
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright materia! had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and continuing
from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 9” black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, MI 48106-1346 USA

800-521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Alberta

T h e T e n s i o n b e t w e e n E x p r e s s i v e P o w e r a n d M e t h o d - D i s p a t c h E f f ic ie n c y

in O b j e c t -O r i e n t e d L a n g u a g e s

by

Wade Holst

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of
the requirements for the degree of Doctor of Philosophy.

Department of Computing Science

Edmonton, Alberta
Spring 2000

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I I National Library
■ ▼ I of Canada

Bibliotheque nationaie
du Canada

Acquisitions and
Bibliographic Services
395 Wellington Street
Ottawa ON K1A0N4
Canada

Acquisitions et
services bibliographiques
395. rue Wellington
Ottawa ON K1A0N4
Canada

Your tile Votre reference

OurSte Notre reference

The author has granted a non
exclusive licence allowing the
National Library o f Canada to
reproduce, loan, distribute or sell
copies o f this thesis in microform,
paper or electronic formats.

The author retains ownership o f the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

L’auteur a accorde une licence non
exclusive pennettant a la
Bibliotheque nationaie du Canada de
reproduire, preter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
electronique.

L’auteur conserve la propriete du
droit d’auteur qui protege cette these.
Ni la these ni des extraits substantiels
de celle-ci ne doivent etre imprimes
ou autrement reproduits sans son
autorisation.

0-612-59971-X

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Alberta

Library Release Form

Name of Author: Wade Holst

Title of Thesis: The Tension between Expressive Power and Method-Dispatch Efficiency
in Object-Oriented Languages

Degree: Doctor o f Philosophy

Year this Degree Granted: 2000

Permission is hereby granted to the University of Alberta Library to reproduce single copies
o f this thesis and to lend or sell such copies for private, scholarly or scientific research
purposes only.

The author reserves all other publication and other rights in association with the copyright
in the thesis, and except as hereinbefore provided, neither the thesis nor any substantial
portion thereof may be printed or otherwise reproduced in any material form whatever
without the author’s prior written permission.

Wade Holst
Box 131
Hays, AJB
Canada, TOKL 1B0

Date: Pwk.WQ&P

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Alberta

Faculty of Graduate Studies and Research

The undersigned certify that they have read, and recommend to the Faculty of Graduate
Studies and Research for acceptance, a thesis entitled The Tension between Expressive
Power and Method-Dispatch Efficiency in Object-Oriented Languages submitted by
Wade Holst in partial fulfillment of the requirements for the degree of Doctor of Philoso
phy

ane Szafn

jpm Freeman-Benson

'ennis

isu

Paul Sorenson

Date:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To my Significant Other, Christie Melnychuk,
for being there during the fun times (of which there were many)
and the not-so-fun times (of which there were surprisingly few).

To my Parents, Martin and Myma Holst,
for tolerating their eldest child’s attempts to avoid

the real world for as long as possible.
And for the money too :-)

To my Brother, Todd Holst,
for being who he is.

If I can manage even a small amount of the work ethic he has, I’ll be set.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

This thesis addresses issues of efficiency in object-oriented languages, concentrating pri

marily on the impact that various desirable expressive features of such languages have on

method dispatch. Features such as dynamic typing, multiple inheritance, reflexivity and

multi-methods are addressed in detail. Various related issues (such as compile-time or

link-time optimizations to avoid method dispatch) are discussed as well, but are not the

primary topic of the thesis. The thesis is divided into four parts: 1) introduction to expres

siveness and efficiency, 2) single-receiver method dispatch, 3) multi-method dispatch, and

4) future work and conclusions.

As part of the research into single-receiver method dispatch, the thesis demonstrates that

all of the published table-based method dispatch techniques for single-receiver languages

perform very similar operations, and that efficient but general algorithms for computing

dispatch tables exist. Table-based techniques precompute the methods for all type/selector

pairs before dispatch occurs. Traditionally, table-based method dispatch techniques have

been considered static in nature (information is computed at compile-time, and not modi

fied at run-time). Languages requiring modification at run-time have usually used cache-

based method dispatch techniques, which compute and cache method addresses only as

needed. This thesis demonstrates how all the published table-based techniques can be ex

tended to work for reflexive languages (which need to add information to the dispatch tables

at run-time). The final result of this portion of the thesis is a general framework for table-

based method dispatch, that implements all published techniques and demonstrates how

new techniques can be added to the framework. One immediate result of this framework

was the identification of a new dispatch technique, created by merging two existing tech

niques to create something with the advantages of both and the disadvantages of neither.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The third portion of the thesis deals with multi-method languages. Such languages use

the dynamic types of multiple arguments (instead of just the dynamic type of a dedicated

receiver object) to determine which method to invoke. Although these languages provide

more expressive power and more natural design paradigms, they are currently not popular

because dispatch for them is expensive. Existing table-based strategies require substan

tial memory, and existing cache-based techniques are extremely time-intensive on the first

invocation of each call-site, especially in non-statically-typed languages where run-time

inheritance exceptions can occur. This thesis presents detailed analysis of two new tech

niques and compares them against implementations of two existing techniques. One of the

new techniques provides the fastest dispatch o f all techniques, while the other one provides

only slightly less dispatch efficiency while storing much more information and doing so

more space-efficiently than any other technique.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Contents

I Introduction 1

1 Dimensions of Object-Oriented Languages Affecting Efficiency 4
1.1 Language Typing: Static vs Non-Static.. 5
1.2 Inheritance .. 6
1.3 Reflexivity: None vs. Class vs. T o ta l.. 7
1.4 Argument Dispatching: Single vs. M u lt ip le .. 8
1.5 Method D is p a tc h ... 9

2 Avoiding Method Dispatch 12
2.1 M otivation... 13
2.2 Static Class Hierarchy Analysis... 16
2.3 DataFlow A n a ly s is ... 17

