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Abstract 

Organizational transactions generate immense amounts of data every day. The 

decisions made using such data are not only important for their financial impacts 

on the business; they also regulate the relationships with other businesses in their 

supply chain. There has been much research that focuses on facilitating more 

efficient data-driven decision making. As a result, in the past years, researchers 

have explored several directions of research that range from business to technical 

areas, for this purpose. Such directions include, understanding specific business 

disciplines in order to identify their challenges and gaps in decision making, 

creating Exploratory Data Analysis (EDA) tools to help with better visual 

interpretation of data, and producing algorithms that can assist with compressing 

and summarizing high-dimensional industrial datasets to analyze them using spatial 

techniques. However, in each of these explored areas there exist many open 

challenges. For example, despite of their financial importance, data generating 

processes from many business units, such as the Sales-and-Subscriptions (S&S) 

renewal, have received limited attention from researchers. Moreover, with the 

abundance of EDA tools and data compression algorithms analysts often struggle 

with the selection of the most appropriate solution for their analytical context. 

Furthermore, the highly technical nature of data summarization techniques makes 

their evaluation, interpretation, and usage challenging for both novice and expert 

data analysts. Following an action research method, this research attempts to bridge 
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several gaps in all the above mentioned areas. Firstly, a longitudinal study across 

multiple organizations is performed, that identifies the state-of-the-art industrial 

process of data-driven decision making in the business unit of Sales-and-

Subscriptions (S&S). The analysis of the business unit shows that, analyzing 

customers’ experiences with the seller organization can help mitigate renewal risks. 

Hence, in the next part of the research, 50 cutting edge visual EDA tools are 

investigated for their ability to assist with visually exploring large industrial 

datasets. Then, the focus is shifted to popular data summarization and visual EDA 

area of Dimensionality Reduction (DR). More specifically, three different 

challenges associated with the DR process are addressed namely: selection of the 

most appropriate algorithm, interpretation of its outcome, and evaluation of the 

quality of the reduced dimensions. In order to achieve the research goals, at first a 

large-scale experimental study is performed, where 15 of the most popular DR 

techniques are statistically analyzed and the first ever practitioners’ guideline for 

selecting DR algorithms in a given analytical context, is created. Next, two novel 

algorithms namely Local Approximation of Preserved Structure (LAPS) and Global 

Approximation of Projection Space (GAPS) are presented that help with the 

interpretation of the structural quality of the outcome of any DR technique. Finally, 

to enable a user driven evaluation of DR methods, a visual interactive toolkit 

namely: Visual Explanations of Preserved Structure (VisExPreS) is presented with 

Proactively Guided LAPS and GAPS. The value and novelty of the presented 

solutions are demonstrated using extensive evaluations throughout the thesis.
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Chapter 1  

Introduction 

As a detailed list of articles is provided in the preface, this section elaborates on the 

motivation and a brief overview of this research. Moreover, this section also 

summarizes the primary contributions of the overall thesis followed by a discussion 

on the organization of the thesis documentation. 

1.1 Motivation 

In today’s data-centric world, organizational transactions generate immensely large 

amounts of data every day. The insights obtained from analyzing this data is often 

used by organizations to make important business decisions. These data-driven 

decisions are not only important for their financial impacts on businesses, but also 

for the way they regulate the relationships of organizations with other businesses in 

their supply chain. Hence, conducting efficient preprocessing, analysis, and 

summarization of such real-world industrial data is of paramount importance. 

However, the challenges of storing, managing, and analyzing these large high-

dimensional [1] datasets are well-known [2] in both industry and academia. In order 

to avert these challenges as well as to manage the expenses of analyzing and 

processing this large amount of data, organizations are trying to make efficient 

choices. For example, whilst different disparate data sources are being 

synchronized to collect more insight from the data, automated data analysis 

pipelines are being incorporated to pre-process and examine the data. Additionally, 

members of different business units (e.g., the sales and marketing teams) are being 

trained to perform various data analysis tasks as a part of their day-to-day decision 

making. Nevertheless, an in-depth analysis of high-dimensional datasets often 

involves [3] complex data manipulation (e.g., data transformation, feature 

extraction) techniques that require significant knowledge and expertise from the 

analyst. In these situations, any misguided decisions made by automated data-
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analysis pipelines or non-expert data analysts can be catastrophic for an 

organization. As a result, the trade-off between cost and accuracy of analyzing high-

dimensional data still remains an open [3] challenge. 

In order to facilitate efficient data-driven decision making, over the years both 

academic and industrials [3]–[10] have explored several directions of research. As 

some of them [4], [5] have examined different organizational units and have 

suggested strategies for better decision making, others [6]–[8] have presented 

Exploratory Data Analysis (EDA) tools that help with summarizing and analyzing 

real-world data. On the other hand, in order to enable a more in-depth analysis of 

high-dimensional data, some researchers [3], [9], [10] have proposed data 

compression techniques (e.g., dimensionality reduction). These techniques attempt 

to represent high-dimensional datasets using lower dimensions (i.e., smaller sized 

feature vectors) while retaining as much of the original information as possible. 

Nevertheless, each of these research directions has its own gaps and limitations. For 

example, whereas there exists several business units [4], [5] that have never been 

studied, most existing EDA tools [11]–[13] lack in scalability and support for 

complex data analysis tasks (e.g., analysis of multivariate relationships). On the 

other hand, although facilitating in-depth data analysis data compression techniques 

remain highly mathematical and black-box, making their selection, interpretation, 

and evaluation challenging [14]–[16].   

1.2 Research Overview 

Following an action research method, this thesis explores the different research 

areas that enable efficient data-driven decision making. At first, the organizational 

unit of Sales-and-Subscriptions (S&S) renewal is studied and its limitations and 

risk areas are identified. Next, a detailed survey of 50 academic and industrial EDA 

tools is performed to identify their gaps and opportunities for improvements. 

Finally, focusing on the black-box data compression technique of Dimensionality 

Reduction (DR in short) at first, a detailed statistical analysis and a practitioners’ 

guideline is presented for an efficient selection of DR algorithms, followed by two 
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novel algorithms, their enhanced versions, and a visual interactive toolkit that assist 

with interpretation and user-driven evaluation of DR techniques. 

There has been much research [4], [5] that focuses on understanding specific 

business disciplines (e.g., customer relationship management, marketing strategies) 

and resolving their challenges. However, some business processes have received 

limited attention from researchers, despite their financial importance. One such 

sector is Sales-and-Subscriptions (S&S) renewal teams. S&S teams are responsible 

to make sure that (sold) software licenses of any I.T. organization are renewed on 

time. Hence, they are equally important for the organization’s revenue as the sales 

or marketing teams. One of the biggest challenges of such renewal management 

teams is to make informed decisions about the upcoming renewals. Despite 

incorporating several human and technological resources in these teams, due to the 

lack of research in identification of the pain-points of these teams, some process-

related uncertainties remain open. In order to bridge this gap, in this research, at 

first the results of the longitudinal study across multiple organizations is presented 

that identify the “state-of-the-art industrial process” of software license renewal and 

the challenges associated with it. In order to assist with mitigation of these 

challenges and to help renewal teams to analyze customer data and make more 

informed business decisions, next, at existing solutions that enable visual 

Exploratory Data Analysis (EDA) [17] techniques are explored for obtaining 

detailed insights from large industrial datasets. A comprehensive review of 50 

visual data analytics tools is performed for this purpose and discuss their utilities 

in each step of the EDA process. From this analysis, some research opportunities 

are discovered that can help to enhance these tools in order to perform a more 

detailed multivariate analysis of the data. 

The next phase of this research investigates popular data compression method 

Dimensionality Reduction (DR in short) [3] that are commonly used for big-data 

analytics in domains [18] such as biochemistry, medicine, and biotechnology. DR 

algorithms transform high-dimensional data into low-dimensional embeddings 
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while attempting to maximally preserve the structural properties of the input 

dataset. During this transformation, most DR algorithms attempt to retain [19] the 

local structure (i.e., the neighbourhood of individual data-points) as well as the 

overall global structure (i.e., the relative distances between all data-points) of the 

original data. Despite their popularity, DR techniques come with a set of major 

caveats. Firstly, in recent years, a plethora of DR techniques have been proposed 

[3] with their respective parameter combinations that significantly influence the 

embedding structure. The non-intuitive nature [20] of these parameters hinder the 

interpretability of these techniques making the selection of the most appropriate DR 

algorithm challenging. Secondly, the dimensions derived using such techniques 

lack in a clear-to-interpret mapping [14] with the original attributes in the data. As 

a result, data analysts with limited experiences with DR are often forced to blindly 

trust [15] the embeddings without truly understanding the meaning of the projection 

axes or the positioning of data-points. Finally, the above-mentioned issues lead to 

the challenges associated with evaluation [16] of DR algorithms. 

This research attempts to address the mentioned challenges of the DR algorithms 

in the same order as discussed above. Given a plethora of dimensionality reduction 

algorithms and metrics [3] for their quality analysis [16], there is a long-existing 

need for guidelines on; “how to select the most appropriate algorithm in a given 

scenario?” In order to bridge this gap, at first, five analytical contexts for DR are 

identified and 12 state-of-the-art quality metrics are categorized into those contexts. 

Furthermore, 15 most popular dimensionality reduction algorithms are assessed on 

the chosen quality metrics using a systematic experimental study. Later, using a set 

of robust nonparametric statistical tests [21], the generalizability of the evaluation 

of the algorithms is assessed using 40 real-world datasets. Finally, based the results 

a practitioners’ guideline for the selection of an appropriate DR algorithm is 

presented in the discussed analytical contexts.  

Next, the focus is shifted towards the challenges associated with the interpretability 

[22] of DR algorithms. Interpreting the quality of a low-dimensional embedding is 
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crucial as it enables trust [23] on the transformed data. Here, two novel interactive 

explanation techniques are proposed for low-dimensional embeddings obtained 

from any DR algorithm. The first method & data-type agnostic [24] technique 

LAPS (Local Approximation of Preserved Structure) provides explanations on the 

preserved local structure of a low-dimensional embedding that justify the fidelity 

of the relative positioning [22] of any individual data-point by approximating a 

neighbourhood [24] locally around that point. The second technique GAPS (Global 

Approximation of Projection Space) presents explanations on the preserved global 

structure in a low dimensional embedding, by combining non-redundant local 

approximations from a coarse discretization of the projection space [25]. Using a 

comprehensive evaluation, the proposed techniques are assessed for their flexibility 

(with 10 DR algorithms on 16 datasets), applicability (with tabular, text, image, and 

audio data) and reliability. 

Finally, focusing on the challenges of evaluating DR algorithms, this research 

unifies the benefits of both [16], [26] quantitative and qualitative evaluation of DR 

techniques by presenting an interactive toolkit and visual tool that enables a user-

driven quantitative analysis of preserved structures in any embedding. Towards 

achieving this goal, the enhanced versions of LAPS and GAPS namely PG-LAPS 

(Proactively Guided LAPS) and PG-GAPS (Proactively Guided GAPS) are 

composed into a visual toolkit [1] named VisExPreS (Visual Explanations of 

Preserved Structure) such that, users not only have control over the quality analysis 

of DR but also can focus on the aspects of the analysis that are the most interesting 

from their perspective. 

1.3 Summary of Contributions 

The primary contributions of this research are as follows: 

• This research represents the first ever study on the ‘state-of-the-art’ 

industrial practice of software license renewal and the challenges & risks 

associated with it (cf. Section 2.3). 
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• A comprehensive review of 50 EDA tools presented in this research, is 

unique in terms of being recent, voluminous, and focused on the utility of 

the tools in each step of the EDA process (cf. Section 3.2). 

• For the first time in academia, this research composes 12 most popular DR 

quality metrics and categorizes them into the five identified analytical 

contexts. The metrics are then used to perform a systematic comparison 

among 15 popular DR algorithms. The results identify the best, mediocre, 

and worst-performing algorithms in a given analytical context. 

Furthermore, this novel research performs a thorough statistical significance 

analysis of the performance of DR algorithms using 40 real-world datasets. 

Finally, this work presents the first generic guideline for practitioners to 

select the most appropriate DR algorithms in any scenario (cf. Section 4.4).  

• This research presents LAPS, a novel algorithm that provides interpretable 

and faithful explanations on the retained local structures in any low-

dimensional embedding, by locally approximating the neighborhoods. This 

research also presents GAPS, a novel technique that provides explanations 

on the preserved global structure of a manifold in its low-dimensional 

embedding, by combining local approximations of discrete non-redundant 

neighborhoods into a global approximation (cf. Section 5.3). 

• Finally, this research presents VisExPreS, an interactive visual toolkit that 

enables a user-driven computation of local and global-divergence metrics 

using proactively guided versions of LAPS and GAPS, while enabling side-

by-side comparison of multiple embeddings (cf. Section 6.3). 

1.4 Thesis Organization 

This thesis has been prepared in a paper-based format and is organized as follows: 

Chapter 2 of this thesis presents a longitudinal study across organizations for 

identifying the state-of-the-art, challenges, and risk factors in the industrial software 

license renewals process. The study is performed using the Grounded theory 

method. To implement the method, semi-structured, cross‐sectional, anonymous, 
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self‐reported interviews are carried out with 20 professionals from multiple 

organizations, later the Constant Comparative Method is used to analyze the 

collected data. 

Chapter 3 presents a comprehensive survey of the recent advancements in the 

emerging field of Exploratory Data Analysis. It presents the results of the 

investigations on 50 academic and non-academic visual data exploration tools with 

respect to their utility in the six fundamental steps of the exploratory data analysis 

process. It also reveals the extent to which these modern data exploration tools fulfil 

the identified additional exploratory requirements of analyzing large datasets. 

Chapter 4 presents the investigations and statistical analysis of 15 most popular 

dimensionality reduction algorithms on 12 state-of-the-art DR quality metrics using 

a large scale and systematic experimental study for five analytical contexts or DR. 

The final result presents a practitioners’ guideline for the selection of an appropriate 

dimensionally reduction algorithm in the presented analytical contexts. 

Chapter 5 presents two novel interactive explanation techniques for low-

dimensional embeddings obtained from any dimensionality reduction algorithm. 

The first technique LAPS produces a local approximation of the neighborhood 

structure to generate interpretable explanations on the preserved locality for a single 

instance. The second method GAPS explains the retained global structure of a high-

dimensional dataset in its embedding, by combining non-redundant local-

approximations from a coarse discretization of the projection space.  

Chapter 6 enhances the LAPS and GAPS methods into proactively guiding users 

with the selection of representative data-points for analysis and incorporates the 

two techniques into VisExPreS, a visual interactive toolkit that enables a user-

driven assessment of low-dimensional embeddings. Using a set of examples, it 

demonstrates the utility of VisExPreS in interpreting, analyzing, and comparing 

derived embeddings from different dimensionality reduction algorithms. 
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Finally, Chapter 7 concludes the thesis and presents a set of directions for future 

work. 

References 

[1] S. Liu, D. Maljovec, B. Wang, P. -t Bremer, and V. Pascucci, “Visualizing 

High-Dimensional Data: Advances in the Past Decade,” IEEE transactions on 

visualization and computer graphics, vol. 23, no. 1, pp. 21–30, 2016. 

[2] I. M. Johnstone and D. M. Titterington, “Statistical challenges of high-

dimensional data,” Proc. R. Soc. A, vol. 367, no. 1906, pp. 4237–4253, Nov. 

2009, doi: 10.1098/rsta.2009.0159. 

[3] L. van der Maaten, E. O. Postma, and H. J. van den Herik, “Dimensionality 

Reduction : A Comparative Review,” J Mach Learn Res 10, vol. 66, no. 71, 

p. 13, 2008. 

[4] R. Agarwal and C. E. Helfat, “Strategic renewal of organizations,” 

Organization Science, vol. 20, pp. 281–293, 2009. 

[5] A. Schmitt, S. Raisch, and H. W. Volberda, “Strategic Renewal: Past 

Research, Theoretical Tensions and Future Challenges: Strategic Renewal,” 

International Journal of Management Reviews, vol. 20, no. 1, pp. 81–98, Jan. 

2018, doi: 10.1111/ijmr.12117. 

[6] M. A. Yalcin, N. Elmqvist, and B. B. Bederson, “Keshif: Rapid and 

Expressive Tabular Data Exploration for Novices,” IEEE Trans. Visual. 

Comput. Graphics, vol. 24, no. 8, pp. 2339–2352, Aug. 2018. 

[7] T. Kraska, “Northstar: an interactive data science system,” Proc. VLDB 

Endow., vol. 11, no. 12, pp. 2150–2164, Aug. 2018. 

[8] S. Gratzl, N. Gehlenborg, A. Lex, H. Pfister, and M. Streit, “Domino: 

Extracting, Comparing, and Manipulating Subsets Across Multiple Tabular 

Datasets,” IEEE Trans. Visual. Comput. Graphics, vol. 20, no. 12, pp. 2023–

2032, Dec. 2014, doi: 10.1109/TVCG.2014.2346260. 

[9] S. Lundberg and S.-I. Lee, “A Unified Approach to Interpreting Model 

Predictions,” arXiv:1705.07874 [cs, stat], Nov. 2017, Accessed: Mar. 24, 



 

  

9 

2020. [Online]. Available: http://arxiv.org/abs/1705.07874. 

[10] J. B. Tenenbaum, “A Global Geometric Framework for Nonlinear 

Dimensionality Reduction,” Science, vol. 290, no. 5500, pp. 2319–2323, Dec. 

2000, doi: 10.1126/science.290.5500.2319. 

[11] Z. Cui, S. K. Badam, A. Yalçin, and N. Elmqvist, “DataSite: Proactive Visual 

Data Exploration with Computation of Insight-based Recommendations,” 

arXiv:1802.08621 [cs], Sep. 2018, Accessed: May 24, 2020. [Online]. 

Available: http://arxiv.org/abs/1802.08621. 

[12] K. Furmanova, S. Gratzl, H. Stitz, T. Zichner, M. Jaresova, A. Lex, and M. 

Streit, “Taggle: Combining Overview and Details in Tabular Data 

Visualizations,” Information Visualization, vol. 19, no. 2, pp. 114–136, Apr. 

2020, doi: 10.1177/1473871619878085. 

[13] K. Wongsuphasawat, Z. Qu, D. Moritz, R. Chang, F. Ouk, A. Anand, J. 

Mackinlay, B. Howe, J. Heer, “Voyager 2: Augmenting Visual Analysis with 

Partial View Specifications,” in Proceedings of the 2017 CHI Conference on 

Human Factors in Computing Systems, Denver Colorado USA, May 2017, pp. 

2648–2659, doi: 10.1145/3025453.3025768. 

[14] M. Cavallo and Ç. Demiralp, “A Visual Interaction Framework for 

Dimensionality Reduction Based Data Exploration,” arXiv:1811.12199 [cs], 

Nov. 2018, Accessed: Jul. 12, 2019. [Online]. Available: 

http://arxiv.org/abs/1811.12199. 

[15] R. M. Martins, D. B. Coimbra, R. Minghim, and A. C. Telea, “Visual analysis 

of dimensionality reduction quality for parameterized projections,” 

Computers & Graphics, vol. 41, pp. 26–42, Jun. 2014. 

[16] J. A. Lee and M. Verleysen, “Quality assessment of dimensionality reduction: 

Rank-based criteria,” Neurocomputing, vol. 72, no. 7–9, pp. 1431–1443, Mar. 

2009, doi: 10.1016/j.neucom.2008.12.017. 

[17] S. Tufféry, Data Mining and Statistics for Decision Making: Tufféry/Data 

Mining and Statistics for Decision Making. Chichester, UK: John Wiley & 

Sons, Ltd, 2011. 



 

  

10 

[18] E. Becht, L. McInnes, J. Healy, C.A. Dutertre, I.W. Kwok, L.G. Ng, F. 

Ginhoux, and E.W. Newell, “Dimensionality reduction for visualizing single-

cell data using UMAP,” Nature Biotechnology, vol. 37, no. 1, pp. 38–44, Dec. 

2018, doi: 10.1038/nbt.4314. 

[19] J. M. Lewis and V. R. de Sa, “A Behavioral Investigation of Dimensionality 

Reduction,” In Proceedings of the Annual Meeting of the Cognitive Science 

Society, vol. 34, no. 34, p. 7, 2012. 

[20] M. Sedlmair, M. Brehmer, S. Ingram, and T. Munzner, “Dimensionality 

Reduction in the Wild: Gaps and Guidance,” Dept. Comput. Sci., Univ. British 

Columbia, Vancouver, BC, Canada, Tech. Rep. TR-2012-03, Jun. 2012. 

[21] J. Demśar, “Statistical Comparisons of Classifiers over Multiple Data Sets,” 

Journal of Machine Learning Research, vol. 7, pp. 1–30, 2006. 

[22] M. Dowling, J. Wenskovitch, J. T. Fry, S. Leman, L. House, and C. North, 

“SIRIUS: Dual, Symmetric, Interactive Dimension Reductions,” IEEE Trans. 

Visual. Comput. Graphics, vol. 25, no. 1, pp. 172–182, Jan. 2019. 

[23] M. T. Ribeiro, S. Singh, and C. Guestrin, “‘Why Should I Trust You?’: 

Explaining the Predictions of Any Classifier,” arXiv:1602.04938 [cs, stat], 

Feb. 2016, Accessed: Jul. 12, 2019. [Online]. Available: 

http://arxiv.org/abs/1602.04938. 

[24] G. Plumb, D. Molitor, and A. Talwalkar, “Model Agnostic Supervised Local 

Explanations,” arXiv:1807.02910 [cs, stat], Jul. 2018, Accessed: Aug. 12, 

2019. [Online]. Available: http://arxiv.org/abs/1807.02910. 

[25] J. P. Boyd, “Additive blending of local approximations into a globally-valid 

approximation with application to the dilogarithm,” Applied Mathematics 

Letters, vol. 14, no. 4, pp. 477–481, 2001. 

[26] D. Sacha, L. Zhang, M. Sedlmair, J.A. Lee, J. Peltonen, D. Weiskopf, S.C. 

North, D.A. Keim, “Visual Interaction with Dimensionality Reduction: A 

Structured Literature Analysis,” IEEE Trans. Visual. Comput. Graphics, vol. 

23, no. 1, pp. 241–250, Jan. 2017, doi: 10.1109/TVCG.2016.2598495. 



 

  

11 

Chapter 2  

The Current State of Software License 

Renewals in the I.T. Industry 

In the continuously evolving software industry, it is no longer common that 

organizations create and sell products directly to their customers; instead, 

customers are given access to these products in terms of license agreements [1]. 

These agreements not only include conditions on using the features of the purchased 

software but also a promise of assistance and support from the selling organization. 

Hence, for large multinational companies that sell licenses worth millions of dollars 

to other businesses, successful renewal of software licenses makes a key impact on 

the selling organization’s revenue. In fact, customer and renewal acquisitions are 

considered as the two primary revenue sources for subscription-based organizations 

[2]. Whereas customer acquisition only occurs once during a customer’s lifetime, 

the renewal of software licenses is, on average, an annual event. Alongside, 

research [3] shows that acquiring new customers not only can be 5 to 25 times more 

expensive than retaining existing customers, but a 5% increase in customer 

retention can also increase profits by 25%-125% [4]. Moreover, high customer 

renewal rates can provide an organization with a stable base for profitable growth. 

Software licensing has been in practice for the last few decades [5]. However, with 

technology rapidly changing, open-source and cloud-based products are becoming 

more popular in the market [6]. These products allow customers to avail themselves 

of the same technological benefits with less initial cost. Hence, it is getting difficult 

for organizations to maintain an increasing, or even a stable, subscription renewal 

rate [7]. Also, the industrial practice of license renewals is directly driven by the 

changing consumption patterns of customers [2]. Therefore, the product licenses 
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that were once purchased as cutting-edge technology are not as appealing to the 

same customers today. Despite being a key contributor to organizational revenue, 

the topic of subscription renewal strategies receives very limited attention in the 

literature. Although, there is some research that looks into the industrial practice of 

Business-to-Business (B2B) marketing [8], studies that particularly focus on 

understanding the end-to-end license renewal process and identifying the 

challenges and risks that motivates renewal decisions, are sparse. Moreover, on the 

one hand, there is much research that describes the processes and challenges 

associated to different business units [9], [10], but most of this work focus on the 

strategic renewal of organizations [9] and overall process improvements. On the 

other hand, there is ample research that considers managing customer relations [2], 

[11]–[13], addressing the challenges of predicting customer churn [4], [7], [14]–

[16], and to trying to mitigate customer churn risks [12], [13], [17]; nevertheless, 

there is hardly any work that looks at the challenges with customer retention from 

the perspective of the subscription renewal process.  

To bridge the gap in literature, in this research, we perform a longitudinal study 

with 20 participants across multiple organizations and multiple locations to attempt 

to distil the current practice of software license renewals in industry. Following the 

steps of the Grounded Theory method [18], we performed semi-structured, cross-

sectional, anonymous, self-reported interviews [19], [20] with individuals from 

large multinational organizations, who are related to the subscription renewal 

process. We analyzed the information obtained from the interviews using the 

Constant Comparative Method (CCM) [21], [22]. An in-depth qualitative analysis 

of the data using CCM helped us to identify and refine the core ideas of the 

interviews. From this input, we formed a set of theories (cf. Section 2.2.1.1) 

depicting a comprehensive picture of “the most common practice” of software 

license renewals in today’s I.T. industry. We also identified the challenges and risk 

factors associated with the license renewal process from our data analysis. We 

validated our analysis results with content validity expert(s) from the participating 

organizations, where we also identified a set of strategies and research directions 
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for mitigating the identified risks and challenges by engaging in structured 

brainstorming activities [23] with the experts. It is important to mention that, the 

results presented in this chapter does not reflect the practice of an individual 

organization, instead, it is a montage of the most popular strategies followed by a 

group of large multinational organizations. The primary contributions of this 

research are three-fold and can be summarized as follows:  

• This research represents the first to our knowledge that synthesizes the 

current industrial practice of the end-to-end software license renewal 

process (cf. Section 2.3.2). 

• This study identifies a set of challenges (cf. Section 2.3.3) and risk factors 

(cf. Section 2.3.4) in the license renewal process, that impact on renewal 

decisions of customers, and hence on the overall revenue of seller 

organizations. 

• Finally, this work presents a list of immediate action plans (cf. Section 

2.4.1) and a set of directions for future research (cf. Section 2.4.2), that can 

help organizations with mitigation of the risks in the license renewal 

process. 

The chapter is organized as follows: in Section 2.1 we present the theoretical 

background and discuss the fundamental terminology used in this chapter, whereas 

in Section 2.2 we give a detailed description of our research methodology. The 

results of our study are presented in Section 2.3 with a list of proposed action plans 

and research directions being discussed in Section 2.4. In Section 2.5, we discuss 

some limitations and future work opportunities for our study, while Section 2.6 

concludes the chapter. 

2.1 Theoretical Background 

2.1.1 Background and Research Questions 

Software license agreements are legal contracts between end users and software 

publishers, that inform the end users of their privileges when using a software 
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product and restricts what the users can or cannot do with the product [1]. From an 

end user’s perspective, software license agreements specify the users’ privilege to 

download and install software [5]. From a publisher’s perspective, these contracts 

specify the details of promised technical support associated with the licensed 

software products. 

Software licensing arguably came into practice in mid-1980s [5]. For the last few 

decades, several researchers [1], [5], [24]–[26] have analyzed different aspects of 

software license agreements. Much research has been done on the design [1], 

significance, completeness [24], and comprehensiveness of license agreements. 

However, in the 21st century, with software being offered as services hosted on 

cloud [16], the practice of software licensing has seen some change. Nevertheless, 

large organizations such as Microsoft [27] and IBM [28] continue to provide license 

and support for software products to their customers. According to the 2017 annual 

report of Microsoft Corporation [27], $44 billion (USD) were defined as unearned 

revenue from selling software license agreements. Similarly, for IBM Corporation 

[28] this amount was approximately $21 billion (USD). Hence, it is clear that 

successful renewal of these license agreements is a matter of paramount importance 

for these organizations. 

In large companies, the end-to-end license renewal process is a collaborative work 

of multiple teams. Among these teams, the sales and subscription representatives 

(S&S reps) or, more commonly known as renewal reps, work at the front end with 

the customer. At the back end, there are brand representatives or leaders who are 

responsible for managing products from specific brands. Apart from these, there 

are worldwide reps or global sales reps that take care of customers across different 

regions and continents. However, without proper strategies, processes, tools, and 

support, it can get very difficult for the different teams to collaborate and work 

together [29]. According to Agarwal et al., [9], in order for multiple teams to 

successfully co-operate with each other, a dedicated process of organizational 
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management is required in every department. Hence, for this study, we formulate 

our first research question as: 

RQ 1: What is the end-to-end industrial process of software license 

renewal? 

Much research [2], [12], [13], [30] has been done on identifying the challenges of 

customer relationship management. Research has shown that, in any collaborative 

practice, effective communication [31], [32] between the associated teams is an 

absolute necessity for providing high-quality customer service. As per Suter et al. 

[29], despite an efficient performance from each individual department, in absence 

of effective role understanding and communication, the risks and challenges in 

collaborative work can increase dramatically [33]. Hence, based on the above 

statements, we construct the following research questions for our study: 

RQ 2: How does the communication among stakeholders impact the 

end-to-end software license renewal process? 

RQ 3: How is information exchange in a distributed workforce 

associated with the challenges of the identification of customers that 

are likely to not renew their contracts? 

Apart from effective communication within the departments, the seller 

organizations also need to ensure the trust [11] and satisfaction of their customers 

[34], [35]. Research shows that customer trust and satisfaction is directly related to 

the risks associated with customer retention [36], [37]. As mentioned by Hannan et 

al. [34], often customers choose to move to competitors because of unsatisfactory 

customer service and experience. Research [10] also shows that the amount of 

business value generated from the purchased licenses can impact the renewal 

decisions from customers. Hence, we form the final two research questions for this 

research as: 

RQ 4: How do customer satisfaction and trust impact on the risks 

associated with the license renewal process? 



 

  

16 

RQ 5: How does the value generated from purchased licenses impact 

on the renewal decisions of customers? 

With a primary focus on the broad perspective of elicitation of the license renewal 

process and its challenges, the research questions discussed in this section formulate 

the basis of this research. These questions were developed in close collaboration 

with the content validity experts from different organizations that participated in 

our study. Over the past years, much research has been done that attempt to identify 

customers at churning risks [2], [12]–[14] by looking into behavioral traits such as 

software usage data and the number of comments from customers. However, as 

pointed out by Haenlein et al. [7], these features usually vary from domain to 

domain [6], [11]. For example, factors relevant for software-publisher [38] 

companies, may be invalid for the telecommunication domain. The research 

questions defined in this section attempt to distil such factors for the domain of 

software license renewal. 

2.1.2 Fundamentals and Terminology 

This section provides the necessary background on the key roles and terminologies 

for the license renewal process. The section is divided into two parts; the first part 

identifies the key people who take part in the renewal process. The second part 

defines the industrial terminologies used during license renewals.  

2.1.2.1 Key Roles in the Renewal Process 

Following are the key people who take part in the license renewal process: 

i. Sales & Subscriptions Representatives (S&S Reps): These are the 

representatives in the seller organization (commonly known as renewal 

reps); who are the first line of contact for customers in the subscription 

renewal process. The renewal reps are responsible for guiding customers 

through the end-to-end renewal process. 

ii. Brand Representatives or Brand Managers: These are representatives of 

specific brands in the seller organizations; who are responsible for resolving 
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technical difficulties (e.g., feature incompetence, pricing problems) with 

products belonging to these brands. 

iii. Worldwide Representatives or Global Sales Reps: Also known as 

worldwide leaders or the global sales leaders, these are representatives of 

the seller organization that work across multiple brands and territories. 

iv. Business Partners:  These are industrial partners of the seller organization, 

that help with marketing, selling, and renewing of subscriptions. Since they 

are not a part of the seller organization, they usually have their own profit 

margin. Such partner organizations can sell product licenses for other 

companies, including competitors, as well. 

2.1.2.2 Terminologies Related to Renewals 

Key industrial terminologies related to the subscription renewal process are 

described as follows:  

i. Quotes / Price Quotes: These are documents that include customer license 

information such as the product code, the purchased quantity, due dates of 

renewal, and pricing information. 

ii. Purchase Orders: These are documents that are sent to customers by the 

renewal reps when both parties agree on renewal pricing and volumes. 

iii. Partial Renewal: This is a final renewal status, that occurs when a customer 

decides to not renew the subscriptions for some of their pending licenses. 

iv. Reinstatement: It is a penalty, that customers need to pay when they decide 

to renew their licenses after the renewal due date is passed. 

v. Product Migration: This is a situation that occurs when a customer decides 

to change their business location and wants to move some of their licenses 

to the new location. 

vi. Product Evolution: Evolution of products happen when the seller 

organization decides to modify and market an existing product in a different 

form. This may include combining many products into one unified product 

or splitting one product into distributed solutions. 
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2.2 Methodology 

As per our background analysis, communication gaps, lack of customer trust, and 

deficiency of business value on the customers’ side can cause serious challenges in 

any business process [29], [31], [32]. Therefore, along with the end-to-end software 

license renewal process in the I.T. industry, this study also aims at determining the 

impacts of the above-mentioned factors on the renewal decisions of customers. In 

order to achieve our goals, we implemented the Grounded Theory method 

developed by Glaser and Strauss [39], [40]. Grounded theory is an inductive 

research technique [41] that is commonly used for qualitative data analysis [21]. 

With the help of systematic data collection and analysis methodologies, the 

grounded theory approach allows its users to construct theoretical propositions from 

data. As shown in Figure 2.1, the grounded theory method is primarily composed 

of steps namely: (i) systematic data collection, (ii) data analysis, (iii) theoretical 

integration [18], [42], and (iv) validation of developed theories. In order to 

implement the grounded theory approach, in this research, at first, we collected the 

required data using semi-structured, cross-sectional, self-reported interviews [19], 

[20] with 20 professionals from multiple organizations. Next, the Constant 

Comparative Method (CCM) [18], [21], [22], [43], [44] was used to qualitatively 

analyze the information obtained from the interviews. Finally, we developed a set 

of theoretical propositions regarding the end-to-end process of software license 

renewals, along with the various challenges and risks involved in the license 

renewal process. We validated our analysis results using a quantitative measure of 

Inter-rater Reliability (IRR) [45], [46]. In this section, we give detailed descriptions 

of our research context, data collection, data analysis, and validation 

methodologies. 

2.2.1  Research Context 

The results presented in this chapter are the outcome of our research project that 

started at the end of the year 2017 and lasted for approximately 8 months. The 

project was carried out with the aim to understand the end-to-end process for 
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software license renewals and to identify the risks and problems associated to the 

process. Overall, 20 employees across multiple organizations participated in this 

research. All organizations chosen for our study are headquartered in North 

America and are classified as Software Publishers (code: 511210) by the North 

American Industry Classification System [38]. These are organizations that design, 

produce, and distribute computer software along with an assurance for support 

services, in terms of license agreements. As for other firmographic variables [47], 

we chose organizations that have over 10,000 employees and operate worldwide. 

Each organization has its own distributed license renewal teams, which interact 

internally and with their clients via modern communication media. The departments 

we interacted with handle individual renewal contracts worth between 

approximately $100,000 (USD) and $5,000,000 (USD). The primary focus of our 

research has been Business-to-Business (B2B) [48], including Business-to-

Government (B2G), subscription renewal agreements, where both the seller and the 

buyer are organizations. It is worth mentioning that, the B2B renewal contracts 

investigated in this study, have no impact on their Business-to-Consumer (B2C) 

equivalents. This research presents an aggregation of the collected information 

from all the participating organizations. Following strict anonymity requirements, 

this chapter strategically avoids mentioning the names and/or the detailed locations 

of the organizations that participated in our study. 

2.2.1.1 Data Collection and Analysis using Grounded Theory Method 

In this section, we elaborate on our application of the grounded theory method and 

discuss different steps of the process from the context of this research. This section 

is primarily divided into four subsections. We begin with a detailed description of 

the semi-structured interviews conducted with different stakeholders of the 

software license renewal process. Next, we discuss the steps we followed while 

analyzing the obtained information using the Constant Comparative Method. Later, 

we present our theoretical propositions that emerged from our data analysis. This 

section ends with a brief discussion on the reliability of our applied research 

methodology. 
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Data Collection and Intervention 

In order to obtain the perspective of each individual study participant, we chose 

semi-structured cross-sectional anonymous self-reported interviews [19], [20] for 

data collection. It is a well-accepted approach in the literature, that has been used 

by several information systems researchers [49]–[51], in different contexts. Unlike 

a fully structured interview [52] that consists of a standard set of questions and 

follow-up questions, a semi-structured interview is a qualitative research technique 

that allows the interviewees to openly express their ideas and views on the problem. 

On the other hand, a cross-sectional survey enables researchers to analyze 

information at a specific point in time [53]. According to researchers, semi-

structured interviews are ideal for cross-sectional cases, where the interviewers get 

to interview each participant only once. In par with our approach, an extensive 

amount of research [45], [54], [55] exists that not only relies on anonymous surveys 

[19], but also uses semi-structured cross-sectional studies that involve self-reported 

behaviors [19], [49], [50].  

Our interaction in each organization started with a key contact person, typically 

program directors, who enabled our access to the right personnel in their 

organizations. From each organization, we interacted with individuals from 

different roles such as renewal reps, brand reps, global-sales leaders, data analysts, 

and program directors. With the help of our key contact person, we scheduled 

meetings with employees from at least two different roles in each organization. 

While some of these interactions took place in a face-to-face environment, the rest 

were carried out remotely. During our interactions with the participants, we used 

an interview guideline composed of open-ended questions discussed in Table 2.1. 

Like any other semi-structured interview [56], we prepared a set of common 

questions (see Table 2.1) that was used to initiate a conversation with each 

interview participant. However, depending on the answer of any given question 

from a participant, the follow-up questions were asked. Our questions were 

strategically prepared to obtain general information about the overall process flow 

of subscription renewals in the organizations, along with the personal experiences  
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Table 2.1: Common Questionnaire for All Interview Participants 

Topic Questions 

Overall Process 

of License 

Renewals 

What is the overall process for the software license renewals 

in your organization? 

Stakeholders of 

the License 

Renewal Process 

Who are the different stakeholders involved in the license 

renewal process?  

Can you elaborate on the roles and activities of these 

stakeholders? 

What is your role in the license renewal process?  

Can you elaborate on the day to day activities of someone in 

your role? 

How do you communicate with the other stakeholders of the 

renewal process?  

Do you think there are any communication gaps between the 

involved stakeholders?  

What do you think can be changed to improve the level of 

communication amongst the stakeholders? 

Customers of the 

License Renewal 

Process 

Do you interact directly with the customers?  

On a quarterly basis, how many renewals are handled by you?  

What are the approximate price ranges for the software 

licenses that are handled by your team?  

Do you think renewals belonging to different price ranges 

receive equal attention? 

Other Aspects of 

the License 

Renewal Process 

Do you use any software applications to manage renewals?  

If so, what are the useful and challenging aspects of these 

applications?  

What are the biggest challenges you have faced while doing 

your job?  

Can you share your experiences with the customers that you 

felt were challenging?  

In your experience, what are the reasons for customers to not 

renew their license agreements?  

Without communication from the customer’s end, is there a 

way for you to know that they might not renew some pending 

licenses?  

If you knew about the possible non-renewal earlier, could you 

save the renewal? 

How do you locate the key people associated with a specific 

renewal?  

Note: Additional follow-up questions were asked, to each participant depending on their 

role and answers to the previous questions. Also, during the theoretical sampling, the 

interview questions were updated based on the analysis that was already done. 
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of the interviewees on factors that influence the renewal process. The responses of 

the participants were literally transcribed, allowing the destruction of the original 

material, on the same day of the interviews; in addition, all identifying remarks 

were perpetually removed and destroyed to protect all the participants. Beyond this 

summarized content, no other information was taken outside the organizations 

protecting their confidentially. Content validity expert(s) in every organization was 

allowed to delete all information which they believed was unique or sensitive to 

their organization. The aim of this step was to obtain a complete description of “the 

industrial practice of software license renewal”, where the details are limited to 

reflect only common practice and avoid unique undertakings from an organization 

to avoid the risk of the inference of their identity. 

Data Analysis using the Constant Comparative Method 

Data analysis using the Constant Comparative Method (CCM) [18], [22] constitutes 

the core of the grounded theory method [39], [40]. CCM has been used by 

researchers [22], [42], [43], [56] in different domains for developing concepts and 

theories from qualitative data. The overall steps of CCM [18], [22], [43] are 

depicted in the data analysis step, in Figure 2.1. Data analysis in CCM primarily 

consists of coding and theoretical sampling [18], [43], where coding involves three 

levels of analyses [18], [22]: (i) open coding, (ii) axial coding, and (iii) selective 

coding, and theoretical sampling involves collecting additional information to 

gather new insights to refine the identified concepts. Table 2.2 summarizes the 

aims, asked questions, and obtained results from different steps of the coding 

process of CCM followed in this research. In order to apply CCM, we followed the 

guidelines of Boeije et al. [22], where we coded each of our collected documents 

such as interview transcripts and observation notes, into categories. The coding 

process involved using the tools ATLAS.ti  and Microsoft Excel and was carried 

out by reading each of these documents and attributing codes to sentences, 

paragraphs, and sections. These codes were then associated with a theme or idea, 

from which our conclusions on the license renewal process were drawn.  
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Right after the first interview, we started analyzing the data with open coding [18], 

[44], using the qualitative data analysis tool ATLAS.ti we scrutinized the interview 

transcript line by line and attributed categories to sentences, paragraphs, and 

sections. These categories represented themes or concepts for each of these parts of 

the data, with which they are associated. For example, the category ‘internal 

challenges’ (cf. Figure 2.2) was attributed to sentences that mentioned challenges 

within the organization that affected the license renewal process. As our next step, 

we performed axial coding [44], where we analyzed, compared, and characterized 

the interview fragments with the same category; in addition, we found relationships 

among all the different categories that were assigned to the data. During this step, 

we also started creating memos [22], [43] that defined each category along with its 

properties and demonstrated the relationship of this category to other categories 

[18]. At this stage, theoretical sampling [43] occurred as we interviewed more and 

more stakeholders of the license renewal process from different organizations. 

Theoretical sampling helped us to refine and check the properties of our developed 

theoretical characterization from the categories; see Figure 2.2 for details. Finally, 

we performed selective coding [22], again see Figure 2.2, in order to identify the 

most significant and frequent categories, systematically connected them to our 

developed theoretical categories, until the point where data saturation [56] 

occurred. Data saturation is a situation where the information collected from the 

interviews become redundant and no new information could be obtained from  

 

Figure 2.1: Steps Followed in this Research for Data Collection and Analysis using 

Grounded Theory Method 
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Table 2.2: Detailed Steps of the Coding Process using the Constant Comparative Method 

further interviews. 

Theoretical Integration 

Following the guidance of Boeije et al. [22] and Sbaraini et al. [41], we present the 

results of our grounded theory analysis using a set of five theoretical propositions 

regarding the end-to-end process of the software license renewals in the I.T. service 

industry. These theories emerged from our systematic analysis of the collected data 

using the constant comparative method. Figure 2.2 presents a ‘code tree’ [22] 

depicting a mapping between of the first order codes to initial theoretical categories 

[18] and then to a set of aggregated theoretical dimensions [42], [43] obtained from 

the open, axial, and selective coding approaches of CCM. The code tree not only 

summarizes the identified patterns of relationships between the category 

Coding 

Activities 

Aim Questions Outcomes 

Open 
Coding 

Systematic 
development 

of categories  

• What is the core message of 

this interview? 

• Is this interview consistent? 

• Are there interview fragments 
that are coded with the same 

categories? 

• What are the relationships 

between the identified 
categories? 

• Interview 

summaries 

• Categories 

• “Code-tree” 
showing 

interrelations 

among 
categories 

Axial 

Coding 

Conceptualiz

e the 

categories 
and produce 

a typology 

• Are the participants from two 

interviews talking about the 

same things? 

• Do the same categories and the 

combination of categories 
occur in both the interviews? 

• How are the categories related 

in both the interviews? 

• Extended 

memos 

• Expansion of 

categories 

• Relevant themes 

among 
categories 

• Clusters of 

interviews 

Selective 
Coding 

Integrate 
categorical 

findings 

• What are the central concepts 

in all the interviews? 

• What are the relationships 
between the most significant 

and frequent categories in all 

the interviews? 

• Central concepts 

• Extended 

memos 

• Conceptual 
profile of 

relationships 

among themes 
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characterizations in the data, but it also forms the basis of the theories that emerged 

from our data analysis.   

As shown in Figure 2.2, the responses of all the interview participants were focused 

on four aspects of the license renewal process namely: (a) stakeholder interactions, 

(b) process steps, (c) challenges, and (d) risks. From this synthesized information 

we answer our research questions (cf. Section 2.1.1) regarding the end-to-end 

license renewal process, along with the effects of communication, customer 

satisfaction, and value generated from the purchased licenses on the renewal 

decisions of customers. In this section, we present a set of five Theoretical 

Propositions (TP-1 to TP-5) that emerged from our implementation of the grounded 

theory method, answering our research questions RQ1 to RQ5 discussed in Section 

2.1.1. 

 

Figure 2.2: Code tree output of Data Analysis using Constant Comparative Method 
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Research [9] shows that, departments of large multinational organizations need to 

follow dedicated processes in order to operate successfully. Moreover, 

communication [31], [32] among stakeholders is an important factor that influences 

the successful operations of any organizational department. In support of these 

facts, on the one hand, our data analysis using CCM shows, during the interviews 

each study participant not only mentioned the roles of different stakeholders, but 

they also mentioned several gaps in stakeholders’ interactions. On the other hand, 

our analysis of the second theoretical category (cf. Figure 2.2) shows that most 

industry practitioners mentioned more or less similar set of steps in the license 

renewal process. Hence, as answers of our research questions RQ1 and RQ2 (cf. 

Section 2.1.1), we develop the following theoretical propositions:  

TP-1: (Effective) communication is (positively) associated with the end-

to-end license renewal process. That is, the smaller the communication 

gap is, the more effective the process. 

TP-2: The need to (successfully) close the pending renewals on time is 

(positively) associated with the need for a dedicated process for the 

practice of software license renewal.  

Moreover, during our analysis of the interview transcripts, we realized that the 

factors such as communication gaps among stakeholders, lack of customer trust, 

and scarcity of value generated from the purchased licenses act as the primary 

sources for the challenges and risks in the license renewal process. The code tree 

depicted in Figure 2.2 confirms this finding of ours. Hence, as answers to our 

research questions RQ3, RQ4, and RQ5, we develop the following theories: 

TP-3: Information exchange in a distributed workforce is (negatively) 

associated with the challenges of (effective) identification of customers 

who are likely to not renew the contracts. That is, the higher the 

information exchange, the lower the challenges in the renewal process. 

TP-4: The renewal risk is (negatively) associated with customer 

satisfaction and trust. That is, the (more) satisfied the customers are 
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with the services from the seller organization, the lower the risks are in 

the renewal process. 

TP-5: The renewal risk is (negatively) associated with the business 

value. That is, the (more) value the customers can generate from the 

purchased licenses, the lower the non-renewal risks. 

It is important to note that, the presented theories are derived from an in-depth 

analysis of the consensus of the stakeholders’ opinions on the license renewal 

process, hence, supporting the qualitative validity of the emerged theories. An 

empirical study with a larger population of stakeholders that could statistically 

validate the proposed theories, is beyond the scope of this research. 

Validation of Analysis Results 

We performed a three-level validation of our analysis results from CCM. Firstly, 

we validated each step of our analysis internally across the set of authors through 

team meetings and discussions. Secondly, we validated our derived concepts by 

presenting our analysis results to a team of content validity experts [19] from the 

surveyed organizations. Finally, to quantitatively justify the reliability of our 

analysis results we calculated the Inter-rater Reliability (IRR) [42], [57] of our 

findings. IRR is a common measure [46], [58] to evaluate the reliability of 

qualitative studies. IRR involves multiple researchers independently coding, 

clarifying, and re-coding the obtained data until a specific level of accordance is 

achieved [59]. It enhances the fidelity of the analysis by answering the question of 

whether different researchers code the same data in the same way or not [60]. 

Researchers [61], [62] have proposed several metrics to measure IRR, among which 

Cohen’s Kappa [61], that calculates the percentage of agreement among coders is 

commonly used [42]. As formally defined by Cohen et al. [61], Kappa can be 

computed as: 

𝐾 =  
𝑃(𝑎)− 𝑃(𝑒)

1−𝑃(𝑒)
         (2.1) 



 

  

28 

Where P(a) represents the observed percentage of agreement between coders, and 

P(e) represents the probability of agreement between coders, due to chance. 

Possible values for Kappa can range between -1 to 1 [63], where 1 signifies perfect 

agreement, 0 indicates completely random agreement, and -1 signifies perfect 

disagreement.  

During the validation of our analysis results, we adopted IRR as a tool to validate 

the reliability of our results and used Cohen’s Kappa as the metric to measure IRR. 

Using two coders to analyze qualitative data is a common approach among 

researchers [42], [46], [58] to increase the validity and reliability of the study 

results. Hence, in order to implement IRR, two coders were involved in independent 

analysis and coding the transcripts from the interviews and the convergence of their 

findings was evaluated at the end of each open, axial, and selective coding phases. 

In cases of conflicts between the decisions made by these two coders, a third coder 

was involved in the discussions for resolving the conflicts. At the end of each 

coding phase, we merged the coding files from ATLAS.ti and exported the coding 

results of each researcher into Microsoft Excel. We used Microsoft Excel to 

calculate Kappa as a measure of IRR. Table 2.3 shows the list of Kappa values for 

the theoretical categories presented in Figure 2.2. 

Later, after complete anonymization and aggregation, we presented the summarized 

results of our analysis along with our defined theoretical propositions to a team of 

content validity experts.  

Table 2.3: Kappa output for Theoretical Categories 

Theoretical Category Coder 1 Coder 2 Kappa (𝐾) 

Internal Communication 79 80 0.82 

External Communication 33 31 0.77 

External Challenges 41 41 1.00 

Internal Challenges 53 48 0.67 

Short-term Red Flags 28 31 0.79 

Long-term Indicators 22 24 0.91 
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During this discussion, we not only presented our final coding-tree (cf. Figure 2.2) 

but also discussed disagreements among the two coders. Due to the nature of the 

participating organizations, while some interactions happened face-to-face, others 

took place over teleconference. 

2.3 Results 

This section elaborates on the code-tree depicted in Figure 2.2 and discusses the 

results of our data analysis in detail. In this section, we present the detailed rationale 

behind the five theoretical propositions that emerged from our implemented 

grounded theory method. The section is primarily divided into four subsections 

based on the four aggregated theoretical dimensions presented in Figure 2.2. We 

begin with an analysis of the interactions between different stakeholders involved 

in the renewal process and identify the level of communication between the teams. 

Next, we discuss the end-to-end license renewal process along with the challenges 

and risks associated with the process. 

2.3.1 Stakeholder Interactions in the License Renewal Process 

In order to find answers to our five research questions (cf. Section 2.1.1), we started 

with the identification of the level of communication among the key stakeholders 

involved in the subscriptions renewal process. Our findings are depicted in Figure 

2.3. During our study, we found that in each participating organization, the S&S 

reps (cf. Section 2.1.2) act as the first line of contact for the customers, the brand 

reps manage products from specific brands with global sales leaders overseeing the 

renewal process across territories. Figure 2.3 shows the communication gaps among 

the involved teams. During our study, we observed that in many cases, the S&S 

reps not only have limited access to the archived license renewal data from previous 

years, but also they face a hard time to find the right representatives from other 

teams, who might help them with brand or price specific challenges with a renewal. 

Moreover, since different teams focus on different aspects of the renewals, each 

team usually possesses different types of information about the customers. 

However, a lack of proactive information sharing has been observed among these 
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teams. For example, the brand reps often have specific information on product 

features that are not being liked by customers, however, this information is not 

voluntarily shared with the renewal reps. A similar gap in communication has been 

observed between the renewal reps and the global sales leaders. On the other hand, 

business partners, being independent workforces outside the selling organizations, 

also do not share much information with the S&S reps. Hence, from our analysis, 

we developed the theoretical proposition TP-1 (cf. Section 2.2.1.1) and conclude 

that there is a significant lack in effective communication among the stakeholders, 

that increases the challenges in the renewal process. 

2.3.2 End-to-End License Renewal Process 

This section supports our theoretical proposition TP-2 (cf. Section 2.2.1.1) and 

gives an overview of our findings on the overall license renewal process followed 

by today’s I.T. service industry. The detailed renewal process is depicted in Figure 

2.4 using a BPMN collaboration diagram. The figure depicts all the different 

stakeholders of the license renewal process and shows the interactions between 

them using BPMN connecting objects. For ease of presentation, we divide the 

 

Figure 2.3: Stakeholder Interactions During the License Renewal Process 
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process into four distinct steps. In the next subsections, we elaborate on Figure 2.4 

and give a step by step overview of the process. 

2.3.2.1 Pre-Processing of Renewals 

The renewal process starts at the beginning of each quarter about three to four 

months prior to the renewal due dates. At this point, system generated price quotes 

(cf. Section 2.1.2) are sent to the customers via automated emails. Concurrently, 

renewal reps also get assigned to their designated customers for the quarter. 

Sometimes the renewal reps get assigned to customers they have previously worked 

with, and at other times they get assigned to new customers. Hence, to equally assist 

all their customers with the renewal process, the reps analyze background 

information for each customer before they initiate any communication with them. 

At this time, the reps collect information on previous renewal transactions of their 

customers and locate the key people involved in these transactions. 

2.3.2.2 Contacting the Customer 

After the background analysis of customers, the renewal reps initiate personal 

communication with them. The reps often start with the customers who have the 

most dollar amount of pending renewals and work their way down the list. In their 

first direct communication, the reps send a personalized email to the customer with 

the same previously sent renewal quote as a reminder of closing the renewal before 

its due date.  

2.3.2.3 Customer Responses 

Usually, very few customers respond to the first system generated email, and the 

first personal email from renewal reps often triggers the communication between 

the two parties. Nevertheless, customer responses can be very unpredictable. As 

shown in Figure 2.4, customers react to renewal reminders from the reps in the 

following three different ways: 
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Figure 2.4: The End-to-end License Renewal Process Followed by the Service Based I.T. Industry 
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i. No Response: In some cases, even after multiple reminders, customers do 

not respond to the emails from reps. Hence, the reps do not get a clear 

picture of the probable renewal outcome and are forced to assume that either 

the customer is not interested in renewing the licenses, or they are in contact 

with business partners for the renewal. In both the cases, reps try to contact 

the key people in the customer organization and in the business partner 

organizations. 

ii. Negative Response: Customers often respond to the reps with 

unwillingness to renew some or all pending licenses due to concerns 

regarding product pricing or usefulness. In such cases, reps often try to 

analyze the reasons behind the customer’s decision and engage the right 

people from the selling organization to assist the customers with their 

challenges. 

iii. Positive Response: These are the scenarios, where a customer informs the 

rep about their willingness to renew the pending licenses without any 

concerns. In such cases, reps send out the purchase orders (cf. Section 2.1.2) 

to the customers before the renewal due date and endorse new product 

licenses. 

2.3.2.4 Closing the Renewal 

Prior to the renewal due date, the reps try to get a final decision from the customers 

regarding the renewals. For the customers who decide to renew all or some of their 

licenses, the reps send legal purchase orders. Often customers, who do not 

communicate to the renewal reps at all, choose to renew their licenses via business 

partners, in such cases once the licenses are renewed the renewal reps get notified 

in the system. However, if the reps do not get any notifications on the renewal status 

of some customers even after their renewal due dates are passed, cancellation letters 

are sent to these customers for their pending licenses. As shown in Figure 2.4, 

customers often choose to renew all their pending licenses (full renewal) or to renew 

some of the licenses and cancel the rest (partial renewal).  
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2.3.3 Challenges in the Renewal Process 

In this section, we present the rationale behind our theoretical proposition TP-3 (cf. 

Section 2.2.1.1), as we list out the challenges that were identified in the subscription 

renewal process during our study. As per our analysis, we classify the challenges 

into two categories namely: external and internal challenges, based on their source 

of origin. In the next two subsections, we discuss these two categories in detail. 

2.3.3.1 External Challenges 

External challenges are those that originate from outside the organization. During 

our survey, we identified the following challenges that fall into this category: 

i. Unresponsive Customers: These are among the biggest challenges the reps 

face during the renewal process, as customers who do not communicate 

back often drop most of the licenses. Even though some customers prefer to 

communicate with business partners instead of renewal reps, the reps never 

know until the last moment if the customer is having any trouble with the 

licenses. In these cases, there is no way for the reps to help the customers. 

ii. Migrations and Product Evolutions: Migrations can acutely affect the 

renewal, as they involve a set of licenses being moved to a different physical 

location with diverse business conditions. On the other hand, product 

evolution may require pricing changes of the product. In both these 

situations, customers usually evaluate the value generated by their 

subscriptions. Hence, they may decide to add or drop some of their licenses 

or maybe even switch to another product from a different organization. 

iii. Getting Real Feedback from Customers: Most renewal reps confirmed 

that there is no way to know what exactly is happening on the customer’s 

side. For example, in most organizations, although there are online portals 

that show if a customer attempted to download a software, there is no record 

of whether the software download and install were successful. This affects 

customer satisfaction and trust. Hence, without a real feedback from their 
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customers, it becomes impossible for the reps to anticipate the renewal 

outcome. 

iv. Renewal via Business Partners: Not all contracts are sold directly through 

the organization; some contracts are sold through business partners. In such 

cases, renewal reps usually do not have access to any information about the 

customer’s experience. Hence, when the renewal due date arrives, the reps 

only get to see the final sale records with no additional information. 

Therefore, the reps never get to step into the renewal process and help the 

customers with any challenges they might be facing.  

2.3.3.2 Internal Challenges 

Internal challenges arise from inside the selling organization. Challenges in this 

category are discussed as follows: 

i. Internal Communication Problems: As identified in Section 2.3.1, there 

is a significant communication gap among the stakeholders that causes 

several challenges in the renewal process. During our study, we discovered 

some reasons behind this gap. Firstly, renewal contact points for customers 

change frequently due to people leaving the organizations or moving to 

different teams, however rarely any update is made in the internal contact 

database. Secondly, different stakeholders of license renewals have 

different perspectives of the process, with enough workload of their own. 

Finally, there is no standard way of documenting the details of interactions 

with customers. Often reps document valuable customer information in the 

form of hand-written notes or emails, but once these reps leave the 

organization or move to different teams, this information is lost forever. 

ii. False Estimation of Renewal Risks: Many factors that indicate renewal 

risks can be misleading. For example, although unresponsive clients are 

considered the number one risk by most reps, the contracts with these 

customers may end up with a full renewal with the help of business partners. 

Furthermore, customers with multiple partial renewals can purchase more 
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licenses based on their needs. Reps often make mistakes in identifying the 

customers, who are at risk of not renewing their licenses, as there is no 

formalized mechanism to do this task. 

iii. Technical Problems with Tools: Often renewal monitoring tools do not 

perform efficiently; as they freeze due to the high volume of data. Also, reps 

often need to work with multiple tools at the same time to monitor multiple 

aspects of the renewal process, as no one tool provides all the necessary 

information. As a result, even though organizations provide renewal reps 

with significant software resources, reps often perform much of the analysis 

manually. 

2.3.4 Risk Indicators in the Renewal Process 

This section presents our list of identified factors that indicate a customer is at a 

risk of non-renewal and supports our theoretical propositions TP-4 and TP-5 (cf. 

Section 2.2.1.1). We classify the risk factors into two categories, namely: Short-

term Red Flags and Long-term Indicators. While the short-term red flags are risk 

factors that suddenly show up during the renewal process, the long-term risk 

indicators are risks that have been there for some time but were never mitigated. 

2.3.4.1 Short-term Red Flags 

Short-term red flags could be driven by a keyword mentioned in a conversation 

with the customer, or from the final state of a previous renewal. However, the short-

term red flags are often ignored as they often turn out to be false positive risk 

indicators. Nevertheless, the following red flags, if ignored continuously, can 

evolve into long-term risk indicators over time. 

i. Partial Renewals: Our study shows that when a customer opts for a partial 

renewal, it is an indicator of risk. This could mean that; the customer might 

not be generating enough value from their purchased licenses. This sends a 

signal to the reps that the customer may be dropping more licenses in future.  

ii. Internal Negative Feedback about Customer: Often global sales leaders 

have specific information about customers such as: if a customer 
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organization is downsizing, or if the customer has been interacting with 

competitors. On the other hand, sometimes the brand reps know if a 

customer is having issues with specific products of their brand. To renewal 

reps, this information can indicate that this customer might not renew many 

of their licenses. We consider this as a short-term red flag, as there is no 

way to track such information over a period. 

iii. Competitive Products: Market competition is a major renewal risk. During 

our study, we observed that accounts with smaller revenue streams are 

usually more prone to move to competitors, as they continuously assess the 

value being generated by their investments. We list this indicator as a short-

term red flag, as the competition moves fast and in an unpredictable way. 

2.3.4.2 Long-term Indicators 

Long-term risk indicators are analyzed over a period. They are more severe than 

the short-term indicators as they have already been there for some time but were 

not alleviated. Following are some risk factors we found that can be long-term 

indicators: 

i. Consecutive Partial Renewals: If the results of the previous renewal 

processes show that the customer is gradually dropping some of their 

licenses over the last years, a rep usually considers this trend as a serious 

risk factor. 

ii. Inactive Accounts: If the online portal of customer accounts does not show 

any changes over time, such as, no service requests, no download attempts; 

this is considered as a risk.  

iii. Failing Long-term Relationship with Customers: Sometimes reps notice 

that the customers they have been assisting for years, reduce the amount of 

communication. For example, customers who used to be proactive with their 

renewals, begin to respond after several emails from the reps. If this goes 

on for a few consecutive renewals, it can be a serious risk indicator for the 

reps. 
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iv. Brand-specific Indicators: Renewal reps often find that some products are 

experiencing significant cancellations over a number of years, despite 

multiple versions being released over this time period. Sometimes, 

customers keep complaining about pricing or features of products from a 

specific brand. This is a sign that the customers will eventually drop the 

licenses for these products. 

2.4 Proposed Research Solutions and Future 

Research Directions 

At the time of presenting our analysis results to a team of content validity experts, 

we engaged in brainstorming [23] with the experts in order to identify open research 

directions that can help alleviate the risks and challenges in the license renewal 

process. Brainstorming is a common group activity that is used by both academics 

[64], [65] and industry professionals, in order to identify solutions for problems. 

Brainstorming sessions primarily consist of a facilitator, a scribe, and a number of 

team members [64], where the facilitator leads the session, the scribe notes down 

the core concepts of the discussions, and the other team members contribute their 

insights in solving the problem. Research [64], [65] shows that the key benefit of 

group brainstorming over individual thinking is, brainstorming helps to elicit many 

more ideas than an individual can think of. As per the guidelines by Shi et al. [65], 

we followed the following steps: 

Step 1: The facilitator stated the problem – center of Figure 2.5 

Step 2: The participants proposed as many solution ideas as possible 

Step 3: Ideas were discussed among participants 

Step 4: The subset of ideas was evaluated with respect to acceptability, 

demand, and implementation until a conclusion was decided upon. 

Step 5: The steps 1 to 4 were repeated until all the sub-issues were 

discussed. 
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As the discussion progressed, the scribe in our team gradually created a Mind-map 

[64] (see Figure 2.5) of ideas for solving the problems. A mind map is a hierarchical 

visualization that is used to depict the relationships among conclusions formed 

during a brainstorming session. Figure 2.5 shows our final mind map with all the 

challenges and risks and their possible solutions. We divide the conclusions into 

immediate actions and long-term plans. 

2.4.1 Immediate Action Plans 

In order to assist the renewal reps in resolving some of the identified challenges 

within a short time, we came up with the following list of immediate actions. 

 

Figure 2.5: Mind Map of Action Plans and Research Directions for the Challenges in 

the Renewal Process 
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i. Maintaining Good Relationship with Customers: To retain customer 

trust, it is necessary for the renewal reps to maintain good relationships with 

customers. The process of building a good relationship can start with 

renewal reps sending more frequent emails to the customers, to check if the 

licensed products are satisfactory or not. Alongside, the reps could 

proactively share information on upcoming feature improvements of the 

already licensed products of their customers. Research [66], [67] shows that 

taking these extra steps can help the reps to gain their customers’ trust, and 

eventually can reduce the number of non-responsive customers. Most 

stakeholders confirmed that the proposed idea is both acceptable and 

practical. However, in order to integrate the idea in the day-to-day schedule 

of renewal reps, organizations would need more planning. 

ii. Maintaining Information Cycle Between Teams: To bridge the 

communication gap between the different teams involved in the license 

renewal process, a pre-defined information cycle can be created among 

them. Valuable customer-specific information from the brand leaders and 

worldwide leaders can be shared with renewal reps via a quarterly 

teleconference meeting. So that the reps can be extra careful with these 

renewals and alleviate any churning risks ahead in time. Researchers [29], 

[31], [32] have demonstrated that a premeditated information cycle between 

teams can help in improving the core competencies of each team. As per the 

experts, this idea can be implemented relatively quickly. 

iii. Dedicated Teams for Small Customers: Sometimes renewal reps put 

more focus on customers that generate higher revenue. As a result, often 

customers with smaller revenue feel neglected and choose to move to 

competitors. Nevertheless, as cumulative revenue generated by all these 

customers can be high, teams can be restructured, and dedicated teams can 

be created for customers belonging to different revenue groups. According 

to Hannan et al. [34] committed teams can not only help with information 

building but also can increase customer satisfaction and trust. During our 
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presentations, experts have confirmed that the idea is both acceptable and 

demanding. However, for a practical implementation of the idea, companies 

would need to invest in more planning and resources. 

iv. Propagated Way of Collecting and Sharing Information: A propagated 

mechanism is required to share information among stakeholders. Such that, 

for every new customer assigned to a rep, the background analysis for these 

customers can be done by going through the previously recorded 

information. The idea seemed acceptable and practical to the stakeholders. 

However, creating an organization specific tool has its own long-term 

planning and budget requirements [54]. Nevertheless, in order to implement 

the idea in a short time, organizations can encourage employee interaction 

the via social intranet [68] (e.g., Slack, Igloo). Additionally, they can make 

use of existing industrial information sharing applications, such as the 

Kanban tool  for sharing team workflow information, also common note-

taking tools  for sharing customer information. 

v. Properly Maintained Contact Database: Reps often have a hard time to 

locate the right person who is responsible for a specific client. Hence, as a 

quick fix to the problem, the organizations can make use of existing 

industrial contact management applications, such as Pipedrive or Salesforce 

Marketing Cloud. During our interactions with the stakeholders, we noticed 

that many organizations already are using some of these solutions, however, 

they still need to be integrated with the business case of license renewals.  

2.4.2 Long-term Research Directions 

During our study, we realized that, although the immediate action plans can assist 

the renewal reps to quickly resolve some of the problems, they may not be sufficient 

to provide long-lasting solutions. Hence, our suggestion to the participating 

organizations was to make use of the rapidly changing technology and invest in the 

future research directions for enhancing the overall renewal process. Hence, we 

proposed the following set of long-term research directions to the experts, that 
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would not only keep the renewal revenue high but also would be cost-effective for 

the selling organizations. 

i. Intelligent Automation: Making use of Intelligent automation (IA) [69] 

can help with avoiding the challenges of maintaining a high quality of 

service for all the customers, irrespective of the revenue. Automation of 

business processes will not only save time on customer onboarding, but it 

will also provide greater flexibility, efficiency, and security to the 

organizations. Companies can take advantage of processing the customer 

data by cloud-based IA representatives [69] at a much lower cost than 

current manual processing. Nevertheless, research [69] shows that only 35% 

of all North American businesses have invested in implementing 

automotive solutions, among them only 19% are I.T. service-based 

organizations. Most companies are still reluctant in applying IA due to 

budget, planning, and adaptability reasons [69]. Hence, we think 

organizations need to invest in further research for implementing IA in the 

service sector. 

ii. Automated Personalized Assistance: For the purpose of cost-

effectiveness, businesses can make use of automated personalized 

assistance to provide support to a wider range of accounts. Automated 

personal assistants [70] are intelligent computer systems, that can perform 

tasks, or provide services based on a combination of user input such as text, 

voice commands, location etc. Currently, several multinational I.T. 

companies, banks, and insurance corporations are using this technology for 

more efficient marketing and customer support. However, there is a 

necessity to use this technology in the domain of customer retention.  

iii. Q&A Sites and Social Media Applications: Q&A sites are websites that 

follow question-and-answer format to assist end-users to solve problems in 

different domains. Organizations often use domain-specific Q&A sites for 

assisting their employees and customers with different technical challenges. 

Social media applications [71] are web applications that allow their end-
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users to socially interact and share information with other users of the same 

application. Although Q&A sites and social media applications exist for 

almost every multinational organization, they are rarely used for assisting 

customers with renewing their software licenses. Hence, we propose the use 

of Q&A sites and social media applications to assist customers with the 

issues associated with license renewals. For example, while Q&A sites can 

provide answers to the most frequently asked questions on the renewal 

process, Social media applications can be helpful for sharing upcoming 

product features and initiating discussions among the stakeholders on 

product usability problems. 

iv. Artificial Intelligence Enabled Analytics:  

“By 2020, 85% of customer interactions will be managed without a human” 

– Gartner [3] 

Analysis of real-time customer experience data can help to identify 

customers at risk [17]. However, manual business analytics, being both 

expensive and time-consuming [12], cannot provide sufficient insight into 

customer churn risks. Hence, we propose making use of Artificial 

intelligence (AI) [4] enabled analytics [2], [14], [15] to identify the 

customers at non-renewal risk.  There has been much research that predicts 

customer churn using AI enabled predictive models [4], [15] in various 

domains such as telecommunication, banking, and insurance, among others. 

Researchers have performed studies that compare [4], [15], [16], [30], [48] 

and combine [11], [14] multiple AI methodologies, and have identified 

techniques that focus on predicting customers at churning risk. However, 

the proposed predictive models suffer from several limitations. Firstly, 

although the existing models usually are validated using real-life datasets 

[4], [12], [16], they are seldom used in real-life B2B scenarios [4]. 

Secondly, since the end-users of the predictions generated by these models 

are not always data scientists, the interpretation of the models’ outputs is 

often a challenge [72]. Finally, predictive models often generate many false 
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positive predictions [72] that can create additional problems for the renewal 

reps in real-life B2B scenarios. Hence, we propose that more research is 

required that addresses the challenges associated to machine learning based 

predictive models so that they can be used in the industrial license renewal 

process to identify the customers who are at risk of non-renewal. 

v. Visualization of Customer Experiences: In order to understand the end-

to-end license renewal experience from a customer’s point-of-view, the 

organizations can make use of Visual Analytics (VA) [73]. Mapping the 

customers’ journey [74] using data visualization tools [75], has several 

benefits. Firstly, it can help to unify all known information regarding a 

customer that will be useful for analyzing customer satisfaction. Trends can 

be visible in historical customer transactions that will help the reps to 

identify renewal risks. Secondly, it will assist organizations in performing 

behavioral segmentation among customers so that targeted offers and 

loyalty programs [12] can be created. Much research [73] has been done 

that presents visualization frameworks for deriving more insights from data. 

However, most traditional data analytics tools [75] present a static and 

inflexible model of the data in an incomprehensive way. Hence, we think 

further research is required in order to develop tools to visualize customer 

experiences throughout their journey. 

vi. Dedicated Software for Information Sharing: Our analysis shows that 

there is a necessity for developing a dedicated software tool to document 

and share experiences of the stakeholders across the teams that are involved 

in the renewal process. Hence, in case there is a problem with any renewal, 

all the stakeholders can be aware at once and act on the problem ahead in 

time. As discussed in Section 2.4.1, there exist industrial applications that 

can be used for sharing information within organizations. However, as per 

Shahzad et al. [54], in many cases, there is a necessity to develop an 

organization specific tool that can be designed as per the protocols of the 
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organization. Hence, organizations can invest in further research to develop 

knowledge management tools of their own. 

2.5 Limitations and Future Work 

Just like any other study, this research also has its own limitations that offer 

opportunities for future work and threats to the validity of the experimental process. 

Firstly, research [76] shows that, semi-structured self-reported interviews (cf. 

Section 2.2.1.1), that were used for collecting our research data, are often subjected 

to respondent biases [76]. In order to address this limitation, we interviewed 20 

participants from different organizations who play different roles in the license 

renewal process. Hence, we obtained viewpoints from most of the possible 

stakeholder groups of the renewal process; this allowed us to perform data-source 

triangulation [77]. On the other hand, our analysis of the obtained information using 

the Constant Comparative Method (CCM) allowed us to identify any possible 

inconsistencies and biases in the responses of the interview participants. Moreover, 

we shared our analysis results with content validity experts in the participating 

organizations in order to validate the information obtained from the interviews. 

Nevertheless, as future work, researchers, including the authors, could perform 

methodological triangulation [77] where the survey data could be collected using 

multiple methods or instruments [78] other than only semi-structured interviews. 

This would further reduce these threats. 

Secondly, another possible threat to our research is content validity [78]. Content 

validity is a subjective assessment of completeness of any survey instrument, that 

refers to the fact: if an instrument or questionnaire used for any study contains all 

the information it should. In order to mitigate this threat, the five research questions 

(cf. Section 2.1.1) addressed by this chapter were produced in close collaboration 

with content validity experts from the participating organizations. However, for 

future work, one could look into quantitative aspects (such as, variables associated 

with the Technology Acceptance Model (TAM) [2]) that impact license renewal 

decisions from customers, in conjunction with the explored qualitative factors. 



 

  

36 

Moreover, researcher bias [76] of our work could be avoided with investigator 

triangulation [77], where investigators from both industry and academia could 

collaboratively explore the different qualitative and quantitative aspects associated 

with the challenges and risks of software license renewals. 

Thirdly, the validity of findings, in qualitative research, is a known threat among 

researchers [42]. In order to enhance the validity of our analysis results we followed 

the guidelines of Boeije et al. [22] and implemented systematic data collection and 

analysis techniques using Grounded theory [21] and Constant Comparative Method 

(CCM) [18]. These methods are well-known inductive content analysis techniques 

that are commonly practiced by researchers [21], [22], [39], [47], [48] for 

qualitative data analysis. Researchers [18], [22] often argue that the coding 

techniques in CCM are not very well defined in the literature. In order to address 

this challenge, we performed both internal (i.e., among the researchers) and external 

(i.e., with content validity experts) validation of our characterizations, theoretical 

categories, and propositions. Finally, we used Inter-rater Reliability (IRR) [42] as 

a quantitative measure to justify (cf. Section 2.2.1.1) the validity of the findings. 

Nevertheless, in future, an empirical study [78] could be performed with a larger 

population of stakeholders, in order to validate the theories that emerged from our 

analysis. 

