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Abstract
Naïve Bayes classifiers, a popular tool for predicting the labels of query instances, are

typically learned from a training set. However, since many training sets contain noisy data, a
classifier user may be reluctant to blindly trust a predicted label. We present a novel graphical
explanation facility for Naïve Bayes classifiers that serves three purposes. First, it transparently
explains the reasoning used by the classifier to foster user confidence in the prediction. Second, it
enhances the user's understanding of the complex relationships between the features and the labels.
Third, it can help the user to identify suspicious training data. We demonstrate these ideas in the
context of our implemented web-based system, which uses examples from molecular biology.

1. Introduction
Classifiers are now being used by a variety of scientists to solve a wide range of computational problems.
For example, bioinformaticians routinely use classifiers to predict properties of the thousands of new DNA
segments being sequenced every day. Each classifier maps a large set of sequence features to a predicted
label representing a property of the sequence, such as general function or sub-cellular localization. However,
in many cases, scientists may be reluctant to accept classification results without an explanation (Teach &
Shortliffe 1984). For example, if a classifier is a "black box" and predicts that a query sequence is in the
class of transport/binding proteins without providing some justification, a scientist may not have much
confidence in the prediction, even if the scientist agrees with the classifier. A worse situation is if the
scientist disagrees with the prediction that a classifier has made for a particular sequence, but is given no
insight into why the classifier made this choice. In that situation, the scientist may distrust the classifier
itself and not just the specific prediction. A good explanation not only helps to reinforce an accurate
prediction, it also elucidates an inaccurate prediction in a way that identifies the location in the classifier’s
reasoning where mis-information or lack of information caused the inaccuracy. In such a situation, the
clarity of the explanation maintains, and often extends, the scientist’s overall confidence in the classifier.

We feel that a successful explanation must appeal to the scientist's intuition and must be able to answer
the most common prediction questions. In essence, this makes the classifier more of a “white-box”
technique.  Towards that goal, we have focused our efforts on Naïve-Bayes (NB) classifiers because they are
based on well-known probability concepts, which are generally understood by scientists. This is in contrast
to other classifier techniques, such as Support Vector Machines (SVM) and Artificial Neural Networks
(ANN), that may in some circumstances be more accurate than NB, but lack this intuitive basis. We have
developed a technique to present our explanations to non-computational scientists in an intuitive graphical
(pictorial) format. We have defined a series of explanation capabilities ordered by increasing level of detail,
to answer the common questions in the order that they are usually asked:  What is the most likely
classification and how "close" are the other possible classes?  What specific evidence contributed to the
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classification decision? When the evidence supported more than one class, how was the evidence weighed
to obtain the final classification?  What is the source of the basic evidence and how does that evidence
relate to the specific training set used to build the classifier? What are the application-specific
computational techniques that were used to transform basic data to features?

1.1 Related Work
The term explanation has several meanings, especially in the context of Bayesian inference. We are
describing a process (and a system) to help explain the results of a particular classification or prediction, in
terms of both the particular query instance provided, and the data sample used to generate this model.  This
fits clearly as one task in the Lacave and Diez (2000) trichotomy as LD-3 – explanation of reasoning, since
it explains why the classifier returned its specific answer to a query instance.

Our process also addresses another task, LD-2 – explanation of the model, as it relates to the static
model of the underlying NB belief net.  Our approach differs from most LD-2 task systems, since we do
not use this explanation to help justify the NB structure. However, our system does describe how the
training data affects the parameters of the model, as a way to consider what training data may be suspect,
and perhaps cause the model to produce a problematic classification.

Our process does not address one LD task, LD-1 – explanation of the evidence, which corresponds to
finding the most probable explanation (MPE). Finally, we are not trying to explain the general idea of
Bayesian reasoning, nor Bayesian belief networks (Myllymäki et al. 2002).

1.2 Background
To explain the context for our process, we first describe NB systems in general, and show how their
parameters are estimated from a data sample. In general, classifiers describe each instance using a set of
feature-value pairs 

† 

F1,vk1( )... Fm ,vkm( ). Probabilistic classifiers typically return the label 

† 

L j  with the largest

posterior probability, 

† 

Pj
* = P L = L j | F1 = vk1

,...Fm = vkm[ ] . In this paper, we consider NB classifiers, which

make the simplifying assumption that the features are independent of each other, given the label (Duda &
Hart 1973); see Equation 1.

Any NB classifier can be described by a set of parameters, which are typically learned from labeled
training data (Heckerman 1998). We let 

† 

cijki
 denote the number of training instances labeled by 

† 

L j , whose

value for feature 

† 

Fi  is 

† 

vki
 and call them the information atoms. We can derive the quantities: 

† 

n j  (number

of training instances labeled by 

† 

L j ) and n (total number of training instances) from these information

atoms. Given the NB assumption, we can derive a formula for each posterior probability, 

† 

Pj
* and define its

maximum likelihood estimator, 

† 

ˆ P j , in terms of the 

† 

cijki
, where the normalization constant

† 

a = P F1 = vk1
,...Fm = vkm[ ]  ensures that the probabilities add to 1, as shown in Equation 1.

