	0	1	N					1 2	BGE	0	F	N	8	2				0.40	1.3	43		3.4	41	76	0.0	
74	107	81	1.19	0	0	N	N	16		0		BGL	0	F	N	B	2				0.68	1.5	39	- <u>i</u>	5.8	61	120	10.6	
76	166	53	1 16	0	0	N	N	IF		0	4	R	0	E	N	B	1				0.51	1.1	42	1	47	55	99	48	
77	155	50	1 34		0	N	N		<u> </u>	-		8	0	F	N	B	2				0.68	0.9	41	>1	5.8	92	86	10.2	
78	175	76	1.42	0	ō	N		IM IM		0	4	R	0	F	N	в	0	<u> </u>			1.11	1.4	34	<1	6.6	132	112	55	
79	155	44	1.18	0	0	N	N	M	N	0	3	R	0	E	N	c	1	t	(f	0.29	1.1	30	<1	4.2	93	121	9.6	
80	165	57	1.27	0	1	N	N	IF	1	0	3	R	0	F	N	В	1			1	0.62	1.2	34	>1	3.8	83	117	7.2	
112	64	2.5	0.95			1		1										3.02	0.71	76	ND								
113	70	3.2	0.93															6.03	1.70	72	0.05								
114	80	6.3	1.23															2.26	0.48	79	0.08								
115	80	4.1	0.80															3.85	0.85	78	0.07								
116	72	2.5	0.67															4.57	0.99	78	0.03								
117	88	4.8	0.70	L	<u> </u>	<u> </u>	L	L	L		L	L		<u> </u>	l	l	L	2.29	0.49	79	0.04								
Comme	ents	71-80,	large trou	rt; 112-11	4, small	trout; 11	5-117, v	alleye																		-			
L										······																			
L																													
	EYES		Gil	LLS	PSE	UDOBR/	ANCH		THYMU	S (hem	orrhage)		MES	ENTAR	(FAT	SPL	EEN.	KID	NEY		LIVER			BILE				SEX	
I	N, norma	al	N, n	ormal		N, norma	al		OPERCL	JLA (sh	ortening)		0, none		8, E	lack	N, n	ormal		A, red		0, yello	w empty	bladder		М, п	nale; F. fe	emale
E1/E	2, exopth	nalmia	F, fr	ayed	:	S, swolle	n	1	HIND GU	T (infla	mmation	1)		1, <50%	r.	R,	red	S, sv	vollen	ε	, light re	d	1, yel	ow full b	ladder		1	immatur	re
H1/H	2. hemor	rhagic	C, ch	ubbed		L, lithic			FIN	S (eros	ion)			2, 50%		G, gr	anular	M, m	ottled	С.	cream (fa	atty)	2	liaht are	en				
В	1/B2 bli	nd	M. ma	roinate	L.	inflamm	ed			0. none				3. >50%		NO. n	odular	G. ar	anular		, nodule	5	3	dark ore	en			Stomach	-
M1.	M2 mis	sina	P	nale	.,	OT. of he	er .			1 mild				4 100%		E en	larged	Li un	olithic	E for	al discolu	- oration	υ,	-an gio				E amot	,
14111	1712, 11115 OT othe	an iy x	01 0	ther		or, our				2 69104				-, 100 /0		0. en	other	0, UI	other	E 000	mi diece							c, empty	1
	or, othe	1	01,0	u (C)						2, 36761	c					01,	other	01,	oulei	r, yene		-						r, 10(1	
																		1	Ji, othe	r		ND, not	aetermin	eđ					

WRITTEN BY MG ON 95/08/28

.....

REVISED BY SG ON 95/09/13

DATE:	95/09/0	5	TIME:	10.30-1	0.45	INITIAL	S:	G8/SS/	SG/MG		FISH S	OURCE:		Rocky N	ftn			TREAT	MENT:	50% TI	D			TANK:	14				
*******																		-	_					EXPOS	URE PER	RIOD:	6 days	5	
								NECROF	PSY (see	e below	for expla	anation	of codes	5)															
				_	EXTE	RNAL						INTE	RNAL										OTHE	RDATA					
SAMPLE ID	length (cm)	weight (g)	body condition	սլլ	operculum	eye	git	sex (M. F. I)	pseudobranch	thymus	fat	spleen	hind gut	stomach	kidney	liver	bile	wet weight (g)	dry weight (g)	moisture (%)	liver weight (mg)	blood volume (mL)	hematocrit (%)	leucocrit (%)	protein (g/dL)	lactate (mg/dL)	glucose (mg/dL)	hemoglobin (g/dL)	white blood cells (%)
r	10.6		1 1 1 4	1 0	0	AI N		10	NI -	N			0	E I	N	9	1 3		·	1	080	ND	27	c1 1	65 1	102	EG		·
12	19.0	45	1.14		0	N	P	IF	- N	N N	3	8	0	E	N	8	3		 		540	ND	37	<1	84	119	56	3.0	{
13	18.8	83	1,25	0	0	N	N	IF	s	N	4	В	0	ε	N	В	3			<u> </u>	1010	ND	26	<1.	3.6	186	69	6.2	
14	14.1	49	1.75	0	0	N	N	IF	S	N	3	В	0	Ε	N	В	3			1	393	ND	21	<1	2.6	155	88	6.4	
			1			[1				ĺ									1									
[]]				
			Į	Ļ		l	ļ								-,					<u> </u>									
ļ			ļ	<u> </u>		ļ	ļ								··· <u></u> ···	ļ	ļ	ļ		ļ									L
			<u> </u>	 		<u> </u>	<u> </u>											}	ļ	<u> </u>									
				<u> </u>			<u> </u>				}							}{											
			}								}						├	<u>├</u> ───┤		<u> </u>					┝╼╍┥	}			
]		[<u> </u>													1									
ļ				<u> </u>		<u> </u>						[]					[1				
Comme	nts	no sma	l walleye	or trout s	survived																								
		11-14,1	arge trou	n						····				·····															
				·····						<u> </u>					••••••								·····						
L	EYES		GI	LS	PSEL	JDOBR/	ANCH		THYMU	S (herro	ormage		MES	ENTARY	FAT	SPI	FEN	KIDI			INER			BILE				OEV	
1	v norma	l	No	ormal	1	N norma	u / -	6	OPERCI	II A Ishe	ntenina	`		0 none		8 h	lack	N nc	ormal		Ared				biadder			SEA	
E1/E	2 exopth	almia	Ft	aved	ŝ	s swolle	n	ļ.		T (inflar	nmation	, 1		1 <50%		8	red	5 64	milen	5	R, reu R light reu	d	1 10	w empty :	adder		FVI, 11		emaie
H1/H3	bemor	haoic	C ch	ubbed		L lithic		•	FIN	S (atroei	001	1		2 50%		Gor	anular	M m	ottled	د ا	ream //-	- (11)	1, yen	light grow			· •,	namatu	e
R	I/R2 blic	nag.o	M ma	rninate	1	ioflamm	ed.			0 0000	ony			3 >50%		NO n	odular	G or	anudar	C		-	2,	ngin gree	511 .				
M1/	M2 mice	sina	p :	nale	', '		 r			1 mild				4 100%		F and	arned	G, gra	hithic	E foo	al disocle	e Section	з,	uain gree	ei i		:	siomaci	ר
	T other		0T n	ther	,	, ouie	•			7 cover	۵			,,			olber		other	E. 100	a uscolo				dotorm'-	. d		⊢, empty	/
,			01,0							2, 2010	e e					Q1,1	ou rei	01,0	ourier	r, yene	∩T other			NU, 10(1	ບະເຍເກາເກີດ	eu		r, Iuli	
																					or, outer								

REVISED BY SG ON 95/09/13

DATE	95/09/0	6	TIME:	13:50-1	4:30	INITIAL	_S:	GB/SS/	SG/MG		FISH S	OURCE:		Rocky I	Mtn			TREAT	MENT:	NAPH				TANK:	15				
											h							-h		•				EXPOS	URE PE	RIOD:	7 day:	S	
								NECRO	SY (see	below	for expl.	anation	of codes	s)]									~		
					EXTE	RNAL		1				INTE	RNAL										OTHE	R DATA					
SAMPLE ID	length (cm)	weight (g)	body condition	lin	operculum	eye	gill	sex (M, F, I)	pseudobranch	thymus	lat	spleen	hind gut	stomach	kidney	liver	bile	wet weight (g)	dry weight (g)	moisture (%)	liver weight (mg)	blood volume (mL)	hematocrit (%)	leucocrit (%)	protein (g/dL)	lactate (mg/dL)	glucose (mg/dL)	hemoglobin (g/dL)	white blood cells (%)
<u> </u>	1.00	1 60	1 1 24		1 0	I N		1.114					0	<u> </u>	T		1	1		1	801	ND	22		64	C 02	100		T
31	10.0	00	1.31						N	0	4	B	0					┟		<u> </u>	1012		40		0.4	92	108	0.8	<u> </u>
32	177	67	1.30		1 0	N		141	N	0		BG	-	F	PALE		1 1	<u> </u>	 -		613	NO	36		<u> </u>	126	144	7.0	
33	17.4	60	1 14	0		N	N	M	N	0	1 2	B	<u> </u>	F	N	Ā		<u>†</u>	<u> </u>	 	375	ND	34	<1	83	51	100	6.4	<u> </u>
35	17.8	68	1.21	0	0	N	N	1	N	0		R	0	F	N	A	1				750	ND	36	<1	6.5	132	128	66	
36	16.7	57	1.22	0	0	N	N	IF	N	0	2	В	0	Ε	N	A	1 1	f	<u> </u>		899	ND	37	<1	6.8	94	108	7.5	<u> </u>
37	16.7	68	1.46	0	0	N	N	IF	S	0	1	BG	0	E	N	В	1	f	[1	546	ND	36	2	4.7	50	99	7.5	1
38	17.0	71	1.45	0	0	N	N	IF	S	0	4	в	0	F	N	В	0	1			1267	ND	30	<1	6.6	137	88	7.9	1
39	19.5	96	1.29	0	0	N	N	M	N	0	1	R	0	F	N	В	2				996	ND	39	<1	7.8	95	108	6.9	
40	13.5	31	1.26	0	0	N	N	IM	S	0	4	В	0	E	N	В	ND			1	416	ND	33	<1	7.5	96	84	6.4	
118	5.3	1.5	1.01															1.29	0.29	78	ND								
119	5.6	1.9	1.08															1.75	0.30	83	31								1
120	6.8	2.7	0.86	ļ			ļ	<u> </u>				L		ļ	<u> </u>	ļ	1	2.49	0.47	81	36								
121	7.6	3.7	0.84	ļ			ļ				ļ	ļ				Ļ	I	4.77	1.05	78	99		ļ			L			
122	8.5	5.0	0.81	ļ	ļ	ļ	ļ	ļ			ļ	ļ	ļ	ļ	ļ	ļ	ļ	3.28	0.68	79	48			ļ	ļ	<u> </u>	Ļ	L	ļ
123	8.8	5.8	0.85	1 110 1	<u> </u>	<u></u>	1	1	L	L	L	L	l	I	<u> </u>	1		5.50	1.25	77	83		L	L	L	ļ	L		<u> </u>
Comm	ents	31-40,	large trou	<u>я; 118-1.</u> -	20, smail	trout; 12	21-123, V	valleye					····									·····					·		
		tested	at 55 ppr																										
L	EYES		GI	LLS	PSE	UDOBR	ANCH		тнүми	S (hemo	orrhage)	MES	ENTAR	Y FAT	SPI	LEEN	KID	NEY		LIVER			BILE		-		SEX	
	N, norma	al	N, n	ormal		N, norma	al		OPERCI	JLA (sh	ortening	1)		0, none	•	В.	black	N, n	ormal		A, red		0, yello	w empty	bladder		М, п	nale; F, f	emale
E1/6	2, exopti	nalmia	F, f	rayed		S, swolle	in .	i	HIND GU	T (infla	mmation	1)		1, <509	6	R,	, red	S, s\	wollen	1	B, light re	d	1, yei	low full b	ladder		1	, immatu	ire
H1/F	2, hemor	rhagic	C, cl	ubbed		L, lithic			FIN	S (eros	ion)			2, 50%		G, gi	ranular	M, m	ottied	С.	cream (fa	atty)	2.	light gre	en				
E	81/B2, bli	nd	M, ma	irginate	1,	inflamm	ed			0, none				3, >50%	6	NO, I	nodular	G, gr	anular		D, nodule	s	3,	dark gre	en			Stomac	h
M	/M2, mis	sing	Ρ,	pale		OT, othe	н			1, mild				4, 100%	6	E, er	larged	U, ur	olithic	E, foo	al discol	oration						E. empt	v
	OT, othe	r	OT, c	ther						2, sever	e					OT.	other	OT,	other	F, gen	eral disco	oloration						F, full	
	-																				OT othe	r		ND. not	determin	ned			
																					•					-			

WRITTEN BY MG ON 95/08/28

REVISED BY SG ON 95/09/13

DATE:	95/09/0	6	TIME:	14:45-1	5:30	INITIAL	.s:	GB/SS/	SG/MG		FISH S	OURCE:		Rocky N	<i>l</i> tn			TREAT	MENT:	8NF				TANK:	16				
																		-						EXPOS	URE PE	RIOD:	7 days	5	
				[NECRO	SY (see	e below	for expl	anation	of codes	5)]	_			-							
					EXTE	RNAL						INTE	RNAL										OTHE	R DATA					
SAMPLE ID	length (cm)	weight (g)	body condition	ព្រ	operculum	eye	gill	sex (M, F, I)	pseudobranch	thymus	fat	spleen	hind gut	stomach	kidney	liver	bile	wet weight (g)	dry weight (g)	moisture (%)	liver weight (mg)	blood volume (mL)	hematocrit (%)	leucocrit (%)	protein (g/dL)	lactate (mg/dL)	glucose (mg/dL)	hemoglobin (g/dL)	white blood cells (%)
41	18.4	78	1 22	0	0	N	N	1	s	0	12	8	0	F	N	В	2	1	r	1	1158	ND	33	<1	8.0	51	115	63	
42	16.9	65	1.35	0	0	N	N	IM	s	0		B	0	ND	N	В	0			1	889	ND	33	<1	6.5	55	101	11.6	
43	18.5	80	1.26	0	0	N	N	IF	N	0	1	BGE	0	F	N	B	0	<u> </u>		ł	1451	ND	36	<1	7.5	82	120	10.1	
44	17.4	77	1.46	0	0	N	N	M	S	0	1	GE	0	F	N	В	0	1		1	1317	ND	39	<1	8.6	61	100	11.5	
45	14.8	62	1.91	0	0	N	N	1	N	0	1	В	0	Ε	N	В	3			1	239	ND	36	<1	3.6	39	77	7.2	
46	19.3	88	1.22	0	0	N	N	IM	S	0	4	BG	0	F	N	В	0				1439	ND	23	<1	5.6	78	133	9.5	
47	17.0	54	1.10	0	0	N	N	١F	S	0	2	R	0	E	N	В	1				768	ND	35	<1	4.0	97	136	11.0	
48	17.5	75	1.40	0	0	N	N	IF	<u>s</u>	0	4	В	0	F	N	В	1			I	1201	ND	32	<1	8.6	138	120	8.2	
49	13.3	26	1.11	0	0	N	N	١F	<u> </u>	0	2	R	0	Ε	N	В	1	ļ		Į	295	ND	30	<1	3.5	96	138	6.0	
ļ	ļ		<u> </u>			ļ	ļ	 			ļ	ļ				ļ	ļ			 			ļ						
ļ	ļ		<u> </u>			<u> </u>	ļ	<u> </u>			ļ	<u> </u>				ļ				 			ļ						
ļ	ļ		<u> </u>	ļ		 	ļ	<u> </u>			<u> </u>	l		ļ		ļ	ļ		<u> </u>	Į									
<u> </u>			┼	}				<u> </u>				<u> </u>					ļ			┨━━━━━			ļ	 	ļ		ļ		
}			<u> </u>				}	}			├───					<u> </u>	ļ			<u> </u>			<u></u>						
<u> </u>	<u> </u>		<u> </u>					<u> </u>				<u>├</u>				<u> </u>	<u> </u>			<u> </u>			 						
Comm	ents	41-49	arge trou	t: no sma	all trout t	ested		L		1	J	L		L			i	L	L	J	L	L	l	t			L	لىسىك	L
		trout inj	ected wit	h 10 ug E	3NF in c	orn oil	<u> </u>				······································				·····														
	EYES		GI	LS	PSE	UDOBR/	NCH		THYMU	S (hem	orrhage		MES	ENTARY	FAT	SPL	EEN	KID	NEY		LIVER			BILE				SEX	
	N, norma	t	N, n	ormal		N, norma	1]	4	OPERCI	JLA (sh	ortening	1)		0, none		B. t	black	N. no	ormal		A red		0 vello	wennby	bladder		Mm	ale E fe	male
E1/E	2. exopth	almia	E. fr	aved	:	S, swolle	n	}	IND GU	T (infla	mmation	1		1 <50%		R	red	S SM	ollen	f	light re	d	1 vel	low full b	ladder		101, 11		in sere
H1/H	2 hemor	thanic	C ch	ibbed		l lithic			EIN	S (eroe	ion)	.,		2 50%		G or	apular	0, 51 M. m	ottled	· · ·	ream /fr		1, 90	light are			۰.	minator	e
я	1/82 blir	nd d	M ma	rainate	1	ະ,	ad		7.40	0 0000	.0117			3 50%		0, gi		C	Dudac	, . ,			2, 2	ngni gre					
MI	/842 miee	ina	ю, ла р,	ale	ı,		r			1 mild				A 100%		50, F	larged	G, gra		ا 		S	з,	uark gre	en		:	>iomaci r	ı
1411	OT at-		F. I	inor			,			1, mila 2, ani	-			⇒.100%		E, en	argeo			E, 100	ai discolo	pration						E, empty	•
	UI, uner		01.0	11 6 1						∠, sever	e					01.	other	01,1	oiner	r, gene	eral disco	oration						F, full	
																					U1, othe	r		ND, not	determin	ed			

WRITTEN BY MG ON 95/08/28

REVISED BY SG ON 95/09/13

DATE:	95/08/2	3	TIME:	13:45-1	4:45	INITIAL	.S:	GB/SS/	SG/MG		FISH S	OURCE:		Rocky N	<i>l</i> tn			TREAT	MENT:	time zer	o control	fish		TANK:	none				
																		_						EXPOS	URE PE	RIOD:	0 days		
								NECRO	PSY (see	below	for expla	anation of	of codes	5)													-		
				J	EXTE	RNAL						INTE	RNAL								_		OTHEF	R DATA					
SAMPLE ID	length (cm)	weight (g)	body condition	IJ	operculum	cyc	liig	sex (M, F, I)	pseudobranch	thymus	fat	spleen	hind gut	stomach	kidney	liver	bile	wet weight (g)	dry weight (g)	moisture (%)	liver weight (mg)	blood volume (mL)	hematocrit (%)	leucocrit (%)	protein (g/dL)	lactate (mg/dL)	glucose (mg/dL)	hemoglobin (g/dL)	white blood cells (%)
<u> </u>	175	51	1 0.05		0	T N	N	· · ·	N	0	2	B	0	ND	N	Δ					400	13	35	1	34	23	80	7 1	<u> </u>
	17.5	55	1.03		0		N		N	0	2	8	õ	ND	N	Ā	3				380	1.0	36	<1	10.3	50	110	43	
	19.7	77	1 01		0	1 N	N	IF	N	0	1	В	0	ND	N	A	3			1	650	1.7	24	<1	6.3	57	78	2.5	
4	151	32	0.93	0	1	N	N	1	S	0	2	В	0	ND	N	A	3				320	0.7	43	<1	10.6	64	118	7.7	
5	17.0	42	0.85	0	0	N	N	1	N	0	2	8	0	ND	N	Ă	3				330	0.8	39	<1	9.3	56	73	7.2	
6	19.7	70	0.92	0	0	N	N	IF	S	0	2	В	0	ND	N	С	1				650	1.4	38	<1	7.8	85	87	7.1	
7	18.6	66	1.03	0	0	N	N	IF	N	0	2	В	0	ND	N	В	1				600	1.3	39	1	6.6	73	108	7.5	
				[
						I																							
						ļ	L													L									
			ļ		ļ	ļ																							
<u> </u>			ļ		ļ	ļ	ļ							·		ļ				ļ			ļ						
			ļ	<u> </u>		<u> </u>														 			ļ						
}				<u> </u>		<u> </u>														<u> </u>									
Comm	l]		L	<u> </u>	1	1	I	L		L	L	L				I	I	l	L	L			L	L					L
				,				·																			*****		
	EVEC			15	PSE		NCH		THYMU	S /hem/			MES		EAT		EEN	KiDi			INCO			011 5					
			- 14	ormai	- JE	N oorme			ODEDCI		/iiiiaye) Natanic -		ALCO.		1.141	576			ivit I				0	DILE				SEX	
- 4 / -		a Interio	ы, 0 с. с.			rs, norma C. euroll-				J_A (SNC T //_#-	a cening	<i>u</i>		o, none		D, D	na GR	19, DC			A, red		u, yello	wempty	Diaddef		M, M	aie; ⊦, fe	emale
E1/E	∠, exopth	aimia	F, 11	ayeo		S, SWOIIE	11	1	UVD GU	i (intiar	nenation	9		1, <50%		к, С	red	S, SM	vollen	E	s, light re	a	1, yell	ow full b	ladder		١,	immatur	re
H1/H	2, hemori	hagic	C, cli	upped					FIN	S (erosi	on)			2,50%		G, gri	anular	M, m	ottled	C, (cream (fa	atty)	2,	light gre	en .				
8	1/B2, blir	nd	M, ma	irginate	١,	inflamm	ed			0, none				3, >50%		NO, n	odular	G, gra	anular	0), nodule	s	З,	dark gre	en		5	Stomach	ז
M1.	M2, miss	sing	٩.	pale		OT, othe	r			1, mild				4, 100%		E, eni	arged	U, uro	olithic	E, foc	al discol	oration						E, empty	,
	OT, other	•	OT, 0	ther						2, sever	e					οт.	other	OT, O	other	F, gene	eral disco	loration						F, full	
																					OT, othe	r		ND, not	determin	ed			

WRITTEN BY MG ON 95/08/28

REVISED BY SG ON 95/09/13

DATE:	95/11/1	4	TIME:	10:30-1	1:45	INITIAL	.S:	MG			FISH S	OURCE		Rocky M	/tn. Sea	foods	· · · · ·	TREAT	MENT:		Athabas	ca Rive	r	TANK:		1			_
						Å					A			<u>_</u>				<u></u>						EXPOS	URE PE	RIOD:		28 Da	ys
								NECRO	SY (see	below	for expl	anation	of codes	5}]											
					EXTE	RNAL		and the second				INTE	RNAL										OTHE	RDATA					
SAMPLE ID	length (mm)	weight (g)	body condition	Ju B	opercutum	eye	HI6	sex (M, F, I)	pseudobranch	thymus	fat	spleen	ĝrţ	stomach	kidney	liver	bile	wet weight (g)	dry weight (g)	moisture (%)	liver weight (g)	blood volume (mL)	hematocrit (%)	leucocrit (%)	protein (mg/dl.)	lactic acid (mg/dL)	glucose (mg/dL)	hemoglobin (mg/dL)	white blood cells (%)
			0.84	00		1 A1	1 11							Ē	NI NI		<u> </u>		1022	70	0.18			r	<u> </u>				
<u> </u>	100	7.6	1.04	0.0	0.0		N	13.4	N	0	<u> </u>	8	0	<u>с</u> с	N	<u> </u>		1.4	0.35	78	0.10								
	120	135	0.78	0.0	0.0	N	N	1141	N	0	┝─┆──		-0	E E	N		1 7	29	0.55	78	0.08								
4	110	10.7	0.70	0.0	0.0	N	N	IM	N	0		B	0		N	$\frac{1}{2}$	3	22	0.50	77	0.13								
5	105	10.1	0.90	0.0	0.0	N	N	IM	N	0	<u> </u>	8	0		N	A	3	26	0.58	78	0.14								
6	90	6.5	0.89	0.0	0.0	N	N	IM	N	0	$\frac{1}{1}$	B	0	E	N	A	3	1.4	0.29	79	0.11								
7	105	10.1	0.87	0.0	0.0	N	N	IM	N	0	1	В	0	٤	N	A	3	2.3	0.52	77	0.13								
8	100	8.7	0.87	0.0	0.0	N	N	IM	N	0	1	В	0	٤	N	A	3	2.2	0.49	78	0.11								
9	110	12.2	0.92	0.0	0.0	N	N	IM	N	0	1	В	0	E	N	A	3	2.5	0.58	77	0.16		1						
10	110	9.9	0.74	0.0	0.0	N	N	IM	N	0	1	В	0	٤	N	A	3	2.3	0.52	77	0.12								
11	105	10.2	0.88	0.0	0.0	N	N	IM	N	0	1	В	0	E	N	A	3	2.5	0.58	77	0.17		[
12	100	9.0	0.90	0.0	0.0	N	N	IM	N	0	1	В	0	٤	N	A	3	2.4	0.54	78	0.17		ļ						
			ļ	ļ	<u> </u>	<u> </u>	ļ	ļ			ļ	ļ				ļ	ļ		<u> </u>	ļ	ļ		<u> </u>		ļ				
			ļ				<u> </u>				ļ	ļ				ļ	 	<u> </u>	}										
Comme	nte		<u> </u>	L	l	[1	L				L		L	L	l	l	I	<u> </u>	1	<u> </u>		1	L	ll		L		L
Fish #2	whole li	ver pres	erved (no	A & B)			Fish #8	- ont soli	······																				
Fish #5	only 1 l	ver pres	erved	1			Fish #10	0 - liver n	ot split													·							
Fish # 6	& 7 - live	er not cu	tup (ie. i	n half)														····										•	
۰ <u>۰</u>	EYES		GI	LS	PSE	JDOBR/	ANCH		THYMU	S (hem	orthage)	MES	ENTARY	FAT	SPL	EEN	KID	NEY		LIVER			BILE				SEA	
N	l norma	1	Nn	ormal	'n	N. norma	al	6	OPERCU	ILA (ch	ndenina	, N		0 none		B F	lack	No	ormal				0 vello	wempty	bladdor				mala
E1/E2	, axooth	almia	Efr	aved	5	s swolle	n	ŀ		T/inflar	nmation	,, .)		1 <50%		R	red	Seu	wallen	F	A light rev	4	4 undi	ow full bi	ladder		141, 111		n naie
L1/L7	hemori	thanic	C ch	:bbed				•	EIN	S (aroa)		• 5		2 50%		G at	anular	0, 3 ;	ottlad	<u> </u>	5, iigiit 16	د. در هم	1. 700		180081		1,	mmatu	e
04		d	Al ma	roinete	1	inflamma	ed		1 114	0 0000	ionj			2,00%		G, gr		SVI, 11		, ·			2.	ngnt gre	ษก				
1.11				nginato	·,	∩T ~ba	, ,			4				1, 200 M		F	lound	G, gr.				5	э,	dark ĝre	en			siomaci	1
IAL LU	vi∠, 111/55		، ، س	bor	,	J., U(18)				1, 11803 2, anu	_					≂, en	aigeu	0, Ur ⊙≁	outnic	E, 100		RECOR						⊭, empty	1
L L	, i , otnet		01,00	1101						∠, S8V0ľ	8					01.	orner	01,	other	r, gene	eral disco	oration						F, full	
		104																		1	UI, other								