2.3.1 Intraprocedural A nalysis... 18
2.3.2 Interprocedural A nalysis... 20

2.4 Receiver Class Prediction.. 22

II Single-Receiver Method Dispatch 24

3 Single-Receiver Method Dispatch Techniques 28
3.1 Search-based Techniques..29

3.1.1 ML: Method Lookup..29
3.2 Cache-based T echn iques.. 30

3.2.1 LC: Global Lookup C a c h e .. 31
3.2.2 IC: Inline C a c h e ..33
3.2.3 PIC: Polymorphic Inline Cache .. 34

3.3 Table-based Techniques... 36
3.3.1 STI: Selector Table Indexing... 38
3.3.2 SC: Selector C o lo r in g .. 38
3.3.3 RD: Row D isp lacem ent... 40
3.3.4 CT: Compact Selector-Indexed Dispatch T ables.....................................42
3.3.5 VTBL: Virtual Function Tables .. 44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4 A Framework for Table-Based Dispatch Techniques 48
4.1 The DT C lasses ... 51

4.1.1 Environment, Class and Selector: 52
4.1.2 M ethod-sets:..52
4.1.3 Tables: ... 54
4.1.4 Selector Index Strategy (S I S) : ..55
4.1.5 Class Index Strategy (CIS):..57

4.2 Incremental Table-based Method D ispatch ... 58
4.3 Efficiency Issues At Compile-time and R u n - t im e .. 59

4.3.1 Compilers.. 59
4.3.2 Run-time S y s te m s .. 60

4.4 Performance R e s u l ts ... 61
4.4.1 Input O rd e r ... 64
4.4.2 Per-invocation Costs of the DT algorithms.. 70
4.4.3 Effects on Dispatch Performance.. 72

5 General Algorithms for Table-Based Dispatch Techniques 80
5.1 The DT A lgorithm s.. 82

5.1.1 Algorithm Add S e le c to r ... 82
5.1.2 Algorithm Manage Inheritance .. 83
5.1.3 Algorithms Add Class Links and Remove Class L in ks 95
5.1.4 Algorithm Determine Selector In d e x .. 98
5.1.5 Algorithm Record Inheritance C o n f l ic t ..100
5.1.6 Algorithm Inherited M e th o d S e t ...101
5.1.7 Algorithm Inherited Class B ehavior .. 102

5.2 Example Executions of the DT Algorithms... 104
5.3 Using the DT Algorithms for Compile-time O ptim izations.............................I l l

6 Making Existing Techniques Incremental 113
6.1 Search-based Techniques..115
6.2 Cache-based T echniques..115
6.3 Table-based Techniques...116

6.3.1 STI: Selector Table Indexing...116
6.3.2 SC: Selector Coloring .. 116
6.3.3 RD: Row Displacement ...119
6.3.4 CT: Compact Selector-Indexed Dispatch T ab les...................................120
6.3.5 VTBL: Virtual Function Tables ..122

III M ulti-method Dispatch 124

7 Introduction to Multi-method Languages 126
7.1 Terminology for Multi-method D ispatch ...126

7.1.1 Notation .. 126
7.1.2 Inheritance C onflicts... 129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.1.3 Static Typing versus Non-Static T y p in g .. 130
7.1.4 A Formalism for Method D ispatch..131

7.2 Multi-method Dispatch Techniques...132
7.2.1 CNT: Compressed N-Dimensional T ab le s ... 135
7.2.2 LUA: Lookup A u tom aton .. 136
7.2.3 EPD: Efficient Predicate D isp a tch in g ... 137

8 New Multi-method Dispatch Techniques 139
8.1 SRP: Multi-method Dispatch Using Single-Receiver Projections................... 140

8.1.1 Single-Receiver Projections by Exam ple.. 140
8.1.2 SRP Data S tructu res.. 143
8.1.3 Making SRP Space E fficient... 145
8.1.4 The SRP Algorithm ..149
8.1.5 Support for find-first-set (ffs) ... 150

8.2 MRD: Multiple Row D isplacem ent).. 150
8.2.1 N-dimensional Dispatch T a b le .. 150
8.2.2 Multiple Row Displacement by Examples ...152
8.2.3 A Description of the Multiple Row-Displacement Algorithm 155
8.2.4 Optimizations.. 157
8.2.5 The MRD Data Structure Creation A lgorithm159
8.2.6 Separate Compilation.. 159

8.3 Performance Results ... 161
8.3.1 Dispatch C o d e ... 161
8.3.2 Timing R e su lts ...166
8.3.3 Memory Utilization... 169

8.4 PTS: Product-Type S e a rc h .. 173
8.5 Reflexivity in Multi-method Dispatch T echniques... .175

IV Future Work and Conclusions 177

9 Future Work 178
9.1 Metrics ... 178
9.2 PTS: Product-Type S e a rc h .. 179
9.3 CNT: Improving Com pression.. 179
9.4 EPD: Efficient Predicate D isp a tc h .. 180
9.5 LUA: Lookup A u to m ata .. 182
9.6 Dispatch-Code In lin ing .. 183
9.7 Real Language R e su lts ..184
9.8 Extending Framework... 185
9.9 “Best” Technique A nalysis.. 186
9.10 Formalizing Dimensions of Object-Oriented Languages...................................186
9.11 Prototype-based Languages.. 187
9.12 Single-Receiver Cache-Based T echniques...187
9.13 Optional or Incremental Static T y p in g ...188

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10 Conclusion 189

Bibliography 194

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

2.1 Data-structure for SCHA on Figure 2.1 With Static T y p in g 17

3.1 STI Dispatch T a b le ...38
3.2 SC Dispatch Table .. 39

4.1 Statistics For Various Object-Oriented E nv ironm ents...62
4.2 General Time and Space Results for the DT Framework..................................... 63

5.1 Notations and Definitions for the DT algorithm s.. 81
5.2 DT Algorithm Purposes.. 81
5.3 Notation and Definitions for IM A lgorithm s.. 84
5.4 All Truth Combinations of the Four Fundamental DT T e s ts 86
5.5 Determining Scenario During Manage Inheritance Invocations.........................89
5.6 Determining Scenario During Manage Inheritance Removal Invocation . . 89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

