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......... arguments such as ‘the reaction has been calibrated already’ are not

sufficient reasons to avoid repeating experiments. The operative questions

»

must be ‘how well should we know this reaction?’ ..

McKenna and Hodges (1988)
American Mineralogistv. 73.



Abstract

The fluid-absent melting behavior of two, natural high-grade semi-
pelitic rocks were studied using a piston-cylinder apparatus in the P-T range
7-15 kbar and 800-1050° C. The aim was to constrain P-T conditions
required for the formation of orthopyroxene, the metamorphic index mineral
marking the transition from the amphibolite to the granulite facies. The
starting materials (garnet-biotite-gneiss) were obtained from a transitional
amphibolite-granulite terrane in order to simulate closely the transition
process in nature. The results indicate that temperatures >875° — 900° C are
required to stabilize orthopyroxene in rocks of semi-pelitic bulk compositions
under fluid-absent conditions at mid-to-lower crustal depths. Such high
temperatures conflict with the temperature estimates obtained in transitional
amphibolite-granulite terranes using Fe-Mg exchange thermometers, implying
either that these thermometers record temperatures much below the peak
metamorphic temperature or that regional granulite formation occurs through

a process other than fluid-absent melting.
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Introduction

Partial melting of pre-existing rocks is believed to be a major process in
the formation and differentiation of continental crust. The results of this
process range from millimetre- to centimetre-scale leucosomes in migmatites
to large granitoid batholiths, such as are found at plate margins. These
extremes in the outcome of partial melting represent progressive stages in the
production and segregation of melt from its source rock. It is generally
believed that partial melting occurs under fluid-deficient or fluid-absent (no free
fluid phase present) conditions (e.g., Clemens and Vielzeuf, 1987). The
generation of melts from crustal rocks under these conditions has been
variously described as “vapor-absent melting” (Rutter and Wyllie, 1988),
“dehydration melting” (Thompson, 1982) or “fluid-absent melting” (Clemens,
1984), and involves the breakdown of a hydrous mineral-bearing assemblage
into a less hydrous or anhydrous assemblage and an H,O-undersaturated
melt. The operation of this process on a large scale can lead to intra-crustal
differentiation through the emplacement of the melt at upper crustal levels,
leaving behind an anhydrous, granulite-facies residue in the lower crust. Thus,
fluid-absent melting of crustal protoliths may play a major role in the
development of granulite-facies mineral assemblages (Fyfe, 1973; Clemens,
1992; Clemens et al.,, 1997). Studying the phase equilibria of fluid-absent
melting is critical then, for understanding the formation of both granulites and

granites, and establishing unambiguously the connection between the two.



There have been a number of excellent experimental studies examining
the fluid-absent melting behavior of typical crustal rock types (e.g., Vielzeuf
and Holloway, 1988; Le Breton and Thompson, 1988; Patifio Douce and
Johnston, 1991; Skjerlie and Johnston, 1993; Skjerlie et al., 1993: Vielzeuf
and Montel, 1994, Patifio Douce and Beard, 1995,1996; Stevens et al., 1997;
Patifio Douce and Harris, 1998; Pickering and Johnston, 1998). The majority
of these studies were aimed at investigating the fertility (melt productivity) of
common crustal rock types under fluid—absent conditions or at constraining the
composition of the melts generated from such rocks. Although these studies
were useful in developing the general topology of the fluid-absent solidus for
typical crustal rocks, very few specifically investigated the pressure-
temperature conditions required for the formation of anhydrous mafic phases
during the melting process. One of the most significant mineralogical
transformations that occur under high-grade metamorphic conditions is the
stabilization of the anhydrous mineral orthopyroxene (opx) at the expense of
hydrous minerals, biotite and hornblende. In rocks of semi-pelitic or granitic
bulk composition, the opx-in isograd marks the transition from amphibolite-
facies to granulite-facies conditions. Quantification of the P-T conditions at
which opx first appears in these rocks would enhance our understanding of the
granulite-forming process and also provide a P-T constraint that is directly
applicable in the field. The main objective of this study is to determine the P-T
conditions required for opx formation in semi-pelitic rocks by the process of

fluid-absent melting.



The rationale for the present study stems from observations made
regarding the composition of hydrous minerals in rocks undergoing
amphibolite- to granulite-facies transition. Being dependent on the release of
water stored in hydrous phases, the fluid-absent melting process is essentially
a measure of the stability of hydrous phase(s) under fluid-absent conditions.
Therefore, any compositional variable that affects the stability of hydrous
phase(s) may affect the P-T position of fluid-absent melting reactions. Two
elements known to stabilize biotite to higher temperature are Ti and F (Forbes
and Flower, 1974; Trannes et al., 1985; Peterson et al., 1991; Patifio Douce,
1993; Dooley and Patifio Douce, 1996). Figure 1A compares the Ti content
and Mg-number (molar Mg/(Mg+Fe)) of biotites from several transitional
amphibolite-granulite terranes with those used in previous experimental
melting studies on pelitic and semi-pelitic bulk compositions. Although not an
exhaustive compilation, the figure illustrates the Ti-rich nature of transitional
terrane biotites in comparison to those used in previous melting experiments.
Similarly, transitional terrane biotites are generally higher in F relative to ones
used in previous experimental studies (Fig. 1B). Thus, it is possible that
biotites from these transitional terranes are stable to higher temperatures than

indicated by earlier experiments.
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Figure 1. Comparison of biotite compositicons from amphibolite-granulite transmonal

terranes with those used in previous experime:ntal studies. A. Ti vs. Mg/(Mg + Fe"). B. F
vs. Mg/(Mg + Fe"). Transitional terrane data from: South India - Janardhan et al. (1982),
Hansen et al. (1987); Sri Lanka - Hansen et al. (1987), Burton and O’Nions (1990);
Antarctica - Santosh and Yoshida (1992); Uwusimaa, Finland - Schreurs (1985); Seiland
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Wayah, U.S.A - Eckert et al. (1989); Readings Prong, U.S.A. - Young (1995); Wyoming,
U.S.A. - Grant and Frost (1990); Quetico subprovince, Canada - Pan et al. (1994); and
Slave Province, Canada - Chacko (pers. comrn.). Experimental biotites — Le Breton and
Thompson (1988), Patino Douce and Johnston (1991), Vielzeuf and Montel (1994),
Patino Douce and Beard (1995,1996), and Ste—vens et al. (1997).
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The disparity in experimental and natural biotite compositions described
above reflects the fact that many of the starting materials used in earlier
experimental studies were taken from (or have mineral compositions typical of)
mid- to upper-amphibolite-facies terranes rather than transitional amphibolite-
granulite terranes. | suggest that an experimental study using rocks from
transitional terranes would more closely simulate the fluid-absent melting
process occurring in nature and thereby provide a better understanding of
phase relations under high-grade conditions. This paper presents the resuits
of fluid-absent melting experiments on two high-grade semi-pelitic rocks and
focuses on constraining the P-T conditions required for the first appearance of

opx in these rocks.

Methods

Starting Materials

In accord with the above arguments, the starting materials for the
experiments in this study were rocks that are known from field relations to
have been metamorphosed to near granulite-facies conditions. The starting
materials were obtained from two localities, Ponmudi and Kalanjur, from the
high-grade metasedimentary terrane of south India commonly referred to as
the Kerala Khondalite Belt (KKB). The KKB is dominated by garnet-biotite +
opx + graphite gneisses (semi-pelites), and garnet-biotite-sillimanite +

cordierite gneisses (pelites), intercalated with minor amounts of mafic



granudlites, calc-silicates and quartzites (Chacko et al.,, 1987; Chacko et al.,
1992). These mineral assemblages indicate uppermost amphibolite- to
granulite-facies metamorphic conditions throughout the KKB. Ponmudi and
Kalanjur are two of the many localities in KKB that record the nature of the
granulite-forming process. At these localities, the granulite is developed as
patches and veins that partially overprint the fabric of the host garnet-biotite
gneiss (Fig. 2) (Ravindra Kumar et al.,, 1985; Srikantappa et al.,, 1985;
Ravindra Kumar and Chacko, 1986). Close observation of the granulite
patches shows that they crosscut and largely obliterate the gneissic foliation.
In places, however, relict gneissic foliation can be traced through the patches.
The gneissic and granulitic portions of the outcrop are virtually identical in their
major-element compositions but differ mineralogically in that the granulite
contains opx and significantly less biotite than the gneiss (Ravindra Kumar
and Chacko, 1986). These mineralogical, geochemical and field relationships
strongly suggest that garnet-biotite gneiss was the lithological precursor to the
granulite. Moreover, the intimate spatial association of the two rock types
requires that they were metamorphosed at very similar P-T conditions, and
specifically P-T conditions that verged on that necessary to produce granulite-
facies mineral assemblages. The opx-free gneiss at these localities would,
therefore, serve as ideal starting materiais for investigating P-T conditions of

opx formation by fluid-absent melting of high-grade rocks.



Figure 2A. Quarry at Ponmudi, south India showing patchy development of granulite
(green) within the host gamet-biotite gneiss (white).

Figure 2B. Close view of a granulite patch at Ponmudi. Note the obliteration of the
gneissic foliation against the granulite patch. The foliation however is faintly preserved
in some areas within the granulite. Starting material for the present experiments was
taken from the light colored portion (gamet-biotite gneiss) of the outcrop.
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The compositions of the starting materials are shown in Table 1 and are

discussed individually below.

Ponmudi

The garnet-biotite gneiss from Ponmudi (hereafter called PON) contains
about 10% biotite, 30% quartz, 28% plagioclase (Aniz), 14% alkali-feldspar,
16% garnet and <2% ilmenite. The rock is peraluminous (A/CNK = 1.15) but
Al SiOs-undersaturated, similar to a metagraywacke. The biotite in this
starting material contains 5.0 wt. % TiO, and 1.3 wt. % F and has a Mg-
number of 0.46. The high Ti and F content of this biotite are generally
representative of biotites from other prograde transitional amphibolite-granulite
terranes. The garnet is almandine rich (77 mol % almandine, 15 mol %

pyrope) with relatively low grossular content (7 mol %).

Kalanjur

The Kalanjur starting material (hereafter called KAL) is very similar to
PON in terms of mineralogy. It contains about 11% biotite, 30% quartz, 30%
plagioclase, 10% alkali-feldspar, 18% garnet and <1% ilmenite. The rock is
peraluminous (A/CNK = 1.18) and Al.SiOs-undersaturated, as is the case with
PON. The biotite in KAL is more magnesian (Mg-number = 0.56) and slightly
more Ti- and F-rich (5.4 and 1.4 wt. %, respectively) than the biotite in PON.

The plagioclase is also more anorthitic (Xan = 37 mol %) than that in PON.