8

WRITTEN BY MG ON 95/08/28

REVISED BY SG ON 95/09/13

DATE:	95/11/1	3	TIME:	18:50		INITIAL	.S:	MG			FISH S	OURCE:	Sask, F	isheries				TREAT	MENT:	Control				TANK:	2				
																								EXPOS	URE PE	RIOD:	28 days		
								NECRO	SY (see	below	for expla	anation	of codes	:)]								_			
					EXTE	RNAL		1			-	INTE	RNAL										OTHE	RDATA					
SAMPLE ID	length (mm)	vælght (g)	body condition	E	operculum	eye	III6	sex (M, F, I)	pseudobranch	thymus	jat	spleen	gut	stomach	kidney	liver	bile	wet weight (g)	dry weight (g)	molsture (%)	llver weight (g)	biood volume (mL)	hematocrit (%)	leucocrit (%)	protein (mg/dL)	lactic acid (mg/dL)	glucose (mg/dL)	hemoglobin (mg/dL)	white blood cells (%)
		0.5	1 0 00									<u> </u>	<u> </u>	-	N		2	1.125	0 271	79	0.15		1	· · · · ·					r
	90	0.5	0.09	0				11/1	N N						N	<u> </u>		1.20	0.271	78	0.15				·		{		
- <u>-</u>	90	0.2	0.85			N		114	N				<u> </u>	<u></u>	N			1.18	0.204	78	0.10						-		┣
	105	0.5	0.03		0	N		IM	N		1			F	N	A	3	235	0.516	78	0.24							·	<u> </u>
	100	76	0.76	0		N	N	IM	N	0	1	8		F	N		3	1 77	0.395	78	0.15								
	105	105	0.91	0		N	N	IM	N	ő	1		- -		N	A	3	257	0.575	78	0.31		ł				<u>├</u> ───		i
7	100	85	0.85	0	0	N	N	IM	N	0	1	B	0	F	N	A	3	1 76	0393	78	0.19		<u> </u>						
8	95	7.4	0.86	0	0	N	N	IM	N	ō		B	0	E	N	A	3	1.78	0.390	78	0.14		<u> </u>						<u> </u>
9	100	7.8	0.78	ō	ō	N	N	IM	N	0	1	В	0	E	N	A	3	1.8	0.388	78	0.14								<u> </u>
10	90	6.5	0.89	0	0	N	N	IM	N	0	1	В	0	E	N	A	3	1.38	0.299	78	0.18								
11	100	7.4	0.74	0	0	N	N	IM	N	0	1	В	0	E	N	A	3	1.53	0.322	79	0.06				· ·		<u> </u>		t
			1		1		1	1		f							1	[1				1		(
<u> </u>			1			1	1	1		1	[[1	1								[1
												1]						1								T		1
						l																							
Comm	ents																												
L																					<u></u>						<u></u>		
																		. <u></u>											
L																									•	w,e,q			
	EYES		GIL	LS	PSE	UDOBRA	ANCH		THYMU	S (hemo	orrhage)		MES	ENTAR	FAI	SPL	EEN	KID	NEY		LIVER			BILE				SEX	
	N, norma	l	N, no	ormal		N, norma	31		OPERCI	ULA (shi	ortening	1)		0, none		B, E	black	N, n	ormal		A, red		O, yello	w empty	bladder		М, п	ale; F, f	emale
E1/E	2, exopth	almia	F, fr	ayed	:	S, swolle	n	I	HIND GU	IT (infla	nmation	1)		1, <50%		R,	red	S, 51	wollen	E	3, light re	d	1, yel	low full b	ladder		1	immatu	re
H1/H	2, hemor	rhagic	C, clu	peqq		L, lithic			FIN	IS (erosi	ion)			2,50%		G, gr	anular	M, m	ottled	с.	cream (fa	atty)	2,	light gre	en				
В	1/B2, blir	nd	M, ma	rginate	I,	inflamm	ed			0, none				3, >50%		NO, r	odular	G, gr	anular	(D, nodule	s	3,	dark gre	en			Stomac	h
M1	M2, mis	sing	P. p	oale		OT, othe	r			1, mild				4, 100%		E, en	larged	U, ur	olithic	E, foo	al discolo	oration						E, empt	у
	OT, othe	r	OT, ot	her						2, sever	e					OT,	other	OT,	other	F, gene	eral disco	loration						F, full	
																					OT, othe	r							

WRITTEN BY MG ON 95/08/28

REVISED BY SG ON 95/09/13

FILE: FORM035.XLS

ì

,

DATE:	95/11/1	3	TIME:	18:45-1	9:30	INITIAL	S:	MG			FISH S	OURCE		Sask. Fi	sheries			TREAT	MENT:		0.01% T	'ID		TANK:	3]
L							·······				A							A						EXPOS	URE PE	RIOD:	28 days		
				<u></u>				NECRO	SY Isee	below	for expla	nation	of codes	;)				7											
					EXTE	RNAL		-				INTE	RNAL										OTHER	RDATA]
	1		1			al contraction of the second se						1				I	1											-	
SAMPLEID	length (mm)	weight (g)	body condition	IJ	operculum	eye	III6	sex (M, F, I)	pseudobranch	thymus	fat	spleen	đự	stomach	kidney	liver	bile	wet weight (g)	dry weight (g)	moisture (%)	liver weight (g)	blood volume (mL)	hematocrit (%)	leucocrit (%)	protein (mg/dL)	lactic acid (mg/dl.)	glucose (mg/dL)	hemoglobin (mg/dL	white blood cells (%
							·											T											·
	95	7.5	0.87	0	0	N	N	IM	<u>N</u>	0	1	<u> </u>	0	E	<u>N</u>	<u> </u>	3	1.46	0.325		0.19								L
2	30	8	0.93	0	0	N		IM	N			8		<u></u>	<u>N</u>	A .	3	1.57	0.344	78	0.17								
3	100	8.8	0.88	0	0	N	N N	111/1	N			8	0	E	<u></u>	A	3	2.07	0.409	78	0.18								
		0.9	0.81	0		N NI	N	10.4	IN Al					- <u>-</u>	N	<u> </u>		1.00	0.301	70	0.15								
5		5.9	0.01			N	N N	104	N	0	4		0			- <u>^</u>		1.29	0.277	70	0.15								
	100	7.6	0.76		0	N	N	18.4	M	0	4		0		N	+		1.52	0.202	70	0.17			<u> </u>					
8	- 65	89	0.70			N	N	114	N	<u> </u>			0	- <u>-</u>	N	<u> </u>		1.57	0.344	78	0.17								
- g		6.5	0.76	0	<u> </u>	N	N	IM	N	0	1		0	<u>ج</u>	N		$\frac{3}{3}$	1.51	0312	78	0.14								
10	90	4,9	0.67	0	0	N	N	IM	N	0	1	В	0	E	N	A	3	0.893	0.195	78	0.10								
11	100	9.1	0.91	0	0	N	N	IM	N	0	1	В	0	Е	N	A	3	1.89	0.418	78	0.22								
12	95	8.2	0.96	0	0	N	N	IM	N	0	1	В	0	E	N	A	3	1.75	0.385	78	0.17			1					
]										1		1											
																	[[
				<u> </u>			L						ļ																
Comme	nts																												
hsh 11-	2 to 11-5	all were	dead pri	or to che	mistry																				-				
																-						····							
L																										·····			
	ETES		110	.15	PSE	UUUBRA	NCH		TRYMU	s (nemo	mage}		MES	ENTARY	FAT	SPL	EEN	KID	NEY		LIVER			BILE				SEX	
	N. norma		N, no	ormal	4	N, norma	1	(DPERCU	ILA (sho	ortening)		0, none		B, 5	black	N, no	ormal		A, red		0, yello	w empty	bladder		M, ma	ale; F, fe	male
E1/E	2, exopth	almia	F, fr	ayed	5	S, swoller	ר	8-	IIND GU	T (inflær	nmation)		1, <50%		R,	red	S, sv	rollen	E	B, light re	đ	1, yell	low full bi	adder		ł,	immatur	·0
H1/H	2, hemorr	hagic	C, ciu	peqq		L, lithic			FIN	S (erosi	on)			2,50%		G, gr	anular	M, m	oltied	С,	cream (fa	itty)	2,	light gree	en				
В	1/82, blin	d	M, ma	rginate	١.	inflamme	d			0, none				3, >50%		NO, n	odular	G, gra	anular	۵), nodule:	s	З,	dark gre	en		s	tomach	r
M1/	M2, miss	ing	Ρ, β	bale		OT, othei	•			1, mild				4, 100%		E, en	larged	U, ur	olithic	E, foc	al discolo	oration					E	, empty	,
(DT, other		OT, ot	her						2, sever	8					ΟТ,	other	OT,	other	F, gene	eral disco	loration						F. full	
																					OT, other								

WRITTEN BY MG ON 95/08/28

REVISED BY SG ON 95/09/13

DATE:	DATE: 95/11/14 TIME: 13:15-14:05 INITIAL							MG			FISH S	OURCE:		Sask, Fi	isheries			TREAT	MENT:	0.1% TI	D			TANK:	4				
h				,																				EXPOS	URE PE	RIOD:	28 Day	/S	
				[]				NECROF	SY (see	below	or expla	nation	of codes	;)]							······································				
					EXTE	RNAL		Į	•			INTE	RNAL	-							· · · · · · · · · · · · · · · · · · ·		OTHER	DATA					
			[1																		E				9	_	(T)	(%)
SAMPLEID	length (mm)	weight (g)	body condition	£	operculum	eye	łł	sex (M, F, I)	pseudobranch	thymus	fat	spieen	gut	stomach	kidney	llver	bile	wet weight (g)	dry welght (g)	moisture (%)	liver weight (g)	blood volume (m	hematocrit (%)	leucocrit (%)	protein (mg/dL)	lactic acid (mg/di	glucose {mg/dL	hemoglobin (mg/c	white blood cells (
<u> </u>	1 100 1	73	0.73			N	N	13.4	м		1	8		F	N	Δ		18	0.41	77	013							·	
		1.3	0.73		0	N	N	IM	N	0	<u> </u>	B		<u></u> Е	N	<u> </u>	3	1.86	0.42	77	0.13								
<u>-</u>	32	7.4	0.86		0	N	N	IM	N	0	1	8	0	F	N	A	3	1.85	0.41	78	0.15								
	100	7.8	0.00	0	ō	N	N	IM	N	0	1	B	0	E	N	A	3	1.92	0.43	78	0.13								}{
5	110	10.6	08	0	0	N	N	IM	N	0	1	B	0	E	N	A	3	2.25	0.52	78	0.26								<u>├</u> ──┤
6	100	8.5	0.85	0	0	N	N	IM	N	0	1	B	0	E	N	A	3	2.06	0.46	78	0.13							<u> </u>	
7	85	4.9	0.8	0	0	N	N	iM	N	0	1	В	0	E	N	A	3	1.02	0.22	78	0.10		1						
8	95	7.8	0.91	0	0	N	N	IM	N	0	1	В	0	E	N	A	3	1.61	0.37	77	0.17								
9	95	8.3	0.97	0	0	N	N	IM	N	0	1	В	0	Ε	N	A	3	1.9	0.43	77	0.20		<u> </u>						
10	95	7.6	0.89	0	0	N	N	IM	N	0	1	В	0	E	N	A	3	1.79	0.40	78	0.18		1						
11	100	7.4	0.74	0	0	N	N	IM	N	0	1	В	0	£	N	A	3	1.79	0.41	77	0.16		1						
12	90	6.8	0.93	0	0	N	N	IM	N	0	1	В	0	E	N	A	3	1.32	0,29	78	0.11								
																		[
			L																										
L			<u> </u>	L		L	L				Ļ	l			l	I													
Comm	ents																												
All liver	s pale		_																										
Fish liv	ers not sp	lit: fish #	\$7 & #12																										
Frame	no: 10																												
	EYES		GI	LLS	PSE	UDOBRA	NCH		THYMU	S (hemo	wrhage)		MES	ENTARY	FAT	SPL	EEN	KID	NEY		LIVER			BILE				SEX	
	N, norma	I	N, n	ormal		N, norma	d	(OPERCL	ILA (sho	ortening)		0, none		B, t	olack	N, n	ormal		A, red		O, yello	w empty	bladder		M, m	ale; F. fo	emale
E1/E	2, exopth	almia	F, fr	ayed	:	S, swolle	n	ŀ	IIND GU	T (inflar	nmatior	1)		1, <50%		R.	red	S, 51	vollen	E	3, light re	d	1. yel	low full bi	ladder		١.	immatu	re
H1/H	2, hemori	hagic	C, cli	ubbed		L, lithic			FIN	S (erosi	on)			2,50%		G, gr	anular	М, т	ottled	C,	cream (fa	rtty)	2,	light gre	en				
8	1/B2, blir	d	M, ma	rginate	1,	inflamme	ed			0, none				3, >50%		NO, r	nodular	G, gr	anular	t), nodule	s	3.	dark gre	en		5	Stomaci	h
M1	M2, miss	sing	P.1	pale		OT, othe	r			1, mild				4, 100%		E, en	larged	U, ur	olithic	E, foc	al discolo	ration					-	E. empt	4
	OT other		OT. d	ther		-				2. sever						от	other	OT.	other	F. gene	aral disco	loration						F full	,
	,		- • • •								-									,	OT, other								

REVISED BY SG ON 95/09/13

.

DATE:	95/11/1-	4	TIME:	14:10-1	4:40	INITIAL	S:	MG			FISH S	OURCE		Sask. F	isheries			TREAT	MENT:	1% TID				TANK:	5				
											Å							· · · · · · · · · · · · · · · · · · ·		<u> </u>				EXPOS	URE PE	RIOD:	28 days		
				<u></u>				NECRO	PSY (see	below	for expla	anation	of codes	;)]											
					EXT	RNAL		1	-		-	INTE	RNAL										OTHE	R DATA					
SAMPLE ID	length mm)	weight (g)	body condition	ug	operculum	eye	III6	sex (M, F, I)	pseudobranch	thymus	fat	spieen	aut	stomach	kidney	llver	bile	wet weight (g)	dry weight (g)	molsture (%)	llver weight (g)	blood volume (mL)	hematocrit (%)	leucocrit (%)	protein (mg/dL)	lactic acid (mg/dL)	glucose (mg/dL)	hemoglobin (mg/dL)	white blood cells (%)
			1			1	1											1 1 01	0.000		0.40		r						 ,
1	90	6.1	0.84							0	<u> </u>	8	0	с с	N	A	3	1.24	0.269	- 11	0.10		<u> </u>						
<u></u>	8	5.1	0.95	+				1111		0		0	0		N	A		1.17	0.200	78	0.11		<u> </u>						
	100	1.1	0.77	<u>+</u>				1101	N			- 0		<u>с</u> Е	N	<u> </u>	3	1.30	0.205	76	0.14		<u>+</u>	}	}				
	80	0.0	0.77		0	N N		INA INA	N	0		8	0	<u>م</u>	N	Δ		1 31	0.200	77	0.08		<u> </u>						
		62	0.77		- -	N		IM	N	<u> </u>		- <u>-</u>		<u>د</u>	N	Δ	3	1 14	0.277	76	0.00		<u> </u>						
H-7-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	6.8	0.72			N N		IM	N	~	1	8	<u> </u>	F	N	A	3	1 25	0.304	76	0.18		<u> </u>						
8		6.0	0.7			N		IM	N	0		8	0	F	N	A	3	1 15	0.277	76	0.11		<u> </u>	<u>}</u>					
	95	7.2	0.84	0	ō	N	N	IM	N	0		в	0	E	N	A	3	1.43	0.336	77	0.14		<u> </u>						
10	90	6.1	0,84	0	0	N	N	IM	N	0	1	8	0	E	N	A	3	1.24	0.230	77	0.15		<u>† </u>	<u> </u>					
<u> </u>				1	<u> </u>	1	1	<u>}</u>										1		~~~~~				†					
			<u> </u>	1	<u> </u>	†	1	1				İ						<u> </u>					1	1					<u> </u>
			1	1	1		1					Í	1					1	 				1	1			<u> </u>		1
				[1			1				[1	1					1
			[[ſ		Ì]					1						1
Comm	nts																												
Livers r	ot divided	i - #1 . #	2, #5										·																
Livers v	ery red/so	ome pale) 																										
Frames	11-15				<u>_</u>		<u> </u>																						_
	EYES		GI	LLS	PSE	UDOBRI	ANCH		THYMU	S (herno	orrhage)		MES	ENTARY	FAT	SPL	EEN	KID	NEY		LIVER			BILE				SEX	
	l, norma	I	N, n	ormal		N, norma	al	(OPERCI	JLA (she	ortening)		0, none		B, E	lack	N, n	ormal		A, red		0, yello	w empty	bladder		M, m	ale; F, fe	emale
E1/E	2, exopth	almia	F, fr	ayed		S, swolle	n	ł	IND GU	T (inflat	nmation	1)		1, <50%		R,	rəd	S, sv	vollen	E	3, light re	d	1, vel	low full b	ladder		1	immatu	re
H1/H	hemorr	hagic	C, ch	ubbed		L, lithic			FIN	S (erosi	ion)			2,50%		G, an	anular	M. m	ottled	С.	cream (fa	att vi	2	liaht are	en				
В	I <i>1</i> B2, blir	nd	M, ma	rginate	I,	inflamm	ed			0, none	,			3, >50%		NO, n	odular	G, gr	anular	(), nodule	s	3.	dark gre	en		:	Stomac	h
M1	M2, miss	sing	P. 1	pale		OT, othe	r			1, mild				4, 100%		E, en	arged	U, ur	olithic	E, foc	al discolo	oration	-					E. empt	e
-	DT. other		OT, a	ther						2 sever	e					OT.	other	от	other	F dene	ral disco	loration						Ffull	,
	,																			13.11	OT, other	r							

WRITTEN BY MG ON 95/08/28

* REVISED BY SG ON 95/09/13

FILE: FORM035.XLS

· .

DATE:	95/11/13	3	TIME:	19:30-2	0:15	INITIAL		MG			FISH S	OURCE		Sask. F	sheries		,	TREAT	MENT:	10% TI	<u> </u>			TANK:	6				
	001111								·····		<u></u>							1						EXPOS	URE PE	RIOD:	28 days		
				[NECRO	SY (see	below	for expl	anation	of code	;)				1											
					EXTE	RNAL		1	•		•	INTE	RNAL	•									OTHE	RDATA					
		[T	1		1							1									_	1					-	
SAMPLE ID	length (mm)	weight (g)	body condition	E	operculum	eye	IIB	sex (M, F, I)	pseudobranch	thymus	fat	spleen	gut	stomach	kldney	liver	bile	wet weight (g)	dry weight (g)	moisture (%)	liver weight (g)	blood volume (mL)	hem atocrit (%)	leucocrit (%)	protein (mg/dL)	lactic acid (mg/dL)	glucose (mg/dL)	hemoglobin (mg/dL	white blood cells (%
1	100	8.9	0.89	0	0	N	N	IM	N	0	1	В	0	E	N	A	3	2.17	0,453	79	0.18								
2	100	7.7	0.77	0	0	N	N	IM	N	0	1	В	0		N	<u>A</u>	3	1.5	0,295	80	0.15								<u> </u>
3	85	3.6	0.59	0	0	N	N	IM	N	0	1	В	0	E	N	<u>A</u>	3	0.728	0.135	81	0.06								
4	90	4.1	0.56	0	0	N	N	IM	<u>N</u>	0		В	0	E	N	A	3	0.785	0.159	80	0.09								ļ
5	90	5,3	0.73	<u> </u>	<u> </u>	N			N	0		В		<u>E</u>	N	<u>A</u>	3	1.22	0.254	79	0.09	<u></u>	L						
6	90	5.7	0.78	0	0			IM	N	0	1	В	0	<u> </u>	N	A	3	1.29	0.249	81	0.15		ļ						Į
<u> </u>		8.7	0.75	0	0			IM	N	0		8	0	E.		- <u>A</u>		2.2	0.4//		0.12								ļ
	90	5	0.89	0	0				N	<u> </u>		B	0	<u> </u>	N	<u>A</u>	3	217	0.231		0.09								
	100	9,4	0.01			N		1111	N	0			- č -	<u>с</u>	N	<u>^</u>		2.17	0.457	70	0.10								
11	85	55	0.01	0		N		IM	N	0	<u> </u>	8	- o	F	N	A	3	1.32	0.274	79	0.10								<u> </u>
}					<u> </u>		1												<u></u>										
				†		1	<u> </u>	<u> </u>																					<u> </u>
				1	·····	1	1	<u> </u>			<u> </u>							1											
				1	1	1	1																						1
Comm	ents																												
														<u></u>															
┝													<u> </u>																
L	FYES		GI	115	PSF	UDOBR	ANCH		THYMU	S (hem)	orthage		MES	ENTAR	FAT	SPI	FEN	KID	NEY					BUE				CEY	
	N, norma	1	N, n	ormal		N, norma	al		OPERCL	JLA (she	ortening)		0, none		B, b	lack	N, n	ormal		A, red		0. velio	wempty	bladder		Мг	ale F f	emale
E1/F	2 exonth	almia	F. fr	aved	:	S. swolle	n	1	IND GU	T (inflar	nmation	, 1		1 <50%		R	red	S sv	vollen	F	B light re	d	1 val	ow full b	ladder			immetu	r.a.
H1 AH	2 hemor	theolic	C ch	ubberl		I lithic			EIN	S (eroel	lon)	.,		2 50%		Gor	anular	 M.m	ottlad	- -	reem (fe	⊶ attvi	., ,•	light are			•.	in in laco	
	1/82 blin	nd	M ma	roinate	1	inflamm	ed			0 0000				3 >50%		NO n	odular	G or	anular				2, 3	dade ore	en			Stomac	ь.
M1	M2 mies	sina	р. р.	Dale		OT othe	 17			1 mild				4 100%		F eni	arned	U ur	olithic	E for	al discole	- vration	5.	Jain glo					
1411	0T ather		οτ ~	ther			•			7 cover	•			.,		C. 311	other	0, 01	other	E cece	an anscolo	Innetion						с, өтора) с. Б.е	У
			0.0							_ , 30 (0)						0.,	0.1101	01.	01101	· , goine								r, 108	

WRITTEN BY MG ON 95/08/28

REVISED BY SG ON 95/09/13

DATE:	95/11/2	2	TIME:	16:00		INITIAL	.S:	MG	······		FISH S	OURCE:		Sask, F	sheries			TREAT	MENT:		NAP			TANK:	7				
							-				a							······						EXPOS	URE PE	RIOD:	28 Da	/S	
								NECROF	SY (see	below	or expla	nation	of codes	;}				1						·					
					EXTE	RNAL			(INTE	RNAL	,									OTHE	DATA					1
[*****	1									1						_	1					~	
SAMPLE ID	length (mm)	weight (g)	body condition	ŋ	operculum	eye	llig	sex (M, F, I)	pseudobranch	thymus	fat	spleen	đut	stomach	kidney	llver	bile	wet weight (g)	dry weight (g)	moisture (%)	llver weight (mg)	blood volume (mL)	hem atocrit (%)	leucocrit (%)	protein (mg/dL)	lactic acid (mg/dL0	glucose (mg/dL)	hemoglobin (mg/dL	white blood cells (%
																												·····	
1	90	4.2	0.58		0	N	N	IM	N	0	1	В	0	Ę	N	A	3	0.813	0.166	80	0.07		ļ						
2	95	6.0	0.70	0	0	N	N	IM	N	0	1	В	0	E	N	A	3	1,16	0.249	79	0.08		Ļ				L		
3	95	6.8	0.79	0	0	N	N	IM	N	0	1	В	0	E	N	A	3	1.26	0.293		0.17		L						
4	100	7.6	0.76	0	0	N	N	IM	<u>N</u>	0	1	8	0	E	N	A	3	2.32	0.472	80	0.16								
5	110	12.0	0,90	0	0	N	N	IM	N	0	1	8	0	E	N	A	3	2.38	0.55	77	0.19								
6	110	11.0	0.83	0	0	N	N	IM	<u>N</u>	0	1	В	0	E	N	A	3	2.32	0.45	80	0.19		ļ				ļ		
7	100	7.1	0.71	0	0	N	N	IM	<u>N</u>	0	1	8	0	E	N	A	3	1.53	0.285	81	0.13		ļ						
8	90	7.0	0.96	0	0	N	N	IM	N	0	1	B	0	ε	N	<u>A</u>	3	1.57	0.342	78	0.19		ļ				ļ		L
9	90	4,9	0.67	0	0	N	N	IM	<u>N</u>		1	В	0	Ε	N	A	3	0.892	0.185	79	0,18		ļ						ļ
10	95	6,8	0.79	0	0	N	N	IM	<u>N</u>	0	1	8	0	E	N	A	3	1.54	0.345	78	0.15		I			i	<u> </u>		ļ
11	105	9.4	0.81	0	0	N	N	IM	<u>N</u>	0		В	0	E	N	A	3	2.19	0.478	78	0.16		ļ			ļ	Ļ		
12	95	7.2	0.84	0	0	N	N	IM	<u> N </u>	0		<u> </u>	0	E	<u>N</u>	<u>A</u>	3	1.53	0,317		0.15		 			ļ			
13	100	8.3	0.83	0	0	N		<u>IM</u>	N	0	1	8	0	<u> </u>	N	<u> </u>	3	1.96	0.437	78	0.16		ļ		ļ	ļ.,	ļ		
						<u> </u>	ļ		<u> </u>														<u> </u>			ļ			<u>↓</u>
Comme		5cb # 1	lineric	01000	alour	L	L		l			L	J			L					L]		L	l	l	l	L		L
Comme	111.5	115(1 # 1	- liver is	Cleanic	.0001																			·····					
													······														_		
	EYES		GIL	LS	PSE	UDOBRA	NCH		THYMU	S (hemo	withage)		MESI	ENTARY	FAT	SPL	EEN	KID	NEY		LIVER			BILE				SEX	J
٢	l, normal	I	N, no	rmal	1	N, norma	I	C	OPERCU	LA (sho	rtening)		0, none		8, b	lack	N, no	ormail		A, red		0, yello	w empty	bladder		M, m	ale; F, fe	emale
E1/E2	2, exopth	almia	F, fra	₂yød	5	S, swoller	n	a.	IND GU	ĩ (inflan	nmation)		1, <50%		R,	red	S, SM	/ollen	E	3, light ree	d	1 yel	low full bl	ladder		I,	immatu	re
H1/H2	2, hemorr	hagic	C, clu	bbed		L, lithic			FIN	S (erosi	on)			2,50%		G, gra	anular	M, m	ottled	С.	cream (fa	itty)	2,	light gre	en				
B1	1/82, blin	d	M, mar	ginate	1.	inflamme	∋d			0, none	•			3, >50%		NO, n	odular	G, gra	nular	Ĺ), nodule:	s	3	dark ore	en		9	Stomac	h
M1/	M2, miss	ina	Рр	ale	, i	OT, other	r			1. mild				4. 100%		E.eni	arced	U, un	lithic	Efec	al discolo	ration						Famre	 u
()T other		0.1 04	her		•				2 sever				.,		, 5.1	other	01	wher	E 0804	ral disco	location						–, empt) – , empt)	,
			0.,00							~, 30 1011	-					01,1		07,1	~	· , yene	77 ak							r, tuli	
																					or, other								

WRITTEN BY MG ON 95/08/28

.