2.1 Inheritance H ierarchy... 14
2.2 Example M ethods.. 14

3.1 Sample Inheritance Graph ..29
3.2 The Method Dictionaries for ML D ispatch...29
3.3 The Lookup Cache before and after dispatching a. S Q ..32
3.4 Algorithm S T I .. 39
3.5 Algorithm SC-static .. 40
3.6 RD Dispatch T a b le .. 41
3.7 Algorithm R D ..43
3.8 CT Standard and Conflict Tables After Selector A lia s in g 44
3.9 CT Standard and Conflict Tables After Partitioning (ps = l ,p c = 1) 44
3.10 Algorithm C T ..45
3.11 The VTBL’s for Figure 3 . 1 ..46
3.12 Algorithm VTBL ... 47

4 .1 The DT Framework Class H ierarchy.. 51
4.2 An Inheritance Hierarchy And Its Associated Method-set Hierarchies . . . 54
4.3 Input Order vs. Execution Time for SC dispatch ..69
4.4 Input Order vs. Execution Time for Parcplacel ..70
4.5 Input Order vs. Fill-Rate for SC D isp a tc h ... 71
4.6 Input Order vs. Fill-Rate for P a rcp la ce l.. 72
4.7 Random Input Order vs. Execution Time for Parcplacel..................................... 73
4.8 Random Input Order vs. Fill-Rate for Parcplacel ... 74
4.9 Per-invocation Timing Results For SC D isp a tch ... 75
4.10 Per-invocation Timing Results For RD Dispatch ..76
4.11 Cost of Algorithm Add Selector Invocation ... 77
4.12 Cost of Algorithm Add Class Links Invocation.. 78
4.13 C + + Class Layouts for DT C lasses... 79
4.14 Improved Table Layout to Optimize D isp a tc h .. 79

5.1 Algorithm Add Selector .. 82
5.2 Algorithm Manage Inheritance... 93
5.3 Algorithm Manage Inheritance Rem oval..96
5.4 Algorithm Add Class L in k s .. 97
5.5 Algorithm Remove Class L in k s ..99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.6 Algorithm Determine Selector In d e x ... 100
5.7 Algorithm Record Inheritance C onflict..101
5.8 Algorithm InheritedMethodSet...102
5.9 Algorithm Inherited Class B e h a v io r ... 103
5.10 The Initial Inheritance Graph for Algorithm Manage Inheritance 105
5.11 The Extended Dispatch Table After Selector a Added to Class F106
5.12 The Extended Dispatch Table After Selector a Added to Class G 107
5.13 The Extended Dispatch Table After Selector /? Added to Class H108
5.14 The Extended Dispatch Table After Selector /3 Added to Class H109
5.15 The Extended Dispatch Table Before Class Hierarchy Links A dded................109
5.16 The Extended Dispatch Table After Adding Class Hierarchy L in k s110

6.1 Algorithm S C ...118
6.2 Algorithm R D ...121

7.1 An Example Hierarchy and Program Segment Requiring Method Dispatch . 127
7.2 An Inheritance Hierarchy, H and One Connected Component of H 2 128
7.3 Uncompressed, Compressed and Index Tables for CNT on / ? 136
7.4 The Naive Lookup Automata for Figure 7 . 2 ..136

8.1 Projecting Definitions of Figure 7.2 Onto Single-receiver T a b le s141
8.2 Unextended Single Receiver Dispatch Table for Figure 8 . 1143
8.3 Extended Single Receiver Dispatch Table for Figure 8 .1143
8.4 SRP Projection Tables ... 145
8.5 Algorithm SRP-Static-Dispatch.. 149
8.6 N-Dimensional Dispatch T a b le s ... 151
8.7 Data Structure for Multiple Row D isp lacem en t... 152
8.8 Compressing The Data Structure for a ... 154
8.9 Compressing The Data Structure For ... 154
8.10 Compressing the Data Structure for 5 ...156
8.11 Row-Shifting vs. Row-M atching... 158
8.12 Algorithm BuildM RD ..160
8.13 Dispatch Code For All Multi-method T echn iques..163
8.14 Platforms for Multi-Method Timing E xperim en ts..167
8.15 Time Required To Compute a Method Address at a C a ll- s i te168
8.16 Method-computation Times for Platform 1 Using- 0 2 169
8.17 Type Hierarchy Details for Two Different H ierarchies..................................... 170
8.18 Static Data Structure Memory U sag e .. 171
8.19 Call-Site Memory U s a g e ... 172
8.20 Call-Site Sizes of Various SRP implementations...172

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Part I

Introduction

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Object-oriented languages have had a profound effect on how software is designed and

implemented, in both industry and academia. The modularity and conceptual intuitiveness

of object-oriented languages have allowed large and complex programs to be built and

maintained that would be impossible with less powerful languages. Within industry, object-

oriented languages are becoming the standard tool for vast numbers of applications in a

diverse range of disciplines. Furthermore, object-oriented languages are having a profound

impact on the research being performed in many computing science sub-disciplines not

directly related to programming languages. For example, graphics and GUI development

have already benefitted immensely from the software reuse and conceptual simplicity that

rich object hierarchies provide. As another example, both database and parallel/distributed

research are taking a much closer look at object-oriented languages and how they need to

be modified to work for these disciplines.

However, the advantages of object-oriented languages come at a cost. Object-oriented

languages have two special properties: 1) polymorphism, which allows the same name to

refer to two or more different executable methods, and 2) inheritance, which hierarchically

relates the types in the programming environment to one another. These properties provide

object-oriented languages with the highly desirable concepts of abstraction, modularity,

information hiding and code reuse. However, these same properties introduce a distinction

between the static type of variables1 and the dynamic type of the objects they are bound

to. This distinction leads to the need for method dispatch, a run-time computation of the

method to invoke at a particular call-site. Unlike procedural, functional or logic languages,

the code to execute is not uniquely determined by a name, but instead also relies on the

dynamic types of one or more objects. Since dynamic types are inherently run-time entities,

this implies that the determination of the code to execute may have to occur at run-time,

rather than at compile or link-time. This is the essence of polymorphism.