† 

Pj
* = P L = L j | F1 = vk1

,...,Fm = vkm[ ] =

P L = L j[ ] ¥ P Fi = vki
| L = L j[ ]

i=1

m

’

P F1 = vk1
,...,Fm = vkm[ ]

ˆ P j =
1
a

n j

n
Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

cijki

n j

Ê 

Ë 
Á Á 

ˆ 

¯ 
˜ ˜ 

i=1

m

’

(1)

A classification explanation is a presentation of the evidence used by the classifier to assign each
probability. Note that we use the term evidence to refer to the way that the information atoms, 

† 

cijki
, are

used to make a classification. We are not referring to the evidence in the posterior distribution, 

† 

Fi = vki[ ].
We address the challenge of effectively displaying this evidence for each query instance probability, using



3

the information atoms. A good explanation should present the evidence in a way that clearly establishes a
link between the information atoms and the computed probabilities. In a non-graphical approach, this could
be provided by a sequence of inferences that explain the factors in Equation 1. However, our goal is to
derive an intuitive graphical explanation facility that can be used by scientists who have a basic
understanding of probabilities, but may not have significant computational knowledge.

In this paper, the terms graph and graphical denote pictorial representations and are not used in the
mathematical sense of an entity consisting of vertices and edges. For presentation simplicity, we assume
each feature has two domain values, denoting the presence of some token. We use Fi=1 when the
associated token is present, and Fi=0 when it is absent. However, the results are applicable to the general
case, when each feature has a finite domain.

1.3 Example – Proteome Analyst
We use a NB classifier built for the Proteome Analyst (PA) web-based application
(www.cs.ualberta.ca/~bioinfo/PA) (Szafron et al. 2003) as an example in this paper. This is a real classifier
with 2539 training instances and 1259 different features. It is used by molecular biologists and the query
instance used in this paper is also real. It is the protein ATKB_Ecoli. However, we show only 8 of the 14
labels to avoid distracting the reader with irrelevant details. Note that no knowledge of molecular biology
is required to understand this example, since the features and labels can be viewed as text strings.

1.4 Explanation Capabilities
The following sections define five desirable capabilities (properties) for graphical classification
explanations that are derived in order of increasing effectiveness. We show how each successive capability
increases a user’s ability to understand and judge the evidence for a classification, as illustrated in Figure 1.

Figure 1: Increasingly Effective Explanation Capabilities

Capability-0 answers the question: What is the most likely classification and how "close" are the other

possible classes?  One solution is to represent each label probability, 

† 

ˆ P j  by a bar in a bar-graph.

Capability-1 answers the question: What specific evidence contributed to the classification decision? One
solution is by dividing each label bar into component sub-bars based on the relative contributions of
features. Capability-2 answers the question: When the evidence supported more than one class, how was
the evidence weighed to obtain the final classification? One solution is to further dividie each sub-bar so
that the user can understand the relative contributions of features in terms of the basic information atoms,

† 

cijki
. Capability-3 answers the question: What is the source of the basic evidence and how does that
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evidence relate to the specific training set used to build the classifier? One solution is to allow the to view
feature information in the context of training data. Capability-4 answers the question: What are the
application-specific computational techniques that were used to transform basic data to features? A solution
must allow the user to view the relationship between raw training data and labeled feature lists.

2. Capability-0: Label display
What is the most likely classification and how "close" are the other possible classes?  One simple way to
satisfy Capability-0 is to use bars to represent labels, where the length of a bar is proportional to the label
probability (Mackinlay 1986). We call this simple form of explanation graph, a classification graph. For
example, Figure 2 shows part of such a classification graph for a Proteome Analyst query instance.

Figure 2: A Classification Graph With Only Capability-0

The 8 labels are shown on the y-axis and the (x-axis) bar lengths are proportional to the relative
probabilities of the labels for the given query instance. Although this graph provides Capability-0, it only
displays classification results. It does not display any evidence about how these probabilities are based on
information values (from the training data), so it does not satisfy Capability-1.

3. Capability-1:  Feature Display
What specific evidence contributed to the classification decision? There is a problem with adding
Capability-1 to a graph like Figure 2. From Equation 1, the probability for each label is a product of
probabilities. We want to be able to display the relative contributions of each factor in a graphical way.
Unfortunately, it is hard to understand objects whose size depends on the contributions of multiplicative
factors. For example, which product is larger, 2¥32¥4¥32 or 8¥16¥8¥16? How does the size of the
product depend on the size of the factors? How can we construct a graph that relates the size of the factors
to the size of the product? For two or three factors, we can use a separate axis for each factor and display
the area or volume as the product. However, for more than three factors this is difficult.

On the other hand, we can use a linear graph for sums. It is relatively easy to compare the sums
1+5+2+5 and 3+4+3+4, to see which is larger and to see how each term contributes to the sum. We need
only draw a graph with sub-bar sizes proportional to the terms and total bar sizes proportional to the sums,
to tell at a glance, which sum is larger and to recognize the relative contributions of the terms. Since
probabilities are multiplicative, logarithms of probabilities are additive.

