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Abstract

Confinement is known to suppress order in condensed matter. This is well

exemplified in phase transitions such as freezing, as well as the superfluid

transition in liquid helium, which occur at lower temperatures in confinement

than in the bulk. We provide in this thesis a demonstration of a physical

setting in which the reverse takes place. Particularly, the enhancement of

the superfluid response of parahydrogen confined to nanoscale size cavities

is illustrated by means of first principle computer simulations. Prospects to

stabilize and observe the long investigated but yet elusory bulk superfluid

phase of parahydrogen in objectively designed porous media are discussed.
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Chapter 1

INTRODUCTION

Superfluidity is the property of a substance capable of sustaining non-

dissipative flow. It can occur in any of the three phases of aggregation of

matter, including the solid, but is most easily observed and intuitively under-

stood in a liquid. A superfluid liquid can remain in a state of persistent flow

through a pipe, even in the absence of any pressure gradient, and several other

manifestations of superfluid behavior, including rather spectacular ones such

as the fountain effect, can be observed in any modern low temperature physics

laboratory [1].

Helium is the only known naturally occurring substance that displays a

superfluid phase. Under the pressure of its own vapour, helium condenses

into a liquid at a temperature of 4.2 K [2]. It was simultaneously discovered

by Kapitza [3], and Allen and Misener [4], that the liquid phase of its most

abundant isotope (4He) undergoes a second order transition to a superfluid

phase at a temperature Tλ = 2.17 K. The less abundant isotope, 3He, also

turns superfluid, but at a much lower temperature, of the order of a few

mK. A useful phenomenological model introduced by Tisza [5], which we shall
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henceforth utilize, regards a superfluid under the transition temperature as

a mixture of two fluids, a normal one, carrying entropy and subjected to

dissipation like any ordinary fluid, and a superfluid component, capable of

flowing without dissipation and not carrying any entropy. The fraction of the

system in the superfluid phase is ρS, which is zero above Tλ and approaches

unity as the temperature T → 0, in a system featuring translational invariance

(such as a liquid). Obviously, the normal fraction ρN = 1 − ρS.

Superfluidity is possibly the most interesting manifestation of quantum

mechanics on a macroscopic scale. Decades of experimental and theoretical

investigation have afforded considerable insight into the microscopic origin

of superfluidity. In particular, it is now widely accepted [6] that, at least

in three dimensions, superfluidity is intimately connected to a phenomenon

called Bose-Einstein Condensation (BEC), which occurs in assemblies of in-

distinguishable particles of integer spin (Bosons). BEC consists of the occupa-

tion at low temperature of the same single-particle quantum-mechanical state

by a macrosopic fraction of particles in the system. This explains, among

other things, the difference in superfluid transition temperature between the

two isotopes of helium, which arises from the fact that 3He atoms have spin

1/2, and obey therefore Fermi statistics, i.e., they cannot undergo BEC by

themselves. Thus, superfluidity in 3He occurs through the formation of bound

pairs of particles of opposite spin projections; such composite objects have

spin zero, and can therefore act in some sense like bosons, undergoing BEC

at a temperature of the order of the binding energy of the two mates of a

pair. Indeed, such pairing mechanism is believed to underlie superfluidity in

all Fermi systems, including electronic ones such as superconductors, which

are themselves nothing but charged superfluids [1].
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Significant progress toward the definitive understanding of superfluidity

has been afforded by first principle computer simulations, based on the Path

Integral formulation of quantum mechanics due to Feynman [7]. In particular,

the Path Integral Monte Carlo method has proven instrumental in elucidating

the subtle relationship between superfluidity and BEC [8], by showing unam-

biguously that superfluid 4He is indeed a Bose-Einstein condensate, and that

the superfluid response is underlain by cycles of exchange of indistinguishable

particles (helium atoms) comprising a macroscopic fraction of all particles in

the system (the same effect at the root of BEC).

Although in a sense one could argue that superfluidity is rather common,

given the large number of elements that turn superconducting at low tem-

perature, no other naturally occurring simple atomic or molecular substance

has yet been found, other than 4He, whose elementary constituents are Bose

particles, that displays a superfluid phase. In the almost totality of other

atomic or molecular systems, superfluidity is hindered by the large mass of

the particles, as well as by the strong interactions among them, which causes

the systems to crystallize at relatively high temperature, well above that at

which BEC might take place. And, while as mentioned above there is nothing

intrinsic preventing a solid from turning superfluid, it presently appears as if

no naturally occurring superfluid solid exists [9].

An interesting, in many respects, “borderline” case is that of molecular hy-

drogen, specifically what is normally referred to as parahydrogen (p-H2), which

among naturally occurring substances is the closest possible candidate to fea-

ture superfluid character. Its elementary constituents are hydrogen diatomic

molecules of spin zero (thus obeying Bose statistics) and of mass about one

half that of a helium atom. The suggestion was first made in 1972 that a
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fluid of p-H2 molecules may undergo a superfluid transition at a temperature

around 6 K [10]. However, the observation of this hypothetical superfluid has

so far been made impossible by the fact that, unlike helium, p-H2 solidifies at a

temperature of 13.8 K, under the pressure of its own vapor. This results from

the depth of the attractive well of the interaction between two p-H2 molecules,

about three times greater than that between two helium atoms, imparting to

the system a strong propensity to crystallize, even in reduced dimensions [11].

The question thus naturally arises if one could suppress freezing, e.g., by

supercooling the liquid phase, down to temperatures sufficiently low to allow

the observation of superfluid transition. Reduction of dimensionality seems

one possible avenue, as the freezing temperature of a substance is brought

down by the lower coordination number; for example, the melting temperature

of p-H2 in two dimensions (2d) is almost half [12] of that in three dimensions

(3d). However, theoretical studies of p-H2 films adsorbed on diverse substrates

[13, 14, 15] have not yielded any hint of possible superfluidity. A prediction

that a finite superfluid response may arise in a (quasi) two dimensional film

of p-H2 intercalated within a crystalline grid of alkali metal atoms, originally

made by Gordillo and Ceperley [16], has been disproven by successive, more

accurate calculations [17].

One is then led to considering confinement as another avenue to stabi-

lize a liquid phase of p-H2 at low temperature [18, 19]; indeed, it is known

experimentally that the freezing temperature of a fluid can be significantly

lowered from its bulk value by confining it in a porous medium such as vycor

glass [20, 21], which can be thought of as a random grid of interconnected

cavities of average size ∼4 nm [22]. Notwithstanding, efforts to supercool liq-

uid hydrogen by embedding it in a vycor matrix did not yield any evidence
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of superfluid behaviour [23, 24]. Indeed, neutron scattering studies of p-H2

in vycor glass at low temperature suggest that the system crystallizes in the

pores, although with a different crystal structure [25], which is attributable to

the pores’ non-regular geometry, as well as to the strong attraction exerted on

the p-H2 molecules by the pore surface, where the crystal phase nucleates. It

should also be mentioned that experimentally one observes the lowering of the

superfluid transition temperature of liquid helium confined in vycor [26], to in-

dicate that, while stabilizing the liquid phase, confinement has also the effect

of suppressing superfluidity, and in general any ordered phase in condensed

matter.

The questions remain open whether a different confining environment may

make it possible to stabilize a superfluid phase of p-H2, and how such a con-

fining medium would be different from vycor. A hint comes from quantitative

theoretical predictions that have been made [27, 28, 29] of superfluid behaviour

in small p-H2 clusters (thirty molecules or less), at temperatures of the order

of a fraction of a K, of which some experimental confirmation has been ob-

tained [30] (though not conclusively so [31]). The largest clusters that display

a significant superfluid response at temperature T ≃ 1 K, have a size of ap-

proximately 1.6 nm, and comprise N = 27 p-H2 molecules [32]; superfluidity

is suppressed in clusters of greater size, owing to the increasing predominance

of crystalline order which originates at the centre of the system. This suggests

that a porous medium with cavities around 2 nm in size may prove suitable;

such a medium ought to chose a weaker adsorbent than silica, so as to suppress

crystallization of p-H2 at the pore surface.