This thesis is divided into four distinct parts: 1) an introduction to expressiveness and

efficiency issues, 2) single-receiver dispatch techniques, 3) multi-method dispatch tech

niques, and 4) future work and conclusions. Since single-receiver languages are a special-
1 Unless otherwise noted, in this thesis discussions that apply to local variables also apply to argument

parameters and method return types.

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

case of multi-method languages, the third part can be thought of as a natural generalization

of the second part. However, the chapters in each of the two parts focus on different is

sues, reflecting the fact that research into single-receiver languages is much more mature

than that for multi-method languages. In particular, there has been substantial research

into statically-typed, non-reflexive, single-receiver languages, so the second part o f this

thesis describes work to extend these techniques to a much broader category of languages.

It summarizes the single-receiver dispatch techniques and develops algorithms and a gen

eral framework that allows many of these techniques to be applied to non-statically-typed

reflexive languages. On the other hand, the third part of the thesis is primarily focused

on statically-typed, non-reflexive multi-method languages, since there is less research, and

fewer dispatch techniques for multi-method languages.

Method dispatch is the primary focus of this thesis, but it is analyzed in a variety of

contexts. Method dispatch is one of the primary reasons why object-oriented languages ex

ecute more slowly than other kinds of languages. Although run-time execution efficiency

and low memory usage are highly desirable characteristics of a language implementation,

expressive power is also very desirable. Unfortunately, additional expressiveness usually

comes at the expense of either time or space. This thesis identifies method dispatch tech

niques that give the best known execution performance and memory footprints while still

providing powerful features to give languages expressiveness.

Before continuing with a deeper discussion of method dispatch, it will be useful to dis

cuss some object-oriented concepts that have a profound impact on how efficiently method-

dispatch can be implemented. Chapter 1 presents these dimensions, and Chapter 2 presents

a brief summary of some of the compile-time and link-time optimizations possible to avoid

method dispatch.

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Dimensions of Object-Oriented

Languages Affecting Efficiency

There are a variety of key concepts associated with object-oriented languages, and there is

a high degree of variability in how these concepts are implemented in different languages.

This variability occurs because different languages place different emphasis on the impor

tance of such issues as efficiency, simplicity, uniformity, elegance, generality, flexibility

and expressiveness. We will call these key concepts the dimensions of the language, and

think of each dimension as being a set, where each element of the set represents one pos

sible variation for the dimension. In an informal way, an object-oriented language can be

summarized by identifying which variation of each dimension the language has chosen to

implement. Broad categories of languages can be defined using these dimensions, and these

categories are useful when discussing the limitations and applicability of various dispatch

techniques. An important part of this thesis involves extending existing dispatch techniques

to broader categories of languages than they have traditionally been applied to. Although

the discussion of dimensions presented is used informally in this thesis, in future work

these dimensions will be formalized to allow for higher-order analysis of object-oriented

languages, and to introduce concise terminology to effectively identify variations between

object-oriented languages. For the purposes of this thesis, it is assumed that each dimen

sion represents a discretized one-dimensional continuum, but in a more formal treatment,

more complex characterizations will probably be necessary.

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.1 Language Typing: Static vs Non-Static
Languages that require each variable and method to have an associated type are called

statically-typed languages. Languages that do not require types are called non-statically-

typed languages. In this thesis, when we refer to statically-typed languages, we assume the

language provides a type for every local variable, for every formal argument, and for the

return type of every function-like method.

By definition, each object in a class-based object-oriented language is an instance of

a particular class. For now we will say that the class of an object is called the dynamic

type o f the object, and each object has exactly one dynamic type at any given time. Since

each variable (and each method return value) is bound to an object (or, in hybrid languages,

some non-object primitive), it is natural to define the dynamic type of a variable to be the

dynamic type of the corresponding object. On the other hand, it is possible to associate

with each variable and method a static type, which is represented as a syntactic construct

in the source code of the language. The important point is that a variable that is statically

typed as type T can have a dynamic type of T or any subtype ofT. Thus, each dynamic type

represents a single type, but a static type represents a set of one or more types. Since one

or more of these types can define a method for a selector, the static type is sometimes not

sufficient to determine which method to invoke. It is only sufficient when there is exactly

one applicable method.

Non-statically typed languages, like Smalltalk and CLOS, are usually used for rapid

prototyping, in situations where execution efficiency (how fast the application runs) is

less important than development efficiency (how rapidly the software can be developed).

Statically-typed languages (like C++ and Java) are used when efficiency is important or

when software correctness is of concern. Since languages with static typing can usually

avoid run-time method dispatch much more often than non-statically typed languages, they

can have substantially better execution performance. Static typing can also be used to gen

erate compile-time errors about type violations. For example, suppose type G is a subtype

of type F, and selector /3 is defined on G but not on F (or on any supertype of F). If a pro

grammer were to statically declare a variable ’obj’ to be of type ’F \ and attempt to send

the message /3 to ’obj’, the compiler would generate a compile-time error message because

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

it is not legal to send j3 to F (even though it is legal to send /3 to G). Thus, if a variable is

statically typed to be type T , the compiler guarantees that only those methods understood

by type T (and thus all subtypes of T) can be sent.

1.2 Inheritance
Inheritance is a fundamental concept in object-oriented languages, and refers to the ability

of a subclass to obtain state, interface, or code from one or more parent classes without

having to explicitly define them again. Simply by stating that a class is a subclass of

another class, the state, interface and/or code is provided to the class without incurring any

redundant work. Although many existing object-oriented languages (i.e. C++, Smalltalk,

Eiffel) merge the concepts of state, code, and interface into a single unit called a class, there

has been a strong push lately to start separating these concepts [25]. Java has provided a

partial separation, keeping state and code in classes, but introducing a separate entity called

an interface.

For each of the three kinds of inheritance, a decision must be made as to whether to

allow single-inheritance or multiple-inheritance. Single-inheritance implies that a class is

only allowed to inherit from a single immediate parent class, while multiple-inheritance

implies that the subclass can inherit from more than one immediate parent class.