Therefore, our explanation graph is based on sums of logarithms of probabilities from Equation 1, so
that each factor in Equation 1 becomes a logarithmic term. Before taking logarithms, we make two
transformations to Equation 1. First note that, for any fixed j, if even one of the 

† 

cijki
 has value 0, then the

product will be zero. If one such 

† 

cijki
occurs for each j, then all 

† 

ˆ P j  will be 0. Since the probabilities must
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still add to 1, the normalization constant a must also be 0 so that Equation 1 becomes indeterminate (zero
divided by zero). Since this occurs frequently in practice, there are standard approaches to deal with this
problem. The simplest solution is to use a Laplacian correction (Lidstone 1920) to construct a different
estimator, 

† 

˜ P j . Each factor in the product is replaced by a factor that cannot be zero as shown in Equation

2. The value 

† 

di  is the number of distinct values that can be assigned to feature 

† 

Fi . In this paper, 

† 

di = 2
for all i, since each feature is Boolean (absence or presence of a token). This is also a standard variance-
reduction technique (Ripley 1996), with an obvious Bayesian MAP interpretation.

† 

ˆ P j =
1
a

n j

n
Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

cijki

n j

Ê 

Ë 
Á Á 

ˆ 

¯ 
˜ ˜ 

i=1

m

’

˜ P j =
1
a

n j

n
Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

cijki
+1

n j + di

Ê 

Ë 
Á Á 

ˆ 

¯ 
˜ ˜ 

i=1

m

’
(2)

There are many variations of this technique (Ristad 1995) and we chose to reduce the bias of this basic
estimator by instead using the formula in Equation 3, to define a new estimator, 

† 

Pj . Recall that 

† 

n j  is the

number of training instances labeled by 

† 

L j  and n is the total number of training instances. Therefore  

† 

n j

n
is strictly less than 1, since if there is only 1 label, the classifier is useless. Also, 

† 

n j  must be larger than

0, since any label without at least one training instance can never be predicted by the classifier and can
therefore be excluded.

† 

Pj =
1
a

n j

n
Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

cijki
+

n j

n
n j + di ¥

n j

n

Ê 

Ë 

Á 
Á 
Á 

ˆ 

¯ 

˜ 
˜ 
˜ i=1

m

’ (3)

Before taking the logarithms in Equation 3, we make a transformation to this estimator. As each factor
in Equation 3 is a probability, it is less than one. Since we will represent the logarithm of each factor as a
bar in a graph, we want each factor to be greater than or equal to 1, so that its logarithm will be non-
negative. Therefore, we multiply each of the m factors by n and compensate by dividing the product by

† 

nm . We then simplify the result to obtain Equation 4, where a’ is a new normalization constant.

† 

Pj =
1
a

n j

nm +1

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

n ¥ cijki
+ n j

n ¥ n j + di ¥ n j

Ê 

Ë 
Á Á 

ˆ 

¯ 
˜ ˜ 

i=1

m

’ =
n j

a '
n
n j

Ê 

Ë 
Á Á 

ˆ 

¯ 
˜ ˜ ¥ cijki

+1
È 

Î 
Í 
Í 

˘ 

˚ 
˙ 
˙ i=1

m

’

where a '= a ¥ nm +1 n + di( )
i=1

m

’
(4)

Finally, we can take the logarithm of both sides of Equation 4 to obtain Equation 5. Each of the
logarithmic terms in the summation is non-negative since its argument is larger than or equal to 1.

† 

log Pj( ) = log cijki
¥

n
n j

Ê 

Ë 
Á Á 

ˆ 

¯ 
˜ ˜ +1

È 

Î 
Í 
Í 

˘ 

˚ 
˙ 
˙ i=1

m

Â + log n j( ) - log a '( )  (5)
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We will use the Proteome Analyst explanation graph shown in Figure 3 as an example. The query
instance contained the nine features: atp-binding, ipr001454, transmembrane, inner membrane,
phosphorylation, magnesium, potassium transport, ipr001757 and hydrolase. Similar to a classification
graph, each of the eight labels is represented by a horizontal bar.

Figure 3: An Explanation Graph With Feature Sub-bars to Support Capability-1

However, there are two major differences between the Capability-0 classification graph (Figure 2) and
the Capability-1 explanation graph (Figure 3). First, the explanation graph has bars with lengths
proportional to the logarithms of probabilities of the labels. How can we use these lengths to compare
probabilities in order to maintain Capability-0?

We begin by defining the total gain of label Lj over label Lh as a measure of the preference of a
prediction for one label over another, as shown in Equation 6.

† 

G jh
T = log Pj( ) - log Ph( ) (6)

We can use the total gain to compute the ratio of probabilities of the two labels as shown in Equation 7.

† 

Pj

Ph

= 2
log

Pj

Ph

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

= 2log Pj( )- log Ph( ) = 2G jh
T

(7)

For example, in Figure 3, the longest bar is for the favorite label (largest probability), Transport and
binding proteins (TBP) with length approximately 45. The second longest bar is for the contender label
(second largest probability), Cellular processes (CP) with length approximately 43. Applying Equation 7
yields Equation 8.

† 

PTBP

PCP

ª 2log 45( )- log 43( ) = 22 = 4 (8)

In fact, the predicted probabilities are 0.774 and 0.188, which have a probability ratio of 4.14. Since the
scale is logarithmic, small differences in the logarithms of probabilities translate into large ratios of
probabilities. Nevertheless, Capability-0 is satisfied.
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To show Capability-1 compliance, we first decompose each bar in into sub-bars called: feature sub-
bars, residual sub-bars and prior sub-bars, corresponding to terms from Equation 5 that are called feature
terms, residual terms and prior terms respectively.

3.1 Feature terms
From Equation 5, we can see that each feature Fi contributes to the probability that the query sequence has
label Lj by an amount we call a feature term defined by Equation 9.