Garnet is an almandine-pyrope solid solution (70 mol % almandine and 24 mol

% pyrope) with minor grossular component (5 mol %).

As the focus of the study was not to investigate the fertility of any
particular rock type under fluid-absent conditions, the starting materials were
not intended to mimic any common crustal rock type, although the bulk
composition and the composition of the constituent mineral phases of both
PON and KAL broadly correspond to those of metagraywackes at high
metamorphic grade. The compositions of the starting materials are such that
biotite is the phase that limits melt production under fluid-absent conditions.
The presence of a Ti-saturating phase (ilmenite) in both starting materials
provides an opportunity to study the variation of Ti in biotite as a function of

pressure and temperature.

Experimental Procedures

All experiments were performed under fluid-absent conditions in an
end-loaded piston-cylinder apparatus using a 1.91-cm (3/4 inch) —diameter
piston. The 4.4 cm long sample assembly consisted of an outer NaCl sleeve
and an inner Pyrex glass sleeve containing a tapered graphite furnace
(Kushiro, 1976) and crushable ceramic inner parts. The experimental
capsules were placed in a ceramic inner sleeve near the center of the graphite
furnace. Any free space between the ceramic sleeve and the capsules was

filled with Pyrex powder. The NaCl outer sleeve was fired at 300 — 350° C for

10



approximately one hour prior to use in the experiments. The inner cylinder of
the pressure vessel was cleaned to a mirror finish and lightly dusted with dry
MoS, powder before each experiment. The sample assembly was jacketed
with Pb foil prior to insertion into the pressure vessel in order to minimize
friction between the assembly and the pressure vessel.

Nominal hydraulic pressures were measured with a Heise bourden tube
gauge and converted to sample pressure using a theoretically calculated
pressure amplification factor. Correspondence between calculated and true
sample pressures was evaluated using the equilibrium Grossular + Quartz =
Wollastonite + Anorthite, relative to the P-T position of this equilibrium
reported by Windom and Boettcher (1976) and Mattioli and Bishop (1984) (see
Appendix 1). These calibration experiments indicated that no pressure
correction is required with this sample assembly. The reported pressures are
believed to be accurate to within 500 bars. Temperatures were measured with
W5Re-W26Re thermocouples. The cold junction of the thermocouple was at

laboratory temperature. During the experiments temperature was controlled to
within a degree using a solid-state controller (Eurotherm™®'®), which was run

through an Omega ice point. No correction was applied for pressure induced
e.m.f. The temperature stability during the runs was within 5° C and the
reported temperatures are considered to be accurate within 10° C.

For each experiment the samples were cold pressurized to 2-3 kbar
above the desired pressure, and the temperature was then manually

increased to that of the desired experimental temperature. Although the
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increase in temperature caused decrease in the pressure during run-up, the
final experimental conditions was always attained by release of pressure (hot,
piston-out technique). The heating procedure was rapid, such that the desired
temperature was attained within 10-15 minutes in all experiments. Quenching
of the runs were achieved by cutting off the power supply to the furnace, which
cooled samples to below 600° C in about 5 seconds. Such a rapid quench
rate minimizes the chance of forming quench phases.

In addition to the single-step experiments, reversal experiments (phase
reversal) involving a two-step procedure were carried out. In the first step, the
starting materials were equilibrated at the P-T conditions where the
appearance of the phase of interest (opx) was documented in a previous
single-step experiment. During the second step, the temperature of the
experiment was lowered while keeping the pressure constant. The criteria for
successful reversal include the disappearance of opx and the growth of
euhedral biotite crystals. The biotite grains that grew during the reversal
experiments also had compositions corresponding to the low temperature.

The starting materials were ground in an agate mortar with distilled
water to an average grain size of <10 um. The powdered material was then
treated with dilute HCI to leach away any retrograde chlorite that may have
been present in the sample. The samples were rinsed thoroughly with distilled
water after the acid treatment and stored in an oven at 120° C for several days

before loading the capsules.
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Approximately 10 -15 mg of starting material was loaded into 2-mm
(0.d.) gold capsules. The small volume of the capsules allowed two capsules
to be run in each experiment, one containing the PON and the other the KAL
starting material. Considerable care was taken to minimize adsorbed H,O
while loading the capsules. After loading, the capsules were partly crimped
and stored in an oven at 120° C for at least 15 hours. The capsules were
crimped shut inside the oven and then immediately sealed by arc welding.
The capsules were weighed before and after each experiment to detect any
weight loss. Experiments with any tear and/or weight loss > 0.1 mg in the
capsules were considered unsuccessful and discarded.

The experiments were conducted at temperatures from 800° C to 1000°
C at 7 kbar, 875° C to 1050° C at 10 kbar, and 950° C to 1050° C at 15 kbar.
The run duration varied from 3 weeks at 800° C to 2 days at 1050° C. The
duration of experiments were kept short at high temperatures (>900° C) to
minimize any possible desiccation of the samples through diffusion of volatiles
through the capsule walls (Patifio Douce and Beard, 1994). The following
lines of evidence indicate that significant loss of molecular H,O did not occur
in any of the single-step meiting experiments. Firstly, Patifio Douce and Beard
(1994) found that H,O loss from the capsule resulted in an increase in
plagioclase abundance at the expense of melt, and formation of high-Ca rims
on pre-existing plagioclase grains. In the present experiments, however, the
modal abundance of plagioclase decreased, and melt increased with

increasing temperature. In addition, the plagioclase grains in the high-
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temperature experiments were homogenous in composition. Secondly,
crystallization of euhedral biotite grains in reversal experiments, which were
originally held at much higher temperature, indicates that water remained in
the capsule (dissolved in the melt). These results are consistent with the
findings of Truckenbrodt and Johannes (1999) who showed that diffusion of
molecular H>O through the capsule walls is not a major problem except in long
duration experiments (> 6 days) at temperatures higher than 1000° C. The
evidence against dissociation of H,O to H, and O, and diffusion of H, out of
the capsule comes from the relatively reduced nature of mineral assemblages
in the run products. Calculated f(O,) values (see below) are at or below the
QFM buffer, which precludes significant H, loss from the capsule during the

experiments as this would have led to more oxidizing conditions.

Analytical Procedures

Capsules from successful experiments were mounted in epoxy and
polished. The run products were characterized using a JEOL 8300 electron
microprobe at the University of Alberta. Qualitative, energy dispersive
techniques were used for phase identification. Quantitative wavelength
dispersive analyses of all the phases were performed at an accelerating
voltage of 15 kV and a beam current of 15 nA. The beam diameter for the
analyses varied between 1 to 3 um depending on the size of the crystals. A

few opx analyses were obtained using a focussed (<1 um) beam. Natural
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minerals were used as standards for all the phases (Appendix 2). X-ray
intensities were converted to concentrations by means of a ZAF correction
routine. The relative proportions of the phases were estimated visually from

backscatter electron images.

Redox Conditions
No external oxygen buffers were used in the experiments. However,
oxygen fugacity was calculated for all experimental products that contained

opx, iimenite and quartz from the equilibrium

2Fe;03 + 4 Si0, =2 FesSisO¢ + 0O,

using the standard state properties of Berman (1988) and the solution
properties for opx from Sack and Ghiorso (1989) and for ilmenite from Ghiorso
(1990). The oxygen fugacity was also calculated from the same equilibrium
using the QUIIF program (Anderson et al., 1993). The calculated oxygen
fugacities generally range from one-half to two log units below that of the QFM
buffer (Table 2). Such values are typical for experimental investigations using
piston cylinder assemblies similar to the one employed in the present study
(Patifio Douce and Beard, 1995; 1996). The similarity between f(O,) values
calculated for the present experiments with those reported by others facilitates

direct comparison with earlier studies.
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Table 2. Calculated oxygen fugacity values.

Run

No. | P(kbar) | T(°C) | logf(Oz)* | log f(O;)' | AQFM* | AQFM!
RJ-9 7 950 -12.50 -12.72 -1.39 -1.61
RJ-25 7 1000 -10.46 -10.74 -0.12 -0.41
RJ-31 10 1050 -10.45 -10.95 -0.30 -1.58
RJ-10 7 950 -12.29 -13.33 -1.18 -2.22
RJ-26 7 1000 -10.15 -10.62 0.22 -0.28
RJ-32 10 1050 -11.74 -11.77 -1.59 -2.41

¥ calculated using standard state properties of Berman (1988), orthopyroxene solution
model of Sack and Ghiorso (1989), and ilmenite solution model of Ghiorso (1990).

T calculated using QUIIF program (Anderson et al., 1993).
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Results

Description of the run products
The experimental conditions and the phase assemblage observed in

the run products are summarized in Table 3.

7 kbar

Trace amounts of melt were observed in the run products of PON and KAL at
800° C, the lowest temperature investigated at this pressure. The amount of
biotite in the run products decreased from ~10% at 800° C to less than 1% at
1000° C. This corresponds with an increase in the proportion of garnet, alkali-
feldspar and melt, and a decrease in the proportion of plagioclase and quartz
for the same temperature range. Although melting began at temperature
<800° C, opx did not appear as a stable phase until > 925° C, where its
appearance was reversed in both KAL and PON. The only ferromagnesian
phases stable until the appearance of opx in both starting materials are biotite,
garnet and melt. The abundance of ilmenite increased relative to the starting

material in all 7 kbar experiments.

17



Table 3. Experimental conditions and mineral assemblage.