In order to investigate the above scenario and to gain insight in the effect

of confinement on the superfluid response of p-H2, we have carried out in
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this thesis first principle computer simulations of a microscopic model of p-

H2 in spherical confinements of diameter between 10 and 20 Å. We utilized

adsorption parameters that correspond to the interaction of p-H2 with a cesium

cavity substrate, as well as with a cavity surface in the ballpark of a silica

substrate (glass). Cesium is one of the most weakly adsorbing substrates

and it is known [33] that hydrogen fluid fails to wet it at low temperature,

whereas glass is much more attractive to hydrogen molecules. This difference

in adsorption between cesium and glass is clearly reflected in the observed

structure of the p-H2 molecules in the respective cavities. Generally, at the

equilibrium filling in the cesium cavity the hydrogen molecules are less localised

and both inter- and intra-shell quantum exchanges are enhanced as molecules

tend to stay close to each other, significantly away from the cavity surface

where crystallization occurs in stronger sorption media. For a cesium cavity

of diameter 20 Å, we observed that the superfluid response of parahydrogen is

greatly enhanced with respect to that which one would expect in a free cluster

with the same number of molecules. This is a strong indication that a possible

bulk superfluid phase of the parahydrogen might be observable in a suitably

tailored porous medium, with cavities of that size and adsorption strength.

On the other hand, in a much more adsorbing glass cavity molecules sit

more closely to the glass cavity surface, are highly localised and organize in

rigid, concentric shells. These factors combine to suppress quantum exchanges

and result in crystallization of the p-H2 molecules within a glass cavity.

In the remainder of this thesis, we describe in detail the study that we have

carried out and the main results. In the next section, we offer a description of

the miscroscopic model utilized, as well as of the computational methodology

that we have adopted.
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In Chapter 3 of this thesis, we present results of a study that is propaedeu-

tic to that of hydrogen in a cavity, and which we undertook before turning

our attention to the main problem of our interest. Specifically, the reliability

of a theoretical prediction on the behaviour of confined parahydrogen cru-

cially hinges on an accurate description of the interaction between hydrogen

molecules, over a wide range of pressures. This is because in confinement,

hydrogen molecules experience varying degrees of compaction throughout the

cavity, as the overall system is not homogeneous; thus, it is desirable to utilize

a pair potential capable of reproducing accurately the equation of state of p-H2

to high pressure. To this end, we considered a recently introduced pair poten-

tial, modified its repulsive core at short distance, and computed with it the

low temperature equation of state of solid parahydrogen. We found excellent

agreement of the experimentally measured equation of state for this system,

up to megabar pressure.

The results of our simulations of p-H2 in confinement as well as our ob-

servation of the enhancement of the superfluid response of these clusters in

cesium cavity are detailed in Chapter 4. This thesis concludes with a discus-

sion of the promising implications of our study for the realization of a stable

bulk superfluid phase of p-H2 in purposefully designed porous media.
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Chapter 2

PHYSICAL MODEL AND

RESEARCH METHODOLOGY

In this chapter, we present details of the physical model and computa-

tional approach adopted in our study of the superfluidity of para-hydrogen in

nanoscale confinement.

2.A The Many-body Hamiltonian

Our system of interest consists of N p-H2 molecules, represented as point

particles of spin zero, enclosed in a spherical cavity of radius R, and is described

by the following quantum-mechanical many-body Hamiltonian:

Ĥ = −λ
∑

i

∇2
i +

∑

i<j

v(rij) +
∑

i

V (ri). (2.1)

Here, the ri are positions of all p-H2 molecules, measured with respect to

the centre of the cavity (made the origin), rij ≡ |ri − rj| is the distance
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between two p-H2 molecules; λ= ~
2

2m
=12.031 KÅ2, m being the mass of a p-H2

molecule; v describes the interaction between any pair of p-H2 molecules, while

V describes the interaction of a p-H2 molecule with the cavity. For v, which

we regard as spherically symmetric, we use a modification of the well-known

pair potential of Silvera and Goldman [34], which has been shown to afford an

accurate reproduction of the experimental equation of state of solid p-H2 up to

megabar pressure [35]. Such accuracy for the equation of state is crucial for an

inhomogeneous system like the one we are dealing with, as hydrogen molecules

at different parts of the cavity certainly experience varying pressures, which

could be very high close to the cavity surface; we discuss this in greater detail

in Chapter 3. For V , assumed to be a function of only the distance of a

molecule from the centre of the cavity, we take the following model potential

[36]:

V (r) = 2D

{

b9F (x)
(1 − x2)9

− 6b3

(1 − x2)3

}

, (2.2)

where x ≡ r/R, F (x) = 5 + 45x2 + 63x4 + 15x6, b ≡ (a/R), r is the distance

of a p-H2 molecule from the centre of the cavity, R is the fixed radius of the

cavity, and a, D are two parameters that are adjusted to reproduce, as closely

as allowed by such a relatively crude model, a specific particle-substrate in-

teraction. Eq. (2.2) is the generalization to the case of a spherical cavity

of the so called “3-9” potential, which describes the interaction of a particle

with an infinite, planar substrate [36]. It is derived by considering the cavity

enclosure as a uniform outward extension of the substrate, extending from the

surface of the spherical cavity (enclosing the p-H2 molecules) to infinity. An

infinitesimal element of volume of the medium is then considered to interact

with a molecule in the enclosed cavity via Lennard-Jones potential, also de-
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scribed in Chapter 3. The three dimensional integral of such interactions with

the particle (a p-H2 molecule) located at a position ri relative to the cavity’s

centre, results in V (ri) evaluated at ri = |ri| as presented in Eq. (2.2). The

parameter D in Eq. (2.2) has the dimensions of an energy, and is essentially

the depth of the attractive well of the potential experienced by the particle in

the neighbourhood of the substrate, whereas a is a characteristic length, cor-

responding approximately to the distance of closest approach to the substrate,

where the molecule begins to experience a strong repulsion.

It is worthwhile to clarify at this point that the model of the system that

we employ here does contain some simplifications, primarily the assumption

that the interaction between hydrogen molecules can be sufficiently accurately

represented by a spherically symmetric pair potential, as well as the fact that

a cavity is regarded as perfectly spherical and smooth. Even though one might

expect significant alterations to the interaction between two p-H2 molecules

inside a nanoscale cavity, the weakness of the substrate seems to justify the

continued use of a central pair potential as if the molecules interacted in vac-

uum. This is based on the expected minimum distance from the surface (over

3 Å) at which molecules will be sitting, as confirmed by our simulation re-

sults [37]. On the whole, regardless of its simplicity, such a model allows us

to address the physical question we are exploring in this thesis, which is the

effect of confinement on the superfluid response of p-H2. Actually, equivalent

or even simpler models (e.g., cavities with hard walls) have been adopted to

investigate structure of 4He and classical fluids in confinement [38, 39].

We have thus carried out a theoretical investigation of the low temperature

(T → 0) physical properties of the system described by Eqs. (2.1) and (2.2),

by means of first principle computer simulations. We specifically utilized the
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Worm Algorithm in the continuous space path integral representation. This

well-established computational methodology enables one to compute thermo-

dynamic properties of Bose systems at finite temperature, directly from the

microscopic Hamiltonian, and it gives direct access to the energetic, structural

and superfluid properties of the confined p-H2 fluid, in practice with no uncon-

trolled approximations. It is therefore a well suited computational approach

to address directly the physical issues of interest here.

2.B The Continuous-space Worm Algorithm

The Path Integral Monte Carlo (PIMC) technique is the most reliable com-

putational method for studying superfluidity and Bose-Einstein condensation,

as well as the connection between the two phenomena [40]. Our calculations

exclusively utilize Path Integral Monte Carlo (PIMC) simulations based on

the Continuous Space Worm Algorithm [41, 42]. The PIMC approach involves

implementing the Feynman’s Path Integral [43] formalism through a suitable

Monte Carlo strategy. The PIMC scheme is accurate and has no adjustable

parameter, taking the microscopic Hamiltonian as its only input. It also does

not have any inherent bias, since no a priori assumption, e.g., a trial wave

function, is needed. The methodology is numerically exact for Bose systems.

