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ABSTRACT

3
.

The bdlastic torsion' is characteriwd mathematlcally. as one of the classical boundary value
problems. Although well defined, ‘it .is generally ‘not ' trattable by existing analytlcal
methods for many practically lmportant multlply -.connected inhomogeneous cases. In the,
present study. the development of a solution method to cover more geﬁ’eral types of such
problem was first attempted and then the optimal configuration of a prescribed
cross-section: maximmng the torsronal rigidity under proportion constramts was -
consrdered '

1

The problem was formulated in terms of Prandtl stress function. . As the solution
procedure, the finite element method was émnployed in conjunction with a simple linear )
triangular element For the treatment of general multiply- cormected situations, two

mathematical approaches were also introduced, those being the transformation and the .
superposition methods. The optimality condmons were determined through the method
of numerical simulation of the membrane analogy .’ . computer algorithm was
xmplemented based on the entire numencal procedure

" The accuracy as well as the rehabrhty -of the developed. solutmn procedure was

confirmed through various comparative numerrcal and expenmental case studies. The

hresults indicated that the’ numerical procedure- is versatile and easily applicable to any
“arbitrary multiply- connected inhomogeneous  situations and also that the optimization
' procedure is useable in an engineering sense. The solution procedure, thus verified, was

-then applied to some representatrve cases in torsion, and the optimal solutrons obtamed

were presented both in the form ol' tables and figures.

lt was observed from the results obtained that t‘ opumahtres of non- circular
cross-sections_ tend to become as close as possible in shape to that of the crrcular case.
For all cross- -sections of different geometries in common, the. optimalities of ‘the cavity

and the remforoement were generally opposrte 10 each other in their appearances.

The solution procedure and the result of the present study may’ be applied through

analogres to the analysis of a number of other physical phenomena obeying srmnlar linear

partial differential equations. .
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f . . .
T | ‘ . .
f a - 1 INTRODUCTION o
' 4
| 1.1 HISTORICAL REVIEW ON THE PROBLEM DR /
[ The Torsiorx'PrOblem 1 . Torsion is lnvolved in a large class of engineering problems in | /’(.
a diversity of w}rys. and‘ it is one of the well-defined classical problems in the field of /
- | . " R . Z
apphed marhemaucs R ‘ : B /‘/

9
Hrstoncally. the f irst mathemancal model of the 1orsron problem was due to Coulomb

[15]l in 1784 The general applxcabllrty of this old ﬂheory of torsion, however was. pul

" into quesuon when Navier [55] later found that- Coulombs assumption led to erryr(eous

l

results for non-circular cross secnons

It. was then by the mtroducuon of so- -called  semi- mverse method th't in " 1853"
Samt Venam [78] extended Coulombs theory and thereby- established a concrete theorerlcal
basxs for the marhemaucal treatmem ol' the problerg, The conclusr n amved at by

Samr Venam was thal the Lorsron problem can be reduced to a very 76mmonly appearmg T
| Dir_ich‘let'typeboundary valie problem. i f | /

[ Solutlons to the Problem ] Ever since. the ‘Saim-’Venant?é discovery. the torsion

problem has drawn a great deal of attenuon not only “from engmeers because of the direct

= pracueal 1mportance of appllcarron but also from mathemaucrans bccause of the purel)
theoretrcal 1mponance m relation ’to some other physrcal problems in the same'

. mathemaucal categor)
As a result of these contmued eff ons by various mvesugators thtough the hrstory of

“. classical theory of elasticity, solutions to most ol' the .pracrrcal problems are now avarlable

{
“for ma_ny simply-connected, isotzopic, homogeneous elastrc, pnsmauc and regular

S

T refers to the literdture number in the . References.



cr&s‘-s&cﬁoﬁs Nonetheless. there stlll remam 10 be solved a numbcr of prohlerns
\ lnvolving multlple connectton. amsotroey, inhomogenerty, plastrcrty. nonprtsmacy and/or

geometrtc trregulanty

The major approaches in the analysrs of the torsron problem have been l‘trst to ftr;d

analyttcal sqlutions, and then expertmental and numencal -

i

. » : . .
[ Analyttcal Approaches ] Analyucal methods were employed from rhe very begtnnmg as

the most natural way of obtammg solutrons to the torern problem

i . ‘2; i

}wrth more mathematrcal complereness Tms “was accomphshl ‘

~ multiply- connected cross secuons Followmg thrs~ was tlt

exact solutions for various srmple problems as is well summartzed’by TlmOSheIlko [77] or

Love [49] )
General accounts of the theory l‘or the - torsron of cross‘sechons involving
tnhomogenetty and amsotropy were also gtven bv Muskheltshvrh [53} and bv Lekhmtskn '
.. [47] respectively.. More recently, a solution l"or the to'rjton’ of mulu layered rectangularl -
cross- sectron was presented by Booker and Kmpornchar [6] and rhe torgﬁn' of ‘-the '
circular bar having multrple rings of crrcular holes was consrderecl by Kuo and Conway )
,E45] using the hypercrrcle method | | ‘
Generally, the exrstmg analytrcal soluttons are confmed to rather trivial case§ of
geometry and mhomogenerty without even consrdertng the mulUple connecuon Thts is
due mamly to the mathemat1cal difficultiés mvolved m dealmg with the govérnmg
differential  equations. _As a result, any further development in thrs dtrecuon in thev
solution of the torsron problem seems Vvery unhkely A ' s
‘[ Expertmental/y Approaches ] thh the r?hzauon of the hmttattons of the analyucal "

‘methods avar/able for the solutron of the torsion problem, expertmental efforts ‘were

\
T



employedbasedon various analogles.,., B

Most wrdely used among these was the membrane analogy whrch orrgrnally was .

\,suggested by Prandtl [62) m 1903. The pracucal applrcabrhty of thrs analogy to the
_ elastic torsion problem was conf 1rmed first by Anthes [y this was soon followed by
symemauc app‘hCauons 10 srmply- and then f rnally to muluply connected cross-sections by
Tay\lor and Grrffnh 115.76). |

As an altemauve to the membrane analogy, a hydrodynamrc analogy was also pr/esemed

by Pestel [7] For r.he plastic torsron problem, Nadar [54] proposed the sand-hill analogy.

-whnch larer was combmed wnh the membrane analogy 0 cover the elasuc plasuc torsron

problem. Extension of thrs ‘sand-hill analogy for the fully plasuc torsron of -

multiply- -connected secuons was'due to Sadowsky [68]
While sull of much rmportance especxally in connection wrth the vrsuahzauon of the

problem the expenmemal methods for the solution "of the torsron problem are now

essentially obsolete in practice because of the unavordable experrmemal difficulties and

- errors ihvolved.
[ Finite Difference Approach ]" The first numerical technicjue employed_ for the

approxrmate solutron of the torsion problem was the finite difference method

'w‘nen m 1938 they adopted this numencal approach for the solutron of rhe elasrrc plast|C/

torsron problem of srmply connected Cross- sections. The basis of therr approach Was

borrowed from the previous experimental methods More extenswe apphca_uon of the

numerical -technique - to. homogeneous cross-sections wrth both - srmply- and

Amuluply -connected boundanes was due to Shaw [70] Reccnt progress in thns category

includes the -examination of both homogeneous and mhomogeneous cross- secuons with .

s:mply and multiply- connecled boundarres by Ely and Zrenkrewncz [20]

)

Chrrsropherson and Southwell [11] became the proneer mvesugators in' this drrecuon /

Alrhough being powerful enough for simpler classes of problems the finite dif’ ference - f

method. is generally belreved not to be very suitable for the analysis of more advanced

7

A



o .= S ; ‘ ) . ) ; ) .
v : . , ) v .
. C — ' L v .
. ) ! ' ! R
: . . ) . N . e .

)

: typcs of problems. and hence not. preferred as a general rnethod ol‘ soluuon I

»partrcular for the torsron ‘problem, tlus is because of the unique dlff rcultres arisrng from
the specml requtrements in treatmg comphcated geometries rnultiple connectrons and/or

mhomogenertres of the' Cross-section.

1

.'--[ Finltc Element Approach ] An alternative numerical technique applied ,\to* the .

' approxrmate solution of ‘the torsion problem was the finite element method, which - offered
“much more versatility in many ways than the nval finite drfference method |

The l‘ irst rntroductton of thrs method to the soluuon of the torsrgp problem was by

urant [16] in 1943 for the torsron of a srmpl\eknected cross» ec ‘*' ) WFollowxng this,

there was a sequence of suggesuons and developmems -of vanou%ﬁni

ieg'e,ment;models
‘f or the analysrs of many drfferent types of problems in torsﬁ\ piecewise linear stress
f unctron ap_proach (was devrsed by Synge and ‘Cahill [74] for the %lutron of a hollow

square prrsm Ztenkxewrcz and Cheung [83] made a more general and \sxstematrc

. \,

: apphcauon of the same approach to the solution of hon;og)eneous and mhomogeneous
sectrons wrth isotropy. Based on the warping f unctron approach a drsplacement
- f ormulauon was also developed by l-lerrmann [33] and apphed extenswely by Hodge et al.

[36] in therr study of the elasuc plasuc torsion of prrsms wnth both simply- and

' 'multtply connected Cross- sectrons More recently. in an effort to overcome some of the

deficiencies ansmg from the use of. either the stress f unctron or the dtsplacement
' ' f ormulatton a hybnd stress approach was devrsed by Pian [59. 60] and f urther developed
by Yamada et al. [82] As well; a mrxed approach was mtroduced by Noor and: Andersen
[56] wrth the same purpose m mmd \ ' _

' Not only because of 1ts flexrbrlrty in the ‘mapping of more realrstrc complex boundanes

but also because of the ease of treatmg mhomogenerty and multrple connectron. ‘the fi 1n1te

'element method is consrdered to be the best approach avarlable for the soluuon of the ,

torsion problem therefore thrs numencal techmque serves presently as the most widely

used approxrmatton procedure for the nalysrs of the torsion problem

.



12 PREL[MINARY TO‘THE PRESENT srubv |

[ Torsion as an Optimlntlon Problem ] lt is often the case that the opttmtz.auon of a'
. certain engmeermg system can, be consldered rrgorously only after a sufficient background .
‘ knowledge on the subject has been estabhshed Of no less importance in this regard is
the avatlabrhty of parallel developments in a wxde vanety of. other related fields.

Unlxke many other opumizanon problems in the same area of solid mechamcs. the
_ ulttmate optrmal solunon to the torsion problem was, in a way, known already and had
']been applted accordtngly 10 the structure mechamcs even long before the problem was(
‘precrsely formulated: the snmple circular shape is the one that provndes anv lSOUOplC:

. cross-section with the maxlinu_m torsional rigidity under the.area constraint. -

O

[ Rene\wed Interest on the Torsional Optimizatlon ] - M{hile the ,early‘ realizat'ion that the
circle is optimumv among. various -cross-sectional shapes may be partof : the 'answer' to why _
the optxmlzauon problem for non- c1rcular secttons has not yet been fully exammed the‘
more obvrous reason is the absence of general mathemattcal methods avallab'le ‘f‘or the
, treatment of .this type of - problems As structural elements Wthh are comphcated m
geometry as well as in composmon are already in very common use " the investigation of.
' optrmtzatron problems of this sort becomes much more tmportant )
[ Various Studies on the Torsional Optimir.ationv ] The optimlzation of many different
| aspects of the torSion problem have. been' considered by uSing several different methods at"t ‘
vanous stages during the theoreucal developrnent of the problem. |
< The first recorded mvestrgators in thts direction are. Polya et al. [61] who in 1951
considered - the optimal shape of the extemal boundary of a sohd elastlc prism under‘

torsion; they thereby made a theorethal conf u‘matron that the cnrcular pnsm has the

. maximur__n tors:bnal rigidity among all the isotropic solid ones of the equal crossfsectlonal
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area. A snphml method was 5 introduced by Mioduchowski [50] for, the determination of |
the optimal inhomogeneity of a perfectly plastic prismatic bar. Klosc7mcz and Lurie [43]‘ o

also examined the optimal inhomogeneity of an elastic prism made of ;two materials which -

are different in shear modulus ln the investigatron of the optimization problems of
anisotropic elastic bars ‘and -of homogeneous bars with rnultiply-oonnected sectrons.‘

. ' Banichuk [3] employed a perturbation technrque and as a result revealed that for elastic

bars of transverse amsotmpy the elliptic cross- -gection has the maximum torsional rigidity -

'among all the sections of the same area.  Recently, a complex potentral method was used

by Kurszin and Onoprijenko [46] to i'ind the Opttmal shape of ﬁe external boundary of

~ an isotropic bar, while a shape parameter method was applied by Derns [17] to determine R

the opttmal shape of the internal and the erttemal boundarres of an elastrc bar Very
recently, in the study of the opumal jump tnhomogenetty ol' composite- bars, Faulkner

Mroduchowskr and Hong [21,22] used the finite element method based on the hybnd stress

. approach In ‘th‘is case, the optimtzatton problem was formulated as .a variational
Y . ,

. problem to derive a necessary cbndiuon for the optunahty

While - the optimal mhomoserteivy of a cross- -section under torsion has been examined

extenswely. no optimal rnultrple connectron of such a problem has yet been investigated

'not to mention the opttmahty with both the mhomogenerty and the multtple -cofinection

together. The resolutron of these unsplved problems is entirely dependent upon the

development of versatrle'mathemattcal means for the trea_tment of multiple-connection—in

_mathematical terms.' a method to dea! with the multiple boundary'value problem.

[ The Present 'Smdy ] | 'l'he present study is concerned with the problem of optimization

of a multiply¥connected inhomogeneous cross-section which with a prescribed shape of the

) .external boundary is subJect to elastic torsron

" Considered first in the study is the theoretical aspect together wrth the general

: formulation of the problem The solutror‘\ procedure employs the frmte element approach ,

based on the stress function formulation in close oonjunctton wrth the membrane analogy

~
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A.s well, two mathematical 'meth'ods for' the treatment of multiﬁle-connection “are
mtroduced in the present study, those being the mhsf ormauon ‘and <the superposiuon o
methods. The copdmop of optimall;y is determined . through the implementation of
numericéf -'sj"mlilation qf the memb;arie analogy.k "A computer a.lgorith‘m is also developed
atcgrdingly on the basis of the foregoing procedure. |

In order to verify/ the eblution procedufe developed, itv is applied to several example
problems which either have analyucal soluuons or have been solved using numerical
approxnmauon techmques by previous mvestigators Optxmal solutions to a few selected
typncal Cross- secuons of practical 1mportance dre then obtained’ by using the procedure for
some represemanve shear modulus rauos Bemg compared with those of the circular
case, these numerical Tesults are summanzed both in the_form of tables and figures. The
_limitations of the solution meth‘od and of the results are detailed in the discussion part,

which 1s followed by overall conglusions drawn. from the present studyQ
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2 STATEMENT OF THE PROBLEM

T — —

2.1 'THQORETICAL BACKGROUND

‘[ Mathematical Model of the Problem ] Shown in Figure 2.1.1, a long, isolated prism

is subject to a pure torque applied at its both ends iq'a rectangular cartesian coordinate

_system (x,,2). It is assumed that the prism has no variation of its geometry and of

“material properties along the entire length’ and- that it behaves only within the elastic

!Ei*’,

range.

Figure 2.1: Torsion of a Multiply-Connected Inhomogeneous Prism .

L4



v

G =Glzy) =G, (z,y) € R,,

21
The apphcauon of Samt-Venam's principle allows thgzd®ai N b d condition to
be 1gnored As a result, the state of the def ormaud o fassumed to be

independent of location along the axis of twist with the result that' the problcm simplifies
mathematicall)' to a two-dimensional one. It follows. therefore, that the behaviour of |
" the prism under torsion can be described completely by examination of any generic’

cross-section such as the one illustrated in Figure 2.1.2.

[ Formulation of ‘the Probléﬁ; ] As is generally the case \flor all elasticity problems, it is
necessary that an accepiable solution to this torsion of a ‘prism should also simultaneously
satisfy the six suain—displacement relations, the _six stress—strain relations, the three
equauons of. equxhbn‘m and possnbly the six compatibility equations. In addition, the
interface and the boundary condmons pamcular to this problem must be consxdcred at the
same time.

With the general formulation bascd solely on these equatjons and conditions,
considerable mathematical difficulties are unavoidable for a direct ‘splution. In order to
bypass these dif ficulties, the'scmi-inverse formulation of Saint-Venant will be employed.
Under this hypothesis, the cross-_section 'experience§ a combined deformation of both
in-plane rotation and out-of -plane distortion, ih which the latter part is characterized by -

the unknown warping function:

P

vEPlny , (2.2)

This leads to the assumption of the displacement vector (¥ v wj -in Lhc»form:
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'. where a denotes the angle of twist per unit length of the prism.

The formulation of the problem hexufter is based on this pre-determined form of‘
displacement vector. Asa consequence. the need to check the six compatibility eqnntions\
is eliminated, 'and the following can be identified as the equations and conditions to be

satisfied by the assumed displacement sqjution:

h EQUATIONS OF ELASTICITY
(1) Cauchy's Suiin—Displaeement Relations. 4
(2) Generalized Hookes Law.
(3) Navier's Equations of Eqmlibnum R
INTERFACE CONDITIONS
'(4) Static Equilibrium at Each of the Interfaces.
(5) Displacement Continuity across Each of the Interfaces.
BOUNDARY CONDITIONS |
(6) No Traction on Every Free Surface.
(7) Single-Valued Displacement along Each of the Contours.
(8) No Resul{ant Force on the Cross-Section. | \
(9) Resultant Mon_x-ent—-Applied Torque Equivalence on the Cross-Section.

[ Strair—Displacement Relations ]  The six strain—displacement relations, when
combined'viith 'the displacement expression of Equation 2.3, reduce to:

€33 a 9 ' “ ay’ |
Ha 0 &= A 24)
¢ 2 0 i P8 2 vy ’
vz T it’a? s ' z+—a-;
: o

where €ss and €ys are the two non-vanishing components of the strain tensor.
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[ Stress—Strain Relations ]  Subgtitution of Equation 2.4 into the six elastic

* where s and ws are the corresponding stress ‘tensor components.

R
. f ) ”
[ Governing Differential Equation ]  Under the absimption that the inertia effects and
the body forces applied to the prism are negligible, the three equations of equilibrlum

together with Equation 2.5 then yield the following Laplace equation:

. 2 ) ' .
aveviysdts ‘:f-o , | (2.6)
An alternative form of this .expmsion—:hg Poisson’s type—f urnishes several distinct
advantages such as the considerably simplifggd b'oundary conditions and the lvailability of
various analogies for the visualization of the problem. This can be obtained through the

introduction of the Prandt] stress function
=0y @.n
In this'case, the two non-zero components of the stress tensor are defined as first

derivatives of the stress function in such a way that the equattonrof‘ equilibrium are all

automatically satisfied: C o .
4 \ ' K\
Tes 2‘; : -y -+ ?.?_
: _ oy 9z
= = QGa 8¢ ‘ : (2'8) )
Tys a¢ z + —_— = ‘
8z dy

i

The magmtude and th\ direction of the resultant stress at any point thus are given

' regpectively by

H-\/—,-\/ 35) o9

Tas G o Cas g: \
11" = Gal 25)
T 0 . (e €2 _ z+4 3;
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o ) > '-l — 9_‘; ' -a-g 5 TR : ;, LR u : - S
Lt = tan [ 3y 7 ] : \(2.10)

Combination of Equations 2.3, 2.5 and 2.7, and elimination of the warping function from
these by appropriate diff erentiation and subtiaction yield the f’ollowing linear partial
differential equation of elliptical type: ' / | "

9 (.108¢ 16¢
8:(6‘8:)' (ca,,)”‘* 0 (211)

This is the governing differential equation of the torsion of a prism in terms of the

Prandtl stress function, In the event of the homogeneous cross-section, it can be easily

seeowthat this reduces to a familiar Poisson’s equation:.

J . \ - : .
i I3
!

Ap=Vig= &¢ +»i.—‘-:i = -2aG i (2.12)

The analogy of Equaiion 2.12 to the one that represents the inflated surface of a thin

elastic membrane is now apparent by identifying:

p=¢, p=2 & T= ) g - (2.13)

Q=

where ¥ is the transverse deflection of the membrane surface, p the external pressure
. | .
apphed on it, and T the tension per unit length of the membrane.-

[ Equilibrium at Interfaces ] At each of the interfaces. where ‘discontinuous vana\tqs of
the material properties occur, the condition of static equnhbnufn requires that the stress
. components normal to the interf: ace'be equal not oaly in magnitudc but also in direction,

3

i.e.:

3¢ 3¢ SPURSSI
-5’—)_=-a-’-)+  (nwy)e€L, i=12---NI (2.14)

1



where s is taken along the path of the curve; and the subscripts, - and +, imply the
imrd uud the:outward: dimﬂom to)ho surface, respectively. ‘It may be shown that this -
condition can be satisfisd easlly by making:

L2
-
-

H-md)e (e, vml2 N ()

[ Displacement Contl_nulty across Interfaces ]  Becausg a perfect bonding is assumed to
exist at each of the interfaces, there is an additional réciuircﬂlem }or the continuity of .

"

axial displacements: ‘ Sy

a dw\ ' |
‘8_':1) 8“") (:'y) € In 1=1,2 Nl (2.16)

Upon substitution of Equations 2.3, 2.5 and 2.7, this expression becomes, equivalent t0:

| oo | R
1d¢ 13¢ ) .
aa‘;)-"aa—u),. () €4 1=12 NI 217

where . is the unit normal vector directed outwards to the interface.