Run No. P (kbar) T (°C) D(h‘f;‘:‘ltri;’)“ Mineral Assemblage
Ponmudi
RJ-05 7 800 504 Bio, Grt, Plg, Kfs, Qtz, Ilm, Py, M
RJ-03 7 850 336 Bio, Grt, Plg, Kfs, Qtz, lm, M
RJ-33 7 875 336 Bio, Grt, Plg, Kfs, Qtz, Ilm, M
RJ-11 7 900 336 Bio, Grt, Plg, Kfs, Qtz, [Im, M
RJ-09 7 950 168 Bio, Grt, Opx, Plg, Kfs, Qtz, Ilm, M
RJ-25 7 1000 48 (Bio), Grt, Opx, Plg, Kfs, Qtz, Ilm, M
RJ-27 7 1000 48
-7 —925 168 Bio, Grt, Plg, Kfs, Qtz, [Im, M
RJ-17 10 875 336 Bio, Grt, Plg, Kfs, Qtz, Ilm, Py, M
RJ-15 10 900 336 Bio, Grt, Plg, Kfs, Qtz, Ilm, Py, Ru, M
RJ-13 10 950 168 Bio, Grt, Plg, Kfs, Qtz, [Im, Ru, M
RJ-23 10 1000 168 Bio, Grt, Plg, Kfs, Qtz, [lm, M
RJ-31 10 1050 48 Grt, Plg, Opx, Kfs, Qtz, I[lm, Ru, M
RJ-35 10 1050 48
—10 —1025 48 Bio, Grt, Plg, Kfs, Qtz, [lm, M

contd...
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Duration

Run No. P (kbar) T (°C) (hours) Mineral Assemblage
RJ-39 12.5 1035 72 Grt, Kfs, Plg, Qtz, Opx, Ilm, M
RJ-19 15 950 240 Bio, Grt, Plg, Kfs, Qtz, Ilm, Ru, Py, M
RJ-21 15 1000 96 Bio, Grt, Plg, Opx, Kfs, Qtz, Ru, M
RJ-29 15 1050 48 Grt, Plg, Kfs, Qtz, Ru, M
RJ-37 15 1050 48
—15 —975 72 Bio, Grt, Plg, Kfs, Qtz, Ilm, M
Kalanjur
RJ-06 7 800 504 Bio, Grt, Plg, Kfs, Qtz, IIm, Py, M
RJ-04 7 850 336 Bio, Grt, Plg, Kfs, Qtz, [lm, Py, M
RJ-34 7 875 336 Bio, Grt, Plg, Kfs, Qtz, [Im, M
RJ-12 7 900 336 Bio, Grt, Plg, Kfs, Qtz, Ilm, M
RJ-10 7 950 168 Bio, Grt, Opx, Plg, Kfs, Qtz, Ilm, M
RJ-26 7 1000 48 (Bio), Grt, Opx, Plg, Kfs, Qtz, [Im, M
RJ-28 7 1000 48
-7 —925 168 Bio, Grt, Plg, Kfs, Qtz, [Im, M

contd...
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RunNo. P (kbar) T (°C) Duration

(hours) Mineral A-ssemblage

RJ-18 10 875 336 Bio, Grt, Plg, Kfs, Qtz, Ru, M
RJ-16 10 900 336 Bio, Grt, Plg, Kfs, Qtz, [lm, M
RJ-14 10 950 168 Bio, Grt, Plg, Kfs, Qtz, [lm, M
RJ-24 10 1000 168 Bio, Grt, Plg, Kfs, Qtz, Ilm, M
RJ-32 10 1050 48 (Bio), Grt, Opx, Plg, Kfs, Ru, M
RJ-36 10 1050 48

—>10 —1025 48 Bio, Grt, Plg, Kfs, Qtz, Ilm, M
RJ-40 12.5 1035 72 Grt, kfs, Plg, Qtz, Opx, Ilm, M
RJ-20 15 950 240 Bio, Grt, Plg, Kfs, Qtz, Ru, M
RJ-22 15 1000 96 Bio, Grt, Plg, Kfs, Qtz, Ru, M
RJ-30 15 1050 48 Grt, Plg, Kfs, Qtz, [lm, M
RJ-38 15 1050 48

—>15 —975 72 Bio, Grt, Plg, Kfs, Qtz, Ru, M

Abbreviations: Bio — biotite, Grt — garnet, Plg — plagioclase, Kfs — Alkali-feldspar,
Opx — orthopyroxene, Ilm — ilmenite, Ru — rutile, Py — pyrrhotite, M — quenched
melt. Phase in parentheses indicate that only trace amount of this phase were

present. — indicate second-step of the experiment.
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10 kbar

Melting occurred in all the runs conducted at 10 kbar in both KAL and PON.
The abundance of biotite at any temperature is higher than that in the
corresponding low-pressure experiment. However, plagioclase is less
abundant and garnet more abundant compared to the low-pressure
experiments. The presence of opx was reversed between 1025 and 1050° C.
In the single step experiments, opx was observed only at 1050°C, where it
occurs as needles and prisms pseudomorphing biotite. Disappearance of opx
in the reversal experiment corresponds with the growth of euhedral grains of
biotite, as was observed in the reversal experiment at 7 kbar. In addition to

ilmenite, rutile is present in some 10 kbar experiments.

12.5 kbar

A single experiment at 1035° C contained garnet as the dominant mafic
product phase with subordinate amounts of opx in both samples. Opx occurs
as small prismatic crystals in PON in textural contact with newly formed
euhedral garnets. In KAL opx also forms large crystals pseudomorphing
biotite. Biotite was absent in both samples. The proportion of the melt is
greater than the 1000° C run at 7 kbar in both samples. Plagioclase
abundance is considerably less than that in the 7 kbar experiments. IlImenite

was the only oxide phase present.
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15 kbar

At 950° C, the more friable nature of the run product compared to the
corresponding 7 kbar experiment suggests that the proportion of melt is
considerably less at 15 kbar. The melt proportion, however, increases
substantially from 950° C to 1050° C. Garnet is more abundant than in any of
the low-pressure experiments. Garnet grains exhibit zoning in all of the high
pressure runs, but the zoning is limited to the outer ~1-1.5 um of the grains. In
the 1050° C experiments the garnet crystals pseudomorph biotite. The
proportion of plagioclase has considerably decreased compared to the low-
pressure experiments. Opx was observed as a product in the 1000° C run
with PON, but is absent from all the other experiments with PON, and from all
experiments on KAL at 15 kbar. Biotite was absent from both KAL and PON
samples at 1050° C. In a two-step experiment involving equilibration at 1050°
C for two days and subsequent equilibration at 975° C for three days, opx was
not observed as a phase in both KAL and PON. However, the run product

showed growth of biotite as euhedral grains.

Phase compositions
Biotite

Biotite is present as a restite phase in experiments at 1000° C and
below but is absent from all higher temperature (>1000° C) experiments
except for the run RJ-31 (1050° C, 10 kbar), which contains a few residual

grains of the mineral. Biotite typically occurs as elongate (5-50 um) ribbon-like
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grains with resorbed margins (Fig 3A). In most run products, a thin film of
quenched melt surrounds the biotite grains. Small (<2 um) grains of iimenite
and/or rutile commonly nucleate on or near biotite grains.

Biotite compositions are given in Appendix 3. Some biotite analyses
showed high silica content due to contamination from the surrounding melt.
These analyses (containing > 39 wt. % silica) were discarded and the rest
were averaged for each run product. Biotite compositions vary with pressure
and temperature in experiments with both PON and KAL. The most notable
variations are overall increases in Mg-number, Ti and F of biotite with
increasing temperature. [ attribute the increase in the Mg-number at
temperatures above 875° C (Fig. 4A) to preferential breakdown of the
siderophyllite (Fe-Al) component in biotite to produce garnet according to the

continuous reaction:

Bio + Plag + Qtz = Grt + Kfs + Melt

Progress of this reaction from left to right results in a residual biotite with
higher Mg and lower Al than the starting biotite. This is evident from Fig. 4B,
which shows that there is a general trend towards decreasing Al content with
increasing Mg-number. Opx joins the product assemblage at higher
temperature but has the same general effect on the Mg-number of the residual

biotite.
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Figure 3. Backscatter electron images of run products. A. Typical morphology of
biotite in single-step experiments in which melting occurred. Note the highly resorbed
margins indicative of its break down. B. Matted orthopyroxene crystals pseudomorphing
biotite in the 7 kbar, 1000° C experiment on Ponmudi. C. Prismatic crystals of
orthopyroxene that grew in the 7 kbar, 1000° C experiment on Kalanjur. Also note the
tiny needles of ilmenite. D. Euhedral biotite crystals that grew in the reversal experiment
at 7 kbar on Ponmudi. The euhedral biotite growth and the absence of orthopyroxene in
these runs were used as criteria for a successful reversal of opx-in reaction. Scale bar in
each image is 5 m.
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The increase in the F content of biotite (Fig. 5) with the progress of
fluid-absent melting is consistent with the similar trend observed in previous
studies (Peterson et al., 1991; Patifio Douce and Beard, 1995; Pickering and
Johnston, 1998). F substitution is enhanced by the fact that biotite becomes
progressively more Mg-rich with increasing temperature. Thus, because of the
crystallo-chemical Fe-F avoidance (or Mg-F affinity) effect (Rosenberg and
Foit, 1977), F substitutes more readily into Mg-rich biotite.

The increase in the Ti content of biotite at temperatures above 875° C
(Fig. 5) is also consistent with the observations made in previous studies
(Patifio Douce and Beard, 1995; 1996; Pickering and Johnston, 1998).
Several mechanisms have been proposed for Ti substitution in biotite. These

include Ti-oxy (TiO*2R?*4OH ), Ti-Tschermak’s (TiALR?* {Si,), and
Ti-vacancy (TiOR?".;) substitution mechanisms, where R represents a divalent

cation such as Fe®" or Mg?®* (Bohlen et al., 1980; Abrecht and Hewitt, 1988:
Dooley and Patifio Douce, 1996). The Ti-oxy substitution mechanism results
in the formation of a progressively dehydroxylated biotite. This mechanism
may be significant in the present experiments but is difficult to evaluate
rigorously without direct determination of the water content of biotite in run
products. The Ti-Tschermak’s substitution can be ruled out because it
predicts a positive correlation between Ti and Al rather than the crude
negative correlation observed in the present experiments (Fig. 6). Similarly,

two lines of evidence suggest that the Ti-vacancy mechanism was not a
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Figure 6. Variation of molar Al with Ti in biotite.
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dominant substitution mechanism in my experiments. Firstly, there is a
negative correlation between Ti and the number of octahedral vacancies,
rather than the positive correlation expected with this substitution (Fig. 7A).
Secondly, in aimost all analyzed biotites, the total number of octahedral
vacancies exceeds that required to charge balance Ti and Al substitution in
the octahedral sites (Fig. 7B). This implies the presence of an additional high
valency cation, most likely Fe®*. The excess vacancies can be accounted for
if approximately 7 to 30 % of the total iron in the experimental biotite are ferric
rather than ferrous. This amount of ferric iron is broadly consistent with the
measured Fe3* contents of metamorphic biotite (Guidotti and Dyar, 1991). A
possible mechanism to account for Ti substitution and the observed negative

correlation between Ti content and octahedral vacancies is a Ti-ferric iron
substitution (Ti**,R?*sFe® s0.1). This mechanism increases octahedral site

occupancy by replacement of Fe3* and octahedral vacancies by Ti and
divalent cations. Detailed evaluation of the proposed substitution mechanism
requires data on the Fe?*/Fe>" ratios of starting and run product biotites.

The effect of pressure on biotite composition is less clear but, in
general, increasing pressure at constant temperature decreases the Ti content

and Mg-number of the biotite.
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Garnet

Garnet is both a relict and a neoblastic phase in all the experiments.
Newly grown garnet mostly nucleated as discrete grains, although growth also
occurred on the rims of pre-existing garnet grains. Garnet neoblasts can be
distinguished from relict grains by their euhedral shape and the presence, in
some cases, of melt inclusions. The neoblasts commonly formed in the
vicinity of relict biotite crystals with textures suggestive of formation through
biotite breakdown. The abundance of gamet increases with pressure, with the
largest increase between 10 and 15 kbar.