REVISED BY SG ON 95/09/13

FILE: FORM035.XLS

÷

DATE:	95/11/1	4	TIME:	14:40 -	15:30	INITIAL	.s:	MG	-		FISH S	OURCE:	Sask. Fi	sheries				TREAT	MENT:		BNF			TANK:	8				
N																								EXPOS	URE PE	RIOD:	28 days		
								NECROF	SY (see	below	for expl	anation	of codes	;)				1											
				1	EXTE	RNAL		1			-							INTE	RNAL										
SAMPLE ID	length (mm)	weight (g)	body condition	E	operculum	eye	IIIB	sex (M, F, I)	pseudobranch	thymus	Ŧ	spleen	gưt	stomach	kidney	llver	bite	wet weight (g)	dry weight (g)	moisture (%)	liver weight (g)	blood volume (mL)	hematocrit (%)	leucocrft (%)	protein (mg/dL)	lactic acid (mg/dL)	glucose (mg/dL)	henoglobin (mg/dL)	white blood cells (%)
<u> </u>	<u> </u>	£ 7	000		0			IAA	N			0		E	N	Δ		1.28	0.306	76	0.18		· · · · · ·	·1					
	100	83	0.82			N	N	IM	N	0			0	E	N	<u> </u>	3	2.01	0.475	78	0.10								├ ───┤
	100	70	0.00			N	N	IM	N				-	F	N	Δ	3	1.46	0.4/0	76	0.16								<u>├────</u> ┤
4	95	7.0	0.82	0	0	N	N	IM	N	0		B	<u> </u>	F	N	A.	3	1 36	0.314	77	0.15								——
5	100	7.6	0.76	0	0	N	N	IM	N	0	1	8	0	E	N	A	3	1.53	0.366	76	0.17								<u> </u>
6	105	9.7	0.84	0	0	N	N	IM	N	0	1	В	0	E	N	Α	3	2.00	0.472	76	0.23								<u>├</u> ──┤
7	96	6.7	0.78	0	0	N	N	IM	N	0	1	в	0	E	N	A	3	1.50	0.344	77	0.16								t1
8	90	6.2	0.85	0	0	N	N	IM	N	0	1	В	0	E	N	A	3	1.23	0.280	77	0.15					<u> </u>			<u>├</u> ──┤
9	100	8.7	0.87	0	0	N	N	IM	N	0	1	В	0	E	N	A	3	2.00	0.470	77	0.19								11
10	100	7.8	0.78	0	0	N	N	IM	N	0	1	В	0	E	N	A	3	1.86	0.416	78	0.18								
11	90	5.7	0.78	0	0	N	N	IM	N	0	1	В	0	E	N	Α	3	1.47	0.326	78	0.13								
12	100	8.8	0.88	0	0	N	N	IM	N	0	1	В	0	E	N	A	3	1.77	0.410	77	0.17								
			I	ļ																						L			
		L	ļ				ļ	ļ																					
		L	L		L	L	L	L			L	L					L	I			L			L	L	l			
Comme	ents	All liver	s were re	id with ye	llow lobe	IS. EVIDE	nce of ne	moraging	9.																				
																			·										
																	·												
L	EVES		G	15	PSE	IDOBR	NCH		THYMI	S (here)	without		MES		EAT		501	EEN			INED			011 E				057	
					. 02		d d			U A /ah	ant-sture		MLO.		101		511						0	DILC				SEA	
54.55		18 - 1	N, D			n, nonna C	-			TA (Shi	riening	,		O, none			в, с	Nack			A, rea		U, yello	wempty	Diadder		M, M	ale;⊦,î∈	emale
E1/E	2, exopth	ama	F, D	ayed		S, SWOIIO	n	1	IND GU	i (inflæ	rim atlor	1}		1, <50%			R,	red		E	3, light re	d	1, yel	low full b	ladder		١.	immatu	re
H1/H	2, hemori	rhagic	C, cl	ubbed		L, lithic			FIN	S (erosi	on}			2, 50%			G, gr	anular		С,	cream (fa	itty)	2.	light gre	en				
В	1/B2, blir	nd	M, ma	rginate	١.	inflamme	ed			0, none				3, >50%			NO, n	nodular		C), nodule	s	3,	dark gre	en		5	stomaci	h
M1/	M2, miss	sing	P.	pale		OT, othe	r			1, mild				4, 100%			E, en	larged		E, foc	al discolo	oration					1	E, empty	4
(DT, other	r	OT, d	ther						2, sever	•						ΟТ,	other		F, gene	eral disco	loration						F, full	
																				I	OT, othe	r							

REVISED BY SG ON 95/09/13

L L	DATE:	95/11/1	3	TIME:	15:50-	17:10	INITIAI	LS:	MG			FISH S	OURCE:	Rocky I	Viountain	Seafood	s		TREAT	MENT:	Athaba	sca River					TANK:	9				
HECROPPY (see below for expanding of colspan="12">NTEENAL NTEENAL VECROPPY (see below for expanding of colspan="12">VECROPPY (see below for expanding of colspan="12") u												<u>, </u>									i						EXPOS	URE PE	RIOD:	28 davs		
EXTERNAL EXTERNAL INTERNAL INTERNAL INTERNAL OTHER DATA 0 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td><u></u></td> <td></td> <td></td> <td>NECRO</td> <td>PSY (se</td> <td>e below</td> <td>for expla</td> <td>anation</td> <td>of code</td> <td>s)</td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>s</td> <td></td> <td></td> <td>ć</td> <td></td> <td></td>						<u></u>			NECRO	PSY (se	e below	for expla	anation	of code	s)				1								s			ć		
Image: Signed						EXTE	RNAL					•	INTE	RNAL					[OTHER	R DATA				A		
A B A B A B A B 1 205 00 1.04 0 0 N N F(1) N 0 1 B 0 E N A 3 30 24 077 063 1 1 122 97 66 81 6 81 6 81 6 81 6 81 6 83 74 8 8 6 10 73 0.4 0.4 74 0.7 0.6 1 81 47 115 56 8 5 15 132 0.4 0.5 0.4 0.5 0.4 0.5 0.5 0.4 1.1 1.1 0.5	SAMPLE ID	length (mm)	weight (g)	body condition	lin	operculum	eye	Ulg	sex (M, F, I)	pseudobranch	thymus	fat	spieen	đut	stomach	kidney	liver	blle	væt weight (g)	wet weight (g)	dry weight (g)	dry weight (g)	moisture (%)	liver weight (g)	blood volume (mL)	hem atocrit (%)	leucocrít (%)	protein (mg/dL)	lactic acid (mg/dL)	glucose (mg/dL)	hemoglobin (mg/dL)	white blood cells (%)
1 2C5 90 1.04 0 0 N N F(I) N 0 1 B 0 E N A 3 30 2.4 0.77 0.63 7.4 1.2 0.5 43 1 12.2 37 66 8.1 6 8.7 1.8 1 18 37 18.1 17 18.1 37 18.1 16 6.6 6 6.7 6.6 6.7 6.6 6.7 6.6 6.7 6.6 6.7 6.6 6.1 6.8 6.7 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7												_							<u>A</u>	B	<u> </u>	8										
2 2x0 90 1 1 N N M(0) 1 0 1 N N A 3 22 1,7 0,70 0.40 73 1,11 1,8 37 >×1 8,1 17 6 4 190 70 102 0 0 N N M(0) N 0 1 8 0 E N A 2 1,50 0,00 0,07 102 0 0 N N M(0) N 0 1 8 0 E N A 2 1,91 0,00 0 N N M(0) N 0 1 8 0 E N A 1 1,4 0,40 0,40 7,4 0,40 0,40 1 1,5 6,2 3 7 215 120 0 0 N N M(0) N 0 1 8 0 E N A 1 1,1 1,4 0,5 0,8 4,60 1,5	1 205 90 1.04 0 0 N F(I) N 0 1 B 0 E N A 3 3.0 2.4 0.77 2 200 90 1.13 0 0 N N M(I) 1 0 1 B 0 E N A 3 2.6 1.7 0.70											0.77	0.63	74	1.2	0.5	43	1	12.2	37	65	8.1	6									
3 165 40 107 0 1 N N M(0) N 0 1 B 0 E N A 2 1.5 0.4 0.40 7.4 0.7 1.2 33 1 8.1 47 1.15 5.6 6 8.5 5 1.85 7.7 1.01 0.0 N N M(0) N 0 1 B 0 E M A 2 1.5 1.4 0.40 7.4 0.7 1.2 33 1 8.1 47 0.7 5.5 62 4.0 6.2 7.3 1.4 0.40 7.3 0.4 0.7 1.0 40 7.3 1.2 1.7 7.3 1.0 6.2 4.3 3.5 1.5 5.5 0.44 0.63 7.3 1.2 1.7 7.1 1.0 1.1 1.0.5 67 1.40 6.4 3.3 1.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5	2	1 2.05 9.0 1.04 0 0 N												8.1	15	83	7.4	8														
4 190 70 102 0 0 N N M 0 2 8 0 E N A 2 18 1.6 0.47 0.43 74 0.7 12 33 1 8.1 41 68 8.8 5 5 185 70 1.11 0 0 N N M(1) N 0 1 8 0 E N A 1 1.4 0.90 0.38 74 0.7 10.5 60 1.5 75 61.1 0 0 N N M(1) N 0 2 8 0 E N A 1 1.6 0.38 0.28 73 12 1.3 1.05 1.05 0.33 1 8.1 1.15 1.05 0.35 74 0.5 0.8 42 1 1.14 1.01 1.05 0.3 74 0.5 0.8 42 1 1.14 1.01 1.05 0.3 74 0.0 1 0.3 1.05	3	155	40	1.07	0	1	N	N	M(I)	N	0	1	В	0	E	N	A	2	1.5	0.4	0.36	0.12	73	0.4	0.7	40	>1	8,1	47	115	5.6	6
5 185 70 1.11 0 0 N N A 1 1.4 0.49 0.38 74 0.7 1.0 40 40 77 1.0 40 77 1.0 40 77 1.0 40 77 1.0 40 70 1.36 62 3 7 125 120 1.21 0 0 N N M(I) N 0 2 8 0 E N A 1 1.4 0.90 0.38 0.28 74 0.5 0.8 33 <1	4	190	70	1.02	0		N_	N	M(I)	N	0	2	В	0	E	M	A	3	1.8	1.6	0.47	0.43	74	0.7	1.2	33	1	8.1	41	95	6.8	5
6 170 55 171 0 0 1 8 0 E N A 1 14 09 0.38 0.38 0.38 120 170 150 180 30 150 130 130 0.30 0.35 74 0.5 0.8 33 <110 150 8.8 4 4 1 18 12 0.47 0.31 74 0.5 0.8 32 <110 150 8.8 4 4 1 18 12 0.47 0.31 74 0.5 0.8 42 1 114 101 150 8.8 4 4 1 18 12 0.37 12 17.3 130 <td>5</td> <td>185</td> <td>70</td> <td>1.11</td> <td>0</td> <td>0</td> <td></td> <td></td> <td>M(1)</td> <td>N</td> <td>0</td> <td>1</td> <td>В</td> <td>0</td> <td>E</td> <td>N</td> <td><u> </u></td> <td>2</td> <td>1.9</td> <td>1.4</td> <td>0.49</td> <td>0.38</td> <td>74</td> <td>0.7</td> <td>1.0</td> <td>40</td> <td><1</td> <td>10.5</td> <td>62</td> <td>105</td> <td>6.2</td> <td>4</td>	5	185	70	1.11	0	0			M(1)	N	0	1	В	0	E	N	<u> </u>	2	1.9	1.4	0.49	0.38	74	0.7	1.0	40	<1	10.5	62	105	6.2	4
1 215 1/2 0 0 N N M(I) N 0 2 B 0 E N A 3 1.5 2.3 0.44 0.53 7.4 1.0 3 1.1 1.7 3.7 4.1 10.8 8/1 150 8.6 4 3 1.5 2.3 0.44 0.55 7.4 0.5 0.6 42 1 11.4 150 8.6 4 9 175 55 1.03 0 0 N N M(I) N 0 1 8 0 E N A 1 1.8 1.2 0.47 0.5 0.6 42 1 11.4 105 1.6 2.8 0.41 0.5 0.6 42 1 11.4 105 1.6 2.3 1.4 0.5 0.6 42 1 11.4 105 7.8 1.1 1.0 0.7 40 1 1.8 1.6 0.51 0.44 7.4 1.0 0.7 40 1 1.8 1.6	6	1/0	- 50	1.12					M(I)		0	1	8	0	<u> </u>	N	A		1.4	0.9	0.38	0.26	72	0.6	0.8	33	<1	7.3	70	135	6.2	3
a is		215		1.21			N		M(1)	N	<u> </u>	<u><u> </u></u>	<u> </u>	0	E	N	<u> </u>	3	1.6	2.3	0.44	0.63	73	1.2	1.7	3/		10.5	8/	140	6.4	3
s 113 23 120 130 120 130 120 <th120< th=""> <th120< th=""> <th120< t<="" td=""><td>- °</td><td>175</td><td></td><td>1 1 03</td><td></td><td></td><td></td><td>N</td><td></td><td></td><td></td><td><u> </u></td><td></td><td></td><td></td><td>N</td><td></td><td></td><td>1.5</td><td>1.3</td><td>0.39</td><td>0.30</td><td>74</td><td>0.5</td><td>0.6</td><td>30</td><td></td><td>0.9</td><td>115</td><td>150</td><td>0.0</td><td>4</td></th120<></th120<></th120<>	- °	175		1 1 03				N				<u> </u>				N			1.5	1.3	0.39	0.30	74	0.5	0.6	30		0.9	115	150	0.0	4
11 21 0 0 2 0 2 1	10	185	<u></u>	0.95	1-0-		N		M(I)	N			8	0		N		1	23	1 4	0.47	0.31	74	10	0.0	40		07	1110	195	7.0	1
Comments Comments Comments Comments Comments Fish #2 - photo of swollen psudobranch Livers in compartment 5B E <	11	215	115	1.16	0	0	N	- N	M(I)	N	0	2	8	0	E	N	A		18	16	0.51	0.44	74	11	20	40	1	13.8	72	115	62	
Comments Comments Comments Comments Comments Fish #2 - photo of swollen psudobranch Livers in compartment 58 Fish #3 - no formalic sample taken of liver because too small EVES GILLS PSEUDOBRANCH THYMUS (hemorrhage) Fish #3 - no formalic sample taken of liver because too small Fish #3 - no formalic sample taken of liver because too small MESENTARY FAT SPLEEN Fish #3 - no formalic sample taken of liver because too small Fish #3 - no formalic sample taken of liver because too small Fish #3 - no formalic sample taken of liver because too small Fish #3 - no formalic sample taken of liver because too small Fish #3 - no formalic sample taken of liver because too small EYES GILLS PSEUDOBRANCH THYMUS (hemorrhage) MESENTARY FAT SPLEEN KIDNEY LIVER BILE SEX N, normal N, normal OPERCULA (shortening) O, none B, black N, normal A, red O, yellow empty bladder M, male; F, female E1/E2, soophalminia F, frayed S, swollen HIND GUT (Inflammation) 1, 450% R, red S, swollen B, light red 1, yellow full bladder I, immature B1/B2, blind M, marginate I, inflammed O, none				1	<u> </u>	1	1	1	1	<u> </u>		<u> </u>			<u>├</u>			<u> </u>	<u>}</u>		+						<u> </u>		<u></u>	<u> </u>	0.2	<u>├──</u> ──
Comments Fish #2 - photo of svollen psudobranch Livers in compartment 58 Fish #2 - photo of svollen psudobranch Livers in compartment 58 Fish #3 - no formalic sample taken of liver because too small set for taken of liver because too small set for taken of liver because too small set for taken of liver because too small set for taken of liver because too small set for t					1	1	1		1		<u>}</u>	1			†			<u> </u>	1		1	†		<u> </u>		<u> </u>	†			<u>├</u> ──┤	<u> </u>	<u> </u>
Comments Fish #2 - photo of swollen psudobranch Livers in compartment 5B Fish #2 - photo of swollen psudobranch Livers in compartment 5B Fish #3 - no formalic sample taken of liver because too small Livers in compartment 5B Fish #3 - no formalic sample taken of liver because too small EVES GILLS PSEUDOBRANCH THYMUS (hemorrhage) MESENTARY FAT SPLEEN KIDNEY LIVER BILE SEX N, normal N, normal N, normal OPERCULA (shortening) O, none B, black N, normal A, red O, yellow empty bladder M, male; F, female E1/E2, exopthalmia F, frayed S, swollen HIND GUT (Inflammation) 1, <50%	· · · · ·			1	1	1	1	1	1	1	1	1	1		1			1	1	1	1	1						<u> </u>	<u> </u>	<u>}</u>		
Comments Fish #3 - no formalic sample taken of liver because too small Fish #3 - no formalic sample taken of liver because too small Fish #3 - no formalic sample taken of liver because too small Fish #3 - no formalic sample taken of liver because too small Fish #3 - no formalic sample taken of liver because too small Fish #3 - no formalic sample taken of liver because too small Fish #3 - no formalic sample taken of liver because too small Fish #3 - no formalic sample taken of liver because too small Fish #3 - no formalic sample taken of liver because too small Fish #3 - no formalic sample taken of liver because too small Fish #3 - no formalic sample taken of liver because too small Fish #3 - no formalic sample taken of liver because too small Fish #3 - no formalic sample taken of liver because too small FYES GILLS PSEUDOBRANCH THYMUS (hemorrhage) MESENTARY FAT SPLEEN KIDNEY LIVER BILE SEX N, normal N, normal A, red S, swollen B, light red 1, yellow full bladder I, immature				1	1		l		1		1									1	<u> </u>	1				1	1	1				
Fish #2 - photo of swollen psudobranch Livers in compartment 58 Fish #3 - no formalic sample taken of liver because too small Fish #3 - no formalic sample taken of liver because too small Fish #3 - no formalic sample taken of liver because too small Fish #3 - no formalic sample taken of liver because too small Fish #3 - no formalic sample taken of liver because too small Fish #3 - no formal in KCL - ruptured gall blatter EYES GILLS PSEUDOBRANCH THYMUS (hemorrhage) MESENTARY FAT SPLEEN KIDNEY LIVER BILE SEX N, normal N, normal N, normal OPERCULA (shortening) O, none B, black N, normal A, red O, yellow empty bladder M, male; F, female E1/E2, exopthalmia F, frayed S, swollen HIND GUT (inflammation) 1, <50%	Comm	ents																									^ <u>···</u>		·		<u> </u>	4
Fish #3 - no formalic sample taken of liver because too small Fish #3 - no formalic sample taken of liver because too small Fish #10 - liver rinsed in KCL - ruptured gell blatter EYES GILLS PSEUDOBRANCH THYMUS (hemorrhage) MESENTARY FAT SPLEEN KIDNEY LIVER BILE SEX N, normal N, normal N, normal OPERCULA (shortening) 0, none B, black N, normal A, red 0, yellow empty bladder M, male; F, female E1/E2, exopthalmia F, frayed S, swollen HIND GUT (Inflammation) 1, <50%	Fish #2	- photo o	f swolle	n psudob	ranch					Livers in	n compar	tment 58	3																			
Fishe #10 - liver rinsed in KCL - ruptured gell blatter EYES GILLS PSEUDOBRANCH THYMUS (hemorrhage) MESENTARY FAT SPLEEN KIDNEY LIVER BILE SEX N, normal N, normal N, normal N, normal OPERCULA (shortening) 0, none B, black N, normal A, red 0, yellow empty bladder M, male; F, female E1/E2, exopthalmia F, frayed S, swollen HIND GUT (Inflammation) 1, <50%	Fish #3	- no form	alic sar	nple take	n of liver	because	too sma	all																								
EYES GILLS PSEUDOBRANCH THYMUS (hemorrhage) MESENTARY FAT SPLEEN KIDNEY LIVER BILE SEX N, normal N, normal N, normal N, normal N, normal OPERCULA (shortening) 0, none B, black N, normal A, red O, yellow empty bladder M, male; F, female E1/E2, exopthalmia F, frayed S, swollen HIND GUT (inflammation) 1, 450% R, red S, swollen B, light red 1, yellow full bladder I, immature H1/H2, hemorrhagic C, clubbed L, lithic FINS (erosion) 2, 50% G, granular M, mottled C, cream (fatty) 2, light green 81/B2, blind M, marginate I, inflammed O, none 3, >50% NO, nodular G, granular D, nodules 3, dark green Stomach M1/M2, missing P, pale OT, other 1, mild 4, 100% E, enlarged U, urolithic E, focal discoloration E, empty OT, other OT, other OT, other F, general discoloration F, fuil	Fishe #	10 - liver i	insed in	n KCL - n	uptured	gall blatte	H																									
N, normal N, normal N, normal N, normal N, normal O, percutA (shortening) O, none B, black N, normal A, red O, yellow empty bladder M, male; F, female E1/E2, exopthalmia F, frayed S, swollen HIND GUT (inflammation) 1, <50%		EYES		GI	LLS	PSE	UDOBRJ	ANCH		THYMU	IS (hemo	orrhage)		MES	ENTARY	' FAT	SPL	EEN		KID	NEY			LIVER			BILE				SEX	
E1/E2, exopthalmia F, frayed S, swollen HIND GUT (Inflammation) 1, <50% R, red S, swollen B, light red 1, yellow full bladder I, immature H1/H2, hemorrhagic C, clubbed L, lithic FINS (erosion) 2, 50% G, granular M, mottled C, cream (fatty) 2, light green B1/B2, blind M, marginate I, inflammed O, none 3, >50% NO, nodular G, granular D, nodules 3, dark green Stomach M1/M2, missing P, pale OT, other 1, mild 4, 100% E, entarged U, urolithic E, focal discoloration E, empty OT, other OT, other OT, other 2, severe OT, other OT, other F, built	N, normal N, normal N, normal OPERCULA (shortening) O, none B, black									lack		N, n	ormai			A, red		0, yello	w empty	bladder		M, m	ale; F, fi	emale								
H1/H2, hemorrhagic C, clubbed L, lithic FINS (erosion) 2, 50% G, granular M, mottled C, cream (fatty) 2, light green 81/B2, blind M, marginate I, inflammed 0, none 3, >50% NO, nodular G, granular D, nodules 3, dark green Stomach M1/M2, missing P. pale OT, other 1, mild 4, 100% E, entarged U, urolithic E, focal discoloration E, empty OT, other OT, other OT, other 2, severe OT, other F, general discoloration F, full	E1/E2, exopthalmia F, frayed S, swollen HIND GUT (Inflammation) 1, <50% R									red		S, 51	wollen		Ε	3, light re	d	1, yel	low full b	ladder			immatu	re								
B1/B2, blind M, marginate I, inflammed O, none 3, >50% NO, nodular G, granular D, nodules 3, dark green Stomach M1/M2, missing P, pale OT, other 1, mild 4, 100% E, enlarged U, urolithic E, focal discoloration E, empty OT, other OT, other 2, severe OT, other F, general discoloration F, full	E1/E2, exoplicating F, nayed S, swoten Find GDT (intermation) F, Sook R, reg H1/H2, hemorrhagic C, clubbed L, lithic FINS (erosion) 2, 50% G, granular											М, п	ottled		C. (cream (fa	rttv)	2.	liaht are	en												
M1/M2, missing P. pale OT, other 1, mild 4, 100% E, enlarged U, urolithic E, focal discoloration E, empty OT, other OT, other 2, severe OT, other F, general discoloration F, full	81/B2, blind M, marginate I, inflammed									0, none				3, >50%		NO n	odular		G, ar	anular		C), nodule	s	3	dark ore	en.			Stomac	ክ	
OT, other OT, other 2, severe OT, other OT, other F, general discoloration F, full	M1.	M2, miss	ing	P. (pale		OT, othe	οr			1, mild				4, 100%		E, en	arged		-, a. U. ur	olithic		E foc	al discolo	- vation	υ,					E am~	•
		OT, other	5	OT, of	ther						2. sever	8					ОТ	other		OT	other		F dene	ral disco	loration						5 6.0	'
Qi, other																				- • •				DT. othe	,						1,108	

WRITTEN BY MG ON 95/08/28

. • • REVISED BY SG ON 95/09/13

DATE:	95/11/1		TIME: 0800 INITIALS: SG						·	FISH S	OURCE:		Rocky N	htn. Seat	oods		TREAT	MENT:			Controls	5			TANK:	10					
											• •••••••••••••••••••••••••••••••••••••															EXPOS	URE PE	RIOD:		26 Day	ys
								NECRO	PSY (see	below	for expla	nation	of code	r)			-]												f	
					EXTE	RNAL		1	-			INTE	RNAL	-										OTHER	DATA						\neg
SAMPLE ID	length (mm)	weight (g)	body condition	E	operculum	eye	lig	sex (M, F, I)	pseudobranch	thymus	fat	spleen	gut	stomach	kidney	llver	bile	wet weight (g)	wet weight (g)	dry weight (g)	dry weight (g)	moisture (%)	liver weight (g)	blood vol ume (mL)	hematocrit (%)	leucocrit (%)	protein (mg/dL)	lactic acid (mg/dL)	giucose (mg/dL)	hemoglobin (mg/dL)	white blood cells (%)
			1 24	-	1 0		- N										2	1 260	0.677	0.252	am	70	14	0.5			170	05		001	
$\frac{1}{2}$	148	100	3.1	0							- 2	B				- A		1.500	0.801	0.303	0.201	71	0.9	0.5	3	<1	ND	80	8	9.9	
	200	110	1.4	0	0	N	- <u>N</u>	IM	N	0	1	B	õ	F	N	A	3	2080	1 390	0.562	0.378	73	12	0.5	39	>1	14.6	100	130	70	<u> </u>
4	195	85	1.2	0	0	N	N	IM	N	0	1	В	0	Ē	N	A	3	2.170	0.972	0.581	0.284	72	0.9	1.0	38	>1	8.9	65	140	8.1	- i
5	170	55	1.1	0	0	N	N	IM	N	0	2	В	0	E	N	A	3	0,661	0.431	0.183	0.128	72	0.4	0.8	31	>1	9.7	54	130	5.1	1
6	200	85	1.1	0	õ	N	N	IM	N	0	1	В	0	E	N	A	3	0.905	0.673	0.254	0.194	72	0.8	1.0	42	>1	8.9	78	170	9.9	0
7	235	150	1.2	0	0	N	N	IM	N	0	2	В	0	E	N	Α	3	1.500	1.030	0.429	0.294	71	2.0	2.0	32	1	10.5	33	225	6.1	1
8	205	110	1.3	0	0	N	N	IM	N	0	1	·8	0	E	N	Α	3	1.930	1.250	0.520	0.349	73	_1.0	1.0	37	>1	13.8	69	60	8.1	0
9	220	125	1.2	0	0	N	N	IM	N	0	2	В	0	E	N	Α	3	1,910	1,330	0.568	0.415	70	1.4	1.7	39	<1	15.4	32	150	10.1	0
10	230	150	1.2	0	0	N	N	IM	N	0	2	В	0	E	N	A	2	1.880	1.160	0.537	0.386	69	2.0	2.0	39	<1	13.0	31	235	8.7	1
J			ļ	ļ	ļ	ļ	ļ	ļ	ļ								ļ	ļ	ļ	ļ			ļ								<u> </u>
			 		<u> </u>		 	 -		ļ								 	ļ	 									ļ'		ļ
				 		 	 	<u> </u>																					├ ──── [!]		
 		- 	{			[<u> </u>										┨─────	{	├ ────									<u>├</u> ────'	┣────	<u> </u>
Comm	ents		4			L	L	1	L	I	i	L	L	I	L	L	l	1	1	1	l	L	1	L	L		L	L	L	I	l
								-																					, 		
	EYES		GI	LS	PSE	UDOBR/	ANCH		THYMU	S (hemo	wrhage)		MES	ENTAR	FAT	SPL	EEN		KID	NEY			LIVER			BILE				SEX	
l	N, normal N, normal N, normal				d		OPERCI	JLA (sho	ortening)		0, none		B, b	lack		N, n	ormal			A, red		0, yello	w empty	bladder		М, п	nale; F, fe	emale		
E1/E2, exophalmia F, frayed S, swollen				n	1	IND GU	T (inflar	nmation	1)		1. <50%		R.	red		S. SI	wollen		E	3. liaht re	d	1, vel	ow full b	ladder		1	immatu	re			
H1/H2, hemorrhagic C, clubbed L, lithic						FIN	S (erosi	on)	•		2, 50%		G, an	anular		M. m	ottled		C. (cream (fr	attv)	2	liaht are	en			•				
B1/B2, blind M, marginate I, inflammed				ъd			0 none	,			3.>50%		NO n	odular		G.or	anular		r) nodule	s	3	dark ore	en.			Stomaci	h			
ML	B1/B2, blind M, marginate I, inflammed M1/M2 missing P pale OT, other			r			1 mild				4 100%		Fenl	arged		Uur	olithic		E for	al discole	~ vration	υ.					E empty	•			
	M1/M2, missing P, pale O1, other OT other OT, other							2 sever	A			.,		_, s	other		0, ui	other		F nene	and disco	loration						E 6.0	/		
			0., u							_,	-					U 1,1			G1,			, gone	OT, othe	ſ						1,100	

£ .