[ No Traction on Free Surfaces ] The condition thht every free lateral surface of the

priNsubjcc‘x to no normal component of the resultant shear siress yields:

" dy .
rv=| ‘-;% -’ %2 :‘z = ;% =0 (2.18)
—I.; ,
or equ;valently:
¢ = Constant (z,y) €C,, =12 NC “ T .(2.19)

The shear stress distribution ‘across the cross-section is not affected by the value of each
of these contour constants. Hence, theIte is no loss of generality even though one of the

constants is set to zero such that:

-
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: where d' are unknown boundary constants

4 ‘ g

In: the membrane analogy. this. requrrement rmposes a constant deﬂectron on the

' . rnl’lated surface along each"’of the boundary contour curves It happens that every one of

" the mternal contours eyloses the cavrtv reglbns wrthm each of these Tegions, the shear
modulus can be asSumed to be zero. hence the stress functron accordmgly bemg constant
| everywhere h follows, theref ore, that this condrtron further relates to the werghtless flat
pfates whrch wrth the same boundary shapes as the respective mternal comours are .

l‘loaung horrzontally on the top of the membrane surfaée . , ‘
. o D . s Lo . E ) . B R D
{ Smgle-Valued Drsplacements along Contours ] In order that the axial drsplacement is

smgle valued along each (’ f the bomndary contour lmes rt is necessary that the f ollowrng

- lrne rntegra_l ‘condition hold: ” 43%
f‘dw ‘f (a—wd + a‘}”a} —'o‘ g c i NC
, ._ Pl B—;y ’—“ | ‘(z,y) € hoT= 1,2 N o (2.21»)
By the use of Equations 2.3, 25 and 2.7, 'this“%hcan‘ be shown to Tesult in:
1 . [1( 3¢ - L n ]
f a-v‘l’,.ds = f 5( @y )ds - 2aA (I, y) GC,‘, = 112 : NC‘ . ' (222) ’

. 14
. .

o where 7. qs the tangenual component of the shear stress along the path, and ‘A the area

of the regrdn bounded by the closed curve. g i e

ln terms of the .membrane analogy. thrs expressron caf be mterpre”ted as the condruon

ol‘ verucal stat.rc equrlrbnum of the floatmg plate whrch was mentroned prevrously

14



[ l‘)o Resultant Force on the Cro&s-Section J-. The
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resultant shear force vector ¥V actlng /

sg{ .
on, the Cross- section under torsion can ~be determme&’ by S /,

| ve //[r,; s |dzdy =//‘[ Z_g.—_% sz;gQ V"(:c,y') ¢ R, (2.23)

where R, is the region epelosed by the external boundary curve G;. With the assistance

~of Green’s theorem, the result of this integration may be shown to be:

g

velv; V=0 @)

thus confirming—that the no-resultant-force condition is alwa;s “satisfied . on  the

cross-section.

o { Resultant Moment-—Apphed Torque Equlvalence ]

o

S ‘
Fin\ally; the requirement that the

. resultant moment M acting on - the cross- sectlon should be equal in magnitude to the

applied torque glves g

e[t (T 15 S (P ey wien am

'Ahgal.in’, application of Green's theorem yields:

i

_2[//¢dxdy‘+z¢. ] j

=2

(zy) €R «(2'.26)' B

\ o e

L From the wewpomt of the membrane analogy it can be easﬂy concluded that this is equal

in magmtude to twice thc volume bounded between the mflated surface and the xy plane

On the other hand thlS torsmnal momen‘l is hnearly related to the angle of twist per .

unit length of the pnsm thxough

5:-# [// pizdy + > A

=2

’ |||

. ¢

] (y)eR e

whete. Z is defined as the torsional rigidity of the cross-section. o,



[ Summary of the Formulation ] - In. formulating the torsron of a prism b) -end couples

‘a mode of deformauon was assumed It was shown, as a consequence that the soluuon '

of the’ torsron problem amounfs to ' the’ fmdmg of the Prandtl stress funcnon whrch

\

satisfies an elhpuc parual dlff erential equation. For the umque solution of the problem,

a sumcrent number of mlerface and boundary condmons were also denved accordingly.

With the stress fuyncuon solution obtained, the state of stress and the torque can be

readily determined. R - Q

Most of all vxsuahzauon of the problem was found possrble by the mtroducuon of the

w0

: analogy of the inflated membrane, whrch may " be further -extended to\ various freld

’problems such as the potenual flow, the seepage, the conduction heat transfer, the electrrc

c_onducuon, elc..

16



-

" [ A Hollow Composite Cross-Section ]  Figure 2.2 illustgates a generic hollow composite

© cross-section under torsion.

. Figure 2.2: A Typical Hollow Composite Cross-Section under Torsion °

[ The Mathematical Model ] .l'n' méthematjcally mpdéll_ing the _mlilliply-conncc‘ted
composite cross-section above, it is assumed that the shear modulus function varies in the

%

followirig jump-fike manner: o

| (G (zy)€ Ao O ' SR
Gsei={ G  GEhea @  em
| G (@€ A o o
Where : |
0Go<Gi<G:  @®
and : o
A=A..;A;+A2 o L @)
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1T orsional Optimlzation 1 The optimiz.ation asoeet of the torsion problem derives from

the fact lhat the torsional rrgxdnty of a cross secuon varies dependmg on the cornposrtion

and also on ' the geometric configuration.: The objective of general torsronal

optimizations, 1herefore is to frnd the cross- secuonal shape for which the torsronal ,

nglduy attains the maximum value possible, i.e.: - ’ o ‘ S ' o ',.,e,;, g
N - N . - N ! N > |
e . o
Mnxumnu y . . . o
Z(G) —_— 2°(G" ) (2.31) -

[ Various Constraints Applicable ] Wrth no constraints apphed to the above

cross-section at all the optimal confrguratron wrll simply be a circular one havrng the

i cavity and the remforcement at the core and at the outer layer respectwely Otherwrse.

however, the opumal soluuons wnl take drfferem forms dependmg or

‘S nature of the

. 'constramts rmposed

There are mdeed a number of condxuons that can be used alone or: in combmauon as

18

such constramts These include the shape. the number and the location of the rnternal o

.. and/or the extemal boundary contours, and the matenal rnterfaces As well the
proporuons of the cavrty and of the remforcemenl can be varied, and these wrll result in

dif ferem opumal solutions.

[ The Constrainis Considered in the Present Study ]  Among all the above oossibilities

~two of the more fundamcntal constramts that yet best descrrbe rnany of the cornmon

' practrcal srtuauons are consrdered in the present study; the shape of the external boundary

- is. prescnbed while the prOpomons of the cavity and the reinf orcement. are fixed.

"The problern is, theref ore, equrvalent to seekmg the optimal dnstnbuuon of the cavrty

e .

and or the remf orcement xnsrde the specrf ied external boundary so that the- amoum of the

malerrals can be utilized most ef’ fectrvely whrle producmg the maximum torsroqgl r;rgrdrty __

,' possrble.

(2]
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'+ 3" PROCEDURE OF SOLUTION

e . -

It has been shown ‘in the prevrous chapter that, mathemattcally the solutton of the
torsion problem IS equivalent 10 seeking Prandtl stress functron over the CToss - sectton '
under consrderatton In fmdmg the explrcrt'form of lhlS functron however, there IS as

yet no known general analytrcal approach that is equally appltcable to any type of
k.S

assrgned cross_secuon Thts is. prmcrpally due to the mathematrcal difficulties in

srmultaneously sattsfymg the govermng differential equatron wrth the tnterface and the

boundary conditions.

"[ Finite Element Approach ] Through the history of “torsional analysrs there have

emerged nevertheless several methods of solution. The most powerf ul among. these, as
was remarked earlrer is the t' tmtc element approach lndccd for the partrcular problcm

of torsion, this elementmse -formulajed numencal technique as applied to’ the exact theory

. vprovrdes a number of advantages over any other methods. These include:

(1) No restriction on. the geometrrc confi tgttratton of the cross- secuon
' which can be dealt with. '

(2) No specral treatment necessary
for tnhomogeneous as well as for multrply -connected srtuatrons

(3) ~ No consideration of interface conditions required
: because of 1dentrcal satrsfactron

(4) No hmttatron on: the freedom of chorce of element shapes ’
" for various problems of different characteristics.

. Selectton of the Element ] As for the sa!ectron of the element type in connecttdn wrth _

the frmte clement approach, there are basically two alternatives. ' Etther of these two
opttons—-a large number of simple clements or a “smaller ‘number of higher-order

elements——leads to about the same level of accuracy m approxrmatron However for-

19
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more general torsion problems in which cornplicated irreéularity of geometry, interface

and muluple connecuon are involved, it can be concluded that the former alternauve. i.e.

‘ usmg a lmear mangular element for mstance is much better suited. This, is especrally

the case because not only the. drscretrzauon of the cross- section mto more elemenrs means

' better modellmg of curved mterfaces and tbundaries, but it also helps later in obtaining

better approximated optimal soluuons of ‘inhomogeneity and of muluple connectron.

[ The Present Solutlon Procedure ] In accordance with the precedmg consrderanons the
. present study employs as a soluuon procedure the finite element approach usmg‘a lmear
cothant strain tnangular element

In this connecuon the first section following is concemed wnh the transformation of
the previous exact formulatibn into a series of appropfriate_ finite element. relauonshrps._
As an important supplerneni to this, the next sectiorr is devoted.to the mat_heruatical
“methods for the,. rreatment of muluple cormectxon, Then, aleo described is the procedure
adopled for the determmanon of the opumahty condmons with mhomogenerty and .

multiple- connecuon The last section presents the orgamzauon of the computer program

that ‘carries out the entire numerical -procedure implemented for the solutron of ‘the.

' problern.

.

" g
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3.1 FINITE ELEMENT FORMULATION

[ Piscretization of the Solution Domain )  As illustrated in Figure 3.1.1, a typical
cross-section under torsion is subdivided mlo a series of small tnangulu elements. In
this finite element division, each of the consmuem elemems anil nllo each of the

- associated nodal points are numbered arbitrarily 1.to NE and 1 to NP, resrecuvely.

e

Figure 3.1: Finite Element Representation of a Cross-Section under Torsion



22

The v'd‘iécrctization of the ‘fegion is performed in such a way ‘thal:there‘ is no discontinuous
wariation of material properlics within any of the elements. ,.As 5 result, each of the
mtcrfaces or the boundary curves can be easily approxxmaled by a simple sequenual
connccuon of the relevam element edges Morec‘rer ll can be noted consequcmly that

the reg:on may include as many different mhomogenemes and possibly cavities as the

pumber of the lotal and the inner elements, respectwel)

[ Area Coordinate System ]  Consider an isolated generic triangular element in Figure

3.1.2, and let its three nodal points=~P,, P, and P,—be numbered in a counterclockwise

‘u

" manner 1 to NN, respectively.
In estabhshmg the stiff ness relationship of this element, it is more convemenl to work

with a local coordmale system. Such is precnsely the case with the area coordinates, in

which the three non-dimensional compon‘enls— 2, ., &, and 2, —are defined as:

£=(2 2 &= % 2 @Y

where A,. A, and A4, are the subdivided areas; and A is the total area of the element:

1 ‘
A = idet 1 z2 Yo (3.2) »

From the above definition of the new natural coordinate system, it can be easily observed
. _ . * :
that each of the components takes up any value always between zero and unity.

Furthermore, it follows immediately that:

NN ¢

Yoe =1 ' . BER)
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" As ‘an essential part of the definition of the mew coordinate system, the Cartesian
coordinates are now linearly related-to the area coordinates through the following sel of
transformations: | | :

. |
z = |8){z)

y = |2){y)

.4)

where (x,y) is the location of an arbitrary point wilhin the element; and {x} and {y} are

the corresponding nodal oodrdinate vectors:

"

lz) =12 22 25 ]
. o WEln v -

Combination of Equations 3.3 and 3.4, and then inversion of the resulting set of linear -

simultaneous equations yield:

bl

2, (1 , N "
{g, } I { } | 35)
2, y ‘ ,

This equation describes the linear transformation between “the Cartesian and the area

coordinate systems with [T] as the coordinate transformation maurix: . .

o1 b o Zays —Zsyz V2~ v__s.“," zy - 321

= | 1| . : _

IT) = 72l 82 b2 ) = gpiTwi—nivs s Vo noE (3.6)
as by ¢ Dy - Ni—Y Tz-n

. e e . . -



[  Finite Element Equation ]  Being rewritten’ in” matriX notation, the governing

differential equaifbn 1o be transformed into a finite clement equation appears as:

%

929} é+2=0 (@y)€E, i=12-NE (3.0
where
!‘:‘ .
S R ]
o WiElg ]

Assume now that the discretiiéd' e)efn‘!ntt ;‘m Figure 3.1 are all sufficiently small in size.
Then, the vanauon of stress funcdoa l wnhm each of them may consequently be
.approxnmaled by the followmg lmear trial f unction:

#= 9ley) = INJ{¢) () €E, i=12-NE (3.8)

> %
in which [N] is the shape function vector that describes the nature of change in the stress

function, and { ¢} the nodal stress function vector of the element:

3

INT=| N, Ni Ns | -

{6) = ¢ ¢2 65

Under the further assumption that, within the element, the shape functions take the same

form as the area coordinates:

IN] =12 (39
Since the stress functxon expression in Equauon 38 not bcmg an exact sohmon. when it
is subsututed into Equation 3.7, the right- hand side of the govcrmng differential equauon

becomes not necessary zero. Instead, an error function R which is “termed as the

Residual occurs such that:

=¥z 19} (N|{¢}+20 . () €Br i=12-NE (3.10)

L4
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_,E%,‘ln‘order‘lhat this residual is relaxed in an average sense within the‘elemenl region, the
weighted residual methods require that:

e d

M [/ WRdA=0 (zu)€E, i=12 - NE (3.11)

in which W is a set of appropriate weighting functions. “Depending on the choice of this
weightings, there are in reality several different approaches available to achieve the
requirement: Collocation, Subdomain, Least Square, Moments. Galerkin's, etc.. With

being chosen 10 be used over others, the Bﬁ\)nov-Galcrkin method enforces:

W = {N) o (3.12)

Thus. from Equatioﬁs 3.10, 3.11 and 3.12:

//WRdA /{N}[

In this equation, however, evaluation of the integral requires the application of the first

~

— ) -

C)l

{V}NI{s} +20] dA =0 S (3.13)

<
N

identity of Green’s theorem, which states:

' // w(V_-KdA:fw(ﬂ-u)ds—/ '(n-vw)lu (z,u) € R (3.14)

o
‘where « and thespectively any appropriate scalar and vector functions defined

continuously within the region, and v the outward-drawn unit normal vector:

w = w(z,y)

and

Q
<
Q
<
L



As a resultzit may be shown that Equation 3,13, with some rearrangement, is equivalent

to:

\

kL B1a] {6} = {%//.(IV‘HA}+ {fmduieie ) (319

. in which [B] is a usual transformation matrix:

8N, 8N, 0N, " b
Bl = {YHN) 8z 3z Oz 1 1 3 3 (3.16
B = = pu— 3.
’ l ] AN, ON; -8N, 24 )

8y dy oy

Equation 3.15 is the generalized matrix stiffness relation soughy for the finite element,

which in & compact form is:
K){¢) = (@), +{Q)s (zy)€E, i=12NE (3.17)

In this finite element equation, (K] is the generalized element stiffness matrix reprmnan '

the stiffness contribution of each of the elements:

t

i | b? +e] Biba+ejeg  bibs +ees

1 . ] 1 | ) e B
\ |K) = // ElﬁlrlBldA= rvel B b3 +cd  byby +cacy (3.18)

L .ym' ¢ bs + CS
[ .

{Ql, a generalized clement load vector due to the external forcing paraiﬁe;er _ove} the

clement region, which with the assistance of the integral formula: - B ~.-:i,‘
yl Arm AT ' 21'"“"‘ - ) . . ' Cee
//1\ NI'N3 dA—(l+m+n+2)'A (z,v) €Eiy, i=12---NE (3.19)

o



becomes equal to: - S - -
" . (1 o

Q= ZQf (Maa=20a81}  aeB, 1=r2 NE (320

, 1 ‘ N

and, finally.J,Q!s gnother generalized element load véctor due: to the internal reaction
parameter ;\)@)ﬂﬁ the neighboring elcment interfaces:

’

. _ 1 a¢ 1 . . .
{:2}3 = f{N»}E(g,;)ds = -Ejf{l\}r.da (r,y) €E, im= 12 NE (3'21).

The shear-strain circulation: round the element boundary is what is represented by this .
tefm; it is nevertheless an unknown of which the explicit evaluation is possible only after
the (] is obtained. '

Physical mterpretauon of the behaviour of the global assemblage ol‘ thse terms for the
entire solution domain freveals some imeresung general characlensncs of this parucular
portion of the load wubctor, and in lhls case it can be viewed clearly in terms of the
'smoothness of the approximated stress function -surface—more specit‘ icélly, ehe continuity
of the element used. , o ' "

If the element used is one that t_;ausﬂeez C- commmty such that the slope of the
approximated surface is cépunuous and umquely defmed everywhere across the element
interfaces, the reacnons pr;sem between the two ndjoinmg elements will be the same in
‘magnitude and the oppame in dxrecuon w:th the reason bemg that the magnitude of the
' tangenual ‘component of the.ashenr stress’ on the element boundary is dlrectly proponionar:
to the slope of the surface m ‘the normal direction. It follows therefore that, when the
:{Q}s terms are. all assembled into the global joad vectox. the eont:ilmwn rrom an interior
element is cancelled by similar eontributnons from olher adjoining clements for all the
“mtenor nodes of the solution domain. Because the external elements, however, are those /

with no such adjoining elcments these {Qlg terms for the external nodes 0se for

the internal ones, will not be cancelled even/a‘fter the/usenrﬁl(.e. and thus will result in
< — .
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non- zero values rega,rdless of t.he conunurty of the elenrem. Smce every one of those

~ external nodes. though happens to coincide wnh one of the boundary curves along whrch
boundary values are all prescnbed the [Q]s terms for the exlernal nodes on the other

-hand wrll be all removed while thosc essenual boundary conditions are berng rmroduced ,

As a re"sult no consrderatron%}’ the {Q}s lerms in the global matrrx suff ness equation is

t

‘-="neccSSa-r) rf at least C'- conunurty is 'sausﬂred by the elemenl used

7

Unforlunalely the lmear trfangular element whrch is bemg used in. the presem

l'ormulatron lacks such @ C‘-commurty, and therefore, for the mtemal nodes, the {Q}s

‘terms wrll not necessanly be cancelled out when assembled into the global load veetor

N

: Even. for this most coarse lrnear tnangular elemem however rt may sull be possrble to

..an approxrmate sense. thrs wrll becbme even more reahsuc as the mesh gets f mer When

" assume, as long as the mesh used is reasonably fine, that the C‘ conunurty is satisfied m‘

‘”the fmrle elemem mesh using. the mangular elemem rs sufl‘icremly fine, the order of '

mtu_de of the {{Q}]s also is very- -snfall’ as' compared w:th that of the {{Q}} " wlth the -

result thar its m{luence .on tlYe fmal solution vector {{¢}} rs nearly neglrgrble
+
For the reasons detarled above “the {Qlg terms are not rncluded in the subsequem

onsrderauon as well as m the' actual computauon ln fact regardless oﬁ the type of the

v elemenl used, the {Q}s lerm never appears i the l'rmte elemem equauon rs denved from

g the varratronal prmcrple ra'ther than fror‘r‘f the werghted remdual method as in the presenl

l‘ormulauon - R e

system matrix stiffness equations leads to:

S

Over thc enure C1oss- secuonal regron there are NE elements in total \v”lth each of - the
14

elemenls possessmg its mamx suf fness contrrbuuon as rs given by Equauon\ 3.17.

b

’I‘heref ore, ‘for the whole regron. assembly of all ol' these contnbuuons mto a set of

Lo . . . . A ) 3
. L

(KGN = (@) @werR 0 G@

& -

l o

SRR

Y
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Thrs is the generahzed global matrrx strl‘ f ness equatton of NP degrees ol freedom. In the g

equatron [[k]] is the generalrzed global strf l‘ness matrrx

o *
K] = D _IK); . - (3.23)
) . i=) ’ ' e S .
11 ¢} the glo'bal nodal stress.vl_'unction vector:‘ S P ‘
{{¢}} = Z{¢}l . I ¢ ¥ 1) R
C u-l ’ . )
and {{Q}} the generalized global load vector: ‘
P . ) : . . o ) - .
. {{Q}}-—Z{Q}A o ~ - (3.25)
VR i=1 o o

The assembly of the above system matrix equauon can be performed by the usual

o superposmon techmque After rnclusron of all the necessary constraints mto thrs system ‘

eéﬁauon ‘the resultrng linear srmultaneous equatrons can be solved by any standard

methods such as Gaussran( elimination or Gauss-Seidel iteration: -

' .

N =IKITEN  weR ()

thus eventually obtaining the tmlmown global nodal stress function vector expllcltly.

L3

[ Interface Condmons ] In: the torsron problem these conditions are essentially 19 make
'sure' thal there are ‘both static equilibrium at, and drsplacement con&rurty across . the

mhomogenetty mterf aces. As can be concluded from the previous f ormulatron both of

these requrrements are always satisfied if the stress function is contrnuous and umquely:

* defined along each of the mterface curves.

On the other hand such is the case wrth the fmrte element approach if there is

(C‘?-contmurty at element interfaces. It happens that, with the fi rmte element approach ‘

S



ct- conunmty 1s not parttcularly difT 1cult to achieve; so ts wnth the lmear constant -strain

“;.tnangular element whrch is used herem As a result for the present l‘tmte element .

l‘ormulauon the tnterl’ace conditions - are: always satrsfnd tdentrcally, hence requiring no- - .

. special consideration. ' - ,

© et
PR

‘ [ Boundary Condmons ] ‘With boundary values prescribed, the boundary condmons

appcarmg m torsional analyses are basrcally all-of essenttal type The same is also true

A

for the problems mvolvmg muluple -connection although for such cases a further study
--has to be accompamed on how to determme the unknown boundary values.

In almost all cases of torsronal analyses the f inite element process can easily handle the

prescrtbed boundary - condmons by srmply msertxng the values into the approprtate

ey
e o locauons in the system matrtx equatton.

[ Streﬁ Components ] The collversron ol‘ the stress components for the continuum lnto
. : equivalent drscrettzed elemental yalues follows a serres of strarghtf orward algebrarc
manipulations. In this cas;. the f inal expressmn ol,‘ ‘the stress lensor components; may be
obtamed in terms of both the nodal coor‘dmate and the nodal stress. function values for

\

the respective elements: S Lo

2y i=1,2.-NE - (3.2])

-

———————where [C), is the suess—stres% f UDCUOH transformatron matrix:

; lov'= 22, ' . ‘ (3'28):
"} =by o =ba —ba | : '
ﬁ- ]
B R
P ) o
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As what follows the above, the expressions of ‘the magnitude and the direcuon of the '

R

resultant stress on each of the elemcms ma) also be rewritten as:

¥ -
e NN"b2 ? " '
|Tl|' = 'T,\'T" = ’ﬁ Zl?j¢) ZCJ¢J ‘ = 1,2 e NE ' (3.29)
B ' Je=1 . ) J=l § ) :
and:

| L ] o .

L =tan”! =2 -7 (3.30)
. NN o : * ) .
O Dbei | g
e . b = [ . o

From the matrix stress tensor relation of Equation 3.27. it may be noticed immediately

that the assumpuon of the linear variation of the s‘-

“ . 'g‘

S )
rise to constant shear stresses everywhere wnhm the respecuve elemenls with the constam

)7

stress/stram mangular elemenl as the resull

N lntegral Conditions ]  The finite elemént reforﬁmlation of the .integral conditions

]

nvolves the transformauon of the line mtegral into an eqmvalenl hne summation:

1
G

i ME

As. = 2aA, gy =12 -NC . = (3.31)

g

.

In this  altered form of the mtegral conditions, the summauon is Laken along the NS
- element edges that coincide with each of the: NC approx:mated contour lines. On these

“element sides, As is the line length measured in a counterclockwise manner:

- ae =/l (0

[}
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| and the corresponding tangential component of the element shear stress, V.Ihic_h:. in

- combination with Equation 3.27 is:. S C | ok

7, = | cos§ sinﬂxj"“ =

4z ﬁ-ﬁhe]{&) I € X 73

Upon substitution of Equation 3.32 into Eqﬁagon 3.31, the final transfdnn;d_imegrél .

conditions are:

BLa: avlichieh=taa; jmr2oNC (G

-,

-

[ Torsaonal Rigidity ] For lhe torsaonal ngldlty equauon as well the conversnon :

requxres that the area integral over lhe enure cross secuonal region be transformed into-

an equivalent algebraxc summauon of piecewise numencal area mtegratmns perf ormed on

each of the elements. This yields: ., °

.‘ .. NC NE L, ' | o
Z= -I;i = '3 [}:d’.A{ +2// ‘.NJi{‘f’}idA-‘] SR (3.34)

" By making use of the _i_mégral formula in Equation 3.19, the elemental “area’ integral in

" this equation may be evaluated explicitly as:

I 4

f ‘II;J {¢}dA; % (2¢.)