Garnet grains range in size from <1 to >15 um. The composition of
larger grains varies only slightly with changing pressure and temperature,
suggesting that these grains did not equilibrate compositionally during the
experiments. Smaller euhedral grains, however, do show compositional
variation with changing pressure and temperature. The compositions given in
Appendix 4 are an average of analyses on small euhedral crystals and on rims
of larger grains where such analyses were possible.

The composition of neoblastic garnet is remarkably uniform in each run
product. Garnet in both PON and KAL are dominantly almandine-pyrope solid
solutions and generally contain less than 10 mol % grossular component. The
grossular component of garnet in PON is, however, systematically higher than
that of KAL, reflecting differences in the bulk composition of the two starting

materials.
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The Mg-number of garnet increases with temperature at constant
pressure (Fig. 8A). This effect is more pronounced in the 10 and 15 kbar
experiments with PON. in the experiments with KAL, this trend is discernible
only at 10 kbar. The grossular content of garnet marginally increases with
temperature in KAL (Fig. 8B). In PON, however, the trend is observable only
at 15 kbar. The compositional variation in garnet with pressure is less distinct
but show an overall trend towards increasing Mg-number and grossular

content with increasing pressure at constant temperature.

Plagioclase

Plagioclase is a common restitic phase in all the run products and
ranges from < 1 ym to more than 15 um in diameter. it mostly occurs as
anhedral grains and decreases in abundance with increasing temperature
suggesting that it is a reactant phase in the melting reactions. Attainment of
equilibrium composition in plagioclase grains is considered to be a problem in
fluid-absent melting experiments with granitic rocks (Johannes, 1984). The
composition of the plagioclase crystals (Appendix 5) in the present study,
however, are different from the starting plagioclase suggesting their reactivity
during the experiments. The plagiociase is also uniform in composition on an
intra-grain as well as on intra-sample scale. Montel and Vielzeuf (1997)
reported excess silica and/or Al in their plagioclase grains, but no indication of
this non-stoichiometry was noted in the plagioclase analyses of the present

study.
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There is consistent compositional variation in the plagioclase grains
with temperature and pressure. At constant pressure, the anorthite content
increases with increasing temperature (Fig. 9A). This reflects the preferential
incorporation of the albite component of plagioclase into the melt leaving
behind a more anorthitic plagioclase. There is also a consistent increase in the
orthoclase content of plagioclase with temperature (Fig. 9), which is a
consequence of the shrinkage of the ternary feldspar solvus with increasing
temperature. The plagioclase compositions generally plot within 50° C of the
appropriate isotherm on the ternary feldspar solvus (Elkins and Grove, 1990).

Changes in plagioclase composition with increasing pressure are
subtler but, in general, the anorthite content of the plagioclase decreases with
increasing pressure (at constant temperature). This trend is most clearly seen
in the KAL experiments at temperatures of 950° C and above (Fig. 9), and can
be attributed to breakdown of anorthite component of plagioclase to form
grossular component in gammet. There are also small decreases in the
orthoclase content of plagioclase with increasing pressure, which is consistent
with expansion of the ternary feldspar solvus with pressure (Elkins and Grove,

1990).
Alkali-Feldspar

Alkali feldspar is a common neoblastic phase in all experiments that

produced meit. It occurs as homogenous crystals, up to 10 ym in diameter,

35



and commonly in contact with restitic plagioclase grains. Some of the alkali-
feldspar grains that are larger than 10 ym could be relict. However, no
compositional differences were observed between these and the smaller
crystals suggesting that all grains were compositionally equilibrated.

In contrast to the present experiments, alkali feldspar was not observed
as a product of biotite fluid-absent melting in many previous studies (Vielzeuf
and Holloway, 1988; Patifio Douce and Johnston, 1991; Vielzeuf and Montel,
1994, Patifio Douce and Beard, 1996). Patifio Douce and Beard (1995;1996)
attributed the absence of alkali feldspar in their run products to nucleation
difficulties arising from limited temperature range of coexistence of this phase
and melt. Carrington and Watt (1995) proposed that the behavior of alkali
feldspar during fluid-absent melting depends upon the relative H,O/K,O ratio
of melt and biotite, and that higher H,O/K>0 ratio in melt favors production of
alkali feldspar during melting. The absence of alkali feldspar in some of the
earlier studies could be attributed to the fact that it was not present in the
starting material of those experiments. Therefore, any alkali feldspar
produced by biotite breakdown was incorporated as orthoclase component in
plagioclase or melt (Vielzeuf and Montel, 1994). In contrast, the presence of
10 — 15 modal percent of alkali feldspar in the starting materials of the present
experiments allowed neoblastic alkali feldspar to be preserved.

Alkali feldspar compositions vary consistently with temperature
(Appendix 6 and Fig. 10). The orthoclase content decreases whereas the

anorthite and albite content increases with increasing temperature. This can
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be attributed to the increased solubility of plagioclase component in alkali

feldspar with increasing temperature.

Orthopyroxene

Opx was a product of biotite fluid-absent melting in the experiments at
temperatures above 925° C and at 1050° C in both starting materials at 7 and
10 kbar, respectively. It was also observed in the run product of 1000° C
experiment with PON at 15 kbar. In these experimental products opx has a
characteristic prismatic to needle-like habit and commonly occurs as grains
pseudomorphing biotite (see Fig. 3). The width of the opx crystals was usually
less than 1 um making quantitative elemental analyses difficult. Opx analyses
was performed with a focussed beam to minimize contamination from
surrounding grains. Nevertheless, the resulting analyses (see Appendix 7 for
average) still incorporated small amounts of surrounding ilmenite, and/or melt
as is evident from their higher TiO2 and K;O content. The analyses were
corrected assuming all K in opx represents contamination from quenched melt
(glass).

The opx are characterized by high Al;Os-content (6.8 — 7.9 wt. % and
51 — 9.8 wt. % in PON and KAL, respectively), consistent with the high
temperatures of their formation. The Al,O3; content increases with temperature
at constant pressure. Although the variation of Mg-number of the

orthopyroxenes with temperature is unclear due to the fewer data available,
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the Mg-number of opx grains were greater than those of the coexisting biotite
grains. The opx in KAL is generally more magnesian than in PON, reflecting

the more magnesian nature of the KAL starting material.

Fe-Ti oxides

limenite is the dominant Fe-Ti oxide mineral in most of the run products.
At pressures > 10 kbar, it is accompanied by rutile. The hematite component
of ilmenite is low and varies from ~3 to 7 mol % in both KAL and PON

(Appendix 8). Rutile grains were not analyzed quantitatively.

Melt

Glass (quenched melt) is present in all the run products. It occurs
mostly as thin films around biotite and garnet and also as isolated pockets.
The melt pockets were too small to get reliable analyses in most cases. The
available data indicates that the melts are peraluminous and remain
leucocratic to high temperatures (Appendix 9). The proportion of melt
increases with temperature but remains nearly constant with increasing

pressure.
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Discussion

Approach to equilibrium

Demonstration of the attainment of equilibrium during the experiments is

important for unambiguous interpretation of the results. The following criteria

were considered in assessing the approach to equilibrium conditions in the

current experiments:

1.

Phase reversals. The most rigorous evidence for attainment of equilibrium
is provided by successful phase reversals. The first appearance of opx
was reversed at 7 and 10 kbar in both starting materials. To my
knowledge, these are the first successful reversals of a fluid-absent melting
reaction in experiments with natural samples.

Homogeneity of phases. Most of the phases observed in the run products
were compositionally homogenous, suggesting an approach to equilibrium.
Garnet was the only phase that showed significant heterogeneity in
composition within a single run product. The larger garnet crystals were
compositionally similar to the starting garnet whereas the smaller euhedral
garnets were closer to being in equilibrium at experimental P-T conditions.
Compositional equilibration in garnet was also found to be a problem in
many previous fluid-absent melting experiments (e.g., Le Breton and
Thompson, 1988; Carrington and Harley, 1995). Nevertheless, changes in
garnet composition in the higher temperature and/or pressure experiments

suggest that the phase was at least reactive during the ex‘periments.
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3.

Systematic variation in phase proportions and compositions. The
abundance of phases changed in a consistent manner with temperature
and pressure. Most notable among these changes was the decrease in
the abundance of biotite and plagioclase with increasing temperature, the
increase in abundance of garnet with temperature and pressure, and the
appearance and increase in abundance of opx with temperature in the 7
kbar experiments. Phases generally also showed consistent variation in
composition with temperature and pressure, with the clearest
compositional trends noted in plagioclase, alkali-feldspar and biotite. With
the exception of garnet, all the phases present in the run products had a
different composition than that of the starting material.

Reproducibility. The utilization of two starting materials with similar bulk
compositions provide an independent check on the degree of equilibration
as stabilization of widely different assemblages in the two starting materials
at the same P-T conditions would suggest a lack of equilibration in one or
both sets of experiments. In the present study, the two starting materials
produced similar mineral assemblages when subjected to the same
experimental conditions. Moreover, the phase compositions in both the

samples showed similar variation with changing P-T conditions.

The above observations suggest that the present experiments were of

sufficiently long duration to achieve phase equilibrium, and show a reasonabie

approach to compositional equilibrium for most phases. Accordingly, the

interpretations that follow assume that the phase assemblages and
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compositions observed in the experimental run products approximate those

that would be present in nature at similar P-T conditions.

Melting reactions

My results represent the phase relations in natural high-grade semi-
pelitic rocks in the P-T range where they undergo amphibolite- to granulite-
facies transition. In peraluminous quartzofeldspathic rocks, this P-T region
corresponds to the conditions where muscovite has already disappeared from
the rocks through prograde metamorphic reactions, leaving biotite as the only
significant reservoir of volatiles in the amphibolite-granulite transition zone.
The following melting reactions were identified in the present experiments,
based mainly on textural relations and variation in the phase assemblages

with pressure and temperature.