REVISED BY SG ON 95/09/13

DATE:	ATE: 95/11/05 TIME: 10:00 INITIALS: SG/TB							FISH SC	DURCE:		Rocky N	Atn. Seal	loods		TREAT	MENT:			0.01% 1	TID	·		TANK:	11							
L					-,	L					·							A								EXPOS	URE PE	RIOD:		20 days	
				[]			1	NECRO	PSY (see	e below	for expla	nation	of codes	5)]								L					
					EXTE	RNAL		1	•		•	INTE	RNAL					<u> </u>						OTHE	R DATA						
SAMPLE ID	length (mm)	weight (g)	body condition	fin	operculum	eye	Bill	sex (M, F, I)	pseudobranch	thymus	fat	spleen	Įnõ	stomach	kidney	liver	bile	wet weight (g)	wet weight (g)	dry weight (g)	dry weight (g)	moisture (%)	liver weight (g)	blood volume (mL)	hematocrit (%)	leucocrit (%)	protein (mg/dL)	lactic acid (mg/dL)	glucose (mg/dL)	hemoglobin (mg/dL)	white blood cells (%)
<u> </u>	195	50		r	1	Y		r	<u></u>	1									0.205	0 242		70		r	·	1	1	r	r		r
	205		1.04		<u> </u>	<u> </u>			<u> </u>									1.19	0,305	0.313	0.109	72				 	<u> </u>		<u> </u>	 	<u> </u>
	205	30	1.04		<u> </u>	<u> </u>		<u> </u>	<u> </u>	}					· · · · · · · · · · · · · · · · · · ·	<u>}</u>		1.75	0.705	0.420	0.202	72			<u> </u>	├───	<u> </u>		<u> </u>		<u>├</u>
	200	90	1.04	<u> </u>				<u> </u>	<u> </u>	}								1.52	1 310	0.420	0.122	72		 	<u> </u>	<u> </u>	┢────	<u> </u>			
	200	110	1.13	}	+	<u> </u>		<u> </u>								}		2.54	1 210	0.55	0.370	73			<u> </u>	<u>}</u>	<u> </u>	┝	}	}	
6	240	180	1.05	<u>} </u>		┢────			<u> </u>									2.57	0.868	0.767	0.26	72				<u> </u>	<u> </u>		<u> </u>	<u> </u>	├
7	205	100	1.50	}	+	<u> </u>			<u> </u>									1.85	0.980	0.471	0.262	74			<u></u>	<u> </u>	<u> </u>	<u> </u>	├	}	<u>├</u> ────┤
8	220	130	1.10			<u> </u>												1.49	1 270	0.440	0.356	71		<u> </u>		<u> </u>	<u> </u>			<u> </u>	†
9	200	70	0.88		+	<u> </u>			<u>}</u>									1.71	0.617	0.445	0.176	73		<u> </u>	+	<u> </u>	+			<u> </u>	†
}				<u> </u>	+	<u> </u>			<u> </u>									1.12	0.774	0.332	0.236	70			<u> </u>	<u> </u>					1
	+				<u> </u>	<u>}</u>												1.20	0.675	0.369	0.214	69		<u> </u>	†	<u> </u>		<u> </u>			1
	1				<u> </u>	<u>†</u>			<u> </u>									1.11	1.110	0.441	0.323	72			<u> </u>	<u> </u>				<u> </u>	
	1				1	İ			<u>†</u>										1	<u> </u>							1			1	1
	1				1	ţ			<u>}</u>										1	<u>† </u>				<u>†</u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	† -]
	1		11		1	ľ			<u> </u>	1						1			1		11	~		1	İ	1	İ				<u> </u>
Comm	ents		·		<u>.</u>	<u></u>																								·····	~
ļ	******																			····					. <u> </u>						
L	EYES		GIL	LS.	PSEI	JDOBR/	NCH		тнуми	IS (hemo	orrhage)		MES	ENTARY	FAT	SPL	EEN		KID	NEY			LIVER			BILE				SEX	
	N, norma	ł	N, no	ormal	i	N, norma	ł		OPERCI	ULA (sho	ortening)		0, none		B, b	lack		N, n	ormal			A, red		0, yello	w empty	bladder		М, п	nale; F, f	emale
E1/8	2. exopth	almia	F, fri	ayed	5	S, swolle	n		HIND GL	JT (inflar	nmation)		1, <50%		R,	red		S, sv	vollen		Ε	3, light re	d	1, yel	low full b	ladder		1	, immatu	re
H1/F	2, hemor	rhagic	C, clu	ibbed		L, lithic			FIN	IS (erosi	on)			2, 50%		G, gra	anular		М, п	ottled		C, (cream (la	etty)	2.	light gre	en				
ξ	1/B2, blir	- nd	M, mai	rginate	1.	inflamme	ed			0, none	-			3, >50%		NO, n	odular		G, gr	anular), nodule	s	3	dark ore	en			Stomaci	h
M1/M2 missing P pale OT other					1. mild				4.100%		E, enl	arged		U, ur	olithic		E. foc	al discole	oration	0,					E emph						
		,		her		, 0010				2 caver	•			.,		OT .	other		07	other		E 0000	ral diece	Joration						E fuit	,
	C1, one		01.0	1101						Z, Seven	G					01,1	Julei		01,	oulei		, gene		, noration						r, iuli	
																						,	or, oure	,							

WRITTEN BY MG ON 95/08/28

REVISED BY SG ON 95/09/13

.

DATE:	95/11/1	3	TIME:	13:23-1	4:20	INITIAL	.s:	MG			FISH S	OURCE:	Rocky M	Aountain	Seafood	s		TREAT	MENT:		0.1% TI	D				TANK:	12				
											· ····															EXPOS	URE PE	RIOD:		28 Da	iys
								NECRO	PSY (se	e below	for expla	anation	of codes	s}]							_						
					EXTE	RNAL						INTE	RNAL											OTHEF	R DATA						
SAMPLE ID	length (mm)	weight (g)	body condition	L.	operculum	eye	Bil	sex (M, F, I)	pseudobranch	thymus	fat	spieen	μŋΰ	stomach	kidney	liver	bile	wet weight (g)	wet weight (g)	dry weight (g)	dry weight (g)	moisture (%)	llver weight (g)	biood volume (mL)	hematocrit (%)	leucocrit (%)	protein (mg/dL)	lactic acid (mg/dt.)	glucose (mg/dt.)	hemoglobin (mg/dL)	white blood cells (%)
				_														<u>A</u>	В	A	B										
1	200	85	1.06	0	0	N	N	M(I)	N	0	1	B	0	E	N	A	2	1.91	1.84	0.50	0.48	74	1.3	1.5	27	1	10.5	7	325	6.8	3
2	215	115	1.16	0	0	N	N	M(I)	N	0	2	В	0	E	N	A	2	2.31	2.43	0.60	0.63	74	1.8	1.2	34	1	9.7	32	105	8.1	1
3	185	70	1.11	0	0	N	N	M(I)	N	0	1	В	0	E	N	A	0	1.69	1.06	0.43	0.28	75	0.7	0.7	39	1	7.3	31	125	7.4	8
4	200	95	1.19	0	0	N	N	M(I)	N	0	2	В	0	E	N	A	2	2.67	1.74	0.69	0.43	75	1.4	1.5	35	>1	8.9	37	115	8.3	6
5	220	120	1.13	0	0	N	N	M(I)	N	0	2	8	0	E	N	A	2	2.96	2.12	0.79	0.56	74	2.2	0.7	36	1	8.1	21	105	6.2	5
6	205	95	1.10	0	0	N	N	M(I)	N	0	2	В	0	E	N	A/B	2	2.32	2.26	0.57	0.56	75	1.4	1.5	37	>1	5.7	50	110	8.1	5
7	200	85	1.06	0	0	N	N	M(1)	<u>N</u>	0	2	В	0	E	N	B	2	2.18	1.86	0.57	0.49	74	1.4	1.4	37	<1	21.1	47	215	8.3	2
8	205	90	1.04	0	0	N	N	M(I)	N	0	2	В	0	E	N	<u>A</u>	2	2.81	1.65	0.70	0.41	75	1.2	1.3	43	<1	10.5	78	175	9.4	2
9	150	30	0.89	0	0	N	<u>N</u>	M(1)	N	0	1	В	0	E	N	В	2	0.79	0.52	0.20	0.14	74	0,6	0.6	32	1	6.5	78	105	7.4	3
10	180	60	1.03	0	1	N	N	M(l)	N	0	1	R	0	E	N	A	0	1.94	1.24	0.47	0.31	76	0.9	0.9	41	<1	7.3	73	173	14.1	2
L	ļ	<u> </u>			ļ		<u> </u>	I		l					ļ												L				Į
L	ļ			ļ	ļ	ļ	Į		ļ	I	ļ		ļ		l	 	ļ		Į		ļ										<u> </u>
	ļ		. <u> </u>	ļ	ļ	ļ	ļ	ļ	ļ	ļ	ļ		ļ	ļ	ļ	ļ	ļ		ļ		ļ		ļ	 		ļ			Ļ		ļ
L	ļ			ļ	<u> </u>	 	 	ļ	<u> </u>	ļ	ļ		ļ	ļ		ļ	ļ							ļ		ļ			 		
		L		l		l	L	L	I	L	L	L	I	L.,	L	l	I	I	1	l	L	L	L	L	I	1	L	l	l	L	1
Liners	tored in c	ompart	ment 34								liver#S	Jumeber		due to b	uret call	bladdar		·····													
Fish #	- some h	aemora	anione in p	seudobra	anch due	to blow t	o the he	ad			Fish #9	too sma	I for liver	sample	to be tak	en for or	eservatio	20													~
Photot	aken of liv	ar 6 /fi	sh 6)													<u></u>					, ······							····-			~~~~~
1 110001	EVEC		<u> </u>	115	PSF		NCH		THYM	IS (here)	orthage)		MES	ENTAR	EAT	SPI	EEN		KID	NEY			INED			D11 E				DEY	
					102		a a a a a a a a a a a a a a a a a a a				ont nage j			0 0000		0.			N a	armal			Ared		0.00		5 1 a a a a a			367	
	N, norma		N, D	ormat			2(OPERCI		ortening)		0, 1008		0,1	ласк		N, D	ormati			A, reu		U, yelid	wenpty	Diacoer		м, п	ale; F. I	emale
£1/E	2, exopth	almia	F, D	ayed		5, swolle	n		MIND GU	Ji (inflar	nmation	U I		1,<50%	•	К,	red		5, 5	wollen		1	s, light re	Ю	1. yei		ladder		1	, immatu	if e
H1/H	2, hemori	hagic	C, cl	ubbed		L, lithic			FIN	iS (erosi	ion)			2,50%		G, gr	anular		М, п	ottied		С.	cream (fi	atty)	2.	light gre	en				
ε	1/82, blir	nd	M, ma	irginate	١.	inflamm	ed			0, none				3, >50%	,	NO, r	nodular		G, gr	anular		(), nodule	s	3,	dark gre	en			Stomac	.h
M1	/M2, miss	sing	Ρ.	pale		OT, othe	r			1, mild				4, 100%		E, en	larged		U, ur	olithic		E, foc	al discol	oration						E, empt	y
	OT, othe	r	OTo	ther						2, sever	e					OT.	other		OT.	other		F, gene	aral disco	oloration						F, full	
																							OT, othe	r							

WRITTEN BY MG ON 95/08/28

REVISED BY SG ON 95/09/13

DATE:	95/11/11		TIME:	0900		INITIAL	LS:	SG, M	3		FISH S	OURCE	Rocky M	viountain	Seafood	s		TREAT	MENT:		1% TID		-			TANK:		13			
																. <u></u>										EXPOS	URE PE	RIOD:		28 Da	ys
				<u> </u>				NECRO	PSY (se	e below	for expla	ination	of codes	5)				٦													·
					EXTE	RNAL		1	•			INTE	RNAL											OTHE	RDATA						
SAMPLE ID	length (mm)	weight (g)	body condition	u	operculum	eye	gli	sex (M, F, I)	pseudobranch	thymus	fat	spieen	Jug	stomach	kidney	liver	blie	wet weight (g)	wet weight (g)	dry weight (g)	dry weight (g)	molsture (%)	liver weight (mg)	blood volume (mL)	hematocrit (%)	leucocrít (%)	protein (mg/dL)	lactic acid (mg/dL)	gtucose (mg/dL)	hemoglobin (mg/dL)	white blood cells (%)
																		<u>A</u>	<u> </u>	<u>A</u>	B								· ····		
1	205	120	1.39		1			<u> </u>				_					<u> </u>		L	<u> </u>					ļ	ļ					·
2	190	60	0.87	0	0	N	N	M(I)	N	0	1	B	0	E	U	A	3	0.90	1.55	0.265	0.424	72	0.9	0.9	29	1	7.3	40	120	6.5	1
3	235	140	1.08	0	0	N	N	M(I)	N	0	1	В	0	E	N	A	3	2.90	1.89	0.785	0.524	73	1.4	0.9	40	<1	13.8	56	90	8.6	0
4	180	55	0.94	0	0	N	N	M(I)	N	0	1	В	0	<u> </u>	N	<u>A</u>	3	1.52	1.07	0.369	0.294	74	0.9	0.8	40	>1	15.4	54	170	8.3	1
5	215	105	1.06	0	0	N	N	M(I)	1	0	1	В	0	E	N	A	3	1.68	1.28	0.451	0.355	73	1.2	1.5	39	<1	6.5	_ 40	100	11.4	1
6	190	70	1.02	0	0	N	N	M(I)	S	0	1	В	0	E	N	A	3	1.59	1.75	0.415	0.476	74	0.8	0.8	39	<1	12.2	56	95	8.5	0
7	200	85	1.06	0	0	N	<u>N</u>	M(I)	N	0	2	8	0	E	N	<u>A</u>	3	1.88	2.41	0.470	0.647	74	1.0	1.0	38	<1	10.5	54	160	9.4	1
8	215	110	1.11	0	0	N	N	M(I)	N	0	1	B	0	E	N	<u>A</u>	2	3.12	2.73	0.790	0.703	74	1.3	1.2	39	<1	10.5	54	70	9.9	0
9	205	80	0.93	0	0	N	N	M(I)	N	0	1	В	0	<u> </u>	N	<u>A</u>	3	3.46	2.02	0.848	0.511	75	1.1	1.3	39	<1	11.3		95	8.5	0
10	180	55	0.94	0	0	N	N	M(I)	N	0	1	B	0	E	N	<u>A</u>	3	2.06	0.97	0.513	0.241	75	0.6	0.8	36	<1	9.7	56	115	8.5	0
11	200	80	1.0	0	0	N	N	M(I)	N	0	1	В	0	Ξ	N	<u>A</u>	3	2.10	1.75	0.535	0.407	75	1.1	1.2	34	<1	13	52	95	6.6	1
12	155	35	0.94		1	N		M(I)	N	0	1	8	0	E	N	<u> </u>	3	1.13	0.53	0.272	0.129	76	0.4	0.5	40	<1	13.8	72	125	16.2	2
ļ	├ ────		ļ	ļ		ļ	ļ	ļ	ļ	ļ	ļ			ļ		L	ļ	Ļ	 	<u> </u>	ļ		ļ		ļ	<u> </u>	ļ		ļ		
	ļļ		ļ	ļ	ļ	ļ	<u> </u>	<u> </u>	<u> </u>	ļ				ļ	[ļ	 	Į	ļ			L		ļ	Ļ	ļ		ļ		į
0			J	l		l	1	1	<u> </u>	<u> </u>	L)		L	l	L		1	J	L	L	L]		1		<u> </u>	<u> </u>				<u> </u>	Ĺ
Eich #0	line rice	od in 1	0% KC1			~~~~					·····																				
livers -	Comparte	nent 2P	3																												
	compara																														
L	EYES		GII	15	PSFI	IDOBRI	ANCH		THYMI	IS (hern	arbace)		MES	ENTARY	EAT	192	EEN		KIT.	NEV						D11 E					
									00500		, magej			0					N. D						0		استا ما ما			364	
C 4 F	N, HORMAN		N, N	Jinat					UPERC		мtening)		U, none		D, 1	DIACK		N, N	ormai			A, 190		U, yend	w empty	DIACOSI		м, п	ale, F, fe	maie
E1/E	2, exoptha	ilmia	►, m	ayed	:	5, SWOIIe	n		MIND GL	JT (inflæ	nmation)		1,<50%		. к	red		S, S)	wollen		i i	3, light re	d	1, yel	low full b	ladder		1.	immatu	e
H1/H2, hemorrhagic C, clubbed L, lithic FINS								IS (erosi	on)			2, 50%		G, gr	anular		M, m	ottled		С,	cream (fa	rtty)	2,	, light gre	คก						
B1/B2, blind M, marginate I, inflammed									D, none				3, >50%		NO, r	nodular		G, gr	anular		(), nodule	s	3,	, dark gre	en			Stomac	a	
M1.	M2, miss	ing	P. p	oaie		OT, othe	nf -			1, mild				4, 100%		E, en	larged		U, ur	olithic		E, foc	al discolo	oration						E, empty	ŧ
	DT, other		OT, ct	her:						2, savar	0					OT,	other		OT,	other		F, gene	eral disco	loration						F, full	
																							OT, cthe								