Finally, in order to collect information on the end-to-end license renewal process, 

we interacted with professionals from organizations headquartered in North 

America. Although, we have clearly distinguished the firmographic [40] variables 

(cf. Section 2.2.1) of the organizations that participated in our study, in case one or 

more of these firmographic variables (e.g., location, size of the organization, 

monetary value of the licenses) are changed, the results might include more factors 

that impact on renewal decisions from customers. Hence, in future further 

investigations could be performed to look into organizations with different 

firmographic backgrounds to generalize the license renewal process and its 

challenges further. 
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2.6 Conclusions 

Successful renewal of software licenses makes a huge impact on the steady and 

profitable growth of organizational revenue in the software industry. Therefore, this 

research tries to answer the question: What is the current state of industrial practice 

for software license renewals in I.T. service-based organizations? The chapter 

synthesizes the most common practice of license renewal and the challenges 

associated with it. The research implements the Grounded theory method, where it 

adopts a semi-structured, cross-sectional, anonymous, self-reported study across 20 

participants from multiple organizations and analyses the obtained information 

using Constant Comparative Method (CCM). The participants of our study were 

carefully chosen from several multinational organizations headquartered in North 

America, with various roles in the renewal process such as, sales and subscription 

(S&S) representatives, brand leaders, global sales leaders, program directors, and 

data analysts. Our analysis not only presents the end-to-end license renewal 

process, but it also shows that lack of effective communication among the 

stakeholders, scarcity of customer satisfaction, and absence of value generated from 

the purchased licenses, are among the primary drivers that influence the renewal 

decisions from customers. To validate our findings from CCM, we used the 

quantitative measure of inter-rater reliability, where multiple researchers analyzed 

the same data independently at the same time. Finally, we presented our analysis 

results to a team of content validity experts in the participating organizations.  

We also identified 11 possible risk mitigation strategies by engaging in structured 

brainstorming with the team of experts. As per the opinions of the experts, the 

proposed risk mitigation strategies can be classified into short-term action plans and 

future research directions. For future research, we think that the organizations can 

take advantage of applying intelligent automation either in the form of chat-bots or 

as predictive models. We also think that an effective visualization of customers’ 

journey with an organization, can help renewal reps to analyze the overall 

experience and satisfaction of their customers. This research is, to our knowledge, 
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the first that presents the current state of the license renewal process for software 

publishing organizations and identifies the risks and challenges associated with it. 

We think that our identified challenges and proposed research directions can assist 

software publishing companies to identify the pain-points in their software renewal 

processes and enhance the procedure to improve the overall renewal rates. 
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Chapter 3  

A Comprehensive Review of Exploratory 

Data Analysis Tools 

In today’s digital world, insights obtained from Exploratory Data Analysis (EDA) 

are used in strategic business decision making. EDA [1] is a fundamental procedure 

that makes use of statistical techniques and graphical representations in order to 

obtain insights from data [2]. EDA not only assists with the identification of hidden 

patterns and correlations among attributes in data, but also helps with the 

formulation and validation of hypotheses from the data. Over the last few decades, 

interactive visualization strategies have become an integral part of data exploration 

and analysis techniques [3]. With a picture being worth a thousand words, 

academics have proposed several tools and techniques [4]–[9] to visualize complex 

relationships among data attributes using diagrams and charts. Whilst some of these 

visual data analysis tools [10]–[14] assist with domain-specific analysis (for 

example, analysis of genome-sequence data [10], meteorological data [11], results 

of predictive analysis [14] etc.), other tools [3], [15], [16] focus on general purpose 

exploratory browsing of tabular data. In either case, since the beginning of visual 

interactive data analysis [3], almost all visual EDA tools perform a few common 

analytics tasks. In their work, Heer et al. [17], as well as Amar et al. [18], have 

identified these basic data exploration tasks as sort, filter, aggregate, correlate, 

group, and derive attributes.  

Nevertheless, in recent years, the requirements for exploratory data analysis have 

changed significantly. With the ever-growing size and types of data to be analyzed, 

scalability and analysis duration [3], [5] of the EDA tools are now among the 

primary concerns of researchers. Moreover, with data being used to train predictive 
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models [14] for making strategic business decisions, analysts are in need of data 

exploration tools that can help to accurately analyze complex multivariate 

relationships [1], [19] in datasets, with limited available analytical expertise. To 

address these challenges, EDA tools are constantly evolving [15], [20]. In the last 

few years, many advancements have taken place with the design of data 

visualization tools [5], [21]–[23] in order to address different challenges [24]–[27] 

of analyzing large datasets [2], [27]–[30]. However, the trade-off between the depth 

and the breadth of analysis supported by the modern exploratory data visualization 

tools is still a challenge [3]. As, on the one hand, despite covering the breadth of 

basic exploration tasks [18], general purpose data exploration tools [9], [31] often 

do not fulfill the in-depth analysis requirements of their users. On the other hand, 

tools [21] that focus on highly scalable and in-depth multivariate analysis, often 

lack in interpretability and require significant knowledge of the problem domain. 

To identify the current state of research in the emerging field of EDA, at first, we 

examine a real-world dataset with 3.4 million records obtained from our industrial 

partner IBM. From this investigation, we identify a set of additional exploratory 

requirements specific to resolving the challenges of analyzing such enormous 

business data. Later, we investigate 50 visual interactive EDA tools (cf. Section 

3.2.2) for their ability to assist with the traditional EDA process steps, along with 

their fulfillment of the identified additional exploratory requirements for large scale 

EDA. Among the 50 analyzed tools, 43 are proposed by academic researchers and 

the remaining 7 are commercial tools used in industry. Since, performing a 

complete survey of each and every existing EDA tool would be too large to cover 

in a single research, we carefully define precise selection criteria (cf. Section 3.1.1) 

for the selected tools. For example, whilst for academic tools we only look at the 

ones that were presented within the last five years and help with general purpose 

exploration of tabular data, for commercial tools we follow the guidelines of 

Gartner Inc. and select the business intelligence platforms that received Gartner 

Customer Choice Awards  in the year 2017. During our evaluation of the selected 
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tools, we identify some gaps and research opportunities in the emerging field of 

visual EDA. 

Although there has been much research [10], [11], [14], [32]–[35] that aims at 

surveying the state-of-the-art in visual data analytics, in most cases the studies 

consider exploration tools for specific domains [10]–[12]. Moreover, as per our 

knowledge, this novel work is at least more than a year ahead of its closest 

competitors [3], [15], [16], [35]–[37] as it also considers tools that were proposed 

in the last one year. It also presents a list of 50 visualization tools that were analyzed 

for the first time from the perspective of the steps followed in EDA [1], [26]. The 

primary contributions of this research are as follows: 

• This novel work presents the current state of research on visual EDA tools 

for exploring tabular data by investigating 50 tools for their utility in the 

EDA process steps (cf. Section 3.2.2.1). 

• The research also evaluates the selected tools for their abilities to fulfill 

different additional exploratory requirements of large industrial datasets (cf. 

Section 3.2.2.2). 

• The work identifies open research opportunities for the domain of visual 

EDA tools (cf. Section 3.3). 

The rest of the chapter is organized as follows: in Section 3.1, we present the scope 

and methodology of this research. In Section 3.2, with a discussion on different 

aspects of our analyzed industrial dataset, we summarize the findings of our survey. 

Section 3.3 presents identified research opportunities and gaps in the field of EDA 

tools, whilst Section 3.4 presents surveys that are similar to our research. In Section 

3.5, we list the limitations of this research, while in Section 3.6 we conclude the 

chapter. 

3.1 Research Scope and Methodology 

To precisely define the scope of our research, in this section, at first we present our 

primary research questions for this work. Next, we outline a specific set of inclusion 
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and exclusion criteria of the visual data analytics tools included in our study. 

Finally, we discuss the detailed steps that were followed to analyze the industrial 

dataset and to perform the state-of-the-art survey of EDA tools. 

3.1.1 Research Scope 

In this section we outline the boundaries of our study in terms of investigation time-

frame, purpose, and popularity of the analyzed EDA tools. Therefore, we enlist our 

research questions as follows. 

RQ1: What are the additional exploratory requirements for EDA tools 

to investigate large industrial datasets? 

RQ2: What research activities have taken place in last five years in the 

domain of visual EDA tools for general purpose exploration of tabular 

data? 

RQ3: What are the most popular commercial EDA tools in industry? 

RQ4: To what extent do modern EDA tools assist with the steps of the 

EDA process and fulfill the additional exploratory requirements of 

analyzing large datasets (i.e., answers of RQ1)? 

RQ5: What are the gaps and future directions for the current state of 

research on visual EDA tools? 

Based on the known challenges [34], [38]–[40] of analyzing large datasets, 

researchers [34], [38] have proposed a set of additional requirements for analyzing 

such data. However, work that addresses all possible challenges of large datasets, 

is sparse. Hence, with RQ1, we investigate a real-world tabular dataset and identify 

different challenging aspects of this dataset. Later, based on existing literature [21], 

[23], [34], [37], [40]–[42] that relates the identified aspects to specific data analysis 

requirements, we identify four additional exploratory requirements for analyzing 

large industrial datasets. 
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Figure 3.1 illustrates our decisions for RQ2 and RQ3 in detail. As shown in the 

figure, for RQ2, limiting the analysis timeframe for academic EDA tools to five 

years was one of our very first decisions in this research. The reasons behind this 

decision was: technology trend analysis for five years is a common industrial 

practice. Moreover, we fixed our focus on investigation of tabular data stored in 

relational databases, because as discussed by researchers [3], most business data 

are stored in relational databases despite of being initially recorded as plain text, 

XML, or graphs. We also narrowed our focus on tools used for general purpose 

exploration of tabular data. The reason being, due to the existence of large number 

of EDA tools in every research field (such as, time-series, geo-spatial, or genomic 

data etc.), it would not be feasible to cover all these fields in one research. 

Additionally, with a focus of investigating tools with a smooth learning curve for 

novice users, we chose to exclude data analytics libraries, frameworks, and 

packages that require programming skills from end-users. 

In today’s data-centric world, almost all businesses make use of general-purpose 

commercial Business Intelligence (BI) and analytics tools for performing EDA 

tasks to gather insights from data. As shown in Figure 3.1, with respect to RQ3, we 

selected the seven most popular tools that were awarded by Gartner Inc. in 2017. 

Our primary purpose of investigating commercial tools were to identify the 

similarities and differences between the current state of academic research and 

industrial practice.  

To summarize, tools fulfilling the following criteria were included in our study (cf. 

Figure 3.1): 

• Presented within the last five years. (criterion applicable only for academic 

tools) 

• Focused on analyzing tabular data stored in relational databases. 

• Focused on general purpose exploratory analysis of data. 

• Most popular and widely used (criterion applicable only for commercial 

tools) 
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On the other hand, tools were excluded from the study based on the following 

criteria: 

• Domain specific visual exploratory analysis tools. 

 

Figure 3.1: Flow-diagram of Selection Criteria for the State-of-the-Art EDA Tools 
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• Frameworks, packages, or libraries for performing visual EDA tasks. 

Like every other process, EDA consists of a set of steps (cf. Section 3.2.2). With 

RQ4 we aimed at investigating the utility of the selected tools at these different 

steps. Also, we intended to investigate the extent to which the tools fulfill the 

additional exploratory requirements (i.e., answers of RQ1) for analyzing large 

datasets. At the end of our study, we aimed at seeking answers for RQ5 and 

identifying gaps and research opportunities in the current state of research on visual 

EDA. 

3.1.2 Research Methodology 

In this section, we discuss different steps of our research methodology in detail. 

This section is primarily divided into three subsections. The first subsection 

presents our analysis methodology for the real-world dataset, whilst in the next two 

subsections, we discuss the detailed processes of collection and analysis of the 

selected EDA tools for this research.  

3.1.2.1 Background Analysis of an Industrial Dataset 

The industrial dataset analyzed in this work is comprised of 3.4 million records with 

27 attributes and contains product license renewal information. It is important to 

note that we only had access to a completely anonymized version of the dataset. 

The dataset was provided to us in Comma Separated Values (CSV) format and was 

created by joining five different DB2 tables from an IBM data server. These tables 

contained information such as sales figures, product details, customer interaction 

details, and types of product licenses. The tabular dataset was investigated by a 

group of two researchers (the first and second authors) using Microsoft Excel. At 

this time, we performed different data manipulation tasks such as: plotting the value 

distributions of attributes and finding correlations among attributes. We also 

generated a pivot table from the data that enabled us to sort and filter the attribute 

values, so that we could compare the maximum, minimum, mean, and standard 

deviations [1] of each attribute. During these tasks, we identified a set of 

challenging aspects (cf. Section 3.2.1) of the analyzed dataset. Once, these 
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challenges were identified, the two researchers looked into the literature [21], [23], 

[34], [37], [39], [41], [42] that is associated with these identified challenges [34, 

38, 39]. Based on the literature evidence, we created a list (cf. Section 3.2.1) of 

additional exploratory requirements for large scale EDA tools. 

3.1.2.2 Data Collection for Systematic Literature Review 

In order to address RQ2, we carried out a manual search of conference proceedings 

and journals that are known to publish novel ideas on data visualization techniques. 

The article sources were chosen not only based on their impact factors in the EDA 

community, but also because they have been popularly chosen by researchers [3], 

[15], [34] for performing similar studies. As the next step, the last five years’ 

archive for each of the identified journals and conferences were scrutinized by the 

two researchers. As shown in Figure 3.1, during this task, the researchers collected 

each and every article from the identified journals into a pool of 233 articles that 

were relevant to EDA. Later the collected articles were filtered by the researchers 

based on the inclusion and exclusion criteria (cf. Figure 3.1) defined for the tools. 

During this step, 190 articles were excluded from our study. In cases of conflicts 

between the two researchers regarding an article’s eligibility to be included in the 

study, a third researcher was brought in to resolve the disagreements. In parallel, 

for addressing RQ3, the two researchers started investigating on the most popular 

commercial exploratory data analysis tools in industry (cf. Figure 3.1). Later, 

following the judgement of Gartner Inc. the researchers selected 7 commercial EDA 

tools. For this study, we considered both the winners and the honorable mentions 

of the customer choice awards. Once the selected EDA tools were finalized, a 

quality assessment was performed by a team of three researchers (the first three 

authors) involved in this work, where the fulfillment of the inclusion and exclusion 

criteria for each of the selected tools was validated. During the quality assessment 

session, the team also confirmed if the systematic review has covered all relevant 

EDA tools from the selected journals and conference proceedings that it should. 

Once the tools to be analyzed were finally chosen, the following information was 

extracted regarding the tools: 
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• The source journal or conference proceedings of the tool and its year of 

publication. 

• The research questions addressed by the tool and its primary focus. 

• The EDA steps supported by the tool along with its additional supported 

features. 

3.1.2.3 Data Analysis for Systematic Literature Review 

While reviewing the chosen EDA tools, following the guidelines of Kitchenham et 

al. [43], at first both the researchers thoroughly read the articles for each tool, later 

for the tools [4], [6], [8], [9], [30], [44], [45] that provide open source access to their 

implementations, the two researchers independently executed the source code of 

these tools. Among the tools that were executed, whilst some [8], [21], [30], [44]–

[46] allowed their source code to be downloaded to our local systems, some other 

tools [4], [6] only presented a live executable version that require users to upload 

their datasets on the tools’ servers. Due to the strict Data Access Policy 

requirements from IBM, we applied our analyzed industrial dataset only to those 

academic tools [8], [21], [30], [44]–[46] that allowed us to download their source 

code. For the tools [4], [6], [9] that did not enable us to download any code, we 

executed the tools using the sample datasets on the tools’ websites. In case of the 

tools [5], [25], [31] that did not share any source code information, the two 

researchers thoroughly reviewed the main articles of the tools. For commercial tools 

however, we could download all seven of the tools [20], [47]–[52] and applied them 

on our industrial dataset. At the end of the analysis, both researchers discussed their 

findings to derive a final evaluation for each tool. In case of disagreements, the third 

researcher helped to resolve the conflicts. Finally, the group of three researchers 

collaboratively derived a summary table (cf. Table 3.1) with the evaluation of the 

identified EDA tools. Later, the researchers identified the gaps and open research 

areas (cf. Section 3.3) in the emerging field of visual EDA. 
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3.2 Results 

In this section, we discuss the primary results of our research in detail. We begin 

with a brief description of findings from analyzing the industrial dataset, followed 

by a detailed discussion on the results of our systematic literature review of the 

chosen EDA tools. 

3.2.1 Elicitation of Additional Exploratory Requirements for 

Large Industrial Datasets 

This section presents our analysis results of the industrial dataset obtained from 

IBM, where we first highlight the challenging aspects of the dataset, then we present 

a list of additional exploratory requirements for large scale EDA tools. 

i. High Dimensionality: The dimensionality of a tabular dataset usually 

refers to the number of independent variables or attributes in the data. High 

dimensionality of large business datasets is a known challenge among 

researchers [40], [53]. As, firstly, the computational workload for analyzing 

a dataset increases as the number of dimensions grows [54]. Secondly, as a 

result of dimensional redundancy [54], some attributes in a high-

dimensional dataset might not be as useful as others. For example, in our 

industrial dataset, there were three attributes representing the country code 

of customers from three different viewpoints. In these situations, strong 

correlations can be noticed [33] among the redundant dimensions that can 

be difficult to visualize. Finally, high-dimensional datasets cause 

“geometrical insanity” [40] when visually exploring the data. For example, 

as the dimension changes only from 2D to 3D, the data that could initially 

be represented by a 1-dimensional line now becomes a 2-dimensional 

surface. Hence, when the dimension increases from 3D to 4D and further, it 

gets extremely challenging to visualize such dimensionality in the data. 

ii. Categorical Attributes: The second primary aspect of an industrial tabular 

dataset is the large number of categorical attributes in the data (precisely, in 

our dataset 19 among the 27 attributes were categorical). Research [1] 
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shows that analysis of categorical features in a dataset can be a primary 

challenge due to reasons such as:  

a. Performing statistical analysis on categorical attributes is more 

challenging than the numeric attributes, as some of the measures of 

centrality (such as, mean and median) and dispersion (such as, variance) 

applies only to numerical data. Also, in case the categories are not 

relative, sorting them according to an ascending or descending order can 

be a challenging task. Hence, it becomes difficult for data analysts to 

perform any normality tests [1] on the categorical features.  

b. Analysis of categorical features with too many categories can result in 

performance challenges [40] for any data analysis tool. Also, often for 

these features, there are some categories that are more dominant; such 

that, whilst the dominant categories account for the majority of the data 

points, the remaining categories represent extremely small portion of the 

data in comparison to the dominant categories. In such situations, it gets 

immensely challenging [55] to perform univariate analysis [1] of the 

categorical features. 

iii. Missing or Aberrant Values and Outliers: The data points with missing 

values show the incompleteness of the data. As we discovered in the dataset, 

many data points had missing values for attributes that did not have a NOT 

NULL constraint in the original database tables. On the other hand, the 

records with outliers or aberrant values show inconsistency in the data. In 

our dataset, some aberrant values (such as, 9999 in place of date values) 

represented some undocumented codes for missing data. The outliers in the 

dataset were either results of human errors in data input or indicated 

calculation errors when deriving attribute values. In either case, given the 

enormous size of the dataset, the outliers were among our main challenges 

for exploring this dataset. 

iv. Data Sanity: In the industrial dataset, we noticed that the dataset being 

created by merging different tables not only had some columns with 
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ambiguous names but also had columns with inconsistent values. For 

example, whilst some ambiguous column names represented abbreviations 

of long sentences (e.g., FYCA standing for: First Year of Contract 

Agreement), some other column names represented organization specific 

terminology with internal meaning. On the other hand, the inconsistency in 

values for some columns resulted from different tables storing the values 

for the same attribute in different formats. We noticed these inconsistencies 

in, attributes containing date information and financial details. The data 

sanity problems made us realize that a significant amount of expertise is 

required to understand the values of each attribute in the data. 

v. Multivariate Relationships: Attributes in business datasets contain 

complex multivariate relationships that are not easily visible in tabular data. 

Whilst, in some cases the values of an attribute depend on two or more other 

attributes, in some other cases combined exploration of several attributes 

can provide more meaningful insights than exploration of an individual 

attribute. For example, in our dataset, the attribute containing the 

information on the next purchase date depended on the attributes: previous 

purchase date, product type, and business value of customers. On the other 

hand, combined exploration of customer industry, type of purchased 

products, and product pricing information gave us insights on the pricing 

requirements of customers in different industries. So, it can often get 

challenging to identify the attributes that are related to each other without 

appropriate domain knowledge and training. 

vi. Anonymity: Another aspect of a real-world industrial dataset is anonymity 

that can cause challenges during the data analysis process. In large 

multinational organizations, much data is classified business information 

that is only shared with specific teams and individuals. In such cases, even 

the data analysts do not get access to the entire information about the 

dataset. For example, in case of our dataset, attributes such as product 
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pricing or customer firmographic information were anonymized that lead us 

to some misinterpretation of the data. 

vii. Large Scale of Data Points: One of the primary aspects of real-business 

data is the large scale of data points in the datasets. In our case, the dataset 

with 3.4 million rows and 27 columns resulting into 91.8 million data values 

took hours to be extracted from the database into CSV. Hence, we think it 

will take longer time for any EDA tool to visualize such amount of data. 

From our analysis, we believe that in order to efficiently analyze any industrial 

dataset, in addition to supporting the EDA process steps [1], EDA tools need to 

address the above-mentioned challenges. Research [34], [38], [39] shows that, each 

of these identified challenges of big-data analytics can be associated to specific 

exploratory requirements of modern EDA tools. Following the existing research 

results [19], [21], [23], [34], [37], [41], [42], we identify four additional exploratory 

requirements namely: (i) scalability, (ii) reduced analytical expertise, (iii) user-

engagement, and (iv) interpretability. Figure 3.2 summarizes the relations between 

the identified challenges and the additional exploratory requirements. 

As shown in Figure 3.2, researchers such as Najafabadi et al. [38] and Chan et al. 

[19] have associated the aspects of high-dimensionality, and large scale of data 

points to the scalability requirements of EDA tools. The reason being, both the 

aspects refer to the size and complexity of a dataset [23], [37], [42], and hence 

signify the necessity for scalability in EDA tools. According to Wang et al. [34], in 

the absence to support for scalability, a tool cannot be used for analyzing large 

industrial datasets. Hence, we consider scalability as our first additional exploratory 

requirement. Moreover, according to Tufféry et al. [1], the analysis of categorical 

attributes and multivariate relationships among attributes can require significant 

analytical expertise. Hence, based on existing research [34], [38] reduced analytical 

expertise is chosen as our next requirement for EDA tools. Researchers [26], [34] 

have also shown that, whilst the results of multivariate analysis can be challenging 

to interpret, the presence of poor data sanity, anonymity, missing values, and 
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outliers require additional support for interpretability from EDA tools. Finally, in 

order to rectify the sanity issues of large datasets, EDA tools need enable user 

engagement [34], [38], [39] in the form of user feedback. 

3.2.2 Survey of Exploratory Data Analysis Tools 

In this section, we present the results of our systematic literature review that 

answers our research question RQ4 (cf. Section 3.1.1). We begin this section with 

the evaluation results of the chosen EDA tools for their ability to assist with the 

EDA process [1]. Later, we discuss our findings on the tools’ fulfillment of the 

additional exploratory requirements for large scale EDA (cf. Section 3.2.1).  

3.2.2.1 Support for Traditional EDA Process Steps 

According to Tufféry et al. [1]  and Demiralp et al. [26], the EDA process usually 

follows six distinct steps (cf. Figure 3.3) namely: (i) Distinguish Attributes, (ii) 

Univariate Data Analysis, (iii) Detect Interactions Among Attributes, (iv) Detect 

Missing & Aberrant Values, (v) Detect Outliers, and (vi) Feature Engineering. As 

shown in Figure 3.3, the analysis begins with identification of attributes in a dataset 

that gives a clear understanding of the data to be analyzed. Next, in order to 

understand individual attributes and their relationships with each other, univariate, 

bivariate, and multivariate analyses are performed. Later, cleaning and data 

preparation tasks are carried out, where missing, aberrant values and outliers [24] 

are detected and imputed. The process ends with feature engineering, where 

 

Figure 3.2: Elicitation of Additional Exploratory Requirements for Large Scale EDA 

Tools 
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features are transformed or combined to generate new features. We summarize our 

analysis results in Table 3.1. 

i. Distinguish Attributes: Exploratory data analysis begins with 

identification of the attributes in a dataset. This is an essential step at the 

beginning of the EDA process that not only helps with the “Cold-start” [2], 

[20] problem of data analysis, but it also assists users to formulate clear 

analysis goals. According to researchers [3], datasets commonly have 

numerical (or quantitative) or categorical (or qualitative) attributes [1]. 

However, not all statistical analysis techniques can be applied to all the 

attributes in a dataset [56]. Hence, it is important for data analysts to clearly 

distinguish and understand the meaning of each attribute in a dataset prior 

to analyzing the data. 

Most existing commercial data visualization tools such as Microsoft Power 

BI [48] and IBM Watson Analytics [20], show the entire dataset in a tabular 

format and allow users to see and modify the data in terms of attribute 

 

Figure 3.3: Fundamental Steps of the Exploratory Data Analysis Process 
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Table 3.1: Summary of Investigated Exploratory Data Analysis Tools 

Note: In the following table ‘y’ represents ‘supports the operation’ and blank spaces 

represent the opposite. In case of commercial tools1: GA – Gold Award, SA – Silver Award, 

BA – Bronze Award, HM – Honorary Mention 
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DataScope (Iyer, 2017) 2018 y y y 
   

y y 
   

2 DataSite (Cui, 2018) 2018 
 

y y 
     

y y 
 

3 Duet (Law, 2018) 2018 y y y 
 

y 
   

y y 
 

4 FastMatch (Macke, 2018) 2018 
 

y 
     

y 
   

5 InfoNice (Wang Y. Z., 2018) 2018 
 

y y 
   

y 
   

y 

6 Keshif (Yalcin, 2016) 2018 y y y y 
  

y y 
   

7 NorthStar (Kraska, 2014) 2018 y y y y y y y y 
 

y 
 

8 Podium (Wall, 2018) 2018 y y y y 
 

y y 
   

y 

9 RCLens (Lin, 2018) 2018 y y y y 
 

y y 
  

y 
 

10 Taco (Niederer, 2018) 2018 
 

y 
     

y 
   

11 Taggle (Furmanova, 2017) 2018 
 

y y 
 

y 
 

y 
   

y 

12 VisComposer (Mei, 2018) 2018 y y y 
   

y 
   

y 

13 Voder (Srinivasan, 2018) 2018 
 

y y 
  

y y y 
 

y y 

14 Zenvisage (Siddiqui, 2016) 2018 y y y 
   

y 
  

y y 

15 Analyza (Dhamdhere, 2017) 2017 y y y y 
  

y y 
 

y y 

16 ChartAccent (Ren D. B., 

2017) 

2017 
 

y y 
   

y 
 

y 
  

17 ForeSight (Demiralp, 2017) 2017 y y y 
  

y y y y y y 

18 GaussianCubes (Wang Z. F., 

2017) 

2017 y y y y y 
 

y y 
   

19 HindSight (Feng, 2017) 2017 
 

y y 
   

y y 
  

y 

20 MyBrush (Koytek, 2017) 2017 
 

y y 
 

y y y 
    

21 VisFlow (Yu, 2017) 2017 
 

y y y 
 

y y y y 
 

y 

22 Voyager 2 

(Wongsuphasawat, 2017) 

2017 y y y y 
 

y y 
  

y y 

23 AggreSet (Yalcin, 2016) 2016 
 

y y 
    

y 
  

y 

24 DimScanner (Xia, 2016) 2016 y y y y 
  

y y 
   

 
1
 https://www.gartner.com/reviews/customer-choice-awards/analytics-business-intelligence-platforms 
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ForeCache (Battle, 2016) 2016  y y y   y y  y y 

26 VisTrees (El-Hindi, 2016) 2016  y y    y y    

27 SeeDB (Vartak, 2015) 2015 y y y y  y y y y y y 

28 Sketch (Budiu, 2015) 2015 
 

y y 
   

y y 
   

29 Bertifier (Perin, 2014) 2014 y y y 
  

y 
 

y 
   

30 Domino (Gratzl S. G., 2014) 2014 y y y y y 
 

y y 
   

31 Ellipsis (Satyanarayan, 2014) 2014 
 

y y 
   

y 
   

y 

32 iVisDesigner (Ren D. H., 

2014) 

2014 
 

y y 
  

y y 
    

33 Lyra (Satyanarayan, 2014) 2014 y y y 
   

y 
    

34 PanoramicData (Zgraggen, 

2014) 

2014 y y y 
   

y 
   

y 

35 Progressive Insights (Stolper, 

2014) 

2014 
 

y y y 
  

y y 
   

36 UpSet (Lex, 2014) 2014 
 

y y 
    

y 
   

37 ExPlates (Javed, 2013) 2013 y y y y 
  

y 
   

y 

38 imMens (Liu, 2013) 2013 
 

y y y 
 

y 
 

y 
   

39 LineUp (Gratzl S. L., 2013) 2013 
 

y y y y y y y 
  

y 

40 PivotSlice (Zhao, 2013) 2013 y y y y 
  

y 
    

41 SketchStory (Lee, 2013) 2013 
 

y y 
   

y 
  

y y 

42 VisDeck (Perry, 2013) 2013 
 

y y 
      

y y 

43 VisReduce (Im, 2013) 2013 
 

y y 
   

y y 
  

y 

44 
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Alteryx (Sallam, 2014) GA y y y y y y y y 
 

y y 

45 Tableau (Tableau, n.d.) SA y y y y y y y y 
 

y y 

46 Domo (Domo, n.d.) BA y y y y 
     

y y 

47 Watson Analytics (Kelly, 

2015) 

HM y y y y y y y y y y y 

48 MS Power BI (Corp., n.d.) HM y y y y y y y y 
 

y 
 

49 QlikView (QlikView, n.d.) HM y y y 
   

y 
   

y 

50 Sisence (Sisense, n.d.) HM y y y y 
  

y y 
 

y y 
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names, attribute values, and data types. Among academic EDA tools, while 

some tools such as Keshif [57], Explates [28], NorthStar [6], DimScanner 

[58], and Analyza [59] present only a list of attribute names to the user, tools 

such as Podium [60], ForeSight [26] and Bertifier [61] present a portion of 

data in tabular format at the beginning of the analysis process. On the other 

hand, tools such as Voyager 2 [30], Taggle [44], Zenvisage [62], and 

LineUp [63] provide visual overviews of all attributes immediately at the 

beginning of the analysis. In most cases [30], [44], [59], [60], an initial 

summary uses a variety of interactive histograms to present an overview of 

each attribute. For example, Figure 3.4 shows a snapshot of the tool 

Voyager 2 [30], where the parts (a) and (c) are relevant to distinguishing 

attributes. In the figure, the section marked by (a) gives an example of 

distinguishing attributes at the beginning of the analysis process. Whereas, 

the section (c) depicts the visual summaries of each attribute. 

 

Figure 3.4: Dashboard of the Tool Voyager 2 (Wongsuphasawat et al. [30]) 

Note: (a) the dashboard shows the names of attributes while dividing them in categories 

such as quantitative, categorical and temporal. (b) the panel assists with bivariate and 

multivariate analysis by allowing users to choose filters and embellishments. (c) the panel 

shows univariate summaries of all attributes. 

a

b

c
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Moreover, some existing EDA tools [64] provide more detailed summaries 

of attributes. For example, while the tool Domino [9] summarizes attribute 

information such as datatypes, number of records, and dimensions, Taggle 

[44] provides a short description of the dataset with an HTML link to the 

data source. Among the commercial EDA tools, Domo [49] provides a brief 

summary of datatypes and groups attributes based on their types. On the 

other hand, some data exploration tools such as, Taco [45], [65] and Domino 

[9] do not describe any attributes in the dataset at all, and begin with 

complex data exploration tasks (e.g., join, merge, aggregate etc.) right after 

the data is loaded. 

ii. Univariate Data Analysis: Once the attributes in a dataset are identified, it 

is necessary to perform univariate analysis [1] in order to get a deeper 

understanding of each attribute. Univariate analysis also allows the 

determination of attribute combinations for subsequent analysis. It helps 

with detection of details such as: centrality (i.e., mean, median, and mode) 

and dispersion (i.e., range, variance, standard deviation, skewness, and 

kurtosis) of attributes in the data. While the centrality measures help us 

determine an approximate average for the attribute values, the dispersion 

measures help us identify the spread of the value between its lowest and 

highest bounds. Univariate analysis is also used to identify missing values 

or outliers in a dataset and to discretize continuous variables [1], [66]. 

Most recent advancements in data exploration tools facilitate univariate data 

analysis. Typically, in both academic and commercial tools [26], [57], 

interactive histograms and boxplots are used to depict value distributions of 

the variables. For example, as shown in the part (c) of Figure 3.4, the tool 

Voyager 2 uses interactive histograms to depict the value distributions of 

the attributes. Additionally, commercial EDA tools such as IBM Watson 

Analytics [67], [68], Microsoft Power BI [48], QlikView [50], Alteryx [52], 

and academic tools such as Voyager 2 [30], DataSite [2], Northstar [6], and 

ForeSight [26], let users choose from a set of optional visual representations 
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(such as, heat-maps, pie-charts, line-graphs etc.) and in some cases visual 

embellishments [69] (such as, color, texture etc.) to better analyze each 

attribute. For example, as depicted in the part (b) of Figure 3.4, Voyager 2 

allows users to select details such as shape, size, color etc. for the 

visualizations. In most cases, modern visualization tools such as Keshif [4], 

NorthStar [6], Voder [24], Tableau [47] allow end-users to interactively 

brush [4], [25], hover [4], [70], and zoom [9], [21], [71] on the 

visualizations. While, aggregation [44] of feature values is one of the most 

common ways [1] of performing univariate analysis, most EDA tools also 

support sorting and filtering [45], [71], [72] of attribute values. 

iii. Detect Interactions Among Attributes: After the univariate analysis of 

each attribute, the next step is to understand the relationships among 

different attributes in the dataset. This not only helps to identify 

incompatibilities among attribute values, but it also enables analysts to 

generate optimal feature combinations [6], [49] for future analysis. Analysis 

of attribute relationships can be performed in two different ways: bivariate 

and multivariate statistics [1]. Whereas, bivariate statistics only analyses the 

association of a chosen pair of attributes, the intersection of more than two 

variables are analyzed using multivariate statistics. As per Tufféry et al. [1], 

bivariate analysis needs to be performed prior to multivariate analysis. This 

way, once the users have a clear idea of the compatibility of an attribute 

pair, they can combine more attributes with them, for further analysis. 

a. Bivariate Statistics: In modern EDA tools, interactive filtering and 

aggregation of attributes are the most common ways [5], [8], [24], 

[47], [57], [67], [73] of performing a combined analysis of two 

attributes. Typically, the vast majority of all the exploratory data 

visualization tools perform bivariate data analysis. In some tools 

(e.g., Voder [24], Taggle [44], Domino [9], MyBrush [69], 

DataScope [42], ForeSight [26]), filtered and aggregated attribute 

values are usually obtained by interactive brush-and-link [8], [31] 
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operations and are presented using highlighted and interactive 

histograms [8], [44], [45], [74]. These histograms use different 

colors and/or textures to represent correlations among attributes. 

Moreover, tools like Keshif [4] allow users to lock histograms of 

specific variables and compare them to other variables. Figure 3.5 

shows a snapshot of both univariate and bivariate analysis using 

Keshif. Whereas, part (a) in Figure 3.5 presents individual attributes 

in groups based on their datatype, the upper half of part (b) depicts 

bivariate relationships among attributes using overlapped and 

locked histograms, and part (c) shows univariate analysis with filter 

operation. 

Some tools perform different variations of the brush-and-link 

operations in order to correlate attributes. For example, VisTrees [5] 

requires users to explicitly link two attributes prior to performing the 

brush and filter operations. VisFlow [8] makes users select two 

 

Figure 3.5: Dashboard of the Tool Keshif (Yalçın et al. [4]) 

Note: (a) Keshif enlists the attributes in the dataset in groups such as categorical, 

quantitative, time-series data. (b) For bivariate and multivariate analysis Keshif allows 

users to lock histograms of up to three attributes. (c) Attribute relationships are also shown 

on visual representations that allow users to switch to different visuals and/or filter the 

data. 

a

b

c
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attributes and pass them through a binder component before the 

brush and filter operations can be performed. NorthStar [6] links the 

two attributes and creates a scatter plot that shows the correlations 

among a pair of attributes. The tool MyBrush [69] on the other hand, 

focuses entirely on brushing and linking attributes. It provides a 

unified interface for interactively configuring different components 

of the brush-and-link operation namely: source, link, and target. 

Some tools such as PanoramicData [25], Tableau [47], iVisDesigner 

[70], Voder [24], DataSite [2], IBM Watson Analytics [20], [67] 

allow users to compose different visuals (such as, scatter-plots and 

pie-charts) other than just histograms to perform bivariate data 

analysis. Tools such as Tableau [47], IBM Watson Analytics [68], 

Alteryx [52] also enable users to perform join operations on multiple 

related tables in the same database.  

Some EDA tools [8], [21], [44], [75] analyze horizontal subsets of 

data. These subsets are often created either based on user-driven 

selections [44], or algorithmic analysis [21]. Horizontal data subsets 

are used in many different visualization tools to achieve different 

goals. For example, whereas FastMatch [74] uses subset sampling 

to analyze the histograms of all attributes in a dataset and finds the 

top-k similar histograms among them. Taggle [44] allows end-users 

to create hierarchical aggregations of data subsets in order to create 

nested attributes. Domino [9], on the other hand, describes data 

subsets as ‘blocks’ and depicts relationships (e.g., strong or weak) 

among the blocks. Duet [72] makes use of data subsets to perform 

pairwise comparison among tabular data. Figure 3.6 depicts an 

example of bivariate analysis using the tool Domino [9], where the 

relationships between data subsets are presented by parallel 

coordinates and scatter plots. 
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b. Multivariate Statistics: Once a pair of relevant attributes in a 

dataset are analyzed, the next step is to perform a deeper 

investigation, where more attributes are added with the analyzed pair 

for a combined exploration. Research [1] shows that analysis of the 

correlation among more than two attributes is a complex and time-

consuming task, that can only be achieved by factor analysis 

techniques such as clustering [61] and dimensionality reduction [2]. 

As a result, in order to avoid the complexity of visualizing the results 

of factor analysis, most of the modern EDA tools depict 

relationships among multiple attributes using group and filter 

operations. For example, in cases of tools such as PanoramicData 

[25], Keshif [4], iVisDesigner [70], bivariate histograms and scatter 

plots are filtered using one or more attributes to show the 

relationships among all these features. An example of multivariate 

analysis using 2-dimensional histograms is presented in Figure 3.5 

(i.e., the lower half of the part (b)), where three histograms of 

different colors are used to compare the values of three different 

attributes. 

Nevertheless, despite of the complexity of multivariate statistics, 

some of the analyzed EDA tools implement factor analysis tasks. 

 

Figure 3.6: Domino (cf. Gratzl et al. Fig. 1 [9]) showing the relationship between data 

subsets using parallel coordinates and scatter plots 
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For example, PivotSlice [7] uses multi- dimensional query 

mechanisms to generate faceted exploratory visualizations; and 

VisTrees [5] allows users to create multi-dimensional indexes in 

order to combine feature subsets with each other. Moreover, tools 

such as GaussianCube [23], imMens [21], Podium [60] and LineUp 

[63] enhanced the scalability of EDA process with the use of 

dimensionality reduction [2] techniques. For example, imMens 

generates data cubes [21] from the binned aggregation of data that 

is further transformed into multi-variate data tiles; whereas 

GaussianCube [23] improves on imMens by precomputing the best 

multivariate Gaussian distribution among attributes. On the other 

hand, LineUp [63] and Podium [60] make use of multi-attribute 

rankings based on attribute combinations. Finally, using multi-

attribute ranking, LineUp [63] allows end-users to alter attribute 

combinations or column rankings to compare the differences in the 

relationships. 

iv. Detect Aberrant & Missing Values: Aberrant and missing values may 

result in biased analysis of data [1]. Aberrant values are erroneous values 

which occur as a result of incorrect user inputs or calculation errors, whilst 

missing values occur in a dataset during data extraction and/or data 

collection. Detection of such values in a dataset usually happens right after 

multivariate analysis, when the user has a clear idea about the value ranges 

of the attributes and their compatibilities. In case of a large dataset, the 

search for missing and aberrant values begins when any abnormality is 

noticed in the univariate, bivariate, or multivariate visualizations. Once 

data-points with aberrant or missing values are detected, usually the first 

action of the data analysts is to remove these data points [1]. However, 

removing data-points can have its own consequences. Firstly, there can be 

a large number of data-points for which at least one attribute value is 

missing. Secondly, the dataset might have special significance for the data-
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points with missing values. Hence, removal of observations with missing 

and/or aberrant values can add further bias into the analysis. According to 

Tufféry et al. [1], alternatives to deletion of records with missing values are: 

to perform value imputations, or to include the data with missing values in 

the analysis with a known margin of error. Imputations of missing values 

can either be user driven [1] or automatically performed with the help of 

predictive models [14]. 

Although, some tools such as Keshif [4] and AggreSet [57] allow the user 

to temporarily remove some attributes from analysis, except for a few tools 

such as IBM Watson Analytics [20], GaussianCubes [23], and MyBrush 

[69] most of the analyzed tools do not allow users to detect or modify 

aberrant values in the dataset. Tools such as Podium [60], ForeSight [26] 

(cf. Figure 3.7), and Bertifier [61] allow users to visualize missing values in 

the data in tabular format, however, these tools require users to manually 

scroll through the entire table in order to identify the missing values. Despite 

scalability challenges, these tools allow users to perform user driven 

imputations on the missing values. None among our analyzed the tools 

perform any automatic imputation of missing or faulty data. 

v. Detect Outliers: The detection of outliers usually happens during or after 

the univariate, bivariate, or multivariate analysis. An outlier is an 

observation that deviates further away [1] from other observations in the 

dataset. Like aberrant values, outliers can also add bias to the analysis 

leading to misinterpretation of attribute properties. According to researchers 

[76], outliers in a dataset can be primarily of three types namely: univariate, 

bivariate, and multivariate outliers. Therefore, usually after multivariate 

analysis and detection of aberrant values, users focus on the detection of 

outliers. While univariate outliers can be detected by calculation of the 

Inter-Quartile Range (IQR) [56] of individual variables, to detect bivariate 

and multivariate outliers, analysts need to inspect correlations among 

different attributes. For example, bivariate outliers can be detected using 
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combining two attributes and calculating their correlation coefficient [26], 

whereas multivariate outliers can be detected using factor analysis [1]. The 

complexity of visualization of outliers in a dataset also depends on the type 

of outlier. Whilst, univariate and bivariate outliers can be easily depicted 

using boxplots, interactive histograms and scatter plots [6], it is often 

challenging for visual EDA tools to depict multivariate outliers. Figure 3.7 

shows an example of the tool ForeSight [26], where the detection of 

univariate and bivariate outliers is depicted in parts (b) and (c) respectively. 

As per our analysis, some of the modern EDA tools such Inflow [8], 

ForeSight [26] (cf. Figure 3.7), Podium [60], RCLens [77], DimScanner 

[58], HindSight [78], and IBM Watson Analytics [67], allow their users to 

detect univariate and bivariate outliers in a dataset. Just like the missing and 

aberrant values, once the outliers in a dataset are detected, they can be 

rectified by either removing the observations, performing automatic or user-

driven imputations, or transformation of variables [9], [44]. 

vi. Feature Engineering: Finally, after obtaining detailed insights about the 

dataset, as the last step of the EDA process feature engineering is carried 

 

Figure 3.7: Dashboard of ForeSight (cf. Demiralp et al. – Fig. 1 [26]) 
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out. Feature engineering is a core step of exploratory data visualization [1] 

that is performed by almost all EDA tools [2], [5], [6], [57]. It is primarily 

divided into two parts: variable creation and transformation. The creation of 

derived variables often happens to ease the data analysis process. Derived 

variables not only summarize linear relationships among many attributes, 

but they also help to simplify the understanding of complex attributes in the 

dataset. Variable transformations convert complex non-linear relationships 

into linear relationships; and standardize values to obtain a better 

understanding. Normalization [1] is a type of variable transformation that 

helps to convert skewed distributions into more symmetric distributions. 

Among the tools we analyzed, FastMatch [74] identifies similarities 

between different distributions by comparing the relative values. Most 

visualization tools, such as Keshif [4], NorthStar [6], Voyager 2 [30] use 

binning or categorization strategies to split up continuous variables into 

categories. This operation is known as discretization [1]. Nevertheless, none 

of the analyzed tools propose any mechanism to analyze the error [66] added 

by the discretization tasks in the EDA process. 

3.2.2.2 Support for Additional Exploratory Requirements 

In this section, we present our evaluation of each of the analyzed tools with respect 

to their fulfilment of the four additional exploratory requirements (cf. Section 

3.2.1). For each requirement, we discuss the different ways each of the analyzed 

tools have addressed this requirement. We summarize the results of our analysis as 

follows: 

i. Scalability: Scalability of exploratory visualization tools primarily has two 

aspects: firstly, loading the entire dataset into the main memory, secondly, 

processing the data and producing visual representations of the attribute 

relationships (i.e., the response time of the tool). In the case of academic 

tools, researchers have attempted to address both of these aspects. For 

example, in order to address the challenge of a large set of raw data that 
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does not fit into main memory, tools like ForeCache [22] use a client-server 

architecture, where a middleware layer fetches portions of data ahead in 

time based on the analysis history of the user. On the other hand, EDA tools 

make use of several different techniques to assist with the response time for 

processing very large datasets. For example, tools such as 

ProgressiveInsights [79], NorthStar [6], and VisReduce [41] progressively 

create incremental visual representations of the data and provide 

incremental updates to notify the user of the wait time. Alternatively, tools 

such as ForeSight [26] and ProgressiveInsights [79] provide approximate 

visualizations with a known boundary of error. Other tools make use of 

creating subsets from the data in on order to achieve scalability. For 

example, tools such as Taggle [44], Domino [9], GaussianCubes [23], 

FastMatch [74] and imMens [21] make use of horizontal data subsets for 

this purpose. In case of commercial tools, almost all the EDA tools [47], 

[51], [52] analyzed during this work, support highly scalable analytics. 

With respect to the scalability of the tools in each step of the EDA process; 

only a few tools [6], [23], [26], [59] focus on distinguishing attributes. For 

example, tools such as ForeSight [26] and Microsoft Power BI [48] present 

attribute names in a tabular form, and the tools such as NorthStar [6], 

Tableau [47], and Domino [9] group attributes into categories. Scalability 

in univariate and bivariate analysis is supported by most EDA tools that 

allow large scale analysis. For this purpose, the tools such as 

ProgressiveInsights [79], NorthStar [6], and VisReduce [41] constantly 

refine partially loaded univariate and bivariate analysis charts of attributes. 

Moreover, to provide support for scalable multivariate analysis, tools such 

as imMens [21], and GaussianCubes [23] precompute multivariate data 

tiles. On the other hand, scalable identification of missing, aberrant values, 

and outliers is supported by some EDA tools [6], [9], [23], [63]. Whilst in 

most cases [6], [24], the outliers are presented using graphical 

representations such as box-plots or scatter plots, the missing values are 
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presented either in tabular form [6] or using visual encodings [44]. Finally, 

the scalability of feature engineering [1] depends on the scalability of 

univariate and bivariate analysis in the analyzed EDA tools. 

ii. Reduced Analytical Expertise: In order to help non-expert users to explore 

data, researchers [2], [26], [30] have proposed proactive visual 

recommender systems that can ease the learning curve for novice users. 

During this study, we noticed three different types of recommendations: (i) 

recommendation of charts [46], (ii) recommendation of actions [2], and (iii) 

recommendation of questions [68]. Among these, recommendation of charts 

is the most common and is offered by many tools such as SeeDB [46], 

Voyager 2 [30], VizDeck [80], Tableau [47], Analyza [59], Alteryx [52], 

Microsoft Power BI [48], among others. Recommendation of action is less 

common; however, it is offered by tools such as DataSite [2] and ForeSight 

[26] that suggest users with subsequent steps of analysis. Recommendation 

of possible questions that can be asked from data is offered by Voder [24] 

(cf. Figure 3.8) and IBM Watson Analytics [68] that performs natural-

language-processing for the task. Apart from proactive recommendations, 

tools such Zenvisage [62] automatically search for user specified patterns 

in data; while the tool SketchStory [27] (cf. Figure 3.9(b)) identifies specific 

partial sketches drawn on the user interface using a digital pen, and 

automatically completes the graphical representation. Moreover, tools such 

as Lyra [81] and iVisDesigner [70] facilitate users to explore data without 

any programming knowledge. 

To reduce the required analytical expertise in each step of the EDA process, 

tools such as Voyager2 [30] and ForeSight [26] proactively provide visual 

summaries to distinguish attributes; whereas, the tool Analyza [59] guides 

users through the data discovery (i.e., distinguish attributes and univariate 

analysis) and the detection of relations between attributes (i.e., bivariate and 

multivariate analysis). Moreover, the proactive chart recommendations by 

some academic [30], [46], [59], [80] and commercial tools [47], [48], [52] 
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also help with univariate and bivariate analysis. Nevertheless, we noticed a 

lack of proactive guidance for multivariate analysis among the EDA tools. 

For the identification of outliers, tools such as ForeSight [26], RCLens [77], 

Voyager2 [30], and SeeDB [46] proactively highlight apparently abnormal 

values in the dataset. With the help of a live keyword search, some tools [7], 

[24] allow the user to impute missing and aberrant data. For assistance with 

feature engineering, some tools [20], [26] proactively recommend feature 

combinations and derivations of new features. 

iii. User Engagement: In recent years, visual EDA tools are used in different 

domains to make informed decisions from data. Hence, in order to enhance 

the users’ trust on the visual representations provided by these EDA tools, 

researchers have proposed several mechanisms to engage end-users. For 

example, tools such as NorthStar [6], PanoramicData [25], SketchStory 

[27], and ExPlates [28] use interactive pen and touch features of the 

 

Figure 3.8: Explore view of the interface of the tool Voder (cf. Srinivasan et al. - Fig. 4 

[24]) 

Note: (A) shows specification of visualization, (B) shows active visualization, (C) 

automatically generated data facts, (D) starred data facts about the current visualization, 

(E) System generated visuals for other data facts that can be explored, (F) Query panel 

for data facts, (G) possible visualizations for the chosen attributes. 
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graphical user interface to engage users. Other tools such as LineUp [63], 

Voder [24], Duet [72], RCLens [77], ForeSight [26], InfoNice [82] (cf. 

Figure 3.9(a)) allow users to provide feedback on the visual representations, 

embellishments, and proactive recommendations. Additionally, tools such 

as ExPlates [28], Voyager [83], ForeCache [22], and HindSight [78] allow 

users to see a history of the performed analysis tasks, so that not only undo 

operations can be permitted but also the new EDA results can be compared 

with previously obtained results. Finally, tools like Voder [24] (cf. Figure 

3.8) and PivotSlice [7] allow users to execute live search operations on the 

data that produce transformed or derived results. 

In these EDA tools, user engagement with the EDA process usually starts 

from the very beginning of the analysis. For example, the drag and drop 

feature in NorthStar [6], PanoramicData [25], and SketchStory [27] engages 

users in distinguishing attributes and performing univariate, bivariate, and 

multivariate analysis. This feature lets users combine two or more attributes 

together simply by drawing a line between them. On the other hand, the 

interactive feedback allowed by Duet [72], RCLens [77], ForeSight [26] 

engages users in the detection and imputation of outliers and missing data. 

For engagement with feature engineering [20], showing historical 

interactions from users assists with more informed decision making. 

iv. Interpretability: Due to the large volume of data being analyzed, 

visualizations showing inter-relations among attributes can be difficult to 

interpret. In order to assist with this challenge, recent visual EDA tools 

attempt to help users with interpretations of the generated visualizations. 

For example, tools such as Voder [24], DataSite [2], ExPlates [28], Ellipsis 

[29], and ChartAccent [84] present users with natural language annotations 

alongside the visualizations. These annotations discuss details such as the 

distribution, value range, and most common values of an attribute. 

However, for the tools that we analyzed, comprehensive annotations are 

only offered for univariate [72], bivariate [26], and multivariate [46] 
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analysis. Whereas, the other steps of the EDA process such as distinguishing 

attributes, and identification of missing values and outliers are rarely 

addressed by the interpretable EDA tools. 

3.3 Research Opportunities 

The results of our analysis show that based on changes in data analysis requirements 

[3], modern EDA tools have included support for some additional features (e.g., 

scalability, interpretability etc.). However, we have identified some potential 

research opportunities that can enhance the abilities of visual EDA tools. We 

believe, in order to make informed decisions from data, deeper statistical analysis 

is required to understand the complex relationships among its attributes. Our 

analysis shows, the trade-off between the breadth and depth of supported operations 

in the visual EDA tools still remains open. Whereas, most EDA tools designed for 

a generic target audience do not perform complex statistical analysis of data, tools 

that support such operations are either domain specific or are challenging to 

interpret. Hence, we identify and list a set of potential research opportunities in the 

domain of exploratory data analysis as follows. 

i. Detailed Analysis and Visualization of Bivariate & Multivariate 

Statistics: In statistical analysis, the strength of a bivariate relationship 

  

Figure 3.9: User Engagement initiatives: (a) On the left tool InfoNice (cf. Wang et al. 
Fig. 7 [69]) allows users to customize traditional visualizations. (b) On the right tool 

SketchStory (cf. Lee et al. Fig. 5 [27] ) autocompletes the visuals based on sketches of 

the users. 
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between two attributes is usually obtained using correlation coefficients 

[56]. On the other hand, for accurate multivariate analytics, factor analysis 

(e.g., PCA [85]) techniques are used. However, the visualization of the 

results for these statistical tests can be complicated [33] for non-expert 

users. Currently, most of our analyzed visual EDA tools only perform 

brush-link and filter operations to show correlations among attributes. 

Although some tools [23] do perform dimensionality reduction of attributes, 

the reduced dimensions are not depicted in a comprehensive way [75]. 

Hence, there is a need for visual EDA tools to perform more complex 

statistical analysis (e.g., performing factor analysis for multivariate 

attributes instead of brush-link and filter) and to provide more 

comprehensive visualizations of the results. Additionally, during our 

analysis we also noticed that although some of the investigated EDA tools 

[24] allow users to visualize univariate and bivariate outliers, identification 

and visualization of multivariate outliers is still not performed by any tool. 

Moreover, the tools that detect outliers in data do not support any automated 

imputation of these values. It is important for researchers to consider 

automated strategies for outlier imputation in visual EDA tools. 

ii. Advanced Discretization of Continuous Variables: Almost all the tools 

that were investigated during this work perform discretization [1] of 

continuous variables. Discretization is a process where continuous variables 

are split into bins or categories based on ranges in their values. Research 

[66] shows that the task of discretization can add error in data analysis as 

the selection of optimal bin-value ranges for continuous variables is often 

challenging. Our analysis shows, although most of the recent visual EDA 

tools discretize continuous variables into histograms, none of our analyzed 

tools consider any error or confidence [66] of the discretization process. 

Hence, more research is required that considers minimizing the 

discretization error in order to perform a more accurate analysis. Moreover, 

some values of a continuous variable might have higher importance than 
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some other values of the same variable. There is a need for EDA tools to 

accommodate this fact. Although some tools [26], [60] support weighing 

attributes values based on their importance, there is a need for further 

research in this direction. 

iii. Proactive Guidance for Multivariate Relationships: As discussed in 

Section 3.2.1, in high-dimensional industrial datasets there can be complex 

multivariate relationships among attributes that would require much 

analytical expertise to understand. Moreover, in case of datasets with large 

number of attributes, it can be immensely challenging to identify the 

features that are related together and influence each other. During our 

analysis, we noticed a significant gap in EDA tools with respect to proactive 

grouping and depiction of related attributes in the data. Although some tools 

such as Microsoft Power BI [48][48] visualizes the relationships among 

different data-sources using entity-relationship diagrams, none of the 

analyzed EDA tools perform any proactive grouping among the related 

attributes (apart from grouping them with respect to their data types [24]). 

iv. Scalability Vs. Data Visualization: Scalability of visual EDA systems is a 

known challenge [3]. In order to deal with this challenge, many of our 

analyzed EDA tools [6], [9], [22], [44] have suggested several scalability 

measures that can visualize billions of records within an acceptable time 

limit. Nevertheless, the concern of scalable visual analysis is twofold: 

firstly, despite of several existing visualization approaches, the reduced 

dimensions of a dataset are difficult to interpret. Secondly, the number of 

data points to display is often much larger than the number of pixels 

available in one screen [3]. Researchers have proposed the use of data 

reduction techniques such as filtering, aggregation, sampling, and clustering 

in order to address the challenges. However, whilst data reduction 

techniques can solve visual scalability challenges, they can induce 

additional error in the analysis process. Moreover, outputs of data reduction 

tasks such as binned aggregation of data [21], or data split into data cubes 
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[23] are difficult to visually interpret. Hence, there is a need for researchers 

to investigate more comprehensive visual techniques for data reduction. 

3.4 Limitations and Future Work 

In this section, we enlist a set of limitations of this research, that provides 

opportunities for future work. First of all, in this chapter, we perform a 

comprehensive review of visual EDA tools based on a selection of 43 academic and 

7 commercial tools used for general purpose data analysis. Although, we precisely 

define and justify our selection criteria (cf. Section 3.1), many existing visual EDA 

tools were excluded. In order to avoid any biases in the selection criteria, we 

performed data source triangulation [86], where the selected tools were chosen from 

both academia and industry. Moreover, the academic tools were selected from 

multiple reputed journals and conferences.  Nevertheless, as the analysis of each 

and every existing EDA tool is beyond the capacity of any individual research 

article, we had to limit the scope of this research. Future work needs to focus on 

extending our study and include more tools in the analysis. 

Moreover, apart from the utility for the analyzed tools in each step of the EDA 

process, we also evaluated the tools for the extent to which they meet the list of 

additional exploratory requirements (cf. Section 3.2.1) for analyzing large industrial 

datasets. To elicit these additional requirements, we mapped the identified 

challenging aspects (cf. Section 3.2.1) of our analyzed industrial dataset to the 

known big-data analysis requirements [19], [21], [23], [34], [37], [41], [42]. In 

order to add more exploratory requirements in the evaluation of EDA tools, future 

work could perform a cross-sectional study [86] across industry and academia to 

identify more requirements for large scale EDA. Finally, researcher bias [86] is a 

known challenge [35] in systematic literature reviews. To avoid any kind of 

researcher biases, in this study a group of two researchers independently performed 

all the data analysis tasks. In case of conflicts among these two researchers, a third 

researcher stepped in to alleviate the disagreements. Nevertheless, in future 

investigator triangulation [86] could be performed, where researchers from both 
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industry and academia could collaboratively explore the utilities of different EDA 

tools, to generalize the decisions made during this research even further. 

3.5 Related Work 

Identification of the state-of-the-art in exploratory data visualization is a well-

researched area [16], [35], [36], [55]. However, a common challenge with such 

research is that with every new advancement in the research community, the work 

gets outdated quickly. Visual analysis of data is a large umbrella that spreads over 

several different perspectives and applications of data analysis. Numerous surveys 

exist that focus on identification of visualization libraries [32], packages [34], and 

tools [33]. For example, whereas, surveys [87] on visual data mining tools are 

commonly published within research community, surveys [19] also exist that focus 

on presenting multivariate data visualization techniques. Moreover, many surveys 

have been performed on tools and techniques used to analyze big data [34], [37]. 

However, most of these surveys focus on specific aspects of big data analysis, such 

as indexing techniques for big data, or visualization of high-dimensional [33], [53] 

data. Among these, some of the surveys [35] focus on the advancements only in 

commercial data analysis tools. Also, other surveys [88] have looked into 

visualization recommender systems. However, in most cases, the state-of-the-art 

surveys for visualization tools focus on applications of the visualization. For 

example, surveys exist that present visualization of biological data [10], or visual 

sentiment analysis tools [86], or visualization of meteorological data [11]. In recent 

years, researchers have been focusing on combinations of visualization techniques 

and machine learning models [12] to enhance interpretability of the machine 

learning process [12]. Surveys presented by Liu et al. [14] and Endert et al. [12] 

focus on techniques that are used to integrate machine learning and visual analytics 

together. Several surveys [13] have been performed by researchers that classify 

visualization tools based on their utilities with respect to data analysis steps for 

various purposes [55]. However, unlike existing surveys on visualization tools, this 

work focuses on 50 visual EDA tools that are used for exploration of tabular data 
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and were developed within the last 5 years. Our novel analysis classifies the existing 

tools for their abilities to assist with each steps of exploratory visualization of large 

industrial data. 

3.6 Conclusions 

In this research, we identify the primary focus areas of visually exploring industrial 

tabular datasets by analyzing a real-world dataset of 3.4 million records. Later, we 

present a systematic literature review of 50 state-of-the-art visual data analytics 

tools and their utility in six distinct steps of the Exploratory Data Analysis (EDA) 

process. We also investigate the extent to which these modern visual EDA tools 

address scalability, interpretability, and analytical expertise challenges of analyzing 

large datasets. Our analysis shows, most modern EDA tools assist with the 

fundamental steps of the EDA process, whilst only some tools consider addressing 

the challenges of big-data analytics. Among the analyzed tools however, the trade-

off between breadth of supported features and in-depth analysis of data is still 

remaining. Even the most advanced tools in both academia and industry do not 

depict complex multivariate relationships among attributes. The reason behind this 

is, most tabular data analysis tools are primarily designed for a generic audience 

who might need more training to perform complex statistical analysis with the data. 

Moreover, some academic EDA tools that perform factor analysis or use complex 

diagrams to show relationships between multiple attributes, often suffer from 

interpretability and scalability issues. Incorporation of domain expertise is another 

challenge in most modern EDA tools. As in most cases for both commercial and 

academic tools, the user gets to take only the viewer’s role in the data analysis 

process. Especially for the EDA tools that proactively generate visual 

recommendations; the absence of any feedback process can cause users to lose their 

confidence on the suggestions provided by the tools. Overall, we think there are 

many research opportunities in this emerging field that can be looked into for 

enhancing the performance and user experience of visual EDA tools. 
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Chapter 4  

Context-Based Evaluation of 

Dimensionality Reduction Algorithms  

Real-world industrial datasets are often high dimensional, where some of the 

attributes are redundant or correlated. Hence, due to the curse of dimensionality [1], 

it is challenging to analyze the underlying patterns of the data and to obtain insights 

from it. In order to address this challenge, researchers have proposed 

Dimensionality Reduction (DR in short) [1]–[3], a procedure that aims at 

transforming any high-dimensional dataset into its low-dimensional representation 

while retaining as much of the original structural relationships in the data as 

possible. Ideally, the low-dimensional representation should reflect the intrinsic 

dimensionality [4] of the original dataset, which is the minimum number of 

attributes required to present the original data. Since DR can decrease the 

computation time and required resources while facilitating better visual analytics 

of the data, it is a widely used technique in the domains of biotechnology [5], 

biology [5], medicine[5], pattern-recognition [6], among many others. 

DR has been an open research area for over a century [7]. As a result, throughout 

the past years, numerous algorithms [1], [8], [9] have been proposed by researchers. 

Initially, DR methods such as Principal Component Analysis (PCA) [7] and 

classical metric Multidimensional Scaling (MDS) [1] primarily focused on 

generating simple linear projections of the input datasets. However, linear 

techniques cannot preserve nonlinear structural relationships within any high-

dimensional dataset. As a result, in the past few years, several new nonlinear DR 

(NLDR) methods have been proposed. Such methods include: Isomap [1], non-

metric Multidimensional Scaling (nMDS) [10], Locally Linear Embedding (LLE) 
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[11], t-distributed Stochastic Neighbor Embedding (t-SNE) [9], Uniform Manifold 

Approximation and Projection (UMAP) [8], Trimap [12] etc. Hence, given the 

plethora of existing techniques, users constantly face the challenge of selecting the 

most appropriate algorithm for their specific analytical context. In practice, 

different DR algorithms can produce qualitatively dissimilar results for the same 

input dataset. The reason being: not all high-dimensional relationships can be 

preserved [1] in the low-dimensional representations and the relationships in the 

data that must be preserved remains unclear. As a result, different DR algorithms 

use different objective functions to preserve specific aspects of the existing 

structural relationships in data. Moreover, multiple combinations of 

hyperparameter values can lead to very different outcomes [13] for the same 

algorithm.  

Besides, each DR method has its strengths and weaknesses [1]. That is, for any 

given DR algorithm there exists a perfectly reasonable metric [8], [9], [12] for 

which it performs better than others. For example, if experiments were carried out 

to identify the algorithm that captures the maximum covariance in the original data, 

PCA [1] would be the winner. Or, in case we evaluated the extent to which the 

overall distances among data-points were preserved, non-metric Multidimensional 

Scaling (nMDS) [10] could be the chosen algorithm. As a result, a large number of 

potential quantitative metrics; for example, that measure the accuracy of DR[14] or 

preservation of proximity relations [10], [11], have been proposed in the past years 

that could be applied to determine the most suitable DR method in a given context. 

However, due to the lack of systematic comparisons among the existing DR 

techniques, no generic guidelines exist [12] that can help users understand the trade-

off between the performance of the same DR method in different analytical 

contexts. In order to bridge this gap, in this chapter, at first, we identify five most 

popular analytical contexts for DR, subsequently, we categorize 12 most popular 

DR quality metrics into these five analytical contexts. These metrics are then used 

to perform a systematic comparison between 15 state-of-the-art DR techniques for 

the identified contexts. Our primary objective is to produce a generic guideline for 
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the long-existing open [1], [12] research question- “Which DR algorithm should 

be used in a given scenario?” Investigations were performed on 40 real-world 

datasets, among which 39 were compiled from open-source data repositories and 

one was obtained from our industrial partner IBM. 

Furthermore, in this research, we perform statistical significance analysis [15] to 

validate our obtained experimental results. The primary reason being, traditionally 

DR algorithms [16] are compared against a set of other closely related algorithms 

over the same set of test datasets to prove the superiority of one algorithm over its 

competitors. However, such comparisons do not guarantee statistical significance 

[15]–[17] of the performance of the algorithms. That is, the question- “How 

reliable and replicable is the performance of any DR method for a given 

metric?” remains unanswered. Hence, to generalize our experimental results, 

following the guidelines of Demšar et al. [17], for each of the 12 quality metrics, 

we perform null hypothesis significance testing to implement both pairwise and 

overall comparisons among the set of algorithms. For our experiments, we used 

robust non-parametric statistical tests [15] such as Wilcoxon’s sign rank, McNemar, 

and Friedman tests. The contributions of this work are as follows: 

• For the first time in the field of DR research, this chapter identifies, 

describes, and analyzes five analytical contexts in which DR algorithms are 

commonly applied. 

• The chapter, to the first of our knowledge, composes 12 most popular DR 

quality metrics and categorizes them into the five identified analytical 

contexts. The metrics are then used to perform a systematic comparison 

among 15 state-of-the-art DR algorithms. The results identify the best, 

mediocre, and worst-performing algorithms in a given analytical context. 

• Furthermore, this novel research performs a thorough statistical significance 

analysis of the performance of DR algorithms. This analysis statistically 

validates the replicability and reliability of our obtained results using 40 

real-world datasets. 
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• Finally, this chapter presents the first generic guideline for practitioners to 

select the most appropriate DR algorithms in a given scenario. On the one 

hand, this guideline categorizes the DR algorithms and quality metrics for 

their utility in a given analytical context. On the other hand, it reduces the 

required analytical time and expertise from the data analyst. 

The overall chapter is organized as follows: Section 4.1 presents the preliminary 

background information while introducing the identified analytical contexts and our 

chosen contextual metrics. It also provides an overview of the statistical 

significance tests used in our experiments. Section 4.2 discusses the experimental 

procedure along with the selected algorithms and datasets chosen for our 

experiments. Section 4.3 presents the detailed experimental results along with the 

outcome of the statistical significance testing. Section 4.4 presents a practitioner’s 

guideline for users; Section 4.5 discusses the threats to the validity of our work. 

Section 4.6 presents a discussion on related work; and finally, Section 4.7 concludes 

the chapter. 

4.1 Analysis and Problem Characterization 

The process of DR can be formally defined as follows: assuming we have a dataset 

represented by a matrix 𝑋 of size 𝑛 ×  𝐷, where 𝑋 = [𝑥1, 𝑥2, … . , 𝑥𝑛] ∈ ℝ𝐷×𝑛. 

Where each row in X represents a data vector 𝑥𝑖, such that the size of the vector 𝑥𝑖 

is 𝐷. DR transforms 𝑋 to a low-dimensional embedding 𝑌 of size 𝑛 ×  𝑑, where 

𝑌 = [𝑦1, 𝑦2 , … . , 𝑦𝑛] ∈ ℝ𝑑×𝑛. Each row 𝑦𝑖 in Y represents a low-dimensional 

mapping for 𝑥𝑖 so that size of the vector 𝑦𝑖 is 𝑑. Where 𝑑 is the intrinsic 

dimensionality of the dataset and ideally 𝑑 ≪ 𝐷. The identification of 𝑑 for the 

input dataset makes a key impact on the amount of information loss [12] in 𝑌. Most 

modern NLDR techniques are based on the concept of manifold learning [1]. 

Manifold learning assumes that the vectors in 𝑋 are sampled from a smooth 

manifold [2]. Hence, the goal of any NLDR method is to embed each data vector 

from 𝑋 in a space with dimensionality 𝑑 while keeping the topological properties 

of the original manifold intact. Nevertheless, the identification of both intrinsic 
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dimensionality and topological properties of real-life datasets are extremely 

challenging [1], [3]. Therefore, using an objective [4] function, most NLDR 

algorithms attempt to preserve the original structure of 𝑋 that is defined by 

proximity relationships [1], [5] among the data-points [6] of 𝑋. 

Quality analysis of DR has been a focus of the scientific community [1], [4], [5], 

[7], [8] for many years. DR can be considered as an optimization problem with the 

two simplest ways to evaluate [1], [5] its outcome being: (1) an assessment of the 

value of the objective function of an NLDR algorithm upon convergence; and (2) 

an inverse transformation on the embedding 𝑌 to investigate how accurately 𝑋 can 

be retrieved. However, although the first approach can be useful for comparing 

multiple runs of the same algorithm (e.g., with different input datasets or with 

different hyperparameter combinations), it would cause an unfair comparison 

among multiple algorithms. On the other hand, the retrieval of 𝑋 from 𝑌 is only 

applicable when the structure of the original high-dimensional manifold is known. 

However, for most real-world datasets this is not the case [1], [3], [5]. As a result, 

the quality of DR is often assessed using measures that look into specific analytical 

contexts. For example, by analyzing hidden patterns in 𝑋 using 𝑌 or by evaluating 

the quality of 𝑌 with limited number of records in 𝑋. To perform a systematic 

evaluation of DR techniques, in this chapter, we have compiled five most popular 

application contexts for DR along with 12 DR quality analysis metrics (summarized 

in Table 4.1) that can be used in those contexts. In the next three sub-sections, at 

first, we present our identified analytical contexts for DR followed by a discussion 

on their associations with the 12 DR evaluation metrics. Finally, we formally 

introduce different statistical significance tests that were used to validate the results 

of our experiments. 

4.1.1 Identification of Analytical Contexts for DR 

In this research, the term ‘analytical context’ refers to the purpose of applying DR 

on any high-dimensional dataset. In real-world scenarios, such purposes [9] include 

identification of patterns and regularities in data or efficiently training predictive 
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models [10] with the data. In this section, we identify and discuss five such 

analytical contexts in which DR techniques are commonly used. The identification 

of these analytical contexts is performed via a detailed investigation of relevant 

literature [3], [7], [11]–[17] that discusses the circumstances for examining, 

applying, and proposing DR algorithms. Our analysis revealed that, since DR helps 

with visualizing high dimensional data using traditional spatial techniques (i.e., 2D 

or 3D representations) [13], one of the most common [7], [12], [15] uses for DR is 

to identify patterns and similarities among the data-points in the input dataset. 

Hence, in this work, we identify pattern analysis and similarity search as our first 

analytical context for DR. At the same time, DR techniques are also commonly 

used [3], [16], [17] for pre-processing datasets before training machine learning 

models [17] with them. Since DR helps with removing redundancies in data, such 

pre-processing is performed to manage the execution time of these predictive 

models and to improve their performances. As a result, due to its popularity with 

DR, we select predictive modelling as our second analytical context for this 

research. Our investigation of relevant literature [7], [12], [16], [17] also revealed 

poor quality and limited input data to be some well-known challenges [9] of 

exploratory analysis of high-dimensional datasets. In their work, Becht et al. [16] 

and Amid et al. [17] have shown that such inconsistencies in data can have a 

significant impact on the performances of DR algorithms. Since, real-world datasets 

commonly [9] have such inconsistencies in them, in this work we distinguished 

poor quality and limited input data as our third and fourth analytical contexts 

respectively. Finally, limitations on computational resources are amongst well-

known challenges [2], [16]–[18] of real-life data analysis. In order to mitigate such 

limitations, over the years researchers [2], [18] have presented DR algorithms that 

are faster and more efficient than their predecessors. Due to its importance in real-

life data analysis, in this research we designate limited computational resources as 

our fifth analytical context for DR. In the following, we discuss the objectives and 

characteristics of our five identified analytical contexts in detail. 
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i. DR for Pattern Analysis and Similarity Search: One of the primary 

objectives of analyzing high-dimensional datasets is to discover previously 

unknown patterns and regularities in data [19]. Such patterns can help with 

the summarization and classification of data-points [10] and hence with 

decision making. Hence, in this analytical context, the primary goal of any 

DR technique becomes the reliable retention of the original proximity 

relationships in 𝒀 [7]. That is, how accurately can the DR technique project 

similar data-points in 𝑿, to clusters in 𝒀; and dissimilar data-points in 𝑿 to 

“remote locations” in 𝒀. The same objectives for DR techniques also apply 

when similarity search [20] and range queries are performed using 𝒀. In 

such cases, the analysis results depend not only on the preserved original 

proximities in data but also on the distance ranking [1] among the data-

points. As the goals of this analytical context do not depend on the existence 

of labels in the data, it consists of common analytical tasks such as 

classification [14], clustering [21], summarization, and nearest neighbor [3] 

search queries. 

ii. DR for Predictive Modelling: DR techniques are commonly used [3], [16], 

[17] during predictive modeling [17] where, they not only assist with 

reducing the analytical complexity but also with removing the redundancy 

in 𝑿. In such an analytical context, we assess whether a model trained with 

𝒀 can make equally accurate predictions as the same model trained with 𝑿. 

Hence, the analysis depends on the quality of distance and neighborhood 

preservations [7] by the DR algorithms. This context is only applicable to 

supervised learning scenarios where labeled training data is available. 

iii. DR with Poor Quality Input Data: Missing values and outliers are known 

challenges in real-world datasets [9] that violate data quality [22] 

characteristics such as completeness, accuracy, and consistency. During 

DR, such inconsistencies in the values of a dataset can impact on proximity 

scores [23], [24] of any data-point with respect to other points. Hence, this 
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analytical context needs the DR techniques to handle such inconsistencies 

in the data better than their competitors. 

iv. DR with Limited Input Data: DR is often applied to inadequate volumes 

of data samples that may result in misleading interpretations of the dataset. 

The reason being, with limited input data relatively dissimilar data-points, 

may seem similar [7] to each other in the embedding. Moreover, in some 

cases, DR is executed on datasets with unknown characteristics. For 

example, datasets with ambiguous attribute names or irrelevant attribute 

values. In this research, we combine the two situations under the analytical 

context of limited input data problem for DR. In this analytical context 

tuning the hyperparameters of DR algorithms can be challenging due to the 

incompleteness of the information. Hence, here the primary goal becomes 

the identification of the DR technique that performs equally well with and 

without having all necessary information regarding the input data. 

v. DR with Limited Computational Resources: Optimizing an objective 

function as a part of DR is often a computationally expensive [3] process. 