=1
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e ‘With sﬁbstitution of this re.v;ult.- ,.the't..r.‘hn;f"or'me& éipicssion ‘o'f “the bldﬁiéhal.rigid‘lty now o

becomes:

: NE NN - . -
Z¢.A. -ZZ@A. \ ) (3.35)
-=l } iz=ljy=) : ) T

It happens with the optimization procedure used in the present study that all elements

within the region are of equal cross-seé;ional area. In.such an_cveh‘l. this eq‘ualioh may

also be.written alternatively as: S

ZJ."A%—AZw.c»‘] ' : - (3.36)

T

N where A is the constam elemem area and w the stress function we1ghtmg factor whlch
-,

~ - represents ?he number of elemems joining at the nodal point concerned.
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,* closed ~ontour (. Enclosed interior to this.

. non-intersecting internal contours C.Cy - - -

3.2 TREATMENT OF THE MULTIPLE-CONNECTION */

‘Shown in Figure 3.2 is a genenc CToss- sccuon of a prism under torsnon It is similar in

nature to the one upon whnch the formulatxon was based previously. With possible

inclusion of inhomogenemes inside, the cross-secuon is bounded first externally by a

uér boundary curve are a number of

e

- Figure 3.2: A Generic Multiply-Connected Region
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[ The Problem of Multiple-Connection ] | As was revealed from the formulation, the
" solution of this type of torsion problem can be made equivalent to the f inding of the ‘

stress function over the cross-section. To be more speciﬂ(.‘{he stress function solution

" 10 be acceptable must first of all satisfy everywhere within the region the equation:

3 (13¢) . 3 (184 _ ' | N
37 (G-a—;) +5;(63y-)+20—0 (z,y)‘e R; ) (3-37) )
\. .
AL the same elme the solution has to be one thal allows constam stress function values

along all of tﬂe NC boundary curves:

$=6; (zv)€C, 1=h2.NC T (33)

Among these constants, the one on the external boundary can be set arbitrarily to zero as
‘was noted earlier; then the mtemal ones are all remained to be delermmed as parl of the

solution: - Y

0 (zny)€Cy i=1 " (3.39)

¢ (zy)€C;, i=23.--NC - (3.40)

-

In this casé, the NC-1 unknown boundary constants are to be found in such a way that
~the following integral conditions are satisfied on each of the regions encompassed by the

contours:

LS

}{Ef,da f ( )d—2aA (z,'y)-EC.-, i’=~l,2:--NC _ (341)

[

[ Approaches for the Solufion ] . 1t is fundamentally the constant boundary value and its
related integral conditions on the internal boundary contours that require further '

consideration when multiple-connection is included within the '_region. For this
C o : R
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mathematically more involved sivtuation. however, thefe is no general analytical method yet
devised for the simultaneous solution with the gouemlng differential equaclon. “Theref ore,
treatment of these types of problerns ,has nearly always been done by ‘experimental or
numerical methods. 'None of the approaches,.in either of these two categories, however,

are without deficiencies deriving from their own characteristics.

[ Experlmental Approach ] The membrane or soap- fil:ﬁ analogy is rhe first and,
perhaps at the same time, the only cxpenmemal method used in the treatment of
muluple -connection in elastic torsron . |

In this approach an mtenor closed contour ns analogous to a floatmg weightless flat
disc whlcp takes: up an equilibrium position when placed horrzonrally -constrained on the
top'ol' an inflated membrane surface; from the analogy’s point of view, this means the
automatic satisfaction of the integral condition. The unknown 'boundar).l constant can
then. be determined from direct measurement of the vertical displacement of the disc.

In practice, however thi.s soap-l‘ilm analogy a}"ppears. not to u/ork quite sarisfactorily.
‘ The problem with it in the first place is that the l‘orce mvolved within the film surface is
- much too small in magmtude As a consequence it is never easy fp\r the soap-film to
overcome the gravity and the frrcuon forces which are unavordablc in actually performing
thc_lfloating disc experiment. Since it is thus almost impossible in reality to make the
behaviour of the disc determined by the static equilibrium only, the true sat.’is_faction of
the integral condition in such case also is always somewhat dubious.

Yet, what is even more discouraging than this is the actual f ormation of the soap-film
over a muluply bounded Cross- scctron. even when it is successful, with the pressure
applied to it, the soap-film surface remains stable only for a very short penod of nme
It was particularly in this connection that the zero-pressure film was concluded to be
_much more efficient for such eiperimentation by Taylor and Griffirh [76].

In addition '\to these intrinsic disadvantages, the inevitable experiruenial_ errors are still

present. It is interesting after all of these difficulties that, until numerical methods came



into use, this extended membrane analogy \v'as the only way available to deal with the

“multiply-connected torsion problemé. -

[ Numerical Approaches ]  With numerical methods gaining widc-sﬁlread‘application in
the solutions of various engineering problems, such cffonshhave also beén direéted to the
problem of treatment of 'multiple-connection i_n torsion. The series of numerical attempls
in this direction may be divided broadly into two groups: trial-and-error and iterative
approé%\, ‘ )
- On one “hand, this categorization may seem appropriate if based on the way the
undetcrmihea fboundary values afe found. On the other hand, hox‘w‘/e\ier.. these ’two‘
approaches are gs;entially the same; this is because they all start initially with arbitrarily
chosen boundary values and then attempt to relax. th‘e' resulting imbalance in the integral
conditions by means pf some numerical treatment. In this case, the numerical process is
repeated until at some point the balance bec\c\)\ﬂp stationary. ':'hcn, the boundary‘values
which were used for the ‘computation of the L;;'ina'l'ly balanced integral conditions are the
undetermined boundary constants sought . '

In: addmon another charactensuc which is common to the two types of numerical
- techniques is that both are all established solely on thc more commonly appearing
doubly connected situations and that, for such cases at least, they work reasonably well,
Unfortunately however, senous d1ff1culues being unavoidable when there are more than

' ]
two boundanes prcscnt wnhm the region, thc numerical approaches in- bolh categones

mentioned above are. not generally applicable to kany given number of ‘

multiple'-connections;

)

N

[ Torsion as a Multi?!@ Boundary Value Problem .] It is of great impo"rtanoc‘lo have a -

mathématical mcthdd——'analytiully. experimentally or nurrierically oriented—that can deal
- with multiple-connection problems regardless of the number of boundaries involved; from

a purely niathematiczil :i/icw, this means solution of the multiple boundary value problem.



Later, such a situation Will be encountered when the torsional -optimalities of
multiply -connected cross-sections are [ ound; in these cases, it is not predictaﬁle how many

boundaries 10 appear in the process of the optimization..

[ Abproiches in the Present Study ] In what follows, two mathematical methods that ~
can handle general multiply-connected situations will be introduced; these are the
transf omiation gnd the superposition methods.

While the former of these has been used from time to time\to simplify thg problem by
rpreviou"s investigators, ¢.g. [83], the latter—the concept of .which was originally suggested
as a means (o support the soap-film experimentation [76}—is introduced. in an extended

and modified form to the present finite element procedure.
I

{
1

!

i
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'32.1 THE TRANSFORMATION METHOD

Thjs is one of ;he widely idapled numerical approaches for the treatment of
multiple-connectién problems in tdrsion. Conrv'emion;l as the techt/\ique is, it lacks a
clear theoretical basis. Hchver.' this method c§n .bc applied to any type of
multiply-connected situaﬁons rega_rdless of how many bouﬁdary curves’ are involved.
Because of its particular suitability, on the other hand, it has been used in almost

exclusive connection with the finite element procedure alone. .

[ The Transformation } _Gcnerally speaking, the udngfomn{ion method does not, in
~ fact it cannot, put any emphasis on determining the' uikn(;wn b_oundary consunté while
satisfying the integral conditions. Instead, the fundamental idea behind this approach is
to transform the-given multiply-connected problem somehow into its singly-connqcted
equivalent. It goes witﬁout ‘saying that thi§ 'lkr.ansfonnation is intended primarily to
obviate as much mathematical difficulty in the solution process as there is such a
difference in betweeﬁ the conversion. Thus, with this approach, the boundary and the

integral conditions are only secondary in consideration.

"

[ Numerical Approximition of t):e Cavity ]  Although seemingiy someﬁhql oomplicatéd.
the whole procedure for the transformation method is mh_er_' straightforward. In its
application, the discretization'of the solution domain concerned is first extended into the'
multiply -connected A\rcgion. Subsequeﬁtly, thek- newly created cavity elements are then

assumed simply as consisting of extremely weak material A_such that its shear strength as

compared to that of the base material—G,/G,—is approximately:

_‘ | |
—=0(10"~10"19) o (3.42)

£l
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The concept used in this approach is shown. schematically ® Figure 3.3. Once the above
procedure is compleied, the eqtin region can then be treated as a singly-connected

composite Soss-section. -

' Figure 3.3: Schematic Diagram of the Transform_atioxi Method -

[ Mathemdtical Simplification ] It should be pointed out that what actually happens in
the foregoing procedure is that any cavity within the region is replaced witsilff}
inhomogeneity. As a result of this, any multipl)f nnected situation reduces alwayg to Q
simply-connected one with the introd[:lion of a new inhomogeneity. From another point .
of view, it can be also said that, by the same procedure, multiple-connection is treated as
a limiting case of simple-connection with internal inhomogeﬁeitis. '

In either ase what eventually follov{s the application of the procedure is that the ‘
internal boundary conditions of Equation 3.40 and the related integral conditions of

Equation 3.41 are all auiomatically eliminated as intended at the beginning. Therefore,



&,
%]

. with this approach, all that need be consldered for the treatment of multiple-cannection

| are Eqmtions . nnd 3.39 of the first parv these can be usually solved with no
 particular difficulties.

[ Mathematlcil ‘Incompleteness ] The mnsformadon method, dnce lt never oonslders ‘

the integral as well as the related boundary condmons mun: in only npptoxlmale
satisfaction of these condmons for the original muluply-connected problem.
In terms of the membrane problem, on the other hand, it may be usumed that the

tension v)ithin the cavity whnch is anulogous to the (mtcrial compliance in the

. torsion problem, tends, ¢ infinite in magnitude. The higher tension thus

automatically generating ' 'on on the appropriate soap-film surface, this mcthod

stll allowstghe application

. e : \ ,
floating discs provided by the method will not necessarily be precisely im static

equilibrium. .
Therefore, with this approach, it turns out that\fﬁ’e\@undary and the integral

conditions are all, rather than requirements, secohdary consjderations ypon which no

control is given.

[ Summary of the Transformation Method ]  The transformation method is characterized
first pf all» by ‘its uncomparable simplicity. This conciseness naturally suggests its
advantage in terms of the numerical computation time. Furthermore, it allows uiy
standard computer program, usuaﬁy developed only for the treauném of singly-cozmeéted
situations, to " be applied ;n—'thout any modification directly to the solution of the
multiply -connected problem as weld. - ' | 4

" From a mathematml point of view, however this method is not nearly as attractive.
The main reasoh for this, of course, is that in the solution proadure this transformation

method completely disregards some of the neoessary conditions and as a result satisfies
. J -

them ohfy in an approximate sense.

¢ foating disc analogy. In this case, however, the'

e |



3.2.2 THE SUPERPOSTI’ION"-METHOD.

Earller -a lmear elhpttc parual drfferenual equatron was found to govern the elasttc
tors:on problem Since t.he govermng dtffererrtxal equatron is “lmea.r in tlns case, it
efollows that the pnncrple of superposmon or hnear combination holds In the way rn
Whlch the multiply- connected srtuatton is . treated the. superposmon method depends on
‘ this linear charactertsuc of the govermng equatron g R R

- At present it appears to be the only known approach whrch determmes the unltnown

: 'boundary constants as sxmultaneously sattsf ying all the tntegral condmons

A S [ “The. Tnal Solunon ] The superposrtton method first of all, assumes for the given
| ‘problem a form of general soluuon byt whtch most of the requrred equations and

conditions. can be srmultaneously sausl‘ ied. Let such a trial solutxon to be expressed m

/

the followrng linear combination form: « . R

o= Zf.to B € X

.. i=1 2 C ' . -

On the rrght -hand-side of thxs equanon of superposmon ©"! are the lmearly mdependent
mode solutions to the problem.‘ and f; the undetermmed coef ficients or welghtmg ,factors_
o tbthemodesolutions., ' R A “?L ‘ .

g

‘ [ Requlrements for the Tnal Soltmon ] The basic requrrement for the mdwrdual mode s

vsolutrons in Equatton 343 rs*that they all sausfy the govermng dtfferentral equatton of
Equauon 3 37 and the boundary condtttons ol' Equatron 3.38 w1thm the &gron concerned.
Note that Equauon 3 39—-—the condxuon of 2610 boundarymlue on . the extemal

. fgoontour—ts not yet unposed It is also not necessasy at thrs pomt that the mtegral

-

\ " o | .condmons be satrsl’ted by these mode soluttons ) .

» e | However ariother global requtrement for these mode solutrons is that they should be all

L \ _ ‘\mathen;aUcally ’umque and dtsg\nct It 1s tr?phed by this addmonal condmon that the
DN . R N ‘

: B . ’ \\o L)

NG L
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:fesl;éeiive mode solutions mut be lintariy ihdepéadent of one another so that no. "

combination among them can possxbly yleld any one of them..

4

On the other hand the undetermined coefficients mtroduwd in ttre same Equation 3. 43 .

will .be later. determmed in such a way that t.he summauon of these weighted mode
'soluuons satisfies all the remaining mtegral condmons Then with the apphcauon of the

"last 1ero boundary value condmon at the outer contour, the resulung linear combmatmn

‘wxll become the final solunon to the gwen rnulnply -connected problem. To. make’ the

< R equauon of” superposmoh more definite, Table 3. 1 esmblxshes a general relauonshnp among*

S <those parameters mvolved merem
i@ } i C . R \ '

';NO | NM | NW | ¥
| Nc-t | NC | NC > fe®!
" INC-tupl-comeced «
. ‘ rems
! The number of contour curves over the region. . .

2 The number of cavity areas included.

3 The number of lmearly independent mode solutions . deduclble
* The number of necessary undetermined coe fficients.

* The corresponding fnrm of the gener(_zl solution.

¥

Accordmg to thls table the superposmon method needs, for the trcat@mt of an
B NC -tuply- connected cross section xnsxde wmch NC-1 mvny areas are comamed 10 for?
“at least as Jnany as NC mode soluuons with mtroductxon of NC undetermmed wexghtmg

'coef ficients.

R Tabfe 3.1;; General Relatio'n,ship among Parameters involved in the Superposition Method

“

v
Yo
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t The Mode S;olutions ] From consnderatton of the hnear mdependence of the NC mode _
' soluttons in Equatton 3.43, it mtght be concluded that except those boundary constants.
there are no other parameters that ceuld possrbly yield such charactensttcs In fact, for.
the uniqueness of thcse mode soluttons it is not only necessary but also sufficient  that
" the correspondmg boundary value sets all be lmearly mdependent
“This requtrement may be seen more clearly from the trial boundary constant matrrx 3]
given in Equatton 3.44, Represented by each column of - this square matrix is a set of
. boundary values-'for the~related mode ‘of soluttons . It is convenient that, ayith thrs‘
: "n@amx the umqueness and dtsuncuveness of each column vector 1tself is dtrectly related -
| to the lmear mdependence of the correspondmg boundary constant set and therel'ore to

“

the mode solutron as well.

O :
1 ' (3 NC ‘
pt l“ Sotzl pl ) P( )
Ky K2 \ <o mNe | e
L, Y
T K21 K22 o e kaNe | w2
R O ’ ‘ v
- le) = “ . K33 o - 3 (3.44)
ra ) L ¥
%
. . Pl e |
3;" | 5, KNCi  KNCZ . . . KNCNC | -~ ®©NC
e :'&A . i b 4 —

o

0Every element of thrs matrix, 1e the boundary constants can take completely arbrtrary
‘values as long is the resulting column vectors remarn all ‘lm;arly mdependent to one
another Notice, in this connecuon that the botu@ constant matrix happens to be

square‘. As a result linear mdependence either. row- ‘or columnwrse implies .that the

.

‘determmant should be non: zero By applyrng this prrnctple conversely to the matrix

A coucerned re in othcr words, by makmg sure that its determmant does not vanish,
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constiluent column vectors can be arbmanly madc linearly mdepcndem. Needless to say. _

this general condltlon means that there exist an. infinite number of such posslble matrices,

However it is apparem that among all these possnbnhues the diagonal one is the! easnesl
Ry l‘,’-’

and also the most conv

mlnx with which to deal. Therefore:

o, oy’

. o5 "Laa.,,,

kS nd ol .
- = 0 1#) . :
il (=12 NC (3.49)

1
K}

\

Even at this stage. the surviving diagonal terms. can still be "any‘ freely chosern non-zero

constams Hence no generalnv is. lOSl even if, for the sake of convemencc these

: K‘ L
diagonal terms are all assxgned identical values or, one step further taken as unmm :

producing normal modes. as a result the boundary constant matrix becomes a
matrix, and t.hen a unit mamx ln this coanecuon while the original notauon being kept
lor more generahty. it will be hereal' ter assumed implicitly that all non-zero elemems of

the matrix. under consxderauon are of umt value Therel“ore,

Lo 0 0 0 —1
0 K22 0 0
kl=| o 0o s o] - (3.46)
o o - .+« " KNCNC
- -

From tluy explmt dxagonahzed boundary constant matrix, it can be seen that the (- lh
mode soluuon p"’ is to be ‘formed with a non-zero boundary valuc on the i-th contour

C only, and wnh zero values everywhete else It should be recogmwd that with this

Tt

' iiﬁtngemem the ongmally mlended columnwnse umqueness is also aclueved

b
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- combmauon of those we:gmed mode eolunons

~ for the determination of the NC unknown cocfficients.

. that lheir respective wexghungs be found.

For each set 'of the boundary cpnstams above the govemmg dnfferenual equatlon{ cqn

now be sausﬁed over the enure region coneemed lhus yleldmg a ser.xes of Né lmearly'

"

independem mode solutions. Since the boundary values are all prescribed at th:s ume

the whole such procedure can be done usually with no particular difficulties. ,

[ The Welghtings ]

As was mennoned bef ore, these welghgpgs are

to be determmed such that the mtegral c0ndmons are all sausfxed by the linear

o
In order to have this*conditvon satisf’ 1ed Equation 3. 43 can be substituted into Equauon
o .

3.4]1. th a proper rearrangqnent the result becomes:

NG ‘(“ ‘ :
Z ; lap ds=—2aA,- j=12--NC (3.47)

l=l - .

There are NC such mdependenl equauons—one @ every boundary curves over the .

region. Cerlamly. thxs is not only a necessary but also a:sufficient- number'ﬁf equanons

~In an exphcxt matrix form,

———

- Equation 3.47 turns into:

'f ‘ T r ) r T
lap“' 18 o 18080 |
S . =X ds - ,
AT f,.lc ayd‘ SR | h ~2a4,
[ 18011 [ 18 o :
f)ﬁ =t L f2 2as
o lapwi _ ‘ _ ' V v L :
.o e A PO . { - )= 348
LG ds ' {. (3.48)
18p'1) " 13pN0) | . o
. ot . e - 2aA
L - L o’ M L . ' o

‘Once the NC modc solutions are all obtéined it is then necessary,



or equivalently:
[Si{f}={R} : (3.49)
with
‘ 1 Al ' _A _ <
S‘J‘:f :u ds  4,5=12-NC

- ’anc'l
R, =-2aA4, i=12-NC-

"Equation 3.48 or 3.49 is the matrix integral condition derived specif igaily from the

application of the supérposition method. Elements of both the [S]r‘malrix and the {R}

vector above can be all evaluated explicitly by performmg contour integrals on the NC o

, ' mode soluuons obtained previously. In the mamx relauonshlp. whxle those elemcms in a
. pamcular row are computed all from the same correspondmg contour, those in a column
-are all from the same mode solution. '

With these [S] matrix and {R} vector known Equauon 3.49 can then be inverted; thus,

" eventually, the NC wexghung factors can be determined explicitly:

(y=lsRY | L (3s0)

| [ The General and the Final Solutions 1 . As exprcssed by Equation 3.43. the
superposmon method started with an assumpuan for the form of the general soluuon It
was - then found that ‘the NC linearly independent mode soluuons necessary to support this
hypothesxs were obtainable. = A matnx mtegral condition was also derived for the proper
determmauon of the wexghung coeff icients for these mode solutions.
| ' With these two necessary paramelers—the mode solutions and their corresponding

welghungs—all known, it is then possxble to determine the general soluuon There

- i

47
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. the first alternative mentioned above, % the general solutioffs

- dif fcferitial equation that the final solution is obtained.

appear 10 be two practicable ways to accomplish this:

One approach is 1o follow exactly the definition of the lmcar comhmauon as mdlcated
by Equauon 3. 43—the mdmdua] mode soluuons are all actually wenghted and then added
up to yield the general solution. With the other aliernative, however, Equation 3 43 is
used only for. the determination of the correct bound'ary constant values. In this case, il

is then by simultaneous solution of these exact boundary. values with the governing

4
4

[ Direct querposition Approach ]  According to the diréct supi:ition approacli.;lz.e.

given through the

" foliowing weighted linear combination form:

)

. .NC . ' '
=3 fie" ‘ (3.51)

. izl

At this poim‘.’l."nowever. it must be remembered that the boundary condition upon which
the superposition-method was based‘is simply a constant value along each of the contours;
the zero boundary function value on the external contour is not yet imposedlspecif ically.

It follows therefofe' that, d'epending on what the weighting of the first .m‘odeA solution
is, the general solution resulting from' the a_bove‘ linear combination will not necessarily
have a zero value on the exltemal boundary. This is due to the fact tha_{ the first. mode
soluuon-—m fact, only thns mode—-ha:pens to be formed with a non-zero boundary~

constant on the extemal contour. The - zero external boundary value condition,

nevertheless, can still be applied to the general soiution. and in this case ¢ the final

 solution to-the problem is obtained by

| N | |
- . . ¢=e ik : (3.52)

~ In terms of the membrane analogy. this eq'uat_iori can be interpreted as the shifting down

of vtilc entire membrane surface by fixi. thus adjusting the external boundary deflection

to zero.




. _["Re-Solutlon Approach ] With the above approach to obtaining the final solution, there

was no need to evaluate explicitly the correct boundary values. The other alternative, in

‘contrast, begins with finding these exact boundary constants. Since each of Lhé boundary

contours as in Equation 3.46 has been assigned a non-zero boundary value once only with
a particular mode of the solutions, it-is not surprising that ‘the‘ general boundary constant

vector {P}é is obtainable from Equation 3.43 .in the following compact form:

FWT [ Nixyy )

2 . faro2
{ BT ST (383
PNC ! IncrneNe

. JC

Notice, though, that the ,”;ema,‘l boundary constant 1 here again, as was so with the”

foregoing alternative, tl¥hs out to be non-zero. ‘Therefore, setting this outer boundary
L] .
value to zero in a manner similar to that in the previous approach, the final boundary

constant vector {¢}c is given by:

r ¢1, r 0 W
¢2 | faraz = fimyy L

ﬁ - = {é}c—{m“} = (3.54)

Ld’NC, C ' ! lnancnc — FL3T J

T

Once these exact boundary values are all determinﬁth;c fipal solution can then be

’ obtained by solving them simultaneously with the governing diff erential equation.