For Fermi systems, not considered in this work, it is only approximate.

2.B.1 Thermal Averages and Path Integration

The thermal average of a physical observable, for an N -particle system

described by Eq. (2.1) at temperature T , represented by an operator Ô, is

11



given by

〈Ô〉 =
Tr (Ôρ̂)

Tr ρ̂
=
∫

dR O(R)ρ(R, R, β)
∫

dR ρ(R, R, β)
(2.3)

where R ≡ r1 r2 . . . rN , i.e, the positions of all the N particles in the N -

particle configuration and β = 1/(kBT ). Henceforth, we shall set kB = 1. The

many-body density matrix, ρ(R, R, β), is given by

ρ(R, R, β) = 〈R|e−βĤ |R〉 (2.4)

with Ĥ being the quantum-mechanical many-body Hamiltonian of Eq. (2.1)

while the partition function is given by

Z =
∫

dR ρ(R, R, β) .

The many-body density matrix is not usually known and Eq. (2.3) is

evaluated through the path integration procedure prescribed by R. P. Feynman

in 1948. Accordingly, the partition function,

Z ∝
∫

DR(u) exp {−S[R(u)]} . (2.5)

The integration in Eq. (2.5) is performed over all possible continuous, β-

periodic N -particle configuration paths R(u).

S[R(u)] is the Euclidean action expressed as

S[R(u)] =
∫ β

0
du







N
∑

i=1

m

2~2

(

dri

du

)2

+ V(R(u))







, (2.6)

having defined u~ as the “imaginary time”. V =
∑

i<j v(rij)+
∑

i V (ri) as given
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in Eq. (2.1). The Euclidean action is related to path balance between kinetic

(path curvature) and potential energy, which depends on interactions, along

the various paths. Generally, smooth, straight paths have higher probability

while paths of high potential energy have lower probability.

2.B.2 Path Integral Monte Carlo and Quantum Statis-

tics

The evaluation of the many-body density matrix, Eq. (2.4), the parti-

tion function, (2.5), and the thermal average, (2.1), is most suitably achieved

through a well implemented Monte Carlo strategy. This involves employing the

Metropolis Algorithm [44] to sample many-particle paths R(u) through config-

uration space, based on a probability distribution proportional to exp[−S(R(u))].

Thermal expectation values, such as (2.1), are then calculated as statistical av-

erages of the physical observable of interest along paths.

In the continuum, the action integral must be discretized. This leads in-

evitably to a time-step error that can however be made arbitrarily small. The

discretization procedure is such that in place of the continuous many-particle

path R(u), one considers a discrete path R(u) ≡ {R0, R1, . . . , RM−1} for a

finite number of time slices M . The β-periodicity of the paths requires that

RM = PR0, where P denotes permutations of particle labels. Any choice of a

finite M defines a corresponding time step, τ , such that Mτ = β. The simplest

approximate action (due to path discretization) is given by

S[R(u)] ≈
N
∑

i

M−1
∑

l=0

m(ril − ril+1)2

2τ~2
+ τ

M−1
∑

l=0

V(Rl) . (2.7)
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(Indeed, were V = 0 (no interaction between particles), any discretized form

becomes exact as M → ∞). The probability with which a discrete path R(u)

is sampled is then given by

P ∝ exp {−S[R(u)]}

=
N
∏

i=1

M−1
∏

l=0

ρ◦(ril, ril+1, τ) ×
M−1
∏

l=0

e−U(Rl,τ) ,
(2.8)

where

ρ◦(r, r′, τ) =
(

2π~2τ/m
)−d/2

exp

[

−m(r − r′)2

2~2τ

]

(d is the dimensionality of the configuration space)

(2.9)

is the density matrix of a free particle, and in the simplest approximation, Eq.

(2.7),

U(R, τ) = τV(R) . (2.10)

U(R, τ) will change in other approximations of the action, S, so that the

discrete action becomes exact in the limit M → ∞.

Quantum statistics, i.e, particle indistinguishability, is effected in the above

formalism by allowing R(β=Mτ) = PR(0), the permutation P implying that,

while actual positions occupied by particles in R(β) and R(0) are the same,

particles are allowed to trade place. This is a crucial ingredient, in Bose

systems, to allow for the capturing of the physics of the system, such as su-

perfluidity and Bose-Einstein condensation, underlain by quantum exchanges

and particle indistinguishability [45].

Finally, the thermal expectation of a physical observable O, given by Eq.
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(2.3), is then evaluated as

〈Ô〉 ∼
∑

paths ηPO(Rpath)
∑

paths ηP
(2.11)

where P is the parity of the permutation associated with particle relabelling

(exchange), O(Rpath) is the average value of O along a path and η = +1 for

Bose , -1 for Fermi statistics.

The direct averaging over paths as expressed in Eq. (2.11) becomes ex-

ponentially intractable with increasing N for Fermi systems as the sum over

paths comprises “an alternating series of terms of opposite signs”, which very

nearly cancel each other out, as is well communicated in Ref. [46]. This results

in a very low “signal-to-noise” ratio, rendering the calculation not feasible in

practice at low temperature.

For Bose systems, on the other hand, η = +1, and therefore no such prob-

lem arises. Because in this work we are only concerned with Bose systems, we

shall make no further mention of the above difficulty, referred in the literature

as “sign problem of quantum Monte Carlo”.

2.B.3 Thermal Wavelength and Particle Permutations

Although in principle permutations of identical particles must be included,

one can come up with a simple physical criteria to determine their importance

in a given system at temperature T .

The characteristic “size” of a single particle path is measured by the ther-

mal wavelength

λT =
~√
mT
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world lines of individual particles in pairs and attempting to reconnect them

together to achieve exchange cycles, while remaining in the diagonal sector of

the configuration space. However, in the presence of any realistic interaction

potential, typically possessing a repulsive and hard core, any such sampling

of permutations is bound to have high likelihood of rejection and therefore

becomes inefficient. Rejection occurs because the constructed trial path will

almost always bring two particles within near vicinity of each other, i.e, the

trial configuration will have high potential energy. In practice, efforts required

to sample macroscopic permutation cycles scales exponentially with the sys-

tem size. This challenge limits the number of particles for which the low

temperature thermodynamics of a system can be effectively studied, making

accurate extrapolation of results to the thermodynamic limit highly problem-

atic, using the conventional PIMC implementation. The conventional PIMC

implementation also does not allow for the simultaneous evaluation of diagonal

and off-diagonal correlations, as its configuration space is locked in a canonical

ensemble.

2.B.5 Effective Permutation Sampling: The Worm Al-

gorithm

The Worm Algorithm completely resolves the issues mentioned above. A

fundamental feature of the continuous-space worm algorithm is that it func-

tions in an extended configurational space, including both closed world line

configurations, referred to as the Z-sector, as well as configurations having

one open world line (worm), known as the G-sector. A schematic view of the

G-sector of the configuration space of the worm algorithm is seen in Fig. (2.2)
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Green function reduces to the one-particle density matrix, n(r2, r1), from which

the momentum distribution is computed [50] directly in the continuous-space

Worm Algorithm.

The Worm Algorithm accurately calculates various thermodynamic quan-

tities of interest for large Bose systems in easily accessible computation time.

These quantities include the energetics, structure, superfluid density, conden-

sate fraction, one-body density matrix and momentum distribution. Another

elegant feature of the Worm Algorithm is that it can be implemented in ei-

ther a canonical or a grand-canonical ensemble (resulting from fluctuations of

particle number through annihilation and creation of worms).

In our current application of the Worm Algorithm, the Z-sector configura-

tions have a fixed number N of particles, while configurations in the G-sector

are constrained to having N − 1 particle world lines and a single worm.