Although, some algorithms are inherently faster than others [5], [7], [31], 

the overall execution time for DR algorithms depends on the amount of 

available computational resources [5]. In this analytical context, the primary 

need for a DR technique is to produce better quality results than other 

algorithms given the same resource constraints. 

It is important to note that: the identified popular contexts are not an exhaustive list 

of analytical contexts where DR techniques can be applied. In order to define a 

finite scope for this research, we limit our analysis to the above-mentioned contexts. 

Further investigation of literature may reveal more contexts for using DR. 

4.1.2 Classification of DR Quality Metrics into Analytical 

Contexts 

In this section, we formally introduce the 12 most popular DR evaluation metrics 

and categorize them into the five identified analytical contexts. This categorization 



 

  

79 

Table 4.1: DR Quality Metrics with their Associated Analytical Contexts  

Metric No. Chosen Quality Metrics Derived Analytical Contexts 

1. Residual variance (𝜎2) 

DR for Pattern Analysis and Similarity Search 

2. Spearman rank correlation (𝜌𝑠) 

3. Mean K-ary neighborhood agreement (𝜇𝑅𝑛𝑋
) 

4. Local quality criteria (𝑄𝑙𝑜𝑐𝑎𝑙) 

5. 𝑘𝑚𝑎𝑥 neighborhood loss (𝜆𝐾𝑚𝑎𝑥
) 

6. Global quality criteria (𝑄𝑔𝑙𝑜𝑏𝑎𝑙) 

7. Area under the 𝑅𝑛𝑋 curve (𝐴𝑈𝐶ln 𝐾(𝑅𝑛𝑋(𝐾)) 
DR for Predictive Modelling 

8. KNN prediction accuracy (𝐴𝐶𝐶𝜓) 

9. Normalized Mutual Information (𝑛𝑀𝐼) 
DR with Poor Quality Input Data 

10. Structural Similarity Index (𝑆𝑆𝐼) 

11. Logarithmic loss of multi-class classification  DR with Limited Input Data 

12. 
Mean accuracy with constraints 

 𝜇𝐴𝑈𝐶ln 𝐾(𝑅𝑛𝑋(𝐾))
𝑁𝑖

| 0.1 ∗ 𝑑𝑒𝑓𝑎𝑢𝑙𝑡 𝑖𝑡𝑒𝑟(𝑔𝑖) DR with Limited Computational Resources 

of the quality metrics is performed by detailed analysis of background literature [1], 

[4], [5], [8], [12], [25] for each metric. In Table 4.1 we summarize the metrics and 

their categorizations. Assuming, we compare 𝐺 DR algorithms on 𝑁 datasets for 𝑀 

metrics, in the formal definitions of the metrics we adopt the notations presented 

above. 

4.1.2.1 DR for Pattern Analysis and Similarity Search 

In par with our discussion in Section 4.1.1, here we identify 6 most popular 

structural preservation metrics [4], [5], [8] for DR algorithms for the analytical 

context of pattern analysis and similarity search. As the metrics presented in this 

section, are agnostic to the existence of training labels in the datasets, they can be 

applied to both supervised and unsupervised analysis tasks (e.g., clustering and 

classification). The existing quality metrics for the structural preservation of DR 

can be broadly categorized as distance-based metrics [25] and rank-based metrics 

[1]. Whilst the former analyses the preserved structure by comparing pairwise 

distances among data points, the latter performs the same by comparing the ranks 

of the relative distances between points. It is proven [1], [5] that rank-based metrics 

are more stable to scaling of pairwise distances among data points in 𝑋 caused due 

to the unfolding of the manifold. In our experiments, we use a combination of both 

distance and rank-based metrics to compare the structural preservation of different 
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DR algorithms. 

Most distance-based quality metrics use the Euclidean distance [1], [3], [5], [26] as 

their underlying proximity measure. Formally, assuming 𝑥𝑖 and 𝑥𝑗 are any two 

different data points in 𝑋 such that 𝑥𝑖 = [𝑢1,𝑢2, … , 𝑢𝐷] and 𝑥𝑗 =  [𝑣1,𝑣2, … , 𝑣𝐷], the 

Euclidean distance between 𝑥𝑖 and 𝑥𝑗 can be defined as: 

            𝑑𝑖𝑠𝑡𝜀(𝑥𝑖, 𝑥𝑗) =  √∑ (𝑢𝑎 − 𝑣𝑎)2𝐷
𝑎=1       (4.1) 

Formally, considering 𝑑𝑖𝑠𝑡𝜀𝑖𝑗
= 𝑑𝑖𝑠𝑡𝜀(𝑥𝑖, 𝑥𝑗) be the Euclidean distance between 

any two points 𝑥𝑖 and 𝑥𝑗 in 𝑋 and 𝑑𝑖𝑠𝑡̂
𝜀𝑖𝑗

= 𝑑𝜀(𝑦𝑖 , 𝑦𝑗) be the same for two points 

𝑦𝑖 and 𝑦𝑗 in 𝑌. Based on Eq. 4.1 we define Residual Variance [25] as our first 

metric, that is the first quality measure for analyzing preserved local structure as: 

           �̂�2 = 1 − �̂�2({𝑑𝑖𝑠𝑡𝜀𝑖0
, … . , 𝑑𝑖𝑠𝑡𝜀𝑖𝑛

}, {𝑑𝑖𝑠𝑡̂
𝜀𝑖0

, … . , 𝑑𝑖𝑠𝑡̂
𝜀𝑖𝑛

})     (4.2) 

where, �̂� represents a linear correlation coefficient [16]. As a local quality measure, 

�̂�2 measures the complement of the explained variance between all 𝑑𝑖𝑠𝑡𝜀𝑖𝑗
 and 

𝑑𝑖𝑠𝑡̂
𝜀𝑖𝑗

 using �̂�. 

Among the rank-based quality measures for DR, the Spearman’s rank correlation 

[8] has been one of the traditional techniques [8], [25]. The rank of any 𝑥𝑖 ∈ 𝑋 with 

respect to any 𝑥𝑗 ∈ 𝑋 can be defined as: 

      𝑟𝑖𝑗 = |{𝑙: 𝑑𝑖𝑠𝑡𝜀𝑖𝑙
< 𝑑𝑖𝑠𝑡𝜀𝑖𝑗

 𝑜𝑟 (𝑑𝑖𝑠𝑡𝜀𝑖𝑙
= 𝑑𝑖𝑠𝑡𝜀𝑖𝑗

 𝑎𝑛𝑑 1 ≤ i ≤ 𝑙 ≤ 𝑗 ≤ 𝑛)}| (4.3) 

Analogously, the rank for any 𝑦𝑖 ∈ 𝑌 with respect to any 𝑦𝑗 ∈ 𝑌 can be defined as: 

     �̂�𝑖𝑗 = |{𝑙: 𝑑𝑖𝑠𝑡̂
𝜀𝑖𝑙

< 𝑑𝑖𝑠𝑡̂
𝜀𝑖𝑗

 𝑜𝑟 (𝑑𝑖𝑠𝑡̂
𝜀𝑖𝑙

= 𝑑𝑖𝑠𝑡̂
𝜀𝑖𝑗

 𝑎𝑛𝑑 1 ≤ i ≤ 𝑙 ≤ 𝑗 ≤ 𝑛)}|  (4.4) 

Where, the notation |𝐴| in the equations 4.3 and 4.4 denote the size of set 𝐴. Using 

the above definitions for 𝑟𝑖𝑗 and �̂�𝑖𝑗 , our second metric the Spearman rank 

correlation coefficient 𝜌𝑠 can be defined as: 

   𝜌𝑠 = 1 − 6 ∑ ∑ (𝑟𝑖𝑗 − �̂�𝑖𝑗) 𝑛(𝑛2 − 1)⁄𝑛
𝑗=1

𝑛
𝑖=1       (4.5) 
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where 𝑛 denotes the number of samples in 𝑋 as 𝑟𝑖𝑗, and �̂�𝑖𝑗 represent distinct integer 

ranks in high and low-dimensional spaces.  

Over the past years, several [1], [5] other rank-based quality metrics have been 

proposed for DR. These include, Local Continuity Meta-Criterion (LCMC) [1], 

Trustworthiness and Continuity (T&C) [1], Mean Relative Rank Errors (MRRE) 

[1]. All these metrics analyze the ranks of sorted distances in K-ary neighborhoods 

[5] before and after DR. Later, these metrics were unified by Lee and Verleysen [1] 

under the co-ranking matrix framework. This framework analyzes the average 

agreement between K-ary neighborhoods in high and low-dimensional spaces using 

a matrix consisting of the ranks of the distances among data-points. Formally, 

defining the K-ary neighborhoods of the points 𝑥𝑖 ∈ 𝑋 and 𝑦𝑖 ∈ 𝑌 as 𝑛𝑔𝑖
𝐾 =

{𝑗: 1 ≤ 𝑟𝑖𝑗 ≤ 𝐾} and 𝜈𝛾𝑖
𝐾 = {𝑗: 1 ≤ �̂�𝑖𝑗 ≤ 𝐾} respectively, using the co-ranking 

framework mean K-ary neighborhood preservation after DR can be defined [1] as: 

           𝑄𝑛𝑋(𝐾) = 
1

𝐾𝑛
∑ |𝑛𝑔𝑖

𝐾 ∩ 𝜈𝛾𝑖
𝐾|𝑛

𝑖=1     where 1 ≤ 𝐾 ≤ 𝑛 − 1                    (4.6) 

The value of 𝑄𝑛𝑋(𝐾) varies from 0 to 1 implying an empty intersection and a 

perfect agreement between the same neighborhoods in 𝑋 and 𝑌 respectively. To 

fairly compare and combine the values of 𝑄𝑛𝑋(𝐾) for different neighborhood sizes, 

Lee et al. [21] later defined a scaled version of 𝑄𝑛𝑋(𝐾) as:  

    𝑅𝑛𝑋(𝐾) = 
(𝑛−1)𝑄𝑛𝑋(𝐾)−𝐾

𝑛−1−𝐾
       (4.7) 

Where, 𝑛 is the number of points in 𝑋 and ∀ 1 ≤ 𝐾 ≤ 𝑛 − 2, 𝑅𝑛𝑋 = 0 represents a 

random embedding as 𝑅𝑛𝑋 = 1 represents a perfect embedding. As 𝑅𝑛𝑋(𝐾) can be 

better evaluated using visual analytics with a curve for different 𝑅𝑛𝑋 values for 

varying size of 𝐾, in our experiments we use 𝜇𝑅𝑛𝑋
 [5] as our third metric that is a 

quantitative scalar rank based quality metric for DR. Any DR algorithm that aims 

at preserving the local structure should return high values for 𝑅𝑛𝑋(𝐾) for small 

values of 𝐾. On the other hand, a DR algorithm attempting to preserve both the 

local and the global structure of 𝑋 in 𝑌 should attempt to keep all the values of 

𝑅𝑛𝑋(𝐾) as high as possible. In general, smaller values of 𝐾 represent the locality 
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of 𝑋 as larger values of 𝐾 represent the global structure of the manifold. Hence, as 

an estimate for 𝐾 that represents locality in 𝑋, 𝐾𝑚𝑎𝑥 [4] is defined as: 

    𝐾𝑚𝑎𝑥 = 𝑎𝑟𝑔 max
𝑘

(𝑄𝑛𝑋(𝐾) −
𝐾

𝑛−1
)      (4.8) 

Considering 𝐾𝑚𝑎𝑥 as the splitting point, a local quality measure for an embedding 

can be defined [4] as our fourth metric as: 

    𝑄𝑙𝑜𝑐𝑎𝑙 = 
1

𝐾𝑚𝑎𝑥
∑ 𝑄𝑛𝑋(𝐾)𝐾𝑚𝑎𝑥

𝐾=1                   (4.9) 

As our final quality metric for preserved local proximity, in our experiments, we 

used another popular metric Neighborhood Loss [25] as our fifth metric. We define 

the metric as: 

    𝜆𝐾𝑚𝑎𝑥
= ∑ 1 − |𝑛𝑔𝑖

𝐾 ∩ 𝜈𝛾𝑖
𝐾|/𝐾𝑛

𝑖=1       where 1 ≤ 𝐾 ≤ 𝐾𝑚𝑎𝑥            (4.10) 

where, 𝑛𝑔𝑖
𝐾 and 𝜈𝛾𝑖

𝐾  represents an enumeration of the 𝐾 nearest neighbors for each 

point in the original and embedded spaces respectively. In our experiments we use 

𝐾𝑚𝑎𝑥 as the value for 𝐾. 

On the other hand, for analysis of preserved global structure in an embedding again 

considering 𝐾𝑚𝑎𝑥 as the splitting point in the 𝑄𝑛𝑋(𝐾) curve, Lee and Verleysen [4] 

have defined the metric 𝑄𝑔𝑙𝑜𝑏𝑎𝑙  as: 

       𝑄𝑔𝑙𝑜𝑏𝑎𝑙 = 
1

𝑛−𝐾𝑚𝑎𝑥
∑ 𝑄𝑛𝑋(𝐾)n−1

𝐾=𝐾𝑚𝑎𝑥
    (4.11) 

We use 𝑄𝑔𝑙𝑜𝑏𝑎𝑙  as the sixth metric in our experiments. Both the quality measures 

presented in Eq. 4.9 and 4.11 range from 0 to 1. Nevertheless, in the literature [4] 

𝑄𝑙𝑜𝑐𝑎𝑙 is given more importance than 𝑄𝑔𝑙𝑜𝑏𝑎𝑙 . As a common consensus among 

researchers [4] specifies that for pattern analysis the preservation of small K-ary 

neighborhoods is more important [4], [5] than the preservation of the overall global 

structure of the data. 

Among the five rank-based metrics discussed above, the primary difference 

between the Spearman’s correlation [8] and the co-ranking framework [1] based 

metrics is that the latter performs more detailed comparisons among 𝑋 and 𝑌 by 
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looking into both the intrusions and extrusions [1] in the embedding. Despite 

belonging to the co-ranking matrix framework, the four metrics 𝜇𝑅𝑛𝑋
, 𝜆𝐾𝑚𝑎𝑥

, 𝑄𝑙𝑜𝑐𝑎𝑙 , 

and 𝑄𝑔𝑙𝑜𝑏𝑎𝑙  assess embeddings from different aspects. For example,  𝜇𝑅𝑛𝑋
 assesses 

the  average agreement among all K-ary neighborhoods in the data 𝑄𝑙𝑜𝑐𝑎𝑙; and 

𝑄𝑔𝑙𝑜𝑏𝑎𝑙  assess the same for smaller (i.e., local neighborhood structure) and larger 

(i.e., global structure of the dataset) values of 𝐾 respsctively. On the other hand, 

𝜆𝐾𝑚𝑎𝑥
 analyzes the neighborhood loss instead of agreement. The applicability and 

utility of the selected metrics in the analytical context of pattern analysis and 

similarity search are further discussed in Section 4.4.2. 

4.1.2.2 DR for Accurate Predictive Modelling 

The accuracy metrics for DR can be classified based on the aspect of information 

loss that they focus upon. Such metrics are of two types: distance preserving2 and 

neighborhood preserving [7] accuracy metrics. Whilst, the distance preserving 

metrics have been used as objective functions in DR algorithms (e.g., Kruskal’s 

stress function [8] in non-metric Multidimensional Scaling [4]), the neighborhood 

preserving metrics are more widely deployed [7] for quality analysis. One of the 

most widely used neighborhood preserving accuracy metric is 𝐴𝑈𝐶ln 𝐾(𝑅𝑛𝑋(𝐾)) 

[5]. The metric computing the area under the 𝑅𝑛𝑋(𝐾) curve was defined by Lee and 

Verseylen [5] as a sum of neighborhood preservation for all neighborhood sizes in 

a logarithmic scale. Formally, the metric 𝐴𝑈𝐶ln 𝐾(𝑅𝑛𝑋(𝐾)) can be defined as our 

seventh metric as: 

𝐴𝑈𝐶ln 𝐾(𝑅𝑛𝑋(𝐾)) = (∑ 𝑅𝑛𝑋(𝐾)/𝐾

𝑛−2

𝐾=1

) (∑ 1/𝐾

𝑛−2

𝐾=1

)                  (4.12) ⁄  

In our experiments we use 𝐴𝑈𝐶ln 𝐾(𝑅𝑛𝑋(𝐾)) as our first and direct measure for DR 

accuracy. Furthermore, following popular research [3], [14], [17], [19], [28], [29], 

 
2 The primary difference between the distance preserving quality metrics and the distance based 

quality metrics discussed in Section 2.2.1 is, the distance based metrics merely compare the relative 

distances among data-points to evaluate embeddings. Whereas, the distance preserving metrics are 

used as objective functions that attempt to minimize the discrepancies among relative distances (i.e., 

the structural properties) in the original dataset and in the embeddings. 
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we use the K-Nearest Neighbor3 (KNN) classification [14] accuracy as our second 

and indirect quality measure for DR accuracy. Formally, assuming the feature 

matrix and the label matrix for 𝑋 to be defined as a combination of 𝑋𝐹  and 𝑋𝐿 so 

that, the data-points in 𝑋 can be represented as {(𝑥𝐹1
, 𝑥𝐿1

), . . , (𝑥𝐹𝑛
, 𝑥𝐿𝑛

)}. Here 𝑥𝐹𝑖
 

represents only the feature vector of the data-point 𝑥𝑖 with 𝑥𝐿𝑖
 representing only the 

training label. Similarly, defining 𝑌 as a combination of 𝑌𝐹 and 𝑌𝐿, where 𝑌𝐿 = 𝑋𝐿, 

the classification accuracy 𝐴𝐶𝐶𝜓 of the KNN classifier 𝜓 for multi-class 

classification can be defined as our eighth metric as follows: 

    𝐴𝐶𝐶𝜓 =  
𝜓(𝑦𝐹𝑖

) 𝑦𝐿𝑖
⁄

𝑛
      (4.13) 

where, 𝜓(𝑦𝐹𝑖
)/𝑦𝐿𝑖

 represents the number of predicted correct labels and 𝑛 

represents the number of data-points in the test dataset. The KNN classifier is an 

appropriate DR accuracy metric as: most NLDR algorithms are based on geometric 

methods that exploit the concept of locality in the neighborhoods of data-points 

using nearest neighbor (NN) distances. Similarly, the main idea of KNN is based 

on the assumption of locality in the data space [19]. We note that 𝐴𝐶𝐶𝜓 is an 

indirect quality measure for DR and only applies to labelled data. However, we 

follow popular practice in academia and include 𝐴𝐶𝐶𝜓 in the list of our metrics. 

4.1.2.3 DR with Poor Quality Input Data 

Missing values for data attributes is a common challenge in real-life data analytics. 

As DR algorithms are usually affected [12] by unattributable missing values in 

input data, in this research we compare the chosen DR algorithms for their stability 

 
3 In our experiments we used KNN classifier for both metrics 8 and 11. The primary reason being: 

similarly, as KNN classifier most NLDR algorithms exploit the concept of locality in the 

neighborhoods of data-points. Moreover, the same experiments with Random Forest classifier [30] 

as well as K-means clustering [23] algorithms revealed that for all datasets KNN classifiers produced 

better results for the same DR techniques. Additionally, as per Hastie et al. [31] the bias for the KNN 

classifiers remain low during our experiments because following the guidelines of Maaten et al. [3] 
we train our models with only 1-nearest neighbor. As pointed out by as per Hastie et al. [31], 

although in this case the variance of the classifiers may remain high, a model with high variance but 

low bias can make better quality predictions on an average [31] than a model with low variance and 

high bias. 
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with datasets containing missing values. Following guidelines from researchers [8], 

[12], we have used the normalized mutual information (nMI) score [12] as our 

ninth metric to assess the stability of the DR methods with missing data. The rank-

based metric nMI is computed using entropy [8] and mutual information (MI) [12] 

metrics. In our experiments, nMI quantitatively assesses the differences between 

two embeddings for the same dataset one with and one without missing input 

values. Formally, assuming a data matrix �̂� containing B% missing values from 𝑋, 

and �̂� and 𝑌 being the low-dimensional embeddings of �̂� and 𝑋 respectively. In our 

experiments, we design �̂� such that both �̂� and 𝑋 are of size 𝑛 ×  𝐷 but, ∃ �̂�𝑖 ∈ �̂� 

where, some �̂�𝑖𝑗 = ∅. In �̂�𝑖𝑗, 𝑗 represents any position in the vector �̂�𝑖 and 𝑗 ∈

1,2,3, … , 𝐷. In order to compute the MI, using the co-ranking framework at first we 

computed the joint probabilities for 𝑌 and �̂� using:  

  𝑝(𝑌) = ∑ 𝑝(�̂�, 𝑌)�̂�        𝑎𝑛𝑑        𝑝(�̂�) = ∑ 𝑝(𝑌, �̂�)𝑌     (4.14) 

where the joint probabilities are computed as 𝑝(�̂� ∩ 𝑌) = 𝑝(�̂�) ∙ 𝑝(𝑌). This is 

followed by the computation of entropy [12] for both �̂� and 𝑌 as: 

      �̂�(𝑌; �̂�) = − ∑ ∑ 𝑝(𝑌, �̂�) .  log (𝑝(𝑌, �̂�)�̂� )𝑌     (4.15) 

where, entropy �̂�(𝑌) = − ∑ 𝑝(𝑌) .  log (𝑝(𝑌))𝑌  and �̂�(�̂�) =

∑ 𝑝(�̂�) .  log (𝑝(�̂�))�̂� . Finally, the nMI between �̂� and 𝑌 is obtained [8] as: 

   𝑛𝑀𝐼(𝑌; �̂�) = 𝑀𝐼(𝑌, �̂�)
1

2
[�̂�(𝑌) + �̂�(�̂�)]⁄      (4.16) 

where, 𝑀𝐼(𝑌, �̂�) = �̂�(𝑌) + �̂�(�̂�) − �̂�(𝑌; �̂�)  represents the mutual information 

between 𝑌 and �̂�. 

On the other hand, outlier values in the input data are a known challenge in data 

analytics. Ideally, a low-dimensional embedding should not be affected by outliers 

as usually outlier data-points in a high-dimensional manifold reside far away from 

other points. However, very little research has been done that aims at detecting the 

sensitivity of DR algorithms to outliers. Formally, assuming a data matrix �̂�, such 
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that |�̂�| = |𝑋|. Assuming 𝐵% records in �̂� contains outlier values4 from 𝑋 and �̂� 

and 𝑌 being the low-dimensional representations of �̂� and 𝑋 respectively. In order 

to assess the stability of DR algorithms with outliers, we select samples 𝑆�̂� from �̂� 

and 𝑆𝑌 from 𝑌 containing only the (100 − 𝐵)% of low-dimensional representations 

for the non-outlier data-points in �̂� so that |𝑆𝑌| = |𝑆�̂�|. Then, we measured the 

similarity between 𝑆𝑌 and 𝑆�̂� using the Structural Similarity Index [33] (our tenth 

metric) as: 

                       𝑆𝑆𝐼(𝑆𝑌 , 𝑆�̂�) = 
(2𝜇𝑆𝑌

𝜇𝑆�̂�
+𝐶1)(2𝜎𝑆𝑌

𝜎𝑆�̂�
+𝐶2)

(𝜇𝑆𝑌
2 +𝜇𝑆�̂�

2 +𝐶1)(𝜎𝑆𝑌
2 +𝜎𝑆�̂�

2 +𝐶2)
  (4.17) 

where, 𝜇𝑌 represents the mean of 𝑌 and 𝜇𝑆�̂�
 represents the mean of 𝑆�̂�. Similarly, 

𝜎𝑌 signifies the standard deviation of the population and 𝜎𝑆�̂�
 signifies the standard 

deviation of 𝑆�̂�. Finally, 𝐶1and 𝐶2 are constants that are used to stabilize the impact 

of the division by a weak denominator. As per Wang et al. [33] considering small 

constants 𝜅1 = 0.01  and 𝜅2 = 0.03, the constants in Eq. 17, i.e., 𝐶1 and 𝐶2 are 

defined as 𝐶1 = (𝜅1𝐿)2 and 𝐶2 = (𝜅2𝐿)2. With L being the dynamic range of the 

pixel values, in our experiments the values of 𝐶1 and 𝐶2 were 6.553 and 58.982 

respectively. 

4.1.2.4 DR with Limited Input Data 

A stable DR algorithm should be invariant to a subset of data-points or features in 

the dataset [2], [17]. That is the placement of the points in the low dimensional 

embedding should be relatively unchanged even for a subset of the data. 

Researchers have often performed partial observation tests on DR algorithms as 

their measure of reliability [2], [17]. In our experiments, each dataset 𝑋 is randomly 

sampled into equal-sized 𝐴 horizontal subsets 𝑆𝑖, where 𝑖 = 1,2, … 𝐴 and |𝑆1| =

|𝑆2| = ⋯ = |𝑆𝐴|. Then the DR algorithms are applied on each subset. Next, in order 

to check the reproducibility of the algorithms with respect to partial records, we 

 
4 For our experiments, for each dataset we manually created the �̂� as we added the outliers for each 𝐷 using 

their Median Absolute Deviation (MAD) [22]. This is a common approach [22] for detecting outliers in data, 
as [32] that the detection of outliers using the mean and standard deviations of the sample can be highly 
impacted by the outlier themselves. 
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assessed the obtained low-dimensional embedding by measuring the logarithmic 

loss of multi-class classification [30] using the KNN algorithm defined as:  

𝑙𝑜𝑔𝑙𝑜𝑠𝑠 =  −
1

|𝑆𝑖|
∑ ∑ 𝑦𝑡𝑜,𝑐𝑙𝑜𝑔 (𝑦𝑝𝑜,𝑐)𝐶𝑙

𝑐=1
|𝑆𝑖|
𝑜=1    (4.18) 

𝑙𝑜𝑔𝑙𝑜𝑠𝑠 represents our eleventh metric where, |𝑆𝑖| represents the number of 

samples in each horizontal subset of 𝑋. Moreover, assuming 𝐶𝑙 is the total number 

of actual categories of class labels for multiclass classification and 𝑜 represents each 

observation in 𝑆𝑖, 𝑦𝑡𝑜,𝑐 represents the occurrence of the true label for any 

observation 𝑜. That is, 𝑦𝑡𝑜,𝑐 is 1 if the observation 𝑜 belongs to class 𝑐;  otherwise 

0. On the other hand, 𝑦𝑝𝑜,𝑐  represents the probability estimate of the KNN classifier 

for the observation 𝑜 belonging to class 𝑐. The logarithmic loss is a popular metric 

[3], [30] for assessing the preserved structure of the data. 

4.1.2.5 DR with Limited Computational Resources 

Traditionally, computational resources are limited in terms of either time or space. 

However, with DR being a transformation technique, it can be challenging to 

experimentally limit the allocated time and space for its execution as – with limited 

CPU time, the algorithm will crash without completely transforming 𝑋, and with 

limited access to memory, the DR technique will take much longer time than with 

optimal memory access but will generate the same transformation for 𝑋. As a result, 

considering the amount of memory usage by any DR technique depends on its 

hyperparameter settings [34], [35] (more specifically, on the number of iterations 

[3], [11]), in our experiments we simulate this restriction on the availability of 

resources by limiting the number of iterations [18], [30], [35] for each DR 

technique. More specifically, ∀𝑔𝑖 ∈ 𝐺, we put additional constraints on their 

optimization functions as follows: 

   argmin
𝑌∈ℝ𝑑×𝑛

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:  iter(𝑔𝑗)=0.1∗𝑑𝑒𝑓𝑎𝑢𝑙𝑡 𝑖𝑡𝑒𝑟(𝑔𝑗)

𝑓𝑔𝑖
(𝑌; 𝑋)               (4.19) 

Then, ∀𝑁𝑖 ∈ 𝑁, we compute our twelfth metric mean DR accuracy 

𝜇𝐴𝑈𝐶ln 𝐾(𝑅𝑛𝑋(𝐾))
𝑁𝑖

. Here, we assess the level of accuracy of the embedding given 
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the number of iterations 𝑖𝑡𝑒𝑟(𝑔𝑗) being set to 10% of default 𝑖𝑡𝑒𝑟(𝑔𝑗) for each of 

the DR techniques. 

4.1.3 Overview of Statistical Significance Testing 

Null hypothesis significance testing forms the core of inferential statistics [31], 

[36]. It is a form of reductio ad absurdum that tries to discredit an idea by assuming 

the idea is true and then showing a contradiction to the idea. For our experiments, 

assuming 𝑆𝑐𝐺𝑖𝑁𝑎𝑀𝑏
 and 𝑆𝑐𝐺𝑗𝑁𝑎𝑀𝑏

 are the scores of the 𝐺𝑖
𝑡ℎ  and 𝐺𝑗

𝑡ℎ  algorithms on 

the same 𝑁𝑎
𝑡ℎ dataset and for the same 𝑀𝑏

𝑡ℎ metric (in our case, 𝑎1, 2, . . 40, 

𝑏1, 2, . . 12, 𝑖, 𝑗1, 2, . . 15, and 𝑖𝑗). Also, without loss of generality, assuming in 

this particular context 𝑆𝑐𝐺𝑖𝑁𝑎𝑀𝑏
> 𝑆𝑐𝐺𝑗𝑁𝑎𝑀𝑏

. The primary goal of statistical 

significance testing is to determine whether there is enough empirical evidence to 

claim that the difference in the performances of the 𝐺𝑖
𝑡ℎ  and 𝐺𝑗

𝑡ℎ  algorithms is 

random or statistically significant [37]. To enable statistical analysis, it is important 

to run all 𝐺 algorithms a large enough number of times [36] on different samples of 

all 𝑁 datasets for all the 𝑀 metrics, so that the probability distribution of the scores 

for each algorithm on each metric can be understood. In order to perform the null 

hypothesis significance testing, a null hypothesis (denoted by 𝐻0) is defined that 

states that there is no statistically significant difference between the performances 

of the 𝐺𝑖
𝑡ℎ  and 𝐺𝑗

𝑡ℎ  algorithms. The alternative hypothesis (represented by 𝐻𝑎) on 

the other hand, states the exact opposite of the null hypothesis 𝐻0; that is, there is a 

statistically significant difference between the performances of the two algorithms 

for the selected dataset samples, and hence we must reject 𝐻0. In our case, when 

comparing 𝐺 DR algorithms, the null and alternative hypothesis can be defined as: 

 𝐻0 = 𝜇𝑆𝑐̅̅ ̅𝐺1𝑀𝑏
=  𝜇𝑆𝑐̅̅ ̅ 𝐺2𝑀𝑏

= ⋯ =  𝜇𝑆𝑐̅̅ ̅ 𝐺15𝑀𝑏
     

𝐻𝑎 = 𝜇𝑆𝑐̅̅ ̅𝐺𝑖𝑀𝑏
≠ 𝜇𝑆𝑐̅̅ ̅ 𝐺𝑗𝑀𝑏

       for at least one pair of i and j (where 𝑖𝑗)      (4.20) 

In equation 4.20, 𝜇𝑆𝑐̅̅ ̅𝐺𝑖𝑀𝑏
represents the mean performance scores for each algorithm 

𝐺𝑖 for each metric 𝑀𝑏 for all 𝑁 datasets. In order to decide on whether or not to 



 

  

89 

reject the null hypothesis for a statistical test, the 𝑝 − 𝑣𝑎𝑙𝑢𝑒 is computed along with 

the test statistics [38]. The p-value is the probability of obtaining a result equally or 

even more extreme [31], considering 𝐻0 is true. In case the p-value is smaller than 

a predefined nominal significance level 𝛼, 𝐻0 is rejected. A typical value for 𝛼 that 

is commonly used [37], [39] in statistical experiments is 0.05. When performing 

statistical significance testing, one needs to consider two types of possible errors 

[38] that could occur during the tests. The Type I error represents the situation when 

𝐻0 is rejected despite being true, and the Type II error relates to the situation when 

𝐻0 is accepted despite being false. Here, an important point to note is, the two errors 

contradict each other, as reducing the probability of one error would increase the 

probability of the other. However, a common consensus among researchers [36], 

[38], [39] specify that it is more important to prevent Type I errors than Type II. 

Analysis of statistical significance can be done using either parametric or non-

parametric statistical tests. Among the two, whilst the former make presumptions 

about the underlying distribution of the data (i.e., the data must follow a parametric 

distribution [31]), the latter make no such assumptions. On the other hand, 

parametric statistical tests are known [37] to be more powerful than their non-

parametric counterparts when limited data is available. However, it is often 

challenging to run parametric tests on samples as the normality of the underlying 

data cannot be guaranteed. Although according to the central-limit theorem one can 

claim that the collection of large enough number of random variables converge [40] 

to a normal distribution, often the access to a large number of data samples is 

limited. Moreover, although normality tests [31] can be used to assess whether the 

distribution of the test samples is normal, often these tests produce unreliable results 

[37]. Hence, in case the amount of available analysis data is not a challenge, Arcuri 

et al. [36] suggest the use of non-parametric statistical tests with at least 𝑁 = 30 

samples. As a result, in this chapter, for each evaluation metric, we use non-

parametric statistical tests5 to perform both pairwise and overall comparisons 

 
5 It can be argued that, mean being a parametric measure for a sample of N random variables, might 

not be appropriate for non-parametric statistics. However, research shows that in most cases a 
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between the algorithms. 

4.1.3.1 Pairwise comparisons of Algorithms 

The most common way to perform a pairwise comparison of two algorithms is to 

use the paired t-test. Although being a parametric statistical test, the t-test forms the 

basis of pairwise comparisons among algorithms [31], that examines whether the 

mean difference between the performances of the two algorithms is significantly 

greater than 0. Formally, assuming 𝑆𝑐𝐺𝑖𝑁𝑎𝑀𝑏
 and 𝑆𝑐𝐺𝑗𝑁𝑎𝑀𝑏

 are the scores of the 𝐺𝑖
𝑡ℎ  

and 𝐺𝑗
𝑡ℎ  algorithms for the 𝑀𝑏

𝑡ℎ metric on the 𝑁𝑎
𝑡ℎ dataset and the difference 

between the two be represented by 𝛿𝑁𝑎
 = 𝑆𝑐𝐺𝑖𝑁𝑎𝑀𝑏

−  𝑆𝑐𝐺𝑗𝑁𝑎𝑀𝑏
, then the t-statistic 

is computed as: 

       𝑡 =  𝛿𝑁𝑎
̅̅ ̅̅̅ 𝜎𝛿𝑁𝑎

⁄          (4.21) 

Where, 𝛿𝑁𝑎
̅̅ ̅̅̅ represents the mean difference of all 𝑁 datasets, where 𝑎1, 2, . . 𝑁 and 

𝜎𝛿𝑛𝑎
represents their standard deviation. The t-statistic follows the Student’s t-

distribution with 𝑁 − 1 degrees of freedom for 𝑁 datasets and in case the p-value 

for the t-statistic is less than the 𝛼, the null hypothesis 𝐻0 is rejected. 

To avoid the normality assumptions of the paired t-test, the Wilcoxon signed ranks 

test is chosen [31] as its most appropriate non-parametric counterpart. The 

Wilcoxon signed ranks test [37] is used to compare the absolute differences in 

performances of the two algorithms to determine if the mean ranks of the positive 

and negative differences between the performance scores are statistically 

 
normal approximation of the original distribution of the sample values is used with a reference to 

the central limit theorem. Moreover, researchers such as Sherman et al. [40] have proven that, in 

case of large enough number of random samples the error for approximation can be minimal. In our 

experiments, in order to avoid any inconsistencies, (1) we use 10,000 random samples of each 

dataset to calculate each metric; so that the scaled mean of the random samples can converge into a 

normal distribution with minimal approximation error. (2) In order to ensure a symmetric skewness 

of the distribution of each random sample, we calculated the Median Absolute Deviation (MAD) of 
the sample. In our experiments, we did not encounter a situation where the MAD showed any 

asymmetry in the distributions of the random samples, possibly due to the largeness of the sample 

population. As a result, in our experiments, following the footsteps of Demśar et al. [39] and 

Mohammadi et al. [37] we used the sample means for the non-parametric statistical tests. 
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significant. Formally, following the same notations for 𝑆𝑐𝐺𝑖𝑁𝑎𝑀𝑏
, 𝑆𝑐𝐺𝑗𝑁𝑎𝑀𝑏

, and 

𝛿𝑁𝑎
as discussed above, ranking the differences based on their absolute values, and 

assuming 𝑟+ be the sum of ranks where 𝛿𝑁𝑎
> 0 and 𝑟− be the sum of ranks where 

𝛿𝑁𝑎
< 0; and the cases for 𝑆𝑐𝐺𝑖𝑁𝑎𝑀𝑏

= 𝑆𝑐𝐺𝑗𝑁𝑎𝑀𝑏
are split equally among the two 

groups, we can define 𝑟+and 𝑟−as: 

     𝑟+ = ∑ 𝑟𝑎𝑛𝑘(𝛿𝑁𝑎
) +

1

2𝛿𝑁𝑎>0 ∑ 𝑟𝑎𝑛𝑘(𝛿𝑁𝑎
)𝛿𝑁𝑎=0                     (4.22) 

    𝑟− = ∑ 𝑟𝑎𝑛𝑘(𝛿𝑁𝑎
) +

1

2𝛿𝑁𝑎<0 ∑ 𝑟𝑎𝑛𝑘(𝛿𝑁𝑎
)𝛿𝑁𝑎=0        

Considering, 𝑇 = min(𝑟+, 𝑟−), the test statistic 𝑧 for the Wilcoxon signed ranks 

test for the number of datasets N > 25 is calculated as: 

𝑧 =  
𝑇− 

1

4
𝑁(𝑁+1)

√
1

24
𝑁(𝑁+1)(2𝑁+1)

     (4.23) 

The test statistic for Wilcoxon signed ranks test approximately follows the normal 

distribution. The null hypothesis 𝐻0 is rejected in case the p-value corresponding 

to the test statistic is less than the threshold 𝛼. As per Demšar et al. [39], Wilcoxon 

signed ranks test is safer than paired t-tests as not only it does not make any 

assumptions regarding the normal distribution of the data, but also, outliers do not 

impact the Wilcoxon test as much as the paired t-test. Following the guidelines of 

Demšar et al. [39], in our experiments alongside t-tests, we use the Wilcoxon signed 

ranks test for pairwise comparisons among the DR algorithms.  

In order to validate the efficiency of the Wilcoxon test, we also calculate the 

McNemar’s test statistic [37] for pairwise comparisons among the algorithms. 

When comparing two algorithms 𝐺𝑖 and 𝐺𝑗 for metric 𝑀𝑏 over 𝑁 datasets, 

considering 𝑁01is the number of datasets where the performance of 𝐺𝑗 is better than 

𝐺𝑖 and 𝑁10 is otherwise, The McNemar’s asymptotic test statistic is calculated as: 

𝜒2 = 
(𝑁01−𝑁10)2

𝑁01+𝑁10
    (4.24) 

The statistic follows a 𝜒2 distribution with one degree of freedom under 𝐻0. 
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4.1.3.2 Comparisons of Multiple Algorithms 

When comparing the performances of all 𝐺 algorithms for a given metric 𝑀𝑏, the 

null hypothesis 𝐻0 is there are no differences in the overall performances of any of 

the 𝐺 algorithms for the metric 𝑀𝑏. The alternative hypothesis 𝐻𝑎  is, there is at least 

one algorithm among all the algorithms that behaves differently than others. In 

order to identify such algorithms, researchers often use repeated measures of 

pairwise comparisons (e.g., repeated paired t-tests) among each pair of 𝐺𝑖 and 

𝐺𝑗  algorithms [39]. However, this approach often suffers from the challenge of 

multiple hypothesis testing [31], where the probability of the Type I error increases 

with the number of comparisons. In order to avoid such problems, Demśar et al. 

[39] have suggested making adjustments to the threshold 𝛼 so that the p-value of 

the test statistic is also adjusted to accommodate all pairs of hypotheses. However, 

often these adjustments lack statistical power due to their conservative nature [37]. 

As a result, more specialized algorithms exist to evaluate the statistically significant 

differences between multiple algorithms. Among such null hypothesis significance 

testing techniques, initially, omnibus tests such as the ANOVA (parametric) or 

Friedman’s test (non-parametric) tests are used to identify if there is at least one 

algorithm whose performance is significantly different than the others. These 

omnibus tests are then followed by post-hoc [37] tests, as the omnibus tests do not 

identify the algorithm that is different. 

While comparing multiple algorithms, the most common statistical test used is 

repeated measures of ANOVA (Analysis of Variance) [31] to compare the 

differences between the mean performances of multiple algorithms on a chosen 

metric. ANOVA considers the variability within each sample (i.e., for 𝑆𝑐𝐺𝑖𝑁𝑎𝑀𝑏
 it 

is the variability in the scores for the same 𝐺𝑖) and between the samples (i.e., for 

𝑆𝑐𝐺𝑖𝑁𝑎𝑀𝑏
it is the variability in the scores of all 𝐺𝑖 in 𝐺) in order to distinguish the 

statistical significance between their means. ANOVA being a parametric test, the 

underlying assumptions regarding the normality of the sample values determine the 

reliability of the results of the test. Hence, researchers such as Demśar et al. [39] 

and Mohammadi et al. [37] suggest, the non-parametric counterpart of repeated 
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measures of ANOVA, the Friedman test should be used. 

In the Friedman test instead of using the actual performance scores (i.e., 𝑆𝑐𝐺𝑖𝑁𝑎𝑀𝑏
) 

for evaluating the algorithms, at first, the scores are ranked based on their value 

with 1 being the highest rank. For algorithms that produce the same scores, mean 

ranks are assigned. Formally, assuming 𝐹𝑟𝐺𝑖𝑁𝑎𝑀𝑏
be the Friedman rank of the 𝐺𝑖

𝑡ℎ  

algorithm on the 𝑁𝑎
𝑡ℎ dataset for the 𝑀𝑏

𝑡ℎ metric. The Friedman statistic compares 

the mean ranks 𝜇𝐹𝑟̅̅̅̅ 𝐺𝑖𝑁𝑎𝑀𝑏
 of all algorithms on the 𝑀𝑏

𝑡ℎ metric. Considering 𝐻0 the 

Friedman statistic is calculated as: 

𝜒𝐹
2 = 

12𝑁

𝐺(𝐺+1)
[∑ 𝜇𝐹𝑟̅̅̅̅ 𝐺𝑖𝑁𝑎𝑀𝑏

2
𝑖 − 

𝐺(𝐺+1)2

4
]         (4.25) 

Although the test statistic reduces the probability of the Type I error, it increases 

the probability of the Type II error. Hence, the test statistic was updated [39] by 

Iman and Davenport as: 

𝐹𝑟 = 
(𝑁−1)𝜒𝐹

2

𝑁(𝐺−1)−𝜒𝐹
2       (4.26) 

In situations where the null hypothesis is rejected for comparisons among multiple 

algorithms, to identify the algorithms that differ from others, post-hoc tests for 

pairwise comparisons among the ranks of algorithms are performed. However, in 

this situation due to the challenge of multiple hypotheses testing, adjustments to the 

p-values and the threshold 𝛼 are made. The most common adjustment to the p-

values is the Nemenyi correction [37]. In this adjustment, the threshold 𝛼 and the 

p-values are divided by the total number of pairwise comparisons among the 

algorithms. Nevertheless, Nemenyi adjustment being conservative, in some cases it 

can increase the probability of the Type II error. Hence, an alternative to the 

Nemenyi correction is the Holm procedure [37]. This procedure iteratively selects 

the most significant p-value among all the test statistics of pairwise combinations 

and divides the p-value with 
𝛼

𝐺−1
. The corresponding null hypothesis is rejected in 

case the selected p-value is less than 
𝛼

𝐺−1
. In the next iteration, the next most 

significant p-value is selected. In our experiments we perform both Nemenyi and 
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Holm adjustments and compare the results. 

4.2 Experimental Setup 

In our experiments, we compared 15 DR techniques by empirically evaluating them 

on 40 high-dimensional real-life datasets. Subsequently, we assessed the quality of 

the low dimensional embedding obtained from applying the algorithms for 12 

different contextual metrics. In this section, we discuss the setup for our 

experiments. At first, we discuss the algorithms that are compared during our 

experiments, then the datasets that were chosen for our study, and finally, we 

explain our experimental procedure in detail. 

4.2.1 Algorithms 

DR being a popular research area, a large number of techniques exist that assist 

with transforming high-dimensional datasets into their low dimensional 

embedding. On the one hand, whilst some of the existing DR algorithms have 

existed for more than twenty years (e.g., PCA [41], non-metric MDS or nMDS [42]) 

that are still used [11], some are newly proposed algorithms (e.g., t-SNE [26], 

UMAP [2], LargeVis [13]) that have become exceedingly popular in the past few 

years. On the other hand, as discussed earlier, different DR algorithms have 

different properties (e.g., linear or non-linear) that approach the problem of 

reducing data dimensions differently. Making empirical comparisons among all 

existing DR algorithms would be beyond the scope of any single research. Hence, 

for our experiments, we included 15 state-of-the-art DR algorithms6 from a large 

umbrella of categories. The algorithms were selected as a blend of both long-

existing and newly proposed algorithms with different properties. Table 4.2 

presents a list of the selected algorithms along with their properties and respective 

parameter settings used in our experiments. It is important to note that, in our 

 
6 PCA and most NLDR techniques (e.g., t-SNE, UMAP, MDS, Isomap, KernelPCA etc.) are unsupervised 

[24], [43]. That is the existence of labels in the input data neither has any impact on the proximity detection 
among points nor on the overall transformation. Nevertheless, in the past few years in order enrich the 
embeddings with class-separations, supervised versions of some popular NLDR techniques (e.g., t-SNE, 
nMDS, Isomap UMAP, LEM, LLE) were proposed. However, in the scope this research, we focus on the 
traditional unsupervised versions of the NLDR algorithms. 
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experiments only one linear and 14 NLDR techniques were considered. The 

primary reason being as we only work with real-world datasets and linear DR 

techniques cannot effectively handle [3] the highly non-linear nature of such data, 

following the guidelines of Maaten et al. [3] we mainly focus on NLDR techniques. 

However, PCA being the most popular linear DR technique, we also include PCA 

in our experiments. 

Alongside the properties, in Table 4.2 we also discuss the computational 

complexity of each algorithm. The computational complexity of DR is an important 

aspect of an algorithm as it helps us to determine the feasibility of using the 

algorithm on large datasets. Table 4.2 shows that in the case of only PCA the 

complexity depends on the number of original dimensions in the input dataset. On 

the other hand, KPCA [44] and nMDS [42] seem to be the most expensive 

algorithms in terms of computational cost and LargeVis [13], 8 Core-t-SNE [45], 

and FIt-SNE [18] seem to be the least expensive with linear complexity. The other 

three columns presenting the properties of the algorithms specify whether the 

algorithms are linear or non-linear, locally or globally focused, and matrix 

factorization or neighborhood analysis based. The parameter settings of the listed 

algorithms specify the range of values used for their hyper-parameters in our 

experiments. These parameter settings were determined using an exhaustive grid-

search. Such grid-search techniques have been popularly used [3], [46] by 

researchers when determining parameters of different algorithms. The target 

dimensionality of all the algorithms were decided for the datasets using the 

maximum likelihood intrinsic dimensionality estimator [47] following a common 

practice among researchers [3] for evaluating DR algorithms. 

4.2.2 Datasets 

In order to evaluate the selected DR algorithms, we have compiled 39 real-world 

datasets, from a wide range of open-source data repositories such as UCI Machine 

Learning Library [48], Kaggle Data Repository [49], National Cancer Registration 
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Table 4.2: Properties and Parameter Settings for the Chosen DR Algorithms 

 Properties 
Parameter Settings of the 

Algorithms for Experiments 
Technique Complexity Linear/ 

nonlinear 

Local/ 

global 

Approach 

UMAP O(dn1.14) nonlinear local neighbor analysis 5 ≤ k ≤ 25, 0.5 ≤ min_dist ≤ 0.99 

t-SNE O(n2) nonlinear local neighbor analysis 5 ≤ perplexity ≤ 30 

FIt-SNE O(n) nonlinear local neighbor analysis 5 ≤ perplexity ≤ 30 

PCA O(D3) linear local matrix factorization none 

Trimap O(n1.14) nonlinear global triplet mapping 25 ≤ k ≤ 50 

McoretSNE O(logn) nonlinear local neighbor analysis 5 ≤ perplexity ≤ 30, n_jobs = 8 

Isomap O(n3) nonlinear global neighbor analysis 5 ≤ k ≤ 15 

KPCA O(n3) nonlinear global matrix factorization 𝜅 = (𝑋𝑋𝑇 + 1)5 

LEM O(dn2) nonlinear local neighbor analysis 5 ≤ k ≤ 15, 𝜎 = 1 

LTSA O(dn2) nonlinear local neighbor analysis + PCA 5 ≤ k ≤ 15 

nMDS O(n3) nonlinear global matrix factorization 300 ≤ max_iter ≤ 500 

HLLE O(dn2) nonlinear local neighbor analysis 5 ≤ k ≤ 15 

LLE O(dn2) nonlinear local neighbor analysis 5 ≤ k ≤ 15 

LargeVis O(n) nonlinear global neighbor analysis 5 ≤ k ≤ 25 

MVU O((nk)3) nonlinear global neighbor analysis 5 ≤ k ≤ 15 

Note: In the table above the symbols n, D, d, and k represent the number of samples in the 

data, the dimensionality of the high-dimensional dataset, the intrinsic dimensionality of the 

dataset, the number of nearest neighbors respectively. 

Full forms of acronyms are as follows: UMAP: Uniform Manifold Approximation and 

Projection, t-SNE: t-distributed Stochastic Neighbor Embedding, FIt-SNE: Fast Fourier 

Transform Accelerated Interpolation Based t-SNE, PCA: Principal Component Analysis, 

Trimap: Triplet Mapping, McoretSNE: Multicore t-SNE with 8 cores, Isomap: Isometric 
Feature Mapping, KPCA: Kernel PCA, LEM: Laplacian Eigenmap, LTSA: Local Tangent 

Space Alignment, nMDS: non-metric Multidimensional Scaling, LLE: Local Linear 

Embedding, HLLE: Hessian LLE, LargeVis: Visualizing Large Scale and High 
Dimensional Data, MVU: Maximum Variance Unfolding, min_dist: minimum distance, 

max_iter: maximum number of iterations. 

and Analysis Service (NCRAS)7, European Structural and Investment Funds8, 

Taylor & Francis 9, Open Government Canada10, Australian Government Open 

Datasets11, data.world repository, and Figshare data repository. Besides, we 

obtained one (closed) real-world dataset from our industrial partner IBM. Table 4.3 

summarizes the overall statistics and associated analytical tasks of the selected 

 
7 http://www.ncin.org.uk/ 
8 https://ec.europa.eu/ 
9 https://www.tandfonline.com/ 
10 https://open.canada.ca 
11 https://data.gov.au/ 
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datasets. 14 of the chosen open-source datasets belong to the OpenML [50] dataset 

compilation. To strategically simulate our experiments, we decided to build a 

common set of selection criteria for the datasets that could be used in our study. 

Firstly, we chose tabular datasets with numeric or categorical data, as DR 

techniques [2], [17], [26], [51] are not directly applicable to textual data. Secondly, 

as shown in Table 4.3, we selected datasets that contained at least 10,000 records. 

The primary reason behind this selection criterion was, Mohammadi et al. [37] 

show that, for statistical significance tests to be reliable, they not only require 

enough number of data samples to compare, but also require a sufficient number of 

executions [36] for different samples from the same dataset. Finally, based on the 

guidelines of Demšar et al. [39], our last selection criteria was that we only choose 

real-world datasets and ignored artificial data. As artificially created datasets 

usually make certain assumptions regarding the data distributions of real-world 

datasets, this could add further bias to the analysis. A point to note is, all the selected 

datasets belong to business, computer, physical, medicine, geological, or social 

sciences domain and are not image data. We purposefully ignored working with 

image datasets as a large portion of the existing research [3], [17] on the evaluation 

of DR methods are focused only on image datasets. Moreover, the datasets used in 

our experiments were designed for classification, regression, or clustering purposes. 

4.2.3 Experimental Methodology 

Once the algorithms and the datasets were finalized, we executed all the algorithms 

for each dataset and empirically evaluated them for each of the contextual metrics 

discussed in Section 4.1.2. Next, in order to identify the replicability of the obtained 

results, we performed statistical significance testing. Formally, as discussed in 

Section 4.1.2, in this experimental study, 𝐺 = 15, 𝑁 = 40, 𝑎𝑛𝑑 𝑀 = 12. 

Algorithm 4.1 presents the overall procedure of our experimental methodology. As 

shown in Algorithm 4.1, our entire experimental process is divided into two phases. 

In the first phase, we record the performance of each of the 𝐺 algorithms on all 

datasets for each of the contextual metrics 𝑀 (cf. Algo:4.1, lines: 1-15). In order to 
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Table 4.3: Statistics of the Datasets 

No. Dataset 
# 

Records 

# 

Dimensions 
Domain Source 

Associated Tasks 

(Classification - 

Clsf, Clustering – 

Clst, Regression - 

Reg)  

1 Renewal Sales 1,354,704 15 Business IBM Clsf, Clst 

2 Poker-hands 1,025,010 11 Social Kaggle Clsf 

3 SUSY 1,000,000 18 Physical UCI repository Clsf 

4 Online Retail 541,909 8 Business UCI repository Clsf, Clst 

5 Geo Unit Area 399,787 162 Geological https://data.world Clst 

6 Black Friday 166,821 10 Social Kaggle Clsf, Clst 

7 Weather Australia 142,193 24 Social Kaggle Clsf 

8 Postures 78,095 38 Computer Kaggle Clsf, Clst 

9 Connect-4 67,557 42 Social UCI repository Clsf 

10 Travel Insurance 63,326 11 Social Kaggle Clsf, Clst 

11 Aps-Failure 60,000 171 Computer UCI repository Clsf 

12 Cancer Diagnosis 58,972 88 Medicine NCRAS Clst 

13 Shuttle 58,000 9 Physical UCI repository Clsf 

14 TAFL_LTAF 51,749 34 Business https://open.canada.ca Clsf, Clst 

15 Adult 48,842 14 Social Kaggle Clsf 

16 Virome Assessment 48,804 68 Medicine Figshare Clst 

17 Electricity 45,312 9 Social UCI repository Clsf, Reg 

18 Bank 45,211 17 Business UCI repository Clsf 

19 ESIF 2014-20  43,592 64 Business https://ec.europa.eu/ Clsf 

20 News 39,797 61 Business UCI repository Clsf, Reg 

21 Nomao 34,465 120 Computer UCI repository Clsf 

22 Amazon Emp-Access 32,769 10 Social Kaggle Clsf, Clst 

23 Credit Card 30,000 24 Business Kaggle Classification 

24 RBM10 lung cancer 26,021 112 Medicine Figshare Clst 

25 E-commerce 23,486 10 Social Kaggle Clsf, Clst 

26 Electricity Australia 22,952 49 Social https://data.gov.au/ Clsf, Clst 

27 Occupancy Detection 20,560 7 Computer UCI repository Clsf 

28 Letter Recognition 20,000 16 Computer UCI repository Clsf 

29 Magic 19,020 11 Physical Kaggle Clsf 

30 HTRU 17,898 9 Physical UCI repository Clsf, Clst 

31 Mozilla4 15,546 6 Computer OpenML Clsf 

32 Brain Tumor  15,273 20 Medicine Taylor & Francis Clst 

33 Bankruptcy 15,002 65 Business Kaggle Clsf, Clst 

34 EEG_eye_state 14,980 15 Social UCI repository Clsf 

35 Sylva Agnostic 14,395 217 Computer OpenML Clst 

36 Gas_Drift 13,910 129 Computer UCI repository Clsf 

37 Shoppers Intension 12,330 18 Business UCI repository Clsf, Clst 

38 Epileptic Seizure 11,500 179 Medicine UCI repository Clsf, Clst 

39 Phishing Websites 11,056 32 Computer UCI repository Clsf 

40 JM1 10,885 22 Computer OpenML Clsf, Clst 

do this, before transforming each dataset 𝑋 to its embedding 𝑌, we estimate the 

intrinsic dimensionality 𝑑 of 𝑋 using the Levina–Bickel’s technique [47] for 

maximum likelihood intrinsic dimensionality estimator defined as: 
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�̂� =
1

𝑘2−𝑘1+1
∑ �̂�𝑘   𝑤ℎ𝑒𝑟𝑒, 

𝑘2

𝑘=𝑘1
�̂�𝑘 =

1

𝑛
∑ 𝑑𝑘(𝑋)

𝑛

𝑖=1
                              

(4.27) 

where, �̂� represents a unit vector with an estimation for 𝑑, and (𝑘2 − 𝑘1) signifies 

the range of nearest neighbors that were considered while estimating 𝑑. This pre-

processing is necessary [3], [47], [52] as, the estimation of 𝑑 prior to obtaining 𝑌 

not only ensures noise reduction [52], [53] in 𝑌, but also enhances the stability [47] 

of 𝑌. Next, we execute the algorithms on 10,000 simple random samples (i.e., 

without replacement) of each dataset, calculate the scores 𝑆𝐺𝑖𝑁𝑎𝑀𝑏
 for each context, 

and record the mean scores 𝜇𝑆̅𝐺𝑖𝑁𝑎𝑀𝑏
for each metric. The sample size 𝑢𝑎 for each 

dataset is selected in the preprocessing step using the chosen confidence level (cf. 

Algo:4.1, line: iii), with the formula defined by Daniel et al. [54] as: 

𝑢𝑎 =
|𝑁𝑎|∗𝐸

(𝐸+|𝑁𝑎|−1)
      (4.28) 

where, 𝐸 =  
𝑍𝛼/22 ∗ 𝑝𝑟 ∗ (1 − 𝑝𝑟)

𝑀𝑂𝐸2⁄        

and, 𝑍𝛼/2 is the critical value of the normal distribution at α/2 (e.g. for a confidence 

level of 95% and α of 0.05, the predefined critical value is 1.96), 𝑀𝑂𝐸 is the margin 

of error, 𝑝𝑟 is the sample proportion, and |𝑛𝑎| is the population size (i.e., the 

cardinality of the original dataset 𝑛𝑎 ∈ 𝑁). One might argue that the viability scores 

for datasets from different domains might not commensurate. Following the 

guidelines of Demśar et al. [39], we address this challenge by restricting the 

domains, size, and type of the selected datasets. Moreover, researchers [37] have 

also argued that sometimes the mean score over many datasets might susceptible to 

outliers. That is, an algorithm’s poor performance on one dataset can affect the 

mean of its overall performance. To avoid this problem, as discussed by Arcuri et 

al. [36] we selected large enough number (i.e., 40) of datasets to regularize the 

impact of an algorithm’s unusual performance on only one dataset. Apart from the 

mean scores 𝜇𝑆�̅�𝑖𝑁𝑎𝑀𝑏
 for each metric (cf. Algo:4.1, line:13), we also record that 

standard deviation 𝜎𝑆𝐺𝑖𝑁𝑎𝑀𝑏
for the performances of each algorithm on each dataset. 
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ALGORITHM 4.1: Experimental Procedure 

Input:  Datasets 𝑁 = {𝑁1, 𝑁2, … , 𝑁40}, DR algorithms 𝐺 = {𝐺1, 𝐺2, … , 𝐺15}, and 

Metrics 𝑀 = {𝑀1, 𝑀2, … , 𝑀12} 

Output: Values for 𝑀 for all 𝐺, Test statistics for null hypothesis significance 

testing for all 𝐺 

Preprocessing: 

i. foreach 𝑁𝑖 ∈ 𝑁 do: 

ii. Identify intrinsic dimensions using maximum likelihood intrinsic 

dimensionality estimator 

iii. Given the confidence score identify sample size for experiments 

iv. foreach 𝐺𝑖 ∈ 𝐺 do: 

v.  Exhaustive grid-search to identify the values for their hyper-

parameters 

vi. end 

vii. end 

Process: 

1. foreach 𝑁𝑖 ∈ 𝑁 do: 

2. for 𝑖 in range (1 to 10000): 

3.  Select 𝑆𝑖 samples from 𝑁𝑖, where, 𝑆𝑖 ⊆ 𝑁𝑖  

4.  foreach 𝐺𝑖 ∈ 𝐺 do: 

5.   Set hyper-parameters of 𝐺𝑖 for 𝑁𝑖 

6.   Execute 𝐺𝑖 with 𝑁𝑖 as input 

7.   foreach 𝑀𝑖 ∈ 𝑀do: 

8.    Calculate contextual metric 𝑀𝑖 (cf. Table 4.1) 

9.   end 

10.  end 

11. end 

12. foreach 𝐺𝑖 ∈ 𝐺, 𝑁𝑖 ∈ 𝑁, and 𝑀𝑖 ∈ 𝑀do: 

13:  Calculate mean 𝜇𝑆̅𝐺𝑖𝑁𝑎𝑀𝑏
and standard deviation 𝜎𝑆𝐺𝑖𝑁𝑎𝑀𝑏

 

14: end 

15: end 

16: foreach 𝐺𝑖 ∈ 𝐺 and 𝑁𝑖 ∈ 𝑁 do: 

17: Calculate Friedman’s rank for all algorithms (cf. Section 4.1.3) 

18:  Determine selection bias 𝑣 for all datasets (cf. Equation 4.29) 

19: end 

20: for 𝑣 in range (0 to 20) do: 

21: for i in range (0 to 1000): 

22:  Select 40 datasets at random with given selection bias 𝑣 

23: Run all statistical tests on each selected dataset (cf. Section 4.1.3 - 

Equations 4.21 to 4.26) 

24: end 

25: end 

A small 𝜎𝑆𝐺𝑖𝑁𝑎𝑀𝑏
helps us to identify the stability of the algorithm’s performance on 
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all 𝑁 datasets.  

In the second phase of the experiments (cf. Algo:4.1, lines:16-25), we perform null 

hypothesis significance testing of the experimental results obtained from phase one. 

Here, we consider the previously recorded 𝜇𝑆�̅�𝑖𝑁𝑎𝑀𝑏
and 𝜎𝑆𝐺𝑖𝑁𝑎𝑀𝑏

values for the 

algorithms to define our hypothesis for the tests. Firstly, we rank the performances 

of each algorithm (cf. Algo:4.1, line:17) using Friedman’s ranking method 

discusses in Section 4.1.3. The primary goal of this phase is to identify the best, 

mediocre, and worst-performing algorithms for a given metric, and test if the 

obtained results are statistically significant. To do this, we simulate the next phase 

of our experiments to identify the advantages or disadvantages of a specific 

algorithm over the others. Since, no algorithm can be optimal for all forty datasets, 

for this simulation, following Demšar et al. [39] and Mohammadi et al. [37], we 

iteratively select 40 datasets with replacement12 for each pairwise and overall 

comparisons (cf. Section 4.1.3) among the algorithms. In this selection process, we 

add an additional bias 𝑣 (cf. Algo:1, line: 18) to each dataset using a logistic 

function [39], so the probability of each dataset being selected is proportional to: 

 
1

1+𝑒
−𝑣(𝑆𝐺𝑖𝑁𝑎𝑀𝑏

−𝑆𝐺𝑖𝑁𝑐𝑀𝑏
)
, 𝑤ℎ𝑒𝑟𝑒 𝑎, 𝑐 ∈ 1,2, … ,40 𝑎𝑛𝑑 𝑎 ≠ 𝑐      (4.29) 

and, 𝑣 is the bias through which we regulate the selection of the datasets, and 

𝑆𝐺𝑖𝑁𝑎𝑀𝑏
− 𝑆𝐺𝑖𝑁𝑐𝑀𝑏

) is the positive or negative differences between the 

performances of each dataset. The introduction of additional selection bias in the 

form of weighted random sampling [55] is a commonly practiced approach [55]–

[58] in data analysis. The primary reason behind adding weights (or bias) to 

experimental input is: often as the input data is not uniformly distributed, a uniform 

random selection of samples may produce irrelevant results [56]. Similarly, in our 

case, the performance scores of the algorithms on none of our chosen metrics are 

 
12 The repetitive sampling of 40 datasets with replacement resembles bootstrapping [31]. However, 

the fundamental difference between our sampling technique and bootstrapping is the introduction of 

the selection bias. In bootstrapping all samples in the population have the same probability for being 

selected [31], whereas in our case for each non-zero value for bias, some datasets have more 

probability of being selected over others. 
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distributed uniformly, hence introducing a selection bias on the datasets for 

statistical significance analysis can help us put more weight on datasets that are in 

favor of the better performing algorithm. Moreover, a gradual increase in the 

selection bias can show [39], [59], [60] the differences among the two samples more 

prominently. Among several existing temporal bias functions [57], in case of 

statistical significance analysis, the most common practice [37], [39], [59], [60] is 

to use the exponential function to simulate a biased selection of datasets. Hence, we 

follow the footsteps of Demśar et al. [39], Garćia et al. [59], [60], and Mohammadi 

et al. [37], and use the exponential bias function in our experiments. 

For each pair of algorithms, the selection of datasets was repeated 1000 times (cf. 

Algo:4.1, line:21). We varied the value of bias 𝑣 from 0 to 20 and the same 

statistical experiments were performed on the selected datasets for each bias. For 

example, when 𝑣 = 0, each dataset has the same probability to be picked as the 

selection is performed uniformly at random. However, as the bias increases, the 

datasets in favor of a specific algorithm have a higher probability of being selected. 

It is important to note that, as this type of simulated experiment is a common 

practice among researchers [37], [39], we employed this practice only for the 

simulation purposes for measuring the statistical significance of one algorithm’s 

performance over the others. Whilst overall comparisons were performed among 

all algorithms, for the pairwise comparisons, in a single iteration, we only compare 

the best performing algorithm with the worst-performing algorithm. 

In order to validate our performed statistical tests, we calculated the power of each 

statistical test. As discussed by Demšar et al. [39], the power of any null hypothesis 

significance test is determined by its ability to reject a false null hypothesis. This 

power is usually associated with replicability [37] of statistical significance tests. 

Researchers often follow two different ways to analyze the replicability of the 

statistical tests. Firstly, by comparing the number of rejected null hypothesis during 

a large number of experiments; and secondly, by assessing the average p-value for 

each test statistic for a substantial number of experiments. The first type of 

replicability measure was defined by Bouckaert et al. [61] based on the average 
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number of rejected null hypotheses in a series of experiments as: 

𝑅𝑒𝑝(𝑒) =  ∑
𝐼(𝑒𝑖−𝑒𝑗)

𝑛(𝑛−1)/21≤𝑖≤𝑗≤𝑛     (4.30) 

Where I is the indicator function and 𝑒𝑖 is the (binary) outcome of the ith experiment 

(i.e., 𝑒𝑖 = 0 if the 𝐻0 is rejected for the ith experiment, and 𝑒𝑖 = 1 otherwise). The 

second type of replicability measure was defined by Demšar et al. [39] based on the 

average p-value for each experiment as: 

𝑅𝑒𝑝(𝑝) =  1 − 2
∑ (𝑝−�̅�)2

𝑖

𝑛−1
    (4.31) 

Where, �̅� is the mean p-value and 𝑝𝑖 is the p-value for the ith experiment. In our 

experiments, we use both the replicability measures. 

4.3 Experimental Results 

In this section, we present our detailed experimental results. This section is 

primarily divided into two parts; in the first part, we present the scores of each of 

the 12 metrics on the 40 datasets using Table 4.4.a to 4.4.l. Then, we summarize 

and discuss the overall performances of the 15 algorithms (cf. Section 4.2.1) for the 

12 derived metrics in Table 4.5. We also analyze the impact of additional factors 

(i.e., the input datasets and the hyperparameter combinations) that may have 

influenced the performances of the DR techniques. In the second part of this section, 

we present a thorough statistical significance analysis of our results. 

4.3.1 Performance Analysis of DR Algorithms 

The experimental results are summarized  in Table 4.5. Since scale varies across 

the quality metrics used for our experiments, in Table 4.5 we rank the performance 

of each DR algorithm using the Friedman ranking [37] method discussed in Section 

4.1.3. In Table 4.5, each row represents a contextual metric as each column signifies 

a different DR algorithm. In the table, the metrics are grouped based on their 

respective analytical contexts. Overall, Table 4.5 shows that: in terms of 

preservation of local proximity relationships, t-SNE shows the most robust 

performance with UMAP following closely behind. For metrics such as residual  
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Table 4.4: Performance scores and Friedman ranking for all twelve evaluation metrics for 
each algorithm; The performance scores for each dataset represents the mean score for its 

10,000 samples. 