[ Visualization of the Superliositidn Procedure ] Illustr’ated in Figure 3.41in terms of the
membrane analogy is the graphical interpretation of the general procedure: for the

superposition method‘. The example happens to be based only on kL triply -connected

L]
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w"“ .mllh " “Final Solution”

<

Figure 3.4: Graphical Interpretation of the Concept of the Superposition Method



cross-section, but, even jf otherwise, the fundamental structure of the procedure is
essentially. the same. Moreover, despite the fact that there are two different approaches

in obtaining the final solution, the main steps demonstrated in the schematic di(gram are

also more or less'’common to the both.’
L]

[ Usébi;lty of the Superposition Approach ] It is noteworthy that the superposition

method is, unlike the transformation meihod.' compatible with any major experimental or

numcriégl techﬁique.

SucﬁA/is alsc')/true with the fin;i\tc element ‘mcthod which is employed in the present
s.tud)‘;_'."' In p&r_ticular with this nuh1erical approach. each of the mode solutions in the trial
f unciion is i"épresented by a coluxi:n vector of size NP, containing stress f imction‘ values at

every nodal points over the region. As well, with the same numerical method, it is

computationally.

.yery much advantageous to introduce multiple ﬁght-hand-sgde to the
global matrix s mess equation. It is then not necessary to assemble the same global
stiff nesé matrix everytime when one of the mode solutions is formed; in fact, i/l is instead
possible to obtain the wholé, set of mode solutions at once. '

" The matrix integral condition also can be reformulated specifically for, the finite element

E procedure by rewriting the contour integral elements as:

NS : {2
1 . .
. " S, = (EG—,,I' Az 4y |, [Cj e} ) . 1,7 =12 NC (3.55)

k=1

[ Summary of the Superposition Method ] In connection with the multiple boundary

value problerﬂ, the superposition method attempts to determine the unknown boundary

_ constants as simultaneously satisfying the integral conditions, the governing differential
equation, and the boundary conditions.
Generally, the method is capable of dealing with any type of multiply -connected

situations regardless of the number of boundary contours involved therein. As was

«
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developed above, it.is necessary, for the determination of these boundary constants, to

form a series of different mode solutions. A solution obulnéd by an appropriate l}xﬂéix

combination of these modes satisfies the required governing equq;fon as well as other

conditions all simultaneously. In terms of the membrane analogy, the floating discs over

the multiply -connected regions, therefore, will be also all truly in static equilibrium.

Furthermore, the method developed is not restricted in its extend of application to any-

particular type of solution method as much as it is not so to any speéial class of
governing equation—such as Poissoh's in the present study. Instead, this superposition
method can be applied to any type of multiple boundary value problem of which the

governing differential equation is linear.

-
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3.3 DETERMINATION OF THE OPTIMALITY

u ' o

Shown in Figufe 3Sisa ;chematic diagram of the optimization in the present study &
defined earlier. The ’9bjective is to determine the optimal shape and the corresponding

optimal torsional rigidity of :the given cross-section for the points in the A.;A, plane.

Py

P(AOD AZ)

P, ——
' The number of wall elements. \

Figure 3.5: Schematic View of the Torsional Optimization in the Present Study

D
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~each of these elexx!entél

% ,a

[ Limitation of Anolytlcol Methods ] 'l'he solution for Lhis shape optlmlnuﬁ pxoblem.

SN B
except for a very few cases such as the circular cross-section, is generally intractable with

analytical methods. lt is, therel‘ore. vw importay to develop a suitable numerical
procedure that - will allow soluuons for other common pracncal problems involving

non-clrcular geometries.

I8

[ A Previous Approach ] In this connection, an iterative technique has been used
prevnously by Faulkner, Mnoduchowskl and Hong {22) for the optimization ol’ an
mhomogeneous cross-section. ln “this case, the optimallty has been reached by'
contin ly interchanglng higher- stressed base material -clements with lower stressed

’teinf ment elements within the reglon until the torsional npdny value becomesv

‘stationafy. ‘ "

Unfortunately, howevcr this meuwd is not directly appl.lcable to lhe prescnt problem

in which cavity elements with zero «heat stress ate mtroduwd in addulu?d?'"and Lhus no .

.[ The Present Approach ]

numencal snmulauon of the membtane analogy. this“"




>

F

The actual optimiution then proceeds based on the following three mumpﬂom which m

all derived from the circular case:

&

. [ Assumption 1 ]  Since the system under consideration is linear, the idea of superposition

also holds_for the variation of torsional rigidity with respect to that of shear modulus, le.:

»

Az(:é.-) - ¥ a2(6) (3.56)

*
]

where c,' are independent shear modulus functions for the entire cross-section.

At each su:“ of the optimxmion the present procedure computes the volume under

| the membrane surface adjusting the tension within the individual base material elements.

Upon completion of the computation, the contributions of the respective elements to the

~ volume are sorted in an ascending order of magnitude. It is-at this time that thig

assumption allows the choice of the last few elements as the locations for the optimal

interchange of the cavity or the reinforcement. TS

W
N ¢ v T
[ Assumption 1 ]  The optimal torsional rigidity functional is continuous and monolonic

such that the optimality of a higher proportion always Include those of every possible

k)

combination of lower proportions.

This assumption is neie:sy for the sequential determination of the optimality.

Without this, every different proportion will have to be treated totally independently.

[ Assumption 11 ] i‘he optimalities of the cavity and ‘the reinforcement are independent

of each other. - | ] ’
Accordidg to this assu ’ pti '. the problem which eriginally involves three

parameters—A,, A, and A,—can be transformed into an equivalent pair of problcms with
each containing only two parameters of enher Av-A, o1 A-A,. Therefore it follows
that for a general multiply-connected inhomogeneous case, the opumal!ues of A. and 4,
can be consxdered scparately.?mng one of them while the other one is being opumued.



. soluuon.

[ Unlquenecs of the Optimallry ] Noie ‘again that l'or the. circular case allr of theee k,

‘three assumpuons are alwa%'s true over the whole regron in the A,-A; plane above

However’ it is expected that"such will %or be ghe case for non -circular” cases especrally in

Lhe regxon whcre the. mfluence of one parameter is parucularly dominant compared with
Lows

"fthal of the olher For such cases, dependmg on the path taken, the three assumpuons
"made above mrghr lead erroneously 1o foferem opumalmes for a pomt on. the Ao A,

plane lhxs~rs cgrtamly not acceptable. ‘ - v | o - '_

“In order 10 have such path dependency delected and thereb) ensure- the umqueness of

the o umal solutiens, Lhe present optimizgtion procedure considers for thewsame roblem
_ P 129 P

four drfferem paths as shown m Frgure 3.6. Frorn the results obtamed only the parts

thal are essen%ally 1denucal m rhese four caseé are then accepred as the fmal opumal

FrgLure 36 Four Dif ferenr Paths Used to Ensure the Umqueness of the Solution

» B . _in. the Present Opnmrzauon Prowdure

o .
e : &

.

x



+ o .
TR
vers

3.4 ORGANIZATION OF THE COMPUTEﬁ'P_l%)GRAM _

On the basis of the foregoing solution prooedurc. a computer algorithm.was developed as

| outliped‘ in the f ollowing.

: Frgure 37 shows the ﬂowcharl of the main program “TOROPT" which comrols the
em,rre opumrzauon procedure whrle Figure 38 illustrates the schemauc dragram of thc
orgamzauon of the ‘main program and the'twemy one §ubprograms. .Thc funolrons of

~

the individual prog‘ramur\xits are all detailed /in Table 3.2

‘ The c0mputer program is writien )
ta, and it is fully documented in the Appcndrx
? .

. V)
A

- MTS system at The Umversrty of Alber /
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ifically for‘the ‘FORTRANVS'compilcr on
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. Generate the ‘ﬁlbylnformllion

Jf |
(% v =< » 'FolNOjOloMO B > S ~N

For Every Nos-GO Element \
X
| G « Gl ]
- — ‘
. . . .
. ) For Every luner-G1 Elemest: ) )
' ' . :For Every Gl Elemest - : .

ﬂ",:x' * : . »

e *| Determine the Status
" | of Maltiple-Connection
e

e Computei o lJ T
[ GGl .. . ]

-

o

{;‘i’ ¢ ) .
: ' \.

o n Sdﬁ"l'i_g an Asendln;Ordcr_l |
, Take 2 New » 3

: TakeaNew |- ]| .
- Optimal-GO Element ) Optima1-G2 Element
» ) B R

/ " Determine the Status

of Multipie-Connection
—7 -

Lt o wiezoy / . Wiite2° 4 G* / at

v ¢

|

' ‘Figure 3.7 'Fld,w-Chart'of the Main Torsional Optimization Program “TOROPT"”
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Table 3.2: Detailed Functions of the Torsional Optimization Computer Program Units

* Evaluates the Contour Integral Value'

} Génenlu'the Mesh Information

‘Returss the Torque Value

SR ~' '}
| % (0} | Tokoer
[ (11 [ assorr
lzl.n COMPUT
) . [}
Tpt , - m
] 3} | CONSTE
w' 1 14} ] consuM.
(s]1 | DETADJ
61 [ pETOUR
[7] | GENMBC
(8] GENNES -
- [9) GETCOR
Aif10] | GETVAN .
; .;' . : - . ‘
® ¢ 11| rwesEM -
2 j fall Bt
e |
g ~[12] ] LINCOM
2| =
. [13] | MATINP
: [,1_4]v i"mi"m\r.
1 (15)] .STRESS
. (16]| SYSASM
[17}| S¥SCON
| " t1e)] sysint
(19| TORQUE
{20] | TRIARE
[21)| VECOMP

Controls the Entire Optimization Procedure

Sorts Torsional Rigidify Valves in an Asceading Order
o . g ' i W '
Hosts Computation of the Torsional Rigidity Value

-

Generates the Linear Triangular-Element Stiffness Matrix

-

Détemine; the Adjacent Elements

" Determines the Status of Multiple-Connection

. Generates the [B] or the [C] Transformation Matrix

-

' . ¥
Returns Element Coordinste Information’

Returas Element Nod:e Variable Names

' Performs Gaussian Elimination
* Pérforms_the Lisear Combination
" Performs Matrix Laner-Production . °

Performs Matrix Lisear Transformation

Computes Element Stress Compoaents
Assenbles System Matrices

Applies System Constraints

" Initializes the System Matrices

'Retuns _tbe Area of & _Triukul’ir Elengnt

Returas Vecto; Componeats



4 VERIF]CATION OF THE SOLUTION PROCEDURE |

‘Based on the formulation before, a complete f uute element solution procedure was
developed in the precedmg chapter for the torsion and 1ts optimization problem .In view
of the complexrty of the entire procedure it seems desrrable to assess the accuracy and/or ‘
the dependabrlrty of the scheme before apphcauons to any new problems afe made. As is

usual this evaluation can be conducted by applying ‘the procedure to some typtcal cases °

thh known solutlons and comparmg thereby obtained results Naturally, any problems

for whrch either analytical or numerical solutions are avatlable ‘may be selected for thns |
purpose. ' \ |
. A\
: . In t’he’ following‘two sections,  the verification of the solut'ion _procedure‘ is
considered first for the numerical treatment of the torsion problem ‘itse}ll‘. and then for its

opurmzauon For both of these cases, the various numerical studies carried out indicate
that the overall reliability of the developed solution procedure is excellent. f‘Although not

) presented here, an mdependent experimental venfrcauon -of the rdenucal numerical

procedure also conl‘ 1rmed the same.




. to’ the symmetry.

i

4.1 TEST OF THE.NUMER]CAL PROCEDURE

As an es&enual pan of the verification of the method of soluuon “this section is
concemed with the test of the finite element procedure by’ analyzmg known soluuons of
several torsion problems. - Considered in what follows for this are: Checks on accuracy of
the numerical results in comparauve case studxes including those of homogeneous,
inhomogeneous and multiply- -connected cross- secuons, algp on the formation of the stress

funcuon surface, and, fmally. on the numencal convetgenoe. -

lt can be séen from the various numerical studxes conducted in thxs section that the

‘results obtamed by the present numencal method compare 'very favorably with prevxous

counlerparts As can be concluded thereby, the finite element numerical part of the

deveIOped solution procedure works sausfactonly in all practical snuauons

<

[ A Homogeneous ‘Triangular Cross-Section ] : Illusttated‘ in Figure +4.1 is the first’

1

example, i.e., a homogeneous equilateral triangular cross-section' and its mesh division for -

the finite 'elemeni anal’ysis: only one-sixth of the egxire region needs to be considered_. due

o ’

NE=100 RN
‘NP= 66 - -,

igure 4 1 A Soﬁd Homogeneous anlateralws\mr €ross Su:uon s
‘ W under To ‘;‘gon > o

o ’ L 1“ . >‘_ Ly ‘:L' S
. oo R o ‘

e




" " For this case, the exact solution of the torsional rigidity. is available [67]), i.e.:

Lo i = . .
\:,‘Q;l . =G | 1)

. P ’&; ‘ .
The torsional rigidity viltfes for the above crogs-section are obtained from Equation 4.1

£

as well as from the: pfé&qm numerical procedure and are suminarized in Table 4.1 showing
'very good agreémcht.’

T
N

"Table 4.1: Conipitl.é&’ri“\between the Analytical and the Present Finite Element Torsional

Yol

Rigidity Solu;i,d'r‘ﬁ‘»”n")x a Solid Homogeneous Equilateral Triangular Cross-Section:

g
'3

A

Z, TORSIONAL RIGIDITY, Nm'/rad

ANALYTICAL PRESENT DISCREPANCY

31,1769 | 035 | —0.46 %

[ A Homogeneous Square Cross-Section ]  Another homogeneous case studied is thél of

o

the regular square cross-section as shown in Figure 4.2.

=)

G,=1GPa

a=1rad/m

B Figure 4.2: A Solid Homogeneous Regular Square Cross-Section under Torsion

. |



The torsional rigidity of this case is known in the following form of a series solution
- .

8, 192 & 1. kx)
Z = -§-Ga (1 B Z -Egtmh—z—) N (4.2)

Table 4.2 compares the torsional rigidity values computed through the use 6f Equation 4.2

[

and the present approximation method. The agreement is again reasonably good.

Table 4.2: Comparison between the Series and the Present Finite Element
B . Torsional Rigidity Solutions for a Solid Homogeneous Regular
| 4 . Square Cross-Section ' .

Z. TORSIONAL RIGIDITY, Nm%/rad

ANALYTICAL PRESENT DISCREPANCY

22.4923 | % 3895 -0 %

[ An Inhomogeneous Square Cross-Section ] In order to test the mﬁability of the

developed numerical procedure in an inhomogeneous situation, the bi-composite squdre ~
“cross-section as detailed in Figure 4.3 is exafined. IR :
‘ ' ' \
y
_ 4 ‘ |
L4 - ’E‘z
[} - ]
‘ & I _ NE=100 A1 5% @
; ‘ tb=10mm NP= 66 by ,,50% .+@ ‘
' ~ W 5% @+2+D
(s} - 4 X5, . \
—»{ a=10mm po— 1=lGPa_O
: ' ' G,=1.5GP. @+G+D
¥ a=l‘ra‘d/ m C

@

Figure 4.3: A Solid Bi-Composite Regular Square Cross-Section under Torsion
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This proﬁl_em has been dealt with previously using a hybrid finite element apf)roach [22).

Three d“i‘ifferem‘ compositions of ihe cross-section—25, S0 and 75 percents of the

reinforcenient with the shear modulus ratio G,/G, of 1.5—are considered as the study

case. Given in Table 4.3 is the e’ompari'son of the results obtained by the previous and

the ""pr‘é.sent‘ approéches,

p

Table 4.3 Comparison between the Previous and the Present Finite Element Torsional
Rigidity Solutions for a Solid:Inhomogeneous Regular Square Cross-Section-
at Threc,g,Rep,rescntative Proportions of the Reiffforcement

 /

32.82

\REINFORCEMENT Z, TORSIONAL RIGIDITY, Nm?/rad
4 /4 SPUBLISHED | PRESENT | DISCREPANCY
- 2% 27.84 27.66 -0.65 %
v 50 % | 30.88 Tso.so -091 %
75 % 32.96 -0.43 %

-

R ‘7=Gz/Gl=l.5; G;=1GPa
* A hybrid finite element solution by Faulkner, Mioduchowski and Hong [22].

Both of the finite element procedures use the same number of clements. and the results

show excellent agreement.

[ A Doubly-Connected Square Cross-Section ] fConsi»d_cr. the homogeneous  square

cross-section with a square cutout as shown in Figure 4.4.

An extensive numerical investigation carried out on the same problem can be found in

[74]). In this case, the approach employed was the hypercircle method, and according to ,

the published approximatc sblution the torsional rigidity for the specific case above is

given in the range:

]

Z = (2.02090016 ~ 2.11228368 )Ga*

- (4.3)

65
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Figure 4.4: A Doubly -Connected Homogeneous Regular Square Cross-Section
under Torsion

y
} . ’
' : NP= 66
~{ :b=10mm NC= 2 Ao=25% O
Loy 0=25%
_O,J "“" £ , ' G1=1GPa
) a=10mm pe— ‘ e a
— . a=1rad/m
S5mm , ‘,_’ _____ . ‘
v Cg Cl

{

\.

. LY

For the treatment of the double-connection problem involved in. this case, both the
transformation and the superposition methods were applied. In what follows, some of
the intermediate results from these treatments are ta‘l}ulated in order to demonstrate the

performance of the two approaches.

Table 4.4 first compares the boundary constants .obtained by the methods. -

s

Table 4.4: Comparison of the Bcundary Constant Values Obtsihed by the Use ,
of the Transformation and the Superposition Methods for a Doubly -Connected
: * Homogeneous Square Cross-Section under Torsion

¢, BOUNDARY CONSTANT, kN/m

CONTOUR
by the method of

(zn y) €C; - g ;
TRANSFORMATION SUPERPOSITION

i=1 | 0 0

i=2 41.5634 41.0512




In addition, summarized in Table 4.5 fre the contour integral values corresponding to each

of the above boundary constant sets.

e

Table 4.5: Comparison of the Contour Integral Values Resulted from the Use
of the Transformation and the Superposition Methods for a Doubly-Connected
Homogeneons SQuare Cross-Section under Torsion

f G ( ) de comoun INTEGRAL , um
CONTOUR
EXACT DISCREPANCY ..
(zy) € Ci "t | with the method of
TRANSFORMATION || SUPERPOSITION
=1 100. -362% 0%
i=2 2. +12.26 % 0%

The results of torsional ngldny valuﬁs are also given along with the previous approximate:

solution in Table 4.6,

r

Table 4 .6: Oompanson between the Previous Hypercircle and the Present
Finite Element Torsional Rigidity Solutions for a Doubly-Connected Homogeneous
Squaxe Cxoss Section

Z, TORSIONAL mcmm. Nmi/rad
" by the method of

1 ISHED : S
PUBLIS - TRANSFORMATION SUPERPOSITION

20.2090~21.1228 20.4909 20,5548

' Obtained by Synge and Caill [14] using hypercircle method ( n=8 ).
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[A mn-wnu Hexagonal Crom-Section ] Figure 4.5 below illustmq; 2 m\.ﬁuon
of a hollow homogeneous heusonal tube under torsion. It is intended to use tﬁh

parucular case to test further the developed numerical procedure in similar limiting

situations.

4,=81% O
G, =1GPs

a= l-rad/m

Figure 4.5: A Thin-Walled Homogeneous Regular Hexagonal Tube under Torsion

The mcmbrane analosy. as is well known, prov:des a general approxxmate solution for
problems of this nature [67). For the parucular case above, application of this analo?'

yields the following expression for the torsional rigidity:

Z= @ ‘  (4.4)
P ‘ :

ln uns equauon. 7 denotes the mean value of the areas enclosed by the external and the

mtemal boundary contours of the cross-section, & the uniform wall thickness, and S

" the length of the centerline of the ring section.’

| " The finite clement solunon prowdure f or this study example employed, as was done so ’

with the previous doubly -conriected. -case; the both methods in its treatmmt of the -

doyble-boundary problem, . The numerical values of the boundary constants and the .

. ; e,
. N E i
- s . - . » " S
. s o , o
- b7 ’ ' . -~ i ' : s '
s - .
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" Table #: Comparison of the Boundary Constant Vnua Obulned by the Us

of,the Transformation and the Superposition Methiods for a Thin-Walled Homogendous
b Heuaonnl Cross-Section under Tonion ,
‘ ¢;, BOUNDARY CONSTANT, kN/m." | .
: CONTOUR - . :
a (2,9) ec, ‘ ’ by the method of
TRANSFORMATION ~ SUPERP@SITION
i=1 0. o 0
i=2 9.5085 9.7280.
#» #
Y 'hbleﬂ 8: Comparison of the Contonr lntegn! Values Resulted from the Use
" . Qf 'the Trwsformauon and the Superposition Methods for a Thin-Walled Homogeneous ,
'f’f : ey T g Hexagonal Cross-Section under Torsion
g-. ) é‘?? 4 ’iq . V
W : fa( )da, CONTOUR INTEGRAL, #m
N . ‘ ‘ .
.. ... CONTOUR — ‘
RS e 2_{ * DISCREPANCY
At R ‘ ‘E 0 - ~ -
R ¢ % 1 XA L . - with the method of
L " q v ‘mr ? . . KN 20“1 Y - . . - :
Crtalw ' 4 | TRANSFORMATIONS, SUPERPOSITION % #
d ) ': 1 - l“ = 1 4 v‘f Ss.m . ‘5-35 % Ov%
R "' @ 'Lu ko O LA,‘
N T S LS 4698 +517% 0%
; 3‘ ‘»‘ ‘:,v'x ' - - . =
i PN T ,
- ¢ 5 ‘k ". L ~ . / A I
Vi ‘“" * ‘
IR Table~4 9: Companson between the Approxxmate Membrane AnalOgy and the Present
. ‘ Flmte Element Torsional Rigidity Solutions for a Thin-Walled Homogeneous
TS T Hexagonal Cross-Section
Z TORSIONAL RIGIDITY Nm’/rad -
. . , by 'the method of
| 'THEORY - _ —
OR TRANSFORMATION SUPERPOSITION
5.9401 5.9509 6.0882
R Ba;sed on approximate membrane analogy[67). -
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‘I consrdered for the demonstrauon -

O -me hmte element rnesh f;wemuon \rsed for tﬂe approxrmare solunon and thereby . \/

%
. obtamed stress funcuon surfioe al’e showﬁ' in Fxgure 4 7 Frorn the rm‘ée drmensronal

8

o : - 3 ' L ‘
. L, W . . L LI AR “

torsronal ngxdny values from the approrumaie theory and also from the presem numencal

-~ } t

* S
oluuo;r/prooedure are' summanzed in ’I‘able 49. .