† 

Fij = log cijki
¥

n
n j

Ê 

Ë 
Á Á 

ˆ 

¯ 
˜ ˜ +1

È 

Î 
Í 
Í 

˘ 

˚ 
˙ 
˙ 

(9)

To represent this information value in an explanation graph, we display a feature sub-bar. The feature sub-
bar for label Lj has length proportional to the feature term, Fij. For this paper, we have annotated some of
the sub-bars in Figure 3 with symbols (a) to (m). For example, from Figure 3, the feature sub-bar (f) of
inner membrane for label TBP has length 8.1. To use this length in a meaningful way, we must compare it
to the length of another sub-bar in the graph.

We define the feature gain of a feature Fi relative to the labels Lj and Lh as a measure of how much this
feature contributes to the probability of one label over the other, as given by Equation 10.

† 

Gijh
F = Fij - Fih (10)

A positive feature gain gives positive evidence for the first label over the second. Otherwise it gives
negative evidence. For example, in Figure 3, the feature gain of inner membrane for label TBP over label
CP is the difference in lengths of the two sub-bars, (f) and (j). This gain of 8.1 - 5.4 = 2.7 is significant
since the difference in total lengths of the TBP bar and the CP bar is only 2.

Since the number of features can be large, we display sub-bars for only a subset of features called the
focus features. Features whose sub-bars are not explicitly displayed are called non-focus features. For
example, Figure 3 has five focus features: potassium transport, ipr001757, ipr001454, inner membrane
and magnesium. All other 1254 features are non-focus features. In Section 3.4, we describe how the default
focus features are selected, and present a mechanism for the user to change the focus features.

In general, not every focus feature will provide positive evidence for the predicted label over all other
labels. For example, from Figure 3, the feature gain of ipr001757 relative to the labels TBP (sub-bar e) and
CP (sub-bar i) is 4.2 - 5.2 = -1.0. Therefore, this feature gives negative evidence for the predicted label.
Ultimately, the gain of any single feature is not important, only the total gain.

3.2 Residual Term
The focus feature sub-bars represent only a few of the feature terms shown in Equation 9. The non-focus
feature terms are combined into a residual term defined by Equation 11.

† 

R j = Fij
iœ focusfeatures{ }

Â (11)

A residual sub-bar is added to the graph with length proportional to the residual term. However, in the PA
example (and any other application with a large number of features), the number of features in the residual
is usually much larger than the number of focus features. Therefore, even though the size of each individual
feature included in the residual sub-bar is small, the total size of the residual sub-bar would often dwarf the
size of the focus feature sub-bars. To allow the user to clearly see the relative contributions of the focus
features, we subtract the length of the shortest residual term from all the residual terms to obtain the
reduced residual term defined in Equation 12.
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† 

ˆ R j = R j - min
h=1..q

Rh{ } (12)

Since only the difference of the bars is used to compute the ratio of probabilities, this effectively zooms
in on the focus features. For example, in Figure 3, the length of the residual sub-bar (a) for the first label
Other categories (OC), is zero, since its residual term is the smallest and this term was subtracted from all
the residual terms.

To compare residual terms across labels, we define the residual gain relative to the labels Lj and Lh by
Equation 13.

 

† 

G jh
R = R j - Rh = ˆ R j - ˆ R h (13)

For example, in Figure 3, the length of the residual sub-bar (h) for label TBP has approximate size 16.5.
All other labels have smaller residual sub-bars, except for the label Central intermediary metabolism (CIM)
with length 17.5 (sub-bar c) and the label CP with length 18 (sub-bar l). Even though CIM has a longer
residual sub-bar, this small negative residual gain (-1.0) is more than compensated by the positive focus
feature gains for potassium transport (gain 5 - 0 = 5) and inner membrane (gain 8.1 - 0 = 8.1). Similarly,
these two features have positive focus feature gains of 5 – 0 = 5 and 8.1 – 5.4 = 2.7 for TBP over CP. In
other words, the graph provides a simple explanation of why the negative residual gains do not translate to
negative total gains in these two cases.

3.3 Prior Term, Sub-bar and Gain
Equation 5 also contains a term that is computed directly from the number of training instances with each
label, as shown in Equation 14.

† 

N j = log n j( ) (14)

This term is called the prior term, since it is independent of the values of the features. Each horizontal
label bar has a sub-bar called the prior sub-bar, whose length is proportional to this prior term. To further
enhance the visibility of the focus feature sub-bars, we define the reduced prior term by subtracting the
smallest prior term from each of the prior terms, as given by Equation 15.

† 

ˆ N j = N j - min
h=1..q

N h{ } (15)

Recall that this does not change the ratio of the values associated with the different labels. For
example, in Figure 3, the prior term for the label OC was the shortest and was subtracted. In this example,
both the prior term and residual term were the smallest for the OC label. This is a coincidence. In general
the smallest prior term and the smallest residual term will occur for different labels.

Since the differences in sub-bar lengths are used to compare probabilities, we define the prior gain
relative to the labels Lj and Lh by Equation 16.

† 

G jh
N = N j - N h = ˆ N j - ˆ N h (16)

The prior gain accounts for the different number of training instances associated with each label. For
example, in Figure 3, the prior gain for label TBP (sub-bar g) relative to label CP (sub-bar k) is
approximately 2.7 - 3.0 = -0.3 so Equation 17 gives the ratio of the number of training sequences with
each label.