Path Sampling In The Worm Algorithm

The Worm Algorithm automatically affords extensive sampling of intri-

cate and non-trivial permutation cycles in both the Z- and G- sectors, while

maintaining ergodicity regardless of the strongly repulsive core of microscopic

interactions. This is readily achieved by its use of ergodic local path updates,

in complementary pairs, that efficiently sample paths in its extended configu-

ration space. For details, the reader is referred to Refs. [41, 42].

2.B.6 Thermodynamic Estimators

Having utilized the Worm Algorithm to obtain space-time configurations,

of any quantum-mechanical system of interest, which are drawn from the ap-
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propriate probability distribution (Eq. (2.8)), one becomes fully equipped to

accurately compute the thermodynamic properties of the system, using ap-

propriate thermodynamic estimators. For our study of superfluid hydrogen

in nanoscale confinement, we computed the equilibrium total energy per p-

H2 molecule, e(N), superfluid fraction, ρS(T ), radial density profile, ρ(r) and

the momentum distribution, n̄(k). The total energy per particle, useful for

calculating the equation of state of the system, is obtained by summing its

kinetic, 〈K〉 and potential, 〈V〉, parts. These are calculated as described in

Refs. [47, 51] as follows:

〈K〉 ≈ 3
2τ

− 1
4λτ 2

〈

(rl − rl+1)
2
〉

+
λτ 2

9

〈

(

∇V(R2l)
)2
〉

, (2.13)

where 〈· · · 〉 indicates the statistical average of the enclosed quantity, (rl − rl+1)
2

is the square of the spatial separation of adjacent beads along a world line, while

the gradient of the potential energy V is obtained with respect to the coordi-

nate of one of the particles at an even time slice. For the potential energy per

particle, the expression is

〈V〉 ≈ 1
N

〈V(R2l−1)〉 . (2.14)

Eqs. (2.13) and (2.14) both approach the exact results in the limit M → ∞,

τ → 0.

The superfluid fraction (ρS(T )), i.e., the fraction of a finite system that

uncouples from a rotation that is induced externally, is obtained in the PIMC

formalism as

ρS(T ) =
4m2T

~2Ic

〈A2〉 , (2.15)
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where A is the projection of the total area covered by the many-particle paths

unto a perpendicular plane to one of the three symmetric rotation axes, Ic is

the classical moment of inertia of the finite system (e.g p-H2 cluster) and Eq.

(2.15) is known as the area estimator [52].

As explained in Ref. [50], the momentum distribution is obtained from the

one body density matrix n(r, r′) which is the τ → 0 limit of the Matsubara

Green function, G(r, r′). For a system that is traslationally invariant, n(r, r′) ≡

n(r − r′), and n̄(k) is given by the inverse transform

n̄(k) =
∫

d3r n(r)e−ık·r , (2.16)

which for a system with spherically symmetric momentum distribution, i.e.,

n̄(k) ≡ n̄(k), becomes

n̄(k) =
4π

k

∫

∞

0
dr r sin kr n(r) , (2.17)

having fixed the value of the one-body density matrix to unity at r = 0, hence

the normalization
1

(2π)3

∫

d3k n̄(k) = 1. (2.18)

One then obtain the one body density matrix (OBDM) as described in Ref.

[48].

We also estimate the standard error on our calculated expectation values.

This is necessary as the expectation values are obtained as statistical averages

using finite number (M) of configurations (X) and the mean of a physical

observable over sample configurations will neccessary deviate from, and flunc-

tuate around, the true mean of the normal distribution that is reached in the
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limit M → ∞. However, a straightforward estimate of the standard error on

the mean using

〈O〉σ̄ =

√

√

√

√

∑

M

k=1(O(Xk) − 〈O〉)2

M(M − 1)
, (2.19)

would underestimate the error, since the elements of our Markov chain are

not completely independent and there exist an autocorrelation between the

various O(Xk) given by [53]

〈OkOk+1〉 − 〈Ok〉2

〈O2
k〉 − 〈Ok〉2 . (2.20)

A reliable estimate of the standard error is obtained by reducing the autocor-

relation between the quantities over which the average is sought. One way

to do this would be to bin the entire M configurations into smaller configu-

rations, average over each of the smaller configurations (thereby obtaining a

set of averages that are less correlated than the initial set of averages over the

original configurations set), and then finding the standard error on these new

set of averages. We carry out a more rigorous estimation of the standard error

using the blocking/bunching method (See Refs. [49, 54]).
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Chapter 3

PAIR POTENTIALS AND

EQUATION OF STATE OF

SOLID PARA-HYDROGEN TO

MEGABAR PRESSURE

An accurate T = 0 Path Integral Monte Carlo (PIMC) study of the system

which we consider in this thesis, i.e., para-hydrogen clusters confined in spher-

ical cavities, requires that one be able to reliably predict the equation of state

of p-H2 at non-trivial densities corresponding to very high pressures in the Gpa

range. This is because the system is not homogeneous as in the hexagonally

packed bulk structure, but the pressure exerted on a p-H2 molecule may vary

significantly throughout the cavity. Consequently, we carried out a detailed

study of the accuracy of three different pair potentials in predicting the equa-

tion of state of solid p-H2 to megabar pressure, covering the entire pressure

range for which there is experimental data.
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We compute by means of Quantum Monte Carlo simulations the equation

of state of bulk solid p-H2 extrapolated to zero temperature, up to a pressure

of ∼2 Mbar. A comparison is made of the equation of state obtained by us-

ing the Silvera-Goldman (SG) and Buck [55] potentials, as well as a potential

recently proposed by Moraldi [56], modified at short distances to include a

repulsive core, missing in the originally proposed one. The Moraldi pair po-

tential yields an equation of state in excellent agreement with experiment at

megabar pressures, owing to its softer core, and is at least as accurate as the

Buck at saturated vapor pressure.1 This provides, to non-trivial pressures, a

highly dependable description of the interaction between hydrogen molecules

in a wide variety of configurations.

3.A Introduction

Hydrogen is known to be the simplest and most abundant element in the

universe. Achieving predictive knowledge of its equation of state in a wide

range of thermodynamic conditions has always been a worthwhile theoretical

goal, owing to its relevance in a broad variety of physical systems, usually with

possible technological applications [57, 58, 59], and also because it provides a

cogent assessment of the most advanced computational many-body techniques.

The equation of state (EOS) of hydrogen, in essentially all phases of in-

terest, is a fully quantum-mechanical problem. This is due to the fact the

thermal wavelength of hydrogen is of the order of its mean inter-particle dis-

tance, causing the probability cloud (due to zero point motion) of individual

1A version of this chapter has been published as:
Tokunbo Omiyinka and Massimo Boninsegni. Physical Review B 88, 024112 (2013).
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molecules to significantly overlap with their neighbour’s. Theoretical calcula-

tions broadly fall into two different categories; in ab initio studies, the mathe-

matical model explicitly takes into account the ionic and electronic degrees of

freedom, and their interaction via electrostatic Coulomb potential. Calcula-

tions are carried out within the framework of density functional theory (DFT)

[60, 61, 62, 63, 64, 65] or Quantum Monte Carlo (QMC) [66, 67, 68, 69, 70, 71].

On the other hand, in molecular condensed phases, one often adopts the

Born-Oppenheimer approximation, allowing one to regard individual hydro-

gen molecules as elementary particles, thus ignoring the electronic degrees of

freedom. This approximation is mostly justified on the ground that the energy

change pertaining to the first electronic excited state is of the order of 1 eV

or ∼11588 K, which is order of magnitudes greater than the temperatures at

which our studies are made (≤ 4 K), allowing us to consider the p-H2 molecules

as being effectively in their electronic ground state. Thus, one is able to de-

scribe the interaction between the molecules by means of a static potential,

the simplest choice being that of a central pair potential.