Note: In the tables below, the datasets follow the same order as presented in Table 4.3 

(a) Metric 1: Residual Variance (�̂�2) 

Dataset UMAP t-SNE FIt_SNE PCA Trimap mTSNE Isomap KPCA LEM LTSA MDS HLLE LLE LVis MVU 

1 1.00 1.00 0.88 0.94 0.46 0.73 0.50 0.97 0.58 0.66 0.26 0.42 0.59 0.96 0.59 

2 1.00 1.00 0.91 0.92 0.08 0.84 0.74 0.77 0.66 0.77 0.84 0.69 0.39 0.83 0.24 

3 1.00 1.00 0.94 0.85 0.02 0.89 0.79 0.94 0.34 0.79 0.82 0.58 0.39 0.91 0.26 

4 0.96 0.95 0.87 0.85 0.02 0.92 0.65 0.73 0.54 0.64 0.45 0.28 0.48 0.78 0.08 

5 1.00 1.00 0.02 0.04 0.05 0.74 0.03 1.00 0.01 0.50 1.00 0.27 0.46 0.40 0.19 

6 0.98 0.98 0.96 0.82 0.00 0.86 0.39 0.95 0.37 0.68 0.44 0.38 0.40 0.94 0.71 

7 1.00 1.00 0.94 0.86 0.01 0.91 0.82 0.86 0.05 0.95 0.24 0.20 0.61 0.81 0.82 

8 1.00 1.00 0.93 0.84 0.16 0.94 0.78 0.80 0.65 0.95 0.22 0.59 0.23 0.73 0.03 

9 1.00 1.00 0.97 0.89 0.25 0.67 0.74 0.95 0.70 0.59 0.90 0.79 0.65 0.92 0.57 

10 1.00 1.00 0.92 0.85 0.09 0.97 0.77 0.87 0.23 0.06 0.80 0.24 0.46 0.38 0.17 

11 1.00 1.00 0.24 0.56 0.06 0.77 0.12 0.97 0.49 0.04 0.56 0.59 0.46 0.30 0.23 

12 1.00 1.00 0.13 0.70 0.03 0.41 0.56 0.96 0.71 0.77 0.03 0.98 0.01 0.29 0.19 

13 1.00 1.00 0.94 0.87 0.11 0.93 0.78 0.86 0.46 0.96 0.55 0.65 0.53 0.70 0.96 

14 1.00 1.00 0.95 0.95 0.15 0.66 0.74 0.88 0.77 0.72 0.94 0.77 0.56 0.91 0.12 

15 1.00 1.00 0.63 0.41 0.05 0.80 0.52 0.94 0.96 0.28 1.00 0.64 0.34 0.62 0.50 

16 1.00 1.00 0.79 0.74 0.01 0.83 0.25 0.94 0.03 0.23 0.69 0.59 0.29 0.52 0.18 

17 1.00 1.00 0.89 0.80 0.05 0.98 0.73 0.89 0.59 0.97 0.88 0.39 0.42 0.66 0.72 

18 1.00 1.00 0.92 0.64 0.02 0.65 0.81 0.94 0.27 0.01 0.99 0.42 0.60 0.83 0.03 

19 1.00 1.00 0.61 0.75 0.01 0.62 0.35 0.95 0.57 0.66 0.99 0.49 0.73 0.99 0.11 

20 1.00 1.00 0.82 0.73 0.03 0.66 0.77 0.84 0.88 0.73 0.09 0.64 0.38 0.96 0.40 

21 0.98 0.99 0.89 0.44 0.07 0.90 0.71 0.74 0.76 0.45 0.83 0.33 0.36 0.67 0.05 

22 0.87 0.85 0.79 0.78 0.17 0.84 0.79 0.54 0.32 0.14 0.75 0.50 0.42 0.52 0.04 

23 0.98 0.99 0.59 0.47 0.09 0.95 0.51 0.94 0.40 0.38 0.64 0.67 0.27 0.36 0.03 

24 1.00 1.00 0.86 0.46 0.01 0.47 0.07 0.98 0.64 0.49 0.30 0.83 0.00 0.99 0.53 

25 1.00 1.00 0.89 0.83 0.06 0.96 0.70 0.87 0.39 0.48 0.89 0.55 0.30 0.59 0.15 

26 1.00 1.00 0.96 0.94 0.13 0.73 0.71 0.79 0.61 0.00 0.91 0.64 0.63 0.92 0.01 

27 1.00 1.00 0.87 0.84 0.14 0.92 0.72 0.91 0.77 0.11 0.36 0.13 0.46 0.57 0.22 

28 1.00 1.00 0.94 0.80 0.10 0.91 0.70 0.86 0.34 0.92 0.85 0.47 0.49 0.78 0.36 

29 1.00 1.00 0.85 0.74 0.04 0.95 0.75 0.84 0.61 0.97 0.52 0.64 0.59 0.72 0.13 

30 1.00 1.00 0.86 0.80 0.05 0.96 0.73 0.88 0.12 0.93 0.88 0.27 0.57 0.66 0.07 

31 1.00 1.00 0.74 0.58 0.01 0.97 0.69 0.95 0.97 0.12 0.66 0.24 0.40 0.61 0.18 

32 0.94 0.93 0.65 0.52 0.11 0.88 0.47 0.88 0.55 0.48 0.90 0.13 0.31 0.57 0.10 

33 1.00 1.00 0.93 0.93 0.24 0.81 0.69 0.85 0.76 0.49 0.86 0.53 0.65 0.90 0.25 

34 1.00 0.37 0.34 1.00 0.35 0.36 0.20 0.46 0.96 0.96 0.83 0.81 1.00 0.21 0.82 

35 1.00 1.00 0.96 0.91 0.18 0.47 0.81 0.95 0.80 0.18 0.99 0.41 0.65 0.96 0.16 

36 0.99 1.00 0.73 0.61 0.04 0.83 0.46 0.95 0.01 0.00 0.97 0.80 0.44 0.67 0.06 

37 0.96 0.97 0.93 0.89 0.07 0.90 0.80 0.75 0.43 0.65 0.81 0.31 0.26 0.72 0.00 

38 0.90 0.90 0.85 0.72 0.10 0.58 0.66 0.92 0.60 0.30 0.92 0.62 0.57 0.87 0.31 

39 1.00 1.00 0.93 0.84 0.14 0.79 0.65 0.94 0.80 0.89 0.91 0.61 0.33 0.86 0.15 

40 0.85 0.81 0.79 0.93 0.06 0.77 0.69 0.43 0.47 0.77 0.75 0.18 0.62 0.31 0.58 

Rj 1.74 1.44 5.46 7.10 14.41 6.05 9.18 5.33 10.18 9.46 7.33 10.46 11.38 7.64 12.82 

(b) Metric 2: Spearman Rank Correlation (𝜌𝑠) 

Dataset UMAP t-SNE FIt_SNE PCA Trimap mTSNE Isomap KPCA LEM LTSA MDS HLLE LLE LVis MVU 

1 0.99 0.99 0.78 0.95 0.94 0.95 0.88 0.31 0.34 0.51 0.52 0.88 0.54 0.57 0.65 

2 1.00 1.00 0.88 0.79 0.82 0.92 0.95 0.90 0.64 0.27 0.81 0.59 0.75 0.76 0.46 

3 1.00 1.00 0.90 0.94 0.91 0.95 0.90 0.87 0.53 0.11 0.79 0.28 0.52 0.81 0.37 

4 0.97 0.94 0.91 0.72 0.82 0.89 0.85 0.42 0.29 0.03 0.62 0.29 0.60 0.48 0.53 

5 0.61 0.66 0.68 0.93 0.67 0.69 0.50 0.90 0.67 0.02 0.75 0.88 0.75 0.51 0.23 

6 0.96 0.95 0.86 0.90 0.90 0.91 0.87 0.54 0.34 0.01 0.66 0.66 0.58 0.45 0.37 

7 1.00 1.00 0.93 0.87 0.80 0.94 0.93 0.29 0.22 0.21 0.96 0.82 0.17 0.82 0.61 

8 1.00 1.00 0.97 0.83 0.75 0.92 0.88 0.31 0.54 0.29 0.97 0.51 0.61 0.80 0.31 

9 1.00 1.00 0.80 0.95 0.92 0.96 0.95 0.95 0.76 0.39 0.80 0.64 0.75 0.76 0.70 

10 1.00 1.00 0.98 0.88 0.52 0.92 0.92 0.81 0.30 0.19 0.72 0.09 0.48 0.77 0.48 

11 0.93 0.92 0.93 0.96 0.51 0.57 0.42 0.94 0.48 0.17 0.83 0.59 0.55 0.34 0.40 

12 0.99 0.99 0.44 0.89 0.86 0.86 0.76 0.76 0.41 0.14 0.96 0.79 0.86 0.83 0.46 
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13 1.00 1.00 0.95 0.89 0.73 0.94 0.91 0.64 0.58 0.24 0.97 0.97 0.48 0.80 0.55 

14 1.00 1.00 0.76 0.88 0.91 0.94 0.97 0.95 0.74 0.20 0.81 0.67 0.85 0.77 0.65 

15 1.00 1.00 0.50 0.83 0.87 0.87 0.72 0.99 0.51 0.21 0.88 0.82 0.91 0.85 0.50 

16 1.00 1.00 0.72 0.96 0.77 0.86 0.82 0.61 0.31 0.01 0.39 0.38 0.09 0.43 0.43 

17 1.00 1.00 0.99 0.92 0.71 0.87 0.86 0.93 0.35 0.18 0.98 0.81 0.63 0.77 0.51 

18 1.00 1.00 0.94 0.96 0.82 0.91 0.61 0.99 0.45 0.14 0.91 0.94 0.56 0.85 0.67 

19 0.99 0.98 0.76 0.82 0.96 0.93 0.74 0.94 0.45 0.05 0.78 0.69 0.68 0.74 0.50 

20 1.00 0.99 0.75 0.87 0.92 0.88 0.77 0.24 0.56 0.09 0.90 0.53 0.89 0.79 0.52 

21 0.98 0.99 0.94 0.77 0.69 0.88 0.56 0.86 0.40 0.14 0.82 0.43 0.74 0.72 0.45 

22 0.87 0.84 0.85 0.57 0.52 0.80 0.76 0.75 0.47 0.17 0.07 0.18 0.44 0.79 0.45 

23 0.97 0.98 0.93 0.92 0.57 0.74 0.70 0.84 0.53 0.04 0.64 0.65 0.39 0.69 0.39 

24 0.98 0.97 0.69 0.91 0.90 0.94 0.67 0.71 0.54 0.04 0.77 0.68 0.73 0.57 0.46 

25 1.00 1.00 0.99 0.91 0.67 0.88 0.87 0.94 0.52 0.21 0.80 0.37 0.48 0.73 0.38 

26 1.00 0.99 0.79 0.81 0.91 0.96 0.95 0.93 0.62 0.22 0.73 0.43 0.68 0.71 0.68 

27 1.00 1.00 0.98 0.96 0.73 0.87 0.78 0.43 0.25 0.16 0.60 0.33 0.81 0.76 0.50 

28 1.00 1.00 0.93 0.87 0.77 0.94 0.86 0.90 0.46 0.13 0.94 0.54 0.49 0.71 0.55 

29 1.00 1.00 0.98 0.86 0.74 0.86 0.79 0.56 0.58 0.14 0.98 0.78 0.66 0.80 0.61 

30 1.00 1.00 0.98 0.93 0.70 0.86 0.84 0.92 0.27 0.08 0.96 0.70 0.24 0.80 0.64 

31 1.00 1.00 0.99 0.98 0.75 0.73 0.59 0.81 0.24 0.07 0.53 0.02 0.99 0.72 0.44 

32 0.91 0.91 0.92 0.86 0.66 0.76 0.60 0.87 0.18 0.13 0.64 0.45 0.51 0.60 0.37 

33 1.00 1.00 0.86 0.85 0.90 0.94 0.97 0.91 0.51 0.25 0.65 0.47 0.76 0.71 0.72 

34 0.86 0.78 0.78 0.44 0.49 0.80 0.96 0.79 0.15 0.04 0.78 0.68 0.45 0.72 0.64 

35 1.00 1.00 0.94 0.95 0.95 0.96 0.95 0.99 0.43 0.32 0.90 0.70 0.84 0.86 0.66 

36 0.97 0.98 0.81 0.91 0.73 0.81 0.77 0.92 0.61 0.02 0.43 0.65 0.07 0.60 0.46 

37 0.96 0.97 0.92 0.78 0.72 0.93 0.91 0.86 0.34 0.11 0.88 0.40 0.48 0.79 0.30 

38 0.89 0.88 0.89 0.94 0.86 0.84 0.74 0.91 0.65 0.03 0.75 0.70 0.61 0.68 0.58 

39 1.00 1.00 0.85 0.94 0.85 0.93 0.90 0.94 0.57 0.25 0.92 0.66 0.79 0.65 0.44 

40 0.75 0.75 0.95 0.78 0.69 1.00 1.00 0.87 0.74 0.75 0.34 0.59 0.64 0.90 1.00 

Rj 2.08 1.87 5.90 5.67 7.74 5.00 7.28 6.77 12.51 14.85 7.33 10.85 10.38 9.49 12.28 

(c) Metric 3: Mean K-ary neighborhood agreement (𝜇𝑅𝑛𝑋
) 

Dataset UMAP t-SNE FIt_SNE PCA Trimap mTSNE Isomap KPCA LEM LTSA MDS HLLE LLE LVis MVU 

1 0.92 0.87 0.24 0.63 0.42 0.68 0.70 0.50 0.26 0.29 0.33 0.62 0.57 0.31 0.28 

2 1.00 0.98 0.71 0.77 0.27 0.67 0.73 0.65 0.46 0.62 0.56 0.52 0.45 0.37 0.18 

3 0.99 0.97 0.67 0.67 0.27 0.73 0.80 0.67 0.41 0.57 0.59 0.76 0.23 0.15 0.10 

4 0.73 0.73 0.23 0.64 0.34 0.49 0.66 0.57 0.27 0.40 0.29 0.43 0.21 0.40 0.02 

5 0.40 0.39 0.51 0.32 0.16 0.47 0.48 0.49 0.38 0.10 0.34 0.56 0.06 0.38 0.02 

6 0.85 0.78 0.35 0.71 0.24 0.66 0.69 0.63 0.27 0.50 0.29 0.55 0.51 0.45 0.02 

7 0.99 0.97 0.25 0.71 0.42 0.63 0.79 0.69 0.20 0.81 0.60 0.66 0.59 0.18 0.15 

8 1.00 0.95 0.26 0.65 0.21 0.55 0.76 0.66 0.45 0.76 0.56 0.51 0.36 0.39 0.16 

9 1.00 0.99 0.79 0.73 0.46 0.76 0.88 0.61 0.54 0.59 0.58 0.78 0.55 0.60 0.24 

10 0.96 0.90 0.57 0.67 0.33 0.31 0.76 0.65 0.33 0.49 0.48 0.55 0.17 0.36 0.14 

11 0.68 0.69 0.61 0.33 0.25 0.38 0.42 0.66 0.34 0.16 0.32 0.61 0.16 0.39 0.05 

12 0.88 0.88 0.57 0.52 0.32 0.64 0.66 0.21 0.27 0.71 0.62 0.65 0.26 0.51 0.12 

13 0.99 0.95 0.43 0.68 0.35 0.55 0.79 0.66 0.45 0.79 0.53 0.53 0.76 0.41 0.17 

14 0.98 0.98 0.78 0.83 0.42 0.73 0.85 0.59 0.55 0.67 0.59 0.67 0.05 0.61 0.14 

15 0.99 0.99 0.90 0.60 0.30 0.80 0.82 0.30 0.39 0.02 0.65 0.63 0.00 0.69 0.16 

16 0.96 0.93 0.45 0.71 0.33 0.66 0.80 0.53 0.23 0.25 0.23 0.74 0.25 0.09 0.06 

17 0.99 0.92 0.62 0.63 0.33 0.46 0.73 0.69 0.31 0.78 0.57 0.53 0.50 0.42 0.15 

18 0.98 0.94 0.84 0.44 0.44 0.66 0.76 0.71 0.37 0.05 0.61 0.66 0.07 0.43 0.11 

19 0.95 0.95 0.79 0.54 0.33 0.76 0.81 0.47 0.38 0.50 0.61 0.55 0.32 0.39 0.03 

20 0.93 0.94 0.29 0.55 0.32 0.76 0.74 0.54 0.37 0.30 0.60 0.61 0.26 0.61 0.01 

21 0.89 0.84 0.57 0.39 0.31 0.46 0.70 0.62 0.33 0.55 0.45 0.43 0.07 0.50 0.11 

22 0.64 0.62 0.51 0.54 0.29 0.35 0.54 0.52 0.33 0.01 0.50 0.27 0.00 0.26 0.06 

23 0.87 0.83 0.52 0.55 0.25 0.42 0.58 0.71 0.43 0.06 0.52 0.55 0.03 0.24 0.02 

24 0.79 0.81 0.41 0.50 0.30 0.64 0.72 0.44 0.30 0.51 0.28 0.63 0.39 0.43 0.01 

25 0.98 0.93 0.63 0.65 0.23 0.42 0.71 0.70 0.45 0.57 0.48 0.51 0.01 0.28 0.13 

26 0.91 0.91 0.65 0.73 0.46 0.73 0.82 0.57 0.48 0.01 0.50 0.61 0.01 0.47 0.15 

27 0.96 0.89 0.31 0.57 0.31 0.42 0.70 0.69 0.27 0.41 0.54 0.57 0.06 0.50 0.11 

28 0.99 0.97 0.63 0.63 0.37 0.64 0.79 0.69 0.38 0.74 0.52 0.62 0.42 0.28 0.11 

29 0.98 0.95 0.31 0.55 0.41 0.54 0.65 0.70 0.49 0.83 0.53 0.51 0.52 0.38 0.12 

30 0.97 0.91 0.68 0.57 0.40 0.51 0.72 0.68 0.29 0.71 0.55 0.56 0.43 0.31 0.06 

31 0.96 0.85 0.55 0.48 0.24 0.42 0.57 0.65 0.30 0.39 0.47 0.61 0.06 0.66 0.07 

32 0.75 0.72 0.67 0.49 0.24 0.51 0.58 0.69 0.26 0.43 0.45 0.56 0.35 0.38 0.05 

33 0.76 0.74 0.58 0.72 0.38 0.64 0.65 0.49 0.38 0.39 0.45 0.51 0.31 0.43 0.16 

34 0.64 0.60 0.50 0.82 0.44 0.30 0.56 0.46 0.21 0.45 0.43 0.20 0.38 0.26 0.05 

35 0.95 0.94 0.90 0.75 0.44 0.86 0.89 0.80 0.28 0.73 0.66 0.81 0.49 0.69 0.20 



 

  

106 

36 0.88 0.85 0.70 0.56 0.34 0.61 0.72 0.52 0.48 0.00 0.47 0.60 0.02 0.20 0.04 

37 0.86 0.86 0.57 0.74 0.20 0.52 0.75 0.66 0.34 0.59 0.53 0.48 0.03 0.34 0.11 

38 0.76 0.76 0.77 0.58 0.42 0.73 0.72 0.71 0.48 0.11 0.50 0.74 0.13 0.42 0.04 

39 0.99 0.99 0.79 0.69 0.33 0.69 0.82 0.60 0.50 0.74 0.53 0.75 0.55 0.60 0.18 

40 0.74 0.70 1.00 1.00 0.99 0.32 0.69 0.68 0.46 0.52 0.65 0.58 0.51 0.38 0.71 

Rj 2.13 3.41 4.92 6.74 12.49 5.87 3.33 6.64 8.95 9.41 8.46 11.54 11.64 9.92 14.54 

(d) Metric 4: Local quality criteria (𝑄𝑙𝑜𝑐𝑎𝑙) 

Dataset UMAP t-SNE FIt_SNE PCA Trimap mTSNE Isomap KPCA LEM LTSA MDS HLLE LLE LVis MVU 

1 0.71 0.72 0.43 0.50 0.18 0.67 0.60 0.37 0.33 0.33 0.55 0.31 0.36 0.48 0.32 

2 0.99 0.77 0.90 0.89 0.13 0.59 0.95 0.40 0.36 0.65 0.55 0.72 0.72 0.57 0.30 

3 0.96 0.75 0.80 0.82 0.09 0.68 0.87 0.60 0.21 0.75 0.59 0.86 0.76 0.54 0.31 

4 0.54 0.66 0.43 0.42 0.02 0.48 0.50 0.28 0.42 0.17 0.52 0.34 0.37 0.50 0.22 

5 0.19 0.60 0.30 0.28 0.11 0.48 0.17 0.24 0.23 0.11 0.38 0.12 0.35 0.39 0.12 

6 0.90 0.73 0.70 0.53 0.03 0.73 0.70 0.39 0.38 0.56 0.64 0.60 0.39 0.50 0.25 

7 0.96 0.75 0.84 0.78 0.12 0.69 0.88 0.46 0.39 0.78 0.60 0.87 0.71 0.44 0.32 

8 0.98 0.73 0.78 0.65 0.08 0.66 0.84 0.31 0.37 0.67 0.67 0.79 0.66 0.61 0.31 

9 0.99 0.76 0.96 0.93 0.17 0.71 0.96 0.56 0.82 0.93 0.64 0.89 0.62 0.50 0.33 

10 0.90 0.68 0.75 0.51 0.10 0.32 0.75 0.33 0.51 0.54 0.62 0.58 0.56 0.42 0.34 

11 0.41 0.52 0.45 0.39 0.05 0.38 0.40 0.31 0.30 0.04 0.43 0.04 0.39 0.38 0.19 

12 0.74 0.79 0.56 0.25 0.17 0.67 0.63 0.38 0.36 0.10 0.50 0.48 0.53 0.58 0.21 

13 0.95 0.73 0.81 0.67 0.12 0.70 0.87 0.32 0.70 0.74 0.61 0.82 0.62 0.64 0.30 

14 0.81 0.73 0.67 0.81 0.10 0.71 0.80 0.48 0.78 0.03 0.67 0.69 0.57 0.55 0.35 

15 0.94 0.80 0.65 0.30 0.11 0.71 0.91 0.35 0.47 0.01 0.56 0.03 0.56 0.53 0.27 

16 0.82 0.78 0.60 0.68 0.05 0.72 0.73 0.46 0.33 0.21 0.58 0.19 0.16 0.55 0.31 

17 0.93 0.74 0.81 0.53 0.10 0.54 0.74 0.29 0.57 0.54 0.59 0.71 0.60 0.49 0.33 

18 0.90 0.69 0.71 0.62 0.10 0.69 0.81 0.43 0.55 0.01 0.62 0.01 0.55 0.54 0.42 

19 0.89 0.79 0.73 0.51 0.05 0.70 0.84 0.29 0.43 0.18 0.55 0.34 0.61 0.61 0.27 

20 0.68 0.72 0.54 0.65 0.01 0.75 0.67 0.43 0.37 0.21 0.50 0.09 0.59 0.46 0.30 

21 0.88 0.70 0.64 0.50 0.09 0.58 0.69 0.26 0.43 0.10 0.59 0.43 0.54 0.56 0.33 

22 0.42 0.59 0.39 0.43 0.02 0.59 0.43 0.15 0.33 0.01 0.53 0.01 0.38 0.50 0.27 

23 0.62 0.59 0.41 0.47 0.02 0.49 0.59 0.28 0.21 0.01 0.54 0.00 0.41 0.45 0.21 

24 0.46 0.66 0.44 0.48 0.13 0.69 0.50 0.42 0.35 0.26 0.54 0.43 0.29 0.41 0.32 

25 0.87 0.65 0.80 0.79 0.11 0.50 0.77 0.27 0.34 0.01 0.62 0.44 0.59 0.51 0.30 

26 0.63 0.68 0.61 0.63 0.11 0.69 0.66 0.44 0.56 0.01 0.49 0.00 0.51 0.48 0.27 

27 0.85 0.67 0.61 0.53 0.10 0.36 0.68 0.28 0.46 0.08 0.65 0.32 0.49 0.55 0.40 

28 0.96 0.76 0.85 0.74 0.10 0.71 0.87 0.46 0.34 0.84 0.60 0.85 0.67 0.56 0.39 

29 0.89 0.74 0.68 0.70 0.12 0.64 0.81 0.30 0.42 0.52 0.59 0.80 0.64 0.62 0.32 

30 0.83 0.68 0.75 0.68 0.04 0.53 0.80 0.31 0.66 0.33 0.61 0.77 0.56 0.53 0.33 

31 0.87 0.55 0.65 0.47 0.09 0.36 0.69 0.30 0.45 0.26 0.62 0.37 0.42 0.56 0.33 

32 0.59 0.69 0.62 0.58 0.01 0.65 0.58 0.31 0.49 0.39 0.57 0.29 0.55 0.50 0.19 

33 0.68 0.64 0.54 0.57 0.11 0.58 0.60 0.33 0.53 0.51 0.63 0.55 0.50 0.33 0.34 

34 0.62 0.70 0.41 0.28 0.05 0.60 0.35 0.08 0.19 0.25 0.59 0.32 0.33 0.47 0.34 

35 0.68 0.68 0.60 0.61 0.15 0.68 0.65 0.51 0.57 0.42 0.61 0.55 0.56 0.38 0.32 

36 0.58 0.68 0.56 0.41 0.08 0.57 0.58 0.31 0.41 0.00 0.57 0.00 0.51 0.48 0.24 

37 0.66 0.74 0.63 0.66 0.09 0.56 0.63 0.31 0.31 0.00 0.60 0.50 0.58 0.53 0.18 

38 0.52 0.58 0.54 0.49 0.16 0.61 0.52 0.48 0.46 0.14 0.46 0.13 0.45 0.42 0.26 

39 0.97 0.75 0.92 0.81 0.13 0.68 0.94 0.50 0.78 0.64 0.64 0.91 0.68 0.54 0.41 

40 0.80 0.58 0.97 0.60 0.70 0.41 0.80 0.80 0.59 0.41 0.97 0.32 0.35 0.41 0.96 

Rj 1.36 3.69 7.03 6.46 14.59 6.97 2.00 6.95 10.54 12.46 6.36 8.82 9.21 11.56 12.00 

(e) Metric 5: 𝑘𝑚𝑎𝑥  neighborhood loss (𝜆𝐾𝑚𝑎𝑥
) 

Dataset UMAP t-SNE FIt_SNE PCA Trimap mTSNE Isomap KPCA LEM LTSA MDS HLLE LLE LVis MVU 

1 1.00 0.84 0.89 0.69 0.81 0.62 0.87 0.86 0.83 0.77 0.79 0.76 0.80 0.75 0.60 

2 1.00 1.00 1.00 1.00 0.58 1.00 0.99 0.85 0.87 0.90 0.81 0.73 0.80 0.60 0.56 

3 1.00 1.00 1.00 1.00 0.84 0.90 0.97 0.90 0.89 0.88 1.00 0.77 0.78 0.41 0.54 

4 0.99 0.77 0.70 0.61 0.64 0.61 0.77 0.97 0.84 0.66 0.57 0.69 0.57 0.25 0.47 

5 1.00 0.47 0.79 0.73 0.76 0.52 0.48 1.00 0.56 0.58 0.87 0.59 0.64 0.67 0.39 

6 1.00 1.00 0.78 0.85 0.98 0.84 1.00 0.89 0.79 0.78 0.82 0.83 0.96 0.22 0.48 

7 1.00 1.00 1.00 0.86 0.74 1.00 1.00 0.88 0.83 0.79 0.89 0.80 0.83 0.52 0.59 

8 1.00 1.00 0.87 0.78 0.71 1.00 0.90 0.86 0.79 0.66 0.96 0.85 0.77 0.36 0.59 

9 1.00 1.00 1.00 1.00 0.81 1.00 1.00 0.88 0.79 1.00 0.97 0.84 0.83 0.56 0.59 

10 0.99 1.00 0.87 0.91 0.78 0.94 0.89 0.80 0.91 0.72 0.80 0.84 0.57 0.39 0.65 

11 0.60 0.66 0.97 0.74 0.66 0.65 0.66 0.68 0.58 0.50 0.81 0.62 0.61 0.21 0.53 

12 1.00 1.00 0.77 0.51 0.78 0.70 0.80 1.00 0.71 0.72 0.77 0.77 0.80 0.55 0.47 

13 1.00 0.98 0.89 0.79 0.71 0.99 0.99 0.84 0.78 0.82 0.83 0.81 0.77 0.46 0.52 
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14 0.70 0.95 0.84 0.93 0.73 0.82 0.94 0.89 0.75 0.89 0.85 0.85 0.84 0.48 0.68 

15 1.00 1.00 1.00 0.48 0.67 0.83 1.00 0.89 0.79 0.67 0.96 0.74 0.84 0.43 0.51 

16 1.00 0.89 0.82 0.85 0.75 0.75 0.91 0.88 0.64 0.82 0.87 0.82 0.87 0.26 0.58 

17 1.00 1.00 0.90 0.70 0.76 0.90 0.92 1.00 0.74 0.89 0.77 0.79 0.74 0.42 0.58 

18 1.00 0.95 0.88 0.77 0.77 0.81 0.89 0.82 0.74 0.69 0.91 0.81 0.82 0.42 0.75 

19 1.00 0.94 0.53 0.66 0.53 0.87 0.90 0.86 0.79 0.67 0.57 0.76 0.83 0.24 0.55 

20 1.00 0.89 0.83 0.84 0.70 0.75 0.86 0.83 0.85 0.77 0.81 0.71 0.88 0.28 0.56 

21 1.00 1.00 0.68 0.70 0.54 0.77 1.00 0.83 0.74 0.67 0.99 0.82 0.95 0.44 0.56 

22 0.72 0.65 0.95 0.90 0.44 0.60 0.71 1.00 0.59 0.48 0.96 0.84 0.76 1.00 0.56 

23 0.65 0.84 0.82 0.73 0.63 0.62 0.81 0.76 0.60 0.40 0.83 0.76 0.65 0.51 0.45 

24 1.00 0.68 0.85 1.00 0.88 0.66 0.77 0.80 0.60 0.77 0.86 0.77 0.82 0.52 0.59 

25 0.99 0.91 0.62 0.96 0.67 0.87 0.91 0.78 0.72 0.63 0.55 0.82 0.63 0.50 0.62 

26 0.70 0.87 0.80 0.79 0.70 0.75 0.86 0.79 0.70 0.71 0.99 0.74 0.81 0.53 0.63 

27 0.93 0.95 0.65 0.49 0.68 0.71 0.79 0.79 0.68 0.50 0.67 0.87 0.45 0.44 0.68 

28 1.00 1.00 1.00 0.88 0.72 0.90 0.93 0.88 0.79 0.84 1.00 0.80 0.82 0.36 0.66 

29 1.00 0.93 0.87 0.83 0.67 1.00 1.00 0.85 0.76 0.73 0.80 0.80 0.77 0.49 0.59 

30 1.00 0.88 0.86 0.78 0.68 0.88 1.00 0.80 0.73 0.92 0.81 0.83 0.67 0.28 0.56 

31 0.91 1.00 0.59 1.00 0.70 0.86 0.79 0.66 0.62 0.55 0.68 0.80 0.50 0.33 0.60 

32 1.00 0.74 0.48 0.71 0.61 0.76 0.77 0.81 0.72 0.65 0.56 0.75 0.77 1.00 0.47 

33 1.00 0.80 0.67 0.67 0.53 0.75 0.70 0.78 0.65 0.71 0.72 0.85 0.76 0.46 0.69 

34 1.00 1.00 0.53 0.51 0.40 0.57 0.64 1.00 0.57 0.47 0.48 0.78 1.00 0.39 0.68 

35 0.59 0.90 0.80 0.87 0.79 0.86 0.91 0.90 0.82 0.81 0.64 0.83 0.89 0.60 0.61 

36 1.00 0.73 0.36 0.59 0.65 0.76 0.76 0.80 0.73 0.62 0.54 0.76 0.71 0.32 0.54 

37 1.00 0.81 0.69 0.79 0.64 0.80 0.84 1.00 0.78 0.73 0.69 0.78 0.69 0.45 0.46 

38 0.71 0.76 0.84 0.78 0.79 0.81 0.76 0.79 0.71 0.69 0.81 0.72 0.80 0.40 0.66 

39 1.00 1.00 1.00 1.00 0.79 1.00 1.00 0.85 0.81 1.00 0.83 0.82 0.80 0.52 0.69 

40 0.52 0.69 0.73 0.61 0.59 0.99 0.88 0.87 0.74 0.82 0.73 0.99 0.81 0.87 0.99 

Rj 3.60 3.88 6.90 7.53 10.62 6.92 4.49 5.36 9.79 10.03 7.32 8.08 8.44 13.85 13.21 

(f) Metric 6: Global quality criteria (𝑄𝑔𝑙𝑜𝑏𝑎𝑙) 

Dataset UMAP t-SNE FIt_SNE PCA Trimap mTSNE Isomap KPCA LEM LTSA MDS HLLE LLE LVis MVU 

1 0.35 0.26 0.14 0.42 0.17 0.12 0.24 0.34 0.12 0.19 0.36 0.24 0.33 0.15 0.14 

2 0.37 0.25 0.39 0.48 0.29 0.34 0.38 0.36 0.07 0.16 0.47 0.26 0.31 0.18 0.22 

3 0.35 0.33 0.33 0.48 0.28 0.31 0.37 0.37 0.06 0.13 0.44 0.15 0.34 0.07 0.22 

4 0.33 0.19 0.14 0.34 0.12 0.18 0.26 0.37 0.01 0.17 0.31 0.10 0.26 0.18 0.14 

5 0.19 0.18 0.19 0.14 0.18 0.03 0.17 0.27 0.00 0.07 0.14 0.02 0.23 0.18 0.15 

6 0.35 0.15 0.22 0.40 0.17 0.24 0.24 0.34 0.01 0.13 0.38 0.23 0.33 0.26 0.15 

7 0.35 0.28 0.19 0.48 0.30 0.42 0.35 0.37 0.07 0.21 0.47 0.31 0.32 0.11 0.10 

8 0.34 0.20 0.20 0.48 0.29 0.38 0.32 0.34 0.08 0.11 0.45 0.24 0.29 0.21 0.23 

9 0.36 0.32 0.42 0.48 0.28 0.35 0.38 0.39 0.11 0.22 0.48 0.30 0.37 0.34 0.26 

10 0.35 0.20 0.30 0.47 0.27 0.26 0.30 0.37 0.07 0.17 0.42 0.14 0.17 0.19 0.18 

11 0.20 0.23 0.26 0.26 0.18 0.02 0.24 0.24 0.02 0.09 0.26 0.05 0.17 0.17 0.14 

12 0.27 0.25 0.30 0.40 0.29 0.28 0.10 0.37 0.05 0.16 0.38 0.09 0.34 0.23 0.12 

13 0.34 0.21 0.27 0.47 0.28 0.39 0.32 0.37 0.08 0.18 0.46 0.36 0.28 0.24 0.25 

14 0.40 0.28 0.38 0.44 0.28 0.34 0.34 0.39 0.07 0.21 0.45 0.02 0.36 0.33 0.28 

15 0.31 0.25 0.38 0.48 0.29 0.00 0.13 0.40 0.07 0.14 0.47 0.00 0.39 0.30 0.20 

16 0.33 0.31 0.23 0.43 0.13 0.13 0.23 0.40 0.04 0.17 0.39 0.14 0.33 0.07 0.10 

17 0.33 0.19 0.31 0.48 0.29 0.38 0.29 0.37 0.07 0.17 0.43 0.24 0.23 0.23 0.18 

18 0.24 0.26 0.41 0.46 0.30 0.02 0.33 0.37 0.06 0.21 0.44 0.03 0.31 0.23 0.21 

19 0.28 0.24 0.38 0.44 0.32 0.21 0.23 0.40 0.02 0.14 0.44 0.12 0.37 0.18 0.19 

20 0.28 0.27 0.19 0.40 0.29 0.12 0.27 0.37 0.00 0.16 0.43 0.13 0.34 0.27 0.19 

21 0.27 0.18 0.28 0.42 0.23 0.24 0.27 0.32 0.06 0.16 0.40 0.03 0.26 0.23 0.18 

22 0.23 0.11 0.23 0.29 0.24 0.00 0.25 0.30 0.02 0.12 0.25 0.00 0.21 0.13 0.18 

23 0.27 0.21 0.26 0.36 0.25 0.02 0.29 0.31 0.02 0.13 0.36 0.01 0.23 0.09 0.21 

24 0.25 0.25 0.18 0.33 0.13 0.19 0.24 0.36 0.01 0.15 0.34 0.18 0.33 0.17 0.13 

25 0.34 0.19 0.31 0.47 0.26 0.26 0.33 0.34 0.06 0.11 0.43 0.01 0.22 0.15 0.25 

26 0.34 0.25 0.33 0.38 0.25 0.00 0.32 0.39 0.06 0.22 0.39 0.00 0.34 0.26 0.23 

27 0.27 0.21 0.17 0.45 0.26 0.17 0.31 0.35 0.05 0.16 0.41 0.01 0.20 0.22 0.17 

28 0.33 0.26 0.34 0.48 0.27 0.41 0.36 0.37 0.06 0.18 0.46 0.28 0.33 0.15 0.20 

29 0.30 0.20 0.20 0.47 0.27 0.40 0.33 0.32 0.05 0.19 0.46 0.25 0.27 0.18 0.24 

30 0.30 0.22 0.34 0.46 0.25 0.36 0.32 0.35 0.03 0.20 0.44 0.22 0.26 0.19 0.17 

31 0.24 0.23 0.31 0.46 0.19 0.20 0.27 0.28 0.05 0.12 0.38 0.06 0.19 0.27 0.19 

32 0.24 0.22 0.30 0.32 0.25 0.18 0.32 0.33 0.02 0.11 0.33 0.18 0.28 0.18 0.16 

33 0.35 0.23 0.29 0.35 0.22 0.23 0.27 0.31 0.07 0.17 0.34 0.18 0.29 0.23 0.20 

34 0.39 0.07 0.24 0.30 0.19 0.19 0.19 0.28 0.03 0.18 0.23 0.16 0.17 0.11 0.13 

35 0.36 0.35 0.40 0.42 0.33 0.35 0.39 0.39 0.09 0.21 0.41 0.24 0.38 0.32 0.13 

36 0.27 0.23 0.29 0.39 0.24 0.00 0.23 0.34 0.03 0.15 0.36 0.01 0.29 0.14 0.22 
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37 0.35 0.19 0.28 0.38 0.28 0.27 0.33 0.38 0.04 0.10 0.39 0.01 0.27 0.14 0.18 

38 0.27 0.31 0.33 0.34 0.25 0.04 0.32 0.33 0.02 0.19 0.34 0.05 0.34 0.21 0.21 

39 0.34 0.31 0.41 0.48 0.26 0.41 0.35 0.39 0.08 0.18 0.48 0.31 0.34 0.33 0.26 

40 0.36 0.49 0.36 0.49 0.18 0.20 0.33 0.25 0.31 0.49 0.48 0.21 0.28 0.33 0.17 

Rj 6.87 7.26 7.15 1.26 9.22 7.29 5.86 3.82 14.74 12.69 2.10 10.01 8.18 10.95 12.59 

(g) Metric 7: Area under the 𝑅𝑛𝑋  curve (𝐴𝑈𝐶ln 𝐾(𝑅𝑛𝑋(𝐾)) 

Dataset UMAP t-SNE FIt_SNE PCA Trimap mTSNE Isomap KPCA LEM LTSA MDS HLLE LLE LVis MVU 

1 0.36 0.80 0.75 0.27 0.15 0.59 0.66 0.22 0.34 0.30 0.51 0.70 0.30 0.37 0.38 

2 0.84 1.00 0.79 0.34 0.10 0.63 0.98 0.71 0.60 0.27 0.83 0.60 0.67 0.49 0.44 

3 0.79 0.99 0.77 0.16 0.08 0.64 0.94 0.75 0.51 0.26 0.79 0.72 0.72 0.48 0.64 

4 0.36 0.62 0.72 0.40 0.02 0.60 0.55 0.32 0.15 0.24 0.47 0.50 0.30 0.39 0.28 

5 0.34 0.24 0.57 0.26 0.01 0.38 0.21 0.02 0.01 0.10 0.27 0.49 0.35 0.35 0.29 

6 0.60 0.85 0.73 0.41 0.02 0.64 0.73 0.61 0.56 0.24 0.58 0.68 0.37 0.40 0.35 

7 0.62 0.99 0.77 0.30 0.11 0.64 0.94 0.88 0.73 0.32 0.77 0.68 0.69 0.31 0.50 

8 0.61 1.00 0.75 0.40 0.09 0.66 0.90 0.81 0.57 0.22 0.67 0.64 0.65 0.52 0.33 

9 0.91 1.00 0.82 0.75 0.15 0.66 0.99 0.80 0.79 0.34 0.85 0.75 0.62 0.50 0.60 

10 0.70 0.95 0.73 0.46 0.09 0.63 0.83 0.54 0.39 0.29 0.56 0.33 0.57 0.37 0.35 

11 0.49 0.47 0.52 0.32 0.01 0.42 0.46 0.06 0.07 0.16 0.44 0.40 0.37 0.34 0.34 

12 0.60 0.74 0.74 0.39 0.06 0.47 0.74 0.56 0.11 0.22 0.23 0.70 0.56 0.38 0.40 

13 0.69 0.98 0.77 0.61 0.11 0.63 0.92 0.82 0.76 0.29 0.68 0.66 0.61 0.55 0.34 

14 0.72 0.86 0.77 0.74 0.09 0.72 0.86 0.70 0.03 0.31 0.77 0.73 0.58 0.56 0.52 

15 0.74 0.98 0.83 0.52 0.11 0.58 0.96 0.01 0.01 0.24 0.30 0.78 0.56 0.47 0.38 

16 0.56 0.89 0.82 0.21 0.05 0.57 0.81 0.18 0.20 0.27 0.62 0.72 0.16 0.37 0.52 

17 0.76 0.97 0.76 0.52 0.09 0.61 0.83 0.76 0.54 0.29 0.58 0.52 0.62 0.42 0.30 

18 0.79 0.95 0.74 0.52 0.08 0.56 0.88 0.02 0.02 0.36 0.65 0.69 0.56 0.47 0.44 

19 0.78 0.93 0.83 0.41 0.04 0.53 0.90 0.38 0.23 0.24 0.50 0.74 0.62 0.49 0.35 

20 0.46 0.73 0.75 0.37 0.00 0.51 0.77 0.14 0.18 0.28 0.62 0.77 0.54 0.44 0.44 

21 0.65 0.86 0.70 0.47 0.08 0.54 0.75 0.46 0.08 0.28 0.56 0.54 0.51 0.45 0.29 

22 0.42 0.49 0.61 0.32 0.01 0.48 0.48 0.01 0.00 0.22 0.46 0.51 0.41 0.43 0.16 

23 0.44 0.69 0.61 0.21 0.03 0.53 0.65 0.01 0.02 0.19 0.51 0.49 0.45 0.44 0.31 

24 0.43 0.55 0.70 0.33 0.01 0.49 0.57 0.40 0.24 0.28 0.47 0.70 0.27 0.35 0.40 

25 0.75 0.93 0.69 0.32 0.09 0.65 0.84 0.49 0.00 0.23 0.73 0.47 0.57 0.51 0.28 

26 0.64 0.71 0.75 0.56 0.10 0.54 0.74 0.00 0.01 0.27 0.64 0.72 0.51 0.48 0.48 

27 0.51 0.91 0.70 0.46 0.09 0.58 0.78 0.39 0.03 0.32 0.58 0.39 0.52 0.44 0.32 

28 0.80 0.98 0.80 0.27 0.09 0.62 0.94 0.85 0.72 0.34 0.76 0.72 0.64 0.47 0.49 

29 0.55 0.94 0.73 0.35 0.10 0.56 0.90 0.83 0.51 0.31 0.70 0.62 0.62 0.55 0.33 

30 0.75 0.91 0.71 0.54 0.04 0.57 0.86 0.76 0.37 0.32 0.67 0.53 0.54 0.43 0.34 

31 0.61 0.92 0.58 0.51 0.07 0.54 0.76 0.38 0.20 0.25 0.48 0.36 0.45 0.45 0.36 

32 0.63 0.64 0.68 0.45 0.01 0.54 0.64 0.33 0.38 0.17 0.63 0.63 0.53 0.42 0.35 

33 0.55 0.72 0.65 0.50 0.11 0.65 0.65 0.51 0.45 0.29 0.56 0.60 0.48 0.38 0.37 

34 0.46 0.64 0.61 0.21 0.04 0.66 0.40 0.35 0.27 0.32 0.33 0.44 0.33 0.37 0.10 

35 0.65 0.75 0.72 0.59 0.13 0.64 0.70 0.59 0.43 0.31 0.65 0.73 0.56 0.33 0.57 

36 0.59 0.70 0.71 0.35 0.05 0.54 0.67 0.00 0.01 0.23 0.45 0.60 0.48 0.49 0.34 

37 0.61 0.75 0.77 0.28 0.09 0.62 0.70 0.52 0.01 0.16 0.67 0.57 0.55 0.44 0.35 

38 0.57 0.56 0.61 0.43 0.04 0.47 0.56 0.04 0.05 0.25 0.49 0.63 0.44 0.42 0.51 

39 0.88 0.99 0.79 0.73 0.11 0.65 0.98 0.89 0.64 0.32 0.77 0.70 0.63 0.52 0.53 

40 0.99 0.64 0.44 0.69 0.79 0.78 0.58 0.35 0.98 0.99 0.59 0.36 0.43 0.38 0.78 

Rj 5.59 1.79 3.03 10.03 14.62 6.41 2.79 9.15 11.97 12.82 6.10 6.05 8.49 10.05 11.10 

(h) Metric 8: KNN prediction accuracy (𝐴𝐶𝐶𝜓) 

Dataset UMAP t-SNE FIt_SNE PCA Trimap mTSNE Isomap KPCA LEM LTSA MDS HLLE LLE LVis MVU 

1 0.64 0.68 0.52 0.68 0.68 0.48 0.56 0.64 0.48 0.60 0.68 0.64 0.64 0.64 0.60 

2 0.48 0.44 0.48 0.60 0.64 0.48 0.36 0.32 0.52 0.40 0.32 0.40 0.64 0.60 0.40 

3 0.44 0.44 0.56 0.64 0.60 0.40 0.56 0.64 0.52 0.28 0.40 0.56 0.60 0.56 0.36 

4 0.76 0.68 0.76 0.80 0.80 0.80 0.80 0.76 0.80 0.68 0.84 0.80 0.76 0.76 0.84 

5 0.67 0.56 0.45 0.65 0.66 0.59 0.67 0.51 0.60 0.57 0.56 0.56 0.58 0.53 0.56 

6 0.60 0.56 0.56 0.52 0.48 0.56 0.36 0.52 0.56 0.48 0.68 0.60 0.68 0.52 0.56 

7 0.52 0.64 0.60 0.60 0.72 0.56 0.48 0.60 0.52 0.48 0.60 0.56 0.60 0.60 0.60 

8 0.12 0.24 0.28 0.16 0.12 0.28 0.16 0.28 0.16 0.20 0.20 0.20 0.28 0.24 0.32 

9 0.52 0.48 0.52 0.52 0.32 0.48 0.48 0.64 0.44 0.52 0.48 0.48 0.52 0.40 0.52 

10 0.20 0.20 0.12 0.16 0.12 0.12 0.16 0.16 0.16 0.16 0.12 0.28 0.12 0.16 0.20 

11 1.00 1.00 0.96 1.00 1.00 1.00 1.00 1.00 0.96 1.00 1.00 0.96 1.00 1.00 1.00 

12 0.72 0.68 0.68 0.68 0.68 0.76 0.68 0.64 0.72 0.68 0.64 0.72 0.64 0.76 0.72 

13 0.60 0.68 0.72 0.68 0.72 0.60 0.60 0.64 0.72 0.68 0.60 0.72 0.72 0.60 0.72 

14 0.80 0.64 0.68 0.80 0.28 0.72 0.84 0.76 0.76 0.84 0.92 0.68 0.80 0.88 0.48 
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15 0.80 0.80 0.80 0.80 0.68 0.80 0.80 0.80 0.80 0.80 0.72 0.80 0.80 0.76 0.76 

16 0.08 0.04 0.04 0.12 0.08 0.16 0.08 0.16 0.04 0.12 0.08 0.04 0.08 0.00 0.08 

17 0.56 0.60 0.60 0.56 0.56 0.60 0.52 0.64 0.56 0.56 0.48 0.56 0.52 0.64 0.48 

18 0.88 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84 

19 0.60 0.48 0.44 0.36 0.28 0.52 0.56 0.48 0.56 0.64 0.56 0.40 0.48 0.56 0.40 

20 0.76 0.72 0.76 0.76 0.68 0.72 0.64 0.72 0.72 0.76 0.80 0.72 0.68 0.64 0.72 

21 0.20 0.36 0.24 0.24 0.16 0.24 0.28 0.24 0.32 0.24 0.28 0.20 0.36 0.20 0.16 

22 0.88 1.00 0.96 1.00 1.00 0.96 0.88 0.88 0.88 0.96 0.96 1.00 0.80 0.96 1.00 

23 0.56 0.64 0.56 0.60 0.64 0.52 0.52 0.60 0.72 0.44 0.52 0.68 0.48 0.52 0.52 

24 0.56 0.84 0.68 0.76 0.64 0.84 0.76 0.64 0.68 0.60 0.80 0.80 0.56 0.44 0.68 

25 0.80 0.76 0.72 0.84 0.80 0.80 0.68 0.68 0.76 0.76 0.76 0.72 0.60 0.80 0.76 

26 0.80 0.68 0.76 0.88 0.64 0.76 0.88 0.84 0.84 0.76 0.76 0.76 0.80 0.80 0.76 

27 0.72 0.80 0.76 0.68 0.76 0.80 0.64 0.80 0.76 0.72 0.68 0.64 0.76 0.76 0.72 

28 0.04 0.04 0.16 0.04 0.03 0.04 0.03 0.03 0.04 0.04 0.03 0.04 0.04 0.04 0.08 

29 1.00 0.96 1.00 0.76 0.84 0.80 1.00 0.96 0.80 1.00 1.00 0.80 0.72 0.92 0.76 

30 0.96 0.96 0.96 0.96 0.92 0.88 0.88 0.92 0.92 0.92 0.88 0.92 0.96 0.92 0.92 

31 0.72 0.80 0.52 0.76 0.64 0.64 0.84 0.68 0.64 0.84 0.80 0.72 0.48 0.72 0.68 

32 0.68 0.80 0.80 0.80 0.76 0.76 0.72 0.76 0.76 0.76 0.84 0.76 0.76 0.80 0.76 

33 0.33 0.33 0.33 0.34 0.33 0.32 0.32 0.33 0.33 0.33 0.33 0.33 0.33 0.34 0.33 

34 0.52 0.60 0.56 0.48 0.40 0.64 0.40 0.56 0.60 0.72 0.92 0.36 0.52 0.52 0.60 

35 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.84 

36 0.36 0.32 0.20 0.32 0.20 0.36 0.40 0.40 0.20 0.24 0.52 0.20 0.32 0.44 0.36 

37 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

38 0.20 0.32 0.40 0.24 0.20 0.32 0.24 0.40 0.12 0.28 0.16 0.40 0.20 0.24 0.28 

39 0.44 0.44 0.40 0.52 0.40 0.44 0.48 0.64 0.60 0.40 0.52 0.48 0.44 0.48 0.52 

40 0.89 0.98 0.86 0.88 0.89 0.85 0.89 0.85 0.85 0.97 0.89 0.81 0.89 0.85 0.89 

Rj 7.76 6.88 7.91 6.74 9.18 7.79 9.13 7.35 8.28 8.35 7.69 8.31 8.50 7.91 8.22 

(i) Metric 9: Normalized Mutual Information (𝑛𝑀𝐼) 

Dataset UMAP t-SNE FIt_SNE PCA Trimap mTSNE Isomap KPCA LEM LTSA MDS HLLE LLE LVis MVU 

1 0.15 0.21 0.20 0.26 1.55 0.21 0.25 0.20 0.20 0.10 0.20 0.19 0.20 0.20 0.99 

2 0.20 0.22 0.22 0.19 0.18 0.22 0.07 0.22 0.22 0.20 0.23 0.21 0.22 0.22 0.19 

3 0.18 0.20 0.21 0.18 0.32 0.21 0.16 0.22 0.21 0.17 0.21 0.20 0.22 0.21 0.20 

4 0.13 0.18 0.18 0.17 0.82 0.20 0.30 0.16 0.17 0.16 0.18 0.16 0.13 0.18 0.26 

5 0.04 0.06 0.17 0.17 0.18 0.17 0.04 0.17 0.17 0.11 0.08 0.20 0.14 0.17 0.17 

6 0.15 0.18 0.19 0.15 0.56 0.18 1.25 0.04 0.18 0.05 0.19 0.17 0.19 0.19 0.13 

7 0.18 0.21 0.21 0.18 0.40 0.21 0.14 0.20 0.21 0.17 0.21 0.20 0.20 0.21 0.19 

8 0.14 0.17 0.19 0.13 0.64 0.18 0.33 0.21 0.19 0.13 0.19 0.17 0.20 0.20 0.20 

9 0.21 0.22 0.22 0.20 0.02 0.22 0.19 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 

10 0.12 0.16 0.18 0.13 0.76 0.15 1.19 0.20 0.15 0.09 0.19 0.16 0.20 0.18 0.14 

11 0.20 0.23 0.22 0.24 0.01 0.22 0.09 0.23 0.23 0.22 0.22 0.22 0.23 0.22 0.15 

12 0.17 0.17 0.18 0.17 0.20 0.17 0.03 0.17 0.18 0.07 0.05 0.17 0.15 0.17 0.17 

13 0.12 0.18 0.19 0.14 0.64 0.18 0.33 0.20 0.18 0.05 0.19 0.16 0.19 0.19 0.14 

14 0.17 0.17 0.17 0.17 0.17 0.17 0.06 0.17 0.17 0.12 0.03 0.17 0.15 0.17 0.17 

15 0.22 0.23 0.23 0.22 0.13 0.23 0.16 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.20 

16 0.17 0.17 0.17 0.17 0.18 0.17 0.01 0.17 0.17 0.08 0.01 0.17 0.16 0.17 0.17 

17 0.12 0.17 0.18 0.12 0.51 0.16 0.09 0.21 0.16 0.10 0.19 0.16 0.21 0.19 0.16 

18 0.17 0.21 0.21 0.18 0.29 0.21 0.65 0.22 0.21 0.19 0.21 0.20 0.22 0.21 0.03 

19 0.17 0.17 0.17 0.17 0.17 0.16 0.09 0.17 0.17 0.06 0.05 0.17 0.15 0.17 0.18 

20 0.17 0.22 0.22 0.16 0.15 0.22 0.04 0.22 0.22 0.22 0.22 0.21 0.23 0.22 0.06 

21 0.14 0.20 0.18 0.85 0.51 0.20 0.22 0.20 0.20 0.01 0.19 0.17 0.19 0.19 0.41 

22 0.06 0.15 0.18 0.07 0.68 0.17 0.28 0.14 0.14 0.06 0.18 0.16 0.17 0.18 0.26 

23 0.14 0.22 0.21 0.21 0.31 0.23 0.09 0.23 0.22 0.22 0.21 0.21 0.22 0.21 0.13 

24 0.17 0.17 0.20 0.17 0.23 0.18 0.02 0.17 0.17 0.12 0.04 0.17 0.16 0.17 0.17 

25 0.11 0.18 0.18 0.12 0.76 0.18 0.50 0.19 0.18 0.10 0.18 0.17 0.19 0.18 0.51 

26 0.17 0.17 0.17 0.17 0.18 0.17 0.01 0.17 0.17 0.08 0.01 0.17 0.16 0.17 0.17 

27 0.10 0.18 0.17 0.09 0.91 0.18 0.78 0.19 0.17 0.06 0.17 0.15 0.19 0.17 0.03 

28 0.18 0.20 0.21 0.17 0.21 0.20 0.01 0.21 0.20 0.16 0.21 0.20 0.21 0.21 0.21 

29 0.14 0.19 0.19 0.15 0.85 0.20 0.61 0.21 0.19 0.13 0.19 0.18 0.21 0.19 0.19 

30 0.13 0.19 0.19 0.13 0.60 0.19 0.79 0.21 0.18 0.11 0.19 0.17 0.21 0.19 0.17 

31 0.08 0.13 0.17 0.11 0.99 0.17 1.66 0.15 0.14 0.11 0.18 0.15 0.15 0.18 0.48 

32 0.17 0.17 0.17 0.17 0.21 0.18 0.00 0.17 0.17 0.08 0.03 0.17 0.16 0.17 0.20 

33 0.17 0.17 0.17 0.17 0.17 0.17 0.07 0.17 0.17 0.11 0.04 0.17 0.16 0.17 0.17 

34 0.11 0.18 0.19 0.18 1.00 0.17 2.02 0.04 0.18 0.11 0.19 0.18 0.18 0.19 4.32 

35 0.20 0.23 0.23 0.23 0.17 0.21 1.41 0.22 0.23 0.22 0.23 0.22 0.22 0.23 1.92 

36 0.18 0.23 0.23 0.23 0.19 0.22 0.84 0.23 0.23 0.22 0.23 0.22 0.23 0.23 3.20 

37 0.14 0.22 0.21 0.19 0.19 0.21 0.44 0.22 0.22 0.21 0.21 0.20 0.22 0.21 0.49 
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38 0.17 0.17 0.17 0.17 0.17 0.17 0.03 0.17 0.17 0.12 0.04 0.17 0.14 0.17 0.17 

39 0.20 0.22 0.22 0.20 0.03 0.22 0.07 0.22 0.22 0.19 0.22 0.21 0.22 0.22 0.22 

40 0.18 0.22 0.22 0.21 0.17 0.22 0.81 0.22 0.22 0.17 0.22 0.21 0.22 0.22 0.95 

Rj 3.46 3.01 3.49 9.56 13.90 4.04 13.10 8.79 9.42 9.71 12.03 4.49 4.35 5.68 14.97 

 (j) Metric 10: Structural Similarity Index (𝑆𝑆𝐼) 

Dataset UMAP t-SNE FIt_SNE PCA Trimap mTSNE Isomap KPCA LEM LTSA MDS HLLE LLE LVis MVU 

1 8.6E+02 6.0E+00 7.0E+00 2.1E+12 9.9E+11 1.6E+13 7.6E+10 2.0E+12 7.1E+03 6.7E+02 9.7E+10 4.2E+03 1.4E+01 1.0E+00 2.0E+02 

2 1.3E+04 2.0E+00 1.3E+01 3.6E+10 8.6E+12 8.1E+13 1.1E+12 3.0E+12 7.9E+03 6.4E+02 7.6E+12 4.6E+03 3.2E+01 2.0E+00 8.3E+01 

3 4.2E+03 1.0E+00 4.7E+01 3.8E+11 5.7E+10 4.0E+09 7.0E+11 4.2E+11 8.8E+03 2.4E+02 1.3E+12 3.5E+03 1.6E+01 2.0E+00 1.5E+02 

4 2.1E+03 2.0E+00 3.8E+01 1.7E+10 1.4E+10 1.4E+11 2.2E+10 1.8E+10 8.1E+03 1.7E+02 4.3E+09 1.7E+03 1.1E+02 3.0E+00 1.6E+02 

5 2.5E+03 2.0E+00 1.4E+01 5.9E+10 1.0E+00 2.8E+04 5.9E+10 4.0E+10 1.1E+03 3.5E+02 8.4E+11 1.0E+00 7.9E+03 4.0E+00 1.8E+02 

6 2.2E+03 1.0E+00 4.5E+01 4.8E+10 6.6E+09 1.1E+11 4.5E+09 5.2E+10 8.5E+03 2.0E+02 4.5E+09 5.1E+03 2.3E+02 3.0E+00 1.1E+02 

7 5.4E+03 2.0E+00 2.6E+01 7.6E+08 3.6E+08 5.2E+09 5.4E+07 1.7E+08 7.1E+03 4.5E+02 4.6E+08 4.1E+03 2.0E+02 2.0E+00 1.4E+02 

8 2.4E+03 2.0E+00 4.9E+01 1.8E+08 2.3E+08 5.6E+08 5.2E+07 1.5E+08 8.3E+03 4.2E+02 1.1E+08 2.2E+03 2.9E+02 1.2E+01 1.3E+02 

9 2.7E+03 2.0E+00 3.8E+01 1.7E+08 1.9E+08 4.2E+08 1.7E+07 1.7E+08 8.2E+03 3.1E+02 2.5E+07 2.5E+03 2.1E+02 8.0E+00 1.4E+02 

10 4.1E+03 2.0E+00 4.4E+01 1.8E+08 7.6E+07 3.5E+08 1.2E+07 1.0E+08 7.0E+03 5.6E+02 1.5E+08 2.6E+03 2.8E+02 7.0E+00 1.5E+02 

11 6.3E+03 2.0E+00 2.6E+01 4.6E+13 7.3E+16 2.8E+17 2.6E+13 6.8E+16 7.3E+03 5.2E+02 6.9E+14 2.0E+03 1.1E+02 1.0E+00 1.1E+02 

12 3.6E+03 2.0E+00 3.2E+01 6.5E+04 6.3E+05 2.3E+03 3.5E+06 2.4E+07 2.5E+03 4.1E+02 6.8E+06 7.5E+03 2.5E+02 9.0E+00 1.3E+02 

13 4.9E+02 1.0E+00 2.1E+01 8.9E+07 9.9E+07 2.1E+08 3.8E+06 5.0E+07 6.9E+03 2.8E+02 1.1E+08 6.2E+02 6.1E+01 1.0E+00 1.2E+02 

14 5.4E+03 1.0E+00 9.0E+00 6.7E+02 3.8E+05 3.8E+03 5.7E+01 5.0E+02 3.1E+03 5.4E+02 1.7E+02 8.1E+03 2.3E+02 2.0E+00 1.3E+02 

15 2.2E+03 1.0E+00 2.0E+00 1.7E+09 4.0E+09 1.5E+10 4.4E+05 8.4E+08 7.6E+03 3.2E+02 1.4E+08 3.3E+03 9.6E+01 9.0E+00 1.1E+02 

16 9.0E+02 2.0E+00 1.5E+01 2.3E+07 4.5E+05 3.6E+04 3.5E+05 1.8E+07 4.1E+02 1.8E+02 1.9E+07 7.1E+03 6.1E+03 3.0E+00 9.1E+01 

17 4.7E+03 2.0E+00 3.4E+01 1.8E+07 8.0E+07 7.4E+08 1.3E+07 3.0E+07 8.3E+03 1.8E+02 2.0E+07 2.9E+03 7.4E+01 3.0E+00 8.7E+01 

18 6.2E+02 2.0E+00 1.6E+01 8.9E+05 6.6E+06 4.9E+07 2.8E+05 1.8E+07 7.2E+03 2.9E+02 2.9E+06 7.2E+02 1.1E+02 2.0E+00 1.2E+02 

19 1.1E+04 1.0E+00 6.0E+00 1.1E+07 7.9E+05 2.6E+03 1.1E+08 1.1E+09 4.2E+03 1.6E+02 4.5E+08 7.5E+03 2.3E+02 2.0E+00 1.6E+02 

20 4.1E+03 2.0E+00 4.0E+00 3.8E+09 7.3E+16 1.4E+12 1.1E+08 4.7E+09 7.7E+03 4.0E+02 3.6E+09 2.6E+04 1.3E+03 2.0E+00 1.8E+02 

21 3.5E+03 1.0E+00 1.8E+01 9.1E+05 2.1E+07 1.7E+08 7.1E+05 1.0E+07 8.0E+03 1.4E+02 1.5E+07 2.3E+03 8.5E+01 4.0E+00 1.2E+02 

22 4.5E+03 1.0E+00 1.3E+02 5.2E+09 8.7E+09 5.9E+10 6.7E+08 5.8E+09 7.8E+03 1.2E+02 3.3E+09 2.3E+03 1.9E+01 4.0E+00 2.4E+02 

23 2.2E+03 1.0E+00 1.5E+01 2.5E+09 3.6E+10 2.4E+11 4.4E+07 2.0E+09 7.6E+03 2.0E+02 1.6E+10 1.3E+03 6.4E+01 2.0E+00 1.5E+02 

24 2.1E+04 1.0E+00 6.4E+01 3.2E+09 6.0E+05 2.7E+03 2.0E+09 8.8E+10 3.4E+03 3.8E+02 2.3E+09 7.4E+03 4.7E+02 7.0E+00 8.5E+01 

25 4.5E+04 1.0E+00 1.0E+01 2.0E+05 1.1E+07 1.9E+08 6.2E+05 5.1E+06 6.7E+03 3.9E+02 5.2E+06 1.9E+03 2.4E+02 8.0E+00 8.1E+01 

26 2.0E+03 2.0E+00 1.0E+01 1.9E+07 2.8E+05 3.4E+03 2.0E+07 1.1E+07 3.4E+03 3.3E+02 4.8E+07 7.1E+03 2.6E+02 4.0E+00 3.0E+02 

27 2.7E+03 2.0E+00 2.9E+01 1.0E+06 2.5E+06 9.0E+06 1.6E+05 2.9E+06 7.5E+03 2.0E+02 4.7E+06 1.9E+03 3.2E+02 4.0E+00 1.1E+02 

28 4.0E+03 2.0E+00 2.2E+01 3.1E+06 1.5E+07 3.5E+07 3.4E+06 7.7E+06 7.7E+03 3.9E+02 2.6E+06 2.2E+03 2.8E+02 9.0E+00 1.2E+02 

29 8.4E+02 2.0E+00 1.5E+01 1.3E+07 9.9E+06 3.3E+07 3.5E+06 8.0E+06 8.3E+03 1.9E+02 7.5E+06 1.1E+03 2.9E+01 1.0E+01 9.5E+01 

30 2.6E+03 2.0E+00 2.9E+01 1.4E+07 1.3E+07 2.9E+07 4.7E+05 2.5E+06 7.1E+03 4.5E+02 1.7E+07 5.2E+03 4.2E+02 7.0E+00 1.1E+02 

31 3.0E+03 2.0E+00 6.7E+01 6.3E+09 1.8E+11 2.5E+12 1.6E+10 3.5E+10 8.5E+03 4.2E+02 1.6E+10 3.8E+03 9.0E+01 2.0E+00 4.9E+01 

32 3.4E+03 2.0E+00 6.3E+01 8.5E+04 7.4E+05 2.9E+03 2.5E+04 1.7E+05 3.1E+03 3.5E+02 8.6E+05 7.1E+03 3.9E+02 1.0E+00 1.4E+02 

33 3.8E+03 1.0E+00 5.7E+01 1.2E+02 7.7E+05 4.0E+04 5.5E+02 2.5E+02 2.4E+03 3.9E+02 2.6E+02 7.3E+03 4.7E+03 6.0E+00 1.8E+02 

34 1.7E+04 1.0E+00 6.1E+01 5.9E+05 1.8E+05 8.4E+11 8.9E+05 7.6E+06 7.6E+03 8.4E+02 3.2E+07 3.6E+04 1.8E+03 1.0E+01 7.7E+01 

35 1.4E+03 2.0E+00 1.5E+01 9.2E+02 9.6E+06 7.7E+07 1.2E+05 8.4E+05 7.1E+03 2.6E+02 1.0E+07 2.7E+03 8.0E+01 3.0E+00 5.7E+01 

36 1.2E+04 2.0E+00 2.2E+01 2.1E+09 9.7E+05 2.7E+09 1.4E+07 4.1E+08 8.7E+03 1.9E+02 1.7E+08 4.0E+04 3.7E+03 1.0E+00 6.5E+01 

37 1.1E+03 1.0E+00 5.8E+01 9.7E+04 8.5E+06 6.7E+07 3.5E+05 4.0E+06 7.8E+03 7.1E+02 1.0E+07 1.6E+03 3.5E+01 1.0E+00 8.2E+01 

38 6.6E+02 4.0E+00 1.9E+01 2.2E+05 4.7E+05 6.1E+10 8.8E+04 1.1E+06 7.9E+03 5.3E+02 1.4E+05 2.8E+04 2.8E+03 6.0E+00 3.4E+02 

39 1.1E+03 2.0E+00 5.8E+01 5.0E+05 5.1E+06 1.0E+07 1.1E+05 1.6E+06 7.1E+03 1.0E+02 1.9E+06 3.4E+03 2.5E+02 1.4E+01 7.7E+01 

40 4.1E+02 5.8E+04 3.6E+04 8.4E+11 6.1E+03 1.1E+05 1.0E+07 2.6E+12 1.8E+03 6.6E+04 1.0E+00 1.9E+04 7.6E+03 3.8E+05 8.1E+03 

Rj 4.77 10.71 7.97 2.67 12.74 12.74 3.54 2.08 12.74 5.90 2.15 12.74 12.74 9.55 6.95 

(k) Metric 11: Logarithmic loss of multi-class classification  

Dataset UMAP t-SNE FIt_SNE PCA Trimap mTSNE Isomap KPCA LEM LTSA MDS HLLE LLE LVis MVU 

1 0.95 0.56 0.91 0.57 0.56 0.63 0.42 0.37 0.36 0.43 0.27 0.59 0.32 0.64 0.28 

2 1.00 0.72 0.99 0.57 0.73 0.72 0.29 0.30 0.36 0.71 0.45 0.62 0.71 0.53 0.60 

3 1.00 0.73 0.99 0.34 0.63 0.81 0.29 0.22 0.40 0.54 0.37 0.67 0.67 0.75 0.60 

4 0.77 0.56 0.71 0.31 0.66 0.59 0.38 0.18 0.41 0.39 0.29 0.41 0.36 0.43 0.31 

5 0.43 0.55 0.39 0.48 0.35 0.47 0.24 0.16 0.36 0.36 0.36 0.43 0.39 0.44 0.30 

6 0.87 0.58 0.80 0.39 0.75 0.66 0.26 0.17 0.42 0.56 0.30 0.56 0.39 0.56 0.30 

7 1.00 0.73 0.98 0.57 0.66 0.83 0.44 0.26 0.24 0.83 0.22 0.55 0.36 0.66 0.64 

8 1.00 0.65 0.95 0.43 0.59 0.77 0.26 0.28 0.46 0.77 0.40 0.45 0.37 0.49 0.63 

9 1.00 0.73 1.00 0.54 0.72 0.90 0.48 0.34 0.69 0.74 0.53 0.75 0.82 0.82 0.53 

10 0.99 0.60 0.89 0.33 0.70 0.72 0.33 0.25 0.39 0.53 0.30 0.32 0.57 0.48 0.53 

11 0.71 0.69 0.69 0.40 0.43 0.50 0.29 0.14 0.38 0.51 0.33 0.37 0.54 0.52 0.40 

12 0.88 0.27 0.88 0.51 0.47 0.69 0.36 0.21 0.40 0.70 0.26 0.67 0.61 0.69 0.60 

13 1.00 0.61 0.96 0.75 0.62 0.77 0.38 0.28 0.35 0.80 0.40 0.43 0.47 0.50 0.52 

14 1.00 0.73 0.99 0.61 0.87 0.86 0.43 0.25 0.67 0.78 0.56 0.70 0.84 0.67 0.57 

15 1.00 0.37 1.00 0.70 0.57 0.83 0.28 0.26 0.65 0.81 0.38 0.81 0.89 0.62 0.64 

16 0.97 0.47 0.93 0.33 0.74 0.80 0.35 0.22 0.24 0.55 0.25 0.56 0.39 0.73 0.33 

17 1.00 0.59 0.92 0.54 0.60 0.69 0.36 0.26 0.39 0.80 0.31 0.39 0.57 0.51 0.51 

18 0.99 0.68 0.94 0.77 0.54 0.75 0.47 0.22 0.36 0.71 0.40 0.56 0.85 0.61 0.47 

19 0.96 0.48 0.96 0.46 0.52 0.83 0.27 0.20 0.31 0.52 0.33 0.74 0.74 0.58 0.63 

20 0.95 0.60 0.96 0.42 0.52 0.74 0.35 0.15 0.59 0.52 0.32 0.74 0.38 0.64 0.66 
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21 0.89 0.62 0.83 0.29 0.22 0.67 0.32 0.25 0.46 0.51 0.32 0.41 0.55 0.43 0.50 

22 0.64 0.48 0.63 0.22 0.50 0.52 0.30 0.13 0.31 0.16 0.35 0.35 0.47 0.30 0.50 

23 0.86 0.71 0.85 0.44 0.58 0.61 0.28 0.15 0.28 0.39 0.41 0.41 0.52 0.51 0.51 

24 0.84 0.52 0.83 0.49 0.45 0.70 0.31 0.16 0.37 0.46 0.30 0.58 0.33 0.65 0.42 

25 0.98 0.58 0.93 0.39 0.62 0.69 0.27 0.25 0.32 0.56 0.44 0.39 0.57 0.42 0.50 

26 0.94 0.67 0.94 0.49 0.75 0.84 0.48 0.26 0.52 0.63 0.42 0.73 0.67 0.67 0.50 

27 0.97 0.64 0.86 0.17 0.51 0.67 0.31 0.24 0.44 0.41 0.27 0.39 0.33 0.45 0.54 

28 0.99 0.75 0.97 0.44 0.61 0.82 0.35 0.21 0.37 0.79 0.36 0.56 0.59 0.59 0.56 

29 0.99 0.65 0.95 0.56 0.54 0.63 0.41 0.25 0.37 0.83 0.45 0.45 0.36 0.50 0.51 

30 0.98 0.64 0.90 0.50 0.46 0.69 0.44 0.21 0.29 0.72 0.27 0.43 0.64 0.51 0.45 

31 0.98 0.70 0.81 0.30 0.43 0.49 0.32 0.22 0.53 0.45 0.30 0.35 0.61 0.49 0.38 

32 0.73 0.64 0.70 0.37 0.50 0.61 0.28 0.14 0.33 0.41 0.29 0.47 0.63 0.50 0.48 

33 0.74 0.56 0.73 0.38 0.73 0.64 0.41 0.24 0.53 0.49 0.33 0.59 0.56 0.52 0.43 

34 0.67 0.50 0.60 0.41 0.83 0.54 0.44 0.18 0.32 0.41 0.27 0.34 0.48 0.25 0.48 

35 0.98 0.90 0.97 0.56 0.75 0.91 0.42 0.29 0.62 0.80 0.30 0.88 0.92 0.87 0.62 

36 0.88 0.53 0.84 0.43 0.42 0.66 0.36 0.19 0.25 0.29 0.45 0.57 0.63 0.58 0.45 

37 0.88 0.70 0.90 0.35 0.77 0.76 0.25 0.23 0.36 0.58 0.29 0.48 0.58 0.53 0.60 

38 0.81 0.74 0.80 0.56 0.61 0.76 0.44 0.19 0.49 0.59 0.51 0.76 0.80 0.79 0.51 

39 1.00 0.72 1.00 0.66 0.63 0.82 0.33 0.29 0.60 0.82 0.47 0.69 0.80 0.74 0.50 

40 0.82 0.49 1.25 0.49 0.26 0.33 0.45 0.42 0.49 0.49 0.42 0.48 1.30 0.81 0.41 

Rj 1.69 6.15 2.26 12.08 5.38 3.41 12.28 14.62 10.41 9.05 11.54 6.72 6.31 9.44 8.67 

 (l) Metric 12: Mean accuracy with constraints 

Dataset UMAP t-SNE FIt_SNE PCA Trimap mTSNE Isomap KPCA LEM LTSA MDS HLLE LLE LVis MVU 

1 0.50 0.66 0.03 0.81 0.04 0.18 0.07 0.10 0.61 0.05 0.28 0.32 0.54 0.02 0.11 

2 0.48 0.68 0.05 0.72 0.06 0.18 0.07 0.10 0.58 0.06 0.28 0.32 0.23 0.01 0.02 

3 0.57 0.65 0.05 0.74 0.04 0.18 0.07 0.10 0.60 0.06 0.29 0.34 0.19 0.11 0.02 

4 0.56 0.66 0.04 0.69 0.02 0.18 0.06 0.10 0.65 0.04 0.27 0.39 0.39 0.10 0.01 

5 0.46 0.51 0.46 0.50 0.47 0.51 0.47 0.49 0.47 0.49 0.48 0.47 0.45 0.44 0.45 

6 0.60 0.68 0.05 0.76 0.04 0.18 0.06 0.10 0.65 0.04 0.27 0.35 0.46 0.06 0.11 

7 0.48 0.67 0.06 0.79 0.05 0.20 0.06 0.10 0.63 0.06 0.27 0.34 0.22 0.10 0.01 

8 0.53 0.66 0.04 0.72 0.04 0.20 0.07 0.10 0.63 0.05 0.27 0.37 0.27 0.10 0.11 

9 0.45 0.66 0.03 0.74 0.08 0.18 0.06 0.06 0.59 0.05 0.27 0.37 0.29 0.10 0.02 

10 0.42 0.68 0.05 0.74 0.02 0.18 0.06 0.10 0.62 0.07 0.27 0.37 0.21 0.10 0.11 

11 0.56 0.75 0.07 0.74 0.40 0.19 0.07 0.06 0.86 0.05 0.31 0.39 0.57 0.10 0.02 

12 0.48 0.75 0.05 0.83 0.16 0.19 0.06 0.02 0.71 0.07 0.30 0.34 0.56 0.03 0.11 

13 0.56 0.70 0.04 0.74 0.86 0.18 0.06 0.10 0.63 0.05 0.27 0.38 0.28 0.11 0.01 

14 0.50 0.69 0.03 0.74 0.33 0.18 0.09 0.10 0.56 0.05 0.27 0.41 0.20 0.10 0.02 

15 0.53 0.67 0.06 0.83 0.13 0.18 0.06 0.06 0.59 0.05 0.28 0.35 0.58 0.10 0.11 

16 0.52 0.67 0.03 0.81 0.19 0.18 0.07 0.10 0.63 0.05 0.28 0.34 0.56 0.10 0.11 

17 0.55 0.68 0.04 0.23 0.51 0.18 0.06 0.10 0.59 0.06 0.27 0.33 0.34 0.02 0.01 

18 0.50 0.67 0.05 0.79 0.11 0.18 0.06 0.10 0.82 0.04 0.31 0.31 0.52 0.10 0.02 

19 0.57 0.69 0.04 0.72 0.32 0.18 0.06 0.10 0.83 0.04 0.27 0.34 0.27 0.10 0.02 

20 0.57 0.67 0.03 0.76 0.15 0.18 0.06 0.02 0.63 0.04 0.30 0.38 0.41 0.02 0.02 

21 0.52 0.67 0.06 0.67 0.02 0.18 0.06 0.10 0.64 0.04 0.27 0.34 0.22 0.11 0.11 

22 0.57 0.67 0.04 0.74 0.03 0.18 0.07 0.10 0.56 0.04 0.29 0.33 0.39 0.01 0.11 

23 0.47 0.65 0.03 0.79 0.06 0.19 0.06 0.10 0.53 0.05 0.29 0.31 0.52 0.11 0.11 

24 0.59 0.66 0.04 0.83 0.06 0.19 0.07 0.10 0.58 0.05 0.29 0.31 0.55 0.10 0.03 

25 0.53 0.69 0.06 0.74 0.79 0.18 0.06 0.10 0.56 0.05 0.27 0.30 0.28 0.11 0.02 

26 0.55 0.71 0.03 0.76 0.16 0.18 0.06 0.10 0.65 0.04 0.28 0.42 0.47 0.02 0.11 

27 0.58 0.66 0.03 0.69 0.56 0.18 0.07 0.10 0.63 0.05 0.28 0.30 0.43 0.10 0.02 

28 0.53 0.68 0.03 0.76 0.14 0.18 0.06 0.10 0.62 0.05 0.27 0.37 0.19 0.02 0.03 

29 0.55 0.69 0.07 0.76 0.88 0.18 0.06 0.10 0.59 0.05 0.27 0.35 0.23 0.11 0.11 

30 0.55 0.70 0.03 0.74 0.78 0.18 0.06 0.10 0.56 0.06 0.26 0.34 0.30 0.01 0.02 

31 0.57 0.69 0.03 0.72 0.02 0.18 0.06 0.10 0.56 0.05 0.28 0.31 0.50 0.10 0.11 

32 0.57 0.66 0.03 0.21 0.06 0.18 0.06 0.10 0.60 0.05 0.28 0.33 0.53 0.11 0.11 

33 0.42 0.66 0.04 0.79 0.27 0.18 0.08 0.10 0.56 0.05 0.26 0.35 0.27 0.10 0.11 

34 0.42 0.68 0.04 0.79 0.04 0.18 0.06 0.10 0.62 0.04 0.27 0.35 0.56 0.10 0.11 

35 0.43 0.71 0.04 0.76 0.36 0.19 0.08 0.03 0.57 0.07 0.28 0.43 0.57 0.10 0.04 

36 0.49 0.70 0.04 0.88 0.33 0.19 0.06 0.04 0.60 0.08 0.27 0.40 0.58 0.11 0.02 

37 0.55 0.69 0.05 0.69 0.04 0.18 0.06 0.10 0.59 0.05 0.28 0.34 0.29 0.01 0.11 

38 0.55 0.68 0.05 0.86 0.43 0.18 0.08 0.11 0.60 0.06 0.31 0.39 0.44 0.03 0.11 

39 0.56 0.68 0.04 0.69 0.13 0.18 0.07 0.10 0.63 0.05 0.27 0.65 0.27 0.11 0.11 

40 0.56 0.16 0.99 0.07 0.14 0.20 0.52 0.10 0.85 0.13 0.22 0.29 0.13 0.73 0.13 

Rj 11.46 13.56 5.51 1.00 9.69 14.64 7.21 2.49 12.56 6.05 8.79 10.10 10.21 3.08 3.64 
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Table 4.5: Friedman’s rank of all algorithms for each of the contextual metrics 

Context Metric Umap t-sne FItsne PCA Tmp Mt-sne Isomap KPCA LEM Ltsa nMDS HLLE LLE LVis MVU 

Pattern 

analysis 

𝜎2 1.74 1.44 5.46 7.10 14.4 6.05 9.18 5.33 10.1 9.46 7.33 10.4 11.3 7.64 12.8 

𝜌𝑠 2.08 1.87 5.90 5.67 7.74 5.00 7.28 6.77 12.5 14.8 7.33 10.8 10.3 9.49 12.2 

𝜇𝑅𝑛𝑋
 2.13 3.41 4.92 6.74 12.4 5.87 3.33 6.64 8.95 9.41 8.46 11.5 11.6 9.92 14.5 

𝑄𝑙𝑜𝑐𝑎𝑙 1.36 3.69 7.03 6.46 14.5 6.97 2.00 6.95 10.5 12.4 6.36 8.82 9.21 11.5 12.0 

𝜆𝐾𝑚𝑎𝑥
 3.60 3.88 6.90 7.53 10.6 6.92 4.49 5.36 9.79 10.3 7.32 8.08 8.44 13.8 13.2 

𝑄𝑔𝑙𝑜𝑏𝑎𝑙 6.87 7.26 7.15 1.26 9.22 7.29 5.86 3.82 14.7 12.6 2.10 10.1 8.18 10.9 12.5 

Pred. 

modeling 

𝐴𝑈𝐶ln 𝐾(𝑅𝑛𝑋(𝐾)) 5.59 1.79 3.03 10.3 14.6 6.41 2.79 9.15 11.9 12.8 6.10 6.05 8.49 10.5 11.1 

𝐴𝐶𝐶𝜙  7.76 6.88 7.91 6.74 9.18 7.79 9.13 7.35 8.28 8.35 7.69 8.31 8.50 7.91 8.22 

Poor 

quality 

data 

𝑛𝑀𝐼 3.46 3.01 3.49 9.56 13.9 4.04 13.1 8.79 9.42 9.71 12.3 4.49 4.35 5.68 14.9 

𝑆𝑆𝐼  4.77 10.7 7.97 2.67 12.7 12.7 3.54 2.08 12.7 5.90 2.15 12.74 12.7 9.55 6.95 

Limited 

data 

𝑙𝑜𝑔𝑙𝑜𝑠𝑠 1.69 6.15 2.26 12.0 5.38 3.41 12.2 14.6 10.4 9.05 11.5 6.72 6.31 9.44 8.67 

Limited 

resources 

 𝜇𝐴𝑈𝐶ln 𝐾(𝑅𝑛𝑋(𝐾))
𝑁𝑖

 11.4 13.5 5.51 1.00 9.69 14.64 7.21 2.49 12.5 6.05 8.79 10.1 10.2 3.08 3.64 

Note: In the above table, LVis refers to LargeVis, Tmp refers to Trimap, and Mt-

sne signifies Multicore t-SNE with 8 cores. The highest rank for the best performing 

algorithms in each metric is highlighted in bold. 

variance (𝜎2) and Spearman rank correlation (𝜌𝑠), t-SNE and its different variations 

(e.g., FIt-SNE and 8-Core t-SNE) can be good choices for a practitioner. 