† 

nTBP

nCP

ª 22.7-3.0 = 2-0.3 ª 0.812 (17)
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In fact, the actual ratio of training sequences was: 291/357 = 0.815. Since the final term in Equation 5,
log(a’), is the same for all labels, this term can be ignored in gain calculations, so it is not shown in the
explanation graph.

We have now shown that the explanation graph of Figure 3 has Capability-1. That is, we can compute
the sizes of all information display objects (sub-bars) from the information values and vice-versa.
Specifically, given the definitions for feature terms, reduced residual terms and reduced prior terms from
Equation 9, Equation 12 and Equation 15, the lengths of the sub-bars of the horizontal bar in the
explanation graph for label Lj are given by the terms in Equation 18.

† 

log Pj( ) = Fij + ˆ R j + ˆ N j
iŒ focusfeatures{ }

Â (18)

The ratio of the probabilities of any two labels Lj and Lh can be computed using Equation 7, where the
total gain (bar length) can be decomposed into the focus feature gains, the residual gain and the prior gain,
using the definitions from Equation 10, Equation 13 and Equation 16, as shown in Equation 19.

† 

G jh
T = Gijh

F + G jh
R + G jh

N

iŒ focusfeatures{ }
Â (19)

The individual focus feature gain terms (sub-bar length differences) can be used to compute ratios of
probabilities from individual focus features. That is, if only one feature term in Equation 5 varies between
two label probabilities, then we can use Equation 7 and Equation 19 to compute the ratio of probabilities
for this contributing feature. For example, in Section 3.1, we used Figure 3 to compute the feature gain of
ipr001757 relative to the labels TBP (sub-bar e) and CP (sub-bar i) as 4.2 - 5.2 = -1.0. The negative
contribution of this feature to the ratio of probabilities is computed in Equation 20.

† 

PTBP

PCP

= 2G TBP( ) CP( )
T

= 2G TBP( ) CP( ) ipr 001757( )
F

ª 2-1.0 = 0.50 (20)

Similarly, the reduced residual gain (sub-bar length difference) can be used to compute the ratio of
probabilities contributed by the set of non-focus (residual) features. Finally, the reduced prior gain (sub-bar
length difference) can be used to compute the ratio of training instances with two different labels.

3.4 Default Focus Features
In this sub-section, we describe how the five default focus features were selected. We first define the
cumulative feature gain of a feature Fi for the label Lj relative to all labels by Equation 21.

† 

Gij
F = Gijh

F

h=1

q

Â (21)

The cumulative feature gain is a measure of the amount that a feature contributes to the prediction of a
particular label, compared to its contribution to all other labels. For example, from Figure 3, the
cumulative feature gain of the inner membrane feature for label TBP is computed in Equation 22.

 
  

† 

G innermembrane( ) TBP( )
F = 8.1- 7.4( ) + 8.1- 0( ) +K+ 8.1- 5.2( ) = 63.8 (22)

The default focus features are the ones with the largest cumulative feature gain for the highest
probability label. However, a good explanation system should provide a mechanism for changing focus
features such as the one that will be described in Section 5.
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Note that even though some tokens are present in the query instance and some are absent, there is a
feature term defined by Equation 9 for all tokens. However, in the PA example, the total number of
different features is high (1259 different features in 2534 training instances) and the number of tokens that
occur in any training or query instance is low, ranging from 1 to 21 with an average of 6.2 and a standard
deviation of only 2.76.  In applications with similar characteristics, the presence of a token becomes much
more important than its absence. This is because the cumulative gain of most features whose tokens do not
appear in the query instance is small. Therefore the default focus feature set almost always consists of
features that are present in the query instance. We have focused on tokens that are present in the query
instance, since this case matches our application profile. However, our approach deals with features in
general and works just as well when absent tokens are important.

4. Capability-2:  Feature Decomposition
When the evidence supports more than one class, how is the evidence weighed to obtain the final
classification? The explanation graph of Figure 3 is quite useful for explaining predictions, but it does not
support Capability-2. For example, Figure 3 explains that the presence of token magnesium (mag) in the
query instance contributes a length of 7.2 to the Energy Metabolism (EM) label bar (sub-bar b) and 8.2 to
the Fatty acid and phospholipids metabolism (FA) bar (sub-bar m). In Section 3.3, we even showed how
such a feature gain can be used to compute the contribution of a feature to the relative probabilities of the
labels. However, feature gain alone does not explain the direct relationship between the sub-bar lengths and
the individual counts in the training set, 

† 

cijki
. This means that we must be careful in explaining why the

length of the magnesium feature sub-bar equals 7.2 for label EM and equals 8.2 for label FA. In general,
from Equation 9, we know that the size of a feature bar depends on the counts, 

† 

cijki
. Given these sub-bar

lengths, we might assume that, of the training instances that contained the token magnesium, there were
more labeled FA than labeled EM. However, this explanation would be wrong!

From Equation 9, all we can compute using Capability-1 are quantities like the ones in Equation 23.