The state of an object refers to the information that it stores explicitly, rather than

computing. Inheritance of state implies that instances of a subclass have all of the state

defined in its parent class. Due to the implementation details of most method dispatch

techniques, multiple inheritance of state is usually more inefficient in both time and space

than is single-inheritance of state.

The interface of a class consists of all the messages that can be sent to its instances.

More formally, it is the set of method signatures that are applicable to the instances. Since

multiple inheritance of interfaces poses no implementation difficulties, and multiple inher

itance is more general than single inheritance, it is common for multiple-inheritance of

interfaces to be advocated (i.e. Java).

The code of a class consists of the set of methods that implement the interface of a

class. In object-oriented languages, the same signature (interface) in two different classes

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

can have two different implementations (methods) associated with it. Multiple inheritance

of code introduces the concept of an inheritance conflict, when two or more different imple

mentations of the same interface are visible in a class along different inheritance paths. In

some method dispatch techniques, the potential existence of inheritance conflicts can have

a very detrimental effect on performance, while in other techniques, it is a simple matter to

either implicitly add conflict resolution methods or report compile-time errors forcing the

programmer to do so.

1.3 Reflexivity: None vs. Class vs. Total
Reflexivity refers to whether the various inheritance hierarchies are considered changeable

at run-time, and if so, to what extent. There are a variety of possibilities in this dimension,

and not all possibilities fit along a single continuum. For example, in Java the ability to ask

an object about itself (metaobject programming) is often referred to as reflection, but it is

not this kind of reflexivity that this thesis addresses. Rather, we are discussing functionality

that can somehow change the type system by adding classes (types) and/or methods at run

time. Some languages are totally reflexive, in that anything one can do at compile-time

can also be done at run-time (i.e. Smalltalk), while others are, for most practical purposes,

totally non-reflexive. However, even in C++ it is possible to get some degree of reflexivity

by using dynamic linking, hut it is limited to the addition of new leaf classes, and all calls to

such classes must occur through the dynamic linking interface. Java has made this form of

leaf-class reflexivity slightly more formalized and has also provided a mechanism to take

limited Java source strings and execute them as code (which C++ cannot do). However,

even Java has a severely restricted form of reflexivity, and neither language provides syntax

to make reflexivity convenient. One of the primary focuses of this thesis is how method

dispatch is affected in highly reflexive languages like Smalltalk.

The degree of reflexivity can be interpreted as the degree to which syntactically legal

constructs of the language can be manipulated at run-time. If every syntactically legal

construct can be “executed” at run-time, the language is totally reflexive. If there are no

facilities for such execution at run-time, then the language is totally non-reflexive.

Since reflexivity is associated with modification of inheritance hierarchies, and we have

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

noted that, at least conceptually, there are three different kinds of inheritance hierarchies

(state, code, interface), it seems natural to conclude that the degree of reflexivity provided

can vary across these kinds of hierarchies. However, there are a variety of caveats that

need to be stated. First, although ail object-oriented languages have the concept of three

different inheritance hierarchies, syntactically these languages do not provide the ability

to separate them. Second, even in languages that provide syntactic distinctions between

state, interface, and code inheritance, it is not entirely clear that it makes sense to allow

total reflexivity along one hierarchy and no reflexivity along another. Third, I suspect

that languages that provide reflexivity will do so in a uniform fashion, if only to keep the

language more understandable. Nonetheless, the potential of a system that provides total

reflexivity of interface inheritance and some more restricted reflexivity of state inheritance

may end up having theoretical or practical advantages over a more general system. The

interactions and impacts that come from separate inheritance hierarchies for state, interface

and code are not yet fully understood, and are a rich source of future research. Their impact

on the issue of reflexivity is only one of a variety of issues that must be faced.

For the rest of this thesis, we will assume that a reflexive language has the ability to

add and remove methods from classes, and and remove inheritance links between classes,

and to create or remove classes themselves from the type hierarchy. Given this assumption,

reflexive languages provide more expressive power than non-reflexive languages, but may

suffer serious penalties in execution performance. Method dispatch for such languages is

slightly slower and takes up more memory. More serious, most compile-time optimizations

that are possible in non-reflexive languages are not possible in reflexive languages.

1.4 Argument Dispatching: Single vs. Multiple
Traditional object-oriented languages use the dynamic type of a single receiver object, in

conjunction with a message name, to establish the method to execute for a particular call-

site. Such languages are known as single-receiver languages, and perform single-dispatch.

However, some languages (i.e. Tigukat, Cecil, CLOS, Dylan), known as multi-method

languages, perform multi-dispatch by determining the method to invoke based on the mes

sage name and the dynamic types of all arguments. Actually, some multi-method languages

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(i.e. Cecil) provide facilities for indicating a subset of arguments on which dispatch should

occur. Thus, it is not strictly necessary to dispatch on all arguments but if the language dis

patches on the dynamic type of more than one argument, it is considered a multi-method

language. In languages like C++ and Java it is possible to have two methods in the same

class with the same name but differing argument types. Although at first glance this appears

to be multi-method dispatch, it is not. C++ and Java encode the static type of arguments into

the method names (so it isn’t actually the same method after all), whereas multi-method

languages rely on the actual dynamic types of arguments instead.

Multi-method languages are more powerful and expressive than single-receiver lan

guages, solving the classic binary-method problem that arises in single-receiver languages

[24]. However, these advantages come at a cost. Method dispatch in multi-method lan

guages can be both very slow (relative to single-receiver dispatch) and very memory in

tensive. Furthermore, multi-methods are defined on groups of classes and do not fit the

conceptual model of methods being encapsulated within a class.

The third part of the thesis addresses efficient method dispatch in multi-method lan

guages. It compares existing dispatch techniques with new techniques, and discusses vari

ous issues that arise when dispatch is generalized to multi-methods.

1.5 Method Dispatch
Having discussed some of the dimensions involved in object-oriented language design, we

now provide a more detailed description of what is involved in method dispatch. First, un

like some papers in the literature, this thesis makes a very firm distinction between method

dispatch and compile-time or link-time optimizations that allow method dispatch to be

avoided. More specifically, in this thesis, method dispatch is the run-time process of deter

mining the method to execute at a particular call-site. In the past, the literature has been

somewhat ambiguous about what constitutes a dispatch technique. Some compile-time ac

tions that we consider optimizations to avoid method dispatch have been called dispatch

techniques.