In Fig. 3.1, we show the simplest example of a central pair potential, the

Lennard-Jones potential, given by

V (r) = 4ǫ

[

(

σ

r

)12

−
(

σ

r

)6
]

. (3.1)

It shows the strong repulsion at short distances, characteristic of all micro-

scopic pair potentials, due to Pauli exclusion principle preventing electrons

of different molecules from spatially overlapping. Also evident are the weak

attraction at long intermolecular distances (r ≫ σ) owing to mutually induced

electric dipoles, as well as a maximum well depth ǫ ∼ 30 K and core σ ∼ 3 Å,
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Figure 3.1: Lennard-Jones Potential

[V (σ) = 0]. More elaborate potentials are constructed in an attempt to pro-

vide better description of both the repulsive core and attractive tail. Notable

examples for hydrogen are the Silvera-Goldman and Buck pair potentials.

Obviously, an approach based on a pair potential only dependent on the

spatial separation between two molecules cannot describe any process involv-

ing electronic transfer, nor the energy contribution of interactions involving,

say, triplets of molecules, nor any effect arising from the non-spherical fea-

tures of the intermolecular interaction; the importance of all of these physical

mechanisms generally increases with the thermodynamic pressure of the con-

densed phase under study. There are, however, distinct advantages to the

use of static pairwise potentials, mainly, that it is typically computationally

much faster and conceptually simpler than ab initio methods. Furthermore,

if pair potentials are used, thermodynamic properties of molecular hydrogen
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in condensed phase, and certainly in confinement, can be typically computed

essentially without any uncontrolled approximation, e.g., by means of QMC

simulations. Thus, it is desirable to develop pair potentials that afford reason-

ably accurate, quantitative description of the condensed phase of hydrogen in

broad ranges of thermodynamic conditions. The Silvera-Goldman model pair

potential is arguably the most commonly adopted, and has been shown [72]

to afford a quantitative description of the low temperature equilibrium solid

phase of p-H2, whose superfluidity in nanoscale confinement we set out to ex-

amine. Another well known pair potential is the Buck [73, 74], which is very

similar to the Silvera-Goldman, albeit with a slightly deeper attractive well.

Both potentials yield an equation of state in reasonable agreement with ex-

periment at moderate pressure (.25 kPa). At higher pressure, however, they

become increasingly inaccurate, leading to an overestimation of the pressure

due to the excessive “stiffness” of their repulsive core at short intermolecular

separation (below ∼2.8 Å). This challenge is also present in the theoretical cal-

culation of the equation of state of condensed helium at high pressure, based

on pair potentials; in that context it is known that including three-body terms

gives better agreement with the experimental equation of state, the overall

effect being that of softening the repulsive core of the pairwise interaction

[75, 76, 77].

Still, given the significant computational overhead involved in the inclusion

of three-body terms, there remains the question of whether a modified effective

pair potential could offer more satisfactory agreement of theory with experi-

ment at high (e.g., megabar) pressure. To this aim Moraldi recently proposed

a modified effective pair potential, with a softened repulsive core, designed to

afford greater agreement between experiment and the theoretically predicted
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values of the pressure as a function of the density in the low temperature limit

(T → 0). Results of perturbative calculations carried out in Ref. [56] show

remarkable agreement with experimental data of the pressure computed with

the new pair potential, in an extended range of density (up to 0.24 Å−3, which

corresponds to a pressure in the megabar range).

In this work, the T = 0 equation of state of solid p-H2 is computed by

means of first principle QMC simulations in a wider density range with re-

spect to Ref. [56], namely, up to a density of 0.273 Å−3, for a model of

condensed p-H2 based on three different pair potentials; our slightly modified

version of the Moraldi potential (as shown in Fig. 3.2), the Silvera-Goldman,

and the Buck. We provided a numerically accurate, non-perturbative check

of the pressure computed in Ref. [56], and we offered a cogent comparison

of the performance of the three potentials. We also compute the total and

kinetic energy per molecule; the latter is experimentally measurable by means

of neutron scattering, and is particularly sensitive to the detailed features of

the repulsive core of the interaction [75].

We find that the recently proposed pair potential does indeed yield pressure

estimates in much better agreement with experiment than the Silvera-Goldman

and Buck potential, especially above 0.14 Å−3. In fact, the agreement between

the values of the pressure computed with the modified Moraldi potential and

the ones measured experimentally remains excellent up to ∼180 GPa, the

highest pressure for which experimental data are available for solid H2. At the

equilibrium density, i.e., zero pressure at T = 0, the Moraldi potential yields

energy estimates comparable to those of the Silvera-Goldman. Kinetic energy

estimates at high density computed with the Moraldi potential are significantly

lower than those furnished by the Silvera-Goldman and Buck potentials, a fact
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ascribable to the softer repulsive core of the Moraldi pair interaction. An ex-

perimental measurement of the kinetic energy will therefore provide additional

important insights on whether the Moraldi potential not only yields an equa-

tion of state in quantitatively close agreement with experiment, but also affords

a generally more accurate, quantitatively physical description of the system

than the Silvera-Goldman or Buck model interactions.

We continue this chapter by presenting the particular microscopic model

we adopt therein. We also illustrate the pair potentials we utilized, briefly

highlighting the basic methodology underlying the calculation and offering

relevant computational details in Sec. 3.C. In Sec. 3.D a thorough illustration

of the results obtained in this work is provided. We finally provide a general

discussion and conclusion to this chapter in Sec. 3.E.

3.B Model

Our system of interest in this chapter is modeled as an ensemble of N

para-hydrogen molecules, regarded as point particles of spin zero, enclosed

in a vessel of volume Ω, shaped as a parallelepiped, with periodic boundary

conditions in all directions. The sides of the parallelepiped are chosen to

fit a crystalline sample of solid para-hydrogen [hexagonal close packed (hcp)

structure]. The quantum-mechanical many-body Hamiltonian is as follows:

Ĥ = −λ
N
∑

i=1

∇2
i +

∑

i<j

v(rij) (3.2)

Where, λ = 12.031 KÅ2, while v is the potential describing the interaction

between two p-H2 molecules, only depending on their relative distance. As
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we do make comparison between results from different pair-potentials in this

work, we also provide here some basic details of all potentials used. The

Silvera-Goldman (VSG) and Buck (VB) have the form

V (r) = Vrep(r) − Vatt(r)fC(r), (3.3)

where Vrep(r) describes the repulsion of two molecules at short distances, aris-

ing mainly from the Pauli exclusion principle, preventing the electronic clouds

of different molecules from spatially overlapping, whereas Vatt(r) represents

the long-range van der Waals attraction of mutually induced molecular elec-

tric dipoles. The purpose of the function fC(r) is to remove the divergence of

Vatt(r) as r → 0. For the Silvera-Goldman potential, Vrep is given by

Vrep(r) = e−α−βr−λr2

, (3.4)

while Vatt is given by

Vatt =
C1

r6
+

C2

r8
− C3

r9
+

C4

r10
. (3.5)

Finally, fC(r) is given by

fC(r) =















e−( r0

r
−1)2

if r < r0,

1 otherwise
. (3.6)

The value of the constant parameters in the Silvera-Goldman expression are

provided in Ref. [34]. In Vatt, the term proportional to r−9 is the Axilrod-

Teller estimate of the effective contribution of three-body interactions to the
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potential, expected to be increasingly significant at high pressure and very low

temperature (T → 0). The expression for the Buck potential is similar to that

of Silvera-Goldman, save the absence of the three-body term and the different

values of its corresponding constants. As proposed in Ref. [56], the Moraldi

potential is expressed as follows:

VM(r) = Vrep(r)frep(r) − Vatt(r)fC(r), (3.7)

where the functions Vrep, Vatt, and fC are the same as in the Silvera-Goldman

potential; whereas frep, being of the same form as fC , softens the repulsion at

short distances contained in Vrep. It is given by

frep =















exp
(

−a
(

r0

r
− 1

)n)

if r < r0,

1 otherwise
. (3.8)

where a = 0.95, r0 = 5.2 a.u (1 a.u = 0.529 Å), and n = 1.5. The potential

VM(r), as shown in Ref. [56], displays a much slower growth as r → 0 than

the Silvera-Goldman. In fact, the function VM(r) stops growing altogether

at r ∼ r0 (see Fig. 3.2 below). This unphysical feature of VM(r) is of little

consequences in calculations at low density, but must be corrected in order to

prevent particles from “tunnelling” across the potential barrier and piling on

top of one another, something we observed in computer simulations making

use of VM(r) at densities for which the intermolecular distance is .2 Å. Thus,

in this work we made use of the modified potential U(r), defined as follows:

U(r) = VM(r)Θ(r − d) + ṼrepΘ(d − r), (3.9)
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Figure 3.2: The Moraldi pair potential VM(r) as proposed in Ref. [56]
(solid line) and the modified one U(r) used in the present work (dashed
line) [35]

.

where d = 4 a.u (i.e. 2.1167 Å), Θ(x) is the Heaviside function, and Ṽrep(r) has

the same form of Vrep, but the two parameters (usually referred to as α and β)

upon which it depends are adjusted to match VM(r) and its first derivative at

r = d. This modified potential, utilized in our simulations, is shown alongside

VM(r) in Fig. 3.2. It lacks the unphysical feature of VM(r) at short distances

discussed above; indeed, it increases monotonically as r → 0.