WRITTEN BY MG ON 95/08/28

REVISED BY SG ON 95/09/13

DATE:	95/11/1	5/11/13 TIME: 14:30 INITIALS: MG FISH SOURCE: Rocky Mountain Seafood												TREAT	AENT:	10% TIC)					TANK:	14								
L																										EXPOS	URE PE	RIOD:	28 days		
								NECRO	PSY (se	e below	for expl	anation	of code	5)																	
					EXTE	RNAL						INTE	RNAL					.						OTHEF	R DATA						
SAMPLEID	length (mm)	weight (g)	body condition	Ę	operculum	eye	llip	sex (M, F, I)	pseudobranch	thymus	fat	spieen	đrţ	stomach	kidney	liver	bile	wet weight (g)	wet weight (g)	dry weight (g)	dry weight (g)	moisture (%)	liver weight (g)	blood volume (mL)	hematocrit (%)	leucocrtt (%)	protein (mg/dL)	lactic acid (mg/dL)	glucose (mg/dL)	hemoglobin (mg/dL)	white blood cells (%)
	~~~~	1 120	1 12		1 0	N		M/D		0	1 1	B	0	F	N	8	2	210	1 58	0.498	0 384	76	19	20	25	<1	105	6	60	59	
	165	50	1.15	1 <u>.</u>	1 0	N	N	M(I)			2	B	0	E	N	A	2	1.30	0.88	0.306	0.220	76	0.9	0.7	23	1.0	1.6	8	70	46	7
3	195	90	1.21	0	0	N	N	M(1)	N	0	2	В	0	E	N	A	1	1.67	1.65	0.441	0.422	74	1.3	1.4	26	1.0	8.9	8	60	5.7	7
4	190	65	0.96	0	0	N	OT	M(1)	N	0	1	В	0	Ε	N	В	2	1,65	0.94	0,403	0.240	75	1.3	1.2	26	1.0	4.9	18	85	5.5	4
5	165	45	1.0	0	0	N	N	M(I)	N	0	1	В	0	E	M	С	1	1.36	0.74	0.321	0.183	76	0.9	0.9	23	<1	4.1	24	60	4.4	1
6	190	90	1.31	0	1	N	N	M(I)	N	0	1	B	0	E	N	В	1	2.36	1,94	0.555	0.425	77	1.4	1.0	27	>1	4.9	32	50	6.8	8
7	190	60	0.87	0	0	N	N	M(I)	I	0	2	В	0	E	N	A	1	1.77	1.33	0.427	0.340	76	0.6	0.8	28	1.0	7.3	12	70	7.2	3
8	220	110	1.03	0	0	N	N	M(I)	N	0	2	В	0	E	N	A	1	3.23	2.33	0.826	0.630	74	2.0	2.0	30	<1	0.0	68	115	7.7	4
9	195	80	1.08	0	0	N	N	M(i)	N	0	1	В	0	E	N	<u>A</u>	1	2.54	1.61	0.623	0.408	75	1.3	1.2	38	1.0	7.3	82	90	7.2	4
10	200	100	1.25	0	0	N	N	M(I)	N	0	1	В	0	E	M	A	1	3.24	1.97	0.787	0.506	76	1.7	1.5	29	>1	9.7	46	96	7.4	5
11	205	90	1.04	<u> </u>	0	N	<u>N</u>	M(I)	N	<u> </u>	<u>  1</u>	В	0	E	м	A	3	2.15	1.93	0.555	0.510	74	1.0	1.6	34	<1	11.8	52	75	7.1	4
		ļ		╂────			<u> </u>	<u> </u>		┨────	<b> </b>	<b> </b>		<b> </b>												<u> </u>	<u> </u>				ļ
┝───		<u> </u>		<u> </u>	<u> </u>		<u>}</u>	<u>}</u>	<del> </del>	<u>↓</u>	<u> </u>	<b> </b>	ļ	<u> </u>			}						}		}	<u> </u>	ļ		<u> </u>	<u> </u>	ļ
<u> </u>			+		<u> </u>		<u> </u>		+	<u> </u>		<u> </u>														<u> </u>		ļ			
Comm	nts	Fish #	5 - gall bla	dder bu	rst; liver v	vashed ir	n KCI	<u> </u>	1	I	<b></b>	L	I	I	L	L		LI		LI			i	I	L	1	1	l	L	l	1
																														·····	
L	EYES		GI	LLS	PSE	UDOBR/	ANCH		THYMU	JS (hem	orrhage	)	MES	ENTAR	FAT	SPL	EEN		KID	NEY			LIVER			BILE	·····	n		SEX	
	N. norm	al	N, n	ormal		N, norma	ai 🛛		OPERC	ULA (sh	ortening	1)		0, none		B, Ł	lack		N, n	ormal			A, red		O, yelic	w empty	bladder		M, n	nale; F, f	emale
E1/E	2, exopti	nalmia	F, fr	rayed		S, swolle	n		HIND GI	JT (infla	nm atior	1}		1, <50%	,	R,	red		S, sv	vollen		ε	3, light re	d	1, yel	low full b	ladder		1	immatu	re
H1/H	E1/E2, exopinalmia F, irayed S, swollen nivo Go I (innammation) 1, Sovie R, red H1/H2, hemorrhadic C, clubbed L, lithic FINS (erosion) 2, 50% G, granular										anular		M, m	ottled		С,	cream (fr	atty)	2	light gre	en										
В	H1/H2, hemormagic C, clubbed L, inflammed Pins (erosion) 2, 50% G, granular B1/B2 blind M, marcinate I, inflammed 0, none 3, >50% NO, nodular										odular		G, gr	anular		[	), nodule	r, IS	3	dark gre	en			Stomac	h						
M1	M2. mis	sina	P. 1	pale		OT, othe	r			1, mild				4, 100%		E, en	larged		U, ur	olithic		E, foc	al discol	oration	-					E. emnt	v
	OT othe	n	OT, ø	ther		•				2, sever	e					от	other		OT,	other		F, gene	eral disco	oloration						F, full	,
																						,	OT, othe	ſ							

DATE:	95/11/2	2	TIME:	13:45	;	INITIAL	.S:	MG		······	FISH S	OURCE:		Rocky N	/itn. Seai	loods		TREAT	MENT:		NAP					TANK:		15			
L			<u></u>																							EXPOS	URE PE	RIOD:		28 Days	,
								NECRO	PSY (see	e below	for expla	nation	of codes	5)																	
					EXTE	RNAL						INTE	RNAL											OTHEF	R DATA						
SAMPLE ID	length (mm)	weight (g)	body condition	lin	operculum	eye	gitt	sex (M, F, I)	pseudobranch	thymus	fat	spleen	gut	stomach	kidney	liver	bile	wet weight (g)	wet weight (g)	dry weight (g)	dry weight (g)	moisture (%)	liver weight (g)	blood volume (mL)	hematocrit (%)	leucocrit (%)	protein (mg/dL)	lactic acid (mg/dL)	glucose (mg/dL)	hemoglobin (mg/dL)	white blood cells (%)
	160	35	0.85	0		N	Ι N	MIL	I N	0	1	8	0	F	M	Α	C n	0.626	0.902	0.148	0 198	77	10	10	30	>1	169	15	65	62	50
2	140	20	0.03	0	0	N	N			0	1	B	0	F	M	A	0	0.397	0.285	0.091	0.060	78	0.7	0.5	29	>1	45.0	20	81	5.0	3.0
	200	80	1		1(1)	N	N	M(I)	N	- 0-	2	B	0	F	M	A	0	1,120	0.814	0.285	0.206	75	1.8	1.2	28	>1	46.0	18	81	5.3	3.0
	175	40	0.75	0	1(R)	N	N	M(I)	N	0	1	B	0	F	M	A	1	0.417	0.824	0.109	0.214	74	1.1	1.2	27	<1	72.0	16	108	5.6	30
	100	70	1.0	0		N	N	M(I)	N	0	1	8	0	F	N	A	1	1 360	1 220	0 340	0 307	75	1.7	1.5	28	>1	70.0	17	65	5.6	30
6	165	35	0.78	0	1(R)	N	N		N	0	1	R	0	F	N	A	0	0 763	0.654	0 185	0.168	75	07	0.8	28	>1	60.0	22	77	5.0	30
7	160	25	0.61	0		N	N	$\frac{1}{1}$	N	0	1	 R	0	F	N	A	0	0.734	0.809	0.159	0.183	78	0.9	<0.5	34	<1	16.0	59	87	6.4	10
8	200	70	0.88	0		N	N	F(I)	N	0	1	8	0	F	N	A	1	1.330	1 1 4 0	0.337	0.278	76	1.2	1.7	29	<1	12.0	6	81	60	30
	250	125	0.00	0		N	N	M/h	N		1	8	0	F	<u>N</u>	A	1	1 040	1 700	0.282	0 439	74	22	17	31	<1	7.5	28	110	6.1	2.0
10	170	40	0.81	<u> </u>	1(1)	N	N			0	1	8	0	F	M	A	0	0.556	0.696	0 123	0.158	78	0.9	0.6	28	>1	25.3	36	85	5.6	2.0
11	205	75	0.87	0		N	N	M(I)	N	0	2	8	0	F	N	C	1	0.821	1 160	0 196	0.316	75	19	15	30	1	32.0	54	03	50	2.0
12	130	10	0.45					<u>()</u>	<u>}</u>									1			0.070		0.2			· · · · · · · · · · · · · · · · · · ·				0.2	
13	115	10	0.66				<u> </u>	+	<u> </u>									1					0.3								
			1		1			<u> </u>										<del>  </del>				{									<u> </u>
			1		†		<u> </u>	<b></b>										<u> </u>													
Comme	ents	Fish #6	i - gall bla	dder bu	st; liver w	ashed in	h KCI	<u> </u>	<u> </u>	·	·	ل <b>سس</b> ريما		·	······			1		1						<u> </u>	L1				
	·····																									•••••••••••••••••••••••••••••••••••••••			·		
																	-														
								·····												····		····									
	EYES		GIL	LS	PSEL	JDOBRA	ANCH		THYMU	S (hemo	orrhage)		MES	ENTARY	FAT	SPL	EEN		KIDI	NEY		·····	LIVER			BILE				SEX	
I	N, norma	I	N, no	ormal	î	N, norma	1		OPERCL	JLA (sho	ortening	)		0, none		B, b	lack		N, no	rmal			A, red		0, yello	w empty	bladder		M, m	ale, F. fe	male
E1/E	2, exopth	almia	F, fr	ayed	5	6, swoller	n	2	HIND GU	T (inflar	nmation	)		1, <50%		R.	red		S, sw	ollen		B	light re	d	1. vell	ow full bl	ladder			immatu	
H1/H2	bemor	hadic	C clu	sbbed		L. lithic			FIN	S (erosi	00)			2 50%		Gon	aoular		M m	ottled		- -	ream (fr	atty)	2	light gree			•	in a carea	
B	1/82, blir	id	M, mai	rginate	I, i	inflamme	ed			0, none	,			3, >50%		NO, n	odular		G, gra	inular		0,0	), nodule	s	3,	dark gree	en			Stomach	1
M1/	M2, miss	sing	P.r	oale	C	DT, othei	r			1, mild				4, 100%		E, enl	arged		U, urc	lithic		E. foca	al discolo	pration		3				Femo	,
	DT other		OT of	ther						2 seven	e					OT	other		OT	other		F gene	ral disco	loration						c 4.00	
	,		, -	-						_,												· · · gene								e. 101	
																						,	., vuici								

WRITTEN BY MG ON 95/08/28

.

REVISED BY SG ON 95/09/13

																										·····					
DATE:	95/11/13	3	TIME:	17:20	)	INITIAL	_S:	MG			FISH S	OURCE:		Rocky I	Atn. Sea	oods		TREAT	MENT:		BNF					TANK:		16			
																		-								EXPOS	URE PE	RIOD:		28 Days	
				1				NECRO	PSY (see	e below	for expl	anation	of code:	5)																	
·····	·~			4	EXTE		,	1	,	,	,		RNAL	,	1	,	,	ļ	,	,				OTHE	R DATA	,			,	,	
SAMPLE ID	length (m)	weight (g)	body condition	ų	operculum	eye	ЯЮ	sex (M, F, I)	pseudobranch	thymus	fat	spleen	gut	stomach	kidney	liver	bile	wet weight (g)	wet weight (g)	dry weight (g)	dry weight (g)	moisture (%)	liver weight (g)	blood volume (mL)	hematocrit (%)	leucocrit (%)	protein (mg/dL)	lactic acid (mg/dL)	glucose (mg/dL)	hemoglobin (mg/dL)	white blood cells (%)
	- 400		1 4 4 7	1 0		1 N	1 11	1 1400				-			I NI	<u> </u>	Г <u> </u>	1 1 00	1.02	0.495	0 402	76	14	11	22			20	70		
	190	120	1.17	<u> </u>				M(1)									<u>├</u>	2.53	2.46	0,465	0.492	74	1.4	2	37		10.5	18	65	8.3	
1-2-	195	80	1.22	1-0-					N		<u>├-;</u>		<u>⊢⊸</u>	- <u>-</u>	N	Â		2.50	1 44	0.595	0.387	75	13	12	34	1	11.4	30	65	7.0	
	170	60	1.20	0		N	N	MO	N	0	1	- B	0	E	N	В	1	1.79	1.42	0.415	0.34	77	07	0.7	47	<1	6.5	34	80	55	3
5	210	110	1 19	0	10	N	N	M(I)	N	0	2	8	0	E	N	B	1	3.07	2.89	0.752	0.693	76	2.1	1.5	34	<1	9,7	34	75	7.0	1
6	225	130	1.14	0	0	N	N	MO	N	0	2	В	0	E	N	c	1	2.63	1,93	0.693	0.522	74	1.9	2	30	<1	8.1	42	75	7.4	2
7	205	90	1.04	0	0	N	N	M(I)	N	0	1	В	ō	E	N	B	1	1.9	1.6	0.477	0.413	75	1.4	1.2	35	<1	9.7	56	80	7.5	1
8	200	95	1.19	0	0	N	N	M(1)	N	0	1	В	0	E	N	С	1	2.12	2.1	0.519	0.527	76	1.6	1.5	31	<1	8.1	68	105	6.2	1
9	210	115	1.24	0	0	N	N	M(I)	N	0	2	В	0	E	N	8	1	2.47	2.33	0.609	0.603	75	2.2	1.5	33	<1	9.7	76	85	7.0	1
10	195	90	1.21	0	0	N	N	M(i)	N	0	1	В	0	E	N	В	1	2.49	1.83	0.645	0.474	74	1.1	0.6	40	<1	14.6	52	110	9.0	2
11	185	70	1.11	0	0	N	N	M(I)	N	0	1	В	0	E	N	В	1	2.18	1.3	0.549	0,341	75	1.2	1.2	29	<1	9.3	92	123	9.1	1
				ļ				ļ	Ļ																ļ	ļ					
			+					<u> </u>			ļ		<u> </u>					<u> </u>							ļ			· · · · · · · · · · · · · · · · · · ·	<u> </u>	ļ	ļ
			+		1			<b> </b>			<u>}</u>		<u> </u>							<u> </u>					<u> </u>					<u> </u>	
Comm	ents												<b>^</b>													·····			<u></u>	·	1
Fish #2	- evidenc	e of ble	eding in	Pectoral	and dors	al fins ar	nd tail fin	l																							
most fi	h in BNF	- mild I	hemorrha	ging aro	und anal	vent											••••••														
Livers i	n compart	ment 1	В														-														
	EYES		Gt	LLS	PSE	UDOBR	ANCH		THYMU	IS (hem	orrhage		MES	ENTARY	FAT	SPL	EEN		KID	NEY			LIVER			BILE				SEX	
	N, norma	I	N, n	ormal		N, norma	ai		OPERC	ULA (sh	ortening	)		0, none		B, t	lack		N, n	ormal			A, red		0, yello	w empty	bladder		М. п	nale; F. f	emale
E1/8	2, exopth	almia	F, fr	ayed	:	S, swolle	n	1	HIND GL	JT (infla	mmation	ນ		1, <50%		R.	red		S. S	vollen		£	, light re	d	1, vel	llow full b	ladder		1	immatu	re
H1/H	2 hemor	hagic	C cl	ubbed		L. lithic			FIN	IS (eros	ion)	,		2 50%		G.or	anular		Min	ottled		с -	ream (fr	- ittv)	2	light are	en.		•	,	
H1/H2, hemorrhagic C, clubbed L, lifthic B1/B2, blind M, marginate I, inflamed				d			0, none	,			3 >50%	,	NO, r	odular		G, qr	anular		, .	), nodule	s,	3	dark ore	en			Stomac	h			
M1	M1/M2 missing P pale OT other			er -			1, mild				4, 100%		E, en	larged		U. ur	olithic		E. foc	al discolo	oration	-					E emot				
	OT other		OT o	ther		•				2 Sever	· A					от	other		_, OT	other		Foene	ral disco	loration						E full	,
	,		0.,0							_, _,	-					- ''			21,			. j gone	DT, othe	1						1,100	

WRITTEN BY MG ON 95/08/28

REVISED BY SG ON 95/09/13

Necropsy summary data sheets

.

TREATMENT	avg	7 C SD	)AY Iow	high	avg	28 SD	DAY Iow	high
lab control	86	2	85	89	97	6	90	105
Tar Island Dyke (%) 0.01 0.1 1.0 10	- 79 82 80	- 7 8 8	- 75 74 72	- 87 90 88	95 97 94 95	4 6 4 8	90 85 85 85	100 110 100 105
Athabasca River naphthenic acids (1 mg/L) β-naphthoflavone (10 μg/L)	84 83 -	1 6 -	84 76 -	85 88 -	104 98 97	9 7 5	90 90 90	120 110 105

Table 2.1 Fish Length (mm) Data Summary for Walleye in the Short and Long Term Tests

.

NOTE: Missing values were not done or included in the test design

TREATMENT	avg	7 D SD	Iow	high	avg	28 I SD	DAY Iow	high
lab control	5.7	1.0	5.0	7.07	7.7	1.4	6.2	10.5
Tar Island Dyke (%) 0.01 0.1 1.0 10	4.1 4.6 3.8	- 1.6 1.7 1.2	2.9 3.0 2.5	5.9 6.4 4.8	7.2 7.6 6.5 6.6	1.3 1.3 0.6 2.1	4.9 4.9 5.7 3.6	9.1 10.6 7.7 9.4
Athabasca River naphthenic acids (1 mg/L) β-naphthoflavone (10 μg/L)	4.6 4.8	0.2 1.1 -	4.4 3.7	4.8 5.8	9.8 7.6 7.6	2.0 2.2 1.2	6.5 4.2 5.7	12.2 12.0 9.7

Table 2.2 Fish Weight (g), Data Summary for Walleye in Short and Long Term Tests

NOTE: Missing values were not done or included in the test design

TREATMENT	avg	7 D SD	)AY Iow	high	avg	28 I SD	DAY low	high
lab control	0.9	0.1	0.8	1.0	0.8	0.1	0.7	0.9
Tar Island Dyke (%) 0.01 0.1 1.0 10	0.8 0.8 0.7	0.1 0.1 0.1	0.7 0.7 0.7	- 0.9 0.9 0.8	0.8 0.8 0.8 0.8	0.1 0.1 0.1 0.1	0.7 0.7 0.7 0.6	1.0 1.0 0.9 0.9
Athabasca River naphthenic acids (1 mg/L) β-naphthoflavone (10 μg/L)	0.8 0.8 -	0.1 0.1 -	0.7 0.8 -	0.8 0.9 -	0.9 0.8 0.8	0.1 0.1 0.1	0.7 0.6 0.8	0.9 1.0 0.9

.

Table 2.3 Body Condition Data Summary for Walleye in Short and Long Term Tests

NOTE: Missing values were not done or included in the test design

1
TREATMENT	7 DAY					ava	28 DAY avg SD low high			
	avy	00	1044	mgn		avy	50	1044	myn	
lab control	0.06	0.01	0.05	0.07		0.17	0.06	0.06	0.31	
Tar Island Dyke (%)										
0.01		673	***	50		0.16	0.03	0.10	0.22	
0.1	0.07	0.05	0.02	0.11		0.15	0.04	0.11	0.26	
1.0	0.07	0.04	0.04	0.11		0.13	0.03	0.08	0.18	
10	0.05	0.02	0.03	0.07		0.13	0.04	0.06	0.18	
Athabasca River	0.06	0.01	0.05	0.08		0.15	0.03	0.09	0.19	
naphthenic acids (1 mg/L)	0.08	0.03	0.05	0.10		0.15	0.04	0.07	0.19	
$\beta$ -naphthoflavone (10 $\mu$ g/L)	~		639	***		0.17	0.03	0.15	0.23	

Table 2.4 Liver Weight (g), Data Summary for Walleye in Short and Long Term Tests

• ,

TREATMENT	avg	7 D SD	DAY low	high	avg	28 I SD	DAY low	high
lab control	78	0.6	78	79	78	0.3	78	79
Tar Island Dyke (%) 0.01 0.1 1.0 10	- 78 78 78	0.7 0.8 0.3	- 77 77 78	- 79 79 79	78 78 77 80	0.5 0.5 0.5 0.9	78 77 76 78	79 78 77 81
Athabasca River naphthenic acids (1 mg/L) β-naphthoflavone (10 μg/L)	78 78 -	0.4 1.0 -	78 77 -	79 79 -	78 79 77	0.8 1.2 0.8	76 77 76	79 81 78

Table 2.5 Percent Moisture, Data Summary for Walleye in Short and Long Term Tests

TREATMENT	avg	7 D SD	DAY Iow	high	avg	28 ( SD	DAY low	high
lab control	167	22	133	203	201	26	148	235
Tar Island Dyke (%)								
0.01	809	***	679	1037	209	16	185	240
0.1	187	18	163	220	196	20	150	220
1.0	171	23	120	210	198	21	155	235
10	173	13	155	190	194	18	165	220
50% TID	169	28	141	196	em	<b>V</b> 23	***	<b>#35</b>
Athabasca River	188	11	167	199	187	20	155	215
naphthenic acids (1 mg/L)	172	16	135	195	183	30	160	250
$\beta$ -naphthoflavone (10 $\mu$ g/L)	170	19	133	193	200	17	170	225

Table 2.6 Fish Length (mm), Data Summary for Trout in Short and Long Term Tests

TREATMENT	avg	7 D SD	AY low	high	avg	28 SD	DAY low	high
lab control	64	25	29	110	108	29	55	150
Tar Island Dyke (%) 0.01 0.1 1.0 10 50% TID	- 80 61 64 66	- 23 25 13 22	- 49 19 44 45	- 128 115 81 86	101 85 83 82 -	37 26 31 24 -	50 30 35 45 -	180 120 140 120 -
Athabasca River naphthenic acids (1 mg/L) β-naphthoflavone (10 μg/L)	81 66 67	14 18 19	55 31 26	96 96 88	74 56 96	26 31 23	40 20 60	120 125 130

.

Table 2.7 Fish Weight (g), Data Summary for Trout in Short and Long Term Tests

TREATMENT		7 D	AY			28 DAY SD         hig           1.4         0.6         1.1         3.7           1.1         0.2         0.03         1.3           1.1         0.1         1.0         1.2           1.0         0.1         1.0         1.2           1.1         0.1         1.0         1.3			
	avg	SD	low	high	a	vg	SD	low	high
lab control	1.4	0.5	1.1	2.6	1	.4	0.6	1.1	3.1
Tar Island Dyke (%)									
0.01	-	tr.	600		1	.1	0.2	0.03	1.3
0.1	1.2	0.1	1.0	1.4	1	.1	0.1	1.0	1.2
1.0	1.2	0.2	1.0	1.6	1	.0	0.1	0.9	1.4
10	1.2	0.1	1.0	1.4	1	.1	0.1	1.0	1.3
50% TID	1.4	0.3	1.1	1.8			64		-
Athabasca River	1.2	0.1	1.1	1.4	1	.1	0.1	1.0	1.2
naphthenic acids (1 mg/L)	1.3	0.1	1.1	1.5	0	.8	0.1	0.6	1.0
$\beta$ -naphthoflavone (10 $\mu$ g/L)	1.3	0.3	1.1	1.9	1	.2	0.1	1.0	1.3

0

Table 2.8 Body Condition Data Summary for Trout in Short and Long Term Tests

TREATMENT	avg	7 D SD	Iow	high	avg	28 I SD	DAY low	high
lab control		-	-	-	72	1.3	69	73
Tar Island Dyke (%) 0.01 0.1 1.0 10 50% TID	- - -	- - - -	- - -	- - - -	72 75 74 75 -	1.4 0.7 1.1 1.0	69 74 72 74 -	74 76 76 77
Athabasca River naphthenic acids (1 mg/L) β-naphthoflavone (10 μg/L)	- - -	- -	-	- - -	74 76 75	0.7 1.6 0.1	72 74 74	74 78 77

•

Table 2.9 Percent Moisture, Data Summary for Trout in Short and Long Term Tests

TREATMENT	avg	7 D SD	Iow	high	avg	28 I SD	DAY low	high
lab control	1.0	0.4	0.2	1.5	1.2	0.5	0.9	1.4
Tar Island Dyke (%)								
0.01		**	629		100	***	419	***
0.1	0.9	0.5	0.3	1.5	1.3	0.5	0.6	2.2
1.0	0.7	0.4	0.2	1.3	1.0	0.3	0.4	1.4
10	0.6	0.2	0.3	1.1	1.3	0.4	0.6	1.9
50% TID	0.7	0.3	0.4	1.0	60	602	6009	
Athabasca River	1.0	0.3	0.5	1.4	0.8	0.3	0.4	1.2
naphthenic acids (1 mg/L)	0.8	0.3	0.4	1.3	1.3	0.5	0.7	2.2
$\beta$ -naphthoflavone (10 $\mu$ g/L)	1.0	0.5	0.2	1.5	1.5	0.4	0.7	2.2

Table 2.10 Liver Weight (g), Data Summary for Trout in Short and Long Term Tests

TREATMENT	avg	7 D SD	DAY low	high	avg	28 SD	DAY low	high
lab control	5	1	4	7	6	2	4	9
Tar Island Dyke (%)								
0.01	7	2	6	11	-	-	-	-
0.1	7	2	6	11	5	2	3	11
1.0	5	2	3	7	6	1	3	8
10	4	1	2	7	3	2	1	6
50% TID	5	3	3	8	-	-	-	-
Athabasca River	6	2	4	9	5	1	4	7
naphthenic acids (1 mg/L)	7	1	5	10	7	5	2	14
$\beta$ -naphthoflavone (10 $\mu$ g/L)	6	2	4	9	5	1	3	7

Table 2.11 Plasma Protein Levels (g/dL), Data Summary for Trout in Short and Long Term Tests

TREATMENT		7 C	AY			28	DAY	
	avg	SD	low	high	avg	SD	low	high
lab control	88	35	39	139	62	25	31	235
Tar Island Dyke (%)								
0.01	4779	451	679	609	-	***	-	890
0.1	94	18	65	128	45	25	7	78
1.0	92	27	62	131	52	10	40	72
10	73	33	22	132	32	26	6	85
50% TID	141	37	103	186	403			-
Athabasca River	96	35	37	142	69	33	15	115
naphthenic acids (1 mg/L)	97	30	50	137	27	17	6	59
$\beta$ -naphthoflavone (10 $\mu$ g/L)	77	30	39	138	48	23	18	92

Table 2.12 Plasma Lactic Acid Levels (mg/dL), Data Summary for Trout in Short and Long Term Tests

TREATMENT	avg	7 D SD	DAY low	high	avg	28 ( SD	DAY low	high
lab control	107	20	84	138	139	61	60	235
Tar Island Dyke (%) 0.01 0.1 1.0 10 50% TID	- 109 96 102 67	- 15 12 18 15	- 92 84 76 56	- 134 123 121 88	- 155 112 76 -	- 71 30 19 -	- 105 70 50 -	- 325 170 115 -
Athabasca River naphthenic acids (1 mg/L) β-naphthoflavone (10 μg/L)	97 106 116	15 18 20	81 84 77	134 144 138	122 85 85	35 15 19	65 65 65	185 110 123

Table 2.13 Plasma Glucose Levels (mg/dL), Data Summary for Trout in Short and Long Term Tests

TREATMENT		7 D	AY			$\begin{array}{c c} 28 \text{ DAY} \\ \text{SD} & \text{low} & \text{high} \\ \hline 2 & 5 & 10 \\ \hline - & - & - \\ 2 & 6 & 14 \\ 3 & 7 & 16 \\ \hline \end{array}$			
	avg	SD	low	high	avg	SD	low	high	
lab control	8	1.6	5	10	8	2	5	10	
Tar Island Dyke (%)									
0.01	-	***	ett)	-	-012	••••	-	443	
0.1	10	2.9	4	14	8	2	6	14	
1.0	5	2.2	3	10	9	3	7	16	
10	7	2.6	3	11	6	1	4	8	
50% TID	6	1.8	4	8	e25	**	100	<del>m</del>	
Athabasca River	9	2.1	6	13	7	1	6	9	
naphthenic acids (1 mg/L)	7	0.6	6	8	6	1	5	6	
$\beta$ -naphthoflavone (10 $\mu$ g/L)	9	2.2	6	12	8	1	6	9	

Table 2.14 Blood Hemoglobin Levels (g/dL), Data Summary for Trout in Short and Long Term Tests

Table 2.15 Hematocrit	Values (%), Data	Summary for T	rout in Short a	nd Long Term
Tests				

TREATMENT	avg	7 D SD	)AY low	high	avg	28 DAY avg SD low high				
lab control	39	4	30	43	40	7	31	55		
Tar Island Dyke (%) 0.01 0.1 1.0 10 50% TID	- 41 38 37 28	- 4 5 5 7	- 36 30 30 21	- 48 44 43 37	- 36 38 28 -	- 5 3 5 -	- 27 29 23	- 43 40 38 -		
Athabasca River naphthenic acids (1 mg/L) β-naphthoflavone (10 μg/L)	39 35 33	5 3 5	28 30 23	46 40 39	39 29 35	3 2 5	33 27 29	43 34 47		

Liver mixed function oxidases results for 7 and 28 day tests

pg 1:0 10

TO: Steve Goudey, HydroQual

FAX # : (403) 252 - 9363 PHONE # :

FROM: Joanne Parrott, National Water Research Institute FAX # : (905) 336 - 6430 PHONE # : (905) 336 - 4551

NUMBER OF PAGES INCLUDING THIS ONE: 10

September 18, 1995

Hi Steve,

Hot off the press... the EROD results. Unfortunately I've rarely seen as disappointing a data set! (Though, probably Suncor will not be disappointed!)

I'm puzzled by the finding of high EROD activities in the large trout (internal control fish). Dilution water and Athabasca River water exposed fish (large and small trout and small walleye) had high EROD activities too. In our 4 d tests of unfed small (1-3 g) rainbow trout, control EROD activities in our lab water (dechlorinated, charcoal filtered Burlington city water) are usually about 0.6 to 1 pmol/mg/min.

The positive controls responded within the expected region; we usually see ERODs of 7-15 pmol/mg/min for BNF exposed small rainbow trout (4 d, unfed).

The best dose-response was seen in the large trout, though the absolute activities are lower than the small trout or walleye.

On review of the EROD kinetic data which were used to calculate slopes - my technician found nice smooth slopes that were easy to assess - so I don't think the problem was with the assay.

I'll be in Norman Wells, NWT, doing SPMD stuff 'til the 22nd of September - you can reach me at the Rayuka Inn (403) 587 - 2354 if you have questions regarding the data.

See you at the meeting on the 25th.

Goame

pg20110

4

#### Results ...... Date: 09-16-1995 ... Root: SEP12-95 .... Path: C:\I\SEP12-95\ CALGARY SAMPLES

8	MEAN ACTIVITY		CONFIDENCE LIMITS				
TREATMENT	(pmol/min/mg protein)	N	LOWER	UPPER			
	• Addressed formation and an an analysis of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s						
INTERNAL CONTROLS	5						
L-CTRL	1.30846688	7	0.524633	2.940172			
L-BNF	16.1317984	9	8.396097	30.82892			
DILUTION WATER							
W-DWAT	3.79046267	3	1.355871	10.03465			
S-DWAT	4.08795689	2	1.708349	9.434807			
L-DWAT	1.47472139	8	0.944404	2.250787			
ATHABASCA RIVER V	/ATER		•				
W-AR	2,9963608	1	-1	-1			
S-AR	1.46860437	2	0.467539	3.970905			
L-AR	1.2899558	10	0.756766	2.120284			
NAPH							
W-NAPH	4.19909265	3	3.069479	5.718992			
S-NAPH	3.92675793	3	0.298888	33,93618			
L-NAPH	1.65689044	10	1.102615	2.447016			
TAR ISLAND DYKE - W	/ALLEYE						
W-0.1%TID	5.70311618	1	-1	-1			
W-1%TID	4.68807243	3	1.768262	11.93927			
W-10%TID	5.0049273	3	2.298339	10.64371			
TAR ISLAND DYKE - SMALL TROUT							
S-0.1%TID	7.81583288	1	-1	-1			
S-1%TID	10.3799951	1	-1	•1			
S-10%TID	5.39971237	3	0.800852	31.1301			
TAR ISLAND DYKE - LARGE TROUT							
L-0.1%TID	1.87685753	10	1.245453	2.784073			
L-1%TID	2.69964639	10	1.789055	4.027108			
L-10%TID	3.28874857	10	2.041451	5.230128			
L-50%TID	1.80683083	4	0.232606	9.10955			
EXTERNAL CONTROLS							
BNFX	21.1554986	1		- 7			
<u>CTLX</u>	0.845062929	1	4ء	-1			



TO

 $\odot$ 



8'95 15:50 FR ENVIRONMENT CANADA 905 336

6430

4032529363

SEP

P.04/10



SEP

pg.6 d 10

achvilies

· È

EROD