[J’he Stress Function Surface ] Thrs example is mtended for the vrsual venfmnon of

comammg borh t.he 'k Omogenerty and the, multxple connectron sunultaneously ;is \

\

Because of the symmetry jbe analysrs» be restricted to only one srxth of . the enure

cross secuon As a oonsequence the number of contours whnch ongmally is erght for the

whole regrqn is reduwd to four.- \ | "

A’0'=2] % O
=2% @
Y

y,6/=1GPa® *

- LY

@re ﬁ 6 A Hollow Composrte Eqmlateml Tnangular Crosé‘éecuon under Tors:on
A A S ot I s T

‘

r

' plot the n3treeab1e large changes rn ﬂre stressL funcnon surfaoe\over the rernforced regrons N

- »can be observed lt ean be &n m’ mdmon r‘hat the’ y condiﬂgns ar/e all

4 . E .
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are given in . Tables 4.7 and «4 8, respectively. As 'well, the’.m .

v

| ci=36Pa®

Qe

the numencq,, procedure As demﬂed m Frgure 4.6, an equxlateral tnangular cross secuon -

-

] o=ird/m D
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Figure 4.7: Display of the Stress Function Surface fprf,ab 'ljiollbgvf Composite ' :
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' rareas 'generated above the’ cavity regions; they confrrm the validity of the floating drsc

- Vadva&ta/gis of workmg with the regularlsquare cross sectron as in thrs case IG the fact that
~ it is the ohe whlch when trlangtflated allows lowest aspect ratios for the elemems it is

. generallx in such srtuatrons parttcularly ‘with tnangular elernents that the frmte element

- correSpondrng torsronal ngrdrty ZNE has been cornputed and then compar‘ }

- analytwa@enes solutton

. .o B : . : oL - : .
o : - . ' ] b . o el o S B X T N e
. » S . . - : . , ST > S
" . o 3 o M e

i
r ” ) . - ) . v ‘ ' . " ’

g

'satisfied by the zero and the.constant stress ’f unction values along the external“and”the ‘

mter?n& contours reSpectrvely Also seen on the membrane surface are the three flat

“

. analogy. Because the multrple ccmnectron is so treated usmg the' superposmon techmque

he correspondmg integral conditions are also all met. o a / S

The fmal boundary consrants and the torsrona'l ngrdtty obtamed for this particylar case

aye. given on the”f igure. ' .

| i
v : o . vt,.v . . N ‘ ‘,[‘

L Convergence ql the Torslonal Rtgtdlty Solutlon ] The tests ol” the developed numencal

‘ proccdure up to thrs pomt have been carrred @,t only wit frxed numbers of elements for

the given .cross- sectlons Even though those finite 'elem nt meshes used in most ol' these . -~
cases were rather coarse the results obtained for the vartous examplqlandrcated that the

.’. ‘t:'-\k . ) . -
approx'matxons were on the whole quite reasonable A T L ,

s*hen. also - approprrate at. thrs stage 10 examme the global reltabthty of the

- L4

".'numertcal method AS rs usual thrs purpose can be best ;served by ‘the’ convergence"’teSI

'whlch is* to ensure fhat f or a given problem better accuracy of approxrmatron is obta;nable”

by the use ol' a-more ref med mesh For the preSent case the same type of convergence '

p is demonstrated for a homogeneous square cross- secﬂon as in Frgure 4. 8 One of the S

Al

' _ procedure operates most stablv and therefore that its convergence also is most accurately . .

o B

esttmatable - R
As for the actual test, twenty drf ferent mesh dmsrons—"stgrom the most coarse to the
l‘mest——have\been consrdered The number of elements NE in ‘Ehrs case ranges frorn 1% t@ o

P

20 for the one- elshth of ‘the, sware cross: secuon For each of these. NE, valueé’ the : o
3 A

e
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o

Figure! ‘4 8 summarius the results in a .non- dxmensionalized format.. From the figure.’ it ”

can be scen immedmely that, the convergence’is qune rapid and monotomc. and as well

that, as the NE value mcreases.nlhe approximate soluuon gradually becomes 1denucal with

rcpresgy.mg the body by a sufficiently large number of elements. . For the spectfxc case

with' 100 clemems for mstance the dxscrepanc tween the two soluuons is alreaply well

. bel 05% v
Qw |

The s&ﬁe flgureﬁ the other hand reveals another general charactensuc of the stress

f unctipn f ormolauon ﬂiﬁpproxxmaﬂons are. all lower bounds to the exac@lunon! and‘ ’

 the analyncal one. Evndemly. the error«involved, thus. can be made arbntranly $mall by -

this is in - agreemem wﬁr vﬁat was observed . by oDesa.l [18] Lhe warpmg function

approach to the conk@ry is known to hﬂd onyupper bound solutions.

J ’ . . : . : ) TR
e yoo R G s



treatment art aloneu Thxs secnon deals wrth the

) mgf the torsrpnal optumzatlon scheme

‘cases. i - Jw e e

42 TEST OF THE O ;Arion‘ pnocrj)mu: . s \ ‘

ince the mrcular CrosSyN. ,r.‘ to be. optimal, it*is used as the fxrst example

'unfortunately no kn' 4 'ns of opnmally shaped “cavities for non clrcular

§ +

"y

cross- secuons no’ compa n. studfes ‘on ,such ‘cases’ are, possnble Hovlever because the '

)

| techmque‘gused for determmmg the Opumal cavxty shape is by all means the same as that

used for the opnmal ‘inhomogeneity, it is to be expecled that the opt.xmlzauon procedure‘

will hkewrse work for the ‘cavxty,.opnm* as n appears to for the inhomogeneity
. . ) S PR ] okt . ™

."

The various. ease studres carried outy in the followigg indicate that the. present pro‘cedure
b W

’

') [}

' ynelds unproved opumal solutions’ compared to the prevrous results.

g | /-
T T g @T&m Crrc.ular Cros Seqtion ] " In the torsional opnrmzatxon problem ‘the 1sotropxc

: » . A .

_ z_p ‘,,'w,y:' o S e . L s
Je ! - ) 2w . o . e . : sy -‘ &4 '\

R .oy PR h :

‘Opumal soluuon is self -evrdent and, moreover analytically defmed Fxgure 49 shows

- B
.

As can be seén the torsxonal ngrd:ty of a hollow mhomogeneous crrcular cross- secuon

Jlrs maximum when the cavrty and the more rigid poruons are plaoed respecuvely at the

"closest and at the furthest drstanoes possible from the axis of romnon On the othér

\

o errcular cross section holds a somewhat umque posmon in. v.hat it is the only case whosc 7

'_such an optunal‘mnfrgurauon. along witly Equauon 4 5 for u.s opurnal torsxonal ngndny‘_

B hand, thrs rs also’ the only case m which the opumalny of the rexnforcement ls enurcly -

v git
mdepcndent of the rano of shw modulu B TR LR o

B

5, . ~ : B - X
ni' L3 etad e Lo ) . . ’

-~
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. Figure 4.9: Optimal Oonf xgurauon of the Hollow Composxte ercular Cros%tion -
i ; | under Torsion . K o
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’ -These dlstmct charactefistics of the cm.‘mar cross secno& make; sefu} as a ‘measure for
o’ the perrormance of the developed opmn;zauon procedure The actual spemmen used for ‘.
 .' i f'su‘ch a numencal test is detmled m anure 4, 10 ‘where me cucular cross- secuon is
‘ replamd by a 5egular $1xty sxded polygon and. owmg to 1€ symmetry orﬂy a . ‘
_one-hundred -and- twentieth of 11 is. taken for t.he analysis. gylated sector is then
R dmded into equal area‘tnangular elernems ﬁpresemmg the same amounts of, materials.
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TL 10, 28685, z m;érls geometﬁc domain-substitution,
the tofslonal'rlgidlty for the homogeneous casé is computed ftom the. mesh, and the value

s compared with the analyucal. one. Table 4.10 indicates that, despite the unusually yet

,unavoldably large aSpect raﬁos of the elements used the. result obtained is ln elxeellent.' |

'_-agreetnent with t,hat from the exact solution . IS

Table 4. fO Companson ibetween the Exact and thre Jtésent Finit Element Torsional

s Rrgrdity Solutrone for 8 Solrd l-lomogeneous Clrcul%Gr 5 S&cuon i e
. ) [ lﬁ‘ of Ga X :
. o . . PO . N » ) ' o

R AR ' . e L : - ) . -

"Z TORSIONAL RIGIDITY Nm?/rad

. AngAL - PRESENT ' DISCREPANCY '

157000 | 157019 0001 %

-

'G, =‘1GPa; ’ a=1rad/m ,

L ; ; Smce. the - geometnc approxunauon thus appeared to be- reasonable the optrmaﬂres for . |
‘ ‘both A, and’ A, were then determmed by. employmg ‘the’ optrrnrzatron procedhre .
Sausfactbnly enough ’the results obtatned were also very close to the above éxact optlmal” .
""‘,é» ' msolutron " To be more. speorfrc the results obtamed were such ‘that the fi lrSl optimal
elements for the G.(caviry) and G,(rem forcement) were found to be located reSpectwely at'
the mnermost and at the outegmost part of the cross sectron As the amount of Ay Ofv-.
A, gradually incredsed thereafter, the Ao formed an inner cavrty core whrle thie A, burlt '

. - up an outer nng , * ‘ 7
The numencal values for the optrmal torsional rigidity at various proportions of the .
eavrty and of the feinforcement are glven in Tables 4.11 and 4 12 Ior oompanson wrth the

exact soluttons.
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T Ly ' R ,7";‘.“;"'«“‘,:;‘ s ', el A0 H : ‘ - p y |
¥ :  Table 4.11: Comparison between the Exact and the Present Finite Element Optimal’
' Torsional Rigidity Solutions for a Hollow Homoggneous Circular erss-Section

at Three Representative Proportions of thg Cavity

o " . . . _7& ;
'2°. OPTIMAL TORSIONAL RIGIDITY, Nm'/rad
ANALYTICAL | 'PRESENT . | DISCREPARCY
g . [ 1sse7 | 1seaT. | +0.M%
g 147262 14.8364 L4075 %
=) 11.93656 12.0139 F065%
.l o ;:;1 by ti?g?ramformlon Method o ' : "
» A (o ! ‘»- - . .
o e T AR : ) . .
v"\ 3‘ } . ~ ‘ . i . ‘, . “_‘ :‘, ‘ N )
: '-‘;&' iffqbie,; 4.12; Comparison between the Exact and the Present Finite ‘Element Optimal = .
~n Jorsional Rigidity Solutions for a Solid Composite Circular Cross-Section ’
o : M2+ gt Three Representative Proportions. of the Reinforcement '
AR & > o ":' S - T , v . ‘ - .
' vz o BUSEE B | | . o
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[A Trigngulaf. Cross-Section ] As the first example that involves non-cigcular geometry,

consider the optimal distribution of the inhomogeneity over the triangular cross-section in f
! : * ] K K . . . ’

 Figure 41l . . <




%w" Figure 4,11f-Two Diff‘erent Optimal Conhgurations Obiained by the Previous - i

‘ . * anq':t.hq Present Optimization*Procedures for a Solid lnhomogeneous
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1 By F'aulk'ng. Mioduchowsk'i and Honé [22].‘ - \ REC ' ot

The same problem was treated numerically by previous inv’estigatdrs [22], who published

. : . . ) ' . . Al

optimal solutions for various shear modulus ratios and proportions of reinforcement. Of
- . '

these however, only two cases—25 and 50 percents of- rcinforccmégls with the shear

¥ 4 -
‘modulus ratio of 5—are examined in this case study. The previpusly and the presently

" obtained optimal solutions for the cases. selected are shown simultaneously-in”_t,he“'ibove‘ '

figure. | . : y f 7
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As one wey of- verlfylng the dependability ol‘ the present optlmlution procedure. the
," tomonel rlxldlties for both of the solutions were eelculnted and compulson between the
" two obtained val%es is made in Table 4.13. For the sake of consistency, all computations

were performed employing the present numerical procedure only. )

-’ . ‘
: o Table 4.18: Comparison between the Previous and thol’resent Finite Element Optimal
. ,(f-.,; . Torsronal Rigi ﬂty Solutions for & Solid Inhomogeneous Equilateral Triangular - .
e » 2" Cross-Secti¥n at Two Rebresentauve Proportions,of the Remforoement
Y # bl ‘ ﬁgt__,’v . K \ ,‘ -
s ‘ . ‘ " 2 ‘
" 'REINFORCEMENT| | - TORS’.?,.NAL RIGIDITY. " Nm'/rad
S 'PUBLISHED | = PREGESN,| IMPROVEMENT
(A % . ’ . ‘
‘2% 79.0955 .85 17 #8371 % '
‘ ” - i &%—L - , g —a ',
0% 118.1491 1188082 | ‘+0s6% °
‘ . - r4 h3 .
- ‘ " » o . ‘ v o Wl*“‘&»b““ ~ iy s
' y=G;3/G,=5; G,=1GPa _ w
* by Faulkner, Mioduchowski and Hong [22]. .

-
/

Erom the table, it can be observed that lhe torsional ngtdity values of the new solution |
are somewhat larger in magmtude ‘than that prthous and therefore’ that for the pamcular
problem considered herem at least the present opumrutrou procedure yields a better
approxunauon to the realiomrmal solution. | “ o A

‘ The ‘comparison of the Tesults m the same table on t.he other hand)» reflects the effect :
of the mtnnsrc dlfﬁmlnes encounlered ln the opumlzation proc;dure used for the'

2]. The control of the optrmmnon m- thrsagase was based on the

w

" previous soltmons

. shear stress vaj - the elements, and therefore large mesh sizes ‘and also large shear

Ay :-v’i'"‘:



[ A Square Cross-Section ]  Shown in Figure 4.12 is a regular square cross-section ,,mfﬁ ‘
is similar in nature to tlggi one in the preﬂbﬁs study' case. The two solutions of opumal‘ '

inhomogeneity obtaimed’ by using different approaches are alsd givén together.' ‘ -

\la

Whik the uﬁper of the two ‘solutions'&ven above is from [22], the lowers is from the

present optimization procedure. The compositions of the stiff material for the particular
v - /‘ ‘J

cale baing considered are 25 and 50 percents withi shear modulus ratio of 2. Table 4.14

~ shows $mall improvements in the torsional rigidity values calculated. | -

~2
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Table 4.14: Comparison between the Previous and the Present Finite Element Qo
Torsional Rigidity Solutions for a Soligr Inhomogeneous Regular -+ ~
Cross-Section at Two: Representative Proportions of the Rdnforcem f
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| . § SOLUTIONS TO THE PROBLEM N
’ LR h
The deveJOped solution prowdurc of the present study. which was tened in the prevlous _
chapter,’ can now be applied to vuious types of torsion and its optimlution problems
. including ‘those with irmu)arly-shaped geomeuies This chapter will shqw several new
’ eumples of the applxcation ‘of tho- procedure to some n’electgd typical reguhrly :haped’ A
- cross-sections for the - determinauon of optimal dusulbuuon of the cavlty .and the"
rahrorcemem within the prescribed. boundm . N
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[ The Finlte Eleilent Mesh Used 1 As often is the case for --regnm‘y.;mea i
- cross sectrons symmetry allows the analysrs to be confmed only to a eertam ynangular ‘ ‘
'sector of the entrre regron Illustraled mf anure 5.1.1is such a generic domam, ‘which ls |
dmded as reqmred by the deveIOped optrmrzauon procedure mto a number ol‘ equal area e
. elements and nodal pomts bemg numbered frorn 1 to NE and NP respectwely 2 =
While the numbermg can’ be done Jotally arbrtranly m general the above, partlcular\
numbenng‘ scheme m whrch all the prescrrbed extemal boundaly constants are arranged to
'be assembled later at the bottom part of the. system ‘matrix. equation is oomputatipnally
' advantageous as it enables thc matnx equatron when partmoned to be reduced ‘
. consrderably 1n s:ze | A

R

'I'he work requrred m prepanngtthe mesh information was ellmrnated by the adoptwn e |

’

of an automat1c mesh gen'e'ﬁnon scheme.  This sché(ne covermg almost all possible

»regular cross sectlons generates all the necessary ‘mesh ml‘ormatron grven the followmg
three parameg:rs of Lz, Ly. “and NH the numbcr ol' dmsrons in either drrection oP the ’

mangular sector. e ' '

For the partrcular mesh drvrsnon above, it is easy. to show that-the f ollowmg relations

 hold: - 3 . S
| NE = NH*. | RN L .
NP——(NH2+3NH+2) T

“

’Becausc'the increase in"computatiOn time necessary'is substantial for larger numbers of
elements, and also because it is a mﬁch easrer number to handle the obtarned results
statrsucally wrth all, results in the present study were obtamed usrﬂg NH= 10 thus

—

making NE 100 -and NP 66 The num&r of elemcnts for the entrre cross secnon m

this case is still as many as 2- NS NE~w1th NS bemg the number of srdes\of the"ongmal W
cross.-secuon Thrs 1s considered to bc _quite reasonable for a good approrumauon

- accuracy.



' the plot respectrvely

: k8 possrble 'over the entire Ao-A, plane.‘

. R £ IS
T [ \\\ ST » )
K [ .
. < g ' o
. . s i " . [ =
R ) . - . R / ) o . i . .
T S A ‘ S\,
P / . e o ’
¢ . . . , -
iy " q . ) .vV . . {1 -,vA . - ) v

w a /

| The Clrcular Case ] Smoe the ctrcular case, as. Shown in Frgure 5.2, i 1s quwn rd

among regular CROSS- secuons. ‘it is: oonsndered frrst Agam the opumal solutrbn for :
cxrcular case s trmal as\can be seen from the ftgure. not only the optimal shape for thrs
case ‘is thdependent of the tat‘o of shear modulu G,/G,, but as. viell is the torstonal
rlgtdtty glven in an exact form. C /f ‘

' leen in ‘Table 5.1 are the relatrve e)pumal torsronal ngrdrty values as function’ ol'
prOportrons of both the cavrty and the/reml-‘orcement The same mformauon 1s then also.

(
shown plotted rn three dtmensmns o In hoth the- table and the dxagram. the torsxonal

S
t ngtdrty values are all non dunensrohahwd relatxve to that of t.he homogeneous case/whxch :

e

allows easy companson of the results Two values\\t\(ratm of shear moduln 1 e. 2

and 5 have been consrdered and are represented by

¥ e

/
For the ctrcular case close observauon reveals that the optimality condition of a

‘ multtply connected tnhomogeneous case is ‘simply the linear combmauon of those for two

e lower and the upper surfaces in:

separate cases of the mult1ple connectton ‘and the mhomogenerty Therefore for more

3

f general caSes. the analysts of optrmrzat on can be done mdependently for the

multtple connect{on and the mhomogenetty As gtven in Table 5.1 are the results ’

showmg the /decrements and the mcrements in torsronal ngtdt‘ty from the homogeneous

case’s, ‘resulimg from optrmally replacmg some part of t.he original cross sectron wrth the

cavrtv or/the rernforcement these are given in "the rows and columss; respectwely
/

Thus for a general multiply- connected mhomogeneous case whrch 1s represented by any‘

/ v
pomt in the A,-A, plane, the lmear combmauon principle can be used not only for

. o)atarmng the optimal shape, but also for deterrmnmg its correspondmg torsional rigidity

‘ /value ln fact the circular cross-section is the only case ‘with which such saperposmon is

”
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“Tabje 5.1: Optima] Torsional Rigidity for the Hollow’ Composite Circular Cross-Section -
L al Various Proportions of the Cavity and of the Reinfortement . " .
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~ Figure '5.2: Three-Dimensional Display of the Relative Optimal Torsional Rigidity - -
oo Values for the Hollow Composite Circular\Cross-Section =~ =~
at Various Proportions of the Cavity and of the Reinforcement
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B [ Non-Clrcular Cases 1 For non- ctrcular regular cross- sections, the triangle. the square h

and the hexagon are considered in the followmg . \

, L AS was so. with the tforegolng circular case, for each qf theee three geornetnes. opumal :
*solntions are obtained for shear modulus rattos of 2 and 5 and for proportions of both | )

‘the cavity and the rernforoernent fr0m 0to 100 peroents Tlte solutioﬁs are presented in

the follbwmg tn a manner similar to that of the circular case. ~ The results presented for )
E each “of the cases rnclude the table and the three- drmensronal plot of the ‘torsional

B DT e e T
R B

rigidity, foljowed by the thtes correspdﬁ‘dfng opttmal configuratihs of the cross- secnon.-}f o

respecttvely, for the cavity and for the rnhomogenerttes wrtlr shear modulus ratios of 2

and 5. o )

- Stmrlar pnncrples as those wrth the ctrcular case are apphcable in the mterpretation of °

the results except that, for. these non- crrcular cases, the surfaces of the torsronal ngtdrty

. are plotted only in.a certain area of the Ao- A, plane. Those plotted areas are
: ap_proxtmately where the prmctple of lrnear combmatron as outlined for the ctrcular case is

applicable; elsewhere, the actual »optimahttes are différent from what may be obtained by ’

the superposttmn R

Fortunagly enough though the plotted rather narrow parttcular regron tn which the

B “simple ltnear combtna’ﬁep techmque can be used COIDCIdeS voth the area where ‘the

T
engmeermg rnterest l& furthermore the opttmrzatton 1tself is also in real necessrty

: "':f'r L e 4
N

[ Cornputation of the Results 3 For those cases examined 'herein. the results Were all

- obtarned using the developed program “TOROPT" on an Amdahl 5870 Oomputer

' The determrnatron of the optrmal shapes and the correspondmg torstonal ngrdrtres

requtred oonsrderable computing time; for each of the geometnes consrdered the

o opttmlzauon prooess took" approxrmately 812 CPU seconds followmg each of the fourl

paths ooncerned ln fact l‘or 100 elements the number of membrane surfaces formed -

_ reached as many. as’ 165 345 this is not even taktng the number of the- ‘mode soluuons.

for each of “the membranes into ao_c_ount.
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[ An Example-Use of the Results ] As an eumple of uslng the results obulned o .
cons:der the multiply- connected inhomogeneous square cross secu:m in figure 5.3. lt is . |
composed of 5% cavnty and 10% stiffer material with G,/G,=2. “

%4u= 5 Q |
%A, =85 @ A
%Az =10 @ -

' -
A=A+ A+ A T

Figure 5.3: A Hollow Composite Regular Square Cross-Section under Torsnon
for the Determmanon of the Optunal Conﬁgurauon B '

‘The optimal torsxonal ngldnty and the optimal dxstnbuuon of thc cavily as well as of the
remforoement of the glven cross secuon can_be determmed by thc lmear combmation of
 the optimal cavity and the optimal inhomogeneity. A . “

Smce the (%A,.%A,) (5 10) 1s within the plotted region in Fxgure 5.9, the rcsult
obtained is apphcable. and the qptim4l torsaonal rigidity %Z,‘,",?, is therefore:

© No. f Stdu\ /—Gz/Gx/-Homogemoua
iv 2 -
o W25 =

RZr, + AZ -+ Az:,‘;?, - (5.2)

%A~ %Az . N\—by Cavity

or, equiva}ently,‘ﬁom Table 5.3:

121.22% = 100% — 0.61% + 21.83%
L B - ' '
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"In the optimal oonfiguration. the hollow 'cumposite Ssquare cross- seution eoncemed thus #

ra
has 121. 22% the torsxonal rigidity of the homogeneous one of the same size. The
conrigurauon of the one-elghth cross- -gection for the abOVe maximum . torsional ;igidity

ean be also determlned by overlapping the appropnate results given in Figures 5.10 and e
. : .7‘33“ ) ;
5 11 . Lo
A . .
¢ »,r&/ > -
’L)

(5 10)

Figure 5.4: An Example -Use o{ the Present Results for the Deterrmnauon

“ooof the Optimal Conf lgurauon of a Hollow Composite Regular Square Cross- Secnon

under Torslon

B
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5.1 THE EQUILATERAL TRIANGULAR CROSSSECTION - - o

L)

Table 5.2: Optimal Torsiona! Rigidity for the Hollow Composite Equilateral Triangular
Cross-Section at Various Proportions of the Cavity and of the Reinforcement

‘ 4 - 4 ' . } ’
$A,
S o - fs|wfyn|sin]|s|efw]e|n b olw
[ TH ’ '
o,A lﬂ.ﬂ‘ 0.72] 224 | -6.17] -6.04 |-10.00 |-13.56 ] -10.35 - 25.54 |- 36.46 {-43.25 | -62.51 | -72.2¢] -06.32 | -100.00
R
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$ +21.81
<1 | e2526
10 —
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b + )47
15
' 8 +104.41
1 +63.84
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2 +36.87
' 4 % -
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[ +217.64
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©
$ +239.61
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0 - :
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2 o0
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-8 +3n
~ 2. ] +%099
"
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N 2 +95.7
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[} +3N.46
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2 +100.00
100 V
s +400.00 - 100

Figure 5.5: Three-Dimensional Display of the Relative Optimal Torsional Rigidity
" Values for the Hollow Composite Equilateral Triangular Cross-Section
. at Various Proportions of the Cavity and of the Reinforcement
_ (G:/Gi=2,5)
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52 THE REGULAR SQUARE CROSS-SECTION | .
Table 5.3: Optimal Torsional Rigidity for the Hollow Composite Regular Square

Cross-Section_ at Virious Proportions of the Cavity and of the Reinforcement

I

SA * .
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s sloe 500
) +N83
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1 ) +%.13
3 +MN4
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s +150.00
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* Figure 5.9: Three-Dimensional Display of the Relative Optimal Torsional Rigidity
: Values for the Hollow Composite Regular Square Cross-Section
at Various Proportions of the Cavity and of the Reinforcement
( G,/G,=2. 5 )
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Figure 5.14: Optimal Conf' iguration of the Hollow, Homogeneous Regular Hexagonal
Cr’oss.-,‘Se_c;:_i,pn_qndeﬂ_r.Toxsion at Various Proportions of *the Cavity
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6 DISCUSSION -~ -

61 DISCUSSION O'FIH'E NUMERICAL PROCEDURE
4 '

[ The: Stress Function Fonnulation ] The major drawback of the stress ‘. function'
: formulauon for the torsron problem, which was used in this study. s that lt l‘ails to |
provxde a means to sattsfy exactly. for the stmply connected problem the contour lntegral
- condition dn the extemal boundary This parucular dtfl‘tculty rnay be overcoxne by usmg
« the hybnd or pe mixed. approach as in [18]. I -
L Such a deflcrency ol‘ the stress function forn‘mlauon however is* more than %Ffset by
“the fact that it is the one that allows consrderatron ol‘ the problcm in conjunction with
the . membrane analogy Indeed this analogy is a convenlent means for. the visual j
'mterpretatron of not only the whole problem itself but also its solutxon -procedure, -
eSpeCially with the mvolvernent ‘of multrple-connecnon. Thxs has been well demonstr‘ated,; -

by the accuracy of 'approxima'tion’ throughout the verification of the numerical procedure.

[ The Flnite Elernent Formulation ] The finite element equanon denved by the use of
the weighted resrdual method in the present formulatron is almost 1dentrcal wnth what s
A 'obtarnable from the variational prmciple '. e o EY ‘
The simple constant -strain trrangular clement used in the l‘ormulauon was l'ound to grve -
ve’xeellent results. It was, -l' irst of all very ﬂenble even for extremely large element aspect
'rauos For éxample one adJaeent angle of the element was )ust as small as 18‘ when a
cncular cross- sectron was mangulated and 1t still worked stably wrthout resulung in any'
'detertoratton in the aecuracy of approxrmauon

'l“he— good aecuracy and the Tteasonable rate of eonvergenoe of the clement were also

apparent from the vanous verifications performed. ‘In fact, values for ‘the torsional

L
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" rigidlty were all ‘obtained- within 0.5% of the- known eolutiok when at the least 600

" elements were used for the whole cross- -section. - /

-
I

[ The Tnnsformntlon Method ]  With the transformh'tlb‘n method, the shear. modulus

» ratio - G./G. for a good appronmation of the eavity element was proved to be of
o( 10 ). ‘ o |

Detpnte the mathematical incompleteness of drsregarding the mtegral conditions, the
transl‘ orrnauon method was found to be reliable enough as compared to the superpositxon
method In fact, the slmphcity of this techmque furnished a great d@ of computatronal
efficiency. - '

The overall performanoe of this method was qmte stable in most of the cases mcludmg

| those of smell cavities and also of thin-walled tubes.

[ The Superposltlon Method ] From the exammatxon of several other possrble forms of
the trial soluuon in the present stud‘, it has been revealed that the additional inclusion of
any more hnearly dependent mode &ltmons in the trlal f unction does not affect the final
solution at all as long as the linearly ‘independent ones are all there; in such cases, the
~ magnitude of the welghtings are accordlngly adjusted to have the original dxfferenoes in
" the trial solution _compensated. It was in thls regard that Shaw’s omission [70] ol' the
first rnode solutioty in his tnal fnnction in dealing with a doubly-connected problem was
f ound to be incorrect. o | o

- The vanous numerical studies carried out indicated that the trial: boundary constants m
the superposniorr method could be chosen _quite arbrtrarily For example, y tnal
boundary values of O( 10-'~10"* ) led to identical fmal solutlons when the exact one was °
of 0( 10 ). This bemg the case, there is all the more no reason why it should be other

than unity, thereby formmg normal mode soluuons as has been done in the present study.

One problem observed thh this superposmon metlrod partxcularly in conjunction with

the finite element procedure, however, ‘was tt&t it became somewhat uns_tahle in its

kY
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. performance when. the. cavities were apptoxlmated by tm small a number of - elements:

o l'ewer than seven, for instance. In these cases, the contour lntegral values are o oomely

_ approximated that the weighting factors obtained through the matrlx integral condltlon are

not reasonable. and this eventually affects the final solution. For this reason, the actual

solution procedure in ~the present study employs both the superposition and the
transformation methods in combination so as to cover all the possible cases more
adequately. | |

Also as a result of the finite element discretization, there were differences in terms of

reéults betwee’n:_ the two methods of -obtaining the general solution in the superposition -

method: -

| While computationally more expensive to practice because it had to store all the mode
solutions, the first altema_tive—-—the direct superposition of each ofum\w‘eighted
modes—gave final solutions whicll satisfied the integral conditions all in exact'sense; in
fact, this procedure has been used excluswely in obtaining the present solution. |

In contrast complete satxsfactmn of the integral conditions was not always possible
| thh the seco‘nd alternative m wh:ch only the exact boundary constants are deterrmned by
the linear combination, and the final solution is then obtained by re- solvmg these
boundary values simultaneously with the governing dtffe;:nUal equation.

_*The difference above, -however.‘ is not an intrinsic problem of the superposition method,

~ but rather What occurs only' when it is used jointly with approximation methods such as

the finite element technique. Therefore, in such cases, the difference becomes smaller as.

the discretization of the solution domain gets finer.. It is expected that the two methods

eventually give identical results as real\continuutu problems are approached more closely.
. , : - , ) S )
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6.2 DISCUSSION OF THE OPTIMIZATION PROCEDURE |

“—

As was 80 suggested for non- ctrcular cases, the. three assumptions made in numerically
implementms the membrane analogy as an optimization prowdure tumed out to be not

always true in reahty.

[ The Assumption I ] ~As a way of visualizing tlte o;ti‘miz.ation procedure, a
homogeneous regular square cross-section‘ was con’sideredt The increment in torsionsl)

gi&y caused by replacing each of the base mtgzw elements of this cross-section with
the reinforcement elcment is shown in thﬁre 61 "whde a similar illustration for the
decrement with the cavity element is shown in Figure 6.2. In fact, both of these figures
illustrate what the optimization procedure does at its very initial stage. .

If 'the linearity condition as stated in the Assumption 1 wete always valid, it would

mean that these t@vo plots indicate directly the opttmal plaoement of every possible

proportions of etther the cavity or the remforoement Various numerical studtes carried

out in this connection, however, show that the linearity in this sense is enurely dependent

upon the fineness of the approxtmatxon, and therefore that such result tends to get closer

to the final optimal solution as the mesh discretization and the approximation of the
stress function within the elemertt become more realistic;

For the particular mesh dwtsaon used ( 100 linear tnangular ‘elements #), it has been
found that only as many elements as five can be taken as-optimal locations at each stage
of the oplimization procedure. For better precision, however, the steps in the present

study were limited only to three elements} throughout.

[ The Assumption II ] The validity of the Assumption II, i.e. the continuity of the

‘optimal torsional rigidity functional, was tested by repeatedly reversing the direction of

the 6ptimization' prowdure. In this case, the forward and the backwat'd movements
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'eorrelpond*vret‘pectively;»towthe addition of Waw elm end the exclusion of  one
element 'to and from the existing optimal configuration. U
The results obtained through such tests in various situations showed that this
‘ assumption is true under most of the practical circummnoee. thus making the eequenthl
determination of the optimality possible.
‘I fact, a slmilar conclusion can be also drawn from an examination of th greviously
obtained results by Faylkner, Mioduchowski and Hon?[m. In this case, the three
proportions of the reinforcement considered—25, 50 and a5 pereente—were treated
completely mdependently. and.the obtalned optimal eolutions appeared such thet the 5%
fullylcovered the 50%, while the 50% included all the elements of the 25% case.

[ The Assumption I11 ]n Finally, for non-circular cross-sectiorts the Assumption M—the

mdependenoe of the optimalities of the cavity and the remforoement—-was shown to be
valid only when either one of the two parameters was relatively negligible in its influence.
_The useable range of this weak parameter was found to be somewhere between 0 and 40%

of proportion dcpendtng on the cross-sectional shape as well as on the shear modulus

ratio G./G,; in general the closer ‘the shape is t0 the circular cross- sectton and also the -

smaller the value of the shear modulus ratio is, the wider is the range of applicability for

&

this assumption. ' #
It follows, therefore, that the optimality problems of the cavity and the reinforcement,
in a strict sense, cannot be treated entirely independently outside the range indicated

above.

In summary, the three assumptions esiablished in developing the present
optimiuttion procedtxre are true for the circular cross-section under every possible
situations, ' ‘ '
| For non-circular cases, however, it is only over a certain limited region of the A,-4;

plane where these are all simultancously valid, and unique, path-independent optimal
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‘solutions are thus obtainkdie by the present procedure of - opuminﬁen
ltkeleointhiurednnonly whmtheopmmlmeeofenynondrculn
multiply-connected inhomogeneous crou -section can be determlned by a simple linear
combination of those of the pure cavity and of the purf reinforcement considered
eepemelyuwiththedrcuhrme ‘ | \

v

Methematiully. the opumluuon procedure dcveloped may not he regarded as |

N complete in’ that the m euumptions upon which it is based are not always true, and
therefore that it fals fo Gover the entire region of the Ay-4; plane.

However. in view of the fact that. there is, beeauee of the mathematical difficulties

involved, no other available method for this eort of three-parameter optimiuuon

| \rgblem. the’ method is still useable in an engineering sense. «,-\ ’

This is so miuch the case in that the region where the present optimization procedure is

' Applicable happens to be, fortunately enough, t.he one in wh:ch there is practical mterest

in oomposne materials; hence the optimization is most useful; and furtherumre its real

point exists.

The reliab,nhty of the presem opumxzauon procedure ha,é also been demonstrated
through the unprovemem in optimal torsmnal rigidity values-as seen 'in the previous
verification. |

One 'pam'cular; advantage of the present procedure over others is the ﬁfact that it is
based on the actual computation and then the comparison 'of the torsional rigidity values
rather than based: on the stress values of each of the: eleants as was done in [22). I
fact, the previous approach turned out to be more vulnerable to the effects of the
coarseness of the mesh division and also of large shw modulus ratios between the two

“cofistituent materials.
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63 DISCUSSION OF THE RESULTS R

As examples for the application of the devaloped wnolution proéedure. the present study
considered thr_eerepreunuuve non-circular regular goometries including the triangular, the
square and the hexagonal cross-sections. Analysis o{ the mulu obuinei rprw:heu euu
reveals some of the typical and general chqgcterimcr of the optimal distribution of the
cavity and the reinforcement within those pmcﬁbad boundaries.

4

From the optimal torsional rigidity surfaces in Figures 5.5, 5,9 and 5.13. it can be
» seen, first of all, that the plotted region where the use of /the linear combimtlon is
possrble is larger for the square case as compared with the trhngular case’s, lnd larger
again for the hexagonal case as compared with the square case's. This, obviously.
suggests that rhe range of the applicability increues as the shape approaclfes to a circle.
As also can be seen from the various optirnalshapes the configuration and the number
of contours ingside the cross-section depend notably upon the curvature of the given
external boundary. For both the cavity and the reinforcement areas, though, the
opumh{r;:re observed to appear in a fashion such that they all tcnd 10 become as close
as possible in shape to that of the circular case. This can pe seen, first, from the

observation of the distribution of the optimal cavity over the cross-section . for the

: 'respéctive geometries. The optimal triangular cross-section already in'?lndes corner cavity .

at 10% of its proportion, the square at 30%, whereas the hexagon never contains such a
cavity at the corner regardless of the proportion; in other words, the f unhcr the shape of
* the cross- sectron is from that of the circular one, the faster becomes the prouution of

the cavity to the corners

!

' Asimilarapproachirrg to the circular case can also be seen from Table 6.1 in which the’

pumber of contours that appear in the entire optimization procedure are summarized for
the four geometries considered. | S ey
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Table 6.1: Vanauon ol' the Number of Contours for Some Typrcal Opumally Shaped
Hollow Homogeneous Regua.lr Cross Secuons at Vanous, Proporuons of the Cavity
. . k ‘ S l’ . o = " - . . .
e NC Number of Comours wrthm the Enure Cross Sectxon
R G?QU.!CUY".J S ~ with the cavity proportron in percentage of : -

,owzosowsosovo,sosoloo‘

) R B 5[9 5 1

P

ok &

"~ The dlsmbuuon of the opumal remforcemem also leads in thrs regard o a srmllar @
conclusnon Lhe closer 1he shape of the external boundary of the cToss- secuon is 0 a
'crrcle the 'faster is the spread of the optlmal remf orcement 10 the corners. ln these'*'

: .case& the movemem of the rernl‘orcement to lhe corners 1s even more acceleratedwby the | L ,!
: V)rncrease ol' the shear modulus 1atio. Thrs 1; the same as what was observed by Faullmer ' |
v‘ Mroduchowskn and Hong in [22]. | | |
: Wlnle the prasent study is confmed only to the range of elasnc behavrour of the !
’ :c0nsmuem matenals rt is very mterestmg, althougb not surpnsrng, to " note that the .'
{Ergressron of the opumally mnforwd regron in the present results is qurte sumlar to the :

'

. ‘developrnent of the plasuc regron ove‘i the cross secuon studxed by Baba -Kajita [2] R -

Adso, as is unmedrately nouoeal;le from the st.nlnng srmrlamy in varrauon of the‘
L torsional rlgrclrty m Frgures 6.1 and 6 2 the optrmal location of the mvrty on the

. b
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R 13

_.Muﬂn is approxrmately equivalent 10 the worst place for the addrtron of the g
remforcement and vice versa. ~ The slight drfferences in such cases can be atmbuted o - . |
the necessary fxrstence of the wall elements Wthh to keep the prescnbed external

boundary shape unchanged, force the opumal cavity to be found rnsrde only

Shown in Frgure 6 3is the companson of the opumal torsional ngrdrty values of
the four cases cconsrdered rn the-c present: study—the trrangular ‘the square, the hexagonal
and the crrcular cross secuons \ | ‘ |

The cross- sectrons in thrs case have all equal areas, and, for the srmultaneous
consrderauon ol‘ the effectrveness of the opumalmes the torsional rigidity values are all
' non-dimensrona‘llz.ed with respect to that of the crrcular case setting its hornogeneous
case’s .to 100%. As for the remforcernent only the shear modulus rauo of 2 was.
consrdered rThe lower four and the upper four curves in the plot represent the opurnal ‘
_ cavrtres and the optrmal reinf. orcements; respecttvely
As expected all curves tend. toward that of the circular case since it is optimal yamong
o \ all equal- area CToss- sectrons Because the slopes of the curves for the opumal
reinforcement are most steep at the origin, the maxrrnum increase m the torsronal Tigidity
by the same additional amount of the reinforcement occurs at lower proportrons of the
stiffer material. On the other hand lower proporuons of the cavity also have httle
effect on. th; torsronal rigidity. lt is f ortunate that tlus lower-propoition area happens to

be where the opumrzauon procedure developed in the present study functions best

| Flgure 6.4 compares the relauve torsronal ngldrty values of vanous homogeneous
regular equal- area cross-sections. The number of sides of the.cross- secuon in this case1
was mcreased up 1o 100, and for each of the cases the torsronal ngrdrty values are’
vnon drmensronalrz.ed wrth respect to that of the crrcular case. Again, the converge ce 10
v

the circular case as well as the effectrveness of each of the geometries can be clear

seen.
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: The results obtained in the present study can be used in many different oombinattons for
various purposes of opumizauon One of such usage is in destgn for the detemrination_,
_ -of the exact optimal conftgurauon ‘and dimenston of the CToss- secnon with given the B

_external shape, the shear modulus ratio, the proportxons of both the cavity and the‘

Y

T;eﬁr.'

'remforcement and the torstonal ngrdtty value. | _

" As shown earlier the opttmal shape of the cross -section in such cases can be

! determined by combtmng the approprtate enmes in thures 5. 5\ to 5.16. By following.
| proper mahtpulatton it 'is also easy to show that the relauon below can be used for the

determmatton of the correspondmg optimal - cross- secuonal area A%

n.a »b : . ) . .
2 ZA(Mz - T
A* = Ty Ty T
- Z, A, Z,o
1 — '
Zo 25 .
i
4

In this equauon Z o o A is the required torsnonal ngtdtty value of the given cross- secuon
(240 Ao, Aa /Z"o) a non- dtmensnonal parameter whrch can be determined from one of the —

Tables 5.2 to 5.4, and ( Zoo / Zo » ) another dtmensmnless parameter Wthh can beﬁead ' \;"
_ directly from thetlgraph in thure 6.4. . : ) k .' ’\ BT



7. CONCLUSIONS

The obJectrve of thls study was 10 develop first a suitable solutron method that can
handle the general multiply - connected rnhomogeneous torsron problem, and ‘then an \‘

Optrmrzauon procedure that1 finds the internal | configuration of such  cross-sections

| ‘maxrmrzmg the torsional rrgrdrty

+ Listed in the following are the major l‘mdmgs and the conclusrons drawn f TOom the
present mvestrgatrdn_:

L

[1] In formulatmg the more general class of the torsron problem the Prandt! stress
function approach offers several drstmct advantages over others These include the
consrderable srmphl‘rmtron of the boundary condruons and the avatlabrlrty ol’ vanous "

an_alogres f or the vrsualrzatron of the problem.
- - SR

[2] With the flexibility in mapping the co‘r;rp_licated geometry, the ease o‘l'v treatingvthe l‘ |
inhomogeneous as well as the multiply - connected situations the' identical satisfaction of

the interface condruons and the variety of chorces of elements the finite element method
.- i the best suited approach avarlable for the analysis of the advanoeg type of torsion

problems

[ 3] . The rather straightf orward transformation technique is, '_des.pite rts mathematical
incompleteness, reliable in most of the n_tultiply‘,-oonnected situations. and its simplicity | )
furnishes a great deal of computational efficienty. However, this method c\nn be \_used

" usually in conjunctidn with thefinite element procedure only. . -

[4] The superposrtron techmque as developed in thts study is. capable of deahng with |

any type of multrply connected situations regardless of the number of Boundary contours |

Q
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involved, and it is the only known approach determining the boundary constants as
simultaneously satisfying all the rntegral\conditiop; Its applicabrltty to other types of

lrnear muluple boundary value problem ls. as well apparenl

\

The method: of numencal simulatron ol"the membrane analogy as used for the

opumrzauon procedure in the present study is equally apphcable 10 the fmdmg of the
opttmalrues of both the cavity and the reinforcement. Although not mathemaueally
“complete especially for general multiply-connected inhomogeneous cases, its performance
is sufficiently versatile for many practieal situations in composite materials. »

‘ v N . “ ‘ B ‘ -
[ 6 ] In torsion prohlem, the circular cross-section is special in that it is optimal among

v all cross-sections of the same area. The opurnalrty condmon of this - cross-section
mcludmg ‘both the muluple connection and the mhomogenerty in it can always be
determrned by srmple linear.. combmauon of those of the pure cavity and of the pure
.rernforcement consrdered separately It is also for this case. only that the opumal shape '
is completely mdependent of the shear modulus rauo As for non-crrcular Cross- secuons
however the optimalities appear allin a manner that tends to become as close as possrble
to- that of the circular case. Furthermore. for the opumahty of a general
multiply- -connected mhomogeneous case, mdependent treatment of the multrple connectton
and the mhomogenerty as with the crrcular case is possible only when the proporuon of .
either of the two entries is relatively small with jts extend depending on the curvature of |

the given external boundary and also ’on the magnitude of the shear modulus ratio.

.

171 For all cross- -sections of different geometnes ‘alike, the appearanoes of the

optimalities of the cavity and the reinforcement are generally opposite to each other and _

iy

K

in terms of the torsional ngtdrty. the opurnal dtstnbuuons of both the cavity and the .

remforcement at higher proportrons are generally not as effectrve as that at lower'_

~ proportions.

L4
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| [ 8 ] Although in the present study. the results have been obtained only for some
representative regular cases, both the solution and the- éptlmintion prooedures developed
are completely general and easily applicable with no further difficulties to any lrregltlar
| : crossesections involving tnulttple-connecttons and/or inhomogeneities. The same is also
" true for the computer program eltoebt for the part of the automati't:( nteeh ’generatlon

' subprogram. -

[ 9] Fmally, it would be worth notmg that the same type of elltpttc pam;ﬁ differential
equatton ‘as in this study describes not only t.he torsion and the tnﬂated ‘Tnembrane
problems, but also a number of Jﬁer physncal phenomena tncludtng the potential flow,

| : the se¢page, the conduction heat sfer, the electric conductton and the gravltation etc..