3.C Calculation

The T = 0 (ground state) equation of state of solid para-hydrogen, mod-

elled by the many-body Hamiltonian (3.2) with the three different potentials
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VSG, VB and U described above, was computed by means of numerical QMC

simulations based on the Continuous-Space Worm Algorithm. Specifically,

we computed the pressure P as a function of the density ρ, in the interval

0.0763 Å−3 ≤ ρ ≤ 0.273 Å−3, for a finite system comprising N = 216 molecules.

In order to provide ground state estimates, we perform simulations at different

low temperatures and extrapolate the results to T = 0. We generally find that

results obtained at T = 4 K are indistinguishable from the extrapolated ones,

within our quoted statistical uncertainties. We employ the standard virial es-

timator [78] for pressure, and estimate the contribution from particles lying

outside the main simulation cell by radially integrating the quantity r(dV/dr),

approximating the pair correlation function g(r) to 1 (we do the same for the

potential energy) [79].

Density Time step Energy Pressure
0.076 39 × 10−4 1.40 × 103 5.75 × 104

0.076 20 × 10−4 1.50 × 103 5.79 × 104

0.076 10 × 10−4 1.53 × 103 5.92 × 104

0.076 5.0 × 10−4 1.53 × 103 5.92 × 104

Table 3.1: Time step extrapolation (τ → 0) for Pressure (in bars)
and Energy in (K) calculated at 0.076 Å−3) in the T → 0 limit, using
Silvera-Goldman potential. Combined statistical and systematic errors
affecting our QMC simulations are estimated to be of the order of 0.1%
or less of the quoted values.

We obtain our QMC results, as presented herein, with a time step τ =

5×10−4 K−1. Indeed, we observed that the estimates yielded by such a choice

of time step coincide with those extrapolated to τ = 0, within statistical uncer-

tainties, as illustrated in Table 3.1. It is worth emphasizing that, in principle,

para-hydrogen molecules must be regarded as indistinguishable particles of spin
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zero, and thus obeying Bose statistics. The Worm Algorithm explicitly allows

for permutation of identical particles, and quantum-mechanical exchanges can

be important in p-H2, in specific situations. They are in fact known to un-

derlie superfluidity at low temperature in small clusters (< 30 molecules) [80],

and their effect is measurable in the momentum distribution of liquid para-

hydrogen near melting [81]. However, in the solid phase, in the range of density

explored here, exchanges are practically absent, i.e., particles can be regarded

for practical purposes as distinguishable.

3.D Results

While our work in this chapter is mainly aimed at the equation of state

of solid p-H2 at relatively high (megabar) pressure, we start the discussion of

our results by illustrating the results of QMC simulations at the saturation

density ρ◦ = 0.0261 Å−3. Specifically, we compare the pressure and energy es-

timates yielded by the Moraldi potential (modified as explained above), which

was not purposefully designed to describe the low-density equilibrium phase,

to those yielded by the Silvera-Goldman and Buck potentials, as well as to

experimental data. We make such a comparison in order to ascertain whether

the softening of the Silvera-Goldman repulsive core, which is at the basis of

the Moraldi potential, might worsen the agreement with experiment at low

density while possibly improving it in the megabar pressure range. Table 3.2

shows numerical estimates of the ground state energy per molecule for solid

para-hydrogen at saturation density. The estimates here, obtained by extrap-

olating all the way down to T = 0 results obtained in the range 1 K ≤ T ≤ 4

K, are in agreement with those given in Ref. [72] using ground state diffusion
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This work Ref. [72]
Moraldi -88.5(2)

Silvera-Goldman -88.1(1) -87.90(2)
Buck -93.8(1) -93.87(2)

Table 3.2: Ground state energy per molecule (in K) for solid parahy-
drogen in the hcp phase at the saturation density ρ◦ = 0.0261 Å−3,
computed in this work and in Ref. [72] for various intermolecular po-
tentials. Statistical errors, in parentheses, are on the last digit.

Monte Carlo (DMC) simulations. Experimentally, the ground state energy per

molecule has been inferred by various methods, and the agreement between

the various predictions [82, 83, 84, 85] is not perfect; quoted values range from

-89.9 K of Ref. [84] to -93.5 K of Refs. [83] and [85]. It is obvious from

the data reported in Table 3.2 that the Moraldi potential affords an accuracy

comparable to that of the other two potentials.

We make a comparison in Fig. 3.3 of our computed values of the pressure

(with the three pair-potentials) for hcp para-hydrogen in the T → 0 limit, in

a density range up to 0.273 Å−3, which corresponds to a pressure of about 1.8

Mbar. Also included for comparison is a fit to the most recent [86] compilation

of experimental (x-ray) measurements [87, 88, 89] of the equation of state

obtained with the Vinet equation of state [90],

P =
3K◦(1 − d)

d2
exp

[3
2

(K ′

◦ − 1)(1 − d)
]

, (3.10)

where d ≡ (ρ◦/ρ)1/3, with parameters K◦ = 0.20(1) GPa and K ′
◦ = 6.84(7).

We also report the computed values of the pressure in Table 3.3.

The agreement between the experimental values of the pressure and those

obtained by simulation using the Moraldi potential is excellent, considering the
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Figure 3.3: Equation of state of solid parahydrogen at T=0, computed
by Quantum Monte Carlo simulations using the Silvera-Goldman (di-
amonds), Buck (circles) and Moraldi (boxes) pair potentials. Dashed
line represents a fit to experimental data from Ref. [86] obtained with
the Vinet equation of state (see text). Combined statistical and sys-
tematic errors affecting our computed pressures are at the most of the
order of 0.1% of the pressure.

relatively simple form of the pair potential itself. At the highest compaction

examined here, i.e., 0.273 Å−3, the Silvera-Goldman potential overestimate

the pressure by over a factor of 2. The Buck potential does only slightly

better than the Silvera-Goldman. The lower values of pressure yielded by

the Moraldi potential are a direct consequence of its softer repulsive core. It

is noteworthy that the values in Table 3.3 agree quantitatively with those

obtained by Moraldi in Ref. [56], using a perturbative calculation. Perhaps

a more significant fact is the excellent agreement with experiment obtained

using the modified Moraldi potential even above 110 GPa, i.e., a compression

at which solid hydrogen undergoes an orientational phase transition [91]. One
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Density Moraldi Buck SG
0.076 5.11 × 104 6.09 × 104 5.92 × 104

0.098 1.17 × 105 1.54 × 105 1.52 × 105

0.129 2.61 × 105 3.87 × 105 3.93 × 105

0.174 5.93 × 105 9.74 × 105 1.04 × 106

0.243 1.34 × 106 2.47 × 106 2.79 × 106

0.273 1.80 × 106 3.40 × 106 3.94 × 106

Table 3.3: Pressure (in bars) calculated for different densities (in Å−3)
in the T → 0 limit, using Buck, Silvera-Goldman and Moraldi poten-
tials. Combined statistical and systematic errors affecting our QMC
simulations are estimated to be of the order of 0.1% or less of the
quoted values.

would anticipate that the approximation of a spherically symmetric potential,

for the interaction between two p-H2 molecules, would break down quickly as

the system assumes the orientationally ordered phase.