Fluid-absent solidus

As the focus of the present study was not to constrain the beginning of
melting in quartzo-feldspathic rocks, the position of fluid-absent solidus was
not bracketed in P-T space. Nevertheless, textural relations between phases
as well as the observed variation in the proportion and composition of different
phases provide a reasonable indication of its P-T position. Quenched melt
was observed in all 7 kbar run products. However, only trace amounts of melt
(<5 %) were identified in the runs up to a temperature of 900° C in both

starting materials. | interpret the quenched melt observed at temperatures
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<875° C to be the result of fluid-present melting. Despite the extreme care
taken to eliminate moisture during sample preparation and loading, the
hygroscopic nature of the finely powdered starting materials invariably results
in the adsorption of some H,O. At experimental temperatures, which in this
study exceeded the H;O-saturated solidus by 150° C or more, the presence of
even small amounts of moisture (0.5 wt. %) would result in non-negligible
amounts of vapor-saturated meiting. | suggest, therefore, that the trace
amounts of melt present in lower temperature experiments was produced by
this process and that fluid-absent melting (by biotite breakdown) only began at
temperatures > 875° C. This interpretation is supported by the absence of
significant compositional variation in biotite until temperatures > 875° C.
Therefore, 875° C is assumed as the fluid-absent solidus for PON and KAL at
7 kbar. At 10 kbar, phase compositional variations are generally more
pronounced above 900° C which is therefore inferred to be the position of fluid-
absent solidus at this pressure.

The phase relations are consistent with a fluid-absent solidus reaction
of the type:

Biotite + Plagioclase + Quartz = Garnet + K-feldspar + Melt--------—-—--- (1)

This is interpreted from an increase in modal abundance of garnet and alkali-
feldspar concomitant with a decrease in biotite and plagioclase proportions in

experiments at temperatures exceeding the fluid-absent solidus.
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Orthopyroxene-in reaction

The second reaction, which was the principal focus of the present
study, corresponds to the first appearance of opx (Fig. 11). Based on the
decrease of biotite and plagioclase concomitant with the appearance and
increase of opx and garnet with increasing temperature, | interpret the opx-

forming reaction to be:

Biotite + Plagioclase + Quartz =

Orthopyroxene + Garnet + K-feldspar + Melt--(2)
The reaction has a relatively shallow positive slope between 7
and 10 kbar but steepens above 10 kbar and may in fact bend back at higher
pressure to a negative dP/dT slope. The back bending of reaction (2) was
documented in PON in which opx was observed in the run product at 1035
and 1000° C at 12.5 and15 kbar, respectively. In KAL, however, opx was not
observed at 15 kbar. Nevertheless, the occurrence of opx in the 1035° C, 12.5

kbar experiment confirms a steepening of the reaction curve.
| attribute the steepening in the slope of the opx-in curve at high
pressures to a significant change in the stoichiometry of the melting reaction,
such that the volume change of the reaction changes from positive to

negative. This is evident from changes in the modal abundance of reactant
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and product minerals with increasing pressure without significant changes in
the proportion of melt produced. With increasing pressure (at constant T),
changes include increase in the modal abundance of biotite, garnet and alkali-
feldspar, and a decrease in the abundance of plagioclase and opx. The
residual plagioclase in the high-pressure experiments is also markedly more
albite-rich than in the low-pressure experiments. These observations suggest
increased production of garnet through the melting reaction at the expense of
plagioclase and opx. Biotite contributes proportionately less to the melting

reaction at high pressure.

Comparison with previous studies

The results of this study provides interesting comparisons with the
studies of Vielzeuf and Montel (1994), Patifio Douce and Beard (1995, 1996),
and Stevens et al. (1997), which also investigated the fluid-absent melting
behavior of semi-pelitic bulk compositions (see Table 4 for compositions).
The mineralogical and chemical composition of materials used in these other
studies was broadly similar to the present experiments. There were, however,
some differences, including the presence of K-feldspar and a significantly
lower modal proportion of biotite in the starting materials of the present study.

The major difference in the starting materials used in the present study
from that of previous studies is in the composition of biotite. As stated
previously, the biotite composition in the present starting materials is more

representative of biotite in natural amphibolite-granulite transitional terranes,
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particularly with regard to their Ti and F content. Although biotites used by
Patifio Douce and Beard (1995, 1996) had a relatively high Ti content, the F
content of the biotites were negligible. Additionally, the high-Ti biotite used by
Patifio Douce and Beard (1996) was more Fe-rich than those commonly found
in transitional terranes. Below, the melting relations derived in this study are
compared with those reported in previous fluid-absent melting experiments on

semi-pelitic bulk compositions.

Fluid-absent solidus

The fluid-absent solidus reaction (1) inferred in my study is consistent
with the observation of Vielzeuf and Montel (1994) that, at pressures > 5 kbar,
the beginning of melting does not coincide with the formation of opx but is
associated instead with a garnet-producing reaction. In contrast to the present
results, however, Vielzeuf and Montel (1994) did not find alkali feldspar as a
discrete phase in their experimental products and interpreted the increase in
the orthoclase component of the plagioclase to indicate that K-feldspar was a
product phase. The phase relations reported by Patino Douce and Beard
(1996) at pressures > 10 kbar are also consistent with solidus reaction (1),
although they too did not report alkali feldspar in their run products. In the
more magnesian bulk compositions studied by Patino Douce and Beard
(1995) and Stevens et al. (1997), the fluid-absent solidus coincided with an
opx-forming reaction. These differences in phase relations likely reflect the
strong control of Fe-Mg ratio on the stability of opx relative to garnet (cf. Patino

Douce and Beard, 1996).
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All of the studies noted above found a steep dP/dT slope for the solidus
reaction. This is corroborated by the present study where fluid-absent meiting
was inferred to begin at 875° C at 7 kbar and between 875 and 900° C at 10
kbar. The major difference in the results of the present study is that the
temperature of the fluid-absent solidus is 20 to 90° C higher than reported in
earlier studies. | attribute this difference to the higher Ti and F content of
biotite in the starting materials used in the present experiments. In contrast to
this interpretation, Stevens et al. (1997) argued that Ti substitution in biotite
does not affect the temperature of the fluid-absent solidus, although it does
extend the temperature range over which biotite undergoes fluid-absent
melting. They based this conclusion on the similarity of solidus temperatures
obtained with their Ti-bearing and Ti-free starting materials (Table 4).
However, comparison of the solidus temperatures reported by Stevens et al.
(1997) (~800-835° C) with those of Patino Douce and Beard (1995) (850-875°
C) and the present study (875-900° C) suggests that increasing the Ti content
of biotites with comparable Mg-number significantly increases the solidus
temperature. The apparent absence of a stabilizing effect of Ti in Stevens et
al. (1997) experiments may be due to the fact that their high Ti biotite (‘NB’)
was also ~20 % higher in Al than their Ti-free biotite (‘A’). As noted previously,
compositional trends in the biotites of the present experiments suggest that Al-
rich biotite breaks down at lower temperature than Al-poorer biotite. Thus, in
the Stevens et al. experiments, the stabilizing effect of Ti in biotite may have

been masked by the destabilizing effect of high Al.
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Orthopyroxene-in reaction
Vielzeuf and Montel (1994) also suggested reaction (2) as the opx-forming
reaction in their study. Their results indicate opx formation at 850 and 890° C
at 7 and 10 kbar, respectively. The reaction was not tightly bracketed at
pressures above 10 kbar. In the more magnesian bulk composition (SBG) of
Patifio Douce and Beard (1995), opx was observed as product phase in all
experiments in which melting occurred as well as in some sub-solidus
experiments. However, in their experiments, garnet was a stable phase only
at pressures above 10 kbar. Assuming their solidus to be the opx-in reaction,
the reaction has a positive dP/dT slope. At 7 kbar, opx is the product of
melting in their experiments at 875° C and its formation was bracketed
between 875 and 900° C at 10 kbar. Patifio Douce and Beard's (1996)
experiments in a Fe-rich bulk composition suggest a reaction similar to (2) as
the opx-forming reaction. They found opx as a product phase at 850° and
925° C at 7 and 10 kbar, respectively. Stevens et al. (1997) did not provide an
opx-in curve in their P-T diagram, although, the phase assemblage in their run
products indicates opx formation at temperatures between 850° and 950° C
(depending upon the Mg-number of the bulk rock) at 10 kbar.

The P-T location of the orthopyroxene-in (opx-in) reaction determined
from the present experiments is compared with the opx-in curves of previous
semi-pelite fluid-absent melting experiments in Fig. 12. The appearance of

opx in my experiments occurs at temperatures higher than that of previous
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experiments. At 7 kbar, the difference in temperature is about 50° C or
greater. At 10 kbar, the difference is more than 100° C. | again attribute the
high temperatures required for opx stabilization to the higher Ti and F content
of biotites in my study. This result is consistent with the observations made in
previous studies that the presence of these elements extends the stability of
biotite to higher fluid-absent melting temperatures (Forbes and Flower, 1974;
Tronnes et al., 1985; Le Breton and Thompson, 1988; Peterson et al., 1991:
Patifio Douce, 1993).

The present study also indicates a positive slope for the opx-in reaction
between 7 and 10 kbar, consistent with previous studies. However, the slope
of the reaction between 7 and 10 kbar has a much shallower dP/dT slope
(~33° Cl/kbar) than found in by other studies (~10° C/kbar Vielzeuf and Montel
(1994), ~3° C/kbar Patifio Douce and Beard (1995), ~25° C/kbar Patifio Douce
and Beard (SMAG, 1996). This could also be attributed to the stabilizing effect
of Ti and F on biotite, extending the P-T region between the beginning of
melting and the appearance of opx with increasing pressure. None of the
previous studies have documented a reversal in the slope of the opx-in

reaction between 10 and 15 kbar.

Biotite fluid-absent melting interval
The P-T span over which biotite fluid-absent melting occurs in the
present study is represented by the combination of multivariant fields of the

solidus reaction (1) and the opx-in reaction (2). The position of the biotite-out
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curve in figure 12 is an estimated minimum, as it was not tightly bracketed in
the experiments. Fluid-absent melting involving biotite is completed over a
temperature interval of 125 — 200° C during which the melt fraction increases
gradually. This range is broadly consistent with the melting interval observed
in other studies, except at 10 kbar where biotite persists in the run products for
temperatures 50-75° C above those of previous studies (cf. Vielzeuf and
Montel, 1994; Patino Douce and Beard, 1995; 1996, Stevens et al., 1997).
The P-T region over which biotite, garnet and melt coexists without opx
increases with pressure up to 10 kbar and then decreases, because of the
slope reversal of the opx-in reaction between 10 and 15 kbar, the width of this
multivariant field decreases. The interval over which biotite, opx, garnet and
melt coexist is about 25 to 75° C, which is conformable with the intervals
reported by Vielzeuf and Montel (1994) and Patifio Douce and Beard (1995).
Patifio Douce and Beard (1996), however, found a restricted interval (25-50°
C) for the coexistence of biotite, opx, garnet and melt, with the multivariant
field decreasing with increasing pressure until the opx-in curve and the biotite-
out curve intersects just above 10 kbar. Beyond this intersection, biotite and
opx do not coexist as stable phases. This apparent discrepancy between their
experiment and the present study could be due to the more ferroan nature of
their biotite, which reacts out at lower temperatures forming garnet instead of
opx. The results of the two studies are therefore not inconsistent. The results
from my study indicate that substitution of Ti and F in biotite not only shifts the

position of the fluid-absent melting reactions to higher temperatures (at
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constant pressure) but also increases the muitivariant fields between the

different fluid-absent melting reactions.