" - Therefore, it is posstble through proper identification of the parameters that the present

““study find its application to other two- dunensxonal linear boundary value problems.
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0001 .~

0002
0003
0004
0005
0008 .
0007
0008
0009

- 0010

o011
0012

0013 .-

0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024

0025 .

0026
0027
0028

0029 ..

0030
0031
0032

0033 °
- 0034
, 0035

0036

0037
0038
0038
0040

" o0af |

0042
0043

0044

0045

0048

0047
0048
0049
0050
0051

- 0052

0053
0054.
0055

0056
- 0087

0058
0059

. 0080

ttt‘tttt#tl"li!it‘lt‘tttt'tt“t“t‘.‘t‘l"“!“.‘.““ttll‘.
tttttt‘t.b.ltttttt"til‘ltt‘t"t‘l“lltl‘ll““tt“..“.‘..“

'®. VS FORTRAN 3.0 / ANOAHL 8870 / MTS 1988 .

AEIESERERARRBREERER AR AN ESLE RS RIRRNSR S E ALV S AUEETINRERES
* " . .

1 —

- PROGRAM TOROPT - !

*
* this main program carries out the torsional
L optlm!zation of nult!ply connoct.d Inhomg!mous priam!
. ‘
IMPLICIT oouuLEPnecxsloN( A-H, 0-2 )
* ) o )
s AL ------ Angle of Twist per Unit Length of the Prism. g
* A$ ~---=- Cross-Sectional Ares of an Elemant. o
+ BV ------ Trial Boundary Constant Value.:
* {G) ----- Shear Mogulus Vector.
* GO ~----- Shear Modulus of the Cavity Element.
*+ Gi ------ Shear Modulus of -the Base Material Element.
* G2 ------ ‘Shaar Modulus of the Retnforcement Element.
* [M] ----- Nocle Variable Name Matrix.
* [MO2] --- Torque Addressing Vector. !
* MC ------ Maximum Number of Mode Sol
* [ME] ---- Element *Varisble Name Pax.
* {MEC}) --- Cavity El@ment Vector. . :
t MO =~=---- Max § mum r0f Cavity.- Elmnts
L (MPC).-_~- Cavity Nod. ¥t Vector. ,
x [MS] ---- Adjacent Element Matrix. ' .
= N --~-=-- Order of the Blob-l Stitfnass Nntrix
* B0 <----- Number of Cavity Elements. _ .
* N1 -=---- Numbear of Base Matarial Elements. \ >
* N2 ------ " Number of Reinforcemsnt ETements.
* NC -~---- Number of Contours.
* ND ---~-- Number of Dimension.
* NE ------ Number of Elements.
+« (NEC} --- Cavity Element Number Vector.
* NF ---=-- D.0.F. Number per a Node Point.
* ‘NG ------ Number of Corners of the Given Regular Geometry.
* NH --==--- Number of Division.
* (NM)}: =--~ Number of Elements Jolning at Node Points. .
* NN --=-=- Number of Node Points per an Element.
* NP ------ Number of Node Points for the Whole Region.
+ {NPC) --- Cavity Node Point Number Vector.
* NV “=---- Number of System Variables. .
= NW ------ ‘Number of Wall Elsments..
* 'Q’ ~----- Option Parameter.
« {PH) ---- Stress Function Vector.
* [SC] ---- Contour Integral Matrix. . ,
+« [SF] ---- Stress Function Matrix. . : - ;
* [SL] ---- System Load Matrix. i S
* [§S] --<- Stress Matrix.
* [ST] ~--- System Stiffness Matrix.
* TOO ----- Homogenaous Case Torque.
* {T02) -<- Torque Vector.
*+ [XY] ---- Node Point Coordinate Matrix. .
*§ -omom Subscript for the Element.
: 3 .

.
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CTLRES .
. o

0081

0082

0083

0084
0085

0087
0068
0089
0070

0071

0072

- 0073

0074

.~ 0078

0078

10077

0078
0079
0080

0081
0082

0083

0084 .

0085
00886
0087
0088
0089
0080

0091 .

0092

0093
0094 -

0085
0098
0097
0098
0099
0100
0101
0102
0103

. 0104

0105
0108
0107
0108
0109

0110 -

o111

0112

0113
0114
0115
o118
0117

0118
0118

0120

T+

02

+

LR K I IR I

PARAMETER(. - NH=10,
NP= (NHsNH+3+NH42) /2, NN=3, NDs2,
C NFe1, NsNPsNF, NWe=2¢NH-1, MO=NE-NW
COMMON ~ GO, AS, AL, BV \ ,
/$A$/ ST(N,N) /$B$/ SF(N,0:9),
7$C$/ ME(NE,NN) - /$DS/ NM(NP)
/$ES/ MS(NE,NN) /$F$/ XY(NP,ND)
/$Gs/ Q(NE) = /$HS/ WM(NP,NF)
7818/ NEC(9) /$Us/ MEC(NE)
 /$K$/ NPC(9) /$L$/ WPC(NP)
. DIMENSION TO2(NE), MO2(NE), M1(NE)

RR=10.D0,

CHARACTER O+ 1

READ(S,*) NG, Gi, G2, AL, BV, O
WRITE(8,60) . NG, G1, G2, AL, BV, O

" pI= &.DO*DATAN( 1. oo y

CO= P1/180.00

TH‘ 380.00/ DFLOAT( 2*NG )

YL= XL‘DTAN( CO*TH )

IF( 0 .EQ. ‘T’ ) THEN‘

GO= G1*1.,D-10 .

ELSEIF( O .EQ. 'S’ ) THEN

01

' Go= 0.DO
ELSE

WRITE(8,*) ' =*x% UNEXPECTED OPTION O IN 'TOROPT“ !

STOP .
ENDIF

CALL GENMES( - XL, YL,

00 05, NO=0,MO
DO 04, N2=0,NE-NO
IF( NO. EQ O .AND.
- "'po 01, LE=1,NE
G(LE)* G1
CONTINUE

NC, MC

N2.EQ.O

CALL .COMPUT( G, NG, MC,
_ WRITE(8,81) DFLOAT( 2¢NG )troo

ELSE .
IF( N2 .EQ. O

) THEN

DO 02, LE=1,NE

IF( G(LE)
- G(LE)= G1-
ENDIF
CONTINUE
. MEg= HO
Qs$: GO
ELSE -
MES= NE
Gs= G2
ENDIF -

.NE. O. DO

NE=NHSNH,

- XL= DSQRT( 4. DO/DFLOAT(NG)*DCOTAN(CO‘TH)

) THENi'

T00 )

)

)*RR

) THEN".



o

0121 LI O

10122 : : DO 03, LEs1,MES . .
. 0123 ‘ ~ IF( G(LE) .EQ. G1 ) THEN
0124 - T LY Lt 4+ 1 _ A
0125 , G(LE)= G$ o :
0128 o IF( G(LE) .EQ. 0.DO ) THEN
0127 ‘ . CALL DETOUR( . G, NC, MC )
0128 .. ENOIF ' R ' .
0129 . _ CALL COMPUT( - @, NC, MC, TOZ(L1) )
0130 o : ‘MO2(L1)= LE . .
0131 G(LE)= G1 :
0132 ENDIF .
1 0133 03 CONTINUE A
0134 - : CALL ASSORT(  TO02,-L1, M1 .)
0135 . : ~ o L02= MI(LY) " BT
0138 -, LG= MO2(LO2)
0137 : G(LG)= G$
0138  IF( G(LG) .EQ. 0.DO ) THEN
0139 CALL DETOUR( G, NC, MC )
‘0140 ENDIF :
0141 WRITE(S,82). NO, N2, T02(L02)/TOO, LG
0142 “ENDIF , '
0143 04 CONTINUE
0144 03 CONTINUE
0145 S
0146 :
0147 STOP
0148 ‘
0149 60 FORMAT( IS, 4D20.10, A )

0

/0150  (, 61 FORMAT( 85X, D20.10 )

- 0151 , 82 FORMAT( - 21§, D20.10, 85X, I5 .)
0152 7 . :
0153 END ‘ "
0154 : )
0155 * . e . )
0186 CEEEERRRRRRERRRA SRR ERAAR AR SRR RAERRABALSRA R KK RS R XSRS
0157 * : ' ' :
0158 ' ) ‘
0159 - SUBROUTINE ASSORT( T, N, M )
0160 , : ,
0181 * : :
0182 . - * this subroutine performs the ascending-order sorting!
01863, * ) ’ . :
0164 ) : » .
.0165 IMPLICIT DOUBLEPRECISION( A-H, 0-Z )
0163 1 . L]
0167 DIMENSION T(N), M(N)
0188 : :
0169 . B ,
o170 DO 01, L=1.,N N
0171 . M(L)= L oy
o172 - 01 CONTINUE
0173 ' ‘ o _ .
0174 ’ DO 03, 1I=1,N-1
0175 K= I . . _ *
0178 - DO 02, 'J=1+1,N -
0177 : IF( T( M(J) ) .LT. TCO M(K) ) ) THEN
0178 o K= J ’ o
0179 ' ENDIF
0180 02 -, CONTINUE



< 4

0181 ' IF( K .NE. I ) THEN

0182 L= M(K)

0183 ) MK)= M(I)

0184 R M(I)=' L

0185 ENDIF -

0186 03 CONTINUE

0187

0188 .

0189 . RETURN

0190

0191 END _ ,

0192 - : -

0183 s , :

0194 . ttttttt’t*tttt.‘t‘tl*ttllt‘tltl.ltt““ti‘.t“*“‘l“l"t‘t"

01958 . o . L :

0198 ‘ ’ [

0197 SUBROUTINE COMPUT( G, NC, MC, T )

0198 - , _ .

0189

0200

0201

0202

0203 : :

0204 - IMPLICIT DOUBLEPRECISION( A-H, 0-Z )

0205 . : . :

0208 " PARAMETER(  NH=10, NE=NHsNH, NP=(NHsNH+2:NH+2)/2,

0207 4+  NF=1, NsNPsNF ) v :

0208 : : o _

. 0209 "COMMON GO, AS, AL, BV —_—

0210 o :

0211 DIMENSION G(NE), PH(N)

0212 o S

., 0213 ‘

0214 - CALL SYSINI( W™C

0215 .-==* ' CALL SYSASM( G,

0218 CALL SYSCON( BV

0217 CALL- LEQGEM( NV
0.
PH

this subroutine hosts computation
of the torsional rigidity value! .

* N % N

)

. MC, NV )
)

0218 : CALL LINCOM( MC, PH )

0219 . CALL TORQUE( )

0220 .

0221 . :

0222 RETURN

0323

0224 END

0225 - ,

0228 * T : :

0227 ' tttttttttttttttttt#ttttttttttttttttttﬁttt!ttttttt‘ttttttttt‘t

0228 * ' :

10228 : .

0230 ’ SUBROUTINE CONSTE(  G$, AL, XY$, ST$, Sts )

0231 . . ‘ .

0232 * .

0233 *+ this subroutine generates the constant

0234 + gtrain triangular slement stiffness matrix!

0233 s :

0238 , : :

0237 IMPLICIT DOUBLEPRECISION( A-H, 0-Z: )

0238 ’ .

o239  ® DIMENSION XY$(8), B(2,3), ST$$(3,3), ST$(3,3),

0240 - + SLS$(3)



132

0241
0242 o ,
0243 IF( G$ .EQ. 0.D0O ) THEN
0244 : WRITE(S,*) ’ »ss DIVISION BY ZERO IN ."CONSTE™ '
0245 : s$TOP
0248 : ENDEF
0247 - A o
0248 CALL GENMBC( Xvs, ‘B’, B )
0249 . CALL MATINP( B, 2, 3, ST$$ )
0250 \\ . ‘
0251 _ 00 02, 1=1,3 )
0252 i - DO 01, J=1,3
¥ 0253 / ST$(1,4)s 1. oo/ensns(x J)
" 0254 - b1~ CONTINUE
- 0285 02 .CONTINUE o
0256 . . ' . S
Qa2s7 SLS$$= 2.D0/3.DOsAL . : : - Coe
© 0258 00 03, I=1,3 - D: .
0259 . SL$(I)= SLss
0280 03 CONTINUE
0281 .
0262 L
0283 RETURN
. 0264
Q265 END
0268 .
0287 * . _
0258 ttttttttt‘ttttttttttttltttttttttt!‘tt‘ltttt.‘ttt.t..t“(.tt‘t‘
. 0269 * \
0270 :
L0271 DOUBLEPRECISIONFUNCTION CONSUM( G, SS, IC )
0272 : -
0273 * . ' _ ’
0274 - =* this function evaluates the contour {ntegral valusel
0275 * :
0278 L .
0277 IMPLICIT ~DOUBLEPRECISION( A-H, 0-Z )
0278 .
0279 PARAMETER(  NH=10, NE=NHsNH, NPx(NHtNH+3+NH+2)/2, ’
0280 + NN=3, ND=2 )
0281 . ’
0282 COMMON GO
0283 + /$C$/ ME(NE,NN) - /$ES/ MS(NE,NN)
0284 . + /$F$/ XY(NP,ND) /$1$/ NEC(9)"
0285 4 /$J$/ MEC(NE) T
0286 . .",Q
0287 } DIMENSION G(NE), SS(NE,2)
0288 o ‘
0289 . . ©
0290 CONSUM= 0.DO - . : @
0291 . IF( IC .EQ. 1‘ ) THEN .
0292 0o o1, LCaNEC(IC), NEC(IC+1) 1
0293 - 1E= MEC( LC )
0294 S IPs ME( 1E,2 )
0285 UP= ME( 1E,3 ) .
- 0296 OX= XY( JP,1 ) - XY( IP, 1)
0297 oY= XY( JP,2 ) - XY( IP,2 )
0298 SC$= ( DX=SS(IE,t) + DYsSS(1E,2) )/ G(IE)
0299 , CONSUM= CONSUM + SC$ .
0300 1] CONT INUE .
o



0301

0302

0303
0304
0308
0308
0307
0308
0309
0310
0311
0312

0313

0314
0315
0318
0317
0318
0319

0320
0321%.

0322
0323
0324

. 0328

0328
0327
0328
0329
0330

0331

0332
0333
0334
0335
0338
0337
0338
0339
0340
0341
0342
0343
0344
0345
0346
0347

0348.

0349
03%0
0351
0352
0383
0354
0355
0356
0357
0358
0359
0380

ELSE

133

DO 03, LC=NEC(IC),NEC(IC+1)~1

- 1E= MEC( LC )

DO 02, LN=1,NN
JE* MS( IE,LN )

IE( JE .NE. O ) THEN
IF( G(JE) .NE. 0.DO ) THEN
s IN= LN
IF( IN .LT. NN ) THEN
UN= IN + 1 ‘
ELSE .
"UN= 1.
ENDIF
_ IP= ME( IE,IN,) e
JPs ME( IE,UN ) g
DX= XY¥( JP,1 ) - XY( IP,1 )
OYs XY( UP,2 ) - XY{ IP,2 )
SCs= ( DX*SS(JUE,1) + DYsSS(UE,2) )/ G(JE)
CONSUM= CONSUM + SC$
ENDIF ‘
ENDIF
02 CONTINUE
03 CONTINUE
ENDIF
RETURN
END \

*
TSI 3231222223 222 2 2
*

SUBROUTINE DETADY
1 3

* this
.

\

3.
/
ttttt!tl“tttt‘t‘i‘.tt‘#l“tt‘t“f‘

~

N

subroutine determines the adjacent elements!

IMPLICIT DOUBLEPRECISION( A-H, 0-Z )

" PARAMETER(  NH=10,
+ NN=3 )

COMMON

+ /$C$/ ME(NE,NN)
+ /$SES/ WMS(NE,NN)
DIMENSION MM(NN,5),
LOGICAL OK

Y
DO 01, LP=1, NP
NM(LP)s O
01 CONTINUE
DO 03, LE=1,NE
=1,NN

NE=NHSNH, NP=(NHsNH+3:NH+2)/2,

/$DS/  NM(NP)

NMS (NN)



0381 LP= ME(LE,LN)

0362 NM(LP)= NM(LP) + 1

0383 02 CONTINUE

0364 03 CONTINUE

0385

0366 DO 13, IE=1,NE

0387 00 04, LN=1,NN

03868 NMS(LN)= O

0369 | 04 . CONTINUE
- 0370 '

0371 DO 08, JE=1,NE

0372 . : IF( JE .NE. IE ) THEN

03”3 " DO O8, IN=1,NN

0374 -~ DO 05, UN=1,NN

0378 " IF( ME(JE,UN) .EQ. ME(IE,IN) ) THMEN
0378 NMS(IN)= NMS$(IN) + 1 :
0377 , MM( IN, NMS(IN) )= JE —
0378 ENDIF .

0379 05 CONTINUE

0380 08 CONTINVE

0381 : OK* .TRUE. \
0382 DO 07, IN=1,NN _

0383 OK= OK .AND. ( NM$(IN) .EQ. NM(ME(IE,IN))-1 )
0384 o7 CONTINUE

0385 IF( OK ) THEN v

0386 _ GOTD 09

o387 ENDIF

0388 ‘ . ENDIF -

0389 08 CONTINUE

0390 ,

0391 - 09 DO 12, LN=1,MNN

0392 IN= LN

0393 v 1IF( IN .LT. NN ) THEN

0394 Lo UN: IN + 1

0395 . ELSE" ' .
0396 ’ JUN= " §

0397 . ENDIF - _

0398 , DO 11, IM=1,NMS(IN)

0399 - . DO 10, UM=1 NMS(UN)

0400 . IF( MM(UN,JUM) .EQ. MM(IN,IM) ) THEN
0401 MS(IE,IN)= MM(IN, IM)

0402 _ GOTO 12

oko3 g . ENDIF

0404 10 - CONTINUE

0405 "M CONTINUE oo

0408 v .~ MS(IE,IN)= ©

0407 12 © CONTINUE

0408 13 CONTINUE

0409

0410 . . A
0411 RETURN

0412 E

0413 END';

0414

0415 * N , :
0416 tttttQttt"ttttt‘ttttttttttttt'tt‘ttttltt‘tlttttlttl.!l‘t‘.l‘l
0417 * 3

0418 _ :

0419 _ SUBROUTINE DETOUR( G, NC, MC )

0420



0421
0422
0423
0424
0428
0426
0427
0428
0429
0430
0431
0432
0433
0434
0438
0438
0437
0438
0439
0440
0441
0442
0443
0444
0448
0448
0447
0448
0449
0450
0451

0452 -

0453
0454
0438
0456
0457
0458
04389
0460
0481
0482
0463
04684
04653
0466
0487
0488
0489
0470
0471
0472
~ 0473

0474
0478
0478

0477 . -

0478
0479
0480

- e & s

this subroutine determines
the status of multiple-connectionl

o1

'IMPLICIT DOUBLEPRECISION( A-H, 0-Z )
NH=10, NE=NHsNH, NP=(NH*NH+3sNH+2)/2,

PARAMETER(
+ NN=3

COMMON
+ /%Cs/
+ /8V8/
+ /78LS/

DIMENSION

NC= 1

. @0

)

v

ME (NE,NN)
MEC(NE)
MPC(NP)

G(NE)

LC= NEC(2)

DO 01, LE=

IfF( G

MEC(

LC=
ENDIF
CONTINUE

NEC(3)= LC

1,NE

(LE) .EQ. 0.DO ) THEN
LC)= LE

LC + 1

/$18/ NEC(9)
/$KS/ NPC(9)

02 IF( NEC(NC+1) .LT. NEC(NC+2) ) THEN

03

04

05

07

Ni1= NC
N2= NC
N3= NC
NEC(N3
NEC(N2
Do 07,

+ 9

+ 2

+3

)= NEC(N2)

)= NEC(N1) + 1
IE=NEC(N2) ,NEC(N3)-1

IC= MEC(IE)
DO 08, JEsNEC(N1),6NEC(N2)-1
JC= MEC(JE)

CONT

OS, IN=1 NN
DO 04, UN=1,NN

IF( ME(JC,JN) .EQ. ME(IC,IN)

MEC(IE)= MEC( NEC(N2) )

MEC( NEC(N2) )= IC
NEC(N2)= NEC(N2) +
20TO 03
ENDIF»
CONTINUE

CONTINUE

INUE

- CONTINUE

NPC(N2
00 10,
LC=

)= NPC(N1)
LESNEC(N1),NEC(N2) -1
MEC(LE)

DO 09, LN=1,NN

1P

= ME(LC,LN)

1

DO 08, JP=NPC(N1) ,NPC(N2)-1

IF(  WPC(JUP). .EQ. IP
QoTO 09

) THEN

) THEN
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0481
0482
0483
0484
0488
0488
0487
0488
0489
0490
0491
0492
0493
0494
0498
0408
0497
0498
0499
0500
0801
0502
0%03
0504
0308
0806
0507
0508
0509
0510
0511
0512
0813
0514
0515
0518
0517
os1d
0819
0520
0521
0522
a523
0524
0525
05268
0527
0528
0529
0530
0531
0532
0533
0534
0338
0536
0537
0538
0539
0540

o8
H

09
10

.

ENDIF » ‘ ’
CONTINUE
! MPC( NPC(N2) )« IP !
NPC(N2)s= NPC(N2) + 1
CONTINUE
CONTINUE
NC= NC + 1
QOTO 02

ENOIF ’

1F(

L

G
NC .EQ. 1 ) THEN .

ELSE

MC= NC

ENDIF : S

RETURN -

E 3

-

*

AKX EESL L ENSS I SRR ESRE RIS ELAEEELISELEEEOLLEIBRRSRANSESRES

]

SUBROUTINE GENMBC(

L 3R N

_ ImpLICIT DOUBLEPRECISION(
DIMENSION XY$(8),

Xys, ¢, B8C )

this subroutine generates the [B]
or the [C] transformation matrix!

~p‘;'33‘(u..zs.'r1.

A-H, 0-Z )
BC(2,3)

CHARACTER $

X1=
Y=

X2=
Y2=

X3=
Y3s=

- 8=
B82s
83=

cts
C2s
C3s=

As=
IF(

XYs$(1)
Xv$(2)

XY$(3) ' .
XY$(4)

XY$(S8)
Xys(8)

Y2-Y3
Y3-Y1
Y1-Y2

X3-X2
X{-X3
X2-X1

TRIARE( XY$ ) ,

A$ .EQ. 0.D0 ) THEN '
WRITE(S,+) ’ s+s DIVISION BY ZERO IN "GENMBC® '
sTOP



0841
0842
0843
0844
0848
0848
0847
0848
0549
0850
0551
0852
0853
0884
0558
0586
0887
0888
03859
0580
0881
0582
0583
0584
oses
osee
0587
0588
0569
0870
0571
0872
0573
0574
0578
0578
0877
0578
0879
0580
0881
0582
0583
0584
088S
0586
0887
0888
0889
0890
0591
0592
0593
0594
0598

0598

0897
0898
0899

0800

Q
ENDIF
co= 1.00/2.
(s .EQ.

DO/AS
‘S8’ ) THEN

8C{(1,1)* CO*81
B8C(4,2)* CO*B2

/ 8C(1,3) CO*83 .
8C(2,1)= COs+CH
BC(2,2) COs+C2
8C(2,3)= CO*C3

ELSEIF( $

.EQ. ‘C’ ) THEN

B8C(1,1)= CO+CH
BC(1,2)» COsC2
B8C(1,3)= CO+C3
8C(2,1)= -CO=B1
BC(2,2)= -CO*82
B8C(2,3)* -CO*B3 '

"WRITE(S,s) ' sss UNEXPECTED OPTION $ IN "GEMC" ’

ELSE
STOP
) ENDIF

RETURN
END

.