Nevertheless, for metrics such as 𝜇𝑅𝑁𝑋
, 𝑄𝑙𝑜𝑐𝑎𝑙, and 𝜆𝐾𝑚𝑎𝑥

, UMAP and Isomap have 

outperformed t-SNE. The reason being: whilst t-SNE effectively preserves small 

neighborhoods in an input dataset, it ignores the overall structure of the data. Hence, 

t-SNE delivers best results when the value of 𝐾 is relatively small. For example, t-

SNE is ranked in third position for the metric 𝜇𝑅𝑁𝑋
 as it computes an average of the 

agreement between the dataset and its embedding for all possible 𝐾 values (i.e., 

1 ≤ 𝐾 ≤ 𝑁 − 1) in the dataset. Moreover, for 𝑄𝑙𝑜𝑐𝑎𝑙  and 𝜆𝐾𝑚𝑎𝑥
 the value of 𝐾𝑚𝑎𝑥 

is automatically computed from the input data. Although, 𝐾𝑚𝑎𝑥 can successfully 

define the size of ‘locality’ [4] in a dataset, research shows that a single value for 

𝐾𝑚𝑎𝑥 is often suboptimal [4] for all neighborhoods in a dataset. As a result, for 

𝑄𝑙𝑜𝑐𝑎𝑙 and 𝜆𝐾𝑚𝑎𝑥
 UMAP outperforms t-SNE. On the other hand, algorithms such 

as PCA, KernelPCA, and non-metric MDS outperform t-SNE and its variants for 
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the metric 𝑄𝑔𝑙𝑜𝑏𝑎𝑙 . This shows that, while PCA effectively separates different 

neighborhoods in an embedding, it perturbs the internal structure of the 

neighborhoods.  

In terms of DR accuracy metrics, both t-SNE and PCA perform well with KNN 

prediction accuracy. However, for 𝐴𝑈𝐶ln 𝐾(𝑅𝑁𝑋(𝐾)), the local structure preserving 

algorithms, namely UMAP, t-SNE, and different versions of LLE, outperform non-

metric MDS and also both linear and non-linear PCA. We note that KNN prediction 

accuracy is an indirect quality metric that depends on the quality of input data (e.g., 

non-noisy labels or class imbalance in data). However, the performance of t-SNE 

for 𝐴𝑈𝐶ln 𝐾(𝑅𝑁𝑋(𝐾)) validates our outcome for the KNN prediction accuracy.  

Table 4.5 shows, overall locally focused NLDR techniques (e.g., UMAP, t-SNE, 

LLE) handle missing values in data better than globally-focused techniques nMDS 

and KernelPCA. However, with outliers in the input data, the exact opposite thing 

happens (i.e., PCA, KernelPCA, and nMDS outperform UMAP and t-SNE)! These 

results show that, while outliers impact the preservation of the global structure of a 

 

Figure 4.1: Sampling distribution for12 metric scores from 10,000 sample of the Credit 

card dataset 
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dataset more than its local neighborhood structures, missing values in the data 

influence the conservation of the local neighborhoods. In terms of reproducibility 

with limited input data, UMAP outperforms all the globally focused NLDR 

algorithms with different variants of t-SNE (i.e., FIt-SNE and 8-core t-SNE) 

holding the second-best positions. Nevertheless, in terms of accuracy with limited 

resources both linear and non-linear versions of PCA outperform all of the other 

algorithms. In order to justify the fidelity of the rankings presented in Table 4.5, in 

Figure 4.1 we present the sampling distribution of the metric scores for the Credit 

card dataset. In the Figure we depict the distribution of the metric scores for 10,000 

random samples from the dataset. The samples were selected with replacement. The 

charts also show the mean and standard deviation of the metric scores for the 10,000 

random samples. The normality of the distribution proves the legitimacy of 

computing the mean score from all the samples for each dataset. 

Overall, Table 4.5 shows that for any specific analytical context and chosen quality 

metric, some DR algorithms perform better than others. However, Amid et al. [17] 

and Shiming et al. [34] discuss that the performances of DR algorithms also depend 

on factors such as the input datasets and the hyperparameter combinations of the 

algorithms. Hence, we analyze the impact of these two factors on the obtained 

results. 

4.3.1.1 Impact of Input Datasets 

High-dimensional datasets have some unique characteristics [9] that influence any 

kind of exploratory analysis performed on them. In this section, we discuss the 

effect of three such characteristics that might influence the performance of any DR 

technique. 

i. Number of Attributes: The computation of proximity relationships [11] 

among data-points forms the basis of almost all NLDR [62] techniques.  
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Such proximity computation is highly impacted [24] by the size of the data 

vector (i.e., attributes in the dataset). The reason being: the larger the size of 

each data vector the more components are considered in the expressions for 

proximity calculation. In this section, we report our analysis on the influence 

of the number of attributes on the retention of local structure after DR. As 

shown in Figure 4.2(a), we focus on the metric 𝑄𝑙𝑜𝑐𝑎𝑙. In Figure 4.2 (a), we 

compare the 𝑄𝑙𝑜𝑐𝑎𝑙  scores for the best, mediocre, and worst performing 

algorithms namely: UMAP, FIt-SNE, and Trimap for 11 datasets. Only 

these datasets are considered because, either their  𝑄𝑙𝑜𝑐𝑎𝑙  scores were less 

than 70% (cf. Table 4.4.d) for the best performing algorithm or they have 

more than 50 attributes (cf. Table 4.3). The figure shows for datasets (i.e., 

News, Gas-Drift, Aps-Failure, Sylva-Agnostic, Lung-Cancer, 

Geographical-Unit, and Epileptic-Seizure) with a relatively high number of 

 

 

(a) Impact of the number of attributes on 𝑄𝑙𝑜𝑐𝑎𝑙 

 

(b) Impact of parameter tuning on 𝐴𝑈𝐶ln 𝐾(𝑅𝑛𝑋(𝐾)) 

Figure 4.2: Influence of additional factors on the performance of DR algorithms 



 

  

116 

attributes the local structure is retained around 10% to 65% by all the 

algorithms. However, there are some exceptions. On the one hand, for the 

Nomao dataset with 120 attributes UMAP could retain around 99% of its 

local structure. On the other hand, for the Amazon-Employee-Access 

dataset with merely 10 attributes all the three algorithms retained between 

30% to 60% of its local structure. This confirms that the structural retention 

was impacted by other aspects of high-dimensional data, not just the 

attribute count. 

ii. Categorical Features in Data: Performing any kind of statistical analysis 

with categorical attributes can be a challenging [9] task. Primarily because, 

it is not only impossible to compute statistics like mean, median with such 

attributes but also in most cases, such attributes cannot be represented 

ordinally. As a result, they impact on the calculation of the distance 

measures used in different DR algorithms. Although there are similarity 

measures (e.g., Gower Similarity) that can effectively handle categorical 

data, DR algorithms considered for our experiments are designed [2], [3] 

only to work with numeric continuous attributes. For example, during our 

analysis of the poor 𝑄𝑙𝑜𝑐𝑎𝑙 scores for the Amazon-Employee-Access and 

Renewal Sales datasets (cf. Figure 4.2(a)) with as low as 10 and 15 attributes 

respectively, we discovered that whilst all the attributes in the former were 

categorical, 14 out of 15 attributes in the later had categorical data. 

iii. Multivariate Relationships among Attributes: Multivariate relationships 

[63] among attributes may cause redundancy in data [9]. Our experiments 

show that such redundancies also impact on the proximity computation 

among data-points. For example, during our experiments, we noticed that 

for datasets such as Credit-card, Aps-Failure, SUSY, Phishing-Websites, 

Sylva-Prior, and Gas-drift almost all DR algorithms performed poorly in 

terms of computing local quality metrics such as 𝜇𝑅𝑁𝑋
 and 𝑄𝑙𝑜𝑐𝑎𝑙. We think 

that, the high correlation among the attributes in these datasets affected the 

performances of our chosen DR techniques.  
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4.3.1.2 Impact of Hyperparameters 

Each DR algorithm has a set of hyperparameters that are tuned uniquely for the 

dataset under consideration [3]. Depending on their construction, DR algorithms 

have different number of parameters where the parameters vary in their level of 

importance. For example, the neighborhood size (i.e., 𝐾) is one of the most 

influential parameters for many DR algorithms. As our experiments show (cf. Table 

4.5) most locally focused DR algorithms (e.g., t-SNE, UMAP, FIt-SNE) outperform 

their competitors for smaller values of 𝐾. Hence, in case the value of 𝐾 is not 

optimally chosen, the structural retention after DR can deteriorate even for the best 

performing algorithms. Among other parameters, the importance of the perplexity 

[26] parameter for t-SNE is well known among researchers [62], [64]. The 

parameter signifies the number of closest neighbors to consider when determining 

the local structure of neighborhoods before the transformation. Tang et al. [13] 

show, with a slight change in the perplexity value (traditionally ranged between 5 

and 50) can highly impact the relative positioning of data-points in the embedding. 

The same concern is also valid for other t-SNE based algorithms namely 

McoretSNE and FIt-SNE. The number of iterations in the DR algorithms is also 

known for its significance [3]. The iterations allow the refinement of the relative 

positioning of datapoints after DR, hence reducing the optimization error. Our 

experiments show that a reduced number of iterations can negatively influence the 

accuracy and structural retention after DR. Finally, the distance function chosen 

for any DR algorithm makes a key impact on the identified proximities among data 

points. Although most of our chosen DR algorithms consider the Euclidean distance 

to be their default distance function, the distance functions can be altered depending 

on the dataset. Since the performance of the distance function depends on the 

underlying structure of the original manifold, in our experiments, however, alerting 

Euclidean distance to other distance functions (e.g., ‘Cosine’ distance for t-SNE 

and ‘Manhattan’ distance for UMAP) did not show any significant changes in the 

output. 
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In Figure 4.2(b) we show the impacts of tuned versus default hyperparameters for 

t-SNE on 6 datasets. Here, we focus on the accuracy of the embedding (i.e., for 

metric 𝐴𝑈𝐶ln 𝐾(𝑅𝑛𝑋(𝐾)))). Figure 4.2(b) shows that, with the appropriate tuning of the 

hyperparameters, t-SNE performs with much higher accuracy for all 6 datasets than 

with its default parameter combinations. During the parameter tuning for our 

experiments, we learned that the hyperparameters of some algorithms (e.g., PCA, 

Isomap, nMDS, Trimap, KernelPCA, LLE) are easier to tune than others (e.g., t-

SNE, FIt-SNE, McoretSNE, and UMAP). We identified the reasons to be (1) the 

number of parameters used in grid-search, (2) the range of parameter values, and 

(3) the computational complexities of DR techniques. For example, the tuning-

duration of only the perplexity parameter for t-SNE is significantly lower than the 

duration for tuning both perplexity and number of iterations. Similarly, for UMAP 

tuning only neighborhood size and number of target dimensions could be done in 

much lower time than tuning the two parameters along with minimum distance 

among neighbors. Moreover, when determining the best kernel function for 

KernelPCA, tuning with only three functions require much less time than tuning 

with six functions. Finally, for the algorithms that are known for their speed 

limitations (e.g., t-SNE [2]) the overall tuning duration was higher than others (e.g., 

KernelPCA). In the case of some algorithms (e.g., t-SNE, UMAP) increasing the 

range or number of the tuning parameters exponentially increased the tuning 

duration. We consider these algorithms like the ones that are difficult to tune. A  

 

Figure 4.3: Execution times for grid-search with different hyper-parameter 

combinations discussed in Table 4.5. 
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Table 4.6: Parameter Settings for the Grid Search for Algorithms Presented in Figure 4.3  

Algorithm Param-Setting 1 Param-Setting 2 Param-Setting 3 

UMAP n_neighbors: 5, 20 

n_components: 15, 

25, 50 

n_neighbors: 2, 5, 10, 

20, 50, 100, 200 

n_components: 1, 5, 

15, 20, 25, 50 

n_neighbors: 2, 5, 10, 20, 50, 

100, 200 

n_components: 15, 20, 25, 50 

min_dist: 0.0, 0.1, 0.25, 0.5, 

0.8, 0.99 

t-SNE Perplexity: 5, 30 Perplexity: 5, 15, 25, 

30 

Perplexity: 5, 10, 15, 20, 25, 30 

n_iter: 250, 500, 750, 1000 

MCore-t-SNE Perplexity: 5, 30 

n_jobs: 2, 4 

Perplexity: 5, 15, 25, 

30 

n_jobs: 2, 4, 6, 8 

Perplexity: 5, 10, 15, 20, 25, 30 

n_jobs: 2, 4, 6, 8 

n_iter: 250, 500, 750, 1000 

KernelPCA Kernel: "linear",  

"poly" 

Kernel: "linear",  

"poly",  "rbf", 

"sigmoid" 

Kernel: "linear",  "poly",  "rbf", 

"sigmoid", "cosine", 

"precomputed" 

Isomap n_neighbors: 5, 20 
n_components: 15, 

25, 50 

n_neighbors: 2, 5, 10, 
20 

n_components: 1, 5, 

15, 20 

n_neighbors: 2, 5, 10, 20, 50, 
100, 200 

n_components: 1, 5, 15, 20, 25, 

50 

nMDS n_neighbors: 5, 20 

n_components: 15, 

25, 50 

n_neighbors: 2, 5, 10, 

20 

n_components: 1, 5, 

15, 20 

n_neighbors: 2, 5, 10, 20, 50, 

100, 200 

n_components: 1, 5, 15, 20, 25, 

50 

Trimap n_inliers: 5, 10 

n_outliers: 5, 10 

n_iters: 200, 400 

n_inliers: 5, 8, 10,12 

n_outliers: 5, 8, 10, 12 

n_iters: 200, 400, 600 

n_inliers: 5, 8, 10, 12, 15, 18, 20 

n_outliers: 5, 8, 10, 12, 15, 18, 

20 

n_iters: 200, 300, 400, 500, 600 

more detailed analysis of our assessment of our hyperparameter tuning is presented 

in Figure 4.3 and Table 4.6. 

Figure 4.3 plots the differences in training-time with different hyperparameter 

settings with 7 DR algorithms that performed better than others in different 

contextual metrics. The exhaustive grid-search of hyperparameters were performed 

on a system with 192 GB RAM, 12 processor cores and 350 hard-drive space. The 

Figure 4.3 shows that when training with different value ranges for hyperparameters 

or different number of hyperparameters, the tuning time varies for each and every 

algorithm. Whereas for some algorithms, the computational time varies more 

significantly (e.g., t-SNE) than for others. We think the reason behind this is the 

executional complexity of these algorithms. 
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4.3.2 Statistical Analysis of Results 

In the next two sub-sections, we summarize the results and discuss our analysis for 

both pairwise and overall statistical comparisons among the chosen algorithms. In 

our experiments, we use one parametric (i.e., paired t-test – Eq. 4.21) and two non-

parametric (i.e., Wilcoxon signed rank – Eq. 4.23 and asymptotic McNemar’s – Eq. 

4.24) statistical tests. In our experiments, following the guidelines of Hastie et al. 

[31], Demśar et al. [39] and Mohammadi et al. [37] we consider more than 70% 

rejection of 𝐻0 in 1000 experiments as a sign of statistical significance. The line-

plots presented in Figure 4.4 comparatively present the results of all the three tests 

for each metric. Based on the test results we draw our conclusions for the statistical 

significance of pairwise differences. For overall comparisons of algorithms, we 

execute Friedman’s test (cf. Eq. 4.26) along with Nemenyi and Holm corrections. 

4.3.2.1 Pairwise Statistical Comparisons of Algorithms 

In this section, for each evaluation metric, we perform pairwise statistical 

comparisons among the best and the worst performing algorithms identified in 

Table 4.5. The primary goal of this analysis is to assess whether the difference in 

the performance of the algorithms might be a good candidate for generalization 

beyond this study. For these pairwise comparisons, as discussed in Algorithm 1 

(line 22), we randomly sampled 40 datasets with replacement and repeated this 

process 1000 times. Figure 4.4 summarizes our overall analysis results for 10 out 

of 12 metrics. The results for the remaining two metrics (i.e., 𝑛𝑀𝐼 and 𝑆𝑆𝐼) are 

presented in Tables 4.6 and 4.7. All the line charts in Figure 4.4 (i.e., Fig. 4.4.a to 

Fig. 4.4.j) show the combined results of the Wilcoxon signed rank test, paired t- 

test, along with asymptotic McNemar’s test for their number of the rejected null 

hypothesis in all 1000 experiments. The results of the three tests are presented 

together to ease the assessment of their similarities and contradictions. The x-axis 
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of all the line graphs in Figure 4.4 represents the additional bias 𝜈 varying from 0 

to 20 (cf. Equation 4.29). Ideally, when 𝜈 = 0 the plots should depict an unbiased 

statistical analysis between the sample datasets. However, in case there is indeed 

any statistically significant differences among the algorithms under inspection, with 

an increasing 𝜈 we should expect to see an upward trend in the plots. 

Figure 4.4.a presents our analysis of DR techniques for Residual variance (�̂�2) and 

 

Figure 4.4: Comparisons of Statistical Significance Tests (Wilcoxon signed rank, paired 

t-test, and asymptotic McNemar’s test) for the number of the rejected null hypothesis in 

1000 experiments 
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compares the best performing algorithm t-SNE to the worst-performing algorithm 

MVU. On the other hand, Figure 4.4.b depicts the results for Spearman’s Rank 

Correlation (𝜌𝑠) and compares t-SNE with LTSA the highest and the lowest scorer 

for 𝜌𝑠 respectively. Similarly, Figure 4.4.c compares UMAP with MVU for the 

metric 𝜇𝑅𝑁𝑋
. In all the three charts we see an upward trend for all the statistical tests 

with increasing bias. In Fig 4.4.a, although for 0 bias the t-test has rejected only 

about 55% of the null hypotheses, beyond 𝜈 = 2, the Wilcoxon, paired-t, and 

asymptotic McNemar’s tests show competitive performances with the number of 

rejected 𝐻0 being between 70% and 90%. In Figures 4.4.b and 4.4.c, the number of 

rejected (𝐻0)  hypotheses remain (more-or-less) similar (i.e., 80% to 100%) for 

both the non-parametric tests. Whereas, in Figure 4.4.b, considering all of the bias 

values, the asymptotic McNemar’s test rejected most (82%, to 100%) of the 

hypotheses. From this analysis we make three observations: firstly, in terms of 

residual variance (i.e., Fig. 4.a), t-SNE and MVU are indeed significantly different 

from each other for 𝜈 ≥ 2. However, for 𝜈 < 2, only the non-parametric statistical 

tests releveled any statistical significance. Secondly, in terms of Spearman’s 

correlation (i.e., Fig. 4.b), considering the results of the asymptotic McNemar’s test 

for all bias values, we conclude that the performance differences of t-SNE and 

LTSA are statistically significant. Finally, for Figure 4.4.c, when < 10,  the paired 

t-test, cannot identify any statistical significance in the differences between UMAP 

and MVU. However, McNemar’s asymptotic test and the Wilcoxon signed ranks 

test have constantly rejected around 70% to 100% of the null hypotheses, hence 

confirming the statistical significance. 

Figures 4.4.d, 4.4.e, and 4.4.f present the results of the statistical comparisons 

among the best and the worst performing algorithms for the metrics 𝑄𝑙𝑜𝑐𝑎𝑙, 𝜆𝐾𝑚𝑎𝑥
, 

and 𝑄𝑔𝑙𝑜𝑏𝑎𝑙 . In Figure 4.4.d we compare the differences between UMAP and 

Trimap for 𝑄𝑙𝑜𝑐𝑎𝑙; in Figure 4.4.e, the 𝜆𝐾𝑚𝑎𝑥
 scores of UMAP and LargeVis and in 

Figure 4.4.f, the 𝑄𝑔𝑙𝑜𝑏𝑎𝑙  scores of PCA and LEM. Likewise, in figures 4.4.e and 

4.4.f, in Figure 4.4.d the number of rejected null hypothesis increased with a raising 

value for bias for all the three tests. Moreover, for all the tests, for 𝜈 > 4, the 
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number of rejected null hypotheses was between 75% -100%. Similarly, in Figure 

4.4.e, since the asymptotic McNemar’s test has consistently rejected more than 80% 

of the null hypothesis for 𝜈 > 6, we conclude that the difference in loss of 𝐾-ary 

neighborhood information due to the size of 𝐾 is statistically significant between 

UMAP and LargeVis. Finally, in Figure 4.4.f, although the paired t-test rejected 

between only 40% to 60% of 𝐻0 when 𝜈 < 14, the asymptotic McNemar’s test 

consistently rejected more than 70% of the null hypothesis for all values of 𝜈. 

Hence, we think that the differences between PCA and LEM for 𝑄𝑔𝑙𝑜𝑏𝑎𝑙  are 

statistically significant. 

In Figures 4.4.g, 4.4.h, 4.4.i, 4.4.j we illustrate the results of the statistical 

comparisons for 𝐴𝑈𝐶ln 𝐾(𝑅𝑁𝑋(𝐾)), 𝐴𝐶𝐶𝜓, 𝑙𝑜𝑔𝑙𝑜𝑠𝑠 and accuracy with limited 

computational resources. Among these figures, Figure 4.4.g compares t-SNE with 

Trimap that is the best and worst-performing algorithms in terms of 

𝐴𝑈𝐶ln 𝐾(𝑅𝑁𝑋(𝐾)); Figures 4.4.h and 4.4.i similarly compare PCA with Trimap and 

UMAP with KernelPCA for 𝐴𝐶𝐶𝜓 and 𝑙𝑜𝑔𝑙𝑜𝑠𝑠  respectively. Finally, Figure 4.4.j 

compares PCA with 8-Core t-SNE for 𝜇𝐴𝑈𝐶ln 𝐾(𝑅𝑛𝑋(𝐾))
𝑁𝑖

. In figures 4.4.g, 4.4.h, 4.4.i, 

and 4.4.j we have seen an upward trend in the number of rejected 𝐻0 with an 

increasing 𝜈. Nevertheless, in the figures 4.4.g, and 4.4.h, we can see that with 

lower values for biases (i.e., when 𝜈 < 12) the number of rejected null hypothesis 

have been between 40%-65% for Wilcoxon signed ranks and Paired-t tests. 

However, in Figure 4.4.h for the asymptotic McNemar’s test, the number of rejected 

null hypotheses were constantly more than 70% for all bias values. In these cases, 

even if there is a statistical significance in the differences between the compared 

algorithms for the chosen metrics, the Wilcoxon signed ranks and Paired-t tests 

could not find them. In the case of Figure 4.4.i, both the non-parametric tests 

rejected around 70% to 100% of the null hypotheses with all bias values. The charts 

show that the introduction of bias was indeed useful in revealing the statistical 

significance in the differences in the algorithms. For Figure 4.4.j however, the  
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Table 4.7: Comparisons of Wilcoxon signed rank, paired t-test, with asymptotic 
McNemar’s test for the impact of missing values with bias = 15; (below diagonal: 

average p-value/Rep(p), above diagonal: rejected null hypothesis/Rep(e)) 

(a) Wilcoxon signed-rank 

test 

 t-SNE KPCA MVU 

t-SNE  675/0.5 895/0.8 

KPCA 0.17/0.8  794/0.6 

MVU 0.05/0.9 0.13/0.8  

 t-SNE KPCA MVU 

t-SNE  509/0.49 728/0.6 

KPCA 0.19/0.82  679/0.56 

MVU 0.07/0.93 0.08/0.92  

       (b) Paired t-test 

 t-SNE KPCA MVU 

t-SNE  624/0.53 974/0.94 

KPCA 0.18/0.83  619/0.52 

MVU 0.04/0.96 0.18/0.83  

      (c) McNemar’s test 

Table 4.8: Comparisons of Wilcoxon signed rank, paired t-test, with asymptotic 

McNemar’s test for outlier values with bias = 15; (below diagonal: average p-

value/Rep(p), above diagonal: rejected null hypothesis/Rep(e)) 

 nMDS MVU HLLE 

nMDS  644/0.5 924/0.85 

MVU 0.17/0.8  601/0.51 

HLLE 0.04/0.9 0.17/0.8  

(a) Wilcoxon signed-rank 

test 

 nMDS MVU HLLE 

nMDS  589/0.51 792/0.67 

MVU 0.16/0.85  633/0.53 

HLLE 0.14/0.87 0.16/0.85  

(b) Paired t-test 

 nMDS MVU HLLE 

nMDS  672/0.55 952/0.9 

MVU 0.18/0.83  627/0.53 

HLLE 0.03/0.97 0.18/0.83  

(c) McNemar’s test 

number of the rejected null hypothesis for all the tests was between 50% - 80%. 

However, for bias less than 12 the Paired t-test could not find any statistical 

significance in the performance differences of PCA and 8-Core t-SNE. Moreover, 

for 6 ≤ 𝜈 ≤ 12, the statistical significance of the dissimilarities of the results from 

PCA and 8-Core t-SNE due to resource constraints cannot be strongly concluded 

even using the non-parametric tests. Here, we think apart from the resource 

constraints additional factors (e.g., quality of input data, other hyperparameters of 

the algorithms, etc.) are in play.  

For the metrics evaluating the impact of missing and outlier values on DR 

algorithms, we also present the replicability values of the statistical tests. In Tables 

4.6 and 4.7, we tabulate the comparisons among the best, mediocre, and worst-

performing algorithms in terms of the impact of missing (cf. Table 4.7) and outlier 

values (cf. Table 4.8). Like Mohammadi et al. [37], in both Tables 4.6 and 4.7, we 

report the results for bias 𝜈 = 15. For both the tables, the numbers below the 

diagonals represent the average p-value and their corresponding replicability 

measure Rep(p) (cf., Equation 4.31), as the numbers above the diagonals signify 

the number of rejected null hypotheses and their corresponding replicability 
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measure Rep(e) (cf., Equation 4.30). In both Tables 4.6 and 4.7, the statistical 

significance in the differences of the best and worst-performing algorithms are 

visible with average p-values being less than 0.05 (i.e., our predefined threshold) 

for both the non-parametric tests. However, from both the tables the differences 

between the best and mediocre performing algorithms could not be determined to 

be statistically significant. On the other hand, the replicability Rep(p) of the tests 

being above 80% we think the statistical tests to be reliable. 

In support of our pairwise statistical analysis of alogrithms presented above, we 

present the detailed results of the McNemar’s asymptotic test used for the statistical 

analysis of the DR algorithm performances in Table 4.9. The primary reason behind 

presenting the results of only McNemar’s asymptotic test among the three other 

tests (Wilcoxon’s Signed Rank test, Paired t-test, and Exact McNemar’s test) is: 

our experiments have proven the McNemar’s Asymptotic test to be the most 

powerful when comparing DR algorithms. In Tables 4.9.a to 4.9.l each row presents 

the pairwise comparisons between the two algorithms marked by the row and 

column headers. Hence, the diagonals in the Tables 4.9.a to 4.9.l remain blank as 

they indicate the statistical comparison of an algorithm to itself. In the Tables 4.9.a 

to 4.9.l below the diagonal we present the average p-value of McNemar’s 

Asymptotic test and its replicability measure Rep(p) separated by a ‘/’. Similarly, 

above the diagonals in Tables 4.9.a to 4.9.l we show the number of rejected null 

hypothesis in 1000 experiments using the McNemar’s Asymptotic test and its 

corresponding replicability measure Rep(e). 

4.3.2.2 Statistical Comparisons of Multiple Algorithms 

In this section, we briefly discuss the results of the statistical comparisons among 

multiple DR algorithms with the Friedman test along with Nemenyi and Holm 

corrections of the p-values and depict in Figure 4.5. As per our assumptions, the 

Friedman test has been the most conservative of the three and has rejected the least 

number of hypotheses for all 12 metrics. Hence, in our analysis, we primarily focus 

on the results obtained from Nemenyi and Holm corrections. Among the 12 metrics, 
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Table 4.9: Statistical Significance Analysis for Pairwise Combinations of All Algorithms 

using McNemar's Asymptotic Test for bias value of 15 

(a) Metric 1: Residual variance (�̂�2)  

  UMAP t-SNE FIt_SNE PCA Trimap mTSNE Isomap KPCA LEM LTSA MDS HLLE LLE LVis MVU 

UMAP 
 

330/0.55 542/0.5 677/0.56 907/0.83 585/0.51 683/0.56 621/0.52 892/0.8 855/0.75 721/0.59 922/0.85 845/0.73 751/0.62 893/0.8 

t-SNE 0.18/0.83 
 

428/0.5 723/0.59 674/0.56 396/0.52 582/0.51 623/0.52 764/0.63 698/0.57 523/0.5 669/0.55 601/0.51 546/0.5 637/0.53 

FIt_SNE 0.13/0.88 0.21/0.8 
 

503/0.49 759/0.63 473/0.5 697/0.57 584/0.51 716/0.59 771/0.64 682/0.56 629/0.53 634/0.53 726/0.6 582/0.51 
PCA 0.09/0.91 0.19/0.82 0.18/0.83 

 
752/0.62 589/0.51 397/0.52 471/0.5 712/0.58 757/0.63 595/0.51 693/0.57 658/0.54 691/0.57 648/0.54 

Trimap 0.07/0.93 0.09/0.91 0.26/0.76 0.07/0.93 
 

679/0.56 725/0.6 784/0.66 657/0.54 592/0.51 743/0.61 685/0.56 672/0.55 649/0.54 812/0.69 

mTSNE 0.07/0.93 0.28/0.74 0.27/0.75 0.08/0.92 0.08/0.92 
 

697/0.57 741/0.61 784/0.66 716/0.59 794/0.67 768/0.64 713/0.59 701/0.58 682/0.56 

Isomap 0.11/0.89 0.17/0.84 0.14/0.87 0.19/0.82 0.06/0.94 0.14/0.87 
 

471/0.5 592/0.51 746/0.62 387/0.52 795/0.67 647/0.54 628/0.53 576/0.51 
KPCA 0.14/0.87 0.11/0.89 0.16/0.85 0.28/0.74 0.07/0.93 0.17/0.84 0.27/0.75 

 
914/0.84 714/0.59 367/0.53 628/0.53 597/0.51 577/0.51 542/0.5 

LEM 0.05/0.95 0.02/0.98 0.07/0.93 0.04/0.96 0.01/0.99 0.05/0.95 0.06/0.94 0.08/0.92 
 

539/0.5 780/0.65 487/0.49 560/0.5 573/0.51 589/0.51 

LTSA 0.08/0.92 0.06/0.94 0.09/0.91 0.06/0.94 0.06/0.94 0.09/0.91 0.08/0.92 0.05/0.95 0.21/0.8 
 

795/0.67 667/0.55 528/0.5 667/0.55 576/0.51 

MDS 0.13/0.88 0.04/0.96 0.11/0.89 0.16/0.85 0.03/0.97 0.07/0.93 0.19/0.82 0.02/0.98 0.01/0.99 0.08/0.92 
 

914/0.84 967/0.93 843/0.73 855/0.75 
HLLE 0.05/0.95 0.08/0.92 0.05/0.95 0.09/0.91 0.09/0.91 0.18/0.83 0.09/0.91 0.06/0.94 0.13/0.88 0.19/0.82 0.02/0.98 

 
348/0.54 675/0.56 472/0.5 

LLE 0.06/0.94 0.08/0.92 0.06/0.94 0.04/0.96 0.08/0.92 0.06/0.94 0.08/0.92 0.02/0.98 0.15/0.86 0.17/0.84 0.18/0.83 0.28/0.74 
 

597/0.51 575/0.51 

LVis 0.09/0.91 0.07/0.93 0.08/0.92 0.05/0.95 0.07/0.93 0.15/0.86 0.01/0.99 0.03/0.97 0.09/0.91 0.24/0.77 0.17/0.84 0.19/0.82 0.18/0.83 
 

648/0.54 

MVU 0.17/0.84 0.06/0.94 0.09/0.91 0.02/0.98 0.06/0.94 0.19/0.82 0.06/0.94 0.09/0.91 0.1/0.9 0.16/0.85 0.21/0.8 0.21/0.8 0.23/0.78 0.17/0.84 
 

(b) Metric 2: Spearman rank correlation (𝜌𝑠)  

  UMAP t-SNE FIt_SNE PCA Trimap mTSNE Isomap KPCA LEM LTSA MDS HLLE LLE LVis MVU 

UMAP 
 

578/0.51 649/0.54 745/0.61 812/0.69 647/0.54 875/0.78 694/0.57 947/0.89 912/0.83 793/0.67 891/0.8 843/0.73 877/0.78 845/0.73 

t-SNE 0.21/0.8 
 

375/0.53 485/0.49 596/0.51 374/0.53 729/0.6 671/0.55 725/0.6 784/0.66 618/0.52 799/0.67 738/0.61 801/0.68 844/0.73 
FIt_SNE 0.18/0.83 0.23/0.78 

 
504/0.49 675/0.56 317/0.56 791/0.66 602/0.52 836/0.72 877/0.78 745/0.61 862/0.76 874/0.77 906/0.82 948/0.9 

PCA 0.15/0.86 0.18/0.83 0.21/0.8 
 

643/0.54 588/0.51 576/0.51 297/0.58 755/0.62 719/0.59 511/0.49 728/0.6 719/0.59 768/0.64 743/0.61 

Trimap 0.09/0.91 0.11/0.89 0.18/0.83 0.21/0.8 
 

539/0.5 277/0.59 633/0.53 687/0.56 643/0.54 313/0.56 624/0.53 614/0.52 679/0.56 642/0.53 

mTSNE 0.17/0.84 0.24/0.77 0.24/0.77 0.18/0.83 0.16/0.85 
 

775/0.65 506/0.49 836/0.72 843/0.73 729/0.6 869/0.77 884/0.79 872/0.77 901/0.82 
Isomap 0.08/0.92 0.17/0.84 0.15/0.86 0.19/0.82 0.24/0.77 0.15/0.86 

 
439/0.5 641/0.53 624/0.53 239/0.63 579/0.51 547/0.5 598/0.51 546/0.5 

KPCA 0.14/0.87 0.16/0.85 0.19/0.82 0.26/0.76 0.18/0.83 0.19/0.82 0.26/0.76 
 

682/0.56 679/0.56 274/0.6 732/0.6 742/0.61 746/0.62 711/0.58 

LEM 0.05/0.95 0.05/0.95 0.09/0.91 0.09/0.91 0.08/0.92 0.09/0.91 0.19/0.82 0.18/0.83 
 

314/0.56 517/0.5 328/0.55 241/0.63 216/0.66 208/0.67 

LTSA 0.07/0.93 0.03/0.97 0.07/0.93 0.11/0.89 0.09/0.91 0.1/0.9 0.21/0.8 0.19/0.82 0.24/0.77 
 

544/0.5 326/0.56 384/0.52 319/0.56 312/0.57 
MDS 0.09/0.91 0.11/0.89 0.17/0.84 0.21/0.8 0.18/0.83 0.08/0.92 0.29/0.73 0.26/0.76 0.15/0.86 0.18/0.83 

 
548/0.5 562/0.5 514/0.49 546/0.5 

HLLE 0.03/0.97 0.04/0.96 0.06/0.94 0.07/0.93 0.07/0.93 0.07/0.93 0.19/0.82 0.19/0.82 0.26/0.76 0.26/0.76 0.18/0.83 
 

284/0.59 258/0.61 319/0.56 

LLE 0.05/0.95 0.03/0.97 0.04/0.96 0.08/0.92 0.06/0.94 0.06/0.94 0.18/0.83 0.21/0.8 0.21/0.8 0.27/0.75 0.14/0.87 0.21/0.8 
 

391/0.52 401/0.51 

LVis 0.07/0.93 0.05/0.95 0.05/0.95 0.1/0.9 0.08/0.92 0.08/0.92 0.21/0.8 0.17/0.84 0.26/0.76 0.21/0.8 0.16/0.85 0.26/0.76 0.24/0.77 
 

352/0.54 
MVU 0.06/0.94 0.06/0.94 0.06/0.94 0.06/0.94 0.04/0.96 0.05/0.95 0.24/0.77 0.16/0.85 0.24/0.77 0.25/0.77 0.14/0.87 0.23/0.78 0.28/0.74 0.19/0.82 

 

(c) Metric 3: Mean K-ary neighborhood agreement (𝜇𝑅𝑛𝑋
)  

  UMAP tSNE FIt_SNE PCA Trimap mTSNE Isomap KPCA LEM LTSA MDS HLLE LLE LVis MVU 

UMAP 
 

426/0.51 518/0.5 549/0.5 863/0.76 549/0.5 316/0.56 625/0.53 816/0.69 849/0.74 743/0.61 846/0.73 852/0.74 719/0.59 892/0.8 

tSNE 0.21/0.8 
 

523/0.5 579/0.51 839/0.72 571/0.5 269/0.6 647/0.54 894/0.81 794/0.67 746/0.62 875/0.78 823/0.7 901/0.82 871/0.77 
FIt_SNE 0.18/0.83 0.24/0.77 

 
364/0.53 713/0.59 275/0.6 574/0.51 379/0.52 974/0.94 874/0.77 369/0.53 867/0.76 812/0.69 825/0.71 879/0.78 

PCA 0.17/0.84 0.21/0.8 0.28/0.74 
 

745/0.61 349/0.54 582/0.51 269/0.6 781/0.65 746/0.62 529/0.5 748/0.62 713/0.59 749/0.62 785/0.66 

Trimap 0.08/0.92 0.08/0.92 0.14/0.87 0.11/0.89 
 

872/0.77 874/0.77 719/0.59 369/0.53 347/0.54 617/0.52 319/0.56 369/0.53 482/0.5 316/0.56 

mTSNE 0.18/0.83 0.22/0.79 0.34/0.68 0.28/0.74 0.05/0.95 
 

492/0.49 318/0.56 675/0.56 598/0.51 588/0.51 762/0.63 782/0.65 792/0.67 810/0.69 
Isomap 0.25/0.77 0.35/0.67 0.19/0.82 0.19/0.82 0.05/0.95 0.24/0.77 

 
471/0.5 795/0.67 748/0.62 694/0.57 947/0.89 975/0.95 826/0.71 819/0.7 

KPCA 0.27/0.75 0.18/0.83 0.21/0.8 0.36/0.66 0.11/0.89 0.21/0.8 0.21/0.8 
 

759/0.63 617/0.52 639/0.53 862/0.76 874/0.77 659/0.55 747/0.62 

LEM 0.07/0.93 0.12/0.88 0.02/0.98 0.09/0.91 0.24/0.77 0.18/0.83 0.08/0.92 0.18/0.83 
 

349/0.54 317/0.56 547/0.5 514/0.49 429/0.5 547/0.5 

LTSA 0.05/0.95 0.16/0.85 0.08/0.92 0.08/0.92 0.25/0.77 0.15/0.86 0.09/0.91 0.21/0.8 0.22/0.79 
 

369/0.53 482/0.5 496/0.49 348/0.54 527/0.5 
MDS 0.09/0.91 0.17/0.84 0.24/0.77 0.11/0.89 0.18/0.83 0.19/0.82 0.12/0.88 0.2/0.81 0.21/0.8 0.24/0.77 

 
462/0.5 501/0.49 395/0.52 522/0.5 

HLLE 0.07/0.93 0.07/0.93 0.09/0.91 0.19/0.82 0.24/0.77 0.17/0.84 0.04/0.96 0.13/0.88 0.18/0.83 0.19/0.82 0.18/0.83 
 

314/0.56 544/0.5 406/0.51 

LLE 0.06/0.94 0.09/0.91 0.08/0.92 0.08/0.92 0.23/0.78 0.11/0.89 0.03/0.97 0.12/0.88 0.17/0.84 0.18/0.83 0.14/0.87 0.21/0.8 
 

492/0.49 529/0.5 

LVis 0.12/0.88 0.05/0.95 0.09/0.91 0.12/0.88 0.21/0.8 0.11/0.89 0.07/0.93 0.19/0.82 0.2/0.81 0.27/0.75 0.21/0.8 0.18/0.83 0.18/0.83 
 

523/0.5 
MVU 0.07/0.93 0.07/0.93 0.07/0.93 0.11/0.89 0.23/0.78 0.09/0.91 0.08/0.92 0.18/0.83 0.18/0.83 0.15/0.86 0.17/0.84 0.19/0.82 0.17/0.84 0.17/0.84 

 

(d) Metric 4: Local quality criteria (𝑄𝑙𝑜𝑐𝑎𝑙) 

  UMAP tSNE FIt_SNE PCA Trimap mTSNE Isomap KPCA LEM LTSA MDS HLLE LLE LVis MVU 

UMAP 
 

316/0.56 489/0.49 578/0.51 846/0.73 587/0.51 347/0.54 542/0.5 874/0.77 843/0.73 643/0.54 629/0.53 593/0.51 766/0.64 719/0.59 

tSNE 0.26/0.76 
 

488/0.49 589/0.51 816/0.69 655/0.54 398/0.52 629/0.53 749/0.62 762/0.63 622/0.52 647/0.54 744/0.61 718/0.59 743/0.61 
FIt_SNE 0.22/0.79 0.22/0.79 

 
547/0.5 699/0.57 366/0.53 589/0.51 496/0.49 682/0.56 647/0.54 485/0.49 719/0.59 426/0.51 659/0.55 643/0.54 

PCA 0.18/0.83 0.19/0.82 0.17/0.84 
 

633/0.53 602/0.52 522/0.5 392/0.52 655/0.54 626/0.53 418/0.51 492/0.49 466/0.5 651/0.54 756/0.63 

Trimap 0.09/0.91 0.09/0.91 0.15/0.86 0.16/0.85 
 

596/0.51 792/0.67 644/0.54 492/0.49 503/0.49 671/0.55 618/0.52 598/0.51 397/0.52 397/0.52 

mTSNE 0.16/0.85 0.17/0.84 0.24/0.77 0.16/0.85 0.18/0.83 
 

509/0.49 492/0.49 526/0.5 579/0.51 452/0.5 462/0.5 583/0.51 601/0.51 623/0.52 
Isomap 0.26/0.76 0.27/0.75 0.16/0.85 0.18/0.83 0.14/0.87 0.19/0.82 

 
563/0.5 756/0.63 756/0.63 613/0.52 649/0.54 677/0.56 712/0.58 719/0.59 

KPCA 0.17/0.84 0.15/0.86 0.21/0.8 0.22/0.79 0.17/0.84 0.22/0.79 0.19/0.82 
 

588/0.51 598/0.51 267/0.6 492/0.49 584/0.51 577/0.51 628/0.53 

LEM 0.11/0.89 0.13/0.88 0.15/0.86 0.16/0.85 0.22/0.79 0.19/0.82 0.15/0.86 0.21/0.8 
 

564/0.5 411/0.51 655/0.54 519/0.5 629/0.53 614/0.52 

LTSA 0.11/0.89 0.13/0.88 0.16/0.85 0.16/0.85 0.2/0.81 0.2/0.81 0.15/0.86 0.21/0.8 0.19/0.82 
 

576/0.51 599/0.51 546/0.5 512/0.49 501/0.49 
MDS 0.13/0.88 0.15/0.86 0.22/0.79 0.2/0.81 0.17/0.84 0.23/0.78 0.18/0.83 0.29/0.73 0.22/0.79 0.21/0.8 

 
419/0.51 456/0.5 581/0.51 532/0.5 

HLLE 0.14/0.87 0.14/0.87 0.14/0.87 0.19/0.82 0.17/0.84 0.23/0.78 0.18/0.83 0.24/0.77 0.18/0.83 0.2/0.81 0.28/0.74 
 

328/0.55 493/0.49 574/0.51 

LLE 0.18/0.83 0.13/0.88 0.2/0.81 0.19/0.82 0.18/0.83 0.18/0.83 0.18/0.83 0.21/0.8 0.19/0.82 0.22/0.79 0.28/0.74 0.31/0.71 
 

549/0.5 532/0.5 

LVis 0.15/0.86 0.13/0.88 0.18/0.83 0.18/0.83 0.24/0.77 0.17/0.84 0.16/0.85 0.21/0.8 0.17/0.84 0.22/0.79 0.22/0.79 0.25/0.77 0.19/0.82 
 

492/0.49 
MVU 0.15/0.86 0.12/0.88 0.17/0.84 0.15/0.86 0.24/0.77 0.17/0.84 0.16/0.85 0.19/0.82 0.18/0.83 0.23/0.78 0.25/0.77 0.21/0.8 0.19/0.82 0.22/0.79 

 

(e) Metric 5: 𝑘𝑚𝑎𝑥  neighborhood loss (𝜆𝐾𝑚𝑎𝑥
) 

  UMAP tSNE FIt_SNE PCA Trimap mTSNE Isomap KPCA LEM LTSA MDS HLLE LLE LVis MVU 



 

  

127 

UMAP 
 

319/0.56 490/0.49 549/0.5 724/0.59 522/0.5 346/0.54 293/0.58 697/0.57 853/0.74 562/0.5 719/0.59 758/0.63 901/0.82 896/0.81 
tSNE 0.28/0.74 

 
496/0.49 557/0.5 719/0.59 526/0.5 324/0.56 367/0.53 716/0.59 882/0.79 527/0.5 765/0.64 693/0.57 924/0.85 893/0.8 

FIt_SNE 0.24/0.77 0.26/0.76 
 

386/0.52 627/0.53 419/0.51 564/0.5 543/0.5 635/0.53 716/0.59 346/0.54 675/0.56 632/0.53 743/0.61 719/0.59 

PCA 0.21/0.8 0.24/0.77 0.28/0.74 
 

328/0.55 405/0.51 517/0.5 523/0.5 628/0.53 719/0.59 322/0.56 617/0.52 649/0.54 749/0.62 716/0.59 

Trimap 0.18/0.83 0.21/0.8 0.19/0.82 0.28/0.74 
 

549/0.5 744/0.61 695/0.57 293/0.58 517/0.5 543/0.5 347/0.54 366/0.53 549/0.5 573/0.51 
mTSNE 0.21/0.8 0.24/0.77 0.25/0.77 0.26/0.76 0.19/0.82 

 
571/0.5 562/0.5 649/0.54 718/0.59 328/0.55 614/0.52 647/0.54 801/0.68 792/0.67 

Isomap 0.28/0.74 0.32/0.7 0.21/0.8 0.21/0.8 0.16/0.85 0.18/0.83 
 

283/0.59 624/0.53 963/0.92 581/0.51 716/0.59 697/0.57 839/0.72 906/0.82 

KPCA 0.29/0.73 0.29/0.73 0.21/0.8 0.21/0.8 0.18/0.83 0.19/0.82 0.32/0.7 
 

792/0.67 953/0.91 558/0.5 762/0.63 719/0.59 903/0.82 893/0.8 

LEM 0.18/0.83 0.18/0.83 0.18/0.83 0.18/0.83 0.29/0.73 0.17/0.84 0.17/0.84 0.14/0.87 
 

583/0.51 703/0.58 318/0.56 364/0.53 583/0.51 549/0.5 
LTSA 0.11/0.89 0.16/0.85 0.17/0.84 0.15/0.86 0.18/0.83 0.15/0.86 0.08/0.92 0.07/0.93 0.18/0.83 

 
749/0.62 536/0.5 416/0.51 317/0.56 423/0.51 

MDS 0.21/0.8 0.24/0.77 0.29/0.73 0.29/0.73 0.18/0.83 0.28/0.74 0.19/0.82 0.19/0.82 0.15/0.86 0.15/0.86 
 

638/0.53 649/0.54 853/0.74 847/0.74 

HLLE 0.18/0.83 0.15/0.86 0.18/0.83 0.25/0.77 0.28/0.74 0.17/0.84 0.16/0.85 0.14/0.87 0.27/0.75 0.19/0.82 0.19/0.82 
 

273/0.6 516/0.5 547/0.5 

LLE 0.17/0.84 0.18/0.83 0.18/0.83 0.24/0.77 0.28/0.74 0.16/0.85 0.17/0.84 0.14/0.87 0.26/0.76 0.25/0.77 0.19/0.82 0.29/0.73 
 

543/0.5 593/0.51 
LVis 0.07/0.93 0.09/0.91 0.15/0.86 0.18/0.83 0.18/0.83 0.14/0.87 0.14/0.87 0.08/0.92 0.18/0.83 0.29/0.73 0.15/0.86 0.8/0.26 0.19/0.82 

 
493/0.49 

MVU 0.09/0.91 0.1/0.9 0.15/0.86 0.17/0.84 0.18/0.83 0.15/0.86 0.09/0.91 0.1/0.9 0.18/0.83 0.25/0.77 0.15/0.86 0.18/0.83 0.18/0.83 0.21/0.8 
 

(f) Metric 6: Global quality criteria (𝑄𝑔𝑙𝑜𝑏𝑎𝑙)  

  UMAP tSNE FIt_SNE PCA Trimap mTSNE Isomap KPCA LEM LTSA MDS HLLE LLE LVis MVU 

UMAP 
 

364/0.53 419/0.51 536/0.5 614/0.52 349/0.54 397/0.52 514/0.49 896/0.81 843/0.73 567/0.5 694/0.57 679/0.56 669/0.55 849/0.74 

tSNE 0.29/0.73 
 

318/0.56 543/0.5 628/0.53 379/0.52 319/0.56 544/0.5 793/0.67 846/0.73 542/0.5 675/0.56 694/0.57 617/0.52 849/0.74 
FIt_SNE 0.26/0.76 0.28/0.74 

 
346/0.54 644/0.54 319/0.56 347/0.54 542/0.5 846/0.73 895/0.81 573/0.51 642/0.53 681/0.56 677/0.56 859/0.75 

PCA 0.22/0.79 0.19/0.82 0.29/0.73 
 

659/0.55 543/0.5 519/0.5 296/0.58 843/0.73 867/0.76 342/0.54 655/0.54 682/0.56 619/0.52 852/0.74 

Trimap 0.18/0.83 0.18/0.83 0.17/0.84 0.18/0.83 
 

572/0.5 549/0.5 716/0.59 843/0.73 895/0.81 744/0.61 315/0.56 328/0.55 349/0.54 684/0.56 

mTSNE 0.28/0.74 0.28/0.74 0.31/0.71 0.21/0.8 0.19/0.82 
 

294/0.58 512/0.49 746/0.62 782/0.65 546/0.5 595/0.51 544/0.5 513/0.49 716/0.59 
Isomap 0.27/0.75 0.29/0.73 0.29/0.73 0.21/0.8 0.19/0.82 0.29/0.73 

 
549/0.5 743/0.61 752/0.62 519/0.5 543/0.5 547/0.5 533/0.5 746/0.62 

KPCA 0.21/0.8 0.19/0.82 0.22/0.79 0.29/0.73 0.17/0.84 0.22/0.79 0.21/0.8 
 

856/0.75 813/0.69 317/0.56 655/0.54 649/0.54 628/0.53 849/0.74 

LEM 0.11/0.89 0.15/0.86 0.11/0.89 0.11/0.89 0.12/0.88 0.18/0.83 0.16/0.85 0.08/0.92 
 

276/0.59 843/0.73 512/0.49 562/0.5 547/0.5 317/0.56 

LTSA 0.12/0.88 0.12/0.88 0.1/0.9 0.1/0.9 0.09/0.91 0.16/0.85 0.18/0.83 0.09/0.91 0.29/0.73 
 

316/0.56 549/0.5 576/0.51 544/0.5 269/0.6 
MDS 0.21/0.8 0.18/0.83 0.21/0.8 0.28/0.74 0.14/0.87 0.22/0.79 0.2/0.81 0.29/0.73 0.09/0.91 0.28/0.74 

 
719/0.59 695/0.57 673/0.55 845/0.73 

HLLE 0.18/0.83 0.16/0.85 0.16/0.85 0.18/0.83 0.28/0.74 0.2/0.81 0.2/0.81 0.18/0.83 0.19/0.82 0.22/0.79 0.16/0.85 
 

245/0.62 748/0.62 556/0.5 

LLE 0.18/0.83 0.15/0.86 0.15/0.86 0.18/0.83 0.26/0.76 0.22/0.79 0.19/0.82 0.18/0.83 0.18/0.83 0.21/0.8 0.19/0.82 0.28/0.74 
 

362/0.53 576/0.51 

LVis 0.18/0.83 0.16/0.85 0.15/0.86 0.19/0.82 0.26/0.76 0.23/0.78 0.18/0.83 0.19/0.82 0.19/0.82 0.22/0.79 0.19/0.82 0.15/0.86 0.29/0.73 
 

549/0.5 
MVU 0.12/0.88 0.11/0.89 0.11/0.89 0.12/0.88 0.18/0.83 0.18/0.83 0.17/0.84 0.09/0.91 0.28/0.74 0.31/0.71 0.12/0.88 0.19/0.82 0.22/0.79 0.21/0.8 

 

(g) Metric 7: Area under the 𝑅𝑛𝑋  curve (𝐴𝑈𝐶ln 𝐾(𝑅𝑛𝑋(𝐾))  

  UMAP tSNE FIt_SNE PCA Trimap mTSNE Isomap KPCA LEM LTSA MDS HLLE LLE LVis MVU 

UMAP 
 

516/0.5 538/0.5 647/0.54 816/0.69 355/0.54 546/0.5 602/0.52 803/0.68 849/0.74 346/0.54 328/0.55 673/0.55 645/0.54 823/0.7 

tSNE 0.19/0.82 
 

294/0.58 683/0.56 859/0.75 546/0.5 344/0.54 618/0.52 846/0.73 855/0.75 548/0.5 512/0.49 672/0.55 668/0.55 843/0.73 

FIt_SNE 0.18/0.83 0.32/0.7 
 

649/0.54 843/0.73 577/0.51 316/0.56 695/0.57 829/0.71 846/0.73 554/0.5 588/0.51 643/0.54 647/0.54 825/0.71 

PCA 0.16/0.85 0.16/0.85 0.16/0.85 
 

634/0.53 579/0.51 798/0.67 257/0.61 644/0.54 675/0.56 528/0.5 594/0.51 347/0.54 328/0.55 625/0.53 
Trimap 0.11/0.89 0.11/0.89 0.11/0.89 0.15/0.86 

 
753/0.62 942/0.89 501/0.49 334/0.55 318/0.56 725/0.6 795/0.67 554/0.5 542/0.5 365/0.53 

mTSNE 0.27/0.75 0.21/0.8 0.21/0.8 0.19/0.82 0.13/0.88 
 

529/0.5 647/0.54 758/0.63 716/0.59 314/0.56 367/0.53 679/0.56 648/0.54 718/0.59 

Isomap 0.18/0.83 0.27/0.75 0.27/0.75 0.13/0.88 0.07/0.93 0.21/0.8 
 

758/0.63 942/0.89 947/0.89 514/0.49 584/0.51 732/0.6 736/0.61 948/0.9 

KPCA 0.16/0.85 0.16/0.85 0.16/0.85 0.31/0.71 0.21/0.8 0.16/0.85 0.13/0.88 
 

463/0.5 475/0.5 519/0.5 578/0.51 349/0.54 377/0.52 496/0.49 
LEM 0.12/0.88 0.12/0.88 0.11/0.89 0.16/0.85 0.28/0.74 0.13/0.88 0.07/0.93 0.24/0.77 

 
354/0.54 716/0.59 795/0.67 522/0.5 549/0.5 347/0.54 

LTSA 0.1/0.9 0.12/0.88 0.11/0.89 0.16/0.85 0.28/0.74 0.14/0.87 0.07/0.93 0.24/0.77 0.29/0.73 
 

728/0.6 762/0.63 549/0.5 563/0.5 374/0.53 

MDS 0.27/0.75 0.21/0.8 0.19/0.82 0.19/0.82 0.13/0.88 0.27/0.75 0.21/0.8 0.21/0.8 0.14/0.87 0.14/0.87 
 

355/0.54 574/0.51 549/0.5 786/0.66 
HLLE 0.27/0.75 0.16/0.85 0.19/0.82 0.19/0.82 0.12/0.88 0.27/0.75 0.2/0.81 0.2/0.81 0.14/0.87 0.14/0.87 0.28/0.74 

 
578/0.51 529/0.5 764/0.63 

LLE 0.16/0.85 0.16/0.85 0.16/0.85 0.27/0.75 0.2/0.81 0.16/0.85 0.14/0.87 0.29/0.73 0.21/0.8 0.21/0.8 0.21/0.8 0.21/0.8 
 

375/0.53 596/0.51 

LVis 0.16/0.85 0.16/0.85 0.16/0.85 0.27/0.75 0.2/0.81 0.16/0.85 0.14/0.87 0.28/0.74 0.21/0.8 0.21/0.8 0.21/0.8 0.21/0.8 0.27/0.75 
 

558/0.5 

MVU 0.1/0.9 0.12/0.88 0.12/0.88 0.16/0.85 0.27/0.75 0.13/0.88 0.06/0.94 0.24/0.77 0.29/0.73 0.27/0.75 0.14/0.87 0.14/0.87 0.19/0.82 0.21/0.8 
 

(h) Metric 8: KNN prediction accuracy (𝐴𝐶𝐶𝜓)  

  UMAP tSNE FIt_SNE PCA Trimap mTSNE Isomap KPCA LEM LTSA MDS HLLE LLE LVis MVU 

UMAP 
 

548/0.5 346/0.54 547/0.5 918/0.84 315/0.56 907/0.83 347/0.54 768/0.64 718/0.59 317/0.56 745/0.61 764/0.63 342/0.54 749/0.62 

tSNE 0.19/0.82 
 

549/0.5 314/0.56 916/0.84 546/0.5 932/0.87 562/0.5 746/0.62 754/0.62 549/0.5 798/0.67 746/0.62 532/0.5 719/0.59 
FIt_SNE 0.27/0.75 0.19/0.82 

 
519/0.5 765/0.64 316/0.56 795/0.67 378/0.52 627/0.53 655/0.54 347/0.54 625/0.53 695/0.57 375/0.53 627/0.53 

PCA 0.19/0.82 0.28/0.74 0.21/0.8 
 

803/0.68 548/0.5 862/0.76 579/0.51 628/0.53 645/0.54 528/0.5 647/0.54 653/0.54 512/0.49 667/0.55 

Trimap 0.09/0.91 0.09/0.91 0.14/0.87 0.11/0.89 
 

734/0.6 346/0.54 785/0.66 564/0.5 543/0.5 759/0.63 541/0.5 568/0.5 749/0.62 562/0.5 

mTSNE 0.29/0.73 0.27/0.75 0.27/0.75 0.21/0.8 0.14/0.87 
 

813/0.69 319/0.56 618/0.52 627/0.53 327/0.55 659/0.55 634/0.53 322/0.56 375/0.53 
Isomap 0.09/0.91 0.08/0.92 0.13/0.88 0.19/0.82 0.27/0.75 0.09/0.91 

 
635/0.53 597/0.51 584/0.51 674/0.56 543/0.5 552/0.5 627/0.53 528/0.5 

KPCA 0.28/0.74 0.27/0.75 0.27/0.75 0.21/0.8 0.14/0.87 0.21/0.8 0.15/0.86 
 

594/0.51 563/0.5 357/0.54 597/0.51 542/0.5 367/0.53 528/0.5 

LEM 0.14/0.87 0.14/0.87 0.15/0.86 0.18/0.83 0.21/0.8 0.18/0.83 0.21/0.8 0.21/0.8 
 

345/0.54 529/0.5 368/0.53 321/0.56 509/0.49 378/0.52 

LTSA 0.14/0.87 0.14/0.87 0.15/0.86 0.18/0.83 0.21/0.8 0.18/0.83 0.21/0.8 0.21/0.8 0.28/0.74 
 

355/0.54 367/0.53 326/0.56 526/0.5 578/0.51 
MDS 0.27/0.75 0.21/0.8 0.27/0.75 0.21/0.8 0.14/0.87 0.27/0.75 0.16/0.85 0.27/0.75 0.21/0.8 0.27/0.75 

 
536/0.5 519/0.5 375/0.53 594/0.51 

HLLE 0.14/0.87 0.14/0.87 0.15/0.86 0.18/0.83 0.21/0.8 0.18/0.83 0.21/0.8 0.21/0.8 0.28/0.74 0.27/0.75 0.21/0.8 
 

378/0.52 547/0.5 369/0.53 

LLE 0.15/0.86 0.14/0.87 0.15/0.86 0.18/0.83 0.21/0.8 0.18/0.83 0.21/0.8 0.21/0.8 0.28/0.74 0.27/0.75 0.21/0.8 0.28/0.74 
 

594/0.51 384/0.52 

LVis 0.27/0.75 0.21/0.8 0.27/0.75 0.21/0.8 0.14/0.87 0.27/0.75 0.16/0.85 0.27/0.75 0.21/0.8 0.21/0.8 0.27/0.75 0.21/0.8 0.21/0.8 
 

512/0.49 
MVU 0.14/0.87 0.14/0.87 0.15/0.86 0.18/0.83 0.21/0.8 0.27/0.75 0.21/0.8 0.16/0.85 0.28/0.74 0.21/0.8 0.21/0.8 0.28/0.74 0.27/0.75 0.21/0.8 

 

(i) Metric 9: Normalized Mutual Information (𝑛𝑀𝐼) 

  UMAP tSNE FIt_SNE PCA Trimap mTSNE Isomap KPCA LEM LTSA MDS HLLE LLE LVis MVU 

UMAP 
 

346/0.54 294/0.58 647/0.54 901/0.82 342/0.54 803/0.68 649/0.54 647/0.54 634/0.53 867/0.76 366/0.53 349/0.54 679/0.56 896/0.81 

tSNE 0.27/0.75 
 

349/0.54 627/0.53 872/0.77 347/0.54 876/0.78 624/0.53 679/0.56 637/0.53 895/0.81 394/0.52 385/0.52 628/0.53 974/0.94 

FIt_SNE 0.31/0.71 0.28/0.74 
 

634/0.53 875/0.78 395/0.52 874/0.77 658/0.54 694/0.57 628/0.53 874/0.77 324/0.56 397/0.52 652/0.54 875/0.78 

PCA 0.18/0.83 0.18/0.83 0.12/0.88 
 

895/0.81 604/0.52 933/0.87 375/0.53 369/0.53 319/0.56 875/0.78 605/0.52 688/0.57 375/0.53 874/0.77 
Trimap 0.09/0.91 0.12/0.88 0.11/0.89 0.11/0.89 

 
875/0.78 362/0.53 685/0.56 694/0.57 587/0.51 365/0.53 865/0.76 874/0.77 625/0.53 374/0.53 

mTSNE 0.27/0.75 0.27/0.75 0.27/0.75 0.18/0.83 0.11/0.89 
 

895/0.81 627/0.53 639/0.53 745/0.61 855/0.75 362/0.53 974/0.94 629/0.53 874/0.77 

Isomap 0.11/0.89 0.12/0.88 0.11/0.89 0.09/0.91 0.27/0.75 0.12/0.88 
 

648/0.54 601/0.51 687/0.56 357/0.54 719/0.59 874/0.77 624/0.53 384/0.52 

KPCA 0.18/0.83 0.18/0.83 0.18/0.83 0.27/0.75 0.18/0.83 0.18/0.83 0.18/0.83 
 

312/0.57 355/0.54 645/0.54 542/0.5 584/0.51 379/0.52 619/0.52 
LEM 0.18/0.83 0.18/0.83 0.18/0.83 0.27/0.75 0.18/0.83 0.18/0.83 0.18/0.83 0.27/0.75 

 
374/0.53 712/0.58 624/0.53 684/0.56 384/0.52 794/0.67 

LTSA 0.18/0.83 0.18/0.83 0.18/0.83 0.27/0.75 0.21/0.8 0.14/0.87 0.18/0.83 0.27/0.75 0.27/0.75 
 

365/0.53 628/0.53 697/0.57 347/0.54 718/0.59 
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MDS 0.12/0.88 0.12/0.88 0.11/0.89 0.11/0.89 0.27/0.75 0.11/0.89 0.27/0.75 0.18/0.83 0.15/0.86 0.27/0.75 
 

847/0.74 876/0.78 624/0.53 394/0.52 
HLLE 0.27/0.75 0.27/0.75 0.27/0.75 0.18/0.83 0.12/0.88 0.27/0.75 0.15/0.86 0.21/0.8 0.18/0.83 0.18/0.83 0.11/0.89 

 
971/0.94 684/0.56 354/0.54 

LLE 0.27/0.75 0.26/0.76 0.126/0.88 0.18/0.83 0.11/0.89 0.08/0.92 0.11/0.89 0.21/0.8 0.18/0.83 0.18/0.83 0.11/0.89 0.08/0.92 
 

384/0.52 524/0.5 

LVis 0.18/0.83 0.16/0.85 0.18/0.83 0.27/0.75 0.18/0.83 0.15/0.86 0.18/0.83 0.27/0.75 0.27/0.75 0.27/0.75 0.18/0.83 0.17/0.84 0.27/0.75 
 

587/0.51 

MVU 0.12/0.88 0.04/0.96 0.12/0.88 0.12/0.88 0.27/0.75 0.11/0.89 0.27/0.75 0.18/0.83 0.15/0.86 0.15/0.86 0.27/0.75 0.27/0.75 0.21/0.8 0.21/0.8 
 

 (j) Metric 10: Structural Similarity Index (𝑆𝑆𝐼) 

  UMAP tSNE FIt_SNE PCA Trimap mTSNE Isomap KPCA LEM LTSA MDS HLLE LLE LVis MVU 

UMAP 
 

365/0.53 675/0.56 349/0.54 846/0.73 847/0.74 347/0.54 342/0.54 849/0.74 314/0.56 379/0.52 875/0.78 825/0.71 645/0.54 647/0.54 
tSNE 0.27/0.75 

 
374/0.53 647/0.54 716/0.59 784/0.66 624/0.53 682/0.56 713/0.59 685/0.56 622/0.52 749/0.62 752/0.62 349/0.54 347/0.54 

FIt_SNE 0.18/0.83 0.27/0.75 
 

659/0.55 746/0.62 723/0.59 674/0.56 628/0.53 791/0.66 527/0.5 647/0.54 342/0.54 743/0.61 369/0.53 374/0.53 

PCA 0.27/0.75 0.18/0.83 0.18/0.83 
 

853/0.74 845/0.73 325/0.56 301/0.57 906/0.82 374/0.53 369/0.53 904/0.82 826/0.71 674/0.56 685/0.56 

Trimap 0.12/0.88 0.15/0.86 0.16/0.85 0.12/0.88 
 

352/0.54 862/0.76 874/0.77 348/0.54 957/0.91 934/0.87 345/0.54 385/0.52 601/0.51 687/0.56 
mTSNE 0.12/0.88 0.15/0.86 0.16/0.85 0.12/0.88 0.27/0.75 

 
874/0.77 852/0.74 345/0.54 862/0.76 874/0.77 325/0.56 362/0.53 647/0.54 697/0.57 

Isomap 0.27/0.75 0.18/0.83 0.18/0.83 0.27/0.75 0.12/0.88 0.12/0.88 
 

352/0.54 862/0.76 347/0.54 369/0.53 895/0.81 865/0.76 663/0.55 647/0.54 

KPCA 0.27/0.75 0.18/0.83 0.18/0.83 0.28/0.74 0.12/0.88 0.12/0.88 0.27/0.75 
 

374/0.53 385/0.52 375/0.53 895/0.81 924/0.85 685/0.56 612/0.52 

LEM 0.12/0.88 0.15/0.86 0.15/0.86 0.09/0.91 0.27/0.75 0.27/0.75 0.11/0.89 0.27/0.75 
 

895/0.81 826/0.71 328/0.55 316/0.56 627/0.53 698/0.57 
LTSA 0.27/0.75 0.18/0.83 0.21/0.8 0.27/0.75 0.09/0.91 0.12/0.88 0.27/0.75 0.27/0.75 0.1/0.9 

 
385/0.52 825/0.71 875/0.78 647/0.54 632/0.53 

MDS 0.27/0.75 0.18/0.83 0.18/0.83 0.27/0.75 0.09/0.91 0.11/0.89 0.27/0.75 0.27/0.75 0.12/0.88 0.27/0.75 
 

952/0.9 794/0.67 622/0.52 672/0.55 

HLLE 0.11/0.89 0.15/0.86 0.27/0.75 0.08/0.92 0.27/0.75 0.27/0.75 0.1/0.9 0.12/0.88 0.27/0.75 0.12/0.88 0.03/0.97 
 

219/0.65 524/0.5 627/0.53 

LLE 0.12/0.88 0.14/0.87 0.15/0.86 0.12/0.88 0.27/0.75 0.27/0.75 0.12/0.88 0.08/0.92 0.27/0.75 0.11/0.89 0.13/0.88 0.31/0.71 
 

629/0.53 674/0.56 
LVis 0.18/0.83 0.28/0.74 0.27/0.75 0.18/0.83 0.18/0.83 0.18/0.83 0.18/0.83 0.18/0.83 0.18/0.83 0.18/0.83 0.18/0.83 0.21/0.8 0.18/0.83 

 
306/0.57 

MVU 0.17/0.84 0.27/0.75 0.27/0.75 0.18/0.83 0.18/0.83 0.18/0.83 0.18/0.83 0.18/0.83 0.18/0.83 0.18/0.83 0.18/0.83 0.18/0.83 0.18/0.83 0.27/0.75 
 

(k) Metric 11: Logarithmic loss of multi-class classification  

  UMAP tSNE FIt_SNE PCA Trimap mTSNE Isomap KPCA LEM LTSA MDS HLLE LLE LVis MVU 

UMAP 
 

648/0.54 325/0.56 942/0.89 645/0.54 328/0.55 901/0.82 845/0.73 852/0.74 693/0.57 855/0.75 607/0.52 746/0.62 863/0.76 624/0.53 

tSNE 0.18/0.83 
 

685/0.56 832/0.72 425/0.51 647/0.54 895/0.81 852/0.74 846/0.73 473/0.5 862/0.76 419/0.51 425/0.51 875/0.78 425/0.51 
FIt_SNE 0.27/0.75 0.18/0.83 

 
712/0.58 582/0.51 349/0.54 795/0.67 746/0.62 714/0.59 521/0.5 785/0.66 549/0.5 513/0.49 744/0.61 574/0.51 

PCA 0.08/0.92 0.12/0.88 0.17/0.84 
 

524/0.5 714/0.59 325/0.56 374/0.53 418/0.51 621/0.52 376/0.53 649/0.54 627/0.53 417/0.51 529/0.5 

Trimap 0.18/0.83 0.26/0.76 0.21/0.8 0.21/0.8 
 

743/0.61 526/0.5 547/0.5 599/0.51 374/0.53 549/0.5 379/0.52 395/0.52 578/0.51 378/0.52 

mTSNE 0.28/0.74 0.18/0.83 0.27/0.75 0.17/0.84 0.17/0.84 
 

875/0.78 795/0.67 716/0.59 529/0.5 846/0.73 521/0.5 596/0.51 785/0.66 588/0.51 
Isomap 0.09/0.91 0.12/0.88 0.16/0.85 0.27/0.75 0.21/0.8 0.12/0.88 

 
364/0.53 355/0.54 576/0.51 394/0.52 562/0.5 687/0.56 317/0.56 574/0.51 

KPCA 0.12/0.88 0.12/0.88 0.17/0.84 0.27/0.75 0.21/0.8 0.14/0.87 0.27/0.75 
 

319/0.56 649/0.54 347/0.54 576/0.51 512/0.49 368/0.53 541/0.5 

LEM 0.12/0.88 0.12/0.88 0.18/0.83 0.24/0.77 0.2/0.81 0.15/0.86 0.27/0.75 0.27/0.75 
 

294/0.58 358/0.53 599/0.51 651/0.54 348/0.54 579/0.51 

LTSA 0.18/0.83 0.24/0.77 0.21/0.8 0.18/0.83 0.27/0.75 0.21/0.8 0.21/0.8 0.18/0.83 0.31/0.71 
 

648/0.54 325/0.56 366/0.53 679/0.56 322/0.56 
MDS 0.12/0.88 0.12/0.88 0.18/0.83 0.27/0.75 0.21/0.8 0.12/0.88 0.27/0.75 0.27/0.75 0.27/0.75 0.18/0.83 

 
677/0.56 648/0.54 395/0.52 647/0.54 

HLLE 0.18/0.83 0.24/0.77 0.21/0.8 0.18/0.83 0.27/0.75 0.21/0.8 0.21/0.8 0.21/0.8 0.2/0.81 0.27/0.75 0.18/0.83 
 

201/0.67 677/0.56 345/0.54 

LLE 0.14/0.87 0.24/0.77 0.21/0.8 0.18/0.83 0.26/0.76 0.2/0.81 0.18/0.83 0.21/0.8 0.18/0.83 0.27/0.75 0.18/0.83 0.32/0.7 
 

674/0.56 327/0.55 

LVis 0.12/0.88 0.12/0.88 0.18/0.83 0.24/0.77 0.21/0.8 0.14/0.87 0.27/0.75 0.27/0.75 0.27/0.75 0.18/0.83 0.27/0.75 0.18/0.83 0.18/0.83 
 

301/0.57 
MVU 0.18/0.83 0.24/0.77 0.21/0.8 0.21/0.8 0.26/0.76 0.21/0.8 0.21/0.8 0.21/0.8 0.21/0.8 0.27/0.75 0.18/0.83 0.27/0.75 0.27/0.75 0.28/0.74 

 

(l) Metric 12: Mean accuracy with constraints 

  UMAP tSNE FIt_SNE PCA Trimap mTSNE Isomap KPCA LEM LTSA MDS HLLE LLE LVis MVU 

UMAP 
 

345/0.54 826/0.71 872/0.77 648/0.54 365/0.53 659/0.55 874/0.77 319/0.56 628/0.53 644/0.54 395/0.52 368/0.53 876/0.78 749/0.62 

tSNE 0.27/0.75 
 

812/0.69 863/0.76 625/0.53 379/0.52 648/0.54 876/0.78 341/0.55 695/0.57 674/0.56 419/0.51 398/0.52 875/0.78 861/0.76 

FIt_SNE 0.12/0.88 0.11/0.89 
 

319/0.56 687/0.56 864/0.76 698/0.57 312/0.57 945/0.89 646/0.54 624/0.53 995/0.99 884/0.79 341/0.55 357/0.54 

PCA 0.11/0.89 0.1/0.9 0.27/0.75 
 

328/0.55 836/0.72 642/0.53 377/0.52 896/0.81 621/0.52 647/0.54 901/0.82 893/0.8 356/0.54 317/0.56 
Trimap 0.18/0.83 0.18/0.83 0.18/0.83 0.27/0.75 

 
648/0.54 311/0.57 519/0.5 628/0.53 298/0.58 322/0.56 674/0.56 651/0.54 514/0.49 589/0.51 

mTSNE 0.27/0.75 0.27/0.75 0.11/0.89 0.11/0.89 0.18/0.83 
 

544/0.5 876/0.78 398/0.52 516/0.5 529/0.5 374/0.53 365/0.53 849/0.74 796/0.67 

Isomap 0.18/0.83 0.18/0.83 0.18/0.83 0.18/0.83 0.27/0.75 0.21/0.8 
 

749/0.62 503/0.49 318/0.56 365/0.53 579/0.51 518/0.5 698/0.57 752/0.62 

KPCA 0.12/0.88 0.11/0.89 0.27/0.75 0.27/0.75 0.21/0.8 0.11/0.89 0.14/0.87 
 

812/0.69 562/0.5 589/0.51 849/0.74 855/0.75 369/0.53 374/0.53 
LEM 0.27/0.75 0.27/0.75 0.05/0.95 0.1/0.9 0.18/0.83 0.27/0.75 0.21/0.8 0.11/0.89 

 
584/0.51 514/0.49 375/0.53 345/0.54 395/0.52 749/0.62 

LTSA 0.18/0.83 0.18/0.83 0.18/0.83 0.18/0.83 0.32/0.7 0.21/0.8 0.27/0.75 0.21/0.8 0.21/0.8 
 

375/0.53 643/0.54 625/0.53 511/0.49 597/0.51 

MDS 0.18/0.83 0.18/0.83 0.18/0.83 0.18/0.83 0.28/0.74 0.21/0.8 0.27/0.75 0.2/0.81 0.21/0.8 0.27/0.75 
 

678/0.56 648/0.54 544/0.5 539/0.5 

HLLE 0.27/0.75 0.24/0.77 0.02/0.98 0.09/0.91 0.18/0.83 0.27/0.75 0.21/0.8 0.1/0.9 0.27/0.75 0.18/0.83 0.18/0.83 
 

219/0.65 586/0.51 564/0.5 
LLE 0.27/0.75 0.27/0.75 0.11/0.89 0.1/0.9 0.18/0.83 0.27/0.75 0.21/0.8 0.1/0.9 0.27/0.75 0.18/0.83 0.18/0.83 0.32/0.7 

 
876/0.78 825/0.71 

LVis 0.12/0.88 0.12/0.88 0.27/0.75 0.27/0.75 0.21/0.8 0.11/0.89 0.18/0.83 0.27/0.75 0.27/0.75 0.21/0.8 0.21/0.8 0.21/0.8 0.11/0.89 
 

394/0.52 

MVU 0.14/0.87 0.12/0.88 0.27/0.75 0.27/0.75 0.2/0.81 0.14/0.87 0.14/0.87 0.27/0.75 0.14/0.87 0.21/0.8 0.21/0.8 0.21/0.8 0.12/0.88 0.27/0.75 
 

for the first 6 (i.e., 𝜎2, 𝜌𝑠, 𝜇𝑅𝑛𝑋
, 𝑄𝑙𝑜𝑐𝑎𝑙, 𝜆𝐾𝑚𝑎𝑥

, 𝑄𝑔𝑙𝑜𝑏𝑎𝑙) the number of rejected null 

hypotheses have remained approximately constant for all the bias values.  For 

Spearman’s rank correlation, the number of rejected 𝐻0 is 60% to 80%; for the rest 

of the metrics, it is 80% to 100%. For the remaining 6 metrics (i.e., 𝐴𝑈𝐶ln 𝐾(𝑅𝑛𝑋(𝐾)), 

𝐴𝐶𝐶𝜓, 𝑛𝑀𝐼, 𝑆𝑆𝐼, 𝑙𝑜𝑔𝑙𝑜𝑠𝑠,  𝜇𝐴𝑈𝐶ln 𝐾(𝑅𝑛𝑋(𝐾))
𝑁𝑖

), the count of rejected 𝐻0 varied more than 

the first 6 metrics. Among these for 𝐴𝐶𝐶𝜓 and 𝑛𝑀𝐼 score, the count varied from 60% 

to 100%; as for the remaining scores, the number of rejected 𝐻0 varied from 30% 

to 90%. For these metrics, with a low bias (i.e., between 0 and 8) the majority of 
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the 𝐻0 could not be rejected. However, as the bias increased the count of rejected 

null hypotheses raised to 90%. The overall statistical comparisons among all the 

algorithms confirm the fact that not every algorithm performs equally for any 

particular quality metric. Also, there is at least one algorithm for each metric that is 

whose performance is statistically significant from the others. 