Effect of Mg-number on opx formation

The two biotite in the starting materials of the present experiments
differed in their Mg-number by about 10 units (PON — 0.46, KAL — 0.56). The
temperature resolution in the present experiments is not enough to bring out
any marked difference in the melting behavior of the two starting materials.
This suggests that moderate differences in the Mg-number of biotite do not
greatly affect phase relations during fluid-absent melting. Nevertheless, the
partitioning of Mg into biotite relative to coexisting opx or garnet suggests that,
in general, the temperature of opx formation should increase with increasing
Mg-number of the starting biotite. This effect is mitigated somewhat by the
influence of bulk rock Mg-number on the stability fields of garnet and opx.
Decreasing bulk rock Mg-number favors the formation of garnet as the primary
ferromagnesian phase associated with fluid-absent melting of biotite-bearing
peraluminous rocks, and restricts opx stability to higher temperatures. The net
result of these two competing factors is a relatively small influence of Mg-
number on the temperature required for the first appearance of opx (cf. Patifio

Douce and Beard, 1996; Stevens et al., 1997).
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Granulite formation at Ponmudi and Kalanjur

The most direct application of the results of this study is in evaluating
the petrogenesis of granulites at Ponmudi and Kalanjur, the two localities from
which the starting materials were obtained. Many workers have interpreted
the field relationships at incipient granulite localities such as these to reflect a
fluid-present dehydration process, in which the breakdown of biotite or
hornblende was triggered by the local influx of low water activity fluids (e.g.,
Janardhan et al., 1979; Ravindra Kumar et al., 1985; Ravindra Kumar and
Chacko, 1986). Others, however, have argued that these or broadly similar
features were the result of fluid-absent partial melting (Waters, 1988; Burton
and O'Nions, 1990). The P-T position of the opx-in curve determined in the
present study provides insight on the nature of the granulite-forming process
at these localities.

Metamorphic P-T conditions determined for the granulites at Ponmudi
and Kalanjur are 780° C, 5.2 kbar and 760° C, 5.9 kbar, respectively (Chacko
et al., 1996). By comparison, extrapolation of the present experimental results
to 5 to 6 kbar pressure indicates that a temperature of at least 875° C is
required in order to stabilize opx by fluid-absent melting. Thus, temperature
estimates for the Ponmudi and Kalanjur rocks are too low to be consistent with
granulite formation by a fluid-absent melting process. One might argue that

peak metamorphic temperature at these localities was in fact much higher
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than ca. 780° C, but that the mineral equilibria used in calculating temperature
significantly re-equilibrated during slow cooling of the rocks. However, the
temperature estimates for the two localities are based on aluminium solubility
in opx (the refractory garnet-Al-in-orthopyroxene thermobarometer), and are
therefore likely to be a faithful representation of peak metamorphic
temperature.  Qualitatively, this can be corroborated by comparing the
relatively low Al;O3 content (3.2 — 3.5 wt. %) of opx from the Ponmudi and
Kalanjur granulites (Srikantappa et al., 1985; Chacko et al., 1987) to that of the
opx formed at high temperature in the present experiments (5-11 wt. % AlL,O3).

P-T estimates for the Ponmudi and Kalanjur rocks are similar to those
reported for many other incipient granulite localities in South India and Sri
Lanka (e.g., Srikantappa et al.,, 1985; Hansen et al., 1987). Thus, the
conclusions drawn above likely also apply to other localities in the region
where opx formed at the expense of biotite. More specifically, granulite
formation at these localities did not result from fluid-absent melting, but may
have been caused by the infiltration of CO,-rich (e.g., Janardhan et al., 1979)
or hypersaline fluids (Newton et al., 1998). Such fluids can induce opx growth
by sub-solidus dehydration or fluid-present melting of biotite. This fluid-
present mechanism of granulite formation can be evaluated further by
experimentally determining the temperatures required for opx formation with
the PON and KAL starting materials in the presense of carbonic or saline

fluids.
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Implication for the orthopyroxene isograd and deep crustal processes

If, as argued in this paper, the starting materials used in my
experiments are representative of rocks found near the amphibolite- to
granulite-facies transition, then the present results have important implications
for the interpretation of the opx-in isograd that marks this transition. Figure 13
compares P-T constraints for opx formation derived in this study to those
reported for a number of transitional amphibolite-granulite terranes worldwide.
In all of these terranes, opx has been noted in rocks with bulk composition
broadly similar to those investigated in the present study. My resuits indicate
that the temperatures reported for these transitional terranes are more than 75
to 100° C lower than those required for opx formation by fluid-absent melting.
These temperatures are also generally inconsistent with the opx-in curves of
previous experimental studies, although the temperature discrepancy is
considerably smaller in those cases.

One explanation for the large temperature discrepancy is that
temperatures reported for these tfransitional terranes do not represent peak
metamorphic temperatures. Most of the temperature estimates for the
terranes shown in Figure 13 were derived from Fe-Mg exchange
geothermometry, and retrograde resetting of such thermometers is known to
be a common problem in high-grade, slowly cooled rocks (e.g., Frost and
Chacko, 1989; Spear and Florence, 1992). Thus, it is possible that peak

temperatures in these terranes were actually much higher than indicated by
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Figure 13. Comparison of peak metamorphic conditions of transitional amphibolite-
granulite terranes to the P-T conditions required for orthopyroxene formation.
Transitional terrane data from Janardhan et al (1982) (South India); Hansen et al. (1987)
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Bohlen et al. (1985) (Adirondacks); Percival (1983 ) (Kapuskasing); Schreurs (1984)
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the exchange geothermometers, and comparable to those required to form
opx by fluid-absent melting. This implies, however, that temperatures of
crustal metamorphism commonly exceed 850 to 900° C. By comparison,
existing thermal models of collisional orogenic belts suggest that temperatures
in excess of 900° C are not generally achieved, even at the base of crust that
has been tectonically thickened to 55 to 70 km (England and Thompson,
1984; Patifio Douce et al, 1989; Ashwal et al., 1992). Therefore,
rationalization of these high temperatures either requires significant
adjustment of some of the input parameters in these thermal models (e.g.,
values for crustal radioactive heat production), or the presence in transitional
terranes of secondary heat sources such as mafic magmas.

On the other hand, if a 700 to 800° C temperature estimate for a
particular transitional terrane truly represents a peak metamorphic
temperature, then my results imply that opx in that terrane either formed by a
process other than fluid-absent melting, or in rocks with considerably different
mineral compositions than used in the present experiments. The relative
merits of these alternative proposals to account for the temperature
discrepancy between experimental and natural data must be evaluated on a
case by case basis. Nevertheless, | suggest that the widely held notion that
granulite-facies mineral assemblages develop at 700 to 800° C by fluid-absent
processes be abandoned as it is inconsistent with the results of both the

present and earlier experimental studies. Either temperatures in transitional
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amphibolite-granulite terranes were significantly hotter than reported or the

granulite-forming process was not fluid absent.

Conclusions

This study examined the fluid-absent melting behavior of two natural
high-grade semi-pelitic rocks in order to constrain the P-T conditions of
formation of opx. The high Ti and F contents of biotite in these rocks shifts
fluid-absent melting reactions to significantly higher temperatures than
reported in previous studies. Comparable results obtained on the two starting
materials suggest that moderate difference in the Mg-number of biotite have
no significant effect on the P-T position of the melting reactions. Fluid-absent
melting of biotite in both the starting materials occurred over a multivariant

region involving two main melting reactions:

Bio + Plag + Qtz = Grt + Kfs + Melt (1)

Bio + Plag + Qtz = Opx + Grt + Kfs + Melt -——-----m——- (2)

Reaction (2), the opx-in isograd, which marks the transition from amphibolite-
to granulite-facies in semi-pelitic rocks, occurs at temperatures in excess of
875° C at intermediate pressures (6-8 kbar); the pressure window represented

by majority of the exposed granulite-facies terranes. The typical temperatures
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reported for amphibolite-granulite transition terranes are, however,
considerably lower (700-850° C).

This temperature discrepancy between the experimental results and
natural amphibolite-granulite transition terranes, coupled with data from
thermal modeling of collisional orogens suggest that for rocks with bulk
compositions similar to that of Ponmudi and Kalanjur temperatures may not
have been high enough for opx formation under fluid absent conditions. Such
high temperatures within the crust can be realized only through additional heat
input from magma intrusion or by modifying the heat flow parameters during
orogenic thickening.

Whether the amphibolite-granulite transition process operate under
sub-solidus or hyper-solidus conditions, and in a fluid-present or fluid-absent
environment is a matter that still needs to be understood and it is likely that
each terrane is unique in the nature of the operative processes. The evidence
for the involvement of hypersaline and CO.-rich fluids in many high-grade
terranes (Janardhan et al., 1982; Touret, 1985; Newton, 1986; Hansen et al.,
1987; Pan and Fleet, 1996; Franz and Harlov, 1998; Nijland et al., 1998)
suggests that fluid-absent conditions, after all, may not be the norm at deeper
crustal levels as widely believed. Hence, more caution should be exercised in
conceptualizing middle- to lower-crustal metamorphism as processes involving
fluid-absent systems. Lack of adequate experimental data on the influence of

sub-aqueous fluids on phase equilibria of high-grade rocks is a drawback in
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modeling deep-crustal metamorphic and magmatic processes and demands

more attention.

References

Abrecht, J. & Hewitt, D.A. (1988). Experimental evidence on the substitution
of Ti in biotite. American Mineralogist 73, 1275-1284.

Andersen, D.J., Lindsley, D.H. & Davidson, P.M. (1993). QUIIF: A Pascal
program to assess equilibria among Fe-Mg-Mn-Ti oxides, pyroxenes,
olivine and quartz. Computers and Geosciences 19, 1333-1350.

Ashwal, L.D., Morgan, P. & Hoisch, T.D. (1992). Tectonics and heat sources
for granulite metamorphism of supracrustal-bearing terranes.
Precambrian Research 55, 525-538.

Berman, R.G. (1988). Internally consistent thermodynamic data for
stoichiometric minerals in the system Nay,0O-K;O-Fe,03-Al,03-Si0O,-

TiO2-H20-CO,. Journal of Petrology 29, 445-522.

Bohlen, S.R., Peacor, D.R., & Essene, E.J. (1980). Crystal chemistry of a
metamorphic biotite and its significance in water barometry. American
Mineralogist 65, 55-62.