† 

cijki
= 2Fij -1( ) ¥

n
n j

Ê 

Ë 
Á Á 

ˆ 

¯ 
˜ ˜ fi

c mag( ) EM( )1 = 2F mag( ) EM( ) -1( ) ¥
n

n EM( )

Ê 

Ë 
Á Á 

ˆ 

¯ 
˜ ˜ ª 27.2 -1( ) ¥

n
n EM( )

Ê 

Ë 
Á Á 

ˆ 

¯ 
˜ ˜ ª146.0 ¥

n
n EM( )

Ê 

Ë 
Á Á 

ˆ 

¯ 
˜ ˜ 

c mag( ) FA( )1 = 2F mag( ) FA( ) -1( ) ¥
n

n FA( )

Ê 

Ë 
Á Á 

ˆ 

¯ 
˜ ˜ ª 28.2 -1( ) ¥

n
n FA( )

Ê 

Ë 
Á Á 

ˆ 

¯ 
˜ ˜ ª 293.1¥

n
n FA( )

Ê 

Ë 
Á Á 

ˆ 

¯ 
˜ ˜ 

(23)

Given the values for n, n(EM) and n(FA) , we can compute the counts, and it turns out that c(mag)(EM)1 is 13 and
c(mag)(FA)1 is 7. Of course this is due to the fact that the (n/nj) factors of the 

† 

cijki
terms are quite different. It

would be advantageous to be able to determine directly from the graph that the count for label EM is
actually about twice as big as the count for FA, which is a requirement for Capability-2.

To directly support Capability-2, we can decompose each non-zero feature term of Equation 9 into the
two sub-terms shown in Equation 24.

 

† 

Fij = log cijki
¥

n
n j

Ê 

Ë 
Á Á 

ˆ 

¯ 
˜ ˜ +1

È 

Î 
Í 
Í 

˘ 

˚ 
˙ 
˙ 

= log cijki
+

n j

n
Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

È 

Î 
Í 

˘ 

˚ 
˙ + log n

n j

È 

Î 
Í 

˘ 

˚ 
˙ (24)

We define the first sub-term of Equation 24 as the feature count sub-term defined by Equation 25.
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† 

Fij
C = log cijki

+
n j

n
Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

È 

Î 
Í 

˘ 

˚ 
˙ ª log cijki( ) (25)

We define the second sub-term of Equation 24 as the feature prior sub-term as given by Equation 26.

† 

Fij
N = log n

n j

Ê 

Ë 
Á Á 

ˆ 

¯ 
˜ ˜ (26)

The feature count component represents the number of training instances with a label that contained the
feature. The feature prior term reflects the relative importance of training instances with a specific label. For
example, if there is only one training instance with a specific label, then the existence of a token in that
training instance is more important than the existence of that token in one of several training instances that
share a different label.

Note that we only perform the decomposition shown in Equation 24 if the feature term is non-zero.
This occurs only when 

† 

cijki
is non-zero, so both sub-terms are positive. The approximation in Equation 25

is useful for approximating the 

† 

cijki
values from the sub-bars in the graph. The worst approximation occurs

when n = 2, nj = 1 and 

† 

cijki
= 1. We give an example of using this approximation later.

We can represent each feature sub-term by dividing each feature sub-bar in the explanation graph into
two sub-components. We modify the Capability-1 explanation graph of Figure 3 by explicitly showing the
two sub-components of each feature sub-bar. We obtain the new Capability-2 explanation graph shown in
Figure 4. The feature prior sub-component of a feature sub-bar is colored by the feature color and the
feature count sub-component appears to its right, colored in a darker version of the same color. The user
can now explicitly see how the contribution of a feature varies over bars that represent different labels.

Figure 4 An Explanation Graph With Explicit Prior and Count Components to Support Capability-2

For example, we can now explain the different lengths of the magnesium feature sub-bars for the label
EM and the label FA that are shown in Figure 3. In Figure 4, the feature count terms of the magnesium
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feature are represented by darker sub-bars whose length is 2.8 for the label FA and 3.7 for the label RF. We
can use these sub-bar lengths and Equation 25 to approximate the number of labeled training instances that
contain this feature, as computed in Equation 27.

† 

F mag( ) FA( )
C ª log c mag( ) FA( )1( ) ª 2.8 fi c mag( ) FA( )1 ª 7

F mag( ) EM( )
C ª log c mag( ) EM( )1( ) ª 3.7 fi c mag( ) EM( )1 ª13

(27)

Although Equation 27 shows that the magnesium feature count sub-term is larger for label EM than for
label FA, the total contribution due to the magnesium feature is the opposite for these two labels. The
difference is isolated to the feature prior sub-terms defined in Equation 26, as shown in Equation 28.

† 
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N = log n

n FA( )

Ê 

Ë 
Á Á 

ˆ 
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˜ ˜ ª 5.4 fi

n
n FA( )
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N = log n

n EM( )

Ê 

Ë 
Á Á 

ˆ 

¯ 
˜ ˜ ª 3.5 fi

n
n EM( )

ª11.3

(28)

The ratio of the values 11.3/42.2 = 0.27 is the ratio of the number of training sequences (nEM) to (nFA).
In other words, the feature prior sub-bar for the label FA is longer than the sub-bar for the label EM,
because the number of training sequences with the label EM is only about 27% of the number of training
instances with the label FA. Therefore, the existence of a token in one of the training instances with the
label EM is more significant. Although we looked at the feature prior term for the feature magnesium,
Equation 26 – Equation 28 are independent of features (Fi). Therefore, all non-zero feature prior terms are
the same for a fixed label (Lj).