In any truly object-oriented language, it is never possible to avoid run-time dispatch

entirely, and thus some method dispatch technique for determining methods must be im-

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

plemented. To see why this is the case, consider the process of making a function call. In

voking a function involves specifying a function name and a list of arguments on which that

function operates. Each argument has a type, or set of legal values, to which it is restricted.

In most non-object-oriented languages, the name of the function uniquely identifies the

code to be executed. Some non-object-oriented languages allow overloaded functions in

which the static types of the function arguments are used in conjunction with the function

name to identify the function address. In either case, the function address for a particular

function call is determinable at compile-time, so the compiler can generate an appropriate

JSR (Jump to SubRoutine) statement, or even inline the function code within the caller.

Unfortunately, in object-oriented languages the compiler does not always have suffi

cient information to determine the method (function address) associated with a particular

selector (function name). This is because inheritance introduces a distinction between the

static type of a variable and the dynamic type of the object the variable is bound to. In

heritance generates a hierarchal ordering on the types in the environment, so if a certain

type, T', is below another type, T, in the inheritance hierarchy, T ' is said to be a T, and

thus instances of type T ' can be used anywhere instances of type T can be used. This is a

fundamental property of object-oriented languages, and is called substitutability. Thus, it

is legal, under the rules of inheritance, to bind a variable of type T to an object of type T'

(but not vice-versa). This poses performance problems because object-oriented languages

use the dynamic type of at least one method argument, in conjunction with the selector,

to determine which method to invoke. Since the dynamic (run-time) type of arguments

can be different than the static (compile-time) type, a compiler can not always establish

which method to invoke. Instead, the compiler must often generate code that computes

the appropriate address at run-time. The process of computing the method address to exe

cute at run-time is known as method dispatch. The code generated by the compiler, along

with the data-structures necessary to execute this code, makes up a specific method dis

patch technique. Various method dispatch techniques exist, with varying time and space

requirements.

There are two separate but related components in a method dispatch technique: 1) the

actions required at each call-site in order to establish an address, and 2) the information

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

that needs to be maintained in order for the call-site specific actions to work. As well, each

of these components can be analyzed from both a time and space perspective.

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Avoiding Method Dispatch

In this thesis, method dispatch is by definition a run-time process; the code and data-

structures that a compiler or interpreter must generate in order to compute the method

to invoke for a particular call-site. This code can be as simple as a pointer indirection fol

lowed by an array access, or may be substantially more expensive in both execution time

and code size, depending on the language features supported by the dispatch technique.

Since method dispatch is one of the primary sources of inefficiency in object-oriented

languages, it is only natural to develop strategies to avoid method dispatch whenever pos

sible. Not surprisingly, such optimizations are useful for certain categories of languages,

but become less and less feasible for other categories of languages. In particular, certain

dimensions of object-oriented languages preclude almost all optimization, which in turn

makes the efficiency of the method dispatch techniques correspondingly more important.

Thus, although such optimizations do have a profound effect on the performance of certain

object-oriented languages, they are not the primary focus of this thesis. Instead, this the

sis addresses the problem of efficiency when method dispatch is truly needed. However,

before moving on to a discussion of method dispatch techniques in subsequent chapters,

this chapter provides a quick summary of some of the more commonly used techniques for

avoiding dispatch. By introducing them early, it will be possible to refer back to them as

we discuss the limitations and strengths of various dispatch techniques.

All of the optimizations discussed in this chapter attempt to eliminate the run-time

computation of addresses at a call-site. The only way this is possible is by establishing, at

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

compile-time, that only one method is applicable. The compiler can then generate code as

it would in a normal procedural language. However, it is not the avoidance of executing the

method computation code that provides the most benefit. Rather, because the optimization

technique has determined that only one method is applicable, it can often avoid the entire

JSR/retum sequence by inlining the method code at the call-site. Such a strategy can have

a profound impact on execution efficiency, especially on modem architectures. There is

no pipeline stall induced by the indirect load and transfer of control to a method address.

There is no need to save and restore register state. There are increased chances for more

rigorous optimizations because a larger code block is available for analysis.

Inlining of object-oriented methods provides more benefit than inlining in procedural

languages, since the object-oriented design philosophy encourages the use of very small

code-segments. This is especially tme if the programmer can rely on an optimizing com

piler to remove the method calls. Since compilers usually use heuristics based partially on

method length to determine whether to inline, more object-oriented methods are candidates

for inlining than procedural functions. However, there must be some limit to how much in

lining occurs, or the extra code will require excessive memory and generate a performance

reduction due to increased page-swapping and poorer instruction cache performance.

Optimizations to avoid method dispatch do have some general disadvantages. First,

they all require additional memory, either in code-size or data-structures or both. Second,

many of them require whole-program analysis, which can require excessive compile-time

computation and makes separate compilation difficult or impossible. Third, they are of

ten only applicable to certain categories of languages (for example, most do not work for

reflexive languages).

2.1 Motivation
Before discussing in detail the various techniques used to avoid run-time method dispatch,

this section provides some simple motivating examples. Suppose a compiler for an object-

oriented language is in the process of compiling an application that uses the type hierarchy

in Figure 2.1. In this figure, and in figures that follow, type names are represented by capital

Latin letters and method names are represented by lower-case Greek letters. Furthermore,

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

in the discussion, T represents a canonical class, and a represents a canonical method.

5 ,a

Figure 2.1: Inheritance Hierarchy

Suppose further that the language is non-statically typed (so variables do not have types

associated with them), and that the compiler is currently working on method a in class H,

which has one argument, called obj. The code for H:a is shown in Figure 2.2. The method

G:f3 will be discussed in more detail later.