*
SUBROUTINE

*

L

»

t'tlttltlt“‘tt“ttt“tt““‘tt“““‘!‘lt‘ﬂ’t"‘t"t‘ll““‘

GENMES( XL, YL, NC, MC )

+ this subroutine generates the mesh information!

IMPLICIT DOUBLEPRECISION( A-H, 0-Z )

PARAMETER(

NH= 10, NEsNHSNH, NP=(NH*NH+3+NH+2)/2,

+ NN=3, ND=2, NF=1 )

COMMON
/3Cs$/
/sHs/
/8
/3LS/

¢

+ 4+ 4+

LE= 1

Q0, AS

ME (NE,NN) /$F$/ XY(NP,ND)
M(NP, NF) / NEC(9)
MEC(NE) / NPC(9)
MPC(NP)

D0 02, IH=1,NH

NOB= (

THeIN - IH + 2 )/2

NPB= NOB + IH

Do 01,
NOO*
NOP=
NPO=
NPP=

JHs 1, I
NOB ¢+ JH - 1 »
NOO_ + 1
NPB + UH - 1
1

NPC +
-~
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0801
0802
0803
0804
0805
0808
0807
0608
0809
0810
0811
0812

0813

0814
0818
0818

0817

"o818

0819

0

0821

0822

0823

0824

0828

- 0826

0827

0828

0829

0830

0831

0832

0833

0834

06835

0836

0837

o838

0639

0840

0841

0842

0643

0844

084S

o846

0847

o848

0849

0850

0851

0852

0853

0854

085S

0856

57
58

0859

0860
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 ME(LE,1)* NOO
ME(LE;2)s NPO
ME(LE,3)* NPP

LEs LE + 1 .
IF( NOP .NE. NPB ) THEN " -
ME(LE,1)= NOO

ME(LE,2)= NPP
ME(LE,.3)= NOP
LE= LE + ¢
+ ENDIF
o1 CONTINUE
02

X= DX*DFLOAT( IH )
DO 03, UH=0,IH
Y= DYsDFLOAT( WM )
XY(LP,1)= X
XY(LP,2)= Y
LPs LP + 1
03 CONT INUE
04 CONTINUE

Asz ( XLsYL/2.DO )/ DFLOAT( NE ) #
LV=1
DO 08, LP=1,NP
DO 05, LF=1,NF
M(LP,LF)= LV
LV= LV + 1
oS CONTINUE Yo
SNL, CONTINUE :
o
NEC(1)= 1
LC= NH*NH - 2*NH + 2
DO 07, LE=1,NH

MeCLE)= LC
LC= LC + 2
07 CONTINUE ‘ .
NEC(2)= NH + 1 ; -
NPC(1)= 1 : g

LCs ( NH*NH + NH + 2 )/2
00 08, LPs1 NH+1
MPC(LP)= LC
- LC= LC + 1
08 CONTINUE
NPC(2)" NH + 2

NC= 1
MC: O



0881

ogez
0663
0664
0885
0ess

0867

o668
0688
0870

. 0871

0872

. 0873

0674
0875

0876 -
0877
0878

0879

0680 .

068 1

0882 -
0683

0684

0685 .
0686

0687
0688

0889
0890 - -
0891
0892°

0693
0894

‘0895
- 0898
. 0897

0698

0699
0700

0701

0702 .
0703
0704 .

0705

- 0708
0707 -
. 0708

0709

_-aT10

0711

L0712

0713

0714

0718
0718

YA b A

- 0718
0718
0720

RETURN T
END
*

*

- SUBROUTINE GETCOR( ~ LE,

Y : R O o

IMPLIC!T }DOUBLEPRECISION(

" PARAMETER(
4. NN=3, ND=2 )

" COMMON o
+°/3CS/  ME(NE,NN)

DIMENSION CORS(NN*ND)
. : . L

" DO 02, LN=1,NN o

: : LP= ME( LE,LN:)
o Ls=-( LN=1 ) +ND
DD 01, LD=1,ND

A

Kl

COR$ ) .

* this subroutlne ﬁeturns elément coordinate information!

A-H, o-Z )

NH= 10, NE=NHENH, iqp-(m*m»fsam«sz)/g,

Ui

/$F$/ COR(NP,ND)
i

)

COR$( L$+LD )= COR( LP LD )

01 CONTINUE

IMP&ICIT DOUBLEPRECIQION(

A-H, 0-Z )

. PARAMETER( NH=10, NE=NHaNH, nps(NH:NH+3tNH!l)/z

A+ m::a NF=1, NS NN+NF

‘ COMMON
+ /scs/ ME(NE NN)
n:uznsron M (N$)

oo 02, LN=1,NN

4

o)

- J$HS$/ M(NP,NF)
s |

N

L& &

s

.  ‘_, } 5 N .
,‘ttt‘ttt‘t!‘tt“i.lttltt;tttttt‘t’ttt“ttttt‘ttﬁttttlt't‘t"Q
o . i -

02 .CONTINUE. R
: Cae B
RETURN e
END;J ) ’
* N y . :
ttttttqitttttttttttttttttgt*tttttttkttt\’tttt"ttti*ittt&ttt#
* s % L szﬂ'
_=SUBROUTJNE,;GETVAN(' LE, M§ ) s
J » P o
¢ ¥ e ’
. this subroutine returns elemant node v:riable nnmes'
. * . ‘xl»_ . .
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0721
0722

‘0723

0724

. 0725

0728

. 0727

0728

10729 -
0730 -
0731
.- 0732

0733

0734

. 0735
‘0736

0737
0738

. 0738

0740
0741

/ | o | | 140

LP= ME( LE,LN )

L$= ( LN-1 )eNF

DO 01, LF=1,NF - . ~ _ -

T M$( L$+LF )= M( LP,LF ) - A
o1 CONTINUE i
02 CONTINUE Lo N : : .o

RETURN .
END . : : : .

'ﬁ oF

t*tfﬁttttttt%ttttttttt*ttttttttttttt,tttl‘tt‘ttttt‘ttttt‘tlt't‘
i
*
, suaaourms LEQGEM( NV, MC' ) .
*
+ this subrou 1ne solves a system of
+ multiple-right-hand-sided linenr oquations performlng

* Gaussian Elimination'
* .

.

IMPL!CIT DGUBLEPRECISION( A-H, 0-Z )

 PARAMETER( NH=10, NP= (m:n«»atmn)/z NFz1,
4+ N=NPSNF ) , ,

COMMON : L
+  IsAs/ sr(n N) : /$B$/ SL(N,0:9)

omsusmn SF(N,0:9)
Eouxvm.sucs ¢ SL, SF ) . .

DO 04, LV={,NV
i IF( ST(LV;LV) .EQ. 0.D0 ) THEN
“Ud . WRITE(8,%) / +++ DIVISION BY ZERO IN "LEQGEL" '
t . STOP : o
ENDIF :
DO 03, 1V=LV+1,NV
o= ST(IV,LV) / ST(LV )
DO Of,. UVaLV+1 NV
o , ST(IV,uV)= s'r(xv \.IV) - coasr(Lv wv)
(3] : CONTINUE o R
/- .. DO 02, JC=O,MC - ©
S "SL(IV,JC)* suxv JC)- CO*SL(LV,JC)
02 CONT INUE , , . R
a3 CONTINUE ' ) . : o
04 CONTINUE , : ‘ S,

DO 07, IV=NV,1,=1 o ,
DO 08, JC=0,MC : ‘ i Si

CU= 0.00 - : S

DO 05, KV=IV+1,NV , 7. TR BT

CuU= CU + ST(IV KV)‘SF(KV JC) : J AR

05 CONTINUE L s

“ SF(IV,0C)= ( SF(IV,UC)-CU )/ STAWV, w ¥




< :JA-.;;""[

‘ - R . 4

» .
.
0781 08’ CONTINUE
0782 07 CONTINUE
0783 ‘
0784
0785 o RETURN
0788 & ~
" 0787 END = . ‘
0788 B - .
0789 . : T : .
X 0790 tttt'ttttltttlttttt'tbtttt!tttttt!tttlttttttttttttttt!ttt'tt'tt
0791 . * L :
0792 : : - .
0793 ‘ : suanourxne LINCOM( G, NC. MC, PH .) ‘ ,
0794 . _ - ' '
. 0795 . % ' ’
70%:8 '+ this subroutlne pcrfonns the linesar conblnation'
O IO § .
- 0798 .
0799 . IMPLICIT .DOUBLEPRECIS!ON( A-H o-z )
0800 :
0801 : PARAMETER(  NH=10, NE=NH+NH, NP-(NH*NH+3tNH+2)/2
0802 + NF=1, N=NP*NF )
0803 . B
0804 © ° COMMON' GO, AS, AL, BV o
0805 +  7/$A$/ SC(N,N) /$8$/ SF(N,0:9)
0808 + /$1%/ NEC(®) B ' :
0807 o » L
0808. DIMENSION SR(N), sw(N). SS(NE,2), .PH(N), G(NE)
0809 L L . 3 R
0810 . EQUIVALENCE - ( sr sn SW )
08114 - B :
0812 - o ' . L PR \
0813 IF( NC .EQ. 1 ) THEN ‘
0814 DO 01, IV=1,N
.0815 RH(IV)= SF(IV,0)
0816 o1 - CONTINUE .
0817 ELSE -
0818 - . . DO 64 gc-o MC S ,
0819 -~ © IF( JC .EQ. O ) THEN : X
0820 - % 7 D002, ICx1,NC
0821 . IF( IC “ER. 1. ) THEN
0822 ) . . MAR= AS*DFLOAT( NE )
0823 s . - ELSE
0824 . 4 B .. _AR= DFLOAT(  NEC(IC+1) - NEC(!C) ) -
oazs' N ERDYE ”ﬁf -
;g ;%ﬁ~ F.  'SR(IC)x 2.DO*AL*AR
0 S " CONTINUE o ¢
oamu,_g.i , ELSE'“ . . -
0829 : .. ¢ CALL STRESS( SF(1,JC), SS ) .
0830 -~ DO 03, Ic=1,NC : : ;
P83t - SC(IC,JC)= CONSUM( G, SS, IC )
0832 03 " CONTINUE - ’ .
0833 : ENDIF R oo s
0834 . 04 " - CONTINUE o ' g
0835 , © 'CALL LEQGEM( NC, O =) o .. T
0838 . PH$= SW(1)sBV T e
0837 : 0008, IV={,N : " <g§3
0838 , PH(IV)= 0.D0 ' )
0839 . DO 0S5, JC=1,MC

o840 v PH(IV)* PH(IV) + SH(-JC)*SF(IV Je)



0841
0842
0843
0844
0845
0848
0847
0848
0849

0850

0851
0852
0853
0854
0855
0858
0857
0858
0859
0860
0861
0882
0863
0864
0865
0868
0867
0888
0869
0870
0871
0872
0873
0874
0875
0878
0877

0878
0879 .
0880 °

0881
0882
0883

0884 .

0885
0888

0887

0888*
0889

0890

0891
' 0892
0893
0894
0895
0898
0897
0898
0899
0900

ot . Yy

t8“‘3?#8*#*#‘3‘#&ltt“'tl“tt‘."‘“‘tl‘.tli'jt‘t'.t‘l’t"t.
* . : . . v ‘

SUBROUTINE MATINP( ASS, Ns$, NS, AS )

* this subroutine performs matrix {nner-productiont
* . . : ’ : -

IMPLICIT DOUBLEPRECISION( AH, 0-2 ) e
DIMENSION AS$S(Ns$.N$), AS(NS.NS)

DO 03, I$=1,NS e -
DO 02, Js$=1,N$ - ,
AS(I$,JUs)= 0.DO
D0 01, K$=1,N$$ '
o TUAS(I8,Js)s AS(1$,u8) + ASS(KS, I$)sASS(KS,US) -

01. CONTINUE
02,) . CONTINUE
03 comxnus,

RETURN
. END
= : . . . .
xttttlttttttttttttt“8#”#t‘tt&ttttt#“tttt‘tt!t‘t“‘tlt'tttt
.’ L0 ) . .
'SUBROUTINE MATRAL( A, NI, NJ, XI, X0 )
* this subroutine performs matrix 1inear transformationi

*

1

_IMPLICIT DOUBLEPRECISION( A-H, 0-Z )
DIMENSION A(NI,NJ), ‘XI(NJ), XO(NI)

DO 02, I=1,NI

- ©. . X0(I)= 0.D0

~# " po o1, Jri,NJ

S X0(1)x XO(1) + A(I,J)sXI(Y)
01 CONTINUE
02 CONTINUE
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- 0934

. 0944,

0901
0902
0903
‘0804

0905

0908

0907 .
09087+
10909

0810
0811
0912
0913
0914
0918
0918

0917

0918

. 0819
. 0820

0921
0922

0923 '
0924

0925
0928
0927
0928
0929
0930
0931
0932
0933

0935

T0938 .

0937
0938
0939
0940
0941
0942
0943

0945
0948

- 0847,

0948

0949 -
10950
10951
0982

0953
0954

0958

0856
- 0987
0958
0988
0960

RETURN . : o ;
. . i S

END ' ’ . _ - .

s o i ‘ h ‘ o

‘ ttt#tttttttttttttttltttt,t!tttttt?tt‘tlltt'ttttlttttttttt#ttt

* | . : . v .
SUBROUTINE STRESS( SF, SS )

‘ . ’ ‘ . : ‘ ’. .I

+ ‘this subroutine computes element stress components!

* . Y
’ ) - L' ‘ : " " PR
IMPLICIT = DOUBLEPRECISION( A-H, 0-Z )
R N v-,r: . ﬂv . L .
PARAMETERY( . -NH=10, NE=NHsNH, NP=(NHsNH+3*NH+2)/2,
+  NN=3, NF=1, N=NP+NF, N$=NNeNF )

. q . S ,
DIMENSIGN “§F(N), XY$(8), C(2,3), MS(N$), SFS(NS), - . | = .
+  SS$(M); SS(NE,2) A

DO 01, LE=1,NE : ' :
_CALL GETCOR( LE, XY$ ) :. v \

CALL GENMBC( XYS$, ‘C’, Gg%) oo

CCALL GETVAN( LE, Mg ) ¥ 4 o | :
CALL. VECOMP( SF, N, M$, N$, SF$ ) *?r \ .
CALL MATRAL( €, 2, 3, SF$, SS$ ) : o® Y

- SS(LE,1)= S$5$(1) ' . \\>
SS(LE,2)= $S$(2) - : :

,-4..._.__.......j0.1;_59”;1,".)5__A,,.,,_,_,A — s U S - ¢ e e e N\

°

RETURN ' -

END . o \ T ' o \
. . | \
‘3tltttttttt"tf“‘#tttt#tt:t‘tlt#“‘l““?tt,“Q“tttttli"tt
. .

SUBROUTINE SYSASM( G, MC ) . -
* . ) o
+ this subroutine assembles the system matrices! . '
.

IMPLICIT .DOUBLEPRECISION( A-H, 0-Z )

© PARAMETER( ~ NH=10, NE=MIsNH, NP=(NHtNH+3:NH+2)/2,
4 NNs3,. ND=2, NFs1, NsNPsNF, NS=NNsNF )

COMMON GO, As, AL - :
+_[sA$/ ST(N,N) /$88/ SL(N,0:9)

DIMENSION G(NE), XY$(NNsND), ST$(NS,NS), SL$(NS),
+  M$(NS) L



. 0981
0962
0963
0964
0985
oges"
0967
0968
0968
0870
0971
0972

0973

0974
0975
0978
. 0977
‘0978
0979
0980
0981
0982
0983
0984
0985
0986
| 0987
0988
Q989
0990
0991
. 0992
. 0893
0994
0995
0898
0997
0998
0999
1000
1001
- 1002
- 1003
" 1004
1005
1008
1007
1008
1009
1010
1011
1012
" 1013

‘1014 -

1015
- 1018
1017
1018
1019

1020

DO 04, LE=1,NE

IF( G(LE) .NE. 0.DO ) THEN

CALL - GETCOR( LE, Xvys$ )

CALL CONSTE( G(LE), AL,) XYs,

CALL GETVAN(. LE, Ms
DO 03, IVs=1 ,N$
JV= M$( IVS )
DO 01, JYV§=1,N$
JV= M$( JUvVs )
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STs, SLs )

ST(IV,UV)= ST(IV,UV) + STS(IVS,uVs)

o1 ' CONTINUE
DO 02, JC=0,MC

SL(IV,JC)= SL(IV,JC) + SLS$(IVS)

02 - CONTINUE '
03 CONTINUE
'ENDIF
04 CONTINUE
RETURN
END

*

v

SUBROUTINE SYSCON( BV, NC, MC, NV )

*

* this subroutine applies system constraintsi

* -

IMPLICIT  DOUBLEPRECISION( A-H, 0-Z )

ttttttttﬁtttttlt#t*##ttttttt‘lt““.“l‘l““"lit‘.‘l‘..“l.A
. ) .

PARAMETER( NH=10, NP=(NH*NH+3sNH+2)/2, NF=1,

+ N=NP=NF )

N

COMMON -
+ /$AS/  ST(N,N)
+ /$HS/ M(NP,NF) - /3K$/

+  /SLS/ MPC(NP)
 DIMENSION SF$(0:9), SF(N,0:9)
_EQUIVALENCE ( SL, SF )

NV= N - ( NPC(2)-NPC(1) )*NF

DO 11, ICY1,NC
DO 01, JUCs0,MC
IF( JC .EQ. 1C ) THEN
SF$(JC)= BV

ELSE s
SF$(UC)= 0.D0

" ENDIF
o1 .CONTINUE

/3887 SL(N,0:9)
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1021 IF( 1I1C .EQ. 1 ) THEN '
1022 ‘ DO 08, LC=NPC(IC),NPC(IC+1)- -1
1023 ' LP=s MPC(LC)
. 1024 D0 04, LF=1,NF
1025 LV= M(LP,LF)
1026 D0 03, JC=0,MC
1027 00 02, Iv={,NV
1028 ' , SL(IV,JC)s SL(IV JC) = ST(IV,LV)*SF$(JC)
1029 02, CONTINUE e 1
1030 ; SF(LV,JyC)= SFS(JC) ;
1031 03 CONTINUE
1032 04 __ CONTINUE C v
1033 05 CONTINUE . _ : . .
1034 ELSE .
1035 DO 10, LC-NPC(!C) NPC(IC+1)-1 g
1036 'LP= MPC(LC) . v
1037 : 00 09, LF=*1,NF :
1038 LV= M(LP,LF)
1039 : L DO 07, IV=1 NV
1040 _ ST(LV,1IV)= 0.D0
1041 o © DO 08, JC=O,MC
1042 ' SL(IV,JC)= SL(IV, ue) - ST(IV LV)'SFS(JC)
1043 08 CONTINUE
1044 : - ST(IV,LV)= 0.D0
1045 .07 CONTINUE
1046 . ST(LV,LV)= 1.DO .
1047 DO 08, JUC=0,MC : e
1048 . SF(LV,JuC)= SF$(JC) '
1049 08 CONTINUE
1050 09 CONTINUE =
1051 10 CONTINUE
1052 ' ENDIF
1053 11 CONTINUE
1054 2y
1055 ~
1058 RETURN
1057 '
1058 END
1059 :
1080 * ’
1081 lttttttttttt!tt!tttttttt3“““#3“"ttttlt*ttt"tt‘#tttttttt
1082 * : ’
1083 - o
1084 SUBROUTINE SYSINI! MC )
1085 '
1088 *
1087 *+ this subroutine initializes the system matrices!
1088 * M ‘ :
1069, ' . . : ‘
1070 . IMPLICIT DOUBLEPREGKSION( A-H, 0-Z )
1071 - . ' .
1072 _ PARAMETER( NH=10, NP»{#sNH+3sNH+2)/2, NF=1,
1073 +  NaNPsNF ) k.
1074 ’ ' , ,
1078 _ COMMON B
1078 + /$A$/ ST(N,N) 7T$Bs/ SL(N,0:9),.
1077 ' . :
1078 ; : .
1079 DO 03, IVs={,N.
1080 DO O1, JV=1,N



1081

1082

1083
1084

1088

1086
1087
1088
1089
1090
1091
1092
11093
1094
1095
1098

1097

1098
1099
1100

1101

1102
1103
1104
1105
11086
1107

1108

1109
1110
1111

1112

1113
1114
1118

1118

1117

1118 |

1119
1120
1121
1122
1123
4124
1125
1128
1127
1128
1129
1130
1131
1132
1133
1134

1135

1138
1137
1138
1139
" 1140
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ST(IV,uV)s D.00
01 CONTINUE
DO 02, JC=0,MC
SL(IV,JC)= 0.00
02 CONT INUE
03 CONTINUE

RETURN ’
END

XXX EALSXEREE AR ARLEEX RIS LI EARRERX SRRV EK NI RREERE0ERS

SUBROUTINE TORQUE( PH, T ) ' -

* this subroutine returns the torque value!

IMPLICIT DOUBLEPRECISION( A-H, 0-Z )

PARAMETER( m-m;, NP=(NH*NH+3*NH+2)/2, NF=1,
+ N’-‘ .'t‘gll,‘ RE

COMNDN,." ~ GO, AS
+ . 74DS/ NM(NP)

DIMENSION PH(N)
_T$= 0.D0

DO Ot, L=1,NP :
T$= T$ + DFLOAT( NM(L) )*PH(L)

01 CONTINUE

. T= 2.00/3.D0 = A$ * T$

" RETURN
END

[ 2233323 2232333223332 2333233323222 223 2222322222 222222 R X2

DOUBLEPREC!SIONFUNCTION TRIARE( XYS$ )

4
* this function returns the area of a .trﬂwlar slement!

IMPLICIT DOUBLEPRECISION( A-H, 0-Z )
DIMENSION XY$(8)



1

1141
1142
1143
1144
1145
1148
1147
1148
1149
1180
1151
1152
1183
1154
1158
1158
1187
1158
1159
1180
1181
1182
1163
1164
1185
1186
1167
1168
1169
1170
171
1172
1173
1174
1178
11786
177
1178
1179
1180
End of f1i

i
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Xi= XY$(1)'

Yi= XY$(2)

X2= XY$(3)

‘Y2= XY$(4)

X3= XY$(8)
Y3= XY$(8B)

Dr X1*( Y2-Y3 ) + X2#( Y3-Y1 ) + X3s( Yi-¥2 )
TRIARE= D/2.DO

RETURN

END (

tttltt‘t'lt"“t‘l'tltt“t‘ttt““‘.‘lttl't"t““‘3"“‘#!"

.

le

*

o1

SUBROUTINE VECOMP(. SF, N, M$, NS,  SF$ )

'+ this subroutine returns vector components!

IMPLICIT DOUBLEPRECISION( A-H, 0-Z )
DIMENSION SF(N), M$(N$), SF$(N$)

DO 01, Is=1,N$ L
SF$( IS )= SF( MS(I$) ')
CONTINUE
RETURN - .- ' ' v
END ‘ A