4.4 Discussion - A Guideline for Practitioners 

In this section, we use the results presented in Section 4.3 to produce practitioners’ 

guidelines for the analytical contexts presented in Section 4.1.1. The guideline aims 

at assisting data analysts with making efficient decisions while reducing the 

dimensionality of datasets. Especially, with the selection of the most appropriate 

DR algorithm in a given scenario. DR being a complex technique, the selection of 

an algorithm is influenced by factors such as the analytical context, the quality 

metrics, the input data, the intrinsic dimensionality of the input data, the chosen 

hyperparameter values, among others. On the one hand, the selection of the 

appropriate quality metric makes a significant impact on the quality analysis of 

embeddings in any analytical context. For example, when training a predictive 

model with a labeled business dataset an analyst might wish to investigate the data 

prior to determining the parameters of the model. Such an investigation can reveal 

the cohesion within individual clusters or class imbalance in the dataset. During this 

investigation, DR techniques would be used in the context of pattern analysis. 

Hence, in this case, it would be more beneficial to select quality metrics that can 

quantitatively evaluate the structural preservation after DR (e.g., Residual variance, 

𝜇𝑅𝑛𝑋
, 𝑄𝑙𝑜𝑐𝑎𝑙 and other pattern analysis metrics) over the metrics that can determine the 

accuracy of the projection (𝐴𝑈𝐶ln 𝐾(𝑅𝑛𝑋(𝐾))) or classification error (𝐴𝐶𝐶𝜓) after DR. 

However, as shown in Table 4.4, the same DR algorithm that performs well with 

respect to pattern analysis might not be the best technique for reducing the dataset 

dimensions before actually training the model. Hence, in this case, the analysts need 

to evaluate algorithms using the accuracy metrics for DR. On the other hand, 

researchers [15], [47] have often argued that an appropriate estimation of the 

intrinsic dimensionality of the dataset under investigation makes a key impact on 
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the performance of the DR techniques. The reason being, whilst an underestimation 

of this parameter forces important attributes of the dataset to collapse onto the same 

dimension, an overestimation of the same increases the noise in the projection while 

reducing its stability [47]. Hence, when analyzing real-world datasets, it is of 

utmost importance for any data analyst to accurately estimate the intrinsic 

dimensionality 𝑑 (cf. Eq. 4.27) for any given dataset prior to performing DR.  

Based on these two aspects of DR, we divide the guidelines presented in this section 

into two parts. The first part gives an overview of different mechanisms for 

estimating the intrinsic dimensionality of any dataset in a given scenario. The 

second part emphasizes on individual analytical contexts for DR (cf. Section 4.1.1) 

and presents our suggestions regarding the appropriate analytical directions. 

4.4.1 Estimating Intrinsic Dimensionality of Real-world Datasets 

The intrinsic dimensionality 𝑑 of the manifold passed as a hyperparameter to most 

DR algorithms, plays an important role in the amount of information loss after DR. 

In our experiments, we have used Levina-Bickel’s technique [47] for maximum 

likelihood intrinsic dimensionality estimation (cf. Section 4.2.3) for the chosen 

datasets. We applied this algorithm in our experiments following the footsteps of 

Maaten et al. [3] who have also performed large scale experimental studies with 

DR techniques. Nevertheless, several other techniques can be used for the purpose. 

Whilst detailed surveys of the techniques for estimating 𝑑 can be found in [65], 

[66], in this section, we give a brief overview of some of the most popular methods 

for determining 𝑑 and discuss their benefits and limitations.  

On a high level, the methods for determining intrinsic dimensionality for datasets 

can be [15], [67] classified into two types namely: projection-based methods and 

geometric methods. The projection-based methods estimate 𝑑 using the number of 

eigenvalues that are greater than a given threshold. On the other hand, the geometric 

methods exploit the nearest neighbor distances among the datapoints for estimating 

𝑑. A more detailed classification of the techniques was presented by Camastra et 

al. [66]  that divided them into three groups namely global, local, and point-wise 
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methods. The global methods examine an entire input dataset and present a unified 

estimate for 𝑑, whereas local methods approximate 𝑑 by independently 

investigating specific subsets of the input data. The point-wise methods on the other 

hand generate both global and local estimates of 𝑑 for any given dataset. As 

discussed by Camastra et al. [66] all the above mentioned three categories include 

both projection-based and geometric methods for estimating 𝑑. In the following, 

we discuss the categories and their strengths and weaknesses in detail. 

i. Global Methods for Intrinsic Dimensionality Estimation: The global 

methods for estimating 𝑑 assume that all data-points in the input dataset lie 

on a uniform manifold with a constant dimensionality. The global methods 

can be further classified into [66]: projection-based, Multidimensional 

Scaling (MDS) based, and fractal-based methods. Among the three, the 

projection-based global methods attempt to identify the dimensionality of 

the optimum subspace by minimizing projection error. Principal 

Component Analysis (PCA) [41] is the most common among the projection-

based techniques that projects the input data along the direction of the 

maximum variance. When estimating 𝑑 using PCA, at first the eigenvalues 

of the covariance matrix for the input dataset are normalized. Then using a 

threshold for the topmost Eigenvalues, an integer estimate for 𝑑 is obtained. 

Some alternatives to traditional PCA include techniques [66] such as 

probabilistic, Bayesian, or non-linear PCA are used for estimating 𝑑. On the 

other hand, the MDS based global methods for estimating 𝑑 focus on 

distance preservation among the data-points and approximate the optimum 

dimensionality of the projection-space by computing the minimum stress 

[42] for different values of 𝑑. Here an optimum value for 𝑑 is obtained from 

the saturation point in the graph of minimum stress values for all 𝑑. Some 

examples of MDS based techniques include the Bennett’s algorithm [66] 

and the Sammon’s mapping [66] technique. In some cases, the neural 

network-based Curvilinear Component Analysis (CCA) [66] is used instead 

of the MDS based techniques. Finally, the fractal-based methods are known 
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for generating non-integer estimates for 𝑑. Such methods popularly include 

Camastra and Vinciarelli’s correlation-based method [66], Kegl’s algorithm 

[66], Grassberger–Procaccia algorithm [66], and Taken’s method [66] that 

produce a lower bound for the cardinality of the dataset that must be fulfilled 

to obtain an accurate estimate for 𝑑. Nevertheless, global methods for 

estimating 𝑑 have their limitations. For example, despite their simplicity 

and computational feasibility, most PCA based techniques being linear tend 

to overestimate [66] 𝑑. On the other hand, due to their non-robustness [66] 

with very high-dimensional data, the determination of 𝑑 can become 

infeasible [66] with both the MDS based and fractal-based techniques for 

such datasets. 

ii. Local Methods for Intrinsic Dimensionality Estimation: In contrast with 

the global methods, the local techniques for estimating 𝑑 assume that a 

dataset does not lie on a uniform manifold with a fixed dimensionality rather 

it lies on several different manifolds [65] that have their unique intrinsic 

dimensionalities. Overall, these algorithms consider the neighborhoods of 

each data-point to be locally linear and estimate the topological [66] 

dimensions of the underlying manifold. Local methods for estimating 𝑑 

include Fukunaga–Olsen’s algorithm [66] that estimates 𝑑 for any linear 

subspace within a manifold from the number of non-zero eigenvalues from 

its covariance matrix. On the other hand, there are local MDS based 

methods that approximate 𝑑 similarly as the global MDS based methods 

discussed earlier. Except the local MDS based methods usually work with 

subsets of the data instead of the entire dataset. Moreover, the local methods 

for intrinsic dimensionality estimation include techniques that address 

multi-scaling problems [66] in datasets. Such techniques include the 

Brand’s method [66] that make assumptions regarding the data-points being 

only distributed in the directions of the manifold’s local tangent space and 

estimate 𝑑 based on the scaling of individual neighborhood radiuses [66] 

with the addition of new data-points in the neighborhoods. Despite being 



 

  

133 

computationally feasible and locally accurate, local methods for estimating 

𝑑 also suffer from their own challenges. On the one hand, computing 𝑑 with 

such methods can be infeasible for very high-dimensional datasets; 

however, on the other hand, the estimation for the dimensionality of the 

local tangent space using these techniques might not be close to the 

underlying manifold dimensionality for non-linear manifold. Hence, such 

an estimate can mislead the subsequent executions of DR algorithms on the 

entire dataset. 

iii. Point-wise Methods for Intrinsic Dimensionality Estimation: The 

algorithms [66] that belong to this category are capable of generating both 

global and local estimates of 𝑑. However, in contrast to local methods that 

estimate topological dimensions of the manifold (i.e., for smaller subsets of 

the data), with these techniques a local estimation of 𝑑 provides pointwise 

dimensions [66] (i.e., for each data point) of the dataset. Moreover, the 

global estimates using the point-wise methods are obtained as the mean of 

pointwise dimensions [66] for all points in a dataset. Examples of point-

wise techniques include Levina-Bickel’s algorithm [66] along with the 

approaches proposed by Farahmand et al. [66] and Mordohai & Medioni 

[66]. Among these, the method proposed by Farahmand et al. [66] uses a 

nearest-neighbor method to estimate 𝑑 locally around individual data-

points, as the Mordohai &Medioni’s algorithm [66] uses tensor voting to 

identify geometric relationships among data-points. Levina-Bickel’s 

algorithm [66] is arguably the most popular technique among the point-wise 

methods, that derives the maximum likelihood estimator of 𝑑 for any given 

dataset. The Levina-Bickel’s technique also has a logarithmic 

computational complexity [66]. Despite their popularity, one of the 

challenges of point-wise methods is that their robustness with very high-

dimensional datasets cannot be guaranteed in all situations.  

When analyzing real-world data, selecting an appropriate technique for estimating 

𝑑 can be challenging due to several reasons. For example, the existence of a diverse 
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range of techniques for the purpose, with each technique having its strengths and 

limitations can make the selection difficult for a practitioner. Moreover, for real-

world industrial datasets, the original structure of the underlying manifold (hence, 

the actual value of 𝑑) being unknown, evaluating different methods for estimating 

𝑑 and making an informed decision remains a challenge [66]. Furthermore, many 

techniques belonging to each category discussed above, lack in robustness for very 

high-dimensional data, that is often the case for real-world datasets. Finally, most 

existing methods for estimating 𝑑 being highly technical [66], their interpretation 

and implementation can be a challenge for any novice data analyst.  

From the description of methods belonging to the three categories it can be noted 

that when analyzing smaller subsets of data, local methods for estimating 

dimensionality can give a more accurate approximation of 𝑑. On the other hand, 

the PCA based global methods can be more computationally feasible for large 

industrial datasets. At the same time, the point-wise methods can be more robust 

with high-dimensional datasets [66] for both local and global data analysis.  Hence, 

for such real-life situations, Camastra et al. [66] have suggested forming an 

ensemble of different estimators for 𝑑 and compute an average of their outcomes. 

4.4.2 Selecting Algorithms and Metrics Based on Analytical 

Contexts 

In this section, highlighting individual analytical contexts for DR we discuss 

different aspects that influence the selection of an appropriate DR algorithm in a 

given scenario. 

i. DR for Pattern Analysis and Similarity Search: As discussed earlier, the 

preservation of proximity relationships acts as the primary quality criteria 

of any DR algorithm. In real-life scenarios, high-dimensional datasets are 

often analyzed for recognizing useful patterns in the data [16]. For example, 

analysis of gene sequences, investigation of customer behavioral patterns, 

social media influence analysis, or simple range queries with data among 

others. In such cases, the quality metrics for structural preservation 
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(especially the local quality criteria) can be the most appropriate way to 

evaluate DR algorithms. To be more specific, the metrics such as residual 

variance, Spearman’s correlation, and 𝑸𝒍𝒐𝒄𝒂𝒍 can be more suitable over 

metrics like KNN-accuracy or 𝒏𝑴𝑰 scores because they directly evaluate 

the retention of neighborhood patterns in the embeddings. In our 

experiments (cf. Table 4.5), t-SNE and UMAP have shown the most robust 

performance in terms of preservation of local structure after DR. Hence, 

when in need for a detailed pattern analysis of the input dataset, practitioners 

can start with computing the 𝑸𝒍𝒐𝒄𝒂𝒍 metric for the embeddings obtained 

from t-SNE, UMAP, Isomap, or non-metric MDS. As the metric 𝑸𝒍𝒐𝒄𝒂𝒍 does 

not depend on the user defined value of 𝑲 [4], [5], it can effectively indicate 

the best performing algorithm for the input dataset without any further 

assumptions (i.e., on the value of 𝑲) from the user. On the other hand, for 

visual quality analysis of the embedding, users can investigate the 𝑹𝑵𝑿 

curve for a user defined range of 𝑲. Where 𝑸𝒍𝒐𝒄𝒂𝒍 can help with shortlisting 

the most appropriate algorithms, visual investigation of the 𝑹𝑵𝑿 curve can 

enhance the interpretability of the embedding quality for the chosen 

algorithm. In this regard, the scalar value of 𝝁𝑹𝑵𝑿
 can also provide useful 

information on the preserved overall quality of the embedding for all values 

of 𝑲. More traditional [25] local quality metrics such as the residual 

variance and spearman’s correlation can be used to cross-check and validate 

the outcome of 𝑸𝒍𝒐𝒄𝒂𝒍 and 𝝁𝑹𝑵𝑿
. When analyzing the local neighborhood 

quality, 𝝀𝑲𝒎𝒂𝒙
 metric can be quite informative but requires more analytical 

expertise from the user [8]. As for algorithms that perform well for small 

values of 𝑲 but compromise the neighborhood structure for larger 𝑲 values, 

users can be easily mislead [8] to trust a poor-quality embedding as a good 

quality one. In case all these local quality metrics generate indecisive 

conclusions [4], then the global quality metric 𝑸𝒈𝒍𝒐𝒃𝒂𝒍 can be useful for 

selecting the best algorithm. 

ii. DR for Predictive Modelling: In real-life scenarios, DR is often used as a 
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part of data-preparation prior to training supervised Machine Learning (ML) 

[3] models. In these cases, ML models are trained using the obtained 

embedding as their predictive performances [17] are assessed on previously 

unseen data. In such an analytical context, the DR Accuracy metrics (cf. 

Section 4.1.2) can assist users to select the most suitable algorithm. For 

example, although the metric 𝐴𝐶𝐶𝜓 (cf. Eq. 4.13) highly depends on the 

quality of input data, it can be a useful quality metric [3] in such a scenario. 

Hence, researchers [3], [14], [17], [19], [28], [29] over the past many years 

have successfully used 𝐴𝐶𝐶𝜓 as a quality metric for DR. Depending on their 

analytical expertise, the practitioner can also use 𝐴𝑈𝐶ln 𝐾(𝑅𝑁𝑋(𝐾)) (cf. Eq. 

4.12) while visually investigating the 𝑅𝑁𝑋  curve for evaluating the accuracy 

of DR algorithms. As for the most accurate algorithms, Table 4.3 shows 

PCA has performed with the highest 𝐴𝐶𝐶𝜓 with t-SNE, Kernel PCA, and 

UMAP following right behind. Similarly, for 𝐴𝑈𝐶ln 𝐾(𝑅𝑁𝑋(𝐾)), t-SNE 

(and its variants), UMAP and Isomap have proven to be the best performing 

algorithms. Since the best performing algorithms closely follow each other, 

practitioners can compare the best 3 to 5 algorithms on their respective input 

datasets using 𝐴𝐶𝐶𝜓 or 𝐴𝑈𝐶ln 𝐾(𝑅𝑁𝑋(𝐾)) to make a decision. 

iii. DR with Poor Quality Input Data: The quality of input data makes a huge 

impact on the selection of a DR algorithm. Firstly, DR algorithms only work 

with numeric or at least ordinal data [3]. Hence, in situations where a dataset 

contains nominal data, DR becomes inapplicable. Secondly, when datasets 

have too many missing or outlier values, irrespective of the analytical 

context, no DR algorithm performs optimally [12], [17]. Our experimental 

results in Table 4.5 show, whereas t-SNE, UMAP, and LLE handle datasets 

with missing values better than other algorithms, Kernel PCA, nMDS, and 

PCA minimized the impact of outlier values in the input data. However, as 

discussed in Section 4.3.1, whilst the missing values impact the preserved 

local structure in an embedding, outliers perturb its preserved global 

structure. Hence, in cases of datasets with both missing and outlier values, 
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users might need to select an algorithm (e.g., FIt-SNE, LargeVis) that 

mediocrely addresses both the inconsistencies. 

iv. DR with Limited Input Data: Our experiments have proven UMAP to be 

the most reproducible algorithm with limited amounts of data with different 

variations of t-SNE following closely behind. Since, both UMAP and t-SNE 

have proven their robustness with other quality metrics such as 

𝐴𝑈𝐶ln 𝐾(𝑅𝑁𝑋(𝐾)) and 𝑄𝑙𝑜𝑐𝑎𝑙, when only limited input data is available 

users can select either of these algorithms for their analysis. 

v. DR with Limited Computational Resources: In some cases, practitioners 

encounter situations where limited computation time or resources are 

available for executing DR algorithms. This often happens when DR is 

performed a part of an automated data analysis pipeline or as a part of an 

interactive visual analytics tool. In such scenarios, the speed of execution 

becomes an important factor [16] along with the quality of the obtained 

embedding. However, computational complexity and embedding quality are 

two different aspects [1] of evaluating DR. Hence, in case of limited 

resources, practitioners can select any one of the algorithms that perform 

well with resource constraints (i.e., PCA, KernelPCA, Isomap, or non-

metric MDS) prior to assessing them with other metrics for their analytical 

contexts. 

It is important to note that, in and beyond the above-mentioned contexts, DR 

techniques are most commonly [14], [25] used for visually analyzing high-

dimensional data using traditional spatial techniques (e.g., 3D scatter plots). 

Although, this is one of the most important analytical contexts for DR, in this 

research we do not consider it as one of our focus areas. The reasons being: (1) 

visual analytics and interpretations of embeddings obtained from DR is an entire 

research area [7], [13], [21], [25] on its own that is beyond the scope of this 

research. (2) Since visual analytics of DR is a qualitative evaluation process for DR 

that primarily depends on the analysts’ perception and expertise, in such a case it is 

hard to quantitatively compare different DR algorithms and to draw generic 
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inferences about the most suitable technique. Furthermore, it is also important to 

note that, DR being an extremely popular technique in big-data analytics, several 

other DR methods exist (e.g., techniques for Independent Component Analysis [3], 

[11], fractal-based DR methods [10], [63], Linear Discriminant Analysis [3], [11] 

and many more [11], [23]). Nevertheless, in order to maintain a finite scope for our 

study, following the guidelines of Maaten et al. [3] and Sorzano et al. [23] we had 

to exclude several such relevant DR techniques from consideration. Nevertheless, 

we share our implementation on GitHub13 so that any DR techniques can be 

included in the study and quickly compared by analysts. 

4.5 Threats to Validity 

In experimental studies like ours that involves statistical significance analysis, a set 

of threats exists that can raise questions about the validity of the research outcome. 

In this section, we present a set of such threats to the validity of our research that 

were addressed during this work. The first of such possible threats can be content 

validity [68]. In the scope of this research, content validity refers to a subjective 

assessment that checks whether all possible DR algorithms and all reasonable 

evaluation metrics were considered during our study or not. In order to mitigate this 

threat, following the footsteps of Maaten et al. [3], we selected a wide-spread 

combination of algorithms for this study. As for the evaluation metrics, we 

composed them from an extensive review of the related literature. Next, in terms of 

statistical significance analysis two possible threats could raise questions regarding 

the validity of our statistical conclusions [69]. The first one is the construct validity 

[69] of the statistical tests that required all the assumptions behind our statistical 

tests to be fulfilled. Hence, in our experiments, to avoid this threat, we used non-

parametric statistical tests that do not make strong assumptions regarding the 

underlying distribution of the sample data. The second one is conclusion validity 

[69] due to low statistical power of the tests. In order to mitigate this threat, 

following the guidelines of Demšar et al. [39], we not only selected the most 

 
13 https://github.com/aindrila-ghosh/SmartReduce 
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powerful statistical tests, but also, we assessed the reliability of each test.  

Finally, in this research we also mitigated the risks for Type I and Type II errors 

[36]. As the Type I error rate is more critical than the Type II error rate [31], we 

avoided any dredging14 or multiple hypothesis testing [31] on the data without 

making the necessary adjustments to the p-value and the significance threshold 𝛼. 

Moreover, following Demśar et al. [37], [39], we predetermined the statistical tests 

that would be used in our study. In order to maintain the internal validity [69] of 

the experiments, we not only formally defined the evaluation metrics, but we also 

carefully controlled the experimental environment and simulate them to fulfill all 

their desired assumptions. Also, to mitigate the threats to the external validity [50] 

of the experiments, that is to safeguard that our experimental results could be 

generalized outside the scope of this study, following the guidelines of Demšar et 

al. [39] we selected a large number of data samples (N=40) and large enough 

number of runs [36] of the algorithms. 

4.6 Related Work 

This research is primarily focused on two areas namely: empirical comparisons of 

DR algorithms over multiple contextual metrics and statistical significance analysis 

of the evaluation results. Although, we could not find any evidence in literature that 

combines these two areas, individually, ample amount of research work has been 

done on both. For example, empirical analysis and comparisons among DR 

algorithms [3], [23], [62], [64] has been commonly performed by researchers to 

determine the supremacy of any DR algorithms over its opponents. On the other 

hand, analysis of existing DR quality metrics [8] and proposal of new metrics [1], 

[5], [27] have also received a lot of attention from researchers. However, 

assessment of DR algorithms based on the analytical context and generic guidelines 

for selecting the most appropriate DR technique in any given context needs more 

investigation. Moreover, null-hypothesis significance testing of the differences 

 
14 dredging refers to running different tests on the same data only to select the test that returns a significant 

difference among samples. 
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between algorithms is commonly carried out in academia. Nevertheless, in the field 

of DR such an analysis has never been performed! In this section, we recognize the 

related work in the two above mentioned areas and discuss the novelty of our work. 

4.6.1 Survey of DR Algorithms and DR Quality Metrics 

With the abundance of DR techniques, surveys and comparisons among these 

techniques is a well-studied area among researchers. Whilst some of these surveys 

have compared techniques belonging to any specific category (e.g., linear [11], non-

linear [14], or local [70] DR techniques), other surveys have made comparisons 

among a set of algorithms from multiple categories [1], [3], [5], [23], [27], [62], 

[64]. However, most of these surveys have looked into the techniques from a 

specific perspective. For example, Hou et al [70] have compared three linear DR 

techniques and presented them as semi-definite programs as a part of a unified 

framework that can help with solving their complex Eigen-problem. Vlachos et al. 

[14] have compared only non-linear DR methods to assess their level of accuracy 

in capturing the user’s perception of similarity between data-points in the low 

dimensional embedding, using visualizations. Additionally, Silva et al. [62] have 

also looked into only nonlinear methods and have combined the benefits of global 

and local techniques into a new method. Among other work, Cunningham et al. [11] 

proposed an optimization framework for linear DR methods, where they have 

discussed eight such methods in detail and presented the normalized improvement 

[11] and improved execution time of their framework. On the other hand, Lee et al. 

[1], [5], [27] and Meng et al. [64] have presented detailed comparisons of different 

DR algorithms using their proposed DR quality metrics. Another survey of DR that 

explains a set of linear and nonlinear methods is performed by Maaten et al. [3]. 

This research classified the techniques into different categories and compared the 

obtained low dimensional embedding with respect to their generalization errors [3].  

DR has a long-existing application in the domain of medicine and cell biology [16]. 

As a result, in the last few years there has been much research that compares more 

recent DR methods such as UMAP [2], and t-SNE [26] with more traditional 

methods like PCA [51]. For example, Becht et al. [16] have performed a detailed 
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comparison primarily between UMAP and t-SNE from different perspectives such 

as classification accuracy with the low dimensional embedding, preservation of 

local structure, and reproducibility of the algorithms. Apart from research that 

primarily focuses on comparing multiple methods, academics have often compared 

a set of closely related DR methods [24], [34], [43], whenever a new method is 

proposed. For example, Amid et al [17] have compared their newly proposed 

algorithm Trimap with PCA, t-SNE, and LargeVis to present the improvement of 

Trimap over existing methods in terms of outliers and the preservation of global 

structure.  

DR being a well-practiced technique, in the past years several quality criteria [1], 

[4], [5], [27], [64] were proposed to assess the quality of the obtained embedding. 

In some cases, researchers have compared multiple DR algorithms for their 

proposed quality criteria such the co-ranking matrix [1] or 𝑄𝑁𝑋 , some researchers 

have compared multiple quality metrics to identify the most suitable criteria for 

evaluating DR. Nevertheless, given the fact that the selection of a DR algorithm 

highly depends on the analytical context, there is still a need for guidelines to select 

from the existing algorithms using quality metrics. Hence, in contrast to the existing 

research, we bridge the gap between the DR algorithms and quality metrics and 

produce a guideline for practitioners for selecting the most appropriate DR method 

in a given context.  

4.6.2 Statistical Significance Tests for Comparing Algorithms 

Null hypothesis significance testing is a common strategy [31] used in empirical 

research to assess if the results obtained from a comparative evaluation are 

statistically significant. In the past few years, the data mining research community 

has implemented such statistical analysis of results in several different contexts. For 

example, one of the most popular research papers that compares different 

classification algorithms used in supervised machine learning, is presented by 

Demšar et al. [39]. The work not only presented different possible statistical tests 

that can be performed to assess the performances of the algorithms, but also 

formally introduced metrics to evaluate the power of the statistical tests [39]. 
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Mohammadi et al. [37] presented similar experiments with the performances of a 

set of ontology matching systems, where they have added more statistical tests into 

the comparisons and have suggested the best performing statistical tests that can be 

used in specific contexts (e.g., with or without accessibility to large amount of data). 

Dror et al. [38] have employed statistical tests to evaluate natural language 

processing algorithms and have presented a generic guideline for selecting the right 

statistical tests for the purpose. Similarly, Arcuri et al. [36] have produced 

guidelines for using statistical tests on assessing randomized algorithms by 

presenting comparisons among parametric and non-parametric tests and by 

discussing the effects of number of runs of these algorithms. Enhancing this work, 

later Dror et al. [38] have performed replicability analysis of NLP algorithms using 

statistical significance testing. In this research, for the first time ever we employ 

statistical significance testing on the results of DR algorithms. We use the results of 

the null significance tests to generalize and validate our findings from the 

experimental study. 

4.7 Conclusions 

Dimensionality Reduction (DR) being a common technique in data analytics 

several such algorithms have been proposed over the years. While some of these 

algorithms generate a simple linear projection of the input dataset, other algorithms 

perform complex non-linear transformations on the data. Nevertheless, the quality 

analysis of the embedding obtained from DR has been an open research area among 

academics. The reasons being: (1) for nonlinear DR, no direct mapping exists 

between the original attributes in the high-dimensional dataset and the dimensions 

in the embedding. (2) Often the relationships in the high-dimensional data that 

should be preserved by DR are not clearly identifiable. (3) For real-world datasets 

the intrinsic dimensionality and the topology of the original manifold is usually 

unknown. As a result, several quality metrics have been proposed over the past 

years to evaluate the outcome of DR. Generally, these quality metrics evaluate the 

extent of preserved proximities among the data-points in a high-dimensional dataset 

after DR. Among these metrics, whereas some consider the actual proximities 
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(distances) among the data-points, others compare the ranks of the distances 

between these points. Hence, given a plethora of DR algorithms and quality metrics 

to evaluate the outcome of DR, it often gets challenging for any practitioner to select 

the most appropriate quality metrics and DR algorithms in their analytical context. 

Hence, in this research at first, we identify five most popular analytical contexts for 

DR. Next we categorize the 12 most popular DR quality metrics into the identified 

analytical contexts followed by a systematic comparison between 15 state-of-the-

art DR algorithms in those contexts. Then, after a statistical significance analysis 

of our obtained results we present an answer to the long-open research question on: 

“how to determine the most appropriate DR algorithm in a given scenario?”. Our 

results identify t-SNE and UMAP to be the most robust algorithms in terms of 

metrics that evaluate the preservation of small neighborhoods in the original data. 

However, our results also indicate that the performance of t-SNE starts to 

deteriorate as the neighborhood size grows larger. We also found that for datasets 

with unattributable missing values algorithms such as t-SNE, UMAP, LEM, LLE 

(i.e., DR techniques that attempt to preserve local structure of data) perform better 

than the globally focused algorithms. However, in case of datasets with outliers 

globally focused algorithms such as non-metric MDS, Kernel PCA, PCA perform 

better than the locally focused methods. In the statistical significance analysis of 

our results we use 40 real-world datasets (39 open source and 1 from our industrial 

partner IBM). The null hypothesis significance tests confirm that: the difference in 

the performances of the best, mediocre, and worst performing algorithms for our 

chosen 12 quality metrics are indeed statistically significant. Moreover, the analysis 

also indicates although not every algorithm performs equally well on every DR 

quality metrics, there is a perfectly reasonable metric for every algorithm where it 

performs better than its competitors. Finally, based on our experimental results we 

present a practitioner’s guideline for five different analytical contexts in which DR 

algorithms are commonly used. 
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Chapter 5  

Interpretation of Structural Preservation 

in Embeddings 

Dimensionality reduction algorithms transform high-dimensional datasets into low-

dimensional embeddings while attempting to retain most of the original structural 

relationships (i.e., relative distances) among the data points. On a high level, all 

dimensionality reduction algorithms perform complex mathematical optimizations 

to obtain the low-dimensional projection of a dataset that is often hard to interpret. 

The primary reason behind this is, the dimensions derived by such algorithms do 

not have any directly interpretable mappings to the original attributes of the high-

dimensional data [1]. Hence, dimensionality reduction being one of the first steps 

in big-data analytics, a vital concern remains [2]: if the users do not understand the 

quality of the low dimensional embedding, they will not make efficient decisions 

during subsequent analysis. Moreover, the lack of interpretability in dimensionality 

reduction algorithms also leads to the challenge of selecting the most appropriate 

algorithm in a given scenario. In their work, Maaten et al. [3] and Becht et al. [4] 

have shown that different dimensionality reduction methods perform differently on 

the same dataset. Also, for every such algorithm, there exists a perfectly reasonable 

metric [4] for which it is superior to its competitors. For example, in case of the 

maximum amount of preserved variance in an embedding, Principal Component 

Analysis (PCA) [3] could perform better than others. Or, for the maximum retention 

of overall distances among data points, Multidimensional Scaling (MDS) [3] could 

be the best choice. However, given the fact that there is no established way [5] to 

evaluate the performance of dimensionality reduction methods, data-scientists often 

follow their intuitions to use any one of these algorithms, without really 

understanding their behavior. 
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The quality [3], [6], [7] of a low-dimensional embedding depends on the extent to 

which an algorithm can preserve the local structural relationships (i.e., the structural 

similarities in individual neighborhoods) as well as the global structural 

associations (i.e., the relative differences in overall neighborhoods) from the 

original dataset. Hence, an interactive assessment of the preserved structure [1] can 

not only help users to trust the relative positioning of individual data points in a 

projection but also to have confidence in the overall embedding. In recent years, 

interactive exploration of low-dimensional embeddings has become an increasingly 

popular [1], [8], [9], [10] mechanism for evaluating the quality dimensionality 

reduction. However, our investigation shows, the existing research [1], [8], [9], 

[10], [11] primarily enables visual exploration of embeddings and rarely compare 

the embedding to the original data [12]. Also, the majority of the existing techniques 

do not allow simultaneous comparisons of multiple algorithms to evaluate their 

outcome on a specific dataset. Most importantly, the research of Adadi et al. [2] and 

Guidotti et al. [13] confirm that there is still a need for a well-defined mechanism 

for explaining the structural preservation after dimensionality reduction. 

To bridge these gaps, firstly, we present LAPS - Local Approximation of Preserved 

Structure, a method & data-type agnostic technique that provides explanations on 

the preserved local structure of a low-dimensional embedding. The explanations 

presented by LAPS justify the fidelity of the relative positioning of any individual 

data-point in an embedding by approximating a neighborhood locally around that 

point. Secondly, we present GAPS - Global Approximation of Projection Space, an 

interactive technique that presents explanations on the preserved global structure in 

a low dimensional embedding, by combining non-redundant local-approximations 

from a coarse discretization of the projection space. As a part of an extensive and 

comprehensive evaluation, we assess both of the proposed techniques for their 

flexibility (with 10 different dimensionality reduction algorithms on 16 real-life 

datasets), applicability (i.e., with tabular, text, image, and audio data), utility (i.e., 

with a user-study that examines their ability to explain the quality [7] of a 

projection), and reliability (i.e., to assist with the selection of the most appropriate 
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dimensionality reduction algorithm). Our experiments also reveal the roles of 

different user-defined parameters in the outcome of the proposed techniques. 

Moreover, they uncover the ability of the techniques in discovering feature 

correlations in high-dimensional data. 

Our primary contributions in this work are as follows: 

1. LAPS, a novel algorithm that can provide interpretable and faithful 

explanations on the retained local structures in any low-dimensional 

embedding, by locally approximating the neighborhoods. 

2. GAPS, a novel technique that provides explanations on the preserved global 

structure of a manifold in its low-dimensional embedding, by combining 

local approximations of discrete non-redundant neighborhoods into a global 

approximation. 

3. An extensive 5-phase experimental evaluation of the proposed methods 

LAPS and GAPS. 

The rest of the chapter is organized as follows: Section 5.1 provides an overview of 

related work as Section 5.2 introduces the necessary background information and 

design requirements for the proposed techniques. Next, whilst Section 5.3 presents 

the proposed algorithms, Section 5.4 describes our experimental evaluations of the 

presented techniques in detail. Finally, Section 5.5 concludes the chapter with a 

brief discussion on future work. 

5.1 Related Work 

When it comes to interpretability, visual interaction with low-dimensional 

embeddings [1], [14], [15] has been the most commonly proposed approach by 

researchers. In the past few years, several tools [8], [11], techniques [9], 

frameworks [1], and essays [15] have been presented that aim at making the 

complex procedure of dimensionality reduction more understandable to its users. 

Whilst detailed surveys of different interaction paradigms for low-dimensional 

embeddings can be found in [14] and [16], in this section we highlight the most 

closely related work to our proposed algorithms. 
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Covering different aspects of interaction with dimensionality reduction, some 

existing techniques (e.g., Embedding Projector [8]) allow users to visually explore 

the neighborhood structures in embeddings. Some other techniques (e.g., Probing 

Projections [11], CheckViz [6]) visualize the amount of approximation errors in 

relative distances between the data points in a projection. Among these, whilst 

Probing Projections [11] assists users to perform distance corrections within 

neighborhoods, CheckViz [6] enables visualization of false neighborhoods in the 

projection. Taking the scope for interactivity one step further, some techniques (e.g., 

Praxis [1], DimStiller [17], LAMP [18]) allow users to interact with the 

dimensionality reduction process itself. For example, Praxis [1] lets users 

interactively modify the input feature values for a data-point to see the change in 

its projection, as well as to alter the position of a point in an embedding to see the 

changes in original feature values. DimStiller [17] represents the transformation 

performed during dimensionality reduction as a series of events in a pipeline. The 

technique allows users to interactively add or remove dimensions in the input and 

visualize any step in the pipeline at any point in time. The interactive 

multidimensional projection technique LAMP [18] allows users to interactively 

steer a projection by enabling them to select the control points that build a family 

of affine mappings.  

To facilitate an efficient selection of hyper-parameters for dimensionality reduction, 

some techniques such as LDSScanner [19] enable the exploration of the 

neighborhood structures in the high-dimensional datasets. On the other hand, some 

tools like SIRIUS [9] enable interactive symmetric dual exploration of the most 

correlated attributes and neighborhoods in data. At the same time, to explain the 

quality of embeddings, techniques such as DimReader [10] enable visual 

exploration of the newly generated axis lines in the projections. Identifying the need 

to quantify the structural preservation in embeddings, researchers such as Martins 

et al. [20] propose mechanisms to both visually and quantitatively assess low-

dimensional embeddings using false and missing neighbors. In an attempt to 

explain the relative positioning of data points in an embedding, researchers such as 
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Pagliosa et al. [21], Silva et al. [22], and Self et al. [23] present techniques that 

identify the influences of the original attributes in the formation of neighborhood 

structures.  

Nevertheless, our investigation of related research showed that very few researchers 

(e.g., Kodali et al. [12]) have considered both the aspects of neighborhood 

preservation and the retention of attribute influences when quantifying the 

structural quality of an embedding. Even so, a majority of these approaches are 

designed for only a specific set of dimensionality reduction algorithms (e.g., the 

approach proposed by Kodali et al. [12] is designed for Weighted Multidimensional 

Scaling). As a result, these techniques rarely provide an opportunity for a side-by-

side comparison among embeddings obtained from different dimensionality 

reduction algorithms or to perform an interactive selection of the most appropriate 

algorithm for any given dataset. Also, very few approaches [12] enable any 

interactive comparisons between the original high-dimensional data and their low-

dimensional embeddings to explain the quality of the obtained projections. Hence, 

there is still a need for a well-defined technique that would visually and 

quantitatively explain [2], [13] the extent of the preserved local and global 

structures in reduced dimensions and consider the impacts of both neighborhoods 

and attribute influence preservations in embeddings. 

5.2 Problem Characterization 

The overall procedure of dimensionality reduction can be formally defined as: 

assuming a matrix X of size n × D, that represents a high-dimensional dataset with 

n records and D attributes so that 𝑋 =  {𝑥1, 𝑥2, … , 𝑥𝑛}  ∈  ℝ𝐷×𝑛. That is, each 𝑥𝑖 

represents a data-vector for an individual record in 𝑋 and cardinality of 𝑥𝑖 =  |𝑥𝑖| =

𝐷. Dimensionality reduction can be defined as a mapping function: 

       𝑓: 𝑋 → 𝑌         (5.1) 
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where, 𝑓 transforms 𝑋 into a low-dimensional embedding 𝑌 of size 𝑛 × 𝑑, where 

𝑌 =  {𝑦1, 𝑦2, … , 𝑦𝑛}  ∈  ℝ𝑑×𝑛 and |𝑦𝑖| = 𝑑. On a high level, any 𝑓 can also be 

formulated [3] as an optimization problem as: 

  argmin
𝑌∈ℝ𝑑×𝑛

𝑓(𝑌; 𝑋, 𝜃)         (5.2) 

where 𝑓 represents the objective function that attempts to minimize the structural 

differences between 𝑋 and 𝑌 as 𝜃 represents the hyper-parameters of the 

dimensionality reduction algorithm. Ideally, the dimension 𝑑 for 𝑌 is the intrinsic 

dimensionality [3] of the dataset 𝑋. The intrinsic dimensionality 𝑑 represents an 

estimation of the minimum number of dimensions that can be used to represent 𝑋 

with minimum information loss. 

For most real-world datasets, 𝑑 ≪ 𝐷. This means, as 𝐷 is reduced to 𝑑, the points 

in the dataset are relocated to a much smaller space than the original high-

dimensional manifold. Fig. 5.1 shows such a transformation, where the preservation 

of the structure of 𝑋 in 𝑌 refers to the fact that the points that were close to each 

other in 𝑋 should remain close in 𝑌 as well. Also, the points that are far from each 

other in 𝑋 should remain the same in 𝑌. The notion of closeness among the data 

points lying on a manifold is defined using proximity measures [5], [6]. 

Considering, for any data-point 𝑥𝑖 lying on a manifold represented by 𝑋, the 

neighborhood [19], [24] of 𝑥𝑖 is a subset 𝑍 of 𝑋 containing 𝑥𝑖, so that 𝑥𝑖 ∈ 𝑍 ⊆ 𝑋. 

 

Figure 5.1: An overview of the dimensionality reduction process 



 

  

158 

In this case, 𝑍 contains the data points that are closest to 𝑥𝑖. In Fig. 5.1, we define 

the proximity between the point 𝑥𝑖 and its nearest neighbors, i.e., ∀ 𝑥′ ∈ 𝑍 and 𝑥𝑖 ≠

𝑥′ as 𝜋𝑥𝑖
(𝑥′). Also, in Fig. 5.1 as 𝑓 (cf. Eq. 5.2) attempts to minimize the overall 

divergence between 𝑋 and 𝑌 and preserve the neighborhood structure, in an ideal 

case [24] the following inequalities should hold: 

                                𝜋𝑦𝑖
(𝑦𝑗) {

< 𝜋𝑦𝑖
(𝑦𝑘)     𝑖𝑓𝜋𝑥𝑖

(𝑥𝑗) < 𝜋𝑥𝑖
(𝑥𝑘)

> 𝜋𝑦𝑖
(𝑦𝑘)     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                  (5.3) 

where, 𝑦𝑖 = 𝑓(𝑥𝑖), 𝑦𝑗 = 𝑓(𝑥𝑗), and 𝑦𝑘 = 𝑓(𝑥𝑘) and 𝑖 ≠ 𝑗 ≠ 𝑘. Also, the points 𝑥𝑗 

and 𝑥𝑘 belong to the neighborhood of 𝑥𝑖 as 𝑦𝑗 and 𝑦𝑘  belong to the neighborhood 

of 𝑦𝑖. Nevertheless, dimensionality reduction being an optimization problem, 

research [6], [11] shows, its outcome is often likely to converge to a local-optima 

leading to the inequalities between relative distances not being retained for every 

data-point in X after the transformation. 

A large number of non-linear dimensionality reduction algorithms (e.g., MDS, 

Isomap [3]) rely on the neighborhood geometry of a manifold to recognize its 

overall structure. Among them, some algorithms (e.g., MDS [3]) use the Euclidean 

distance [9] as their proximity measure for the data points, considering the manifold 

to be locally isometric to a Euclidean space [6]. The Euclidean distance 𝑑𝑖𝑠𝑡𝜀 

between two points 𝑥𝑖 and 𝑥𝑗 can be defined as: 

 𝑑𝑖𝑠𝑡𝜀(𝑥𝑖, 𝑥𝑗) = √∑ (𝑢𝑎 − 𝑣𝑎)2𝐷

𝑎=1
       (5.4) 

where, 𝑢𝑎 and 𝑣𝑎 represent individual features in 𝑥𝑖 and 𝑥𝑗 respectively. On the 

other hand, some algorithms (e.g., Isomap [25]) use pairwise Geodesic distance [3] 

among points to measure the global intrinsic feature of the manifold. The Geodesic 

distance 𝑑𝑖𝑠𝑡𝛾 among the points  𝑥𝑖 and 𝑥𝑗 in 𝑋, can be defined using the infimum 

over the lengths of all the smooth paths connecting the two points as: 

 𝑑𝑖𝑠𝑡𝛾(𝑥𝑖, 𝑥𝑗) = inf{𝐿(𝜎)}         (5.5) 
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where 𝜎 is a smooth path from 𝑥𝑖 and 𝑥𝑗. The smoothness of 𝜎 is measured by the 

number of continuous derivatives along 𝜎. Formally, assuming 𝑆𝜎  as a set of all 

points along 𝜎 and every 𝑠𝜎 ∈ 𝑆𝜎 ∈ ℝ, then 𝜎 is considered to be smooth if it has 

derivatives of all orders for every 𝑠𝜎 ∈ 𝑆𝜎 .  

Due to the use of different proximity measures and optimization functions, different 

dimensionality reduction algorithms perform differently [5] on the same dataset. 

For example, as shown in Fig. 2.2, the artificial Swiss-roll dataset (cf. Fig. 2.2.a) is 

transformed using four different dimensionality reduction algorithms. The Figures 

2.2.b., 2.2.c, 2.2.d, and 2.2.e, clearly show the differences in preservation of the 

local and global structures of the original dataset. Hence, it can be noted that the 

structural preservation plays an important role in selecting the most suitable 

dimensionality reduction algorithm for a given dataset. Moreover, as 

dimensionality reduction is performed prior to any deeper analysis with a high-

dimensional dataset (e.g., training a predictive model with 𝑌), the lack of preserved 

 

Figure 5.2: Structural preservation with different dimensionality reduction algorithms 

on the artificial Swiss Roll dataset 
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structure can result in poor subsequent analysis. In this chapter, we propose 

interpretable explanations about 𝑌 as a solution to the above-mentioned problems. 

5.2.1 Requirements Analysis for Explanations 

In this chapter, we define explanations of preserved structure as a set of meaningful 

textual and visual artifacts that describes the ability of an algorithm to retain the 

original relative distances among the data points in the low-dimensional space. 

More specifically, the explanations aim to answer a range of questions regarding 

what happened during the transformation of a dataset using the equation 5.2. In this 

section, we define a set of requirements for the explanations of reduced dimensions. 

First of all, we need the explanations to be interpretable [26], [27] for both expert 

and novice users. According to Ribeiro et al. [28], and Yang et al. [29], as humans, 

we relate to meaningful names much faster than numeric values or complex 

graphical representations. Hence, along with displaying the relative distances 

among data points [8], [9], [11], there is a need to present the explanations in terms 

of the attributes of the original dataset. Moreover, to prevent the explanations from 

overwhelming users in cases of very high-dimensional (e.g., 𝐷 > 100) datasets, 

there needs to be a way for the users to regulate the amount of information they 

would want to see. 

Secondly, we expect local fidelity and global legitimacy from the explanations. 

For example, whilst it is important for LAPS to be locally faithful (i.e., for the data 

point being explained), for GAPS it is essential to be globally legitimate (i.e., 

accurate for the entire dataset). We note that it is often impossible to achieve 

complete global legitimacy of the explanations unless all the data points in a dataset 

are considered. The explanations need to incorporate this fact. 

Thirdly, the explanations should be algorithm & data-type agnostic. That is, the 

selection of a suitable DR algorithm requires the explanations to be applicable for 

a variety of such algorithms. Moreover, to explore the full potential of the 

explanations, they should be flexible enough to incorporate any type of data. 
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Finally, the explanations for local and global structures should be consistent. That 

is, not only the look and feel of the explanations but also the user-interactions with 

them should be made consistent for both LAPS and GAPS. 

5.3 Explaining Reduced Dimensions 

In this section, we present the overall ideas of our proposed methods LAPS (Local 

Approximation of Preserved Structure) and GAPS (Global Approximation of 

Projection Space). 

Prior to formally defining the methods, we introduce some notations that would be 

used later in the chapter. Considering a random point 𝑥𝑖 ∈ 𝑋, that is represented 

using a feature vector 𝑈 =  [𝑢1,𝑢2, … , 𝑢𝐷] ∈ ℝ𝐷 , where ∀ 𝑢𝑎 ∈ 𝑈, 𝑎 represents an 

individual feature. The locality around 𝑥𝑖 is defined using a set 𝑍 ⊆ 𝑋, containing 

𝑘-nearest neighbors of 𝑥𝑖. We define the local explanation for 𝑥𝑖 as a set containing 

feature influence explanations 𝑓𝑖𝑒(𝑥𝑖) and the local divergence 𝜆𝑥𝑖
 for 𝑥𝑖. Whilst 

the feature influence explanation 𝑓𝑖𝑒(𝑥𝑖) represents an interpretable function that 

approximates the contribution of each feature in the relative proximity between 𝑥𝑖 

and its 𝑘-nearest neighbors, the local-divergence 𝜆𝑥𝑖
 represents the disagreements 

in the feature influence explanations and neighborhood structures of 𝑥𝑖 and 𝑦𝑖 . In 

this case, 𝑦𝑖 ∈ 𝑌 represents the low-dimensional counterpart of 𝑥𝑖 ∈ 𝑋, i.e., 𝑦𝑖 =

𝑓(𝑥𝑖). In par with our requirements for consistency, we compose the global 

explanations using 𝑓𝑖𝑒(𝑋𝑆) and 𝜆𝑋𝑆
. Here, 𝑓𝑖𝑒(𝑋𝑆) represents the unification of 

local feature explanations of a user-defined subset 𝑋𝑆 of 𝑋.  𝜆𝑋𝑆
 presents the global 

structural divergence between the original data points in 𝑋𝑆 and their counterparts 

in the embedding 𝑌𝑆. Formally, we define the local and global explanations as: 

                                      𝑙𝑜𝑐_𝑒𝑥𝑝𝑙𝑥𝑖
= { 𝑓𝑖𝑒(𝑥𝑖), 𝜆𝑥𝑖

 | ∃𝑥𝑖 ∈ 𝑋}                         

(5.6) 

            𝑔𝑙𝑜𝑏_𝑒𝑥𝑝𝑙𝑋𝑆
= { 𝑓𝑖𝑒(𝑋𝑆), 𝜆𝑋𝑆

 | ∃𝑋𝑆 ⊆ 𝑋} 

where both 𝑙𝑜𝑐_𝑒𝑥𝑝𝑙𝑥𝑖
 and 𝑔𝑙𝑜𝑏_𝑒𝑥𝑝𝑙𝑋𝑆

 are sets of textual and visual artifacts used 

for interpreting the embeddings. 
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5.3.1 Motivating Example  

To facilitate a better understanding of the concept of explanation defined above, in 

this section, we demonstrate the idea with a toy-example. In this example, we have 

our analyst Alice analyze the Animals15 dataset [9] that contains 30,475 images and 

distinguishes 50 animal classes using 85 numeric attributes. In this case, 𝑋 

represents the dataset, where 𝑛 = 30475 and D = 85. After transforming the data 

into a 2D embedding 𝑌 using any dimensionality reduction algorithm, Alice wants 

to interpret the preserved local structure in the embedding.  To obtain a local 

explanation using LAPS, Alice selects a single point-of-interest 𝑥𝑖 (say, 𝑥𝑖 =

 rabbit) from 𝑋. The 𝑙𝑜𝑐_𝑒𝑥𝑝𝑙𝑥𝑖
 of preserved structure for rabbit contains the 

following: (1) 𝑓𝑖𝑒(𝑥𝑖) and 𝑓𝑖𝑒(𝑦𝑖): the positive and negative influence scores for 

all the 85 attributes in the construction of the neighborhood of rabbit in 𝑋 as well 

as in 𝑌 (where, 𝑦𝑖 = 𝑓(𝑥𝑖)). (2) 𝜆𝑥𝑖
: the local-divergence score for the data-point 

rabbit. Here, 𝜆𝑥𝑖
 is computed as a weighted sum of the disagreements between 

𝑓𝑖𝑒(𝑥𝑖) and 𝑓𝑖𝑒(𝑦𝑖) and the disparities in the neighborhood structures for the point 

rabbit in 𝑋 and 𝑌. Similarly, to obtain an explanation on the preserved global 

structure in the embedding, Alice interactively selects a subset 𝑋𝑆 from 𝑋 that 

contains the data points rabbit, mouse, hamster, mole, and squirrel. The 

𝑔𝑙𝑜𝑏_𝑒𝑥𝑝𝑙𝑋𝑆
 obtained using GAPS consists of (1) 𝑓𝑖𝑒(𝑋𝑆) and 𝑓𝑖𝑒(𝑌𝑆): the overall 

influences of the original attributes in the relative positioning of the neighborhoods 

of the points in 𝑋𝑆 and 𝑌𝑆. (2) 𝜆𝑋𝑆
: the global divergence computed by adding the 

scaled local divergences of the points 𝜆𝑥𝑖
∈ 𝜆𝑋𝑆

.  

5.3.2 Local Approximation of Preserved Structure 

In order to generate data-type agnostic local explanations using LAPS, we avoid 

making any assumptions about 𝑋. Next, as a pre-processing before transforming 𝑋 

to 𝑌, we estimate the intrinsic dimensionality 𝑑 of 𝑋 using the maximum likelihood  

 
15 https://cvml.ist.ac.at/AwA2/ 
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Algorithm 5.1 – The LAPS Procedure 

Input: dataset 𝑋, embedding 𝑌, instance 𝑥𝑖, neighbor count 𝑘 

Output: 𝑓𝑖𝑒(𝑥𝑖), 𝑓𝑖𝑒(𝑦𝑖) and local divergence 𝜆𝑥𝑖
 

 

Step 1: Obtain nearest neighbors for 𝑥𝑖 and 𝑦𝑖 

    for all 𝑗 ∈ {0,1, … … , 𝑘} do: 

           𝑍𝑥𝑖
← 𝑛𝑛𝑥𝑖𝑗

 , 𝑍𝑦𝑖
← 𝑛𝑛𝑦𝑖𝑗

                     (Eq. 5.8) 

 

Step 2: Approximate the local neighborhoods for 𝑥𝑖 and 𝑦𝑖 

    for all 𝑥′ ∈ 𝑍𝑥𝑖
 and 𝑦′ ∈ 𝑍𝑦𝑖

 do: 

           𝑍𝑥𝑖
̅̅ ̅̅ ← sample_around (𝑥′), 𝑍𝑦𝑖

̅̅ ̅̅ ← sample_around (𝑦′)     (Eq. 5.9) 

 

Step 3: Compute relative proximities among 𝑥𝑖, 𝑦𝑖 and their respective neighbors 

    for all 𝑥′ ∈ 𝑍𝑥𝑖
̅̅ ̅̅  and 𝑦′ ∈ 𝑍𝑦𝑖

̅̅ ̅̅  do: 

         𝜋𝑥𝑖
̅̅ ̅̅  ← 𝜋𝑥𝑖

(𝑥′),  𝜋𝑦𝑖
̅̅ ̅̅  ← 𝜋𝑦𝑖

(𝑦′) 

 

Step 4: Order data-vectors in terms of ascending proximity 

    𝑍𝑥𝑖
̿̿ ̿̿ ← sort (𝑍𝑥𝑖

̅̅ ̅̅ ), 𝑍𝑦𝑖
̿̿ ̿̿ ← sort(𝑍𝑦𝑖

̅̅ ̅̅ ) 

 

Step 5: Compute feature distance contributions for 𝑥𝑖 and 𝑦𝑖 

    Compute 𝐹𝐶𝑍𝑥𝑖
← feature_contribution (𝑍𝑥𝑖

̿̿ ̿̿ )                     (Eq. 5.11) 

    Compute 𝐹𝐶𝑍𝑦𝑖
← feature_contribution (𝑍𝑦𝑖

̿̿ ̿̿ )                      (Eq. 5.11) 

 

Step 6: Compute feature influence explanations for 𝑥𝑖 and 𝑦𝑖 

    𝑓𝑖𝑒(𝑥𝑖) ← corr(𝐹𝐶𝑍𝑥𝑖
, 𝜋𝑥𝑖
̅̅ ̅̅  ), 𝑓𝑖𝑒(𝑦𝑖) ← corr(𝐹𝐶𝑍𝑦𝑖

, 𝜋𝑦𝑖
̅̅ ̅̅  )           (Eq. 5.12) 

 

Step 7: Compute the local divergence score for 𝑥𝑖 

    Compute 𝜆𝑥𝑖
                            (Eq. 5.13) 

intrinsic dimensionality estimator [30] defined as: 

               �̂� =
1

𝑘2−𝑘1+1
∑ �̂�𝑘   𝑤ℎ𝑒𝑟𝑒, 

𝑘2

𝑘=𝑘1
�̂�𝑘 =

1

𝑛
∑ 𝑑𝑘(𝑋)

𝑛

𝑖=1
      (5.7) 

where, �̂� represents a unit vector with an estimation for 𝑑 and (𝑘2 − 𝑘1) signifies 

the range of nearest neighbors to consider while estimating 𝑑. This pre-processing 

is necessary [3], [19], [30] as the estimation of 𝑑 prior to obtaining 𝑌 not only 

ensures noise reduction [19], [24] in 𝑌, such an estimation also enhances the 

stability [30] of 𝑌. Next, with 𝑑 as a parameter to 𝑓, we obtain 𝑌 as 𝑓(𝑋). In order 
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for the explanations to be algorithm-agnostic, we also avoid making any 

assumptions about 𝑓. 

Once 𝑌 is obtained, the LAPS process is initiated (cf. Algorithm 5.1). As the first 

step, the user interactively selects a single data-point 𝑥𝑖 ∈ 𝑋. Considering, 𝑦𝑖 ∈ 𝑌 

being the low-dimensional counterpart of 𝑥𝑖 i.e., 𝑓(𝑥𝑖) = 𝑦𝑖 , LAPS begins with the 

identification of the localities (i.e., neighborhood structure) around 𝑥𝑖 and 𝑦𝑖 by 

performing an unsupervised 𝑘-nearest neighbor search using the ball-tree [31] 

algorithm. Where the nearest neighbors 𝑛𝑛𝑥𝑖
 for 𝑥𝑖 and 𝑛𝑛𝑦𝑖

 for  𝑦𝑖 be defined as: 

                       
𝑛𝑛𝑥𝑖

= {∀𝑥′ ∈ 𝑋|∀𝑥″ ∈ 𝑋, 𝑥′ ≠ 𝑥″: 𝜋𝑥𝑖
(𝑥′) ≤ 𝜋𝑥𝑖

(𝑥″)}

𝑛𝑛𝑦𝑖
= {∀𝑦′ ∈ 𝑌|∀𝑦″ ∈ 𝑌, 𝑦′ ≠ 𝑦″: 𝜋𝑦𝑖

(𝑦′) ≤ 𝜋𝑦𝑖
(𝑦″)}

      (5.8) 

After identification of the indexes of the 𝑘-nearest neighbors for both 𝑥𝑖 and 𝑦𝑖 , the 

original features vectors from 𝑋 for the closest neighbors of 𝑥𝑖 and 𝑦𝑖 are selected 

and combined into feature vector matrices 𝑍𝑥𝑖
 and 𝑍𝑦𝑖

 respectively, where, 𝑥𝑖 ∈ 𝑍𝑥𝑖
 

and 𝑦𝑖 ∈ 𝑍𝑦𝑖
.  To enhance user-interactions with the LAPS process, we allow the 

value of 𝑘 to be user-defined. The primary reasons behind using the ball-tree 

algorithm for an unsupervised 𝑘-nearest neighbor search are firstly, the algorithm 

is well-known [31] for its efficiency with the fast discovery of nearest neighbors in 

high-dimensional manifolds. Secondly, 𝑓 being a data-transformation technique, 

the neighborhood structure after using 𝑓 has no direct impact from the training 

labels associated with the data points. 

Next, to approximate the local neighborhoods for 𝑥𝑖 and 𝑦𝑖 , LAPS samples 

instances around each 𝑥′ ∈ 𝑍𝑥𝑖
 and 𝑦′ ∈ 𝑍𝑦𝑖

. During this step, a constant number 

of data-point samples are drawn uniformly at random having a normal distribution 

centered around each 𝑥′ ∈ 𝑍𝑥𝑖
 and 𝑦′ ∈ 𝑍𝑦𝑖

. Formally, the sampling of each 

perturbed neighbor for any data point 𝑥′ ∈ 𝑍𝑥𝑖
 and 𝑦′ ∈ 𝑍𝑦𝑖

 can be defined as: 

                         
�̅�𝑖 = ∀𝑥′ ∈ 𝑍𝑥𝑖

, ∀𝑢′
𝑎 ∈ 𝑥′, 𝛿 ∈ [0,1]: {𝛿 × 𝜎𝑢′

𝑎
+ 𝜇𝑢′

𝑎
}

�̅�𝑖 = ∀𝑦′ ∈ 𝑍𝑦𝑖
, ∀𝑣′

𝑎 ∈ 𝑦′, 𝛿 ∈ [0,1]: {𝛿 × 𝜎𝑣′
𝑎

+ 𝜇𝑣′
𝑎

}
      (5.9) 
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where 𝛿 represents a random perturbation, as 𝜎𝑢𝑎
′ , 𝜎𝑣𝑎

′  represent the standard 

deviation16 of an individual feature value in 𝑍𝑥𝑖
 and 𝑍𝑦𝑖

 respectively. At the same 

time, 𝜇𝑢𝑎
′ and 𝜇𝑣𝑎

′  signify the means of individual feature values in 𝑍𝑥𝑖
 and 𝑍𝑦𝑖

 

respectively. To ensure local fidelity, such an approximation of local structure of 

data points is a commonly practiced [28], [32] approach among researchers. The 

perturbed neighborhood for each point in both 𝑍𝑥𝑖
 and 𝑍𝑦𝑖

 are combined into feature 

vector matrices 𝑍𝑥𝑖
̅̅ ̅̅  and 𝑍𝑦𝑖

̅̅ ̅̅  respectively. 

In the next step, the relative proximities: 𝜋𝑥𝑖
(𝑥′) is calculated between the points 

𝑥𝑖 and ∀𝑥′ ∈ 𝑍𝑥𝑖
̅̅ ̅̅  and 𝜋𝑦𝑖

(𝑦′) is computed between 𝑦𝑖 and ∀𝑦′ ∈ 𝑍𝑦𝑖
̅̅ ̅̅ . In case of the 

feature vectors for 𝑥𝑖 and 𝑦𝑖 containing only continuous values, the Euclidean 

distance (cf. Eq. 5.4) is used as the proximity measures 𝜋𝑥𝑖
(𝑥′) and 𝜋𝑦𝑖

(𝑦′). In 

contrast, in the case of feature vectors with a mixture of both continuous and 

categorical values, the Gower dissimilarity [9], [11], [33] is used as the proximity 

measures 𝜋𝑥𝑖
(𝑥′) and 𝜋𝑦𝑖

(𝑦′) between instances. The Gower dissimilarity [33] 

𝑑𝑖𝑠𝑡𝜔 between any pair of data points 𝑥𝑖, 𝑥′ can be defined as: 

                  𝑑𝑖𝑠𝑡𝜔(𝑥𝑖, 𝑥′) = ∑ 𝛿𝑥𝑖𝑥′𝑢 × 𝑑𝑖𝑠𝑡𝜔
𝑥𝑖𝑥′𝑢

/ ∑ 𝛿𝑥𝑖𝑥′𝑢

𝐷

𝑢=1

𝐷

𝑢=1

    (5.10) 

where 𝑢 represents an individual attribute in 𝑍𝑥𝑖
̅̅ ̅̅  as 𝑑𝑖𝑠𝑡𝜔 signifies the distance 

between 𝑥𝑖 and 𝑥′ for attribute 𝑢. In case of continuous variables 𝑑𝑖𝑠𝑡𝜔 is calculated 

as 𝑎𝑏𝑠|𝑥𝑖𝑢 − 𝑥𝑢
′ | 𝑟𝑎𝑛𝑔𝑒(𝑢)⁄ . For categorical variables, 𝑑𝑖𝑠𝑡𝜔 is 0 if 𝑥𝑖𝑢 = 𝑥𝑢

′ , 

otherwise 1. In Eq. 5.10, 𝛿𝑥𝑖𝑥′𝑢 is 1 if 𝑥𝑖𝑢 and 𝑥𝑢
′  are comparable, otherwise 0. In 

our experiments, we do not consider weighted proximity measures [9] in par with 

our algorithm-agnostic design goal because not every dimensionality reduction 

method considers additional feature weights in their process [3]. 

 
16 The number of data points in the perturbed neighborhood of every data point is fixed to 5000, 

Hence, due to the effect of central limit theorem, the distribution of feature values was noticed to be 

very close to a Gaussian distribution. 
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Next, every data-vector 𝑥′ ∈ 𝑍𝑥𝑖
̅̅ ̅̅  and 𝑦′ ∈ 𝑍𝑦𝑖

̅̅ ̅̅  are ordered in terms of their 

(ascending) proximity with the original (data) points 𝑥𝑖 and 𝑦𝑖 respectively. We 

represent these ordered feature-vectors matrices as 𝑍𝑥𝑖
̿̿ ̿̿  and 𝑍𝑦𝑖

̿̿ ̿̿  respectively. Also, 

as the ascending proximity values between 𝑥𝑖 and the data points 𝑥′ ∈ 𝑍𝑥𝑖
̅̅ ̅̅  are stored 

in a set 𝜋𝑥𝑖
̅̅ ̅̅ , the same for 𝑦𝑖 and the data points 𝑦′ ∈ 𝑍𝑦𝑖

̅̅ ̅̅  are stored as 𝜋𝑦𝑖
̅̅ ̅̅ . The 

feature-vector matrices 𝑍𝑥𝑖
̿̿ ̿̿  and 𝑍𝑦𝑖

̿̿ ̿̿ , are then used compose two feature distance 

contribution [34] matrices namely, 𝐹𝐶𝑍𝑥𝑖
 and 𝐹𝐶𝑍𝑦𝑖

 respectively. Each element in 

a feature distance contribution matrix holds the impact of each attribute in the 

overall distances between a pair of consecutive points. We define the elements in 

𝐹𝐶𝑍𝑥𝑖
 and 𝐹𝐶𝑍𝑦𝑖

 as: 

               
∀𝑥′

𝑖, 𝑥′
𝑖+1 ∈ �̅̅�𝑥𝑖

, ∀𝑢 ∈ 𝑥′
𝑖 , 𝑥′

𝑖+1: 𝜋𝑥′
𝑖𝑢

(𝑥′
𝑖+1𝑢

)/𝜋𝑥′
𝑖
(𝑥′

𝑖+1)

∀𝑦′
𝑖
, 𝑦′

𝑖+1
∈ �̅̅�𝑦𝑖

, ∀𝑣 ∈ 𝑦′
𝑖
, 𝑦′

𝑖+1
: 𝜋𝑦′

𝑖𝑢
(𝑦′

𝑖+1𝑢
)/𝜋𝑦′

𝑖
(𝑦′

𝑖+1
)
    (5.11) 

where 𝑢 represents an individual attribute in 𝑍𝑥𝑖
̿̿ ̿̿  and 𝑣 represents the same in 𝑍𝑦𝑖

̿̿ ̿̿ . 

The points 𝑥𝑖
′, 𝑥𝑖+1

′  and 𝑦𝑖
′, 𝑦𝑖+1

′  signify two consecutive data-vectors in 𝑍𝑥𝑖
̿̿ ̿̿  and 𝑍𝑦𝑖

̿̿ ̿̿  

respectively. We build the two matrices based on the concept of feature distance 

contribution [34], which represents a ratio showing the importance (i.e., 

contribution) of an individual feature in the overall distance between two points. 

Finally, from the feature distance contribution matrices, LAPS generates the first 

component of the local explanations: feature influence explanations 𝑓𝑖𝑒(𝑥𝑖) for 𝑥𝑖 

using the Pearson’s correlation17 [4] between each column (representing the 

distance contribution for each feature) in 𝐹𝐶𝑍𝑥𝑖
 with ordered overall distances 𝜋𝑥𝑖

̅̅ ̅̅  

between the data points in 𝑍𝑥𝑖
̅̅ ̅̅ . Similarly, feature influence explanations 𝑓𝑖𝑒(𝑦𝑖) are 

calculated for 𝑦𝑖, the embedding counterpart of 𝑥𝑖 from 𝐹𝐶𝑍𝑦𝑖
 and 𝜋𝑦𝑖

̅̅ ̅̅ . Formally, 

the feature influence explanations 𝑓𝑖𝑒(𝑥𝑖) and 𝑓𝑖𝑒(𝑦𝑖) can be defined as: 

 
17 Experiments with Spearman’s correlation (non-parametric) returned the same values with 

Pearson’s (parametric) until the second decimal point  



 

  

167 

                                 

𝑓𝑖𝑒(𝑥𝑖) = {∀𝑓𝑐𝑥𝑎 ∈ 𝐹𝐶𝑍𝑥𝑖
:

𝑐𝑜𝑣(𝑓𝑐𝑥𝑎  , �̅�𝑥𝑖
) 

𝜎𝑓𝑐𝑥𝑎𝜎  �̅�𝑥𝑖

}

𝑓𝑖𝑒(𝑦𝑖) = {∀𝑓𝑐𝑦𝑎 ∈ 𝐹𝐶𝑍𝑦𝑖
:

𝑐𝑜𝑣(𝑓𝑐𝑦𝑎  , �̅�𝑦𝑖
) 

𝜎𝑓𝑐𝑦𝑎𝜎  �̅�𝑦𝑖

}

                (5.12) 

Where, 𝑓𝑐𝑥𝑎 and �̅�𝑥𝑖
 as well as 𝑓𝑐𝑦𝑎 and �̅�𝑦𝑖

 are the pairs of random variables 

under consideration. In Eq. 5.12, 𝑐𝑜𝑣(𝑓𝑐𝑥𝑎 ,  �̅�𝑥𝑖
) =  ∑ (𝑓𝑐𝑥𝑎𝑗

−
𝑛

𝑗=1

𝜇𝑓𝑐𝑥𝑎
)(�̅�𝑥𝑖

(𝑥𝑗) − 𝜇�̅�𝑥𝑖
) and 𝜎𝑓𝑐𝑥𝑎

=  √∑ (𝑓𝑐𝑥𝑎𝑗
− 𝜇𝑓𝑐𝑥𝑎

)2
𝑛

𝑗=1
  as 𝜎  �̅�𝑥𝑖

=

 √∑ (�̅�𝑥𝑖
− 𝜇�̅�𝑥𝑖

)2
𝑛

𝑗=1
 . The overall 𝑓𝑖𝑒(𝑥𝑖) and 𝑓𝑖𝑒(𝑦𝑖) are represented using a set 

of key-value pairs, where, the keys 𝑓𝑐𝑥𝑎 and 𝑓𝑐𝑦𝑎  represent individual attributes in 

matrices 𝐹𝐶𝑍𝑥𝑖
 and 𝐹𝐶𝑍𝑦𝑖

 respectively. Finally, we compute the local divergence 

𝜆𝑥𝑖
 for 𝑥𝑖 as: 

              𝜆𝑥𝑖
= 𝑤1𝜋𝑓𝑖𝑒(𝑥𝑖)(𝑓𝑖𝑒(𝑦𝑖)) + 𝑤2

𝑛𝑛𝑥𝑖
∩𝑛𝑛𝑦𝑖

|𝑛𝑛𝑥𝑖
|

+ 𝑤3𝑑𝑟𝑛𝑛𝑥𝑖
,𝑛𝑛𝑦𝑖

(5.13) 

where, 𝜋𝑓𝑖𝑒(𝑥𝑖) (𝑓𝑖𝑒(𝑦𝑖)) signifies the cosine distance between 𝑓𝑖𝑒(𝑥𝑖) and 𝑓𝑖𝑒(𝑦𝑖). 