Remember that, in general, method dispatch is necessary because it is not always pos

sible to determine at compile-time which one of many methods applies. In particular,

since the dynamic type of obj can be any class in the environment (the definition of a non-

statically typed language), it is not possible at compile-time to determine which method for

P to invoke (there is one method for /? in class G, and another in class K, and the compiler

does not know which one it will be). The most general solution is to rely on some method

dispatch technique that computes the method at run-time, when the dynamic type of obj is

known, allowing the ambiguity to be resolved.

However, when the compiler reaches the next call-site, it can perform a very useful

optimization. Since there is only one method for v in the entire environment, the compiler

can generate an explicit JSR to the method in question (M:i/) instead of generating code

method H:a(obj) begin method G:/3() begin
obj./3(args);
obj.i/(args);
this.d(args);

K k := new K;
H h := new H;
h.<5(k);

end; end;

Figure 2.2: Example Methods

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to perform run-time method dispatch. Note that this optimization is possible only if the

language in question is non-reflexive. If it were reflexive, it would be possible to add

another method for u to the environment at run-time, after which the optimized call-site

may invoke the wrong method depending on the dynamic type of the receiver. Furthermore,

if the language in question is non-statically typed, this optimization requires a test to ensure

that the actual receiver class is class M or one of its subclasses, since non-statically typed

languages cannot make any compile-time assurances about type safety. There are two

places the class test can be placed: 1) at the call-site, before the explicit JSR, or 2) within the

called method itself. Using (1) will result in larger code (there are almost always more call-

sites for u than methods for i/), but using (2) penalizes the performance of non-optimized

call-sites for v (which would not have needed the test in the method since they went through

run-time method dispatch to determine the correct method - this can be avoided by having

the compiler JSR past the test block in cases where the test is unnecessary). Which of these

to choose can vary from call-site to call-site, and depends on the relative importance of

space vs. execution performance and on the number of optimized call-sites for v compared

to the total number of call-sites for v.

When the compiler reaches the call-site for S, it can also avoid run-time method dis

patch. The dynamic type of this is always the class in which this is lexically encountered,

or a subclass of that class. That is, even in a non-statically typed language, there are times

when the compiler has information about dynamic types at compile-time. In Section 1.1

we mentioned that the static type of a variable may correspond to multiple dynamic types,

and that multiple classes may result in multiple methods. However, in this example, for se

lector 5 in class H, the only possible dynamic type for the static type H is H itself, so once

again the compiler can avoid run-time method dispatch (i.e. provide a JSR to H:<5). Even if

H had subclasses, this optimization would be possible as long as none of those subclasses

redefined 5. Once again, this optimization assumes the language is non-reflexive.

The previous example highlights an important point: static typing information allows

the compiler to reduce the possible number of applicable classes, and thus increases the

likelihood that there is a unique method. So, as a final motivating example, suppose the

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

language in question was statically-typed1, and that the compiler knows that the argument

obj passed to method H:5 is statically typed to be an instance of class K. Then when the

call-site for selector /? is being compiled, the compiler can determine that the only possible

dynamic types are K and M, and that in this set of classes there is only one method defined

for /?. Since the compiler has determined that only one method is possible, it can generate

a JSR to that method (i.e. K:(3) instead of generating run-time method dispatch code.

2.2 Static Class Hierarchy Analysis
All of the examples in the previous section rely on the compiler knowing which methods

exist for each selector, and for which classes they are defined. This implies that the compiler

must have access to at least the interface for every class used in the application (remember

that the interface is the signature of each method defined in the class).

One way to implement the optimizations in Section 2.1 is to have the compiler deter

mine the set of methods possible for every type/selector pair, (C, a) . Remember that the

static type represents a set of one or more classes, and that zero or more of these classes can

define a method for selector cr. Thus, the compiler maintains a data structure that stores,

for every type/selector pair (C , cr), this set of “possible” methods.

There are many ways that the compiler can store this information, and the exact data

structure is not particularly important. We simply assume that the compiler has the ability

to obtain the set of methods possible for a given type/selector pair. No matter what data-

structure is chosen, it is initialized by the compiler. The compiler looks at every class in the

environment, and at every method defined in every class, and, based on these items, adds

elements to the data-structure as necessary.

One naive data-structure would be a two-dimensional table with selectors along the

rows and types along the columns. Each entry corresponds to a type/selector pair (C, cr)

and stores a set of methods. In a real implementation this data structure is not practical

because of its massive memory requirements - it is used simply for illustration purposes.

However, when we start discussing method dispatch techniques in subsequent chapters, it

will become apparent that this is very similar in structure to a certain kind of dispatch table,
‘Notice that the local variables in method G:/? are statically typed.

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and that it can be effectively compressed in numerous ways.

Table 2.1 shows the type/selector pairs for the hierarchy of Figure 2.1. If an entry for

(C ,a) in this table contains a it indicates that it is a compile-time error to attempt to

send the selector cr to a variable whose static type is C. This kind of compile-time error

detection is not possible in non-statically typed languages.

cr/C F G H K M
a - - - -

,8 - {G: / 3} - { K : 0 } { K : 0 }
5 { F : 5, H : 5} { F : 8 } { H: S } - -

V - - - - { M : u}

Table 2.1: Data-structure for SCHA on Figure 2.1 With Static Typing

A compiler using this strategy would parse all classes and methods in the application

in one pass, then perform another pass to generate the code. At each call-site, the com

piler uses the static-type of the receiver object, in conjunction with the message name, to

obtain the set of applicable methods from the SCHA table. If the cardinality of this set is

one, the compiler can avoid generating method dispatch code and can instead JSR to the

unique method or inline the method code. This optimization only works in non-reflexive

languages.

2.3 DataFlow Analysis
Static class hierarchy analysis, although often effective, is sometimes too conservative, in

that the sets of applicable methods it maintains are often larger than they will be at run

time. As a simple example, refer to Figure 2.1 and suppose that the compiler can determine

that no instance of class H is ever created in a particular application. In such a situation,

even if a variable is statically typed as F, and is sent the message 8, the compiler knows that

there is only one applicable method. Dataflow analysis is an optimization technique that

allows such observations (and others) to be made.