The decomposition of a feature sub-bar, into feature prior and feature count sub-components, allows the
user to easily see the effects of both the different number of total training sequences with each label and the
different number of training sequences with each label that have a specific feature. The existence of even a
single training instance with a specific label that contains a token contributes the feature prior (light
colored) contribution to the graph. In many applications, this contribution is larger than the (dark colored)
contribution of all subsequent training instances with that label that contain the same feature. For example,
in Figure 4, there are 24 non-zero feature sub-bars. Of these 24, only 5 cases have larger feature count sub-
components (dark colored sub-bars) than feature prior sub-components (light colored sub-bars)

In summary, Capability-2 allows us to directly compare the lengths of display objects (sub-bar
components) to determine the relationship between feature counts, 

† 

cijki
 in training instances with different

labels, and to determine the prior probabilities from the lengths.

5. Selecting Focus Features
A user may have a preconceived notion that the contributions of a particular feature to a classification
decision are very important. If this feature is not included in the default focus feature set, it may be
necessary to change the focus feature set to convince the user, either that the feature provides positive
evidence for the classifier’s prediction or that, even though the feature provides negative evidence, the
positive evidence contributed by other features more than compensates for the negative evidence provided
by this particular feature. Therefore, an explanation facility requires a mechanism to change the focus
feature set by replacing any features in the focus feature set by any other non-focus features.

Sometimes, the user does not have a particular non-focus feature in mind, but would like to look at the
contributions of those non-focus features that have the largest chance of affecting the classification.
Therefore, the mechanism that changes the focus feature set should not only support the ability to replace
any focus feature by any non-focus feature, but should also provide some kind of ranking that indicates
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which non-focus features have the largest chance of affecting a classification. This mechanism will allow a
user to gain confidence in the classification, by exploring the most important features.

The information content (or information gain) of a feature is a measure of the amount it contributes to
classifications in general (Cover & Thomas 1991). Figure 5 shows a mechanism for replacing focus-
features by non-focus features that highlights features with high information content. Features in the top
95th, 85th, 70th and 50th percentiles are highlighted in different shades. The figure is clipped so that most of
the features are not shown. The check-marks denote the 5 current focus features.

Figure 5 Selecting focus features

Since three of the non-focus features, atp-binding, hydrolase and transmembrane are in the top 95th

percentile of information content, they have the highest probability of affecting classification results over
the entire range of potential query instances. However, none of the current focus features are in this top 95th

percentile. This is not a contradiction, since no particular query instance is representative of the entire range
of potential query instances. This example shows that for any particular query instance, it is better to select
focus features based on feature gain, rather than information content, since they have the greatest impact on
the classification of that particular query instance.

To illustrate this point, Figure 6 shows part of an explanation graph for the same query instance, but
the five focus features have been changed to five of the features with the highest information content. The
tokens for three of these features are present in the query instance: atp-binding, hydrolase and
transmembrane and the other two are absent: activator and acyltransferase.

Figure 6 An explanation graph showing high information content features that have low feature-gain
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The total gain does not change between the favorite label TBP and any other label. However, the
quality of the explanation for the difference has been degraded. First, notice that the feature gain of the two
absent tokens (activator and acyltransferase) in the favorite label relative to all other labels is almost zero
(the feature sub-bars for these two features are the same size in all bars). This is an illustration of the lack
of utility of absent features in this class of applications.

Second, notice that the feature gain of the features atp-binding and hydrolase are negative for the
favorite label (TBP) relative to the contender label (CP). If the user’s intuition was highly influenced by
these two features, it would be very important to view these features so that the user can see that although
these two features favor the label CP, they do not favor it enough to compensate for the other features like
transmembrane (the other new focus feature), and the previous focus features: inner membrane, ipr001454,
ipr001757, and potassium transport (the previous focus features), which all favor the label TBP. Given the
focus features of Figure 6, the important features are buried in the residual bar, which is now much longer
for label TBP than label CP.

To provide extra help in selecting features to display in the explanation graph, it is helpful to provide
another view of features in which feature gains are clearly displayed between two labels. Usually, one of the
labels is the favorite label and the other label can be any other label. These features can be ordered by
feature gain. A pair of bars represents the feature term for each label and the difference in bar length
represents the feature gain. Such a graph is called a feature gain graph.

For example, Figure 7 shows part of a feature gain graph for the favorite label TBP and the contender
label, CP. In Proteome Analyst, a feature gain graph contains all of the features whose feature gain is larger
than 0.2 or smaller than –0.2 to highlight the features that discriminate well between the two labels.
However, to save space in this paper, the center part of the figure has been clipped out, so only 6 (out of
20) features are shown. The (P) or (A) label on each feature name indicates whether the associated token is
present or absent in the query instance. The feature gain graph can be used to determine which features
should be added and removed from the main explanation graph.

Figure 7 Comparing features between the favorite label and other labels



15

6. Capability-3: Feature Context
What is the source of the basic evidence and how does that evidence relate to the specific training set used
to build the classifier? Sometimes, the user may have strong (counter) intuition about contributions of a
feature to the prediction probabilities of the labels provided by the classifier, as described in Section 5. In
this case, it is useful to allow the user to inspect all of the training data related to that feature. In general,
this means all of the training instances, since the absence or presence of a token in a training set can be
equally important. However, for the class of applications where presence dominates absence (like PA), it is
useful to display all training instances that contain a token, sorted by the instance labels. In general, this
allows the user to see the feature in the context of other features that were present or absent and this may
help to convince the user of the correctness of the evidence. In some applications, the feature values may be
derived from more basic data. If this is the case, the user should also be able to go back to the basic data
that was used to derive the feature values for each training instance; see Section 7.