The fact that the Moraldi potential is not as stiff as the Silvera-Goldman or

Buck potentials at short distances is also reflected on the predicted structural

properties of the crystal. Specifically, the local environment experienced by a

single molecule is captured by the static structure factor, which of course can

be probed by x-ray diffraction. Its Fourier inverse, the pair correlation function

g(r), is easily accessible by simulation. Results for two different densities are

shown in Fig. 3.4, where the pair correlation functions computed for the Buck

and Moraldi potentials are juxtaposed. The SG and Buck potentials yield

similar results for this quantity [the main peak of the g(r) being ∼10% higher

with the SG potential, at the higher density]. While at the lower density,

which corresponds to a pressure around 5 kbar, the pair correlation functions

yielded by the two potentials are comparable, at the higher density (which

corresponds to a pressure close to 1 Mbar), there is a clear difference between
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Figure 3.4: Pair correlation function g(r) for hcp para-hydrogen at
T=4 K, computed by simulation at the two densities ρ=0.0763 Å−3

and ρ=0.2428 Å−3, with the Moraldi and Buck potentials. The results
for the Silvera-Goldman potential are similar to those for the Buck.

the two results. In particular, the pair correlation function computed with

the Buck potential has considerably higher peaks and generally much sharper

features and an altogether more classical structure compared to that obtained

with the softer Moraldi potential, which is smoother, and displays a markedly

more quantum-mechanical character.

While the improvement afforded by the Moraldi potential on the calculation

of the equation of state of p-H2 is remarkably peculiar, especially putting the

relatively wide spectrum of pressure for which it is observed into consideration,

some care should be applied if a holistic evaluation is desired of the microscopic

physical description yielded by a given pair potential. Quite possibly, one could

obtain (by means of an effective pair potential) an equation of state in close

concordance with experiment, but at the cost of worsening the reliability for

other quantities.

More so, the kinetic energy per particle is especially sensitive to the detailed

shape of the repulsive core of the intermolecular potential at short distances

(see, for instance, the discussion in Ref. [75]), and it can be measured exper-
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Figure 3.5: Kinetic energies per molecule at T=0, computed by simu-
lations at different densities for the three potentials considered here.

imentally by neutron scattering, as the second moment of the single-particle

momentum distribution [92]. Thus a cogent test of the relative accuracy of

this potential could be offered by the measurements of the kinetic energy per

particle, for which we provide ground state estimates as well, for all three po-

tentials we examined here. The results are displayed in Fig. 3.5 and elaborated

in Table 3.4.

At the saturation density, ρ◦ = 0.0261 Å−3, all potentials yield practically

the same kinetic energy per molecule, whereas at higher density the softer

core of the Moraldi potential leads to a considerably lower kinetic energy,

especially at the highest compression. It is interesting to note however, that

the contribution of the kinetic energy to pressure is minimal in comparison

to that arising from intermolecular interactions. A close comparison of the

estimates obtained herein with those reported in Ref. [56] shows that the
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Density Moraldi SG Buck Ref. [56]
0.0261 69 70 71
0.0763 341 406 411 405
0.0980 440 576 570 531
0.1288 558 817 786 678
0.1739 701 1170 1060 834
0.2428 872 1650 1390 914
0.2730 927 1855 1523

Table 3.4: Kinetic energy per molecule (in K) in the T → 0 limit,
at various densities (in Å−3), obtained using each of the three pair
potentials considered in this work in the QMC simulation. Combined
statistical and systematic errors affecting our results are estimated at
one percent or less of the quoted values. Also reported are the estimates
from Ref. [56], in the rightmost column.

perturbative approach slightly overestimates, but otherwise provide reasonably

accurate results for the problem of interest.

3.E Conclusion

In this chapter, we have carried out a numerical analysis of an intermolec-

ular potential proposed by Moraldi, intended to reproduce the experimental

equation of state of solid para-hydrogen at low temperature, up to a pres-

sure of ∼2 Mbar. The potential utilized here is a modification of the one

proposed in Ref. [56], to which a repulsive core has been added at short dis-

tances, to prevent unphysical behaviour at the highest densities considered.

This potential possesses an appreciably softer core than the Silvera-Goldman

and Buck potentials, leading to improved quantum effects and reduced values

of the pressure. We have performed Quantum Monte Carlo simulations of hcp

para-hydrogen at different densities and compared the estimates yielded by
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this potential with those of the Silvera-Goldman and Buck potentials, for the

pressure and for the kinetic energy per molecule. We have also compared the

numerical results to the most recent experimental equation of state, and found

that this potential yields excellent agreement with experiment, agreement that

we found extend all the way down to low density (saturation). We also provide

estimates for the kinetic energy per molecule which is experimentally obtain-

able by neutron diffraction. Thus, we set out for our study of para-hydrogen

in nanoscale confinement, equipped with a pair potential, whose description

of the microscopic interaction between p-H2 molecules is more reliably accu-

rate, from zero to megabar pressures, than other well known potentials based

on the excellent agreement with experimental data of the equation of state it

furnishes.
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Chapter 4

ENHANCEMENT OF

SUPERFLUID RESPONSE OF

PARAHYDROGEN IN

NANOSCALE

CONFINEMENT

4.A Introduction

In this chapter, we expound the results of our simulation of p-H2 clusters

in nanoscale cavities, especially our observation of the significant enhancement

of the superfluidity of these clusters with respect to their free counterparts 1.

We illustrate below two sets of simulation results, both obtained by setting

1A version of this chapter has been published as:
Tokunbo Omiyinka and Massimo Boninsegni, Physical Review B 90, 064511 (2014).
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the cavity radius R to 10 Å, but with two distinct choices of parameters D and

a (as in Chapter 2), corresponding to very different adsorption strengths. The

first choice, which we label hereafter with Cs, has D = 37.82 K and a =3.88

Å; these are the recommended [93] values to describe the interaction of a p-H2

molecule with a Cs substrate, one of the most weakly attractive known. Its

weakness is such that, as experiment shows, a hydrogen fluid does not wet

it at low temperature [94], as simulation also show [12]. The second choice

namely D =100 K and a =2.05 Å, is roughly in the scope of what one would

expect for p-H2 molecules close to a silica substrate [95]; we thus, henceforth,

refer to the scenerio described by this set of parameters as Glass. It should be

stressed, however, that in neither case do we aim to accurately reproduce the

exact physical interactions (which requires more elaborate functional forms), as

that turns out not to matter much in the end, as we show below. Instead, our

primary aim is that of investigating opposite ends of the adsorption continuum.

The considerably greater well depth and shorter range of its repulsive core,

render the “Glass” cavity much more attractive to p-H2 molecules than the Cs

cavity.

4.B Results

4.B.1 Energetics

We set about the illustration of the simulation results by discussing the

computed energetics. Fig. 4.1 displays the ground state [96] (i.e., T = 0)

energy per p-H2 molecule (in K) as a function of the number of molecules in

the cavity. Both curves feature minima at specific number of molecules, which
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Figure 4.1: Energy per hydrogen molecule e (in K) versus number N
in the T → 0 limit, inside a Cs (filled circles) and Glass (diamonds)
cavities of radius 10 Å. Dashed lines are fits to the data. Statistical
errors are at the most equal to symbol size.

correspond to the minimum number of molecules that fills the cavity, at ther-

modynamic equilibrium. The curve for glass is shifted some 30 K downward

with respect to that for Cs, and its minimum is attained for a value of N close

to seventy molecules, over twice as much as the corresponding one for a Cs

cavity. This is certainly consistent with the greater adsorption exerted by the

Glass cavity, and gives us an idea of the range within which N can vary inside

a cavity of this size. An interesting thing to note is that for a Cs cavity, the

minimum occurs at an energy close to -88.5 K, identical to the ground state

chemical potential (Chapter 2) for solid p-H2. This implies that a cavity of

this size is barely at the wetting threshold for a weakly adsorbing substrate

such as Cs.
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these peaks is less than 1 Å, i.e., shells are rigid, molecular excursions in the

radial direction being fairly limited. This is true even within the shells, as

molecules are scarcely mobile, held in place by the hard core repulsion of the

intermolecular potential, which dominates the physics of the system at such

dense parking. Consequently, quantum mechanical exchanges of molecules,

which underlie the superfluid response in a quantum many-body system of

indistinguishable particles, are strongly suppressed, and no appreciable super-

fluid response is obtained in this case.