As 𝑑𝑟𝑛𝑛𝑥𝑖
,𝑛𝑛𝑦𝑖

represents the difference between the relative orders of 

neighborhoods of 𝑥𝑖 and 𝑦𝑖. In Eq. 5.13, 𝑤1, 𝑤2, and 𝑤3 signify user-defined scalar 

weights of the three components of 𝜆𝑥𝑖
. By default, 𝑤1, 𝑤2, and 𝑤3 are equal, i.e., 

0.33. 

Since Algorithm 5.1 produces explanations for a single data-point in 𝑋, its 

complexity does not depend on the size of 𝑋, but on the user-defined size of the 

sampled neighborhood 𝑍𝑥𝑖
̅̅ ̅̅  (Eq. 5.8) for the selected instance. As per our analysis, 

the run-time complexity of Algorithm 5.1 is 𝑂(𝑛2), 𝑛 being the number of samples 

in 𝑍𝑥𝑖
̅̅ ̅̅ . In practice, on a personal computer (i.e., with 4 cores and 8 GB main 

memory) LAPS executes in less than 15 seconds for 𝑛 = 5000 data points. 
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Algorithm 5.2 – The GAPS Procedure 

Input: dataset 𝑋, data subset 𝑋𝑆, budget 𝐵, neighbor count 𝑘 

Output: global divergence 𝜆𝑋 

 

Step 1: Generate local feature influence explanations  

    for all 𝑥𝑖 ∈ 𝑋𝑆 and 𝑦𝑖 ∈ 𝑌𝑆 do: 

         𝐿𝐹𝐼𝑋𝑆
← 𝑓𝑖𝑒(𝑥𝑖), 𝐿𝐹𝐼𝑌𝑆

← 𝑓𝑖𝑒(𝑦𝑖), 𝜆𝑋𝑆
← 𝜆𝑥𝑖

     (Algo. 5.1) 

 

Step 2: Approximate the local neighborhoods for the nearest neighbors of all 𝑥𝑖 ∈
𝑋𝑆 and 𝑦𝑖 ∈ 𝑌𝑆 

    for all 𝑥𝑖 ∈ 𝑋𝑆 and 𝑦𝑖 ∈ 𝑌𝑆 do: 

         for all 𝑗 ∈ {0,1, … … , 𝑘} do: 

             𝑍𝑋𝑆
← sample_around (𝑛𝑛𝑥𝑖𝑗

)        (Eq. 5.8, 5.9) 

             𝑍𝑌𝑆
← sample_around (𝑛𝑛𝑦𝑖𝑗

) 

 

Step 3: Compute pairwise proximities between each pair of points in feature vectors 

in 𝑍𝑋𝑆
 and 𝑍𝑌𝑆

 followed by an estimation of the overall feature distance contribution 

and global feature influence explanations 

    for all 𝑥𝑖, 𝑥𝑗 ∈ 𝑍𝑋𝑆
 and 𝑦𝑖 , 𝑦𝑗 ∈ 𝑍𝑌𝑆

 do:                   (Eq. 5.10, 5.11) 

         Compute 𝜋𝑥𝑖
(𝑥𝑗), 𝜋𝑦𝑖

(𝑦𝑗), Compute 𝑓𝑖𝑒(𝑋𝑆), 𝑓𝑖𝑒(𝑌𝑆) 

 

Step 4: Obtain an approximation of the global divergence 𝜆𝑋�̂�
 for the selected 

subset 𝑋𝑆  

    Compute 𝜆𝑋�̂�
           (Eq. 5.12) 

 

Step 5: Calculate the overall global divergence for 𝑋 using the Global-Local 

Approximation (GLA) approach  

    Compute 𝜆𝑋                       (Eq. 5.13) 

5.3.3 Global Approximation of Projection Space 

To ensure the global legitimacy of explanations, we now propose the algorithm 

GAPS that generates an estimation for the retained global structure of the projection 

space. The preserved global structure is explained as a unification of preserved local 

structures [28], [35] for a subset 𝑋𝑆 of non-redundant data points in 𝑋. 

Acknowledging the importance of a judicious selection of 𝑋𝑆 for an accurate global 

approximation, GAPS enables two different ways for formulating 𝑋𝑆 from 𝑋. Here, 

either the users interactively pick data points around the manifold or GAPS selects 
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a fixed number of instances uniformly at random belonging to each training label 

around 𝑋. In either case, GAPS lets the users determine the number of instances 

that they are willing to investigate, and represents it with a budget 𝐵. Potentially, 

the formation of 𝑋𝑆 can also be represented using an Exhaustive Subset 

Enumeration [36] problem. We envision the maximization of diversified sample 

selection for 𝑋𝑆 as future work. 

Once the data points in 𝑋𝑆 are selected, as shown in Algorithm 5.2, GAPS obtains 

a set of local explanations for 𝑥𝑖 ∈ 𝑋𝑆 and 𝑦𝑖 ∈ 𝑌𝑆, where, 𝑦𝑖 = 𝑓(𝑥𝑖). Next, as the 

local feature contributions for the instances in 𝑋𝑆 and 𝑌𝑆 are used to compose two 

𝐵 × 𝐷 dimensional matrices 𝐿𝐹𝐼𝑋𝑆
 and 𝐿𝐹𝐼𝑌𝑆

 respectively, the local divergences 

for each point in 𝑋𝑆 and 𝑌𝑆 are represented using the sets 𝜆𝑋𝑆
 and 𝜆𝑌𝑆

 respectively. 

In parallel, GAPS obtains a global estimate of the structural relations among the 

data points in 𝑋𝑆. As the first step towards obtaining this, the approximated local 

neighborhoods (cf. Eq. 5.9) for each 𝑥𝑖 ∈ 𝑋𝑆 and 𝑦𝑖 ∈ 𝑌𝑆 are combined into two 

feature vector matrices namely 𝑍𝑋𝑆
 and 𝑍𝑌𝑆

 respectively. Next, pairwise proximities 

between each pair of points in feature vectors in 𝑍𝑋𝑆
 and 𝑍𝑌𝑆

 are calculated. 

Considering the proximities among data points around a high-dimensional 

manifold, in GAPS, we use the Geodesic distances (cf. Eq. 5.5) among the pairs of 

points in 𝑍𝑋𝑆
 and 𝑍𝑌𝑆

. After ordering the data point pairs in ascending order of 

proximity, using equations 5.11 and 5.12 an estimation of the overall feature 

distance contribution and global feature influence explanations are obtained. 

Finally, similarly as LAPS, an approximation of the global divergence 𝜆𝑋�̂�
 for the 

selected subset 𝑋𝑆 is obtained as a weighted sum of the disagreements in the overall 

estimation of the feature influences, and the disagreements in the neighborhood 

structures for 𝑋𝑆 and 𝑌𝑆. 

Boyd et al. [35] and Haftka et al. [37] show, on the one hand, the local 

approximation of divergence for each data-point in 𝑋𝑆 is the most effective near the 

point where it was calculated. However, the accuracy of such local approximations 

can deteriorate [37] as it moves away from the point where it was constructed. In 
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contrast, a global approximation may not be accurate for every data-point in the 

manifold, its quality does not deteriorate with distance. Hence, in GAPS we follow 

the Global-Local Approximation (GLA) [37] approach. GLA allows an additive 

blending of local approximations to form a globally valid approximation. Here, 

before the unification of the local-approximations, the ratio of the global estimate 

to each of the local approximation is used as a scaling factor [35] to multiply the 

local-approximations. Hence, we define the overall divergence in the preserved 

global structure 𝜆𝑋 as: 

                                                    𝜆𝑋 = ∑
𝜆𝑋𝑆𝑗

𝜆�̂�𝑆

𝜆𝑋𝑆𝑗

𝐵

𝑗=1

                            (5.14) 

where, 𝜆𝑋 represents an additive blending of scaled local divergence scores 𝜆𝑥𝑖
∈

𝜆𝑋𝑆
. 

Although Algorithm 2 presents a unified approximation for 𝐵 instances in 𝑋, it has 

a run-time complexity of 𝑂(𝑛2), 𝑛 being the number of row vectors in the unified 

perturbed neighborhood matrix 𝑍𝑋𝑆
. 

5.4 Experimental Evaluation 

In this section, we present the results of our experimental evaluations of the two 

proposed techniques. This section aims at answering the following questions:  

i. Do LAPS and GAPS fulfill their design requirements discussed in Section 

5.2.1?  

ii. Can the proposed methods instill confidence in the projection and enable 

the selection of a suitable dimensionality reduction algorithm?  

iii. Are the explanations able to effectively explain the structural preservations 

in embeddings?  

iv. Can the explanations be considered as an improvement over the most 

closely related work? 

v. Do the explanations remain consistent for different user-selected parameter 

combinations? 

Based on the above-mentioned questions, our evaluation of the proposed methods 



 

  

171 

was performed in five phases. Firstly, we applied the techniques on 16 real-world 

datasets to assess the applicability of the methods. Secondly, we investigated the 

role of the local and global divergence scores in the selection of the most suitable 

dimensionality reduction algorithms. Thirdly, we executed a user-study to assess 

the utility of the two techniques. Fourthly, we compared the proposed techniques to 

the most closely related research that aims at interpreting embeddings. Finally, we 

analyzed the impact of different user-defined parameter combinations of the 

proposed techniques. Overall, this section is divided into two sub-sections; first, we 

define the algorithms and datasets that were used in our experiments, followed by 

a detailed analysis of the answers to the above-mentioned questions. 

5.4.1 Experimental Setup 

To ensure the model & data-type agnostic nature of the proposed algorithms, we 

compare the structural retention of 10 state-of-the-art linear and non-linear 

dimensionality reduction methods for 16 real-world datasets. The algorithms 

include popular techniques such as PCA [38], t-distributed Stochastic Neighbor 

Embedding (t-SNE) [39], Uniform Manifold Approximation and Projection 

(UMAP) [40], openTSNE [41], MDS [42], Isomap [25], Locally Linear Embedding 

(LLE) [43], Variational Autoencoder (VAE) [44], Local tangent space analysis 

(LTSA) [45], and KernelPCA [46]. The 16 high-dimensional datasets18 used in our 

experiments belong to four different datatypes namely tabular, text, audio, and 

images. As 14 out of the 16 datasets were selected from the Kaggle19 data repository, 

the Animals image dataset [9] and the UrbanSound8k20 dataset were selected from 

related literature. For our experiments, we decided to consider labeled datasets only. 

Moreover, since dimensionality reduction only works with tabular numeric data [3], 

 
18 Breast Cancer, Adult, Wine Quality, Credit Card, Animals, MNIST, Flower17, Fashion-

MNIST, UrbanSound8K, ESC50, GTZAN, Free-Spoken-Digits, Sentiment140, BBC-Text, SMS 

Spam Collection, Quora Question Pairs 
19 https://www.kaggle.com/datasets 
20

 https://urbansounddataset.weebly.com/urbansound8k.html 
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Figure 5.3: Application of LAPS on the Animals dataset. Scatter plot in (a) shows the original neighborhood structure of data-point blue-
whale, as the plots in (b to d) represent the same after running different dimensionality reduction algorithms. The bar-graphs in (e to h) 

show the feature influence explanations for the relative distances in the neighborhood of the point. In the above figure, each of the three 

components of the local divergence has a weight of 0.33 (i.e. the default weight). 

Original blue whale humpback whale walrus seal dolphin hippopotamus killer whale elephant pig beaver

t-SNE blue whale humpback whale walrus dolphin hippopotamus pig elephant seal killer whale sheep

PCA blue whale humpback whale walrus seal dolphin killer whale hippopotamus elephant polar bear beaver

VAE blue whale humpback whale hippopotamus walrus giant panda moose squirrel pig beaver skunk
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(a) Original Neighborhood (b) Neighborhood with t-SNE (c) Neighborhood with PCA (d) Neighborhood with VAE

(e) Original Feature Influence (f) Feature Influence with t-SNE (g) Feature Influence with PCA (h) Feature Influence with VAE

(i) Order to data-points in Neighborhood

t-SNE PCA VAE

Discrepancy in Feature Influence 0.78 0.79 0.73

Discrepancy in Neighborhood Contents 0.10 0.10 0.20

Discrepancy in Neighborhood Order 0.70 0.30 0.70

Overall Local Divergences

t-SNE 0.5268

PCA 0.3983

VAE 0.5434
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we pre-processed the non-tabular datasets before the experiments. For example, as 

the audio datasets were converted to time-series data of sound amplitudes using the 

librosa21 library, the text datasets were converted into word embeddings using 

Word2Vec22 models. 

5.4.2 Experimental Results 

This section presents the experimental results for LAPS and GAPS. We divide the 

section into four parts based on the questions defined at the beginning this Section. 

5.4.2.1 Applicability Analysis of LAPS and GAPS 

To assess whether LAPS and GAPS fulfill their design requirements discussed in 

Section 5.2.1, now we present four case-studies applying the techniques on the 

image, text, audio, and tabular datasets. 

Case Study 1: Image data - Animal Dataset 

Fig. 5.3 shows an application of LAPS on the Animal dataset [9]. The Animal 

dataset contains 30,475 images and is composed of 85 numeric attributes and 50 

animal classes. In Fig. 5.3, we explain the use of LAPS with a subset of the original 

dataset to enhance visual clarity. Here we select the data-point with the label blue-

whale as our point of interest. Fig. 5.3.a. shows the 10 nearest-neighbors of blue-

whale in the original 85-dimensional dataset on a two-dimensional projection. As 

shown in Fig. 5.3.a, in the original dataset some of the most closely related data 

points to blue-whale are the humpback-whale, walrus, seal, dolphin, and killer-

whale, whilst points such as pig and elephant are also considered neighbors of blue-

whales for resemblances in their values for the attribute strong (cf. Fig. 5.3.e). 

Showing our analysis with LAPS, Fig. 5.3.e explains the most influential attributes 

for the neighborhood structure shown in Fig. 5.3.a. As the green bars in Fig. 5.3.e 

represent a positive correlation of an attribute’s contribution to the relative 

distances in the neighborhood, the red bars show the negatively influencing 

 
21 https://librosa.github.io/librosa/ 
22

 https://pypi.org/project/gensim/ 
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attributes for the same. From Fig. 5.3.e. it can be seen that for the neighborhood of 

blue-whale the most positively influential attributes are skimmer, plankton, blue, 

and strong. On the other hand, the most negatively influential attributes include 

tusks and bush that separate blue-whale from some of its closest neighbors such as 

the elephant. Fig. 3.e. also shows the attributes that are positively or negatively 

influential with similar magnitude. Due to this similarity, we consider them to be 

highly correlated with each other. 

Fig. 5.3.b and 5.3.c show the neighborhoods for blue-whale after the application of 

t-SNE and PCA on the dataset respectively. As shown in the Figures 5.3.b and 5.3.c 

as well in Fig. 5.3.i, both t-SNE and PCA preserved 9 out of 10 neighbors for blue-

whale in the embedding, while replacing the original neighbor beaver with sheep 

and pig with polar bear respectively. Nevertheless, the attribute influencing in the 

neighborhood structures are significantly changed for both t-SNE and PCA (cf. Fig. 

5.3.f and Fig. 5.3.g). Looking into Figure 5.3.i it can be seen that VAE preserved 6 

out of 10 neighbors in the projection and considered points such as giant panda, 

moose, squirrel, and skunk as the neighbors of blue whale. As a result, with VAE 

additional attributes such as hands, tree, and weak show significant negative 

contribution on the neighborhood structure. 

Overall, Fig. 5.3 shows that all algorithms have performed poorly in terms of 

preserving the attribute influences in the embeddings. In terms of preserving the 

neighborhood components and neighborhood orders, t-SNE and PCA have 

performed relatively better than VAE. Hence, the neighborhood order contributed 

the most in the comparison of their local divergences. Here, PCA has performed 

much better than both the other algorithms, resulting in the lowest local divergence 

score among the three. 

Case Study 2: Tabular data - Breast Cancer Dataset 

Our second case study focuses on the Breast Cancer dataset [9] that classifies 

tumors into malignant and benign. This tabular numeric dataset is composed of 32 
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Figure 5.4: Application of GAPS on the Breast Cancer dataset. As the scatter plot in (a) shows the original neighborhoods of the four data 

points, the plots in (b to e) show their neighborhoods using t-SNE. In the scatter plots, the points selected for analysis are colored in ‘orange’ 
and the neighborhoods of the four points 57, 9, 85, and 16 are colored in ‘blue’, ‘red’, ‘green’, and ‘maroon’ respectively. The bar-graph pairs 

(f to i) show the feature influence explanations of the points. The tabular representation in (j) shows the original versus the projected 

neighborhoods of the selected points.  
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attributes and 569 data points. Fig. 5.4 primarily shows the utility of GAPS with 

the breast cancer data using t-SNE as the used dimensionality reduction technique. 

The analysis begins with an interactive selection of four23 non-redundant data 

points (with indexes: 9, 16, 57, 85) from the dataset. In the original neighborhood 

structure of these points (cf. Fig. 5.4.a) we can see the points are far away from each 

other on the manifold and have no overlaps in neighbors. 

From Figures 5.4.b, 5.4.c, 5.4.d, 5.4.e, and 5.4.j it can be seen that after t-SNE, as 

two of the original neighbors of points 9 and 16 are replaced by two different points 

in the embedding, for the points 57 and 85 four and five points are replaced 

respectively. In terms of attribute influences, in the original neighborhood of point 

57 (Fig. 5.4.f), the most influencing feature smoothness_worst is replaced by 

concavity-mean in the embedding. Moreover, some of the highly influencing 

attributes such as fractal_dimension_mean, perimeter_mean, and 

smoothness_mean are not included in the group of six most influential attributes in 

the embedding neighborhood. Similar discrepancies (cf. Figures 5.4.g, 5.4.h, 5.4.i) 

in feature influences are noticed for all the points. Nevertheless, from all the original 

attributes influence bar-graphs, it can be seen that for the chosen points attributes 

such as perimeter-mean, area-se, fractal_dimension_mean, and area-mean, are 

highly correlated attributes in the neighborhoods of all the four selected data points. 

Along with the divergence in the preserved global structure, in Fig. 5.4 the analyst 

can also see the disagreement in the order of preserved relative distances between 

the four selected data points in the original and their low-dimensional embedding. 

This disagreement shows that t-SNE has failed to preserve the original relative 

proximities among the four selected points in the embeddings. We think the reason 

for this is, t-SNE being a locally focused dimensionality reduction technique has 

preserved 50% to 80% of the nearest neighbors for each of the selected points whilst 

 
23 Here we select only four data points only to enhance visual clarity. A detailed discussion on 

appropriate budget size is presented in Section 5.2.5 
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disrupting the global distances among the neighborhoods of the four points in the 

embedding. 

Case Study 3: Audio data – UrbanSound8k Dataset 

The UrbanSound8k24 dataset contains 8732 audio files containing sounds belonging 

to 10 classes namely: air_conditioner, car_horn, children_playing, dog_bark, 

drilling, enginge_idling, gun_shot, jack_hammer, siren, and street_music. After 

pre-processing the data, we extracted 39 features in terms of time-slices 0 to 38. 

Figure 5.5 combines our analysis of the transformation of the UrbanSound8k 

dataset using t-SNE on multiple data-points. Fig. 5.5.a shows the selected data-

points with the indexes 2, 70, and 90 in the original dataset, with their original labels 

as enginge_idling, dog_bark, and drilling respectively. As the figures 5.5.b, 5.5.c, 

and 5.5.d show their neighborhood structures in the embedding, LAPS shows the 

disagreements of the four neighbors for data-point index 2 and two neighbors for 

both indexes 70 and 90 from the original dataset. An analysis of attribute 

 
24

 https://urbansounddataset.weebly.com/urbansound8k.html 

 

Figure 5.5: LAPS and GAPS on the UrbanSound8K dataset. The scatter plot in (a) shows 

the original neighborhood of the three points as the plots in (b, c, and d) show the 

neighborhoods of the points after t-SNE. The bar-graphs below show the feature influence 
explanations for the three points after t-SNE. In the scatter, plots the neighborhoods of 

points 2, 70, and 90 are presented using colors “red”, “blue” and “black”. 
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contributions for the (data)points shows that, as for engine-idling (cf. Fig 5.5.e), the 

time-slices at the beginning (i.e., slice 8, 9, and 10) have more positive influence 

than others. Similarly, for a dog-bark (cf. Fig. 5.5.f) the time slices in the middle 

(e.g., 25, 27, 29) make a more significant impact than others. For drilling (cf. Fig. 

5.5.g) however, time slices amplitudes are more uniformly distributed throughout 

the 0 to 38 attributes. In par with the number of misplaced neighbors in the 

neighborhoods, Fig. 5.5 shows the local divergence of the data-point 2 

(engine_idling) to be the highest among the three. This means that the algorithm 

has preserved the locality of the points 70 and 90 better than the point 2 and this 

has compromised the overall global divergence of the projection.  

Case Study 4: Text data – Sentiment140 Dataset 

Our second case study presents the application of LAPS on Stanford’s 

Sentiment14025 dataset with 1.6 million tweets, where each tweet is associated with 

a numeric label of 0, or 2, or 4 representing negative, neutral, and positive 

sentiments in the tweet. To pre-process the text data for dimensionality reduction, 

 
25 https://www.kaggle.com/kazanova/sentiment140 

 

Figure 5.6: Application of LAPS on the Sentiment140 Dataset. The scatterplot (a) shows 

the original neighborhood of the word happy in the word-embedding as the scatter plots 
in (b to e) show the same after executing four different dimensionality reduction 

algorithms. Whereas, (f) shows a comparison between the neighborhood order for the 

point happy in the original data and the embeddings. 
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after removing the stop-words, hashtags, URLs, and twitter usernames, we 

converted the original dataset into word embeddings using Word2Vec. Fig. 5.6 

shows our application on LAPS on the Stanford140 dataset with a zoomed-in 

version of the embedding to visualize our analysis. In Fig. 5.6, using LAPS we 

compare the preserved local neighborhood structure for the point happy using four 

different dimensionality reduction algorithms (cf. Fig. 5.6.b, 5.6.c, 5.6.d, 5.6.e). 

From Fig. 5.6, it can be seen that UMAP (cf. Fig. 5.6.e) has preserved most of the 

10 original (cf. Fig. 5.6.a) neighbors (i.e., 5 out of 10 neighbors) for the word happy 

after the transformation. Whereas, MDS has preserved the least number of original 

neighbors (i.e., only 1 out of 10) in the embedding with both Isomap and t-SNE 

preserving only 3 of the 10 original neighbors for the word happy. Nevertheless, 

the divergence score of t-SNE is higher than Isomap as the order of the neighbors 

is better preserved using Isomap than t-SNE. That is, as shown in Fig 5.6.a, the 

neighbor yes for the word happy comes after the neighbor makes in the original 

neighborhood and Isomap has preserved this order as depicted in Fig. 5.6.b. 

Whereas, even though the neighbor nice comes before yes in Fig 5.6.a, t-SNE has 

reversed their order in the embedding presented in Fig. 5.6.c. 

5.4.2.2 Selection of Appropriate Algorithm using LAPS and GAPS 

In this section, we present our assessment of LAPS and GAPS for their ability to 

instill confidence in a single projection within a group of projections and to assist 

with the selection of an appropriate dimensionality reduction algorithm for any 

dataset. Table 5.1 presents the local divergence scores obtained using LAPS for all 

the 16 datasets. In Table 5.1, we compute the mean local divergence scores for 100 

random data points from every dataset. To validate the local divergences obtained 

from LAPS, following the guidelines of Maaten et al. [3], we use the generalization 

error of the 1-nearest neighbor classification algorithm. 1-NN generalization error 

being a popular metric [3] for the validation of retained local structure in an 

embedding. In Table 5.1, we present a side-by-side comparison between the 

divergence scores obtained from LAPS and the 1-NN generalization errors for the 

10 algorithms. Similar to Maaten et al. [3], we compute the generalization errors 
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Table 5.1: Divergence Scores Of Dimensionality Reduction Algorithms Using Laps Vs. 1-NN Generalization Errors 

  LAPS Divergence Scores 1-NN Generalization Errors 

Datasets Type tSNE PCA UMAP oTSNE MDS ISMP LLE KPCA LTSA VAE tSNE PCA UMAP oTSNE MDS ISMP LLE KPCA LTSA VAE 

Animal Img 0.472 0.308 0.298 0.275 0.334 0.457 0.492 0.308 0.432 0.417 0.418 0.292 0.263 0.298 0.353 0.342 0.362 0.290 0.327 0.332 

MNIST Img 0.357 0.399 0.458 0.362 0.382 0.362 0.386 0.477 0.362 0.391 0.225 0.388 0.545 0.265 0.213 0.622 0.604 0.846 0.323 0.47 

FLOWER17 Img 0.560 0.556 0.559 0.560 0.407 0.375 0.406 0.407 0.523 0.544 0.632 0.812 0.716 0.628 0.791 0.577 0.813 0.818 0.880 0.742 

F-MNIST Img 0.490 0.527 0.419 0.489 0.525 0.521 0.528 0.427 0.546 0.443 0.249 0.529 0.320 0.255 0.493 0.450 0.529 0.357 0.640 0.387 

Brst Cancer Tabl 0.469 0.667 0.535 0.497 0.526 0.593 0.662 0.56 0.66 0.524 0.046 0.088 0.056 0.047 0.090 0.056 0.070 0.088 0.903 0.159 

Magic Tabl 0.313 0.61 0.446 0.313 0.613 0.646 0.711 0.612 0.541 0.398 0.186 0.369 0.285 0.186 0.338 0.372 0.380 0.336 0.350 0.247 

Wine Qlty Tabl 0.503 0.537 0.537 0.603 0.604 0.56 0.57 0.537 0.504 0.518 0.404 0.415 0.412 0.495 0.470 0.452 0.541 0.415 0.545 0.46 

Crdt Card Tabl 0.46 0.587 0.592 0.581 0.527 0.529 0.662 0.587 0.556 0.507 0.258 0.296 0.311 0.293 0.305 0.289 0.370 0.290 0.280 0.281 

ESC50 Aud 0.597 0.664 0.629 0.631 0.696 0.63 0.695 0.664 0.632 0.641 0.705 0.898 0.826 0.717 0.907 0.935 0.895 0.898 0.886 0.887 

Urban8k Aud 0.329 0.596 0.463 0.329 0.663 0.529 0.629 0.596 0.658 0.415 0.122 0.486 0.276 0.128 0.448 0.524 0.594 0.486 0.840 0.413 

Spkn Digits Aud 0.496 0.694 0.591 0.502 0.688 0.588 0.69 0.682 0.601 0.577 0.005 0.273 0.009 0.005 0.191 0.122 0.089 0.273 0.286 0.122 

GTZAN Aud 0.495 0.487 0.46 0.523 0.457 0.523 0.558 0.504 0.558 0.624 0.459 0.326 0.256 0.454 0.299 0.311 0.324 0.345 0.425 0.351 

SMS Spam Txt 0.474 0.508 0.513 0.499 0.475 0.475 0.508 0.508 0.474 0.499 0.256 0.325 0.544 0.260 0.345 0.360 0.311 0.300 0.446 0.379 

Quora  Txt 0.57 0.57 0.537 0.558 0.603 0.536 0.603 0.57 0.57 0.535 0.021 0.211 0.199 0.022 0.054 0.164 0.254 0.337 0.185 0.154 

BBC-Text Txt 0.447 0.678 0.546 0.571 0.571 0.646 0.621 0.675 0.685 0.688 0.149 0.270 0.449 0.149 0.356 0.225 0.297 0.315 0.333 0.27 

Sntmt140 Txt 0.575 0.572 0.502 0.593 0.569 0.638 0.615 0.567 0.571 0.603 0.658 0.717 0.682 0.655 0.745 0.803 0.811 0.752 0.699 0.721 

Description of Acronyms in Table 5.1: Img: Image, Tabl: Tabular, Aud: Audio, Txt: Text, oTSNE: openTSNE, ISMP: Isomap, F-MNIST: 
Fashion MNIST, Brst Cancer: Breast Cancer, Wine Qlty: Wine Quality, Crdt Card: Credit Card, Spkn Digits: Spoken Digits, Sntmt140: 
Sentiment140 

Note: In the above table, the left-hand side shows an average of LAPS divergence scores for 100 data points from the 16 datasets using 10 
different dimensionality reduction algorithms. The right-hand side shows the 1-NN generalization errors using the same algorithms on the same 
datasets. The algorithms with lowest local-divergences and 1-NN gen. errors are highlighted in bold & red. In both the sides, the column 
representing the algorithm with the lowest local divergence and 1-NN gen. error for more than 50% of the datasets are highlighted in grey.  
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using leave-one-out cross-validation. The results in Table 5.1 show that in 75% of 

cases LAPS agree with the 1-NN generalization error scores on the algorithm that 

preserved most of the local structure. For the remaining 25% cases, where the 

lowest divergences from LAPS do not agree with lowest 1-NN generalization 

errors, we perform paired t-tests26 [47] to compare the embeddings obtained from 

the algorithms suggested by LAPS and 1-NN generalization error. As shown in 

Table 5.2, the p-values obtained from statistical significance analysis show no 

significance differences between the results of the two techniques. Hence, from 

Table 5.1 it can be seen that multiple iterations of LAPS can help users to select an 

algorithm that has preserved most of the local structure of the original dataset in its 

embedding. 

Next, we graphically analyze the comparisons between the local divergence scores 

and the 1-NN generalization errors discussed in Section 5.2.2 of the main 

manuscript. The table presented as a part of this Section (cf. Table 5.1, main 

manuscript) performs a side-by-side comparison among the local divergence scores 

obtained from 16 different datasets using 10 dimensionality reduction algorithms 

 
26 The paired t-test [47] is the most common parametric statistical test to compare the mean of two 

sample populations. 

Table 5.2: Statistical Comparison of Suggested Algorithms 

Dataset Suggested algorithms p-value paired t-test 

LAPS 1-NN GE Dim-1 Dim-2 

Animal oTSNE UMAP 0.404 0.667 

MNIST tSNE MDS 0.826 0.847 

FashionMNIST UMAP tSNE 0.186 0.108 

Sentiment140 UMAP oTSNE 0.088 0.095 

Note: GE: Generalization Error, Dim-1: first target dimension obtained from 

dimensionality reduction, Dim-2: second target dimension after dimensionality 

reduction. For the paired t-tests, the threshold α is considered to be 0.05 (i.e., the most 

commonly used value for α [27]). The results show, all obtained p-values are more than 

α accepting the null hypothesis that embeddings are not statistically significantly 

different from each other. 
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with 1-NN generalization errors of the same datasets transformed using the same 

10 algorithms. As discussed earlier, The algorithms include popular techniques 

such as PCA [38], t-distributed Stochastic Neighbor Embedding (t-SNE) [39], 

Uniform Manifold Approximation and Projection (UMAP) [40], openTSNE [41], 

MDS [42], Isomap [25], Locally Linear Embedding (LLE) [43], Variational 

Autoencoder (VAE) [44], Local tangent space analysis (LTSA) [45], and 

KernelPCA [46]. The 16 high-dimensional datasets27 used in our experiments 

belong to four different datatypes namely tabular, text, audio, and images. 

The results of the graphical analysis are presented in Figure 5.7. The main idea of 

the graphical analysis is to visually analyze the utility of local divergence scores for 

their assistance with the selection of the most appropriate dimensionality reduction 

algorithms. The figure shows, overall local divergence scores, and 1-NN 

generalization errors show the same patterns for most of the datasets. The best 

examples are the Animals dataset, the Credit Card dataset, the Wine Quality dataset, 

and the ESC50 dataset. In a majority of the cases, the algorithms such as t-SNE and 

UMAP that have the lowest local divergence in most datasets also have the lowest 

1-NN generalization errors. In the case of some datasets, such as Breast Cancer, 

Free-Spoken-Digits, Quora Question Pairs, the gap between the algorithm with the 

highest 1-NN generalization error and the lowest 1-NN generalization error is much 

bigger than the same for local-divergence scores. One could argue that in this case, 

1-NN generalization error distinguishes the best and worst-performing algorithms 

better than the local-divergence scores. However, since we have only considered 

the default weights for different components of the local divergence scores in 

Figure 5.7, as discussed in Section 5.2.5, we think that altering the weight 

combinations might show the results more clearly and increase the gaps between 

the divergence scores for the best and worst-performing algorithms. 

 

 
27 Breast Cancer, Adult, Wine Quality, Credit Card, Animals, MNIST, Flower17, Fashion-MNIST, 

UrbanSound8K, ESC50, GTZAN, Free-Spoken-Digits, Sentiment140, BBC-Text, SMS Spam 

Collection, Quora Question Pairs 
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Figure 5.7: Graphical Analysis of Local Divergence Scores Vs. 1-NN Generalization errors of 16 real-world datasets using 10 
dimensionality reduction algorithms. The bars on the left (blue color) represent the LAPS divergence scores, while the bars on the right 

(orange color) represent 1-NN generalization errors. 
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Table 5.3: Divergence Scores of Dimensionality Reduction Algorithms using GAPS 

Datasets Type tSNE PCA UMAP oTSNE MDS ISMP LLE KPCA LTSA VAE 

Animal Image 0.319 0.279 0.368 0.365 0.198 0.323 0.324 0.279 0.336 0.393 

MNIST Image 0.401 0.262 0.399 0.361 0.207 0.381 0.614 0.376 0.427 0.345 

FLOWER17 Image 0.414 0.403 0.316 0.331 0.321 0.366 0.425 0.365 0.427 0.412 

Fashion MNIST Image 0.312 0.362 0.206 0.287 0.244 0.381 0.394 0.283 0.377 0.346 

Breast Cancer Tabular 0.290 0.250 0.245 0.266 0.242 0.275 0.251 0.250 0.258 0.317 

Magic Tabular 0.294 0.282 0.309 0.433 0.265 0.304 0.799 0.277 0.499 0.377 

Wine Quality Tabular 0.328 0.245 0.303 0.304 0.279 0.306 0.279 0.245 0.431 0.391 

Credit Card Tabular 0.303 0.261 0.275 0.419 0.430 0.607 0.495 0.440 0.250 0.312 

ESC50 Audio 0.338 0.864 0.286 0.348 0.303 0.288 0.313 0.291 0.864 0.621 

UrbanSound8k Audio 0.291 0.662 0.276 0.318 0.283 0.731 0.254 0.244 0.244 0.504 

Spoken Digits Audio 0.403 0.335 0.397 0.403 0.308 0.336 0.345 0.335 0.418 0.482 

GTZAN Audio 0.382 0.331 0.425 0.447 0.447 0.332 0.283 0.333 0.338 0.419 

SMS Spam Text 0.694 0.330 0.314 0.300 0.320 0.354 0.370 0.330 0.315 0.329 

Quora  Text 0.407 0.313 0.313 0.436 0.301 0.322 0.300 0.313 0.303 0.318 

BBC-Text Text 0.400 0.328 0.295 0.283 0.324 0.302 0.332 0.328 0.351 0.362 

Sentiment140 Text 0.260 0.293 0.237 0.288 0.276 0.265 0.284 0.293 0.292 0.304 

Note: The above table, presents the average GAPS divergence scores for 10 random data-points selected 100 times from the 16 datasets. 
The algorithms with lowest global divergences highlighted in bold & red. The idea is to evaluate whether GAPS produces an acceptable 
global-divergence score for the chosen datasets that can help with selecting appropriate dimensionality reduction algorithm for the data. 
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Next, we present the results of applying GAPS on the 16 real-world datasets used 

in our experiments and compare the global divergence scores for 10 dimensionality 

reduction algorithms. In Table 5.3, we present the global divergence scores 

obtained from GAPS. For the scores in Table 5.3, we selected 10 data-points for 

each dataset 100 times and computed the mean of their global divergences. 

Although reconstruction errors of dimensionality reduction algorithms could be 

used to validate the preserved global structure in embeddings (i.e., the global 

divergence scores in Table 5.3), we do not compute the reconstruction errors of the 

algorithms. The primary reason being, as pointed by Maaten et al. [3] there is no 

way to compute accurate reconstruction errors for real-world datasets, as their true 

underlying manifold is unknown. Overall, from Table 5.3 it can be seen that GAPS 

allows for a user-driven quantification of the global structural retention in 

embeddings. As shown in Table 5.3, for most of the datasets UMAP and MDS have 

preserved the maximum of the global structure in comparison with the other 

algorithms. The user study presented in the main structural quality helps users in 

making decisions regarding the most appropriate dimensionality reduction 

algorithm in a given scenario. 

One could argue on the superiority of LAPS over 1-NN generalization error for 

evaluating the preserved local structure in an embedding [3]. However, the 

computation of the 1-NN generalization error is black-box to its users, as users 

cannot interact with the computation of the metric. Whereas, LAPS allows users to 

interpret and interact with each component of the metric local-divergence. 

Moreover, by allowing users to define weights for different components of the 

divergence calculation, users can decide the importance of the feature influences 

over the neighborhood structures in divergence calculation, based on their domain 

expertise. 

5.4.2.3 Evaluation with Human Subjects 

To assess the utility of LAPS and GAPS in real-world data analysis, we have 

performed a user study with 10 human subjects. In this section, we present an 
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overview of our study that includes detailed information regarding the study 

questions, gathered insights, and analysis of obtained information.  

The participants of our study included both industry professionals and Ph.D. 

candidates with strong analytical backgrounds. During our study, the subjects were 

divided into two groups namely novice and expert participants. The novice-group 

contained 6 individuals with no prior knowledge of dimensionality reduction. 

Whereas, the expert-group comprised 4 individuals with moderate experience with 

dimensionality reduction techniques. In this study, we asked the subjects to analyze 

the Wine Quality dataset that classifies 4898 wine samples into 10 quality 

categories using 12 attributes. This section is primarily divided into four sub-

sections that focus on the four primary steps that were followed during our study 

with the subjects. 

Step 1 - Define Study Objectives and Methods 

The first step of the study was conducted in three phases. At first, the study 

participants were briefed about the characteristics of the dataset under investigation, 

in detail. During this briefing, a set of graphical overviews of the dataset was 

presented to the participants. These graphical representations included the 

following: (1) tabular representations demonstrating the dimensions of the original 

dataset (i.e., 4898 x 12), (2) histograms of value distributions of each of the 12 

attributes in the data, (3) bar-charts showing correlations of individual attributes 

with the wine quality labels, and (4) balances of the classes (i.e., the quality labels) 

in the dataset. Next, the users were presented with three 2D scatter plots of the 

embeddings of the Wine Quality dataset obtained by executing t-SNE, Isomap, and 

UMAP on the data. The interactive scatter plots allowed users to zoom into the 

neighborhoods of the data points and using mouse-hover operations to determine 

the indexes and labels of the individual points in the plots. The users were given 10 

minutes to observe these scatter plots and note down their insights, but not yet 

disclose them with other study participants or the conductors of the study. Finally, 

the users were presented with an overview of the objectives and expected outcomes 
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of LAPS and GAPS. During the process, some sample outcomes of the processes 

on other open-source datasets were presented to the participants. Also, the subjects 

were given a walkthrough of how to execute the two algorithms on the different 

projections of the Wine Quality dataset. The first and the third phases of this stage 

were interactive, where the participants were encouraged to ask about any 

confusion regarding the dataset or the study process.  

Step 2 - Conduct User Evaluation 

At this step of the study, the users were allowed to perform independent analysis on 

the Wine Quality dataset. During this time, no study participants were allowed to 

interact with the conductors or any other participant in the study. Each individual 

was given 10 minutes to analyze the Wine Quality Dataset and execute the 

algorithms LAPS and GAPS on their selected data points. During their analysis, the 

percipients were asked to execute each of the two algorithms at least once and 

compare the three embeddings of the Wine Quality dataset that were presented to 

them. Also, the participants were asked to keep track of their decisions regarding 

their interpretation of the structural quality of the embeddings, the required analysis 

time, and their choice of the best performing algorithms for the Wine Quality 

dataset. 

Step 3 - Gather User Feedback 

After the independent evaluation of the algorithms, each participant was 

individually asked the four questions that were mentioned in the original 

manuscript. The questions included: (i) Can the two techniques efficiently explain 

the structural preservations in the embeddings? (ii) Can executing the two 

techniques enhance user-trust on the embeddings? (iii) Can the techniques help 

users with decision making regarding the best performing algorithm? (iv) Can the 

techniques reduce the analytical time? 

When answering the above questions, the subjects were asked to answer with a firm 

yes or no at first and then to elaborate on their answer. For example, in case of the 

questions regarding the ability of the two algorithms to explain structural 
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preservations or enhance user-trust in the embeddings, the participants were asked 

to describe their understanding of the structural quality of each of the embeddings 

and also their rationale behind selecting one embedding over another. Moreover, 

for the questions regarding the reduced analytical time and assistance of the two 

techniques in instilling confidence on any specific embedding over another and 

helping with the decision of the most appropriate algorithm for the given dataset, 

the participants were asked to discuss their observed differences between not using 

LAPS and GAPS (cf. Section 2.4.1) and using the two algorithms to analyze the 

same projections. At this time, the subjects were also asked for any identified 

limitations in the two techniques and their suggestions for improvements, if there 

were any. 

Step 4 - Analyze and Summarize Insights 

Upon collecting the feedbacks, the conductors of the study (i.e., the authors) 

analyzed the obtained positive and negative responses from both the novice and 

expert participants and computed the agreements between their responses To 

quantitatively summarize the results of this study, following the idea of Lewis et al. 

[7] we computed Fleiss’ Kappa consistency measure 𝜅 to assess the participant 

agreements on the feedbacks for LAPS and GAPS. The value of 𝜅 ranges from -1 

to +1, where -1 represents no observed agreement, +1 signifies perfect agreement 

and 0 denotes agreement due to random chance. The results of our study are 

summarized in Table 5.4. The table shows that in terms of reduction of analytical 

Table 5.4: User-agreement Analysis on LAPS and GAPS 

Analytical  

Aspects  

Fleiss’ Kappa 

Novice Experts 

Efficiently Explains 0.66 0.47 

Enhances Trust 0.24 0.33 

Helps with decision making -0.17 0.11 

Reduces analytical time 1.00 1.00 

Note: The table above summarizes the results of our user study. Here we analyze four 

different aspects of utility with LAPS and GAPS using 10 human subjects. Among them 

6 are novice and 4 were expert participants. 
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time both novice and expert users had a perfect agreement about the utility of LAPS 

and GAPS over manual analysis. Besides, due to their prior experience with 

dimensionality reduction, the expert users could trust the results of the two 

techniques more easily (i.e., 𝜅=0.33) than the novice users (i.e., 𝜅=0.24). Regarding 

the ability of the techniques to provide an efficient explanation of embedding 

quality, both novice and expert users had a moderate agreement with 𝜅 of 0.66 and 

0.47 respectively. In terms of decision making, approximately 50% of both novice 

and expert users agreed on the utility of LAPS and GAPS making 𝜅 close to 0. 

Overall, the participants agreed on the utility of the two techniques in all four 

aspects of our analysis with some suggestions for improvements. For example, only 

33% of the novice participants altered the relative weights during their analysis of 

the local and global divergence scores. At the same time, only 50% of the expert 

subjects could easily understand the discrepancies in all the individual components 

of local and global divergence scores, whilst the rest needed more assistance. As a 

proposed solution for both the problems, both novice, and expert users have 

proposed to integrate the LAPS and GAPS procedures as a part of a visual 

interactive framework. We envision this integration as future work. 

5.4.2.4 Detailed Comparison with Related Research 

In this section, we present detailed comparisons of our proposed methods with the 

two most closely related research. At first, we compare our approach with the 

approach proposed by Pagliosa et al. [21] followed by a comparison with the 

approach SIRIUS proposed by Dowling et al. [9]. In both the approaches, we have 

used the examples shared by the original authors in their original manuscripts and 

compared the outcomes of our approaches in the same scenarios.  

Comparison with Pagliosa et al. 

The approach presented by Pagliosa et al. [21] attempts to identify the contribution 

of each attribute in the similarity (i.e., proximity) among the data-points that belong 

to the same label.  For example, Figure 4 shows the application of the approach on 

the Wine Quality dataset presented by the original authors [21]. The dataset is 
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composed of 178 instances that are classified into 3 wine categories using 13 

attributes. In this approach, the authors have identified the variance within the 

attributes to distinguish their contributions on the relative proximities among data-

points in a selected region. In Fig. 5.8.a, the three different regions of interest, 

representing data-points belonging to 3 different wine categories, are highlighted 

within the uniform grids. The bar charts show the variance of the attributes within 

the grids highlighted in the same color. Whereas, the box-plots in Fig. 5.8..b 

presents the interquartile range, and outliers, per dimension. The authors identify 

the attributes with the highest variance to be the most contributing attributes in that 

region and suggest users that the attributes with a large number of outliers are not 

relevant enough to represent the data-points belonging to different class labels. 

Our approach looks into the same research question however from a different 

perspective. Here, we combine the impacts of both neighborhood structure and 

attribute influences and identify the algorithms that can preserve most of both. A 

user-driven computation of local and global divergences helps users to quantify the 

overall quality of the preserved local and global structure. For example, as shown 

in Figure 5.9.a, for the Wine quality dataset, we allow users to analyze each data-

points as well as a region of data-points in the embeddings. However, the class 

 

(a) Vector-based clustering & 

Attribute Variances 

 

(b) Box-plots showing interquartile 

ranges and outliers 

 

Figure 5.8: Analysis of the Wine Quality dataset by the approach presented by Pagliosa 
et al. [21]. The figures are taken from Figures 15 and 16 of the original manuscript of 

Pagliosa et al. [21]. 
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labels of the data-points are not considered relevant in our approach as we look 

deeper into the pairwise distances within the neighborhoods of the points 

irrespective of their class labels. Next, our proposed techniques allow users to 

visualize the neighborhoods along with the influences of the original data attributes 

in their structural formation of the neighborhood. Here the feature influences are 

computed as the correlation of the feature contribution scores with the relative 

proximities among the data-points. Also, to better understand the impacts of each 

component of the local and global divergence scores, users are allowed to alter the 

relative weights of the neighborhood structure and the attribute influences when 

computing the metrics. Overall, our approach focuses on a diverse group of aspects 

of structural preservation and allows for interactive exploration of embeddings. 

Comparison with SIRIUS 

In this section, we compare our proposed approach with the work of Dowling et al. 

[9]. The work focuses on dual, symmetric, observation, and attribute level 

interactions of the low-dimensional embeddings. In Figure 5.8.b we show the 

original example presented by the authors [9] in their chapter. In this example, the 

authors analyzed the Animals dataset [9]. SIRIUS allows users to select multiple 

 

 

(a)  

 

(b)  

Figure 5.9: (a) Analysis of the Wine Quality dataset using GAPS. (b) An Analysis 
of the Animals dataset by Dowling et al. [12]. The figure is taken from Figure 5 of 

the original manuscript of Dowling et al. 

Original Distance Ordering: [[0, 1], [0, 3], [1, 3], [1, 2], [0, 2], [2, 3]]
Embedding Distance Ordering:                  [[0, 3], [1, 3], [2, 3], [1, 2], [0, 2], [0, 1]]

Local Divergences
Point 37 0.2485663
Point 45 0.7885482

Point 20 0.7757621
Point 88 0.7173196

Global Divergence: 0.2803417

(a) Original Neighborhood (b) Embedding Neighborhood

(c) Original Feature Influence (d) Global Feature Influence



 

  

192 

pairs of data-points and identifies the most influential attributes that distinguish the 

different pairs of points. For example, in Fig. 5.9.a the authors have analyzed the 

differences between the point pairs: blue-whale, dolphin with cow, sheep and tiger, 

wolf. Their attribute panel shows that the attributes water, hunter, and grazer are 

responsible for the relative differences in the point pairs. In their work, the authors 

have primarily focused on embeddings created using weighted-Multidimensional 

Scaling (WMDS). 

Summary of Comparison with Related Research 

In this section, we present the results of a behavioral comparison between our 

proposed techniques and the most closely related research. The results of our 

analysis are summarized in Table 5.5. The table compares the design requirements 

of explanations presented in Section 5.2.1, with related techniques such as SIRIUS 

[9], Andromeda [23], along with the approaches presented by Pagliosa et al. [21], 

Martins et al. [20] and Silva et. al [22]. As shown in Table 5.5, the results of this 

analysis validate our claim from Section 5.1 which stated that the related research 

primarily focuses on individual aspects of interpreting and evaluating embeddings. 

For example, SIRIUS, Andromeda, and the techniques proposed by Pagliosa et al. 

[21] and Silva et al. [22] focus on identifying the most influential attributes in 

certain points or regions in the embeddings. Nevertheless, they do not attempt to 

quantify the different aspects of local and global structural preservations. At the 

same time, Martins et al. [20] present a diverse set of visualizations for 

neighborhood quality analysis they do not look into the aspect of the contributions 

of the original attributes in the structural preservations of embeddings. Moreover, 

none of the existing work considers model or data-type agnosticism among their 

design goals. Overall, our analysis shows that LAPS and GAPS indeed unifies the 

different aspects of analyzing structural preservation in embeddings. As a result, 

they provide a more elaborate visual and quantitative interpretations for the low-

dimensional embeddings than its closely related research. 
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5.4.2.5 User-defined Parameter Analysis 

From our description of the LAPS and GAPS in Section 5.3, it can be noticed that 

two user-defined parameters can significantly influence the outcome of the proposed 

methods. These parameters include: (1) user-defined scalar weights (cf. Eq. 13) for 

the components of local and global divergence scores and (2) the selection budget 𝐵 

(cf. Section 5.3.3) in the computation of global divergence. In this section, we analyze 

whether the selection of these parameters impacts the consistency of outcome for 

LAPS and GAPS.  

The role of weight in local and global divergences: 

Since the scalar weights of each sub-component of local and global divergence can 

be user-defined, it can be argued whether a strategic selection of these weights can 

help in manipulating the results or hiding any imperfections in the embeddings. To 

find answers to this question, we further investigate the local divergence scores 

Table 5.5: Behavioral Comparison of Laps and Gaps with Closely Related Research 

Requirements for Explanations 

L
A

P
S

 &
 

G
A

P
S

 

S
IR

IU
S

 

A
n

d
ro

m
ed

a
 

P
a

g
li

o
sa

 e
t 

a
l.

 

M
a

rt
in

s 
et

 a
l.

 

S
il

v
a
 e

t 
a

l.
 

Interpretability (Present attribute influences) •  • •  • 
Local Fidelity (Explain preserved local 
structure) •    •  

Global Legitimacy (Preserved global structure) •    •  

Model Agnostic (Applicable to any algorithm) •      

Datatype Agnostic (Applicable to any datatype) •      

Consistency (In local and global explanations) •   • • • 

Note: In the table above ‘•’represents complete support ‘’ represents partial support 

for the requirement. 
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presented in our first case study (on the Animals dataset) discussed in Section 5.2.1. 

As shown in Fig. 5.10, in this study we analyze the data-point blue-whale from the  

Animals dataset [9] and compare the local divergence for the point in the 

embeddings obtained using the algorithms t-SNE, PCA, and VAE. Fig. 5.3 shows 

that, with the default relative weights (i.e., 0.33) among the three algorithms, PCA 

has the lowest local-divergence for blue-whale. Fig. 5.3 computes the local 

divergence scores for the algorithms with the default weights of 0.33 for each of its 

components. In this section, we analyze the impact of any changes in the weights 

of the individual components of the local divergences for the point blue-whale. Our 

analysis results are summarized in Fig. 5.10. The results show that different 

combinations of weights for the individual components of local divergence does 

not allow users to manipulate the results but only shows the differences between 

the embeddings more clearly. For example, as shown in Fig. 5.3, in all the 

embeddings, the discrepancy for attribute influence explanations have been the 

highest (i.e., >73%) among the three components. Whilst the false and missing 

neighborhood has the lowest discrepancy (i.e., ≤20%), the inconsistency in the 

order of neighbors is high for t-SNE and VAE (i.e., ~70%) but low for PCA (~30%). 

Hence, in Fig. 5.10, when increasing the weight of attribute influence explanation 

 

Figure 5.10: Analysis of weight-combinations in the computation of local-divergence 

using LAPS on Animals dataset. 

Note: In the graph above, the left-most set of bars represent the local divergence with a 

default value of 0.33 for each of the three components of λxi
(Eq.13). The second, third, 

and fourth set of bars from the left represent the weight combinations of (0.1, 0.7, 0.2), 

(0.7, 0.1,0.2), and (0.1, 0.2, 0.7) on the three components of λxi
. 
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component (i.e., w1) to 0.70 the local divergence for all the algorithms is increased 

by 25% to 58% from their original local divergences obtained using default weight 

combinations. Similarly, increasing the weight of the neighborhood order 

component (i.e., w2) to 0.70 reduces the local divergence scores for all the 

algorithms by 50% to 80%. However, as shown in Fig. 5.10 in all the cases, PCA 

still has the lowest local divergence among the three algorithms in every case. 

The role of budget in global-divergence computation:  

In this section, we investigate the impact of the budget (i.e., the data subset size) in 

the computation of global divergence. For this analysis, we extend the results of our 

second case study presented in Section 5.2.1 and investigate the impact of a budget 

size 5, 10, 15, 20, and 25 on the global-divergence scores of the Breast Cancer 

dataset using t-SNE, MDS, and UMAP. We summarize the results of our analysis 

in Figure 5.11. As shown in Fig. 5.11, with a gradual increase in the selection 

budget, only the absolute value of the overall global divergence steadily dropped 

for all the three algorithms with MDS being the best performing algorithm in all the 

5 cases. Hence, from Fig. 5.11, it can be seen that GAPS appropriately shows the 

best performing algorithm in terms of preservation of global structure for a given 

dataset. However, the absolute value of the divergence might get more accurate 

with a higher budget size. 

5.5 Future Work 

There are several avenues of future work that we would like to explore. For 

instance, in any interactive technique, one of the most important aspects is 

scalability. Although, both the proposed algorithms have a computational 

complexity of 𝑂(𝑛2), for our current design of LAPS and GAPS, we restrict the 

user-defined neighborhood size (cf. Eq. 9) to be as large as 10 and the number of 

perturbed samples (cf. Eq. 10) to be a maximum of 5000. These design constraints 

are inspired by Ribeiro et al. [28] who confirm the adequacy of 10 nearest neighbors 

and 5000 sampled instances in determining the local properties of a data-point. 

However, we leave experimenting with different sizes of neighborhoods (i.e., > 10) 
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to future work. Although, improving any inherent open challenges [3], [4] of 

dimensionality reduction techniques (e.g., computational complexity [4], 

optimization of hyperparameters [41]) is beyond the scope of this research. 

Apart from scalability, we think there are a few more aspects where the proposed 

work can be improved. Firstly, although both the proposed algorithms allow for 

user interactions with the processes, the overall interactivity of the approaches can 

be improved by integrating them as a part of a unified visual framework. As 

ongoing work, we are working on creating such a framework. To enhance the 

overall scalability of the framework, we are currently exploring parallel processing 

for LAPS and GAPS. Secondly, to enhance the fidelity of GAPS, as discussed in 

Section 3.2, our ongoing work also includes defining the diversified sample 

selection for GAPS as an Exhaustive Subset Enumeration [36] problem. 

5.6 Conclusions 

In this chapter, we propose two interactive explanation techniques for low-

dimensional embeddings obtained from any dimensionality reduction algorithm. 

The first technique LAPS produces a local approximation of the neighborhood 

structure to generate interpretable explanations on the preserved locality for a single 

instance in an embedding. The second method GAPS explains the retained global 

 

 

 

 

 

 

 

 

Figure 5.11: Analysis of global divergence scores by budget size. 

Note: The bars in the above graphs represent the global divergence λX (Eq.14) computed 
using t-SNE, MDS, and UMAP respectively. The graphs show that with a gradual increase 

in the selection budget, the global divergence steadily dropped for all three algorithms. 
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structure of a high-dimensional dataset in its embedding, by unifying non-

redundant local-approximations from a coarse discretization of the projection 

space. Our experimental evaluation of the techniques with tabular, image, text, and 

audio data demonstrates the flexibility of these techniques. Moreover, our extensive 

experiments show the utility of the proposed techniques in demonstrating the 

preserved structural relationships in lower dimensions, as well as determining the 

most correlated attributes in a dataset, along with an interactive selection of the 

most appropriate dimensionality reduction algorithm for any given dataset. 
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Chapter 6  

VisExPreS: A Visual Interactive Toolkit 

for Evaluations of Embeddings 

Embeddings are low-dimensional representations of high-dimensional data that are 

obtained using Dimensionality Reduction (DR in short). DR algorithms transform 

high-dimensional data into embeddings while attempting to maximally preserve 

their structural properties. Most DR algorithms identify the structure of the original 

data using the relative proximities among their data-points [1]. DR as a 

transformation technique not only reduces the computational overhead of high-

dimensional data analysis, but it also makes the visualization of such datasets 

possible with traditional spatial techniques (i.e., 2D or 3D plots). 

Despite their utility, DR techniques come with a set of major caveats. Firstly, the 

dimensions derived using such techniques lack a clear-to-interpret mapping with 

the original features in the data [2], [3]. As a result, novice data analysts are often 

forced to blindly trust the embeddings without truly understanding the meaning of 

the projection axes or the positioning of data-points. Secondly, there exists a 

plethora of DR techniques with their own respective hyperparameter combinations 

that significantly influence the embedding structure. The non-intuitive nature of 

these parameters also hinders the interpretability of these techniques making the 

selection of an appropriate DR algorithm for any dataset, difficult [4]. Thirdly, in 

most cases, embeddings derived from DR do not make existing errors and 

distortions [5] prominent to the users. In some cases [5]–[8], where such distortions 

are visually exposed, the users are not allowed to control or interact with them [6], 

[7]. All these limitations make an efficient evaluation of embeddings obtained from 
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Figure 6.1: The Structural Quality Analysis View of VisExPreS. The interface is divided into nine regions that enable 

simultaneous assessment of preserved structure in a set of embeddings. 
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DR algorithms extremely challenging [9]. 

Traditionally, the quality of embeddings is interpreted and evaluated using two 

different methods namely: (i) metric based quantitative analysis; and, (ii) qualitative 

or visual analysis of the obtained embedding. Being reliable and repeatable [9]–

[11], metric-based quantitative evaluation of embeddings can effectively assist 

users to compare DR algorithms by associating numeric identifiers to their 

qualitative characteristics. Nevertheless, such techniques being formally 

defined, do not allow users to have much control over the analysis process. As 

a result, users do not get the opportunity to apply their knowledge and expertise in 

the assessment process. On the other hand, several qualitative analysis techniques 

for embeddings allow users to visually explore the neighborhood structures [12]–

[14], errors & distortions [5]–[8], and feature variances [15], [16] within the 

neighborhoods of the projections. Nevertheless, using such techniques making 

any decision regarding the best performing DR algorithm in a given context 

entirely depends on the analyst’s perception and understanding of the 

embeddings. The reason being, such techniques [2], [17], [18] often do not 

proactively guide users with the analysis process. For example, for very large 

datasets, most existing techniques [2], [17], [18] do not assist users with the 

selection of influential data points [13] or representative data subsets [19], [20] that 

provide a good representation of the original data and can reveal the overall quality 

of the embeddings better than other points. As a result, novice data analysts often 

fail to utilize the complete potential of such interactive visualization techniques 

when exploring low-dimensional embeddings. 

This research aims to bridge the gap between these two traditional techniques 

for evaluating embeddings. In this work, unifying the benefits of both, we present 

a visual interactive toolkit that enables a proactively guided and user-driven 

analysis of preserved structure in any embeddings obtained from any DR algorithm. 

Towards achieving this goal, at first, we present two novel interactive embedding 

quality analysis methods. The first technique PG-LAPS (Proactively Guided Local 
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Approximation of Preserved Structure) enables the computation of the local-

divergence, that examines the fidelity of the relative positioning of any individual 

data-point in an embedding by approximating a neighborhood locally around that 

point. Moreover, to assist novice users with the analysis process, PG-LAPS 

proactively guides users with the selection of representative data points from the 

input dataset. The second technique PG-GAPS (Proactively Guided Global 

Approximation of Projection Space) computes the global-divergence, that explains 

the preserved global structure in a low dimensional embedding, by combining non-

redundant local-approximations from a coarse discretization of the projection 

space. To facilitate a proactively guided exploration of embeddings, as a part of PG-

GAPS we present RepSubset, a novel algorithm that generates representative 

subsets from the original data based on the notions of density [13], [21] and 

dissimilarity [22], [23] in the dataset. The two techniques are then composed into a 

visual toolkit that we named VisExPreS (Visual Explanations of Preserved 

Structure). An overview of the VisExPreS interface is presented in Fig. 6.1. The 

presented toolkit not only gives users more control over the quality assessment 

process but also allows them to focus on the aspects of the analysis that are the most 

interesting to them. Moreover, VisExPreS enables side-by-side (both visual and 

quantitative) comparison of the performances of multiple DR algorithms on the 

same dataset. We evaluate VisExPreS, PG-LAPS, PG-GAPS, and RepSubset using 

extensive evaluation. Our primary contributions in this article are as follows: 

1. PG-LAPS: a novel user-driven embedding quality analysis method for 

proactively guided investigation of the retained local structure in an 

embedding. 

2. PG-GAPS: a novel, proactively guided, and user-driven DR quality 

assessment method for examining the preserved global structure in an 

embedding. 

3. RepSubset: A novel algorithm for selecting representative subsets from the 

original dataset based on the notions of density and dissimilarity in the data. 
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4. VisExPreS: an interactive visual toolkit that enables a user-driven 

computation of metrics local and global-divergence metrics, while enabling 

side-by-side comparison of multiple embeddings. 

The chapter is organized as follows: Section 6.1 presents the required background 

and related work; Section 6.2 discusses our design goals for VisExPreS interface. 

Section 6.3 presents PG-LAPS, PG-GAPS, and RepSubset and elaborates on the 

different views of VisExPreS. Section 6.4 presents an extensive evaluation of the 

framework whilst Section 6.5 discusses some limitations and opportunities for 

future work. Section 6.6 concludes the article. 

6.1 Background and Related Work 

In its most general setting, non-linear DR (NLDR) can be formally defined as 

assuming a matrix 𝑋 of size 𝑛 × 𝐷, that represents a high-dimensional dataset with 

𝑛 records and 𝐷 features, DR algorithms map into an embedding 𝑌 of size 𝑛 × 𝑑. 

Ideally, for most real-world datasets 𝑑 represents the intrinsic dimensionality of 𝑋 

that is the minimum number of dimensions that can be used to represent 𝑋 [5]. 

Normally, 𝑑 ≪ 𝐷. In their most general settings, NLDR techniques can be formally 

defined [5] as an optimization problem: 

  argmin 
𝑌∈ℝ𝑑×𝑛

𝑓(𝑌; 𝑋, 𝜃)         (6.1) 

where the objective function 𝑓 attempts to preserve the relative proximities among 

the data points from X  to Y. In Eq. 6.1, 𝜃 represents the hyperparameters of the 

function 𝑓. In manifold learning [24], the vectors in 𝑋 are assumed to be sampled 

from a non-linear manifold where the notion of proximity among the data-points is 

traditionally defined using distance measures [1], [25]. In this research, for any 

data-point 𝑥𝑖 ∈ 𝑋 where the neighborhood [26], [27] of 𝑥𝑖 is a subset 𝑍 of 𝑋 

containing 𝑥𝑖, we define the proximity between the point 𝑥𝑖 and its nearest 

neighbors as 𝜋𝑥𝑖
(𝑥′), where, 𝑥′ ∈ 𝑍 and 𝑥𝑖 ≠ 𝑥′. Here, 𝜋𝑥𝑖

(𝑥′) ∈ ℝ. Ideally, for 

any NLDR, the preservation of the relative proximities among data-points refers to 

the following: considering a set of data-points 𝑥𝑖, 𝑥𝑗, 𝑥𝑘 ∈ 𝑋 where, 𝑖 ≠ 𝑗 ≠ 𝑘, if 
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𝜋𝑥𝑖
(𝑥𝑗) < 𝜋𝑥𝑖

(𝑥𝑘 ) then after the transformation 𝜋𝑦𝑖
(𝑦𝑗) < 𝜋𝑦𝑖

(𝑦𝑘 ) should hold. 

Here, 𝑦𝑖 = 𝑓(𝑥𝑖), 𝑦𝑗 = 𝑓(𝑥𝑗), and 𝑦𝑘 = 𝑓(𝑥𝑘). However, NLDR being an 

optimization problem, its outcome often converges to a local-optima leading to the 

relative proximities not being retained for every data-point in embedding 𝑌. For 

most NDLR techniques, such relative proximities form the basis of both 

quantitative and visual evaluations of their resulting embeddings [9], [10]. In this 

section, at first, we elaborate on the existing mechanisms for quality assessments 

of embeddings. Next, we present the closely related work that focuses on obtaining 

representative subsets from datasets for further analysis. 

6.1.1 Quality Assessments of Embeddings 

In this section, we elaborate on related work that evaluates embeddings using 

quantitative or qualitative (visual) methods and discuss the novelty of VisExPreS, 

our proposed visual interactive toolkit. 

6.1.1.1 Quantitative Evaluation of Embeddings 

In theory, for most NLDR techniques, a quantitative analysis of the resulting 

embedding should be possible using two simple mechanisms. Firstly, by examining 

the value of the objective function 𝑓 upon convergence; and secondly, by 

performing an inverse transformation from 𝑌 to  𝑋. Nevertheless, in real-life 

scenarios often neither of the above-mentioned techniques is applicable. The 

reasons being: as the former technique can only be used for comparing different 

executions of the same algorithm [9], the later becomes infeasible for real-world 

datasets whose underlying manifold structures are unknown [4]. As a result, most 

existing techniques that attempt to quantify the characteristics of an embedding 

[28], either by examining the absolute (i.e., the actual distances among data-points) 

or the relative (i.e., distance ranking among points) proximities among the data-

points after the transformation. As per Rieck et al. [29],  rank-based DR quality 

metrics are more popular due to their stability with the scaling of pairwise distances 

among the data points. 
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Popular rank-based DR quality metrics include Local Continuity Meta-Criterion 

(LCMC) [9], Trustworthiness and Continuity (T&C) [9], Mean Relative Rank 

Errors (MRRE) [29] among others. To evaluate the embedding quality, these 

metrics compare the ranks of the sorted distances in K-ary neighborhoods in 𝑋 and 

𝑌 [10]. Due to their similarities, Lee and Verleysen have unified these three metrics 

under a co-ranking matrix framework [9]. Also, the authors proposed several other 

rank-based DR quality metrics namely: mean K-ary neighborhood preservation 

(𝑄𝑛𝑋 [9]), local quality criteria for K-ary neighborhoods (𝑄𝑙𝑜𝑐𝑎𝑙  [10]) and global 

quality criteria for the embedding (𝑄𝑔𝑙𝑜𝑏𝑎𝑙  [10]). The co-ranking framework 

primarily  examines the average agreement between all K-ary neighborhoods in 𝑋 

and 𝑌 based on a matrix containing the ranks of pairwise distances [10] between 

the data-points. Apart from these, the metrics entropy and mutual information [30] 

and Spearman rank correlation [29], [30] are also popularly used to determine the 

preservation of topology in embeddings. On the other hand, Residual Variance [29] 

is a popularly used distance-based DR quality metric that computes a linear 

correlation between the absolute distances between any pairs of data-points in 𝑋 

and 𝑌. Other distance based metrics that focus on dissimilaries of neighborhoods 

[24] include neighborhood hits [24], projection precision score [6], and Spectral 

Overlap [30]. All these metrics examine the proportion of the neighborhood that is 

preserved in an embedding. Apart from the distance and rank based metrics, some 

other quality measures analyze the stress (i.e., distortion) of the objective function 

for DR. Such metrics popularly include normalized stress [7] and Krushkal Stress 

[6], [29].  

As shown by Lee et al. [10] and Johannemann et al. [30], such quantitative 

embedding quality measures can be useful for comparing the performances of 

multiple DR algorithms. However, these metrics being formally defined, do not 

allow much flexibility in the analysis process. Moreover, it can often get 

challenging for users to actively engage with their computations that will enhance 

the user’s trust on the metric’s value. For example, in most cases such metrics 

present a single quantitative value for the embedding quality, without providing any 
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rationale behind the computation of the metric. In such cases, the users remain 

unable to intervene or interact with the metric computation process and are bound 

to trust the presented result blindly without really understanding how it was 

computed. As a result, in most cases, the calculation of these metrics does not 

incorporate the user’s perception, and expertise in the assessment process. 

6.1.2 Visual Evaluation of Embeddings 

In order to make the analysis of embeddings more engaging for users, several visual 

interactive mechanisms [2], [8], [17], [18], [31] have been proposed in the past few 

years. Among these, some techniques only visualize the neighborhood structures of 

the data-points after DR [12]. Some depict the distortions in the embeddings [7], 

[13], [14] with the help of false [13] and missing [7] neighbors. Taking the 

interaction one step further, some techniques even allow users to intervene and fix 

(i.e., reposition or remove) [2], [16] any misplaced data-points [5] in the 

embeddings. For example: as Smilkov et al. [12] effectively visualizes the 

neighborhoods of any selected data-point in the embedding, Lai et al. [13], Cutura 

et al. [14], Martins et al. [7], and Aupetit et al. [31] identify and depict false and 

missing neighbors in embeddings. Moreover, using graphical representations, 

Heimerl et al. [8] show the distribution of neighborhood distances for all data 

points, whilst France et al. [32] depict the agreements in K-ary neighborhoods. On 

the other hand, in order to improve  distortions, Stahnke et al. [5] and Joia et al. [33] 

automatically reposition misplaced datapoints; whereas, Pagliosa et al. [16], 

Cavallo et al. [2] allow users to interact with the DR process and remove or relocate 

points in embeddings. Among further existing techniques, some assist users to 

interactively modify the hyperparameter combinations for DR algorithms [12]. 

Some other techniques [13], [15]–[18] help to visualize the contributions of the 

features in the relative positioning of data-points using feature weights [13], [18], 

feature correlations [17], or the variance in feature values [15], [16].  

The case-studies [5], [12], [17] and user-studies [5] performed by the authors of the 

existing techniques show that such visual embedding quality analysis techniques 
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can indeed help with an interactive exploration of the projection. However, as these 

techniques are not designed to quantify the behavioral characteristics of the 

embeddings, the decision on the best performing algorithm relies on the perception 

and expertise of the analyst. Moreover, most of these techniques focus on partial 

aspects of embedding quality. For example, either their focus lies on investigating 

false and missing neighbors [7], [14], or on the contributions of original features 

[15]–[18], or on the impact of hyperparameters [7] on the chosen DR algorithm.  

In this research, we attempt to unify the different focus areas of visual analysis of 

embeddings and address the challenges that we have discussed for both quantitative 

and qualitative assessment methods for DR. 

6.1.3 Selecting Representative Subsets from Data  

The existing methods for representative subset selection can be broadly categorized 

into two groups namely [19], [34]: clustering-based design and uniform design 

approaches. The clustering-based techniques aim at generating clusters from the 

original data followed by selecting a diversified subset from the generated clusters 

[20]. Such techniques can be further classified into [19], [34]: hierarchical, non-

hierarchical, and density based techniques. Over the past years, for clustering-based 

subset selection popular methods such as K-means [20], OPTICS [33], DBSCAN 

[20] have commonly been used by researchers. For example, in their work, Lai et 

al. [13] have used DBSCAN to suggest representative data points as well as data 

subsets, whereas Daszykowski et al. [20] have suggested representative points 

using a hybrid of DBSCAN and K-Means clustering methods. 

With the uniform design approaches [20]–[22], [35], the representative data-points 

are selected in such a way that they uniformly cover the data-space. Being more 

popular than the clustering-based subset selection methods, over the past few 

decades several approaches have been proposed for selecting uniform 

representative subsets. One of the most popular technique in this category is the 

Kennard-Stone [23] algorithm that is based on the notion of dissimilarity between 

the data-points. The Kennard-Stone is an iterative method that aims at minimizing 
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the pairwise Euclidean distances [17]  between the data-points that are already a 

part of the representative subset and the remaining points in the dataset. Another 

popular method dissimilarity based uniform subset selection technique is OptiSim, 

presented by Clark et al. [22]. The technique generalizes the maximum and 

minimum dissimilarity-based approaches. Also based on the notion of dissimilarity, 

Tominaga et al. [35] presented a genetic algorithm to select representative subsets. 

The algorithm uses the pairwise Euclidean distances among the data-points within 

the selected subset along with the mean of the product moment correlation as its 

two fitness functions. On the other hand, instead of focusing on dissimilarity among 

data points, researchers such as Chaudhuri et al. [21], [36] and Mall et al. [20] have 

focused on the idea of density of each point the dataset for them to be considered 

as a part of the representative subset. For example, in a multidimensional space, 

Chaudhuri et al. [21] have presented a technique that selects data points with the 

highest density in the dataset.  Whereas for connected graphs, Mall et al. [20] have 

presented the technique FURS that selects representative data-points with the 

highest measure of ‘degree centrality’ in the network. In both these iterative 

techniques, to enhance the diversity of the selected subset, the authors have ignored 

the K-nearest neighbors of the data points that have already been added to the 

representative subsets. 

The representative subset selection technique RepSubset, presented in this research, 

addresses multiple aspects that are not considered by the traditional iterative subset 

selection algorithms [20]–[22], [35]. First of all, to enable a diversified subset 

selection RepSubset combines the notions of density and dissimilarity in the 

original dataset while ignoring the impact of K-nearest neighbors of the already 

selected points. Secondly, in order to capture the nonlinearity in the underlying 

manifold of the original dataset, in contrast to the existing approaches, the proposed 

technique computes the pairwise geodesic distances [4] to measure the 

dissimilarities among data points.  
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6.2 Design Goals for the VisExPreS Toolkit 

The primary goal for the VisExPreS toolkit is to assist users with an interactive and 

engaging quality assessment of low-dimensional embeddings. DR being a complex 

and black-box technique, this toolkit should not only guide users with the 

assessment process but also should allow users to have the driver’s seat in the 

interactive and quantitative quality analysis of embeddings. In this section, we 

elaborate on our primary design goals for VisExPreS. 

Goal 1: Proactive guidance for representative data: In order to assist novice data 

scientists with their analysis, the toolkit needs to provide proactive guidance to its 

users in terms representative data points [13] as well as, representative data subsets 

[22] for analyzing the preserved local and global structures of the embeddings. In 

case of  representative data-points, the toolkit should consider multiple perspectives 

from which a data-point may seem interesting and offer users with a few such 

perspectives to select from. For representative subsets, the toolkit should 

automatically generate diverse representative subsets from the input data and 

present users with multiple subset options. Moreover, the toolkit should also 

suggest appropriate hyperparameter combinations for the chosen DR methods. 