Bohlen, S.R., Valley, JW., & Essene, E.J. (1985). Metamorphism in the

Adirondacks:1, Petrology, pressure and temperature. Journal of Petrology 26,

971-992.

62



Burton, KW. & O'Nions, R.K. (1990). The timescale and mechanism of
granulite formation at Kurunegala, Sri Lanka. Contributions to

Mineralogy and Petrology 106, 66-89.

Carrington, D.P. & Harley, S.L. (1995). Partial melting and phase relations in
high-grade metapelites: an experimental petrogenetic grid in the
KFMASH system. Contributions to Mineralogy and Petrology 120,
270-291.

Carrington, D.P. & Watt, G.R. (1995). A geochemical and experimental study
of the role of K-feldspar during water-undersaturated melting of

metapelites. Chemical Geology 132, 59-76.

Chacko, T. (1987). Petrologic, geochemical and isotopic studies in the
charnockite-khondalite terrain of southern Kerala, India: The deposition
and granulite-facies metamorphism of a Precambrian sedimentary
sequence. Unpub. Ph.D thesis, University of North Carolina at Chapel
Hill, 191 p.

Chacko, T., Ravindra Kumar, G.R., & Newton, R.C. (1987). Metamorphic
conditions in the Kerala (south India) Khondalite Belt: a granulite-facies

supracrustal terrain. Journal of Geology 96, 343-358.

Chacko, T., Ravindra Kumar, G.R., Meen, J.K. & Rogers, J.J.W. (1992).
Geochemistry of high-grade supracrustal rocks from the Kerala
Khondalite Belt and adjacent massif charnockites, South India.
Precambrian Research 55, 469-489.

Chacko, T., Lamb, M. & Farquhar, J. (1996). Ultra-high temperature
metamorphism in the Kerala Khondalite Belt. In: Santosh, M. &

63



Yoshida, M. (eds.) The Archean and Proterozoic terrains in Southern
India and East Gondwana. Gondwana Research Group Memoir 3,
157-165.

Clemens, J.D. (1984). Water contents of silicic to intermediate magmas.
Lithos 17, 273-287.

Clemens, J. D. (1992). Partial melting and granulite genesis: a partisan
overview. Precambrian Research 55, 297-301.

Clemens, J.D. & Vielzeuf, D. (1987). Constraints on melting and magma
production in the crust. Earth and Planetary Science Letters 86, 287-
306.

Clemens, J.D., Droop, G.T.R. & Stevens, G. (1997). High-grade
metamorphism, dehydration and crustal melting: a reinvestigation
based on new experiments in the silica-saturated portion of the system
KAIO2-MgO-SiO,-H,O-CO, at P <1.5 GPa. Contributions to
Mineralogy and Petrology 129, 308-325.

Dooley, D.F. & Patifio Douce, A.E. (1996). Fluid-absent melting of F-rich
phlogopite + rutile + quartz. American Mineralogist 81, 202-212.

Eckert, J.O., Hatcher, R.D. & Mohr, D.W. (1989). The Wayah granulite-facies
metamorphic core, southwestern North Carolina: high-grade
culmination of Taconic metamorphism in the southern Blue Ridge.
Geological Society of America Bulletin 101, 1434-1447.

Elkins, L.T. & Grove, T.L. (1990). Ternary feldspar experiments and
thermodynamic models. American Mineralogist 75, 544-559.

64



Elvevold, S., Scrimgeour, I., Powell, R., Stuwe, K. & Wilson, J.L. (1994).
Reworking of deep-seated gabbros and associated contact
metamorphosed paragneisses in the ssouth-eastern part of the Seiland
Igneous Province, northern Norway. J"ournal of Metamorphic Geology
12, 539-556.

England, P.C. & Thompson, A.B. (1986). Sorme thermal and tectonic models
for crustal melting in continental collisison zones. in: Coward, M.P. &
Ries, A.C. (eds.) Collision Tectonics:. Geological Society Special
Publication 19, 83-94.

Forbes, W.C. & Flower, M.F.J. (1974). Phase relations of titan-phlogopite,
K2Mgs TiAl:SisO20(OH)4: a refractory ph ase in the upper mantle? Earth
and Planetary Science Leftters 22, 60-666.

Franz, L. & Harlov, D.E. (1998). High-grade .K-feldspar veining in granulites
from the lvrea-Verbano Zone, Northemn Italy: fluid flow in the lower
crust and implications for granulite facies genesis. Journal of Geology
106, 455-472.

Frost, B.R. & Chacko, T. (1989). The granulite uncertainty principle:
limitations on thermobarometry in gransulites. Journal of Geology 97,
435-450.

Fyfe, W.S. (1973). The granulite facies, partial melting and the Archean crust:
Philosophical Transaction of Royal Soc’ety (London) 273, 457-461.

Ghiorso, M.S. (1990). Thermodynamic properties of hematite-ilmenite-

geikielite solid solutions. Contribution= to Mineralogy and Petrology
104, 645-667.

65



Grant, J.A. & Frost, B.R. (1990). Contact metamorphism and partial melting of
pelitic rocks in the aureole of the Laramie Anorthosite Complex,
Morton Pass, Wyoming. American Journal of Science 290, 425-472.

Guidotti, C.V. & Dyar, M.D. (1984). Ferric iron in metamorphic biotite and its
petrologic and crystallochemical implications. American Mineralogist
76, 161-175.

Hansen, E.C., Janardhan, A.S., Newton, R.C., Prame, W.KB.N. &
Ravindrakumar, G.R. (1987). Arrested charnockite formation in
southern India and Sri Lanka. Contributions to Mineralogy and
Petrology 96, 225-244.

Henk, A., Franz, L., Teufel, S., & Oncken, O. (1997). Magmatic underplating,
extension and crustal reequilibration — insights from a cross section
through the Ivrea Zone and Strona-Ceneri Zone/ northern Italy.
Journal of Geology 105, 367-377.

Janardhan, A.S., Newton, R.C., & Smith, J.V. (1979). Ancient crustal
metamorphism at low Puzo: charnockite formation at Kabbaldurga,
south India. Nature 278, 511-514.

Janardhan, A.S., Newton, R.C. & Hansen, E.C. (1982). The transformation of
amphibolite facies gneiss to charnockite in southern Karnataka and
northern Tamil Nadu, India. Contributions to Mineralogy and Petrology
79, 130-149.

Johannes, W. (1984). Beginning of melting in the granite system Qz-Or-Ab-
An-H>O. Contributions to Mineralogy and Petrology 86, 264-273.

66



Kushiro, I. (1976). A new furnace assembly with a small temperature gradient

in solid-media, high pressure apparatus. Camegie Institution of
Washington Yearbook 68, 231-233.

Lamb, R.C., Smalley, P.C., & Field,D. (1986). P-T condition for the Arendal

granultes, southern Norway; implications for the roles of P, T, and CO,
in deep crustal LILE-depletion.

Journal of Metamorphic Geology 4,
143-160.

Le Breton, N. & Thompson, A.B. (1988). Fluid-absent (dehydration) melting of

biotite in metapelites in the early stages of crustal

anatexis.
Contributions to Mineralogy and Petrology 99, 226-237.

Mattioli, G.S. & Bishop, F.C. (1984). Experimental investigation of the

chromium-aluminium mixing parameter in garnet.

Geochimica et
Cosmochimica Acta 48, 1367-1371.

Montel, J.M. & Vielzeuf, D. (1997). Partial melting of metagreywackes, Part 2.

Compostions of minerals and melts. Contributions to Mineralogy and
Petrology 128, 176-196.

Newton, R.C. (1986). Fluids of granulite facies metamorphism. In: Walther,

J.V.,, and Wood, B.J. (eds.) Fluid-rock interactions

during
metamorphism. Springer-Verlag, Berlin, 36-59.

Newton, R.C., Aranovich, L.Ya., Hansen, E.C. & Vandenheuvel, B.A. (1998).

Hypersaline fluids in Precambrian deep-crustal

metamorphism.
Precambrian Research 91, 41-63.

Nijland, T.G., Touret, J.L.R. & Visser, D. (1998). Anomalously low

temperature orthopyroxene, spinel, and sapphirine occurrences in

67



metasediments from the Bamble amphibolite-to-granulite facies
transition zone (South Norway): Possible evidence for localized action
of saline fluids. Journal of Geology 106, 575-590.

Paktunc, A.D. & Baer, A.J. (1986). Geothermobarometry of the northwestern
margin of the Superior Province: Implications for its tectonic evolution.
Journal of Geology 94, 381-394.

Pan, Y., Fleet, M.E., & Williams, H.R. (1994). Granulite-facies metamorphism
in the Quetico Subprovince, north of Manitouwadge, Ontario.
Canadian Journal of Earth Sciences 31, 1427-1439.

Pan, Y., and Fleet, M.E. (1996). Rare earth element mobility during prograde
granulite facies metamorphism: significance of fluorine. Contributions
to Mineralogy and Petrology 123, 251-262.

Patifio Douce, A.E. (1993). Titanium substitution in biotite: An empirical model
with applications to thermometry, O, and H,O barometries, and
consequences for biotite stability. Chemical Geology 108, 133-162.

Patifio Douce, A.E., Humphreys, E.D. & Johnston, A.D. (1989). Anatexis and
metamorphism in tectonically thickened continental crust exemplified
by the Sevier hinterland, western North America. Earth and Planetary
Science Letters 97, 290-315.

Patifio Douce, A.E. & Johnston, A.D. (1991). Phase equilibria and melt
productivity in the pelitic system: implications for the origin of
peraluminous granitoids and aluminous granulites. Contributions to
Mineralogy and Petrology 107, 202-218.

68



Patifio Douce, A.E. & Beard, J.S. (1994). H»O loss from hydrous melts during
fluid-absent piston-cylinder experiments. American Mineralogist 79,
585-588.

Patifio Douce, A.E. & Beard, J.S. (1995). Dehydration-meiting of biotite gneiss
and quartz amphibolite from 3 to 15 kbar. Journal of Petrology 36,
707-738.

Patifio Douce, A.E. & Beard, J.S. (1996). Effects of P, f(O,) and Mg/Fe ratio
on dehydration melting of model metagreywackes. Journal of
Petrology 37, 999-1024.

Patino Douce, ALE. & Harris N. (1998). Experimental constraints on

Himalayan Anatexis. Journal of Petrology 39, 689-710.

Percival, J.A. (1983). High-grade metamorphism in the Chapleau-Foleyet
Area, Ontario. American Mineralogist 68, 667-686.

Peterson, J.W., Chacko, T. & Kuehner, S.M. (1991). The effects of fluorine on
the vapor-absent melting of phlogopite + quartz: implications for deep

crustal processes. American Mineralogist 76, 470-476.