odv np meanp Treatment Conc 2000lo nF scanf edP Activicy ****** -- ----------Jour sample 1 73 L-10%TID 0 3 .000087139 .000008526 3 .230207427 .04685204 1.88246374 L-104710 0 71 3 .000191602 .000005240 3 .223765652 039666059 3.62691149 C-108110 0 72 3 .000311402 .000014056 3 .187282777 .01724763 7.26547377 3.000124360.000000677 3.181546011.02256048 3.22487172 3.16377586.587050.56484.375934 L-1CVTID 0 75 L-16%TID D 76 3 .000058315 .000004905 3 .1668870282 .03688359 1.68088493 L-LONTID 0 74 1.-10%T10 0 77 3 .000196446 .000011000 3 .156455743 .01308155 5.53844111 3.00037608.000010333 3.133270221.006577969 2.34873040 L-701710 0 28 L-10STID 0 72 3 .000254491 .000010136 3 .1016858%1 .003584823 5.84476919 3 .000377177 .000016325 3 .179108475 .03060886 7.25444476 L-1UNTID 0 80 3 .000353715 .000006447 3 .276219904 .01227057 4.43014360 L-1STID 0 63 3 .0001339207 .000008755 3 .189901849 .008561660 3.31670710 L-14770 0 L-14770 0 L-14770 0 L-14770 0 L-14770 0 L-14770 0 L-14770 0 L-14770 0 L-14770 0 L-14770 0 L-14770 0 L-14770 0 eron L-19770 0 68 J .000028871 .000001627 3 .165633953 .01361142 941721485 67 ) .0001618c7 .000033660 3 .212723429 .01417394 3.43506561 65 3 .004086841 .000003763 3 .185966059 .004812773 2.18756550 7 .004086841 .000003763 3 .1879368059 .07375692 3.84561834 70 62 J. 000188490, 000013066 2. 160398499, 021000, 65.19653914 69 3 .CO0060016 00002222 3 .177142630 .CJ2726795 1.65693783 64 3 .000126529 .000010968 3 .192323686 .008624750 3.235co993 61 3 .000164092 .000010325 3 .140102630 .011366347 5,17973445 Mean: 2.60964639 10 Lower: 1.78905454 Upper: 4.02710843 ENPX 0 BNDX 3 .003755688 .000538541 3 .754795000 .039748776 31.3247286 Maan; 21.1554965 1 Lowar: -1 Oppus: -1 W-22 0 99 3 .000146316 .000002927 3 .210173165 .01435436 3.196360e0 Masn: 2. 79636080 1 Lover: .1 Upper: -1 L. CTRL D 2 3 .000037900 .000002394 3 .215078.60 .000461699 .046450426 L CIRL 3 .000011478 .000001575 J .226199449 .003877039 .417675838 4 0 2 000069236 .0000c3838 3 .19077025. 5076587A1 2.74307185 L-CTM L-CTRL 3 .000035060 .000005762 3 .2320A1061 .01366868 .039828056 C 3 3 .000154043 .000013273 3 .192514335 .04273418 4.48545345 L-CTRL 0 6 3 .000092786 .000021015 3 .177603254 .009637768 2.42134049 L-CTRL 0 L-CTRL 3 .000115865 .0000001815 3 .187460146 .004106359 2.83788610 0 5 Maan: 1.30846666 7 Lower: .524632925 Hpper: 3.94017244 113 3 .000166852 .000009536 3 .26833405 .005293405 2.52796790 3-108TID 0 3 .000852502 .n00030298 3 .233377324 .002662118 15,7373033 9-10%TTD 0 214 8-10%TID 0 322 3 .000180660 .000005775 3 .182293626 .000660006 4.41364101 Rean: 5,39971227 3 Lower: ,600851617 Upper: 31.1300975 i. - inar 82 3 .800169224 .000001121 3 .23870x640 .007334204 3.03402538 a 3 .000043680 .000005683 3 .140704473 .008959866 1.70131772 85 1.-DMAT ø L OWAT 3 .0000228897 .000007343 % .169435743 .036998100 .950232466 ú 86 L-DHAT ٥ 3 .000034440 .000003582 3 .165696743 .02028368 1.08272551 90 3 .000034166 .000000926 3 .163566286 .nh4062132 1.00768471 l-dhat £ 47 3 .000112111 .000010142 3 .160505778 .005715794 3.02717316 L-DWAT 64 0 ) .00059494 .0000000225 3 .150049112 .004146775 2.06404440 L-DMAT **R4** ۵ 1.-DMAT 69 0 Scen: 2.47472139 6 Lower: .244404462 Opper: 2.25078715 42 3 .000197690 .000009786 3 .250705799 .01272149 3.55256238 8-DHAT 0 92 3 .000256521 .000025834 3 .224134133 .019936572 5.17558113 S-DWAT 0 Maan: 4.00795689 2 Lowar: 1.70634969 Upper: 3.43480657 119 3 .0000561J1 .000002900 3 .233784143 .01371172 1.31639164 S-NAPH D

G-MAPH 0 120 3 .000515867 .000030613 3 .202571191 .009757226 TR.11986CC Nean: 3.92675797 3 Lowar: .298887976 Uppar: 22.9261833 3 .000902552 .000121535 3 .168845374 .01126351 22.9277993 L-UNF 0 47 3 .001257625 .000129491 3 .104483045 .001553057 51.3762027 L-SNF 47 С L-BMD 3 .000143455 .000011733 3 .125376321 .01491014 5.05472473 0 19 3 .000444841 .000052956 3 .209777586 .006529334 9.21565289 L-BNP U 46 3 .001010807 .000017146 3 .231574979 .009392201 18.7693486 L-BNF ù 44 x .000234752 .000042086 3 .151535113 .005762418 6.76657156 L-BNF ٥ 4.6 L-BNF 3 .002875673 .000285780 3 .197496353 .006675360 43 1075256 13 L-BNF Ó 46 3 .000548242 .000057763 3 .197222266 .005825338 33.0190820 3 .000632997 .000078110 3 .172286204 .01117521 15.8211244 L-DN7 Ó 41 C. -) Hean: 16.1317934 9 Lower: 6.39609675 Upper: 30.8289249 111 3 .000532851 .caaa04097 3 .287903010 .009742570 8.06806041 N-18TID 0 3 .000145050 .000004934 3 .220404218 .01799257 2.59809838 W-18TID 0 105 110 3 .000189772 .000033566 2 .146789346 .004784379 4.82774197 W-14710 0 _____ Hean: 4.68807243 3 Lower: 1.76826166 Upper: 11.9392661 M-10*TID 0 117 7 .000152332 .00000385 7 .207532360 .001357614 3.32081695 115 3 .000310871 .000012372 3 .190720625 .008755308 7.13306604 N-101TID 0 116 3 .000283100 .000012379 3 .209198699 .02250915 5.95185564 W-10%TID U Hann: 5.00192730 3 Lower: 2.29833936 Upper: 10.6437102 L-0.14TID 0 3 .000060169 .000001616 3 .195524675 .002561137 1.50838597 €0 L-0.14TID 0 3 .000051424 .000005172 3 .148375268 .01262523 1.07927419 66 57 3 .000012258 .000005330 3 .257731732 .02324610 .83777#170 2-0.1%TID 0 L-0.19110 e 3 .000073112 .000010234 3 .154125932 .005385439 2.21687677 56 3 .000075632 .000003886 3 .114677584 .035897900 2.89922461 L-0.1VTID 0 54 53 3 .000114495 .000010558 3 .192165382 .U1U09445 2.73323904 L-C.INTID 0 L-0.13TID 0 51 L-0.14TID 0 57 3 .D00042342 .000002052 3 .145993308 .005513110 1.4331364J 52 L-0.11TID 0 ) .000C79713 .000015338 ] .213456510 .01890283 1.74640156 L-0.14TID 0 58 3 .000250475 .000000288 3 .142133419 .004333838 6.047059c0 IN THE REPORT OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE _____ Nean: 1.07665753 10 Lower: 1.24545283 Upper: 2.78407333 104 W-0,1%TID 0 3 .000366603 .000006467 3 .273304706 .UUEZ12718 5.90311618 Mean: 5.70311G18 1 Lower. -1 Opper: -1 L-NRPH 0 73 3 .000065348 .000003418 3 .334624796 .02896016 1.62758743 J .000024503 .000007993 3 .201250793 .01016331 .71766692 L-NAPII 0 34 L-NAPH 32 3 .000076658 .000006625 3 .223727036 .008215714 1.66001308 ۵ L-HATH O 3 .000211605 .000017007 3 .222944953 .02024252 4.23544835 37 L-NAPH 0 33 L-MAPII 0 35 3 .000132779 .000038495 3 .202453728 .006361227 2.38847934 3 .000099689 .000002048 3 .166463228 .013CA136 2.71597J69 L-NAM c 38 L-NAPH 0 36 3 .000041753 .000004328 U .153453299 .01708280 3.35645603 3 .000052577 .nn0005086 3 .144223937 .01315490 1.70817502 L-NAPI 0 31 L-KA71 0 40 3 .000067202 .000005216 3 .257354464 .006503846 1.31020971 

Mean: 1.65689044 10 Lower: 1.10361492 Oppor: 2.44701568 Control 2010100. 10268201. C 0077000000. C L-DONTID 0 13 3 .000582066 .000037684 3 .276215939 .008304630 9.15955183 L-Sotrib o 11 L-SONTID 0 3 .000062278 .000001751 3 .232446673 .005495006 1.33913191 12 L-SONTID 0 14 a .000085072 .000001345 3 .204546373 .01285681 1.26631595 ------Neun: 1.80683693 4 Lower: .232606354 Upper: 5.10954973 3 .000074248 .000001601 1 .201976558 .000821271 1.76397073 L-AR 22 0 I.- AR ٥ 26 3 .000036757 .000003024 3 .175094228 .000008549 1.09256428 3 .000107216 .00000006 3 .177782471 .UU7335116 2.76414386 ٥ 37 LAR 28 3 .000037922 .000005484 3 .165834191 .01500772 1.17225462 L-AX n 24 - 3 .000011647 .000004924 3 .105379326 .009811166 .669965632 L-AR U

Pg 70/10

: pg 8 1 10 .

l-Ar	0	31	3	.000086457	.000003157	3	. 220937468	.01159793	1.942664
l-Ar	0	29	я	. 000034701	. 00000883>	3	. 155197097	.001911457	1.698562
L - AR	U	25	з	.000060792	.000011010	Э	-332096116	.01543325	1.660000
L-AR	0	33	3	.000291135	.000230470	3	. 293195056	. 02508194	4.4063670
 Neము: 1.2	4925580	10		r: .75676893	) Upper:	2.12	:0283¢1	*	
CTLX	n N	CTLX	7	.000136023	.000010439	3	.684363255	. 04197744	1.043063
чаыл: ,61	5062929	1	Lovia	x: -2	Upper:	-1			*****
9-107ID	0	207	3	.000731705	.000538128	3	. 299710379	. 02423973	10.579991
Kean: 10.	3799951	1	Love	x: -1	nbbet:	-1			
8-u.1\$TIA	0	203	3	.000406250	000340963	Э	. 220994687	. 024808272	6.0158339
Maen; 7.8	1583299	1	Love	x: -1	Vpper:	-1			
h-imat	0	94	3	.000271876	.000024163	3	. 201397530	. 002757655	S.azazelo
ы-DMAT	8	\$\$	3	.000173965	. 220004166	2	. 161436839	.007506428	4.781666:
H-DHAT	0	96	3	.000085435	.000009523	Э	.180382136	. 807735913	2.3373600
Nean: 1.7	2046267	2	Lava	<1 1.3558707	5 Opper:	10.0	346498	,	
w-нлрн	û	121	а	.000131190	.000002092	3	.149018252	.007891620	4.0288616
h hydi	0	133	3	.000140031	. 200023960	3	. 166312665	.01613346	7.2823613
м-нарн	0	123	3	.000179345	.000007716	3	.169625874	.02235661	5.3006365
Møan: 4.1	9909366	3	Lenra	.r: 3.0694786	u pper:	5.71			****
s - Ar	0	9A	3	.000081966	.02008473	3	. 186909645	. 009568359	2.0643166
8-AR	Q	97	a	.000029505	. 200013678	з	.109216364	.005576010	1.3486162
Maan: 1.4	¢860417	3	Love	x: .46753673	e Upperi	3.97	090464		

the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s

۴.



ຫ

P.69/10

Histopathological assessment by GlobalTox International Inc.



Colin G. Rousseaux BVSc., PhD Optiomate of the American Board of Toxicology MRC Path PRINCIPAL

301 Metcatle Street Ottawa, Ontario Canada K2P 1R9 Tel: (613) 798-0808 Fax: (613) 798-1100

December 18, 1995



Dr. Randall D. Shaw Senior Limnologist Golder Associates 1011 Sixth Ave SW Calgary Alberta T2P 0W1

PRINCIPALS:

Colin G. Rousseaux BVSc PhD. DABT MRC Path

Mark T. Goldberg PhD. DABT

Ronald W. Brecher PhD DABT

/. Brecher

Dear Randy:

#### re: Exposed Rainbow Trout to Suncor Materials

367 Woodlawn Rd W Suite 805 Guelph. Ontario N1H 7K9 Tel (519) 766 1000 Fax (519) 766 1100

Please find enclosed the pathology report for the rainbow trout exposed to the material from Suncor and the naphthenic acid.

You will note that we have some positive findings, hence I would suggest that we look at some of the lower doses to determine a no effect level. I would also appreciate receiving the findings from some of the other studies. For example, EROD levels will help a lot with the interpretation of the liver findings.

I shall be in touch with you in the New Year to see where we go from here.

I wish you and the staff at Golder all the best for the festive season!

Yours sincerely, GLOBAL TOX INTERNATIONAL CONSULTANTS

C. G. Rousseaux, BVSc, PhD, DABT, MRCPath. Principal

CGR/dt



#### FINAL REPORT

## SUNCOR FISH HEALTH STUDY

Histopathology of Rainbow Trout exposed to Athabasca River water, 10% TID and Naphthenic acid, November 1995.



# **SUNCOR FISH**

# **HEALTH STUDIES**

Histopathology of Rainbow Trout exposed to Athabasca River Water, 10% TID, and Naphthenic acid, November, 1995.

December 15, 1995

for

Dr. Randall Shaw Golder Associates Ltd.

## **GLOBALTOX**

INTERNATIONAL CONSULTANTS INC. 30 METCALFE ST, OTTAWA, ON K2P 1R9 Tel: (613) 798-0808 Fax: (613: 798-1100

#### TABLE OF CONTENTS

EXECUTIVE SUMMARY1	
I INTRODUCTION	
II <u>METHODOLOGY</u> 1	
II.A SAMPLING	
II.B QUALITY ASSURANCE	2
II.C COMMENTS ON SAMPLES SUBMITTED	2
II.D SUGGESTIONS FOR IMPROVING FUTURE SAMPLES	3
II.E SAMPLING METHOD	3
III COMMENTS AND CONCLUSIONS	5
III.A COMMENTS:	5
III.B. CONCLUSIONS:	5
III.C. RECOMMENDATIONS:	5
IV INDIVIDUAL REPORTS	5
V PHOTOMICROGRAPHS48	3
VI APPENDIX	0



**GLOBALTOX** 

## EXECUTIVE SUMMARY

Overview: This report contains the pathological evaluation of Rainbow Trout exposed to water from the Athabasca river, diluted Suncor material and Naphthenic acid, submitted by Golder Associates Ltd to GLOBALTOX INTERNATIONAL CONSULTANTS INC. in November 1995.

Findings: The findings ranged from incidental changes that could be attributed to the method of euthanasia or fixation to hepatic lipidosis and mild renal degeneration and regeneration. The findings associated with exposure to Naphthenic acid consisted of mainly hepatic lipidosis. This hepatic lipidosis was more severe than that seen in the 10% TID treated group. However, the findings in the kidney, indicative of mild renal toxicity were only found in this group. The findings in the gills could not be attributed directly to toxicity, but warrant further investigation.

#### Conclusions:

Better fixation will help GLOBALTOX define the changes in muscles better. The autolysis can be reduced by decreasing the time to formalin immersion and using 10% vol:vol formalin solutions. There were changes consistent with toxicity in both treatment and positive control group. No threshold for the TID was established form the lesions seen so far.

#### Recommendations:

The dose-response of the TID lesions needs to be fully evaluated. The cause of the gill changes needs to be further investigated.



## I INTRODUCTION

This report contains the results of the pathological evaluation of Rainbow Trout exposed at HydroQual Laboratories Ltd to Athabasca river water and other materials, as requested by Dr. Randall Shaw of Golder Associates Ltd on behalf of their client Suncor Ltd. These samples were taken at the time that the fish were terminated following a 28 day flow-through exposure to pure chemical compounds, such as Naphthenic acid, and leachate from the site. The Athabasca river water was used as a control. Each sample contained fish parts preserved in 3-5% buffered neutral formalin in small Nalgene bottles. A chain of custody form was included, but a copy of the experimental protocol was not. The pathological terminology used in this report is that used by the American College of Veterinary Pathology and the Armed Forces Institute of Pathology. Following a summary morphological diagnosis (a statement of standardised altered morphology with respect to process, duration, exudate and other findings), a comment section has been inserted to explain the observations. It should be noted that the order of the morphological diagnoses does not reflect the order of importance.

Photographs of lesions and parasites, taken with Ektachrome 100 diapositive film, can be found at the end of the report.

## II <u>METHODOLOGY</u>

#### II.A SAMPLING

Samples were taken by Golder Associates Ltd. All tissues sampled were trimmed, routinely processed, sectioned at 5  $\mu$ m, stained with hematoxylin and eosin, and mounted. Where necessary special stains were used to highlight specific lesions or causative agents. All samples were well packaged and arrived with a chain of custody form, which has been attached to this report as Appendix A.



#### II.B Quality Assurance

Drs. R. Müller and C.G. Rousseaux were the pathologists who read all aspects of the work. Samples were trimmed by Dr. Müller, and then processed. Each sub-sample was labelled and records kept using the method outlined in Section II. E. Samples and pathological interpretations were double checked. All blocks were resealed and stored in water-resistant material for archiving.

#### *II.C* Comments on Samples Submitted

Samples were received in sealed small Nalgene containers (triple protected) that would not allow exposure of third parties to the formalin. The were sent via Canadian Airline (waybill # 018052679675). The rigid outer containers (large plastic Coleman coolers) prevented damage to the primary container.

MATERIAL SUBMITTED TO GLOBALTOX: Head, various organs fixed in formalin; GROUPS: Group No. 9 (9-1, 9-2, 9-3, 9-4, 9-5, 9-6) Group No.14 (14-1, 14-2, 14-4, 14-5, 14-6, 14-7, 14-8, 14-9, 14-10, 14-11) Group No.15 (15-1, 15-2, 15-3, 15-5, 15-8)

GT HISTO ID : 95NGT93 etc. or 95NGT141 etc. or 95NGT151 etc.

GROSS OBSERVATIONS: No gross observations recorded at time of necropsy;

SAMPLES:Muscle (cross section through neck area)<br/>Heart (two longitudinal sections)<br/>Kidney (two samples of abdominal part, one sample head kidney)<br/>Spleen (longitudinal section)<br/>Liver (small sample provided)<br/>Oesophagus ( cross sections at various levels)<br/>Oral cavity (samples at various levels)<br/>Intestines, stomach, including pyloric ceca(sections at random)<br/>Gill arches ( various samples)<br/>Eyes (eyeballs bilateral)<br/>Brain (longitudinal section)



## *II.D* Suggestions for Improving Future Samples

There were obvious problems with fixation of large pieces of tissue. Especially large masses of muscle showed uninhibited postmortem changes. The removal of the brain from the head that was immersed in the fixative probably caused the artifacts described (neurons with changes resembling hypoxia).

Several fish were difficult to process in part (14-10) or as a whole (9-1, 9-2), and histologic studies were compromised in these cases.

The correct concentration of neutral buffered formalin should be no less than 10% volume: volume. Please note that the material supplied by Fisher is 40% in its concentrated form.

## *II.E* Sampling Method

The standardised codes used for cassette identification can be found in Table 1. in the future, recall from the archives for comparison purposes can be made using this coding system.



## Table 1. Identification Codes for Cassettes Containing Fish Tissues.

A	Hypophysis (pituitary)			В	Brain		С	Spinal Cord	
D	Eyes	D1 D2	Right Left		E	Nerves (marked on side of o			cassette)
F	Oral cav	ity muco	sa		G	Thyroid		H	Aorta
I	Tongue				J	Mesente	ery	K	Heart
L	Gills	L1 L2 L3	cranial ri middle ri caudal ri	ght ght ght		L4 L5 L6	cranial   middle   caudal	eft eft eft	
М	Stomac	n M1 M2	esophagu cardia	15	M3 M4	fundus pylorus	, pyloric c	aeca	
N	Upper i	ntestine			0	Lower i	ntestine		
P	Liver (lobes marked on cassettes)			Q	Open				
R	Urinary	system	R4	Cloaca	(other p	arts mark	ed on the	cassette)	
S	Spleen		T	Ovaries	and Test	es		T1 T2	Testis right Testis left
U	Open		V	Bone m	arrow			W	Bone (specify on the cassette)
Х	Muscle (specify on the cassette)								
¥	Skin, fin etc. (specify on the cassette)							Z	Miscellaneous

All special areas of sampling other than the coded ones are marked on the side of the cassettes



## III COMMENTS and CONCLUSIONS

#### III.A Comments:

The three groups can be differentiated mainly on the basis of the changes in the hepatocytes. Exposure to the xenobiotic used in group 14- appears to cause marked changes within the compartments of the cytoplasm, which resemble observations after proliferation of the endoplasmatic reticulum. Lipidosis in the group 15- is rather remarkable. When trimming the fixed tissue it was obvious that stomachs of fish in group 15 were rather full. It is possible that these fish were eating better than the other or that they were killed right after feeding. The state of nutrition may at any time affect the lipid content in the hepatocytes. No lesions of overt hepatotoxity were seen, but the lipidosis and basophilia of hepatocytes could be related to subtle toxicity. The kidney changes may indicate mild toxicity to the renal system. Changes in the Gill apparatus are suggestive of chronic, subclinical disease that have no relationship to the test articles in question.

#### III.B. Conclusions:

Both treatment groups, the positive Naphthenic acid and the 10% TID showed pathology consistent with, but not diagnostic of toxicity. Either these changes indicate that the fish were near the edge of de-adaptation (using the adaptation, de-adaptation/toxicity, toxicity, and death dose response), or nutritional and other individual growth-related changes were distributed in the same distribution as the treatment groups.

#### III.C. Recommendations:

It is recommended that a no-dose-level be determined for the reported liver and kidney pathology. Further investigation of the gill lesions is encouraged.



## IV INDIVIDUAL REPORTS

## <u>95NGT91</u>

### HISTOPATHOLOGY:

MUSCLE:	Cross section through neck area; marginal fixation of musculature leading to artefacts such as loss of internal structure of fibres in distinguishable from acute degeneration; acute hyalin degeneration along lines of muscle bundles; occasional parasitic cyst; skin surface normal; (No pathology associated with toxicity).
HEART:	Normal;
KIDNEY:	Foci with pigmented macrophages; (This is a normal finding).
SPLEEN:	Congestion; nests of melanocytes; (This is a normal finding).
LIVER:	Mild congestion; dilated sinusoids; (This finding is within the realm of normality).
OSOPHAG.:	Normal
ORAL CAVITY:	Normal
INTEST. STOMACH:	Normal;
GILLS:	Marked accumulation of inflamatory cell at base of gill arches; (This finding is not abnormal as these cells tend to accumulate here as they do in the lungs of mammals).
EYES:	Normal;
BRAIN:	Marked congestion; occasional neurons with eosinophilic changes near



## FISH HEALTH STUDY Histopathology of Trout December, 1995.

midbrain; (These changes are artefactual)



## MORPHOLOGICAL DIAGNOSIS:

Autolysis of musculature, an artefactual change.

## COMMENTS:

The changes in the brain and the muscle are most likely related to postmortem degeneration (autolysis).


# <u>95NGT92</u>

MUSCLE:	Cross section through neck area; acute hyalin degeneration along lines of muscle bundles (autolysis); skin surface normal;
HEART:	Normal;
KIDNEY:	Foci with pigmented macrophages;
SPLEEN:	Congestion; nests of melanocytes;
LIVER:	Mild congestion; dilated sinusoids;
OSOPHAG.:	Normal;
ORAL CAVITY:	Normal;
INTEST. STOMACH:	Normal;
GILLS:	Marked accumulation of inflamatory cell at base of gill arches;
EYES:	Normal;
BRAIN:	Marked congestion; occasional neurons with hypoxic changes near midbrain;



Autolysis in body musculature;

## COMMENTS:

The changes in the brain and musculature are related to postmortem (autolytic) degeneration.



# <u>95NGT93</u>

### HISTOPATHOLOGY:

MUSCLE:	Cross section through neck area; marginal fixation of musculature leading to artefacts such as loss of internal structure of fibres in distinguishable from acute degeneration; skin surface normal;
HEART:	Normal;
KIDNEY:	Foci with pigmented macrophages;
SPLEEN:	Congestion; nests of melanocytes;
LIVER:	Missing;
OSOPHAG.:	Normal
ORAL CAVITY:	Normal
INTEST. STOMACH:	Small granuloma in pyloric ceca;
GILLS:	Normal:
EYES:	Normal;
BRAIN:	Marked congestion; occasional neurons with hypoxic changes;

# MORPHOLOGICAL DIAGNOSIS:

Normal

# COMMENTS:

The changes in the brain may be autolysis or cause when the brain was removed from the head.



# <u>95NGT94</u>

MUSCLE:	Cross section through neck area; marginal fixation of musculature leading to artefacts such as loss of internal structure of fibres in distinguishable from acute degeneration; occasional parasitic cyst; skin surface normal;
HEART:	Normal;
KIDNEY:	Foci with pigmented macrophages;
SPLEEN:	Congestion; nests of melanocytes;
LIVER:	Mild congestion; dilated sinusoids;
OSOPHAG.:	Normal
ORAL CAVITY:	Normal
INTEST. STOMACH:	Normal;
GILLS:	Marked accumulation of inflamatory cell at base of gill arches;
EYES:	Normal;
BRAIN:	Marked congestion; occasional neurons with hypoxic changes near midbrain;



Autolysis in body musculature;

## **COMMENTS:**

The changes in the brain and the muscle result from postmortem degeneration.



# <u>95NGT95</u>

MUSCLE:	Cross section through neck area; marginal fixation of musculature leading to artefacts such as loss of internal structure of fibres in distinguishable from acute degeneration; skin surface normal;
HEART:	Normal;
KIDNEY:	Foci with pigmented macrophages;
SPLEEN:	Congestion; nests of melanocytes;
LIVER:	Mild congestion; severely dilated veins;
OSOPHAG.:	Normal
ORAL CAVITY:	Normal
INTEST. STOMACH:	Normal;
GILLS:	Accumulation of inflamatory cell at base of gill arches associated with thickening of epithelium:
EYES:	Normal;
BRAIN:	Marked congestion; numerous neurons with eosinophilic changes near midbrain;



Autolysis in body musculature;

## COMMENTS:

The thickening of the base of the gill arches may be the result of mild bacterial gill disease.



# <u>95NGT96</u>

MUSCLE:	Cross section through neck area: marginal fixation of musculature leading to artefacts such as loss of internal structure of fibres in distinguishable from acute degeneration; occasional parasitic cyst; skin surface normal;
HEART:	Normal;
KIDNEY:	Foci with pigmented macrophages;
SPLEEN:	Congestion; nests of melanocytes;
LIVER:	Mild congestion; dilated sinusoids; incomplete fixation;
OSOPHAG.:	Normal
ORAL CAVITY:	Normal
INTEST. STOMACH:	Normal;
GILLS:	Multiple nodules, with granulomatous and epithelial proliferation along gill arches; (This change is significant, but not treatment-related)
EYES:	Normal;
BRAIN:	Marked congestion; numerous neurons with eosinophilic changes near midbrain;



Autolysis in body musculature;

## **COMMENTS:**

The changes in the gills are indicative of stimulation by some irritant, most likely bacteria. This is most likely a natural disease process rather than associated with the experiment.



# <u>95NGT141</u>

MUSCLE:	Cross section through neck area; marginal fixation of musculature leading to artefacts such as loss of internal structure of fibres indistinguishable from acute degeneration; skin surface normal;
HEART:	Normal;
KIDNEY:	Foci with pigmented macrophages; segments of proximal tubules, increased vacuolation of cytoplasm;
SPLEEN:	Congestion; nests of melanocytes;
LIVER:	Mild congestion; increased size of hepatocytes associated with higher density of cytoplasm, and increased basophilia; large vacuoles(lipids); mild, variable degrees of pericholangitis;