Goal 2: Simultaneous investigations of embeddings:  To address the challenges 

of selecting the most appropriate DR algorithm in a given scenario, we require the 

toolkit to be algorithm agnostic and assist with side-by-side comparisons among 

multiple embeddings. 

Goal 3: Contributions of the original features: Features of a dataset play the most 

important role in computing the proximities among the points in a dataset. 

Moreover, as humans, we relate to meaningful names [37] more easily than numeric 

values or complex visuals. Hence, to enhance the interpretability of the analysis, 

we need the toolkit to interactively present the influences of the original features in 

the formation of the neighborhoods in the dataset.  
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Goal 4: Interpretable assessment of structural quality: We need the toolkit to 

address the non-transparent nature of the embeddings. Here, we require the toolkit 

to assist with interpretable explanations of preserved local and global structures in 

embeddings for both novice and expert data analysts. For this purpose, we need the 

toolkit to present multiple aspects of structural quality in embeddings annotated 

with textual descriptions. 

Goal 5: User-driven computation of quality criteria: In this research, we define 

the term user-driven as follows: the computation of any quality metrics as a part of 

the interactive toolkit, should be completely user-steering. That is, the toolkit 

should put the users in charge of entire quality analysis process. It should not only 

let them select data points of their interests for the assessment, but it must also allow 

users to actively participate in determining the contributions (i.e., weights) of each 

component of the defined quality metrics. Based on this definition, to bridge the 

gaps between the quantitative and visual assessment methods for embeddings (cf. 

Section 6.1.1), we need the presented toolkit to be user-driven in nature. 

6.3 The VisExPreS Toolkit 

At the core of the VisExPreS (Visual Explanations of Preserved Structure) toolkit, 

we incorporate two novel quality analysis techniques for embeddings. The first 

technique PG-LAPS (Proactively Guided Local Approximation of Preserved 

Structure) allows for an interactive computation of the metric local-divergence that 

both visually and quantitatively assesses the local neighborhoods of individual data-

points in embeddings. The second technique PG-GAPS (Proactively Guided Global 

Approximation of Projection Space) helps with the computation of a global quality 

criterion global-divergence. Th metric global-divergence quantifies the preserved 

global structure for a set of non-redundant data points in the embedding. In 

VisExPreS, the set of non-redundant points is recommended by the toolkit itself in 

the form of a representative subset of the original data. 

It is important to note that, the techniques PG-LAPS and PG-GAPS are presented 
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as enhancements of our previously proposed methods LAPS and GAPS [38]. In this 

research, we have added proactive guidance for selection of representative data-

points (also data-subsets) and hyperparameters for the DR algorithms and have 

incorporated the two techniques into the visual interactive toolkit VisExPreS. Also, 

as apart of PG-GAPS we present RepSubset an novel method for selecting 

representative data subsets with high coverage. In the next two sections, at first, 

using Figures 6.2 and 6.3 we discuss the PG-LAPS and PG-GAPS processes along 

with the proposed RepSubset algorithm, in detail. Further discussions on the LAPS 

and GAPS methods can be found in [38]. Next, we justify the interface design for 

VisExPreS with respect to its design goals discussed in Section 6.2.    

6.3.1 Proactively Guided Computation of Local-Divergence in 

Embeddings 

As depicted in Figure 6.2, the Proactively Guided LAPS or PG-LAPS process can 

be divided into seven distinct steps. Overall, PG-LAPS investigates a single data-

point in the dataset and enables user to quantify its preserved local structure using 

the output metric local-divergence. In the following, we discuss each step of PG-

LAPS in detail. 

Step 1: Pre-process Input Data and Obtain Embedding: 

As shown in Fig. 6.2- Step 1, to avoid additional noise in the obtained embeddings 

and also to enhance their stability [26], [27], [39], the pre-processing of our input 

data begins with an estimation of the intrinsic dimensionality 𝑑 (cf. Section 6.1). 

Here, following a popular practice in academia [4], [26], [39], we use the maximum 

likelihood intrinsic dimensionality estimator for this purpose [39]. The estimator 

can be defined as: 

d̂ =
1

k2−k1+1
∑ d̂k   where, 

k2

k=k1
d̂k =

1

n
∑ dk(X)

n

i=1
                  (6.2) 

where, d̂ represents a unit vector with an estimation for d and (k2 − k1) signifies 

the range of nearest neighbors to consider while estimating d. At the same time, we 
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Figure 6.2: Overview of the PG-LAPS technique. The technique primarily contains three components namely: Pre-processing, 

Proactive Guidance, and the LAPS process. The overall process steps for PG-LAPS are numbered in an ascending order and are 

highlighted in yellow. 
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also perform an exhaustive and proactive grid search [4] to identify optimum 

hyperparameter combinations for the chosen DR method given the data. Next, the 

embedding for the input data is obtained by executing any DR algorithm chosen by 

the user using the estimated value for 𝑑 and the identified hyperparameter 

combinations. 

Step 2: Proactively Suggest Representative Data Points: 

To enable the evaluation of preserved local structure in an embedding, PG-LAPS 

allows users to interactively select a single data point for subsequent analysis. 

Alternatively, as shown in Fig. 6.2 - Step 2, the proactive guidance component of 

PG-LAPS suggests users with a set of representative data-points that might be 

interesting from five different analytical perspectives. Here, data-points are 

considered to be interesting if the point (1) is an outlier, (2) has highly dense 

neighborhood, (3) is misplaced (i.e., has false or missing neighbors in the 

projection), (4) is close to the decision boundary28 , (5) is the center of any cluster. 

All these options are well-known aspects in academia for identifying influential 

data-points in any dataset [14]. 

Next, we discuss how the PG-LAPS system identifies representative data points 

from these five analytical perspectives, in detail. 

• Option 1: The outliers in the original data are identified using a 

combination of the notions of density [13], [21] and dissimilarity [22], [23] 

among the data points. Here, at first, we measure the pairwise geodesic 

distances [5] among all data points. The geodesic distance 𝑑𝑖𝑠𝑡𝛾 among any 

two points  𝑥𝑖 and 𝑥𝑗 in 𝑋, can be defined as: 

                𝑑𝑖𝑠𝑡𝛾(𝑥𝑖, 𝑥𝑗) = 𝑖𝑛𝑓{𝐿(𝜎)}                                 (6.3) 

where 𝑖𝑛𝑓{𝐿(𝜎)} represents the infimum over the lengths of all the smooth 

paths 𝜎 connecting the two points 𝑥𝑖 and 𝑥𝑗. Next, we arrange the points in 

 
28 Only applicable if the input dataset has labelled data. 
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a descending order of dissimilarity as we measure the neighborhood density 

of 50% data-points with the maximum dissimilarity. The points with the 

lowest density are highlighted in the projections as potential outliers in data. 

• Option 2: Here, we use the DBSCAN [13], [19] algorithm to compute the 

density of all data-points and the data points with the highest density are 

presented to the user based on their chosen threshold. Density Based Spatial 

Clustering of Applications with Noise (DBSCAN) is a commonly used 

technique among researchers [13], [20] to identify data-points with dense 

neighborhoods. 

• Option 3: For this option, we present users with the points with the lowest 

trustworthiness [9] in each embedding and allow them to further investigate 

these points. The metric trustworthiness [9] quantifies the number of false 

and missing neighbors for any data-point in its embedding. 

• Option 4: Here, the data-points with the minimum distance from the 

decision boundaries are presented as representative points of interest to the 

users. It is important to note that, this option is only applicable for labelled 

datasets, where we use Support Vector Machine (SVM) for multi-class 

classification [40] in order to measure to the Euclidean distance of all data 

points from the decision boundaries. 

• Option 5: In this option, the K-means clustering [19] technique is used to 

present only the cluster centers as representative data points to the users.  

As shown in Fig 6.2, once the user interactively selects an 𝑥𝑖 ∈ 𝑋 (either among the 

proactively guided points or interactively from the dataset) for further analysis, the 

next steps of PG-LAPS are initiated. 

Step 3: Perform Unsupervised Nearest Neighbors Search: 

In this step, as shown in Fig. 6.2, PG-LAPS simultaneously identifies the localities 

around the chosen point 𝑥𝑖 and its low-dimensional counterpart 𝑦𝑖  using 
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unsupervised 𝑘-nearest neighbor search. For this purpose, PG-LAPS uses the ball-

tree [41] algorithm. The reason being, ball-tree is well-known [41] for its efficiency 

with the fast discovery of nearest neighbors in high-dimensional manifolds. To 

assist with the understanding of our future computations, we formally define the 

identified local neighborhoods of size 𝑘 for 𝑥𝑖 and 𝑦𝑖 as: 

𝑛𝑛𝑥𝑖
= {∀𝑥′ ∈ 𝑋|∀𝑥″ ∈ 𝑋, 𝑥′ ≠ 𝑥″: 𝜋𝑥𝑖

(𝑥′) ≤ 𝜋𝑥𝑖
(𝑥″)}

𝑛𝑛𝑦𝑖
= {∀𝑦′ ∈ 𝑌|∀𝑦″ ∈ 𝑌, 𝑦′ ≠ 𝑦″: 𝜋𝑦𝑖

(𝑦′) ≤ 𝜋𝑦𝑖
(𝑦″)}

             (6.4) 

where, |𝑛𝑛𝑥𝑖
|=|𝑛𝑛𝑦𝑖

| = 𝑘. Once the indexes of the 𝑘-nearest neighbors for both 𝑥𝑖 

and 𝑦𝑖, are identified, the original feature vectors from 𝑋 for the data-points in 𝑛𝑛𝑥𝑖
 

and 𝑛𝑛𝑦𝑖
 are combined into matrices that we name 𝑍𝑥𝑖

 and 𝑍𝑦𝑖
 respectively. 

Step 4: Approximate Local Neighborhood: 

As the next step, the local neighborhood of the point 𝑥𝑖 and its low-dimensional 

counterpart 𝑦𝑖 are approximated by sampling a constant number of data-point 

samples uniformly at random with a normal distribution centered around each 𝑥′ ∈

𝑍𝑥𝑖
 and 𝑦′ ∈ 𝑍𝑦𝑖

. The primary reason for performing such an approximation is two-

fold. Firstly, the process ensures local fidelity by amplifying the locality of the 

points 𝑥𝑖 and 𝑦𝑖 without having the need to consider an extremely large value29 for 

𝑘. Secondly, such an approximation also ensures normality in the distribution of 

the feature values in the neighborhood. As a result, such perturbation of local 

neighborhoods is popular practice in academia and is used by authors such as 

Ribeiro et al. [37], Plumb et al. [42], and Guidotti et al. [43]. The approximated 

perturbed neighborhoods for 𝑥𝑖 and 𝑦𝑖 are combined into feature two vector 

matrices 𝑍𝑥𝑖
̅̅ ̅̅  and 𝑍𝑦𝑖

̅̅ ̅̅  respectively. 

Step 5: Measure Proximities in the Local Neighborhood: 

Next, as shown in Fig. 6.2, the relative proximities 𝜋𝑥𝑖
(𝑥′) and 𝜋𝑦𝑖

(𝑦′) (cf. Section 

 
29 As shown by Lee and Verleysen [10], with very large values of 𝑘, the trustworthiness of the 

embedding reduces significantly. As the larger the value of 𝑘 grows, noisy data-points are included 

in the identified neighborhoods. 
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6.1) are calculated between the points 𝑥𝑖, 𝑦𝑖 and their perturbed neighbors 

respectively. For feature vectors with continuous values, the Euclidean distance 

[17] is used as the proximity measure. Alternatively, in the case of feature vectors 

with a mixture of continuous and categorical values, the Gower dissimilarity [5], 

[17], [44] is used to measure the proximity between them. The Gower dissimilarity 

[44] is a popular distance measure for such purposes [17] and can be defined as: 

 𝑑𝑖𝑠𝑡𝜔(𝑥𝑖, 𝑥′) = ∑ 𝛿𝑥𝑖𝑥′𝑢 × 𝑑𝑖𝑠𝑡𝜔
𝑥𝑖𝑥′𝑢

/ ∑ 𝛿𝑥𝑖𝑥′𝑢

𝐷

𝑢=1

𝐷

𝑢=1

            (6.5)  

where 𝑢 represents an individual feature in 𝑍𝑥𝑖
̅̅ ̅̅ . For continuous data 𝑑𝑖𝑠𝑡𝜔 is 

calculated as 𝑎𝑏𝑠|𝑥𝑖𝑢 − 𝑥𝑢
′ | 𝑟𝑎𝑛𝑔𝑒(𝑢)⁄ . For categorical data, 𝑑𝑖𝑠𝑡𝜔 is 0 if 𝑥𝑖𝑢 =

𝑥𝑢
′ , otherwise 1. 

Step 6: Compute Feature Influence Scores: 

In the following step (cf. Fig. 6.2), we compute the influences of the original 

features in the formation of the neighborhoods of  𝑥𝑖 and 𝑦𝑖. For this purpose, at 

first, we generate ordered feature-vector matrices 𝑍𝑥𝑖
̿̿ ̿̿  and 𝑍𝑦𝑖

̿̿ ̿̿  from the perturbed 

neighborhoods of 𝑥𝑖 and 𝑦𝑖. In these matrices, we order the data vectors in 𝑍𝑥𝑖
 and 

𝑍𝑦𝑖
 according to their descending proximities with 𝑥𝑖 and 𝑦𝑖  respectively. In 

parallel, we store the ascending proximity values between 𝑥𝑖, 𝑦𝑖 and every point in 

its perturbed neighborhoods (i.e., the actual 𝜋𝑥𝑖
(𝑥′) and 𝜋𝑦𝑖

(𝑦′)  values) in two sets 

namely 𝜋𝑥𝑖
̅̅ ̅̅ . and 𝜋𝑦𝑖

̅̅ ̅̅ . Subsequently, from 𝑍𝑥𝑖
̿̿ ̿̿  and 𝑍𝑦𝑖

̿̿ ̿̿  we generate two feature 

distance contribution [45] matrices 𝐹𝐶𝑍𝑥𝑖
 and 𝐹𝐶𝑍𝑦𝑖

. These matrices are built based 

on the concept of feature distance contribution [45], that represents a ratio of the 

differences in each single feature value in the overall distance between two points. 

Thereafter, as shown in Fig. 6.2, as the first result of the proposed local quality 

analysis technique, from 𝐹𝐶𝑍𝑥𝑖
 and 𝐹𝐶𝑍𝑦𝑖

we generate feature influence explanations 
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𝑖𝑛𝑓(𝑥𝑖) for 𝑥𝑖 and 𝑖𝑛𝑓(𝑦𝑖) for 𝑦𝑖 using Pearson’s correlation30,31 [46] between each 

column in matrix 𝐹𝐶𝑍𝑥𝑖
 and set 𝜋𝑥𝑖

̅̅ ̅̅ .  Similarly, we also compute 𝑖𝑛𝑓(𝑦𝑖) from 𝐹𝐶𝑍𝑦𝑖
 

and 𝜋𝑦𝑖
̅̅ ̅̅ . In this research, 𝑖𝑛𝑓(𝑥𝑖) and 𝑖𝑛𝑓(𝑦𝑖) signify influences of the original 

features of the dataset on the relative dissimilarities between the data-points in the 

same neighborhood. Features can have either positive, negative, or no influence on 

the relative proximities among data. Whilst features with positive influences push 

the data-points further and hence, have a positive Pearson’s correlation with the 

increasing pairwise distances among data-points in the neighborhood. Features with 

negative influences bring the data-points close to each other and have a negative 

Pearson’s correlation with the same. Similarly, the non-influential features are those 

that show extremely low or no linear correlation with the increasing pairwise 

dissimilarities in the neighborhood.  

Step 7: Compute Local Divergence: 

Finally, local-divergence 𝜆𝑥𝑖
 for the selected data-point 𝑥𝑖 is computed as: 

 𝜆𝑥𝑖
= 𝑤1𝜋inf(𝑥𝑖)(inf(𝑦𝑖)) + 𝑤2

𝑛𝑛𝑥𝑖
∩𝑛𝑛𝑦𝑖

|𝑛𝑛𝑥𝑖
|

+ 𝑤3𝑑𝑟𝑛𝑛𝑥𝑖
,𝑛𝑛𝑦𝑖

         (6.6) 

As shown in Eq. 6.6, local-divergence is composed as a weighted sum of three 

components. These include: 

• 𝜋𝑖𝑛𝑓(𝑥𝑖) (𝑖𝑛𝑓(𝑦𝑖)) : Signifies the cosine distance between 𝑖𝑛𝑓(𝑥𝑖) and 

𝑖𝑛𝑓(𝑦𝑖) (cf. Step 6). That represents the discrepancy between the feature 

influences scores for the neighborhood of 𝑥𝑖 in the original dataset versus 

in the embedding. 

• 𝑛𝑛𝑥𝑖
∩ 𝑛𝑛𝑦𝑖

|𝑛𝑛𝑥𝑖
|⁄  : Represents the false and missing neighbors for 𝑥𝑖 in 

the embeddings. Here we compute a ratio between the number of the 

 
30 Our experiments with Spearman’s correlation (non-parametric) returned the same values up-until 
the second decimal point.  
31 Perason’s correlation is a well-known effect size estimator. 
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preserved neighbors with the total number of 𝑘 nearest neighbors of 𝑥𝑖 

considered for the analysis. 

• 𝑑𝑟𝑛𝑛𝑥𝑖
,𝑛𝑛𝑦𝑖

: Represents the difference between the relative orders (or ranks 

[9]) of neighbors in the neighborhoods of 𝑥𝑖 and 𝑦𝑖. This component 

measures whether an embedding could preserve the ordinal relationships 

among the data points in the original neighborhood. 

In Eq. 6.6, 𝑤1, 𝑤2, and 𝑤3 signify user-defined (scalar) weights of the three 

components of 𝜆𝑥𝑖
, by default in our computations, we consider each component of 

local divergence to be equally weighted (i.e., a weight of 0.33). However, during a 

user-driven computation of local-divergence the users are enabled to alter these 

weights in any way they seem fit. In either case 𝑤1, 𝑤2, and 𝑤3 sum up to 1. 

6.3.2 Proactively Guided Computation of Global-Divergence in 

Embeddings 

The process of Proactively Guided GAPS (PG-GAPS) can be divided into five 

distinct steps as shown in Fig. 6.3. Overall, the process aims at examining the 

preserved global structure in an embedding. For this purpose, PG-GAPS suggests 

two possible types of representative subsets of the data and enables a user-driven 

computation of the metric global-divergence for any embedding. The detailed steps 

of PG-GAPS are as follows: 

Step 1: Pre-process Input Data and Obtain Embedding: 

At the very beginning of the analysis, PG-GAPS performs similar pre-processing 

on the input dataset as discussed in Section 6.3.1. Here, as a part of the pre-

processing, PG-GAPS estimates the intrinsic dimensionality 𝑑 of the input dataset 

(cf. Eq. 6.2) followed by performing a proactive grid search of hyperparameters for 

the selected DR algorithms. 

Step 2: Proactively Suggest a Representative Subset: 

The technique PG-GAPS analyzes the quality of the global structure in embeddings 
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Figure 6.3: Overview of the PG-GAPS technique. The technique primarily contains three components namely: Pre-processing, 

Proactive Guidance, and the GAPS process. The overall process steps for PG-GAPS are numbered in an ascending order and are 

highlighted in yellow. 
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from a subset 𝑋𝑆 of non-redundant data-points in 𝑋. In order to perform a judicious 

selection of 𝑋𝑆, PG-GAPS presents users with proactive guidance for possible 

options. Although, users are allowed to interactively select data-points of their 

choice around the manifold ignoring these guidelines. As shown in Fig. 6.3 PG-

GAPS, as a part of the proactive guidance PG-GAPS recommends users with a 

representative subset of the original data that provides maximum coverage [20] of 

the input dataset. For this purpose, as a part of PG-GAPS we present a novel 

representative subset selection technique RepSubset for diversified representative 

subset selection that is based on the notion of density and dissimilarities among the 

data points in the dataset. Here, we formally define the representative subset as 

𝑋𝑆 ⊆ 𝑋, such that 𝑋𝑆 provides a good representation of 𝑋 and 𝑛𝑆 ≪ 𝑛, where 𝑛𝑆 

and 𝑛 are the sizes of 𝑋𝑆 and 𝑋 respectively. The step-by-step process of RepSubset 

is presented in Fig. 6.4 and is discussed below: 

Step i:  Compute density of all data points in 𝑋. Order the points in terms of 

their decreasing density. Assign a status label of “active” to all points. 

Step ii: Add the “active” point with the highest density to 𝑋𝑆. Update the 

status label of that point to be “inactive”. 

Step iii: Find the 𝑘-NN of the recently added data point. Update their status 

labels to be “inactive”. 

Step iv: Compute pairwise geodesic distances between the last added data 

point to 𝑋𝑆 and the remaining “active” points. 

Step v:  Select the point with the highest geodesic distance with the last added 

data point to 𝑋𝑆 and add the selected point to the 𝑋𝑆. 

Step vi:  Identify the 𝑘 nearest neighbors of the recently added data point to 

𝑋𝑆 and update their status labels to be “inactive”. 

Step vii: If 𝑛𝑆 < 𝐵, go to step ii. Else, turn the status of all inactive points 

that do not already belong to 𝑋𝑆 to “active” and go to step ii. 
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As discussed in Section 6.1.3, the RepSubset technique is presented as an 

enhancement over the state-of-the-art subset selection methods. A detailed 

evaluation of the proposed algorithm is presented in Section 6.4.3. As an alternative 

to RepSubset, PG-GAPS also presents users with subsets of data-points that form 

clusters in the dataset. The purpose of this alternative is to provide users with 

multiple perspectives for selecting subsets from data. Here, following popular 

research [13], [20], the algorithm DBSCAN is used to identify clusters in the data. 

In both the cases, we let the users determine the number of instances they are willing 

to investigate and represent this number with an investigation budget 𝐵. Once the 

user selects their desired representative subset from the data, the next steps of the 

PG-GAPS process are initiated.  

Step 3: Compute Local-divergences of Points in Subset: 

As shown in Figure 6.3, after obtaining the data-points in 𝑋𝑆, we individually assess 

the local neighborhoods for each 𝑥𝑖 ∈ 𝑋𝑆 and 𝑦𝑖 ∈ 𝑌𝑆 (where, 𝑦𝑖 = 𝑓(𝑥𝑖)) using the 

PG-LAPS process (cf. Section 6.3.1) and compute their local divergence scores. 

This step is necessary as, for maintaining an accurate global structure in the 

embeddings, not only the relative closeness among the points in the same 

neighborhoods should also be retained. These computed local-divergence scores for 

 

Figure 6.4: Overview of the RepSubset technique. This novel iterative technique presents 

a representative subset of the input data as a part of the PG-GAPS process. The overall 
process steps for RepSubset are numbered in roman letters and are highlighted in yellow. 

Each of these process steps (i.e., Step i to Step ii shown in the figure) are discussed in 

detail in the Step 3 of Section 6.3.2. 
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all the data points in 𝑋𝑆 and their low-dimensional counterparts in 𝑌𝑆 are then 

composed into two sets that we name 𝜆𝑋𝑆
 and 𝜆𝑌𝑆

 respectively. Subsequently, we 

combine the perturbed local neighborhoods for each 𝑥𝑖 ∈ 𝑋𝑆 and 𝑦𝑖 ∈ 𝑌𝑆 obtained 

from their local structural analysis (cf. Section 6.3.1, Step 4) are combined into two 

feature vector matrices 𝑍𝑋𝑆
 and 𝑍𝑌𝑆

 respectively. 

Step 4: Estimate the Global Divergence of the Subset: 

In order to estimate the global divergence of 𝑋𝑆, as our first step, we compute 

pairwise proximities among the points in the two feature vector matrices 𝑍𝑋𝑆
 and 

𝑍𝑌𝑆
. Here as our measure of proximity, the pairwise geodesic distances among the 

data-points is used. Then, the indexes of the data-points in both high and low 

dimensions are ordered in terms of descending proximity. From these ordered 

indexes, the global feature distance contributions [45] are obtained in the same way 

as discussed in the Step 6 of Section 6.3.1. From the feature distance contributions, 

the influence of each feature in the relative proximities among the data-points are 

computed using the Pearson’s correlation among the feature distance contributions 

and the ordered proximity values among the data-points Finally, we obtain an 

estimate of the global divergence 𝜆𝑋�̂�
 for 𝑋𝑆 as a weighted sum of the disagreements 

in the overall estimation of the feature influences, and the disagreements in the 

neighborhood structures of all points in 𝑋𝑆 and 𝑌𝑆. 

Step 5: Compute Global Divergence Score: 

Finally, a Global-Local Approximation (GLA)32 [48] is performed to obtain an 

additive blending of local approximations to form a globally-valid approximation. 

To compute global-divergence, prior to the unification of the local-approximations, 

the ratios of the estimate of global divergence with the local-divergences for each 

 
32 Research [47], [48] shows the local approximation of divergence for each data-point in 𝑋𝑆 is the 

most effective near the point where it was calculated. However, the accuracy of such local 

approximations can deteriorate [48] as we move away from the point where it was constructed. 
Alternatively , a global approximation may not be accurate for every data-point in the manifold, 

however, its quality does not deteriorate with distance. 
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points in 𝑋𝑆 are used as scaling factors [47] for each local-divergence score. As 

shown in Fig. 6.3, we define global-divergence as: 

 𝜆𝑋 = ∑
𝜆𝑋𝑆𝑗

𝜆�̂�𝑆

𝜆𝑋𝑆𝑗

𝐵

𝑗=1

                                  (6.7) 

where, 𝜆𝑋 represents an additive blending of scaled local-divergence scores. 

6.3.3 The VisExPreS Interface Design 

As the final contribution of this research, we incorporated the two methods into a 

visual analysis toolkit that we named Visual Explanations of Preserved Structure 

(VisExPreS). It is important to note that, although the VisExPreS toolkit can be 

used to compute other quality metrics for evaluating embeddings, the interface is 

primarily designed for PG-LAPS and PG-GAPS. The views in VisExPreS can be 

broadly categorized into two groups namely: (1) Structural Quality Analysis View 

(cf. Fig. 6.1); and (2) Feature Analysis View. In this section, we justify the system 

design of the VisExPreS toolkit based on our design goals described earlier. 

6.3.3.1 Proactive Guidance for Representative Data 

As shown in Fig. 6.5, the interface of the VisExPreS toolkit is designed to provide 

proactive guidance in both the PG-LAPS and PG-GAPS processes as a part of its 

Structural Quality Analysis Views (cf. Fig. 6.1). This guidance is presented to the 

users in the following two ways. First of all, as depicted in Fig. 6.5a, the interface 

assists users with the selection of hyperparameter values for the chosen DR 

methods. Here, with a mouseover operation on the  ‘?’ icon next to the 

hyperparameter name, users are presented with a brief description of the 

hyperparameter itself. Alongside, using visual elements such as sliders and 

dropdown boxes (cf. Fig. 6.5), VisExPreS guides users with the possible values of 

the hyperparameter. Here, the most optimum values of the hyperparameter for any 

chosen DR method and the corresponding dataset (i.e., obtained from the proactive 

grid search mentioned in Section 6.3.1) is presented as the default value of the 

hyperparameter by the interface. Whereas, the value ranges in the sliders and 
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dropdown boxes represent other suitable values for the hyperparameter for the 

chosen dataset.  At this point, the users can choose to proceed with the suggested 

value for the hyperparameters or can alter the values as per their choice. 

Secondly, as shown in Figures 4b and 4c, VisExPreS proactively guides users with 

the selection of representative data-points (i.e., for PG-LAPS) and data subsets (i.e., 

for PG-GAPS) when analyzing an embedding. Here, at first, users are enabled to 

select an investigation budget to limit the number of data-points that they want to 

see in the suggestions. This step is necessary as it can prevent the user from being 

overwhelmed with the data-point options to select from. Once the investigation 

budget is selected, as depicted in Fig. 6.5b, for PG-LAPS, VisExPreS presents five 

different types (cf. Section 6.3.1) of representative data-points to the users with the 

help of a drop-down list. Once the user makes a selection from one of these options, 

the respective representative data-points are visualized on the embeddings using 

different color and radius sizes. That is, the represented data-points are highlighted 

with the color dark-red (cf. Fig. 6.5b and 6.5c) and the most representative data-

point in the chosen category is presented with the largest radius size. The radius 

 

Figure 6.5: Proactive guidance in the VisExPreS interface. The part A of the figure shows 

guidance on hyperparameter values in the embeddings. As the parts B and C of the figure 
show proactive guidance with representative data-points and representative data-subsets 

respectively. 

A B

C
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sizes of the other representative data-points gradually decrease based on their 

representativeness of their respective categories.  

In the case of PG-GAPS, as shown in Fig. 6.5c, users are presented with two options 

for receiving suggestions on representative subsets (cf. Section 6.3.2). Similarly, as 

PG-LAPS, for PG-GAPS the data-points in the suggested data-subsets are 

highlighted with the color dark-red and the sizes of their radius show their 

representativeness in the subset. However, in the case of both PG-LAPS and PG-

GAPS, users can choose to ignore the proactively suggested data-points, and 

interactively select their own point(s) of interest from the scatter plots of the 

embeddings for further analysis. 

6.3.3.2 Simultaneous Investigations of Embeddings 

In order to facilitate a side-by-side evaluation of embeddings, the VisExPreS 

interface presents the users with the option of making a selection of their choice of 

DR algorithms to compare on their choice of dataset (cf. Fig. 6.1, region-B). The 

design of the VisExPreS interface requires users to select at least three algorithms 

for this comparison. As shown in the regions C and E of Fig, 1, upon making a 

selection of the DR methods and deciding on the choice of their respective 

hyperparameter values, VisExPreS simultaneously presents the user with 

interactive scatter plots of the embeddings for the input dataset obtained from the 

 

Figure 6.6: Comparison of feature influences between the embeddings and the original 
dataset. The parts A and B show that by reducing the feature budget the users can 

investigate only most highly influential features in the dataset and compare them with the 

feature influences in the original dataset as shown in part C. 

A

B

C
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chosen algorithms. Also, a mouseover operation on the embeddings show further 

details of individual data-points. Apart from the interactive scatter plots, all analysis 

results from PG-LAPS and PG-GAPS are presented simultaneously for the chosen 

DR methods. This allows users to perform a side-by-side comparison among the 

neighborhood structures of the data-points under investigation in multiple 

embeddings, as well as the influences of the original features (cf. Fig. 6.1, region-

F) in the neighborhoods. 

6.3.3.3 Contributions of the Original Features 

As shown in Fig. 6.6, the influences or the contributions of the original features in 

the dataset in the structural formation of the neighborhood of the chosen data-point 

is presented using back-to-back bar graphs for each of the chosen DR algorithm. 

The reason behind using back-to-back bar graphs for this purpose is to depict both 

positive and negative influences (cf. Section 6.3.1) of the features simultaneously. 

At the same time, the VisExPreS interface also shows the influences of the features 

in the original dataset (cf. Fig. 6.6c) allowing users to compare the differences 

between the original dataset and the embeddings. Upon looking at the Fig. 6.6a and 

the at the Fig. 6.6c, it can be  argued that comparing the differences in feature 

 

Figure 6.7: (A) Neighborhood Analysis (B) Divergence computation in the VisExPreS 

Interface. 

A B
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influences can be difficult for datasets with a large number (i.e., <20) features. As 

shown in Fig. 6.6b, the VisExPreS interface provides a solution for this problem by 

allowing users to control the number of features that they are willing to investigate 

in the embeddings. Here, upon reducing the budget, the back-to-back bar graphs 

only show those features with the highest positive and negative influences in the 

structural formation of the neighborhood(s). At this point, the users can compare 

only those features with highest positive and negative influences in the original data 

and in the embeddings and check whether the embeddings have the same influences 

for the same features or not. 

6.3.3.4 Interpretable Assessment of Structural Quality 

The design of the VisExPreS interface aims to assist users to make the evaluation 

of the embeddings as interpretable as possible for both novice and expert users. For 

this purpose, VisExPreS not only presents textual annotations for multiple aspects 

of analysis (cf. Fig. 6.6a) but also makes use of the visual interactive interface to 

assist users in a better engagement with the analysis process (cf. Fig. 6.7). For 

example, firstly, the colors and radius sizes of the points in the interactive scatter 

plots are chosen carefully to effectively highlight the representative data-points 

(and subsets) and their respective neighborhoods (cf. Fig. 6.7a). Secondly, the 

colors in the back-to-back bar graphs are intentionally chosen to be bright enough 

so that they stand out of the text showing the attribute names (cf. Fig. 6.6a and 

6.6b). Also, it is made sure that in the back-to-back bar graphs the y-axes of each 

graph shows the same value range (cf. Fig. 6.6a and 6.6b). Thirdly, the 

neighborhoods of the selected points are enabled to be effectively compared using 

the tabular representation (cf. Fig. 6.7a) highlighting the order of the neighbors in 

the original dataset and in the embeddings. Here, with only a single glance at the 

table the users can notice the discrepancies in the neighborhood. For example, 

instead of looking at the indexes of the neighbors, users need to only check the 

colors in the table. As shown in Fig. 6.7a, the left-most column in the table shows 

the neighborhood of the chosen data-point in the original data and it is highlighted 

in light purple. In this table, the user only needs to check in which other columns in 
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the table there is another light purple cell. Such a cell means that, the exact same 

neighbor and its respective order in the neighborhood was preserved in this 

embedding. Here, with just one glance at the table the user can see which algorithm 

has preserved the neighborhood order (i.e., the third component of the local 

divergence metric) the best among all. As for the false and missing neighbors in the 

embeddings, VisExPreS presents a bar graph as shown in Fig. 6.7a. Finally, in case 

the differences are still not easily visible for the user, or if the users are not sure 

how the metrics local and global divergence are computed, the VisExPreS interface 

provides its users with two solutions. Firstly, as shown in Fig. 6.7b, upon a 

mouseover operation over the ‘?’ icon next to the “Compute divergence” label, 

VisExPreS explains the rationale behind the computation of local or global 

divergences in detail.  Secondly, as shown in Fig. 6.7b, VisExPreS presents the users 

with a set of three donut charts that quantify the discrepancies of the individual 

aspects (cf. Section 6.3.1) of the metrics local or global divergences. 

6.3.3.5 User-driven Computation of Quality Criteria 

To support a user-driven assessment of embeddings, the VisExPreS interface puts 

the user in-charge of the analysis in several different ways. First of all, as shown in 

 

Figure 6.8: The Feature Analysis View in the VisExPreS Toolkit. 
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Fig. 6.1c, VisExPreS allows users to select the DR algorithms and their respective 

hyperparameter values of their choice. Secondly, as shown in Fig. 6.5b, the point(s)-

of-interest to be chosen for the analysis of local and global structures completely 

depend on the user’s preference. Thirdly, the computation of the metric local and 

global divergence primarily depends on the user’s decision of the relative weights 

for the three components of the metrics (cf. Section 6.3.1). As shown in Fig. 6.7b, 

with the help of the interactive sliders the users are allowed to modify the default 

weights of the different components of the metrics, this alters the values of the two-

output metrics of PG-LAPS and PG-GAPS. Finally, the feature analysis view of the 

VisExPreS interface (cf. Fig. 6.8) allows users to visually analyze and interact with 

the features in the original dataset. Figure 7 shows an example of the feature 

analysis view in VisExPreS. The view can be divided into three primary regions as 

shown in this figure. The region A depicts a histogram amalgamated sunburst 

diagram that groups features based on their types (i.e., numeric or categorical) and 

shows the value distribution of each feature around the perimeter of the sunburst 

diagram. Here, the visual effectiveness of the sunburst is obtained by grouping the 

features into numeric and categorical ones. To utilize the visual effectiveness of the 

sunburst even more, we leave a more advanced grouping of the attributes [49] as 

our future work. The region B in Fig. 6.8 zooms into the distributions of the 

individual features in the dataset and shows the histograms of their value 

distributions. Finally, region C shows the actual records in the data. The region C 

also allows users to interactively remove one or more features from the analysis 

that may seem less influential to the user. 

6.4 Experimental Evaluation 

In this section, we present the results of our detailed experimental evaluation of the 

VisExPreS toolkit as well as the proposed RepSubset algorithm. This section is 

primarily divided into two parts. In the first part, we perform an exhaustive 

evaluation of VisExPreS whilst in the second part we compare RepSubset with 

some of its closest competitors. Further details regarding our experimental 
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evaluation of VisExPreS are presented as supplemental materials. 

6.4.1 Case Study of Data Analysis with VisExPreS 

The VisExPreS interface is primarily designed to evaluate the quality of 

embeddings obtained by executing different DR methods on the same dataset. As a 

result, the target user type for the toolkit are data scientists who execute DR 

algorithms as a part of their day-to-day analysis of datasets and need to make 

decisions regarding which DR method would be more suitable for their subsequent 

analysis33 given their input dataset and analytical context. 

In this section, we present an example of data analysis using the VisExPreS 

interface that demonstrates its utility in a user-driven evaluation of embeddings. For 

a better understanding of the toolkit’s utility, another such example can be found in 

our supplemental material and a detailed demonstration video of embedding quality 

analysis with VisExPreS can be found at: https://bit.ly/3fQsBD0 

Analysis of the Animals Dataset using VisExPreS 

Alice is a zoological data scientist who studies the behavioral patterns of wild 

animals and performs predictive modelling of their appearances in the wild. For this 

purpose, Alice has obtained an open source image dataset34 [17] that contains 

30,475 images of 50 animals that are classified using 85 numeric features. Alice 

decides to perform DR on the input data prior to training a predictive model with 

it. Alice has limited experience with DR, but she is aware of that several algorithms 

exist for this purpose. At this point, Alice decides to explore the data using the 

VisExPreS interface (cf. Fig. 6.9). In order to enhance visual clarity of the 

embeddings she uses a subset of 100 points from the dataset for her analysis.

 
33 An example of such subsequent analysis can be training a machine learning model with the 
selected embedding. 
34 https://cvml.ist.ac.at/AwA/ 

https://bit.ly/3fQsBD0
https://cvml.ist.ac.at/AwA/
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Figure 6.9: Local structural quality analysis of the Animals Cancer dataset with PG-GAPS using VisExPreS. Each step of the 
assessment for the interactively chosen data-point ‘fox’ is highlighted with numbers and annotated with the details of the 

respective step. 
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algorithms, and 
hyperparameters

2
Obtain scatter plots from DR algorithms

3
Executing LAPS produces bi-directional 
Feature Influence plots

4
Compare original 
feature influences 
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5
Compare original neighborhood 
structure with the embeddings

6
Compute final local-divergence scores7

Update algorithms or hyperparameters and restart analysis
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Fig. 6.9 shows the flow of Alice’s analysis on the Animals dataset. Once Alice loads 

her dataset into the VisExPreS system and selects three DR algorithms she has heard 

the most about (i.e., UMAP [46], Isomap [4], and KernelPCA [4]), VisExPreS 

executes a proactive grid search on her chosen algorithms for the input data and 

presents her with some suggestions for the hyperparameter values for the 

algorithms. Being a novice data scientist, Alice hovers her mouse pointer over the 

‘?’ icons next to these hyperparameters that explain the purpose of the parameter 

using tooltips (cf. Fig. 6.5). The tooltips also state the optimum values for these 

hyperparameters for her dataset is already selected for her by the toolkit. Alice 

decides to proceed with the suggested values of these hyperparameters for her 

analysis. 

Upon choosing to execute the DR algorithms, the VisExPreS interface presents 

Alice with three embeddings for her input dataset. Here, Alice decides to explore 

the proactive guidance from the toolkit in order to select a representative data-point 

from the dataset for further analysis (cf. Fig 6.8.1). With her investigation budget 

set at 4, Alice looks for the outliers in the dataset. VisExPreS identifies the points 

dolphin, tiger, sheep, and fox to be the outliers. However, Alice chooses to 

investigate the point fox for further analysis. Now, upon executing LAPS  on point 

fox, the VisExPreS interface shows her with the neighborhood for the chosen point 

on the scatter plots as the feature influence explanation bar-graphs for the point are 

shown just below the scatter plots (cf. Fig. 6.9.3). Here, the VisExPreS interface 

allows Alice to compare the neighborhood and feature influences for fox in the 

embeddings and in the original dataset. Here, Alice notices that, the original feature 

influences presented in the right-side bar (cf. Fig. 6.9.4) show that, for fox the 

features fast, paws, agility, meatteeth, red, active, furry, and solitary have the 

highest positive influences. On the other hand, features scavenger, yellow, cave and 

hands have the most negative influences on its neighborhood structure. Some 

features such as tunnel, bipedal, and forager have little or no influences on the 

relative proximities in the neighborhood of fox. To investigate the back-to-back bar 

graphs, Alice reduces the feature budget in Fig. 6.9.4 to 16. Here, Alice only wants 
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to investigate which of the embeddings have preserved similar influences for the 

most positive and most negatively influencing features in the original dataset for 

the neighborhood of fox. Upon carefully looking at the bar-graphs, Alice notices 

that Isomap has preserved the positive feature influences for features such as fast, 

furry, red, agility, and solitary. Also, in terms of the most negative feature influences 

Isomap has preserved the influences of hands, yellow, and cave. Whereas, in the 

embeddings produced by UMAP and KernelPCA, Alice cannot find many common 

features with high positive and negative influences as in the original data. 

Upon comparing the neighborhood of fox in the original dataset (cf. Fig. 6.9.5) with 

the neighborhoods in the embeddings, Alice notices among the 20 neighbors visible 

in the scatter plots, Isomap has only 9 false and missing neighbors in its embedding, 

whereas both UMAP and KernelPCA has 14 false or missing neighbors. In terms 

of the preserved orders of neighbors, KernelPCA has preserved only the point 

leopard in its actual position in the original dataset. The two remaining algorithms 

have completely messed up the orders of the points in the neighborhoods.  

At this point, Alice decides to compute the local-divergence score (cf. Fig. 6.9.6) 

for the chosen point. Hence, at first Alice looks into the local-divergence scores 

presented by the VisExPreS interface, where equal weights were allocated for all 

three components of the metric (cf. Section 6.3.1). Here, Alice hovers her mouse 

pointer on the ‘?’ icon next to the “Compute divergence” label and learns about the 

calculation of the local-divergence for the chosen point. She also observes the donut 

charts, where she can see the contributions of each of these components in the final 

value of local divergence score for the three DR methods. Here, Alice notices that 

Isomap has lowest local di-vergence score with the default weights. Upon in-

creasing the weight for neighborhood content component, Alice notices that Isomap 

still performs better than others. Even with a higher weight to the feature influence 

component Isomap performs the best among the three. At this point Alice decides 

to analyze the point dolphin and compare UMAP, Isomap, PCA for this point. Alice 

repeats the analysis for 50 points in the dataset and notices that on an 
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 average Isomap has performed better than all other algorithms. So, she chooses to 

execute Isomap on her dataset prior to training her predictive model with the data. 

6.4.2 Usability Analysis of the VisExPreS Interface 

In this section, we perform a detailed user study and analyze the usability of the 

VisExPreS interface. Based on the guidelines of Georgsson et al. [50], we used 

metrics in the International Organization for Standardization (ISO) 9241-11 

standard35 and quantify the usability using effectiveness, efficiency, and 

satisfaction. In this section, at first we discuss the setup of our user study followed 

by quantitative analysis of its results. More detailed results of our analysis are 

presented as supplemental materials. 

6.4.2.1 Experimental Setup and Participants 

Following the guidelines of Stahnke et al. [5], Ribeiro et al. [37], and Georgsson et 

al. [50] we performed our user-study on VisExPreS using 12 human subjects. The 

study was performed under controlled conditions [50] where the study organizers 

observed and assessed the interactions of the study participants with the VisExPreS 

interface. The participants were carefully chosen as a group of graduate students 

 
35 https://www.iso.org/obp/ui/#iso:std:iso:9241:-11:ed-2:v1:en 

Table 6.1: Results of Usability Analysis on VisExPreS 

Analytical Aspects Novice Experts 

Effectiveness - mean (SD) 0.89 (0.06) 0.96 (0.03) 

Efficiency - mean (SD) 55.92 (4.20) 41.09 (8.32) 

SUS Score - mean (SD) 69.29 (6.07) 83.00 (4.47) 

Design Goals (Fleiss' Kappa) 0.27 0.48 

Note: The table above summarizes the results of our user study. Here we compute the 

usability metrics defined in ISO 9241-11 standard using 12 human subjects. Additionally, 

the last row presents the users’ agreements on the fulfillment of the design goals of the 

VisExPreS interface. 
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and industry professionals with a strong background in computing. However, 

among the participants, only five members had some understanding of DR, as the 

remaining seven were completely unfamiliar with the topic. In this study, we 

considered the former five as expert users and the latter seven as non-experts or 

novice users. During this study the participants were asked to analyze the Breast 

Cancer dataset [17] using the VisExPreS interface. Prior to the study, all 

participants were given a 60-minutes walk-through of the dataset along with the 

different functionalities of the VisExPreS toolkit. Next the participants were given 

75 minutes time to analyze at least 18 data-points36 from the proactively guided 

categories of PG-LAPS (cf. Section 6.3.1) and two rounds of global quality analysis 

using the representative subsets suggested by PG-GAPS. At the end of their 

analysis, the responses from the study participants were recorded and the usability 

metrics from the ISO 9241-11 standard were computed from them. 

6.4.2.2 Measuring Effectiveness of VisExPreS 

According to the ISO 9241-11 standard, effectiveness is one of the most important 

attributes of usability that is measured using the metric degree of task completion 

[50]. Here we measured given the total number of tasks, how many of the tasks 

could be successfully completed by the participants. In our case, the total number 

of tasks that was given to each study participants were 20. Following the footsteps 

of Georgsson et al. [50], we encoded the task completion in three different ways as: 

(i) a score of 1, in case a task was completed by a participant without any assistance, 

(ii) a score of 0.5, for situations when a participant needed minor assistance from 

the study organizers to complete their task, (iii) a score of 0, when a participant 

could not complete a task. We summarize our analysis results in Table 6.1. Here, 

similarly as Georgsson et al. [50], we present the mean and standard deviation (SD) 

of task completion rate for novice and expert users. Considering, a task completion 

rate of 100% to be an ideal case. However, as a common consensus among 

 
36 The participants were asked to investigate 4 points from each proactively guided category of PG-
LAPS except for the cluster centers. Where, the users were asked to investigate 2 cluster centers 

only as the dataset had only 2 labels ‘malignant’ and ‘benign’. 
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researchers [50], any score above 78% signifies an acceptable rate of effectiveness 

in a system. As shown in Table 6.1, for the novice and expert users the mean task 

acceptance rate were 88% and 95% respectively. In both cases, the standard 

deviation was less than 0.06. This confirmed that the VisExPreS interface enabled 

a high level of efficiency for novice and expert users. 

6.4.2.2 Measuring Effectiveness of VisExPreS 

ISO 9241-11 standard has identified efficiency as the second important measure of 

a system’s usability that is measured using the level of effort and the amount of 

resources that were used by study participants to complete as task. Again, following 

the guidelines Georgsson et al. [50], we measured efficiency using the amount of 

time (in minutes) that was spent by the study participants in order to complete each 

of the given tasks. For this purpose, we asked the participants to use a timer and 

record their overall duration of performing each individual task. It is important to 

note that, 15 minutes of analytical time were ignored from this computation as the 

response time for the VisExPreS interface. The second row in Table 6.1 shows the 

mean and SD of analysis time reported by the novice and expert users for all 20 

tasks. Our results show that, overall the novice users took much longer than the 

expert users to finish the same analytical tasks. However, all users could complete 

the respective tasks within the given timeframe. A more detailed analysis of the 

efficiency of VisExPreS can be found in supplemental materials. 

6.4.2.2 Measuring User Satisfaction from VisExPreS 

The third metric for usability that is identified by the ISO 9241-11 standard is user 

satisfaction. In our study, following the footsteps of Georgsson et al. [50] the 

System Usability Scale (SUS) developed and designed by Brooke [51]. SUS 

contains 10 pre-defined standard utility questions with a provision to answer each 

question on a 5-point Likert scale. In our study, the questions of SUS were scored 

based on the guidelines presented in its original definition [51]. That is, the score 

contribution of each item was designated from 0 to 4, where for the questions 1, 3, 

5, 7, and 9, the score was considered to be the selected scale position minus 1. For 
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questions 2, 4, 6, 8, and 10, the score allocated was five points minus the scale 

position. The sum of the scores of all 10 questions was then multiplied by 2.5 to get  

the overall satisfaction value ranging between 0 and 100. As per Georgsson et al. 

[50], a SUS score above 70 is considered as good whilst, a score of 85 or above is 

considered as an indicator of excellent usability. Table 6.1 shows the results of our 

analysis where we present the mean and SD of SUS scores for the novice and expert 

study participants. Our results show that although the novice users had some 

difficulty in using the VisExPreS interface with a SUS score just close to 70, the 

expert users found the interface to be extremely useful for analyzing embeddings. 

As an additional step of the usability analysis, we also quantified the users’ 

agreement on the fulfillment of the pre-defined design goals for the VisExPreS 

interface that were discussed in Section 6.2. For this purpose, following the 

guidelines of Lewis et al. [52], we computed the Fleiss’ Kappa (𝜅) consistency 

measure for the five pre-defined design goals. The value of 𝜅 ranges from -1 to +1, 

where -1 represents no agreement, +1 signifies perfect agreement and 0 denotes 

agreement due to random chance. The results of our study are summarized in Table 

6.1. The table shows that although the novice users had low positive agreement 

(i.e., 0.27) on the complete fulfillment of the design goals due to their prior 

experience with DR, the expert users had a moderate agreement of 0.48 regarding 

Table 6.2: Evaluation of Coverage for RepSubset 

Datasets  Data Statistics Coverage (Cov) 

#Rows #Feat. RepSubset FURS OptiSim 

Breast Cancer 569 32 0.86 0.81 0.72 

Wine Quality 4898 12 0.93 0.88 0.56 

Magic 19020 11 0.83 0.84 0.67 

Credit Card 30000 24 0.87 0.84 0.63 

Animals 30475 85 0.91 0.89 0.76 

MNIST 60000 784 0.64 0.51 0.37 
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the same. Detailed analysis of user agreements on the design goals is presented in 

our supplemental materials. 

6.4.3 Evaluation of Coverage for RepSubset 

In this section, we evaluate the presented RepSubset algorithm and compare its 

‘Coverage’ [20] with two state-of-the-art representative subset selection methods. 

As mentioned by Mall et al. [20], coverage is a simple evaluation metric for subset 

selection algorithms that measures a ratio between the total number of unique points 

that can be directly reached from the points in the subset and the total number of 

points in the dataset. In this research, to measure the coverage of the RepSubset 

algorithm, at first we set our required subset size to be 10% of the original dataset 

and counted the number of unique data-points that are in the neighborhood (for a 𝑘 

of size 15) of all the points in the subset. Then we computed the ratio of these unique 

data-points with the size of the entire dataset. We compared the coverage of 

RepSubset with FURS [20] and OptiSim [22], two well-known representative 

subset selection methods. The results of our comparisons along with the statistics 

for the 6 datasets that were used in our analysis are presented in Table 6.2. The table 

shows that RepSubset has consistently shown a higher coverage (ranging between 

64% to 93%) than both FURS and OptiSim for all the 6 datasets. 

6.5 Discussion 

In order to provide further clarity on the usability of the VisExPreS toolkit; in this 

section, at first we analyze the scalability of the presented PG-LAPS and PG-GAPS 

methods. Next, we identify the limitations of the proposed toolkit and present some 

ideas for future work.  

6.5.1 Scalability Analysis of PG-LAPS and PG-GAPS 

In order to enable user-engagement, analytical speed is one of the primary 

requirements for any graphical user interface. When designing VisExPreS we kept 

this in mind.  This section presents a detailed scalability analysis of the two 

techniques PG-LAPS and PG-GAPS that are at the core of the VisExPreS interface. 
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Our analysis results are presented in Table 6.3. In this table, for PG-LAPS we 

present the mean and SD of the required end-to-end computation time for 100 points 

from 6 different datasets. On the other hand, for PG-GAPS, we have also presented 

the mean and SD for 100 executions of global quality analysis using for sample 

sizes of 5, 10, 50, 100, and 500 of the same six datasets. Overall, our results show 

that understandably PG-GAPS has a much higher execution time than the PG-

GAPS process for all the six datasets. However, for PG-GAPS the execution time 

does not increase significantly for large changes in the sample size (i.e., especially 

for when the sample sizes increase from 100 to 500). The reason is, as mentioned 

in [38], in the step 3 of the PG-GAPS process the size of the overall perturbed 

neighborhoods is kept fixed to 5000. Here, in case there are 100 samples in the 

subset, the PG-GAPS randomly generates 50 perturbed neighbors for each point. 

Whereas for 500 points in the sample, PG-GAPS randomly generates only 10 

perturbed neighbors for each point. As a result, we can see that on a computer with 

8 GB RAM and a processor with 4 cores the VisExPreS interface has shown 

response time of a minimum 49.2 seconds and a maximum of 5.5 minutes for 500 

points in the selected subset. However, we think that this range of the response time 

for PG-GAPS also depends on the number of features in the dataset. 

6.5.2 Limitations and Future Work 

VisExPreS being primarily based on spatial visualizations (i.e., 2D or 3D plots), all 

visual scalability limitations associated with special techniques also become 

applicable to the toolkit. For example, with more than 50 features in the input 

datasets, the bi-directional feature influences bar graphs or the histogram 

Table 6.3: Scalability Analysis of the PG-LAPS and PG-GAPS Processes 

Datasets 

Mean (SD) of 

execution time for 100 

points using PG-LAPS 

Mean (SD) of execution time for 100 executions using PG-GAPS 

5 points 10 points 50 points 100 points 500 points 

B-Cancer 38.01 (1.95) 66.80 (6.48) 71.40 (5.32) 129.30 (12.85) 219.60 (18.15) 217.00 (17.84) 

W- Quality 12.83 (0.32) 23.00 (3.15) 24.10 (4.57) 42.40 (6.24) 81.30 (7.22) 77.60 (8.44) 

Magic 11.42 (0.23) 22.90 (4.85) 24.60 (4.62) 34.10 (5.74) 38.40 (5.22) 49.20 (6.21) 

Credit Card 32.62 (0.38) 44.20 (4.23) 50.90 (5.32) 167.70 (25.85) 294.20 (21.78) 335.50 (27.03) 

Animals 65.54 (4.66) 31.80 (4.19) 34.30 (5.48) 51.70 (7.88) 128.50 (12.32) 211.40 (18.62) 

MNIST 70.87 (9.89) 24.10 (4.23) 24.80 (4.99) 37.50 (6.41) 71.60 (9.47) 133.70 (17.44) 
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amalgamated sunbursts for feature analysis can become challenging to 

comprehend. Although this limitation cannot be completely avoided, the current 

implementation of VisExPreS allows users to reduce the feature budget to only 

investigate the most influential features. Also, the feature analysis view enables 

users to delete uninfluential or redundant features. However, we are currently 

working on enhancing the visual effectiveness of the sunburst in the feature analysis 

view by performing a more advanced grouping among the features in the dataset 

and allowing users to remove or alter groups of features as a whole. Finally, 

although VisExPreS successfully enables an interactive user-driven assessment of 

embeddings, it does not provide much assistance with driving the DR algorithms to 

enhance the embedding quality. Hence, as our ongoing work we are investigating 

on optimizing the local and global divergence metrics in order to improve the 

quality of the obtained embeddings. 

6.6 Conclusions 

This chapter presents VisExPreS, a visual interactive toolkit that assists with a user-

driven quality analysis of preserved local and global structures in the embeddings. At 

the core of VisExPreS, there are two novel techniques that are also introduced in this 

article. The first technique PG-LAPS generates interpretable explanations of the 

preserved locality of a single data-point in an embedding. PG-LAPS obtains the 

explanations regarding the structural preservation by approximating the local 

neighborhood around the single data point that is proactively recommended by the 

toolkit. On the other hand, the second technique PG-GAPS explains the preserved 

global structure in an embedding by unifying the local approximations for a set of 

non-redundant data-points interactively selected from the projection space into a 

global approximation. To provide proactive guidance for the non-redundant data 

points required in the analysis as a part of PG-GAPS, we present RepSubset. A novel 

algorithm that uses the notions of density and dissimilarity among data-points to 

generate a representative subset from the data. We demonstrate the utility and 

usability of the proposed VisExPreS toolkit, PG-LAPS and PG-GAPS techniques, 
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along with the RepSubset algorithm using an exhaustive evaluation. A large amount 

of our experimental results is presented as supplemental material. 
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Chapter 7  

Conclusions and Future Work 

The primary objectives of this thesis are to examine the research gaps and improve 

the techniques that are commonly used during exploratory analysis of large-scale 

industrial data for making data-driven decisions. With this goal in mind, following 

an action research method, this thesis presents five novel solutions. To facilitate the 

understanding of the impact of exploratory data analysis on real-life business 

decision making, the first solution focuses on identifying the industrial process of 

software license renewals and the risks & challenges associated with it. Next, to 

distinguish the benefits and limitation of existing options for performing 

exploratory analysis on business datasets, the second solution investigates 50 

cutting edge exploratory data analysis tools that are commonly used for analyzing 

large industrial data. Then the focus of this thesis is narrowed to Dimensionality 

Reduction (DR) techniques and several limitations of such techniques are 

addressed. For example, by performing a large-scale experimental study and 

statistical significance analysis, the third solution presented in this thesis examines 

15 state-of-the-art dimensionality reduction techniques from the perspectives of 5 

common analytical contexts for DR. The results of this investigation provide 

assistance with the selection of the most appropriate DR method for any dataset in 

the analytical contexts considered during the study. Next, the fourth solution in this 

thesis addresses the black-box nature of DR techniques and proposes two novel 

approaches for generating interpretable explanations regarding the quality of 

embeddings obtained from DR. Finally, the fifth solution presents a visual 

interactive toolkit that facilitates a proactively guided and user-driven evaluation of 

embeddings obtained by applying any DR techniques on any large high-

dimensional dataset.  In this section, at first, a detailed summary of the contributions 

in this thesis is presented followed by a discussion on opportunities for future work. 
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7.1 Overall Contributions 

In par with the structural configuration of this thesis, the primary contributions of 

this thesis are categorized in the following five sub-sections: 

7.1.1 Identification of Industrial Process of S&S 

The software industry has changed significantly in the 21st century; no longer is it 

dominated by organizations seeking to sell products directly to customers, instead 

most multinational organizations nowadays provide services via licensing 

agreements. These licenses are for a fixed duration; and hence, the question of their 

renewal becomes of paramount importance for the selling organization's revenue. 

Despite its financial impact, the topic of license renewal strategies, processes, tools, 

and support receives very limited attention in the research literature. Hence, it is 

believed that an interesting research question is: What is the state of current 

industrial practice in this essential field? To initially explore the topic of license 

renewals, this research implements the Grounded Theory method [1]. To implement 

the method, semi-structured, cross‐sectional, anonymous, self‐reported interviews 

are carried out with 20 professionals from multiple organizations, later the Constant 

Comparative Method [2] is used to analyze the collected data. The participants of 

the study were carefully chosen from several multinational organizations 

headquartered in North America, with various roles in the renewal process such as, 

sales and subscription (S&S) representatives, brand leaders, global sales leaders, 

program directors, and data analysts. From this analysis, this research presents a 

synthesized picture of the current industrial practice of the end-to-end software 

license renewal process. Alongside, it also identifies a set of challenges and risk 

factors that impact on renewal decisions of customers, hence on the overall revenue 

of seller organizations. For example, the study shows that lack of effective 

communication among the stakeholders, scarcity of customer satisfaction, and 

absence of value generated from the purchased licenses, are among the primary 

drivers that influence the renewal decisions from customers. The results of the study 

were validated using the quantitative measure of inter-rater reliability [3], where 
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multiple researchers analyzed the same data independently at the same time. Before 

presenting the analysis results to a team of content validity experts in the 

participating organizations. Finally, using structured brainstorming techniques, this 

research identifies 11 possible risk mitigation strategies, that can help organizations 

with the mitigation of the risks in the license renewal process. The proposed risk 

mitigation strategies can be classified into immediate action plans and future 

research directions. The immediate action plans include enhancing effective 

communication with customers and introducing new propagated ways of collecting 

customer information. On the other hand, for future research, the organizations can 

take advantage of applying intelligent automation either in the form of chat-bots or 

as predictive models. The analysis shows that an effective visualization of 

customers’ journey with an organization can help renewal reps to analyze the 

overall experience and satisfaction of their customers. 

7.1.2 Detailed Survey of Popular EDA tools 

Exploratory data analysis plays a major role in obtaining insights from data. Over 

the last two decades, researchers have proposed several visual data exploration tools 

that can assist with each step of the analysis process. Nevertheless, in recent years, 

data analysis requirements have changed significantly. With constantly increasing 

size and types of data to be analyzed, scalability and analysis duration are now 

among the primary concerns of researchers. Moreover, in order to minimize the 

analysis cost, businesses require analysis tools that can be used with limited 

analytical knowledge. To address these challenges, traditional data exploration 

tools have evolved within the last few years. In this research, initially with a detailed 

analysis of an industrial tabular dataset of 3.4 million records, a set of additional 

exploratory requirements for large datasets are identified. Later, a systematic [4] 

and comprehensive survey of the recent advancements the emerging field of 

exploratory data analysis is presented. Here, 50 academic and non-academic visual 

data exploration tools are investigated with respect to their utility in the six 

fundamental steps of the exploratory data analysis process. The extent to which 

these modern data exploration tools fulfill the identified additional exploratory 
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requirements of analyzing large datasets namely: scalability, interpretability, 

reduced analytical expertise, and user engagement, is also examined. The analysis 

shows, most modern EDA tools assist with the fundamental steps of the EDA 

process, whilst only some tools consider addressing the challenges of big-data 

analytics. Among the analyzed tools however, the trade-off between breadth of 

supported features and in-depth analysis of data is remaining. Even the most 

advanced tools in both academia and industry do not depict complex multivariate 

relationships among attributes. The reason behind this is, most tabular data analysis 

tools are primarily designed for a generic audience who might need more training 

to perform complex statistical analysis with the data. Moreover, some academic 

EDA tools that perform factor analysis or use complex diagrams to show 

relationships between multiple attributes, often suffer from interpretability and 

scalability issues. Incorporation of domain expertise is another challenge in most 

modern EDA tools. As in most cases for both commercial and academic tools, the 

user gets to take only the viewer’s role in the data analysis process. Especially for 

the EDA tools that proactively generate visual recommendations; the absence of 

any feedback process can cause users to lose their confidence on the suggestions 

provided by the tools. From this analysis, a set of research opportunities are 

identified that include: (1) detailed analysis and visualization of bivariate & 

multivariate statistics, (2) advanced discretization of continuous variables, (3) 

proactive guidance for multivariate relationships, (4) addressing the scalability 

challenges in the data visualization tools. 

7.1.3 Practitioners Guidelines for Selecting DR Algorithms 

Dimensionality reduction is a commonly used technique in data analytics. Reducing 

the dimensionality of datasets not only helps with managing their analytical 

complexity but also with removing redundancy. Over the years, several such 

algorithms have been proposed with their aims ranging from generating simple 

linear projections to complex non-linear transformations of the input data. 

Subsequently, researchers have defined several quality metrics in order to evaluate 

the performances of different algorithms. Generally, these quality metrics evaluate 
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the extent of preserved proximities among the data-points in a high-dimensional 

dataset after DR. Among these metrics, whereas some consider the actual 

proximities (distances) among the data-points, others compare the ranks of the 

distances between these points. Nevertheless, the quality analysis of the embedding 

obtained from DR has been an open research area among academics. The reasons 

being: (1) for nonlinear DR, no direct mapping exists between the original attributes 

in the high-dimensional dataset and the dimensions in the embedding. (2) Often the 

relationships in the high-dimensional data that should be preserved by DR are not 

clearly identifiable. Also, (3) for real-world datasets the intrinsic dimensionality 

and the topology of the original manifold is usually unknown. Hence, given a 

plethora of dimensionality reduction algorithms and metrics for their quality 

analysis, there is a long-existing need [5], [6] for guidelines on; how to select the 

most appropriate algorithm in every scenario. In order to bridge this gap, in this 

research, 12 state-of-the-art quality metrics are composed and categorized into five 

identified analytical contexts. Furthermore, 15 most popular dimensionality 

reduction algorithms are assessed on the chosen quality metrics using a large scale 

and systematic experimental study. The results identify t-SNE and UMAP to be the 

most robust algorithms in terms of metrics that evaluate the preservation of small 

neighborhoods in the original data. However, the results also indicate that the 

performance of t-SNE starts to deteriorate as the neighborhood size grows larger. 

It is also found that for datasets with unattributable missing values algorithms such 

as t-SNE, UMAP, LEM, LLE (i.e., DR techniques that attempt to preserve local 

structure of data) perform better than the globally focused algorithms. However, in 

case of datasets with outliers globally focused algorithms such as non-metric MDS, 

Kernel PCA, PCA perform better than the locally focused methods. Later, using a 

set of robust non-parametric statistical tests, the generalizability of the evaluation 

on 40 real-world datasets (39 open source and 1 from our industrial partner IBM) 

was assessed. The null hypothesis significance tests confirm that: the difference in 

the performances of the best, mediocre, and worst performing algorithms for the 

chosen 12 quality metrics are indeed statistically significant. Moreover, the analysis 
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also indicates although not every algorithm performs equally well on every DR 

quality metrics, there is a perfectly reasonable metric for every algorithm where it 

performs better than its competitors. Finally, based on the results a practitioners’ 

guideline is presented for the identification of intrinsic dimensionality in real-world 

datasets and the selection of an appropriate dimensionally reduction algorithm in 

the presented analytical contexts. 

7.1.4 Two Novel Algorithms for Interpreting the Outcome of DR 

Despite being commonly used in big-data analytics; the outcome of dimensionality 

reduction remains a black-box to most of its users. The quality of a low-dimensional 

embedding depends on the extent to which an algorithm can preserve the local 

structural relationships (i.e., the structural similarities in individual neighborhoods) 

as well as the global structural associations (i.e., the relative differences in overall 

neighborhoods) from the original dataset. Understanding the quality of a low-

dimensional embedding is important as not only it enables trust in the transformed 

data, but it can also help to select the most appropriate dimensionality reduction 

algorithm in each scenario. As existing research primarily focuses on the visual 

exploration of embeddings, there is still a need for enhancing interpretability of 

such algorithms. To bridge this gap, two novel interactive explanation techniques 

are proposed for low-dimensional embeddings obtained from any dimensionality 

reduction algorithm. The first method & data-type agnostic technique LAPS - Local 

Approximation of Preserved Structure produces a local approximation of the 

neighborhood structure of any individual data-point in an embedding to generate 

interpretable explanations on the preserved locality for that single instance. The 

second method GAPS - Global Approximation of Projection Space explains the 

retained global structure of a high-dimensional dataset in its embedding, by 

combining non-redundant local-approximations from a coarse discretization of the 

projection space. The explanations generated by LAPS and GAPS helps with 

associative reasoning [7] and answers a range of questions regarding what 

happened during the transformation of a dataset. Moreover, in association with the 

definition of explanation obtained from social sciences [7], the explanations 
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generated by LAPS and GAPS are presented to be contrastive (i.e., why a certain 

event occurred instead of another event) and selective (users are allowed to adjust 

the amount of information that they would like to see). As a part of an extensive 

and comprehensive evaluation, both of the proposed techniques are assessed for 

their flexibility (with 10 different dimensionality reduction algorithms on 16 real-

life datasets), applicability (i.e., with tabular, text, image, and audio data), utility 

(i.e., with a user-study that examines their ability to explain the quality [7] of a 

projection), and reliability (i.e., to assist with the selection of the most appropriate 

dimensionality reduction algorithm). The experiments also reveal the roles of 

different user-defined parameters in the outcome of the proposed techniques. 

Moreover, they uncover the ability of the techniques in discovering feature 

correlations in high-dimensional data. 

7.1.5 A Visual Interactive Toolkit for Evaluation of DR 

Embeddings are complex and black-box representations of high-dimensional 

datasets that are difficult to interpret and evaluate. The reasons being, firstly, the 

dimensions derived using such techniques lack a clear-to-interpret mapping with 

the original attributes in the data. As a result, novice data analysts are often forced 

to blindly trust the embeddings without truly understanding the meaning of the 

projection axes or the positioning of data-points. Secondly, in recent years, a 

plethora of DR techniques have been proposed with their own respective parameter 

combinations that significantly influence the embedding structure. The non-

intuitive nature of these parameters also hinders the interpretability of these 

techniques making the selection of an appropriate DR algorithm for any dataset, 

difficult. Thirdly, in most cases, embeddings derived from DR do not make the 

existing errors and distortions prominent to the users. In some cases, where such 

distortions are visually exposed, the users are not really allowed to control or 

interact with them. All these limitations make an efficient evaluation of embeddings 

obtained from DR algorithms extremely challenging. In recent years, several 

quantitative and visual methods have been proposed for analyzing low-dimensional 

embeddings. On the one hand, the quantitative methods associate numeric 
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identifiers to the qualitative characteristics of these embeddings; on the other hand, 

the visual techniques allow users to interactively explore these embeddings and 

make decisions. However, in the former case users do not have much control over 

the analysis, as the later leaves the assessment decisions entirely to the user’s 

perception and expertise. The reason being, such techniques [8]–[10] often do not 

proactively guide users with the analysis process. For example, for very large 

datasets, most existing techniques [8]–[10] do not assist users with the selection of 

influential data points [11] or representative data subsets [12], [13] that provide a 

good representation of the original data and can reveal the overall quality of the 

embeddings better than other points. As a result, novice data analysts often fail to 

utilize the complete potential of such interactive visualization techniques when 

exploring low-dimensional embeddings. In order to bridge this gap, in this work, 

the benefits of both are unified. Here, a visual interactive toolkit VisExPreS (Visual 

Explanations of Preserved Structure) is presented that enables a user-driven 

assessment of low-dimensional embeddings. At the core of VisExPreS there are 

two novel techniques that are also presented in this work. The first technique PG-

LAPS (Proactively Guided Local Approximation of Preserved Structure) enables 

the computation of the local-divergence, that examines the fidelity of the relative 

positioning of any individual data-point in an embedding by approximating a 

neighborhood locally around that point. For this purpose, PG-LAPS proactively 

guides users with the selection of representative data points from the input dataset 

for analysis. The second technique PG-GAPS (Proactively Guided Global 

Approximation of Projection Space) computes the global-divergence, that explains 

the preserved global structure in a low dimensional embedding, by combining non-

redundant local-approximations from a coarse discretization of the projection 

space. In order to enable the proactively guided representative subset selection in 

PG-GAPS, a novel algorithm RepSubset is presented that generates representative 

subsets from the original data based on the notions of density [14], [15] and 

dissimilarity [16] in the dataset. With the help of PG-LAPS and PG-GAPS, 

VisExPreS not only gives users more control over the quality assessment of 
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dimensionality reduction algorithms but also allows them to focus on the aspects of 

the analysis that are the most interesting to them. Using a comprehensive 

evaluation, the utility of VisExPreS is demonstrated for interpreting, analyzing, and 

comparing derived embeddings from different dimensionality reduction 

algorithms. The evaluation with both novice and expert users shows that VisExPreS 

can effectively assist with the selection of an appropriate dimensionality reduction 

technique for a given dataset. 

7.2 Opportunities for Future Work 

In this thesis, several avenues have been explored that aims at facilitating a more 

comprehensive data-driven decision making and analysis. Each research has been 

presented in detail in Chapters 2 to 6 of this thesis. However, like any experimental 

work, all the solutions presented in this thesis can be further pursued and improved 

in different ways. In this section, a set of recommendations for future work is 

presented for each of the presented solutions in this thesis. 

• Chapter 2 of this thesis presents a longitudinal study across multiple 

organizations and identifies the state-of-the art and research gaps in the 

business units of Sales and Subscriptions Renewal. Just like any other study, 

this research offers some opportunities for future work and threats to the 

validity of the experimental process. In order to avoid any respondent biases 

[17] in the semi-structured self-reported interviews used for collecting the 

research data, methodological triangulation [18] could be performed. Here, 

the survey data could be collected using multiple methods or instruments 

other than only semi-structured interviews. 

• Moreover, researcher bias [17] in the study presented in Chapter 2 could be 

avoided with investigator triangulation [18]. Here it can be suggested that, 

investigators from both industry and academia could collaboratively 

explore the different qualitative and quantitative aspects associated with the 

challenges and risks of software license renewals. 
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• Finally, an empirical study [19] could be performed with a larger population 

of stakeholders from organizations with different firmographic [20] 

backgrounds, in order to validate the theories that emerged from the analysis 

in Chapter 2. 

• The survey of Exploratory Data Analysis (EDA) [21] tools presented in 

Chapter 3 can be further improved by extending the study to include more 

academic and industrial tools in the analysis. Also, any researcher bias [17] 

in the study presented in Chapter 3 could be avoided with researcher 

triangulation [18]. 

• The experimental evaluation of Dimensionality Reduction (DR) methods 

presented in Chapter 4 identifies five most popular analytical contexts in 

which DR algorithms are commonly used. Nevertheless, as mentioned in 

Chapter 4 (cf. Section 4.1.1), the list of analytical contexts is not exhaustive, 

and could be further improved by adding more analytical contexts. This 

would also contribute in increasing the applicability of the practitioners’ 

guideline presented in the Chapter 4.  

• Moreover, DR being a popular technique there are several methods that 

exist for the purpose. Although 15 most popular DR algorithms are included 

in the study, the scope of the study can be further enhanced by adding other 

techniques (e.g., Autoencoder based methods [22], factor analysis 

techniques [23], fractal-based methods [24] etc.) in the experiments. 

• Also, a recommender system can be generated using the experiments on the 

dimensionality reduction techniques where the characteristics of real-world 

datasets can be identified using meta-learning [25] strategies.  

• In Chapter 5, there are several avenues of future work that can be explored. 

For instance, in any interactive technique, one of the most important aspects 

is scalability [26], [27]. Although, both the proposed algorithms have a 

computational complexity of 𝑂(𝑛2), for the current design of LAPS and 

GAPS, the user-defined neighborhood size is restricted to be as large as 10 

and the number of perturbed samples to be a maximum of 5000. However, 
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further experiments can be performed with different sizes of neighborhoods 

(i.e., > 10) in future. Moreover, to enhance the overall scalability of the 

algorithms, parallel processing can be implemented for LAPS and GAPS.  

• Furthermore, since the LAPS and GAPS processes provide two numeric 

metrics namely local and global divergences in the embeddings, 

experiments can be performed to test whether if these metrics were used as 

objective functions (i.e., if local and global divergences of embeddings were 

minimized), could better quality projections be generated. 

• For the VisExPreS toolkit presented in Chapter 6, the visual scalability 

limitations associated with spatial techniques [28] could be better addressed 

in future. For example, with more than 50 attributes in the input datasets, 

the bi-directional feature influences bar graphs or the histogram 

amalgamated sunbursts for attribute analysis can become challenging to 

comprehend. In future, different types of visual representations [29] could 

be added in the toolkit to better accommodate large number of attributes in 

the dataset under investigation.  

• Finally, although VisExPreS toolkit presented in Chapter 6 successfully 

enables an interactive user-driven assessment of embeddings, it does not 

allow users to improve or alter [30] the projections in anyway. As future 

work, proactive guidance could be provided with respect to the enhancing 

the projection qualities by interactively modifying the relative positioning 

of the data-points on the embeddings. 
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