Phillips, G.N. & Wall, V.J. (1981). Evaluation of prograde regional
metamorphic conditions, their implications for the heat source and
water activity during metamorphism in the Willyama Complex, Broken
Hill, Australia. Bulletin de Mineralogie 104, 810-810.

Pickering, J.M. & Johnston, A.D. (1998). Fluid-absent melting behavior of a

two-mica metapelite: experimental constraints on the origin of Black
Hills granite. Journal of Petrology 39, 1788-1804.

69



Ravindra Kumar, G.R. & Chacko, T. (1986). Mechanisms of charnockite
formation and break down in Southern Kerala: implications for the
origin of the South Indian granulite terrain. Journal of Geological
Society of India 28, 277-288. '

Ravindra Kumar, G.R., Srikantappa, C. & Hansen, E.C. (1985). Charnockite
formation at Ponmudi in southern Kerala. Nature 313, 207-209.

Rosenberg, P.E. & Foit, F.E., Jr. (1977). Fe®*- F avoidance in silicates.
Geochimica et Cosmochimica Acta 41, 345-346.

Rutter, M.J. & Wyllie, P.J. (1988). Melting of vapour-absent tonalite at 10 kbar
to simulate dehydration-melting in the deep crust. Nature 331, 159-
160.

Sack, R.O. & Ghiorso, M.S. (1989). Importance of considerations of mixing
properties in establishing an internally consistent thermodynamic
database: thermochemistry of minerals in the system Mg,SiOs4-
Fe2Si04-SiO2. Contributions to Mineralogy and Petrology 102, 41-68.

Santosh, M. & Yoshida, M. (1992). A petrologic and fluid inclusion study of
charnockites form the Lutzow-Holm Bay region, East Antarctica:
evidence for fluid-rich metamorphism in the lower-crust. Lithos 29,
107-126.

Schreurs, J. (1285). Prograde metamorphism of metapelites, garnet-biotite

thermometry and prograde changes of biotite chemistry in high-grade
rocks of West Uusimaa, southwest Finland. Lithos 18, 69-80.

70



Skjerlie, K.P. & Johnston, A.D. (1993). Vapor-absent melting at 10 kbar of
biotite- and amphibole-bearing tonalitic gneiss: implication for the
generation of A-type granites. Geology 20, 263-266.

Skjerlie, K.P., Patifio Douce, A.E. & Johnston, A.D. (1993). Fluid-absent
melting of a layered crustal protolith: implications for the generation of
anatectic granites. Contributions to Mineralogy and Petrology 114,
365-378.

Spear, F.S. & Florence, F.P. (1992). Thermobarometry in granulites: pitfalls
and new approaches. Precambrian Research 55, 209-241.

Srikantappa, C., Raith, M. & Spiering, B. (1985). Progressive
charnockitisation of a leptynite-khondalite suite in southern Keraila,
India — evidence for formation of the charnockites through decrease in
fluid pressure? Journal of Geological Society of India 26, 849-872.

Stevens, G., Clemens, J.D. & Droop, G.T.R. (1997). Melt production during
granuiite-facies  anatexis: experimental data from “primitive”
metasedimentary protoliths. Contributions to Mineralogy and
Petrology 128, 352-370.

Thompson, A.B. (1982). Dehydration-melting of pelitic rocks and the
generation of HO-undersaturated granitic liquids. American Journal of
Science 282, 1567-1595.

Touret, J.L.R. (1985). Fluid regime in southern Norway: The record of fluid

inclusions. In: Tobi, A.C. & Touret, J.L.R. (eds.) The Deep Proterozoic
Crust in the North Atlantic Provinces: Reidel, Dordrecht, 517-549.

71



Trennes, R.G., Edgar, A.D., and Arima, M. (1985). A high pressure-high
temperature study of TiO. solubility in Mg-rich phlogopite: implications
to phlogopite chemistry. Geochimica et Cosmochimica Acta 49, 2323-
2329.

Truckenbrodt, J., & Johannes, W. (1999). H,O loss during piston-cylinder
experiments. American Mineralogist 84, 1333-1335.

Vielzeuf, D. & Holloway, J.R. (1988). Experimental determination of the fluid-
absent melting relations in the pelitic system. Consequences for
crustal differentiation. Contributions to Mineralogy and Petrology 98,
257-276.

Vielzeuf, D. & Montel, J.M. (1994). Partial melting of metagreywackes. 1.
Fluid-absent experiments and phase relationships. Contributions to
Mineralogy and Petrology 117, 375-393.

Waters, D.J. (1988). Partial melting and the formation of granulite facies
assemblages in Namaqualand, South Africa. Journal of Metamorphic
Geology 6, 387-404.

Windom, K.E., & Boettcher, A.L. (1976). The effect of reduced activity of
anorthite on the reaction grossular + quartz = anorthite + wollastonite:
a model for plagioclase in the earth's lower crust and upper mantle.
American Mineralogist 61, 889-896.

Young, D.A. (1995). Kornerupine-group minerals in Grenville granulite-facies

paragneiss, Reading Prong, New Jersey. Canadian Mineralogist 33,
1255-1262.

72



Appendix 1
Pressure Calibration

The reaction,

Ca3A128i3012 + SiOz = C&AleizOg + 2CaSiO3 - (1)
Grossular Quartz Anorthite Wollastonite

was used to check the pressure calibration of the piston-cylinder apparatus on
which the fluid-absent experiments were performed.

Starting material

The starting materials (provided by Professor Robert Luth) for the calibration
experiments was a synthetic mixture containing 68.54 mg of grossular
(synthesized from stoichiometric glass with 3 wt.% H>O at 20 kbar and 1000°
C for 8 hours), 9.22 mg of quartz, 42.43 mg of anorthite (crystallized from
stoichiometric glass at 1 atm. and 1400° C for 48 hours) and 35.32 mg of
wollastonite (crystallized from CaCOj; + SiO, mix which was heated in
increments at 600° C (3 hours),1150° C (17 hours) and at 1625° C (1.5 hours).
The quenched product was ground and heated again at 550° C (1 hour) and
then at 1150° C (17 hours) (Luth, pers. comm.). This was quenched and
ground and finally heated at 1150° C for 24 hours). Approximately 10 mg of

the mixture was used in each experiment.

Experimental approach
The same experimental procedure was followed for the calibration

experiments as in the fluid-absent experiments (3/4-inch assembly, NaCl —
pyrex pressure medium, gold capsules, hot piston-out etc.). However, the
samples were breath moistened before each experiment (by breathing into the
capsule containing the sample before the final welding). The starting materials
were characterised by X-ray diffraction. Experiments were conducted at 1000°
C and at 12 and 13 kbar for one week. After quenching the capsules were
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checked for tear. The run products recovered from the capsule were ground
in an agate mortar. The powder was then characterised by X-ray diffraction.
The diffractogram was compared with that of the starting mixture to ascertain
the direction of the reaction progress. Reaction direction was determined by
large (>40%) changes in the ratios of the strengths of anorthite and grossular
peaks of the run products compared to that of the starting mixture. The strong
reflections of anorthite at d=3.18 was compared to the reflections of grossular
at d= 2.65. The wollastonite peaks were not used because of possible
changes in peak heights due to orientation effects. Gold was the only
extraneous phase observed in the quenched charges, which might have been
introduced into the charge during the recovery of the sample from the gold
capsules. The pressure bracket at 1000° C was compared with the position of
(1) determined by Mattioli and Bishop (1984) and Windom and Boettcher
(1976) (Fig. A1).

M8 Grossular and quartz grew  Mattioli and Bishop (1984)
14000 | ~ -

B Anorthite and wollastonite grew

T

12000

Grossular + Quartz

10000 Anorthite + 2 Wollastonite

Pressure (bars)

8000

6000 1 3 L n L 3
800 850 900 950 1000 1050 1100

Temperature (° C)
Figure Al. Pressure bracket obtained for the reaction grossular +quartz

= anorthite + 2 wollastonite at 1000° C. P-T position of the univariant curve
from Mattioli and Bishop (1984).
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Conclusion

The pressure bracket obtained for reaction (1) is in agreement within errors to
the position of the reaction reported in previous experiments. There are no
discernible friction or anvil effects in this piston-cylinder assembly using salt
pressure media at 1000° C. Therefore, no pressure correction was applied to
the nominal pressures during the fluid-absent experiments. The reported

pressures are considered to be accurate within 500 bars.
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APPENDIX 8
Bmenite Compositions

Run No. RJ9 RJ-25 RJ-31 RJ-10 RJ-26 RJ-32
n 23 4 8 6 4 8
P (kbar) 7 7 10 7 7 10
TCO 950 1000 1050 950 1000 1050
SiO, 0.52 0.85 0.22 0.18 0.12 0.06
TiO, 50.46  48.38 5042 51.94 48.93 52.30
FeO 43.55 44.08 42.97 41.66 44.18 46.15
MnO 0.17 0.27 0.19 0.35 0.29 0.19
MgO 2.34 2.69 2.77 343 3.32 1.06
ZnO 0.10 0.07 0.04 0.04 0.07 0.05
Cr,0, 0.04 0.02 0.04 0.07 0.03 0.05
V0, 0.00 0.05 0.03 0.05 0.02 0.02
Total 97.14  96.35 96.60 97.59 96.91 99.82
Cations 3 (O)
Si 0.013 0.021 0.005 0.004 0.003 0.001
Cr 0.000 0.000 0.000 0.001 0.000 0.000
v 0.000 0.000 0.000 0.000 0.000 0.000
Fe” 0.042  0.099 0.054 0.026 0.133 0.025
Fe** 0.884  0.840 0.862 0.849 0.800 0.942
Mn 0.003 0.005 0.004 0.007 0.006 0.004
Mg 0.088 0.102 0.105 0.128 0.124 0.039
Zn 0.001 0.001 0.000 0.000 0.001 0.000
Ti 0.965 0.928 0.967 0.981 0.930 0.985

Fe* - calculated by charge balance.

86



APPENDIX 9
Glass Compositicns*

Run No. RJ-3 RJ-9 RJ-4 RJ-10 RJ-24
P (kbar) 7 7 7 7 10

TC O 850 950 850 950 1000

Si0, 73.06 71.78 72.22 71.78 74.65
TiO, 0.20 0.42 0.64 0.98 0.47
AL O, 15.03 14.96 12.25 14.21 14.2

FeO' 1.38 2.02 1.93 2.22 2.09
MnO 0.02 0.01 0 0.05 0

MgO 0.22 0.32 0.70 0.61 0.35
CaO 1.83 1.63 1.24 0.78 1.03
Na,O 2.70 2.84 2.88 1.19 1.22

K,O 3.65 4.26 4.19 4.87 3.71
Total 98.09 98.24 96.05 96.69 97.72

* - Average of 1-3 analyses.
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