OSOPHAG.:	Normal
OSOPHAG.: ORAL CAVITY:	Normal
OSOPHAG.: ORAL CAVITY: INTEST. STOMACH:	Normal Normal;
OSOPHAG.: ORAL CAVITY: INTEST. STOMACH: GILLS:	Normal Normal Normal; Fusion of lamellae, formation of occasional granuloma;
OSOPHAG.: ORAL CAVITY: INTEST. STOMACH: GILLS: EYES:	Normal Normal Normal; Fusion of lamellae, formation of occasional granuloma; Normal;



- 1. Autolysis, moderate
- 2. Brachiitis, granulomatous, focal, mild
- 3. Hepatic lipidosis, difuse, mild
- 4. Renal tubular nephrosis, mild

#### COMMENTS:

There is lack of glycogen accompanied by increased cytoplasmic density in the enlarged hepatocytes. The large vacuoles are most likely created by lipid aggregation. This change could be due to excess mobilization of fat, increased fat uptake, interference with fat transport, or toxicity. The renal tubular changes are too mild to be of significance. The cause of the focal chronic banchiitis (inflammation of the gills) was not apparent.



## <u>95NGT142</u>

MUSCLE:	Cross section through neck area; marginal fixation of musculature; extensive acute hyalin degeneration with complete loss of structure accentuated along lines of muscle bundles; skin surface normal;
HEART:	Occasional muscle fibre bundle with myolysis;
KIDNEY:	Foci with pigmented macrophages; basophilia in segments of proximal tubules, accompanied by vacuolation of cytoplasm; apoptosis of tubular epithelium;
SPLEEN:	Congestion; nests of melanocytes;
LIVER:	Mild congestion; increased size of hepatocytes associated with higher density of cytoplasm, and increased basophilia; lipid vacuoles;
OSOPHAG.:	Normal
ORAL CAVITY:	Normal
INTEST. STOMACH:	Normal;
GILLS:	Thickening of epithelium at base of gill arches accompanied by mainly mononuclear inflamatory infiltration; (branchiitis)
EYES:	Normal;
BRAIN:	Marked congestion; numerous neurons with eosinophilic changes near midbrain;



#### 1. Autolysis

- 2. Branchiitis, moderate, focal
- 3. Tubular nephrosis, moderate, segmental with apoptosis
- 4. Hepatic lipidosis, moderate, with bsoaphilia

#### COMMENTS:

There was postmortem autolysis seen in these sections, as with others, indictive of poor fixation. However, the findings in the kidneys and liver are probably associated with a low level toxic insult. The lack of glycogen, increased cytoplasmic density in the enlarged hepatocytes along with the accumulation of fat indicates that these hepatocytes were producing more protein and were unable to handle the normal fat load. Biochemically one would expect that EROD levels would be higher in this. The kidney findings are indicative of specific subtle damage to the renal tubules. The basophilia indicates recovery, whereas the apoptosis, or individual cell death indicates active damage to the cells. Vacuolation indicates non-fatal cell damage. Biochemical changes would probably be limited to altered creatinine levels, but it is unlikely that other indicators of renal function would be altered.



# <u>95NGT144</u>

MUSCLE:	Cross section through neck area; marginal fixation of musculature; acute hyalin degeneration with complete loss of structure accentuated along lines of muscle bundles; skin surface normal;
HEART:	Occasional muscle fibre bundle with granular myolysis;
KIDNEY:	Foci with pigmented macrophages; basophilia in segments of proximal tubules, accompanied by vacuolation of cytoplasm; apoptosis, mitotic figures in tubular epithelium;
SPLEEN:	Congestion; nests of melanocytes;
LIVER:	Mild congestion; increased size of hepatocytes associated with higher density and eosinophilia of cytoplasm, increased basophilia of cell margins; lipid vacuoles;
OSOPHAG.:	Normal
ORAL CAVITY:	Normal
INTEST. STOMACH:	Normal;
GILLS:	Thickening of epithelium at base of gill arches accompanied by mainly mononuclear inflamatory infiltration;
EYES:	Normal;
BRAIN:	Marked congestion; numerous neurons with eosinophilic changes near midbrain;



- 1. Autolysis
- 2. Branchiitis, moderate, focal, non-exudative
- 3. Renal tubular nephrosis, moderate, with regeneration and apoptotic bodies
- 4. Hepatic lipidosis, mild diffuse

## COMMENTS:

Autolytic changes inhibited the interpretation of the slides; however, there do appear to be changes in the renal tubules and the hepatocytes that are likely associated with some toxic insult. The changes in the brain and the myolysis may be either be related to capture and euthanasia, but are more likely a result of postmortem degeneration.



# <u>95NGT145</u>

MUSCLE:	Cross section through neck area; marginal fixation of musculature; acute hyalin degeneration with complete loss of structure accentuated along lines of muscle bundles; skin surface normal;
HEART:	Occasional muscle fibre bundles with myolysis;
KIDNEY:	Basophilia in segments of proximal tubules, accompanied by vacuolation of cytoplasm;
SPLEEN:	Congestion; nests of melanocytes;
LIVER:	Mild congestion; increased size of hepatocytes associated with higher density of cytoplasm, increased basophilia of cell margins; well demarcated lipid vacuoles;
OSOPHAG.:	Normal
ORAL CAVITY:	Normal
INTEST. STOMACH:	Normal;
GILLS:	Thickening of epithelium at base of gill arches accompanied by mainly mononuclear inflamatory infiltration; occasional fusion of secondary lamellae;
EYES:	Normal;
BRAIN:	Marked congestion; numerous neurons with hypoxic changes near midbrain;



- 1. Autolysis
- 2. Branchiitis, mild, focal
- 3. Renal segmental tubular nephrosis
- 4. Hepatic lipidosis and bsophilia, mild diffuse

#### COMMENTS:

This is a milder expression of the changes seen in 95NGT144.



# <u>95NGT146</u>

MUSCLE:	Cross section through neck area; marginal fixation of musculature; acute hyalin degeneration with complete loss of structure accentuated along lines of muscle bundles, accompanied by edema; skin surface normal;
HEART:	Occasional muscle fibre bundle with myolysis;
KIDNEY:	Foci with pigmented macrophages; basophilia in segments of proximal tubules; occasional apoptotic figure in tubular epithelium;
SPLEEN:	Congestion; nests of melanocytes;
LIVER:	Mild congestion; increased size of hepatocytes associated with higher eosinophilic density of cytoplasm, and increased basophilia of cell margins; large lipid vacuoles; disseminated areas with pericholangial infiltration.
OSOPHAG.:	Normal
ORAL CAVITY:	Normal
ORAL CAVITY: INTEST. STOMACH:	Normal;
ORAL CAVITY: INTEST. STOMACH: GILLS:	Normal Normal; Mild thickening of epithelium at base of gill arches accompanied by mainly mononuclear inflamatory infiltration;
ORAL CAVITY: INTEST. STOMACH: GILLS: EYES:	Normal Normal; Mild thickening of epithelium at base of gill arches accompanied by mainly mononuclear inflamatory infiltration; Normal;



- 1. Autolysis
- 2. Branchiitis, mild, multifocal
- 3. Hepatic lipidosis, moderate, diffuse
- 4. Renal tubular regeneration, with mitotic figures

#### COMMENTS:

These changes are similar to other members of this treatement group. The kidney did not show any degenerative changes, rather regenerative changes.



# <u>95NGT147</u>

MUSCLE:	Cross section through neck area; marginal fixation of musculature; extensive acute hyalin degeneration accompanied by interstitial edema accentuated along lines of muscle bundles; skin surface normal;
HEART:	Occasional muscle fibre bundle with myolysis;
KIDNEY:	Foci with pigmented macrophages; basophilia in segments of proximal tubules;
SPLEEN:	Congestion; nests of melanocytes;
LIVER:	Increased size of hepatocytes associated with higher density of eosinophilic cytoplasm, and increased basophilia of cell margins; large lipid vacuoles;
OSOPHAG.:	Normal
ORAL CAVITY:	Normal
INTEST. STOMACH:	Normal;
GILLS:	Base of gill arches thickened with mainly mononuclear inflamatory infiltration; occasional fusion of secondary lamellae;
EYES:	Normal;
BRAIN:	Marked congestion; numerous neurons with eosinophilic changes near midbrain;



- 1. Autolysis
- 2. Branchiitis, moderate, multifocal, chronic
- 3. Hepatic lipidosis, diffuse, moderate
- 4. Renal tubular regeneration, mild, diffuse

#### COMMENTS:

These findings are similar to those found in other fish of this same group.





# <u>95NGT148</u>

MUSCLE:	Cross section through neck area; marginal fixation of musculature; extensive acute hyalin degeneration accompanied by interstitial edema accentuated along lines of muscle bundles (electrofishing ?); skin surface normal;
HEART:	Occasional muscle fibre bundle with myolysis;
KIDNEY:	Foci with pigmented macrophages; basophilia in segments of proximal tubules;
SPLEEN:	Congestion; nests of melanocytes;
LIVER:	Normal size of hepatocytes; small lipid vacuoles;
OSOPHAG.:	Normal
ORAL CAVITY:	Normal
INTEST. STOMACH:	Normal;
GILLS:	Base of gill arches thickened with mainly mononuclear inflamatory infiltration; occasional fusion of secondary lamellae;
EYES:	Normal;
BRAIN:	Marked congestion; numerous neurons with eosinophilic changes near midbrain;



- 1. Autolysis
- 2. Bachiitis, mild, focal, chronic
- 3. Renal tubular regeneration, mild, segmental

# COMMENTS:

The findings are similar to other fish in this group



## <u>95NGT149</u>

MUSCLE:	Cross section through neck area; marginal fixation of musculature; acute hyalin degeneration accompanied by interstitial edema, accentuated along lines of muscle bundles; skin surface normal;
HEART:	Occasional muscle fibre bundle with myolysis;
KIDNEY:	Foci with pigmented macrophages; basophilia in segments of proximal tubules;
SPLEEN:	Congestion; nests of melanocytes;
LIVER:	Increased size of hepatocytes associated with higher density of eosinophilic cytoplasm, and increased basophilia of cell margins; large lipid vacuoles;
OSOPHAG.:	Normal
ORAL CAVITY:	Normal
INTEST. STOMACH:	Normal:
GILLS:	Base of gill arches thickened with mainly mononuclear inflamatory infiltration; occasional fusion of secondary lamellae;
EYES:	Normal;
BRAIN:	Marked congestion; numerous neurons with eosinophilic changes near midbrain:



- 1. Autolysis
- 2. Branchiitis, mild, multifocal, chronic
- 3. Renal tubular regeneration, mild, segmental
- 4. Hepatic lipidosis, moderate, diffuse

# COMMENTS:

The findings in this fish are the same for others of the group.



# <u>95NGT1410</u>

MUSCLE:	Cross section through neck area; very marginal fixation of musculature; extensive degeneration accompanied by interstitial edema accentuated along lines of muscle bundles; skin surface normal;
HEART:	Occasional muscle fibre bundle with myolysis;
KIDNEY:	Autolysis; basophilia in segments of proximal tubules;
SPLEEN:	Congestion; nests of melanocytes;
LIVER:	Autolysis; hepatocytes with condensed nuclei appearing very pale, and vacuolated;
OSOPHAG.:	Normal
ORAL CAVITY:	Normal
INTEST. STOMACH:	Normal;
GILLS:	Base of gill arches thickened with mainly mononuclear inflamatory infiltration; occasional fusion of secondary lamellae;
EYES:	Normal;
BRAIN:	Marked congestion; lack of fixation; numerous neurons with eosinophilic changes near midbrain;



1. Autolysis leading to many artefacts

#### COMMENTS:

The autolysis is probably due to lack of fixation or prolonged time spent on the bench before being placed into fixative





# <u>95NGT1411</u>

MUSCLE:	Cross section through neck area; marginal fixation of musculature; extensive acute hyalin degeneration accompanied by interstitial edema accentuated along lines of muscle bundles; skin surface normal;
HEART:	Occasional muscle fibre bundle with myolysis;
KIDNEY:	Foci with pigmented macrophages; basophilia in segments of proximal tubules; rare apoptotic figures;
SPLEEN:	Congestion; nests of melanocytes;
LIVER:	Increased size of hepatocytes associated with higher density of eosinophilic cytoplasm, and increased basophilia of cell margins; large lipid vacuoles; disseminated areas with pericholangitis (mainly mononuclear infiltration);
OSOPHAG.:	Normal
ORAL CAVITY:	Normal
INTEST. STOMACH:	Normal;
GILLS:	Base of gill arches with thickened epithelium infiltrated with mainly mononuclear inflamatory infiltration; occasional fusion of secondary lamellae;
EYES:	Normal;
BRAIN:	Marked congestion; numerous neurons with eosinophilic changes near midbrain;



- 1. Autolysis
- 2. Branchiitis, moderate, multifocal, chronic
- 3. Chollangiohepatitis, mild, multifocal, chronic with moderate hepatic lipidosis
- 4. Renal tubular nephrosis, mild, segmental with apoptotic bodies and regeneration

#### COMMENTS:

The changes in this fish are similar to those in the remainder of the group



# <u>95NGT151</u>

MUSCLE:	Cross section through neck area; marginal fixation of musculature; extensive acute hyalin degeneration accompanied by interstitial edema accentuated along lines of muscle bundles; skin surface normal;
HEART:	Occasional muscle fibre bundle with myolysis;
KIDNEY:	Foci with pigmented macrophages; mild basophilia in segments of proximal tubules;
SPLEEN:	Congestion; nests of melanocytes;
LIVER:	Increased size of hepatocytes associated with marked lipidosis (medium sized vacuoles); foci with hemopoesis; vacuoles;
OSOPHAG.:	Normal
ORAL CAVITY:	Normal
INTEST. STOMACH:	Normal;
GILLS:	Base of gill arches with mild, mainly mononuclear inflamatory infiltration; rare fusion of secondary lamellae;
EYES:	Normal;
BRAIN:	Marked congestion; numerous neurons with eosinophilic changes near midbrain;



1. Autolysis

- 2. Branchiitis, very mild, focal, chronic
- 3. Hepatic lipidosis, severe
- 4. Renal tubular regeneration, mild, segmental

#### COMMENTS:

This fish has changes that are more severe in the liver, but less severe in the kidney and gills that the fish from the 10% TID-treated group.



# 95NGT152

MUSCLE:	Cross section through neck area; marginal fixation of musculature; extensive acute hyalin degeneration accompanied by interstitial edema accentuated along lines of muscle bundles; skin surface normal;
HEART:	Occasional muscle fibre bundle with myolysis;
KIDNEY:	Foci with pigmented macrophages; mild basophilia in segments of proximal tubules;
SPLEEN:	Congestion; nests of melanocytes;
LIVER:	Increased size of hepatocytes associated with marked lipidosis (medium sized vacuoles); foci with hemopoesis; vacuoles;
OSOPHAG.:	Normal
ORAL CAVITY:	Normal
INTEST. STOMACH:	Normal;
GILLS:	Base of gill arches with mild, mainly mononuclear inflamatory infiltration; rare fusion of secondary lamellae;
EYES:	Normal;
BRAIN:	Marked congestion; numerous neurons with eosinophilic changes near midbrain;



- 1. Autolysis
- 2. Branchiitis, very mild, multifocal
- 3. Hepatic lipidosis, severe, diffuse
- 4. Renal tubular regeneration, mild, segmental

#### COMMENTS:

This fish has a similar appearance to the other fish in this group



## <u>95NGT153</u>

MUSCLE:	Cross section through neck area; marginal fixation of musculature; extensive acute hyalin degeneration accompanied by interstitial edema accentuated along lines of muscle bundles; skin surface normal;
HEART:	Occasional muscle fibre bundle with myolysis;
KIDNEY:	Foci with pigmented macrophages; mild basophilia in segments of proximal tubules;
SPLEEN:	Congestion; nests of melanocytes;
LIVER:	Increased size of hepatocytes associated with marked lipidosis (medium sized vacuoles); foci with hemopoesis; vacuoles;
OSOPHAG.:	Normal
ORAL CAVITY:	Normal
INTEST. STOMACH:	Normal;
GILLS:	Base of gill arches with mild, mainly mononuclear inflamatory infiltration; rare fusion of secondary lamellae;
EYES:	Normal;
BRAIN:	Marked congestion; numerous neurons with hypoxic changes near midbrain;



- 1. Autolysis
- 2. Branchiitis, very mild, multifocal
- 3. Hepatic lipidosis, severe, diffuse
- 4. Renal tubular regeneration, mild, segmental

#### COMMENTS:

This fish has a similar appearance to the other fish in this group



# <u>95NGT155</u>

MUSCLE:	Cross section through neck area; marginal fixation of musculature; extensive acute hyalin degeneration accompanied by interstitial edema accentuated along lines of muscle bundles; skin surface normal;
HEART:	Occasional muscle fibre bundle with myolysis;
KIDNEY:	Foci with pigmented macrophages; mild basophilia in segments of proximal tubules;
SPLEEN:	Congestion; nests of melanocytes;
LIVER:	Increased size of hepatocytes associated with marked lipidosis (medium sized vacuoles); foci with hemopoesis; vacuoles;
OSOPHAG.:	Normal
ORAL CAVITY:	Normal
INTEST. STOMACH:	Normal;
GILLS:	Base of gill arches with mild, mainly mononuclear inflamatory infiltration; rare fusion of secondary lamellae;
EYES:	Normal;
BRAIN:	Marked congestion; numerous neurons with hypoxic changes near midbrain;


# MORPHOLOGICAL DIAGNOSIS:

- 1. Autolysis
- 2. Branchiitis, very mild, multifocal
- 3. Hepatic lipidosis, severe, diffuse
- 4. Renal tubular regeneration, mild, segmental

## **COMMENTS:**

This fish has a similar appearance to the other fish in this group



# <u>95NGT158</u>

# HISTOPATHOLOGY:

MUSCLE:	Cross section through neck area; marginal fixation of musculature; extensive acute hyalin degeneration accompanied by interstitial edema accentuated along lines of muscle bundles; skin surface normal;
HEART:	Occasional muscle fibre bundle with myolysis;
KIDNEY:	Foci with pigmented macrophages; mild basophilia in segments of proximal tubules;
SPLEEN:	Congestion; nests of melanocytes;
LIVER:	Increased size of hepatocytes associated with marked lipidosis (medium sized vacuoles); foci with hemopoesis; vacuoles;
OSOPHAG.:	Normal
ORAL CAVITY:	Normal
INTEST. STOMACH:	Normal;
GILLS:	Base of gill arches with mild, mainly mononuclear inflamatory infiltration; rare fusion of secondary lamellae;
EYES:	Normal;
BRAIN:	Marked congestion; numerous neurons with eosinophilic changes near midbrain;



# MORPHOLOGICAL DIAGNOSIS:

- 1. Autolysis
- 2. Branchiitis, very mild, multifocal
- 3. Hepatic lipidosis, severe, diffuse
- 4. Renal tubular regeneration, mild, segmental

## COMMENTS:

This fish has a similar appearance to the other fish in this group



# V PHOTOMICROGRAPHS

## No. 1 (Muscle)

Cross section through muscle showing degenerative changes, most likely autolysis. Original magnification 10 X; H&E stain.

### No. 2 (Muscle)

Cross section through muscle showing degenerative changes, most likely autolysis. Original magnification 10 X; H&E stain.

### No. 3 (Muscle, fast and slow twitch)

Cross section through muscle showing degenerative changes, most likely autolysis. Note the fast and slow twitch muscles. Original magnification 10 X; H&E stain.

### No. 4 (95NGT96 - Gill)

Gills showing focal nodules. Original magnification 20 X H&E stain.

## No. 5 (95NGT96 - Gill)

Gills showing focal nodules (granulomata). Original magnification 40 X H&E stain.

## No. 6 (95NGT95 - Liver)

Liver showing diffuse lipidosis. Original magnification 10 X H&E stain.

## No. 7 (95NGT141 - Liver)

Liver showing hepatic lipidosis. Note the cytoplasmic changes and the mitotic figures. Original magnification 40 X H&E stain.



## No. 8 (95NGT153 - Liver)

Liver section showing hepatic lipidosis. Original magnification 20 X H&E stain.

## No. 9 (95NGT149 - Kidney)

Kidney section showing regenerative tubular epithelium. Note the mitotic figure. Original magnification 40 X H&E stain.

## No. 10 (95NGT144 - Gills)

Interesting individual lesion. Focal granuloma with fibrin - probably an emobus or thrombus. Original magnification 40 X H&E stain





TEL: (403) 253-7121 FAX: (403) 252-9363 1-800-808-6942

FILE: 951107DL.DOC

# 95-R-96 96R-87 TRANSMITTAL

DATE: November 24, 1995

FROM:J. Stephen Goudey, Ph.D., P.Biol. General Manager

TO: Dr. Colin Rousseaux

TEL:	(613) 798-0808	TEL:	(403) 253-7121
FAX:	(613) 798-1100	FAX:	(403) 252-9363

### RE: SUNCOR FISH HEALTH STUDY

Please fill out the date, time, and sign this transmittal upon receipt of the cooler and FAX it back to me at (403) 252-9363.

DATE RECEIVED:	29×1 Nov 95
TIME RECEIVED:	14:05
RECEIVED BY:	1 hours
4	
and but	not frozen

WRITTEN BY: SG ON 95/03/16

Variati

REVISED BY: SG ON: 95/03/16

FILE: 95007.DOC

FILL. JULIVINE.

# TRANSMITTAL

DATE:	: November 24, 1995	FROM:J. Ste	phen Goudey, Ph.D., P.Biol.	
TO:	Dr. Colin Rousseaux	Gener	al Manager	
TEL:	(613) 798-0808	TEL:	(403) 253-7121	
FAX:	(613) 798-1100	FAX:	(403) 252-9363	

### **RE: SUNCOR FISH HEALTH STUDY**

Please fill out the date, time, and sign this transmittal upon receipt of the cooler and FAX it back to me at (403) 252-9363.

DATE RECEIVED: 297 Nov 91
TIME RECEIVED: 14, 20
RECEIVED BY:
Cold but received not frozen

FILE: 95007.DOC

Challenge test data sheets

Treatment	Ανα	th (m Iow	m) high	W	et W	eight Iow	(g) hiah	Moisture Content	Body Condition	
	,g		1011	mgn		00	1011	gii	(70)	(1.1., 1.10.0)
lab control	30	3	25	35	0.2	0.1	0.1	0.4	80	0.9
Tar Island Dyke (%)										
0.01	34	3	29	40	0.4	0.1	0.2	0.6	82	1
0.1	37	3	30	43	0.5	0.1	0.3	0.9	80	1
1	36	2	30	40	0.4	0.1	0.3	0.6	80	0.9
Athabasca River	38	4	30	44	0.6	0.2	0.3	1.0	78	1.1
naphthenic acids	37	4	25	43	0.5	0.2	0.2	0.7	80	1
beta-naphthoflavone	30	4	22	42	0.2	0.1	0.1	0.5	75	0.9
external control	30	3	25	36	0.3	0.1	0.1	0.5	83	0.9

Table 3a. Challenge Test Results Summary of Larval Growth Data

.

Test 1:	Nove	mbe	r 13,	199	5								Ta	ır İsla	and	Dyke	Wa	ter													Na	phth	ienic	c Aci	ds						E>	dern	al Co	ntrol	s
Day		Lal	o Co	ntrol				0.01					0.1					1					10			At	haba	isca	Rive	er						Bet	a-Na	apht	hofla	von					
	0	2	17	170	1700	0	2	17	170	1700	0	7	17	170	1700	0	2	17	170	1700	0	2	17	170	00/1	0	2	17	170	1700	0	0	17	170	1700	0	2	17	170	1700	0	2	17	170	1700
1	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0						0	0	0	0	0						1	4	0	2	1	0	0	0	0	0
2	0	0	1	0	6	0	0	0	0	2	0	0	0	0	Ą	0	0	0	0	1						0	0	0	0	1						0	1	0	1	1	0	0	0	0	0
3	0	1	2	1	3	0	0	0	0	4	0	0	0	4	0	0	0	0	1	5						0	0	0	2	2						0	0	3	1	1	0	0	0	4	6
4	0	3	2	2	1	0	0	1	3	3	о	0	0	0	3	0	1	0	1	0						0	0	1	1	8						1	2	0	1	4	0	1	1	0	0
5	0	1	*	1	2	0	0	1	1	1	0	0	0	0	1	0	1	0	0	1						0	0	2	3	4						0	1	0	2	0	0	0	0	0	0
6	0	•	•	•	0	0	0	•	0	0	0	4	1	0	•	0	n	- 0	4	1						0	0	2	- २							0	∩	0	0	1	n	0	0	0	0
-7	0	، م	· •	· •	0	0	0	· ^	0	0	~	4	, ,	0	,	4	~	~	,	0						0	Ň	4	4	, 0						0	0	4	0	· •	0	4	0	0	~
/	U	0	0	U	U	U	U	U	U	0	0	ĩ	U	U	U	1	U	U	0	U						U	U	1	1	U						0	U	1	U	U	0	1	0	U	0
Test 2:	Nove	mbei	r 30,	1995	5								Ta	r Isla	and l	Dyke	Wa	er													Na	iphth	ienic	: Aci	ds						E>	dern	al Co	ntrol	is
Day		Lat	o Coi	ntrol				0.01					0.1					1					10			Atl	naba	isca	Rive	er						Bet	a-Na	apht	hofla	von					
	0	Ļ	<del>7</del>	110	1100	0	-	11	110	1100	0	ç	11	110	<u>1</u> 00	0	~	<del>~ -</del>	0	8			<b>~</b>	<u> </u>	3	~		~	0	8	_		Ξ	110	100	0	~	<del>~</del>	10	8	0	-	;-	110	1100
										-				<b>x</b>	4			~	<del>.</del>	116	0	<del>~~</del>	<b>~</b>		-	0	~	~~~		11	0	•	`	•	~			~	<del>~-</del>	<del>~</del>					
														<b>x</b> -	<b>~</b>			~	1	11(	0	~ <del>~</del>	4			0	~	4	<u> </u>	11	0	·	·	·	-			<i>~</i>	4-	5					
1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 110	0	<del>~~</del>	<del>~~</del>		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0					
2	1 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0 0	0	000	0 0 0	0 0 0	0 0 0 110	0 0 0	<u> </u>	<del>~~</del>		0	000	0 0	000	000	000	000	0	0	0	0 0 0	0	0	01	0 0	0 0					
1 2 3 ∡	1 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 1	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0 1	0000	0000	0000	0 0 0 0	0 0 0 1	00000	<u>,</u>	¢	 			0001	000	0 0 0 0	v o o o o 111	00000			0000	x 0 0 0 1	0 0 0	0 0 0		0 0 0 0	11 0 0 1					
1 2 3 4 5	1 0 0 0	0 0 0 0	0 0 0 1	0 0 0 1	0 0 0 0	0 0 0 0	0 0 1 0	0 0 0 0	0 0 0 0	0 0 0 0 2	0 0 0 0	0 0 0 0	0 0 0 1	0 0 0 0 2	0 0 0 1 0			00000	0 0 0 0 0 11	0 0 0 1 0	0 0 0 0 0 0 0	<u></u>	¢				0 0 0 1 0	00000	00000	0 8 0 0 0 11	000000		0 0 0 0		C 0 0 0 3 1	0 0 0 0	0 0 0 0	0 1 0 1	0 0 0 0 0	10 0 1 1 0					