 The NB assumption states that the value of a feature in a training instance is independent of the other
feature values. However, in practice, the user often wants to check the context. In some applications, the
context can be even wider than the other feature values. In these cases, an explanation mechanism should
provide a trace of the computation of feature values from raw training instances, to allow the user to
investigate the relationship between the raw training data, the feature values and the predicted labels. The
trace part of this capability is very application-dependent. The user can either be convinced by seeing the
training data, or become suspicious of the training data itself. In either case, the explanation facility has
accomplished its goal of providing transparency.

Figure 8 shows part of the explanation facility for displaying training instances from PA. It could be
displayed in response to a user whose intuition is that the feature inner membrane should provide stronger
evidence for the label CP than for the label TBP.

Figure 8 Explain using training instances
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First, there were 32 training instances with the token inner membrane that were labeled TBP compared
to only 6 that were labeled CP. The web page actually shows all training instances that included the feature
inner membrane (sorted by label) but we clipped the figure.

Second, the training instances are listed and can be examined in the context of the other features in that
training instance. For example, of the 6 training instances labeled CP, 5 also contain the token protein
transport. On the other hand, only 1 of the 32 training instances labeled TBP also contained the token
protein transport.

7. Capability-4: Data Trace
What are the application-specific computational techniques that were used to transform basic data to
features? In some applications, the feature values may be derived from more basic data. In this case, the
user should be able to view the basic data that was used to derive the feature values for each training
instance. The explanation facility should provide a trace of the computation of feature values from raw
training instances, to allow the user to investigate the relationship between the raw training data, the feature
values and the predicted labels. The trace part of this capability is very application-dependent.

For example, in the PA application, each training and query instance is a DNA or protein sequence
(string of letters). A similarity search is done against a sequence database to find the three best matches,
called sequence homologs. A set of features is extracted from the database entries of each homolog of the
query sequence and the union of these three sets of features forms the feature set of the training or query
instance, as shown in Figure 8. Each feature set is independent evidence of the impact of the feature on a
training instance. In addition, there is raw data available in this application. Each feature set is a web link
that connects to the genetic sequence homolog of the query instance and contains a vast amount of
information about the homolog that a user can use to establish confidence in the computed feature set.

It is not always possible to convince a user that a classification prediction is accurate, even with this
extra data. However, it is not always desirable to convince the user that the classification is correct.
Sometimes, the outcome of using an explanation facility is that the user identifies suspicious labeling of
training data. For example, while using the PA explanation facility to explain the classification of an
E.coli sequence, one of our colleagues discovered that three of the Yeast training instances were incorrectly
labeled.

8. Conclusion
We have provided a framework for explanation systems, in the context of NB classifiers (for protein
function prediction), and in particular, articulated 5 different capabilities that can answer five important
questions. In doing this research, we discovered the following five points:

1) The relative contributions of individual features can be displayed in an intuitive manner by
using an additive graphical mechanism, based on logarithms (Capability-1).

2) To explain the classification of a particular instance, our approach zooms in to show the
contributions of a few focus features. These features should be selected on a per-query basis, to
maximize discrimination of the feature between the favorite label and other labels, instead of
being based on high information content.

3) Since a user may think that non-focus features are important in a particular classification, we
provide a mechanism to change focus features and to help the user select focus feature
candidates.

4) The contribution of a feature in a label bar depends not only on training instance counts that
exhibited the feature, but also on the relative sizes of the training sets with each label. To fully
understand the relative contributions of a feature to different labels, it is necessary to
decompose a feature into two components (Capability-2).

5) To convince some users, it is helpful to show the context of features in the original training
data (Capability-3) and an application-dependent trace from raw data to features (Capability-4).
Sometimes this can help identify suspicious training instances
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Admittedly, there is more work to be done towards sound, simple and intuitive classifier explanations.
However, this work lays the analytical foundation for explaining Naïve Bayes classifications. It presents a
prototype system that uses bar graphs and an interactive user interface to present complex explanations in a
simplified manner. As future work, we think that an explanation mechanism would benefit from a what-if
capability. As one example, the user may feel that the query instance should have an extra token present or
that one of the present tokens should be absent. It should be possible for the user to ask how the addition
or removal of a token from the query instance would affect the classification, by viewing explanation
graphs that take these hypothetical changes into account. As a second example, the user should be able to
ask how the classification would be different if some of the training instances were removed, or if some
specific new training instances were added, or if some training instances had their token sets changed in a
particular way. The explanation technique would also be enhanced if it could explain why some results
were not returned.

While this paper has focused on a specific representation (Naïve Bayes) for a specific application
(Proteome Analyst), the basic ideas presented are much more general.  In particular, the first 3 capabilities
(0-2) are completely representation, domain and application independent.  For example, Capability-2 can be
used whenever we can go from data samples to sufficient statistics (Ripley 1996) (such as cijk) to classifier;
as such, there are definite analogues in general belief networks (Pearl 1988), and may well be analogues
related to decision trees (Mitchell 1997), SVMs and other species of classifiers.
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