Cesium cavity

A very different physical scenario, than in the Glass cavity, takes place in

the Cs enclosure, as shown in Fig. 4.3. Solid line shows the density profile

for a cluster of 32 molecules, i.e., the minimum of the energy curve in Fig.

4.1, at T = 1 K. Also shown (dashed line) is the density profile for the same

number of molecules in a Glass cavity. There is a clear difference between the

arrangements of the p-H2 molecules in the various cases; in the Glass cavity,

all the molecules are close to the surface, whereas in the Cs one they form

two concentric shells, the outer sitting considerably closer to the centre of the

cavity, and further away from its surface. This is, obviously, a consequence

of the weakness of the Cs substrate compared to the Glass one, and of the

consequent greater importance of the role played by the repulsive core of the

intermolecular potential at short distances.

Another important feature is that, unlike in the case shown in Fig. 4.2,

the demarcation between the two shells present in the Cs cavity is not nearly

as sharp as in the glass one, as the density dips but does not go all the way

to zero between the two peaks, as in Fig. 4.2. This is indicative of molecular
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Figure 4.3: Radial density profile n(r) in (Å−3) for 32 p-H2 molecules
inside a Cs cavity (solid line) at T = 1 K, modeled as explained in
the text. Also shown are the profiles for the same number of molecules
inside a Glass cavity (dashed line) and in a free standing p-H2 cluster
(dotted line). Statistical errors are small on the scale of the figure.

delocalization, as well as of the possibility of significant quantum mechanical

exchanges and ensuing superfluidity. In this respect, the density profile of 32 p-

H2 molecules in the Cs cavity is closer to that of a free p-H2 cluster comprising

the same number of molecules (also shown in Fig. 4.3, dotted line, computed

separately in this work), than to that predicted in the stronger Glass enclosure.

The profile of a free standing cluster extends further out as no repulsive cavity

wall is present.
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Figure 4.4: Radial density profile n(r) in (Å−3) for 30 p-H2 molecules
inside a Cs cavity (solid line) at T = 0.5 K, modeled as explained in
the text. Also shown are the profiles for the same number of molecules
inside a Glass cavity (dashed line) and in a free standing p-H2 cluster
(dotted line). Statistical errors are not visible on the scale of the figure.

4.B.3 Enhanced superfluid response in cesium cavity

The most important results of this study, however, is that the superfluid

response of the cluster which is enclosed in the Cs cavity is greatly enhanced

compared to the free ones. For example, in the case of the minimum filling

in the Cesium cavity, at T = 1 K, corresponding to 32 p-H2 molecules, the

superfluidity of the cluster in the Cs cavity is close to 50%, whereas that of

the free cluster at the same temperature is essentially zero (statistical noise

level) [97]. In other words, confinement has the effect of greatly enhancing the
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thirty molecules enclosed in a Cs cavity (see text), and in a free cluster,
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superfluid response of the p-H2 cluster. This is confirmed by the occurence of

exchange cycles including as many as 25 of the 32 molecules in the Cs cavity

enclosed cluster, whereas no cycles comprising more than six molecules are

observed in a free cluster. The radial density profile of the free cluster displays

considerably more structure in the inner shell, suggesting that molecules are

more localized than inside the cavity. Indeed, in the case of 30 p-H2 molecules,

the cluster is 100% superfluid when enclosed in a Cs cavity of radius 10 Å, while

the free standing cluster is only 30% superfluid, both at T = 0.5 K. Alongside

our direct computation of the superfluidity of these clusters in both cases, the

radial density profile, Fig. 4.4, and observation of the exchange cycles do lend
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further evidence to the enhancement of the superfluid response. Fig. 4.5 is a

quantitative comparison of the probability of occurrence of permutation cycles

including n molecules (1 ≤ n ≤ 30) in a cluster of 30 p-H2 molecules enclosed

in the Cs cavity, versus in one that is free standing. Indeed, the occurrence

of cycles including as many as twenty-five of the thirty molecules is orders

of magnitudes more likely in a cluster that is enclosed in the Cs cavity [98].

If the cavity is made much more attractive, as is the case for the Glass one,

exchanges are strongly suppressed, as molecules arrange orderly, to form a

thin shell near the surface; on the other hand, in a weakly attractive cavity,

confinement renders the cluster more compact than in free space, increasing

the tendency of molecules to exchange. Thus, the environment experienced

by molecules inside the weak Cs cavity is such that the formation of a solid-

like cluster, which takes place in free space, is frustrated; the cluster remains

liquid-like, as the substrate is not attractive enough to promote crystallization

near the surface, which is what happens in strong adsorbents like silica or

carbon.
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CONCLUSIONS

In this thesis, we presented our simulation results showing that it is possible

to dramatically enhance the superfluid response of a system of p-H2 clusters

in nanoscale confinement, if the medium is weakly attractive. Our method

has been Path Integral Monte Carlo, implemented using the Continuous-space

Worm Algorithm which affords accurate calculation of the low temperature

thermodynamics of our system of interest, including (but not limited to) the

energetics, structure, momentum distribution and superfluid response.

The size of the cavity for which we presented our results, i.e., 20 Å diameter,

seems to offer the right interplay of surface and bulk properties to lead to a

novel phase; we also carried out simulations for Cs cavities of diameter 15

and 10 Å, and found equilibrium superfluid clusters of around 17 molecules

in the first case, no adsorption in the latter. If the diameter is made greater,

bulk physics (i.e., the equilibrium crystalline phase of p-H2) quickly becomes

dominant and the superfluid response is consequently suppressed.

Our study also has massive implications on the possible observation of

the yet elusive bulk superfluid phase of p-H2. The first thing that we need

to assess, is the dependence of our results on the specific choice of geometry

adopted in this study, namely that of a spherical cavity. With respect to this, it

is important to note that the main physical effects observed in this work, that
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Figure 4.6: Momentum distribution for a system of 32 p-H2 molecules
inside a Cs cavity of radius 10 Å at T=4 K and T=1 K.

leads to the enhancement of intermolecular quantum exchanges, hinges on the

weakness of the substrate and on the characteristic size of the confining region.

Thus, we predict that it should also take place in different geometries (e.g.,

cylindrical), with a comparable confining length (e.g., diameter). Hence, the

issue of experimentally observing this predicted superfluid response of p-H2 is

centred on creating an adsorbing porous matrix, whose microscopic structure

consists of interconnected nanoscale size pores, through which superflow could

be established, at a temperature of the order of a fraction of a K.

While coating the walls of a porous glass with relatively thick (a few layers)

film of Cs or Rb, for example, may not be experimentally feasible at this time,

perhaps techniques such as those utilized to fabricate nanoholes semiconductor

membranes, presently utilized to investigate the hydrodynamics of superfluid

helium in quasi-one-dimension [99] could be adopted. As a final remark, we
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mention that one might also think of detecting a superfluid transition of the

embedded p-H2 fluid by measuring the momentum distribution, typically by

neutron scattering [25], and looking for the appearance at low temperature

of a peak at zero momentum [25], which signals the onset of Bose-Einstein

condensation, intimately connected to superfluidity. This requires no actual

bulk superflow, nor the use of molecular probes, which renders the unambigu-

ous detection of superfluidity problematic in free standing clusters [30]. While

the peak is not sharp as it would be in bulk superfluid, but rather broadened

by the fact that the system is confined over a length of ∼1 nm, its detection

should still be possible, as is well depicted in Fig. 4.6.
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