1 2 3 4 5 6	1 0 0 0 0		0 0 0 1 0	0 0 0 1 0	0 0 0 0 0	0 0 0 0 0	0 0 1 0	0 0 0 0 0	0 0 0 0	0 0 0 2 0			0 0 0 1 2	0 0 0 0 2 0	0 0 0 1 0		000000	0 0 0 0 0 0	000000	0 0 0 1 0 2	0 0 0 0 0 0 0		1				0 0 0 1 0	0 0 0 0 0 1	0 0 0 0 0 1	11 0 0 0 3 0 1	0000000	0 0 0 0 0 1	0 0 0 0 1 0		1 0 0 0 1	0 0 0 0 0		0 1 0 1 0	000000	11 0 0 1 1 0 1					

Table 3b. Disease Challenge Test Results on Larval Fry from 28 Day Exposure (number of dead fry; applied dose x10^3 CFU)

Notes: 1. Larval fry were exposed to four different pathogen densities. There were 30 fish in the first test and 20 fish in the second test in each group exposed to each pathogen density. 2. There was only enough surviving fish from the 10% TID treatment to run two exposures with 11 fish in each exposure (control and the highest pathogen density).

Treatment		Percent of Initial 0.5	Fish Swimming O 1	ver Time (hours) 3
Test 1: November 16, 1995				
lab control		30	31	21
Tar Island Dyke Water (%)	0.01	38	30	13
· · · · · ·	0.1	59	57	35
	1	54	41	27
Athabasca River Water		46	. 38	14
beta-naphthoflavone		6	5	3
external control		60	53	
Test 2: November 17, 1995				
lab control		27	24	21
Tar Island Dyke Water (%)	0.01		18	17
	0.1		39	14
	1	60	54	50
Athabasca River Water		41	31	7
beta-naphthoflavone			22	22
external control		44	31	
Test 3: November 20, 1995				
lab control		30	30	22
Tar Island Dyke Water (%)	0.01	43	37	17
	0.1	49	44	17
	1	39	46	25
Athabasca River Water		36	31	7
beta-naphthoflavone		34	33	30
external control		54	44	
Test 4: November 27, 1995	rep a	54	34	22
naphthenic acids	rep b	52	27	21
	rep c	45	28	19
Test 5: November 28, 1995	rep a	54	31	23
naphthenic acids	rep b	66	55	33
·	rep c	37	23	17

*

١.

 Table 3c.
 Swimming Stamina Challenge Test Results Summary

Chemical analysis of Tar Island Dyke water

# TID- Wastewate- characterisano-

# CHEMEX Labs Alberta Inc.

Calgary : 2021 - 41st Avenue N.E., T2E 6P2. Telephone (403) 291-3077, FAX (403) 291-9468 Edmonton : 9331 - 48th Street, T6B 2R4, Telephone (403) 465-9877, FAX (403) 466-3332

> HYDRO-QUAL LABORATORIES LIMITED MARY GREGORY

DATE : November 16, 1995 CHEMEX PROJECT NO.: HYDR010-0501-95-04108 CLIENT REFERENCE : 95030 CLIENT JOB NO. : PROJ.#952-2307

Analytical Data Reviewed By : Venna QA/QC Reviewed By

The above signatures indicate that the individuals identified have reviewed the enclosed documents.

NOTE : Soil samples and water samples (for stable parameters) will be retained for a period of 60 days after completion of analysis. Retention beyond this period can be arranged for a fee.

CHEMEX Labs Alberta Inc. is accredited by both the Canadian Association for Environmental Analytical Laboratories and the Standards Council of Canada for specific parameters registered with the Association and the Council.

# **CHEMEX** Labs Alberta Inc.

Jalgary : 2021 - 41st Avenue N.E., T2E 6P2. Telephone (403) 291-3077, FAX (403) 291-9468 Edmonton : 9331 - 48th Street, T6B 2R4, Telephone (403) 465-9877, FAX (403) 466-3332

Sample Description : 95447 EFFLUENT Sample Date & Time : 01-11-95 1045 Sampled By : MG Sample Type : GRAB Sample Received Date: November 02, 1995 Sample Station Code : HYDRO-QUAL LABORATORIES LIMITED ATTENTION : MARY GREGORY 95129 95030 PROJ.#952-2307

Chemex	Worksheet Number	:	95-04108-1
Chemex	Project Number	:	HYDR010-0501
Sample	Access	:	and over
Sample	Matrix	:	WATER
Report	Date	:	November 16, 1995

PARAMETER DESCRIPTION	NAQUADAT CODE	UNITS	RE	SULTS	DETECTION LIMIT
Calcium - (ICP) Dissolved	20111L	mg/L		42.5	0 01
Magnesium - (ICP) Dissolved	12111L	mg/L		9.50	0.01
Sodium - (ICP) Dissolved	11111L	mg/L		315.	0 01
Potassium - (ICP) Dissolved	19111L	mg/L		9.50	0.02
Chloride - Dissolved	17206L	mg/L		16.4	0.5
Sulphate - Dissolved	16306L	mg/L		93.0	0.5
PP Alkalinity (as CaCO3)	10151L	mg/L	<	0.1	
lotal Alkalinity (as CaCO3)	10111L	mg/L		705.	0.5
pH	10301L	Units		8.20	0 01
Larbonate	06301L	mg/L	<	0.5	0.5
Bicarbonate	06201L	mg/L		859.	0.5
lotal Hardness (as CaCU3)	10602L	mg/L		145.	0.5
Hydroxide	08501L	mg/L	<	0.5	0.5
STITCON - DISSOIVED (ICP)		mg/L		6.55	0.02
Fluoride Specific Conductors	09105L	mg/L		2.16	0.05
Specific Conductance	02041L	umhos/Cm		1460.	0.02
Dhanala	0.000	mg/L		0.005	0.001
Phenois Total Dissaluad Calida	06537L	mg/L		0.005	0.001
Discolved Operation Control	00201L	mg/L		919.	1.
Dissolved Urganic Larbon	06104L	mg/L		39.1	0.2
Nitroito plue Nitrogen	07505L	mg/L		6.66	0.01
Total Phoenhorize of P	07110L	mg/L		0.703	0.003
Sulphum (ICD) Disculture	15406L	mg/L		1.85	0.003
Aluminum Discoluded (ICD AFC)	10100	mg/L		36.3	0.2
Antimony Discolved (ICP-AES)	13109L	mg/L		0.02	0.01
Ancimony - Dissolved (AA)	51003L	mg/L	<	0.0002	0.0002
Arsenium Dissolved (AA)	33109L	mg/L		0.0012	0.0002
Popullium Dissolved (ICP-AES)	56109L	mg/L		0.08	0.01
Perprintum - DISSOIVED (ICP-AES)	04103L	mg/L		0.001	0.001
Cadmium Discolved (ICP MS)	U5111L	mg/L		1.91	0.01
Chromium Dissolved (ICD ASC)	040601	mg/L	<	0.0002	0.0002
Cobalt _ Discoludd (ICD MS)	24360L	mg/L		0.008	0.002
CONAIL - DISSUIVED (ILP-MS)		mg/L		0.0005	0.0003

# CHEMEX Labs Alberta Inc.

algary : 2021 - 41st Avenue N.E., T2E 6P2. Telephone (403) 291-3077, FAX (403) 291-9468 Edmonton : 9331 - 48th Street, T6B 2R4, Telephone (403) 465-9877, FAX (403) 466-3332

Sample Description	:	95447 EFFLUENT
Sample Date & Time	:	01-11-95 1045
Sampled By	:	MG
Sample Type	:	GRAB
Sample Received Date	:	November 02. 1995
Sample Station Code	:	

HYDRO-QUAL LABORATORIES LIMITED ATTENTION : MARY GREGORY 95129 95030 PROJ.#952-2307

Chemex Worksheet Number	:	95-04108-1
Chemex Project Number	:	HYDR010-0501
Sample Access	:	
Sample Matrix	:	WATER
Report Date	:	November 16, 1995

PARAMETER DESCRIPTION	NAQUADAT CODE	UNITS	RES	ULTS	DETECTION LIMIT
Copper - Dissolved (ICP-AES) Iron - Dissolved (ICP-AES) Lead - Dissolved (ICP-MS)	29109L 26109L	mg/L mg/L mg/L	< <	0.001 0.02 0.0003	0.001 0.01 0.0003
Lithium - Dissolved (ICP-AES) Manganese - Dissolved (ICP-AES)	03109L 25109I	mg/L mg/l		0.134	0.001
Mercury - Dissolved (CVAA)	80101L	ug/L	<	0.05	0.001
Molybdenum - Dissolved (ICP-AES) Nickel - Dissolved (ICP-MS)	42330L	mg/L mg/l		0.014	0.003
Phosphorus - Dissolved (ICP-AES)	15450L	mg/L	<	0.1	0.1
Selenium - Dissolved (AA) Silver - Dissolved (ICP-MS)	34105L	mg/L ma/L		$0.0005 \\ 0.0003$	0.0002
Strontium - Dissolved (ICP-AES)	38111L	mg/L		0.307	0.002
Uranium - Dissolved (ICP-AES) Uranium - Dissolved (ICP-MS)	221110	mg/L mg/L		0.003	0.003
Vanadium - Dissolved (ICP-AES)	23330D	mg/L	<	0.002	0.002
Ion Balance	302010	Balance		0.003 1.05	0.001 0.01





A DIVISION OF ETL CHEMSPEC ANALYTICAL LIMITED

9936 - 67 Avenue, Edmonton, Alberta T6E 0P5 Telephone: (403) 434-9509 Fax: (403) 437-2311 Bay 2, 1313 - 44 Avenue N.E., Calgary, Alberta T2E 6L5 Telephone: (403) 291-9897 Fax: (403) 291-0298 107 - 111 Research Drive, Saskatoon, Saskatchewan S7N 3R2 Telephone: (306) 668-8370 Fax: (306) 668-8383 Bay 3, 10919 - 96 Avenue, Grande Prairie T8V 3J4 Telephone: (403) 539-5196 Fax: (403) 539-6295 Unit F - 1420 Clarence Avenue, Winnipeg, Manitoba R3T 1T6 Telephone: (204) 452-8104 Fax: (204) 477-8719

#### CHEMICAL ANALYSIS REPORT

HYDROQUAL LABO #3, 6125 12 STREET CALGARY, ALBERT T2H 2K1	RATORIES LTD. I S.E. A ATTN:	DATE: MARY GREGORY	November 30, 1995
Lab Work Order #:	E511114	Sampled By:	CLIENT
Project Reference:	LAB QUO C95-073/952-2	307 Date Received:	11/04/95
Project P.O.#:	95135		

Comments:

Detection limits for the target phenolics have been adjusted due to co-extractive interferences.

		Doug Johnson Project Manager
ALL SAMPLES WILL BE I SAMPLE STORAGE TIME	DISPOSED OF AFTER 30 DAYS	FOLLOWING ANALYSIS, PLEASE CONTACT THE LAB IF YOU REQUIRE ADDITIONAL
ACCREDITED BY: (Edmonton) CERTIFIED BY: (Calgary)	CANADIAN ASSOCIATION O with the Association STANDARDS COUNCIL OF C AMERICAN INDUSTRIAL HY AGRICULTURE CANADA - Pe CANADIAN ASSOCIATION O with the Association	F ENVIRONMENTAL ANALYTICAL LABORATORIES (CAEAL) - For specific tests registered ANADA - Organic & Industrial Hygiene analysis as registered with the Council GIENE ASSOCIATION (AIHA) - Industrial Hygiene analysis registered by AIHA sticide in Fruits and Vegetables, pesticides and PCP in meat F ENVIRONMENTAL ANALYTICAL LABORATORIES (CAEAL) - For specific tests registered

E511114 CONT... PAGE 2

# **ENVIRO-TEST CHEMICAL ANALYSIS REPORT**

LAB ID	SAMPLE ID	TEST DESCRIPTION	RESULT	D.L.	UNITS	EXTRACTED	ANALYZED	BY
E511114-01 Sample Type Collected:11/	<b>95447</b> :WATER 03/95							
		Hydrocarbons,Recoverable PAH & Alkylated PAH's	12	1	mg/L	11/16/95	11/17/95	RG
		Naphthalene Acenaphthylene	N.D. N.D.	0.04 0.04	ug/L (ppb) ug/L (ppb)	11/17/95	11/25/95	MJL
		Acenaphthène Fluorene	N.D.	0.04	ug/L (ppb)	11/17/95	11/25/95	MJL
		Dibenzothiophene	N.D.	0.04	ug/L (ppb)	11/17/95	11/25/95	MJL MJL
		Anthracene	N.D. N.D.	0.04 0.04	ug/L (ppb)	11/17/95	11/25/95	MJL
		Fluoranthene Pvrene	N.D.	0.04	ug/L (ppb)	11/17/95	11/25/95	MJL
		Benzo(a)anthracene/Chrysene	N.D.	0.04	ug/L (ppb)	11/17/95	11/25/95	MJL MJL
		Benzo(a)pyrene	N.D.	0.04	ug/L (ppb) ug/L (ppb)	11/17/95	11/25/95 11/25/95	MJL MJL
		Indeno(c,d-123)pyrene Dibenzo(a,h)anthracene	N.D. N.D.	0.04 0.04	ug/L (ppb) ug/L (ppb)	11/17/95	11/25/95	MJL
		Benzo(ghi)perylene Methyl naphthalene	N.D. N.D	0.04	ug/L (ppb)	11/17/95	11/25/95	MJL
[		C2 sub'd naphthalene	0.17	0.08	ug/L (ppb)	11/17/95	11/25/95	MJL
		C4 sub'd naphthalene	0.14	0.08	ug/L (ppb)	11/17/95	11/25/95	MJL MJL
		Methyl biphenyl	N.D. N.D.	0.08	ug/L (ppb) ug/L (ppb)	11/17/95	11/25/95	MJL MJI
		C2 sub'd biphenyl Methyl acenaphthene	N.D. N.D.	0.08 0.08	ug/L (ppb) ug/L (ppb)	11/17/95	11/25/95	MJL
		Methyl fluorene C2 sub'd fluorene	N.D. N.D.	0.08	ug/L (ppb)	11/17/95	11/25/95	MJL
		Methyl phenanthrene/anthracene	N.D.	0.08	ug/L (ppb)	11/17/95	11/25/95	MJL
		C3 sub'd phenanthrene/anth.	N.D.	0.08	ug/L (ppb) ug/L (ppb)	11/17/95	11/25/95 11/25/95	MJL MJL
		1-Methyl-7-isopropylphenanth.	N.D. N.D.	0.08	ug/L (ppb) ug/L (ppb)	11/17/95 11/17/95	11/25/95 11/25/95	MJL MJL
		Methyl dibenzothiophene C2 sub'd dibenzothiophene	N.D. 0.18	0.08 0.08	ug/L (ppb) ug/L (ppb)	11/17/95 11/17/95	11/25/95	MJL
		C3 sub'd dibenzothiophene C4 sub'd dibenzothiophene	0.17 N D	0.08	ug/L (ppb)	11/17/95	11/25/95	MJL
		Methyl fluoranthene/pyrene	N.D.	0.08	ug/L (ppb)	11/17/95	11/25/95	MJL
		C2 sub'd B(a)A/chrysene	N.D. N.D.	0.08	ug/L (ppb) ug/L (ppb)	11/17/95 11/17/95	11/25/95 11/25/95	MJL MJL
		C2 sub'd B(b&k)F/B(a)P	N.D. N.D.	0.08 0.08	ug/L (ppb) ug/L (ppb)	11/17/95 11/17/95	11/25/95	MJL MJI
		Phenolic Compounds in H2O Phenol	N.D.	0.1	ug/L (ppb)	11/17/95	11/20/95	MRM
		o-Cresol m-Cresol	N.D.	0.1	ug/L (ppb)	11/17/95	11/20/95	MBM
		p-Cresol 2 4-Dimethylphonol	N.D.	0.1	ug/L (ppb)	11/17/95	11/20/95	MBM
		2-Nitrophenol	N.D. N.D.	0.1	ug/L (ppb) ug/L (ppb)	11/17/95 11/17/95	11/20/95 11/20/95	MBM MBM
		2,4-Dinitrophenol	N.D. N.D.	20	ug/L (ppb) ug/L (ppb)	11/17/95 11/17/95	11/20/95 11/20/95	MBM MBM
		4,6-Dinitro-2-methylphenol PANH & Alkylated PANH's	N.D.	20	uğ/L (ppb)	11/17/95	11/20/95	МВМ
		Quinoline 7-Methyl quinoline	N.D. N.D.	0.02 0.02	ug/L (ppb) ug/L (ppb)	11/17/95	11/24/95	MJL MJI
		C2 Alkýl subsť d quinolines C3 Alkyl subsť d guinolines	N.D.	0.02	ug/L (ppb)	11/17/95	11/24/95	MJL
		Acridine Methyl acridine	N.D.	0.02	ug/L (ppb)	11/17/95	11/24/95	MJL
		Phenanthridine	N.D.	0.02	ug/L (ppb)	11/17/95	11/24/95	MJL
		Methyl carbazoles	N.D. N.D.	0.02	ug/L (ppb) ug/L (ppb)	11/17/95 11/17/95	11/24/95 11/24/95	MJL MJL
		C2 Alkyl subst'd carbazoles Volatile Organics (MS):H20	N.D.	0.02	uġ/L (ppb)	11/17/95	11/24/95	MJL
		Dichlorodifluoromethane Chloromethane	N.D.	5 50	ug/L (ppb)	11/17/95	11/17/95	MAA
		Vinyl chloride Bromomethane	N.D.	100	ug/L (ppb)	11/17/95	11/17/95	MAA
		Chloroethane	N.D.	50	ug/L (ppb)	11/17/95	11/17/95	MAA
		Trichlorofluoromethane	N.D. N.D.	500	ug/L (ppb) ug/L (ppb)	11/17/95 11/17/95	11/17/95 11/17/95	MAA
		Acetone	N.D. N.D.	500 500	ug/L (ppb) ug/L (ppb)	11/17/95 11/17/95	11/17/95 11/17/95	MAA MAA
		I, I-Uichloroethene Iodomethane	N.D. N.D.	5 5	ug/L (ppb) ug/L (ppb)	11/17/95	11/17/95 11/17/95	MAA MAA
		Carbon disulfide Methylene chloride	N.D. N.D.	5 5	ug/L (ppb)	11/17/95	11/17/95	ΜΑΑ
				÷	-9,5 (660)	1 11/1/95	11/1//00	

E511114 CONT... PAGE 3

# **ENVIRO-TEST CHEMICAL ANALYSIS REPORT**

LAB ID	SAMPLE ID	TEST DESCRIPTION	RESULT	D.L.	UNITS	EXTRACTED		
E511114-01 Sample Type Collected:11/	95447 WATER 03/95						<u>ANALIZEU</u>	BA
		Acrylonitrile trans-1,2-Dichloroethene Vinyl acetate 1,1-Dichloroethane 2-Butanone (MEK) Chloroform 1,1,1-Trichloroethane Carbon tetrachloride Benzene 1,2-Dichloroethane Trichloroethene 1,2-Dichloropropane Bromodichloromethane Dibromomethane 2-Chloroethylvinylether 4-Methyl-2-pentanone (MIBK) cis-1,3-Dichloropropene Toluene Ethyl methacrylate trans-1,3-Dichloropropene 2-Hexanone 1,1,2-Trichloroethane Tetrachloroethylene Dibromochloromethane Ethylene dibromide Chlorobenzene Ethylbenzene m+p-Xylenes o-Xylene Styrene cis-1,4-Dichloro-2-butene Bromoform 1,1,2,2-Tetrachloroethane 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene	N.D.D. N.D.D.D.D.D.D.D.D.D.D.D.D.D.D.D.D	500 500 500 55 55 55 55 55 55 55 55 55 5	ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb)	11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95	11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/95 11/17/	MAA           MAA           MAA           MAA           MAA           MAA           MAA           MAA           MAA           MAA           MAA           MAA           MAA           MAA           MAA           MAA           MAA           MAA           MAA           MAA           MAA           MAA           MAA           MAA           MAA           MAA           MAA           MAA           MAA           MAA           MAA           MAA           MAA           MAA           MAA           MAA           MAA           MAA           MAA           MAA           MAA           MAA           MAA           MAA           MAA           MAA           MAA           MAA           MAA           MAA      MAA
N.D NO THIS IS T	T DETECTED, LE	SS THAN THE DETECTION LIMIT DF THE REPORT						

.

# **ENVIRO-TEST QA/QC REPORT**

### PAH & Alkylated PAH's

Surrogate Recovery for E51111401A	%
Nitrobenzene d5	90
2-Fluorobiphenyl	86
p-Terphenyl d14	121
PANH & Alkylated PANH's	
Average Surrogate Recovery for E511114	<u>%</u>
Quinoline d7	97
Phenolic Compounds in H2O	
Average Surrogate Recovery for E511114	<u>%</u>
2-Fluorophenol	44
Phenol d5	33
2,4,6-Tribromophenol	90
Volatile Organics (MS):H20	
Average Surrogate Recovery for E511114	<u>%</u>
1.2-Dichloroethane d4	111
Toluene d8	86
4-Bromofluorobenzene	97

Relative percent difference is expressed as RPD. Percent Recovery is expressed as %. THIS IS THE LAST PAGE OF THE QAQC REPORT

#### Hydrocarbons, Recoverable

Preparation Method: Separatory funnel extraction with 80% to 20% Hexane to MTBE; silica gel addition. Instrumental Method: Gravimetric analysis Method Reference: H/C ENVIRODAT 6579 APHA 5520F

#### PAH & Alkylated PAH's

Preparation Method:	Liquid/liquid extraction	with	DCM, methylati	.on
Instrument Method:	GC/MSD analysis			
Method Reference:	Extraction Method: EPA : Analytical Method: EPA 8	3540 8270	(modified) (modified)	

#### Phenolic Compounds in H2O

Preparation Method:	Liquid/liquid extrac	ction with	DCM, acetylation
Instrument Method:	GC/MSD analysis		
Method Reference:	Extraction Method: Analytical Method:	EPA 3510 EPA 8270	(modified) (modified)

#### PANH & Alkylated PANH's

#### Volatile Organics (MS):H20

Preparation Method:	Automated headspace			
Instrument Method:	GC/MSD analysis			
Method Reference:	Extraction Method: Analytical Method:	EPA EPA	3810 8240	(modified) (modified)

ç

THIS IS THE LAST PAGE OF THE METHODOLOGY APPENDIX.

July Spelley	y Pvendergi	ast	81	0	
V	GOL	DER ASSOCIAT I-OF-CUSTODY	ES LTD. RECORD	Page <u> </u> of <u> </u>	
Field Sampler: (Sigr <i>Mary face</i> Phone No.	nature) 7/1403/253-7	Shij Car <i>[]2]</i> We	pment Date: <u>9.5/11</u> rier: <u>F7</u> igh Bill No.: <u>N//</u>	1/03 E511. L 7	 
Ship To: EnviroTe 9936 - Edmontor	est Labovator 67th Ave. A13. T6E01	<i>ies Ltcl</i> , ^{Sen} 1 P5	d Results To: Hydro # 3, 6125 - Calgary A, Alth: Mary	Qual Labora 12 Street S. B · T2H 2 Gregory	toriog E K1.
Project Name: <u>9</u>	15030		Project No. P.O. No.:	95135 95135	<u>2</u> 7
Relinquished by: (Sig Relinquished by: (Sig Manne/ Kelly Relinquished by: (Sig Relinquished from lat	mature) I mature) I mature) I by: (Signature) I	Received at lab by: difference Kelly Received at lab by: Received at lab by: Received by: (Sign	(Signature) Date Mor. 3/9c (Signature) Date Mor. 465 (Signature) Date	<u> </u>	
AMPLES LEFT	N CALO.		FST	1 me	
AMPLES LEFT SNO- Sample ID No.	N CALO.	ANALYSIS REQU Date/Time Sampled	EST Analysis Requested	Sample Condition	-
AMPLES LEFT I SNO- Sample ID No. 95447	Sample Description	ANALYSIS REQU Date/Time Sampled 95/11/03	Analysis Requested PAH Alky lated PAH Analysis	Sample Condition Upon Receipt ESIIII4	] Pah71
AMPLES LEFT T SNO- Sample ID No. 95447 1	Sample Description	ANALYSIS REQU Date/Time Sampled	EST Analysis Requested PAH /Alky lated PAH Analysis PANH Analysis	Sample Condition Upon Receipt ESIIII4	PAH71 PNN+31
AMPLES LEFT I SNO - Sample ID No. 95447 	Sample Description	ANALYSIS REQU Date/Time Sampled 95/11/03	EST Analysis Requested PAH Alky lated PAH Analysis PANH Analysis Total exportables aralysis	Sample Condition Upon Receipt ESIIII4	PAHTI PHN 31 PHN 14 PAN 14
AMPLES LEFT I SNO- Sample ID No. 95447  	Sample Description	ANALYSIS REQU Date/Time Sampled 95/11/03	EST Analysis Requested PAH Alky lated PAH Analysis PANH Analysis Total exportables aralysis Non - Chlog nated Phenols \$240/6244 Volat le Organics	Sample Condition Upon Receipt ESIIII4	PAHTI PNN 31 PMN 31 PMN 1M HOGLD VOCIW
AMPLES LEFT I SNO- Sample ID No. 95447  	Sample Description	ANALYSIS REQU Date/Time Sampled 95/11/03	EST Analysis Requested PAH Alky lated PAH Analysis PANH Analysis Total exportables aralysis Non - Chlog nated Phenols \$240/6244 volatile Orbanics	Sample Condition Upon Receipt ESIIII4	PAHTI PNN 31 PMM 11 HOGLD VOCIW
AMPLES LEFT T SNO- Sample ID No. 95447  	Sample Description	ANALYSIS REQU Date/Time Sampled 95/11/03	EST Analysis Requested PAH /Alky lated PAH Analysis PANH Analysis Wah - Charnated S240/624 volatile Organics	Sample Condition Upon Receipt ESIIII4	PAHTI PNNt31 PMH111 HOGLD VOCIN

,

SUNCOR Environmu



NOV 3 0 1995

A DIVISION OF ETL CHEMSPEC ANALYTICAL LIMITED

9936 - 67 Avenue, Edmonton, Alberta T6E 0P5 Telephone: (403) 434-9509 Fax: (403) 437-2311 Bay 2, 1313 - 44 Avenue N.E., Calgary, Alberta T2E 6L5 Telephone: (403) 291-9897 Fax: (403) 291-0298 107 - 111 Research Drive, Saskatoon, Saskatchewan S7N 3R2 Telephone: (306) 668-8370 Fax: (306) 668-8383 Bay 3, 10919 - 96 Avenue, Grande Prairie T8V 3J4 Telephone: (403) 539-5196 Fax: (403) 539-6295 Unit F - 1420 Clarence Avenue, Winnipeg, Manitoba R3T 1T6 Telephone: (204) 452-8104 Fax: (204) 477-8719

#### **CHEMICAL ANALYSIS REPORT**

SUNCOR INC. OSG P.O. BOX 4001 FORT MCMURRAY, AB T9H 3E3	ATTN: JOHN	DATE:	November 22, 1995
Lab Work Order #: E5	10770	Sampled By:	L.P.
Project Reference:	95DJ04.QUO	Date Received:	10/30/95
Project P.O.#:	NOT SUBMITTED		
Comments:			:
APP THIS REPORT SHALL NOT BE REPR	ROVED BY: Doug Johnson Project Manager	TTEN AUTHORITY OF THE LABO	
		VTICAL LABORATORIES (CO.	
(Edmonton) with the Ass	A A 3 3 0 CIA HON OF ENVIRONMENTAL ANAS	TINAL LADUHATUHIES (CAEA	<ul> <li>For specific tests regist</li> </ul>

(Edmonton) with the Association STANDARDS COUNCIL OF CANADA - Organic & Industrial Hygiene analysis as registered with the Council AMERICAN INDUSTRIAL HYGIENE ASSOCIATION (AIHA) - Industrial Hygiene analysis registered by AIHA AGRICULTURE CANADA - Pesticide in Fruits and Vegetables, pesticides and PCP in meat CANADIAN ASSOCIATION OF ENVIRONMENTAL ANALYTICAL LABORATORIES (CAEAL) - For specific tests regis

Recysted Paper

12/06/95

14:18

.

E510770 CONT... PAGE 2

•----

# ENVIRO-TEST CHEMICAL ANALYSIS REPORT

.

E510770 CONT. PAGE 3

# **ENVIRO-TEST CHEMICAL ANALYSIS REPORT**

LAB ID	SAMPLE ID	TEST DESCRIPTION	RESULT	D.L.	UNITS	EXTRACTED	ANALYZED	BY
E510770-01 Sample Type Collected:10/	6153-254-1 WATER 27/95				·			
		trans-1,2-Dichloroethene Vinyl acetate 1,1-Dichloroethane 2-Butanone (MEK) Chloroform 1,1,1-Trichloroethane Carbon tetrachloride Benzene 1,2-Dichloroethane Trichloroethene 1,2-Dichloropropane Bromodichloromethane Dibromomethane 2-Chloroethylvinylether 4-Methyl-2-pentanone (MIBK) cis-1,3-Dichloropropene Toluene Ethyl methacrylate trans-1,3-Dichloropropene 2-Hexanone 1,1,2-Trichloroethane Tetrachloroethylene Dibromochloromethane Ethylbenzene m+p-Xylenes o-Xylene Styrene cis-1,4-Dichloro-2-butene Bromoform 1,1,2-2-Tetrachloroethane 1,2,3-Trichloropropane trans-1,4-Dichloro-2-butene 1,3-Dichlorobenzene 1,4-Dichlorobenzene	ט. מ. מ. מ. מ. מ. מ. מ. מ. מ. מ. מ. מ. מ.	1 100 1 1 1 1 1 1 1 1 1 200 1 200 1 200 1 200 1 1 1 1	ug/L (apb) ug/L (apb) ug/L (apb) ug/L (apb) ug/L (apb) ug/L (apb) ug/L (apb) ug/L (apb) ug/L (apb) ug/L (apb) ug/L (apb) ug/L (apb) ug/L (apb) ug/L (apb) ug/L (apb) ug/L (apb) ug/L (apb) ug/L (apb) ug/L (apb) ug/L (apb) ug/L (apb) ug/L (apb) ug/L (apb) ug/L (apb) ug/L (apb) ug/L (apb) ug/L (apb) ug/L (apb) ug/L (apb) ug/L (apb) ug/L (apb) ug/L (apb) ug/L (apb) ug/L (apb) ug/L (apb) ug/L (apb) ug/L (apb) ug/L (apb) ug/L (apb) ug/L (apb) ug/L (apb) ug/L (apb) ug/L (apb) ug/L (apb) ug/L (apb) ug/L (apb) ug/L (apb) ug/L (apb) ug/L (apb) ug/L (apb) ug/L (apb) ug/L (apb) ug/L (apb) ug/L (apb) ug/L (apb) ug/L (apb) ug/L (apb) ug/L (apb) ug/L (apb) ug/L (apb)	11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95	11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95 11/15/95	MAA MAA MAA MAA MAA MAA MAA MAA MAA MAA
N.D NO THIS IS TH NOT INCL	T DETECTED, LE HE FINAL PAGE ( UDING APPEND	SS THAN THE DETECTION LIMIT OF THE REPORT ICES						

12/06/95 14:20 🗃	403	791	8339
------------------	-----	-----	------

E510770 Cont... PAGE 1

# **ENVIRO-TEST QA/QC REPORT**

## PAH & Alkylated PAH's

Average Surrogate Recovery for E510770	%
Nitrobenzene d5 2-Fluorobiphenyl p-Terphenyl d14 PANH & Alkylated PANH's	105 78 87
Average Surrogate Recovery for E510770	<u>%</u>
Quinoline d7 Phenolic Compounds in H2O	116
Average Surrogate Recovery for E510770	<u>%</u>
2-Fluorophenol Phenol d5 2,4,6-Tribromophenol Volatile Organics (MS):H20	26 25 92
Average Surrogate Recovery for E510770	<u>%</u>
1,2-Dichloroethane d4 Toluene d8 4-Bromofluorobenzene	99 87 104

Relative percent difference is expressed as RPD. Percent Recovery is expressed as %. THIS IS THE LAST PAGE OF THE QAQC REPORT

12/06/95	14:21	<b>B</b> 403	791	8339
----------	-------	--------------	-----	------

W.O.#E510770 PAGE 1

## Appendix A Test Methodologies

-----

### PAH & Alkylated PAH's

Preparation Method:	Liquid/liquid extraction with DCM, methylation				
Instrument Method:	GC/MSD analysis				
Method Reference:	Extraction Method: EPA 3540 (modified) Analytical Method: EPA 8270 (modified)				
Phenolic Compounds in	Н2О				
Preparation Method:	Liquid/liquid extraction with DCM, acetylation				
Instrument Method:	GC/MSD analysis				
Method Reference:	Extraction Method: EPA 3510 (modified) Analytical Method: EPA 8270 (modified)				

PANH & Alkylated PANH's

## Volatile Organics (MS):H20

Preparation Method:	Automated headspace			
Instrument Method:	GC/MSD analysis			
Method Reference:	Extraction Method: Analytical Method:	EPA EPA	3810 8240	(modified) (modified)

THIS IS THE LAST PAGE OF THE METHODOLOGY APPENDIX.