More formally, dataflow analysis is the process of maintaining, for each variable and

return value v, a class-set, Vv. If a class C is in this set, it means that the object represented

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

by the variable or return value v can have class C as a dynamic type (and thus, if v is used

as the receiver to a message send, that class C is a possible receiver class).

Using these sets, in conjunction with the data-structure from static class hierarchy

analysis, the compiler can often avoid run-time method dispatch. Each time the com

piler encounters a message send, the receiver is either some constant (i.e. the receiver is

a class name, like ’Date new’), a variable (i.e. ’aPerson.ageQ’), a pseudo-variable (i.e.

’this.size()’), or the result of another message send (i.e. ’list.asSet().size()’). In order to de

termine if the message-send in question can avoid run-time method dispatch, the compiler

performs the following algorithm (assume that the selector at the call-site is cr):

1. Obtain the class-set, V, associated with the receiver (remember that the compiler

maintains such a set for all variables and return values)

2. For each class C in V, get the entry in the static class hierarchy data structure for

class C and selector cr.

3. Form the union of all sets found in (2).

4. If the resulting set has only one element, it is a unique method, and the compiler can

avoid method dispatch and generate an explicit JSR to this method.

There are two different levels at which this dataflow analysis can occur: intraprocedural

and interprocedural. The first of these is much easier to implement, but the sets maintained

for variables are unnecessarily conservative, so it does not always detect times when run

time method dispatch can be avoided. Both forms of analysis are discussed briefly in the

following subsections.

2.3.1 Intraprocedural Analysis

Intraprocedural analysis looks at each method independently of any other method. Since

the compiler must maintain the set of classes for each variable, it starts by initializing

the class sets of the argument variables. For an argument variable argx-, if the variable is

statically typed to be of class C, then the associated class set, Vargi is initialized to the set

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

containing class C and every subclass of C. If the language is non-statically typed, variable

argi does not have a static type, so Varg. is assigned the set of all classes in the environment.

The compiler then starts parsing the method. If it encounters a variable declaration,

it creates a new variable set and initializes it depending on the static type of the variable.

It is important to realize that this initial class set can be reduced in size as the compiler

analyzes more of the method. For example, if the code includes an explicit class test (either

user-provided, or due to receiver class prediction 2), then the set of classes possible in the

’if’ and ’else’ parts of the test are smaller than the original (the class set in the ’if’ part has

one element, and the class set in the ’else’ part has one less element. Another example of

how the class-set can be reduced is when the variable is bound to the result of an instance

creation. For example, suppose the compiler encountered the statement

Person bob = new Student(“Bob”);

When the variable was created, the class-set Vbob was initialized to the set containing

Person and all of its subclasses. However, this variable is initialized with the result of

an instance creation method. If we assume that the creation method is statically typed to

return an instance of Student, the compiler can reduce Vbob to class Student and all of its

subclasses. Note that non-statically-typed languages do not benefit from this because the

return type of creation methods is completely unconstrained, and can thus be an instance

of any class.

If the compiler encounters a call-site during parsing, the dataflow analysis algorithm

is used to determine whether run-time dispatch can be avoided. As an example of this

process, suppose the compiler is parsing the method H:5 in Figure 2.1. The compiler first

initializes Vobj = {F, G, H , K , M } since obj is not statically typed. When the call-site

for (3 is encountered, the compiler computes the union of the sets obtained by looking in

the static class hierarchy data-structure at entries {F,f3), (G, /?),..., and (M,/3). From

Figure 2.1, this set is { G:/3, K:0 }, which does not have size one, so the compiler generates

run-time method dispatch code.
2Receiver class prediction is another mechanism for avoiding run-time method dispatch, and is discussed

in Section 2.4.

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

When the call-site for v is encountered, the resulting set of applicable messages is

computed to be { M:r/ }, and so the compiler knows it can avoid run-time method dispatch.

When the call-site for 5 is reached, the pseudo-variable this has Vthis = { # } so the

call-site set is {H : delta} and the run-time method dispatch is avoided.

2.3.2 Interprocedural Analysis

Interprocedural analysis is an extension of intraprocedural analysis. The main problem with

intraprocedural analysis is that it computes very conservative class sets for its argument

variables (the static type and all subclasses). Remember that the smaller the class sets, the

more likely subsequent call-sites can be optimized. The estimate on the set of possible

classes is especially conservative in non-statically-typed languages, where the class-set for

each argument variable is the set of all classes in the environment. If the called method

could use the class-set information from the calling method, it would have much more

refined class-sets for its arguments. To see why, note that the calling method, when it

invoked the current method, must have somehow specified the arguments to the message.

Furthermore, the caller knows the class-sets associated with those arguments, and these

class-sets may be much more precise than the set of all classes (the variable in the calling

scope may be much more restrictively statically typed, or may be the result of instance

creation, receiver class prediction, etc.).

The idea behind interprocedural analysis is quite simple: extend the analysis performed

in intraprocedural analysis to apply across method boundaries, sharing information be

tween caller and callee. Unfortunately, implementing this technique is far from easy, be

cause we must generate a call-graph for the application. To see why call-graphs are difficult

in object-oriented languages, let us compare them with call-graphs in traditional program

ming languages.

In a procedural language like C or Pascal, the compiler can create a call-graph relatively

easily. A call-graph is a tree in which functions are nodes, and directed edges exist from one

node to another if the function represented by the source node calls the function represented

by the destination node. An object-oriented call-graph is much more complicated since

each call-site can represent a call to every single method with the same name as the selector

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

at the call-site. That is, in procedural languages there is a one-to-one mapping from caller

to callee, but in the object-oriented world, there is a one-to-k mapping (where k is some

number between 1 and n, the number of methods defined for the selector at the call-site).

In object-oriented languages, there is a range of call-graphs, from the most accurate, but

application and input-specific, to the most conservative, but more general. Although a very

refined call-graph is possible if the analysis is made on a per-application basis for a fixed

input sequence, applications are rarely executed multiple times on exactly the same input.

Given this, object-oriented call-graphs are usually made somewhat more conservative so

that they will at least work for arbitrary inputs. Thus, it is usually the case that in non-

statically-typed languages, k = n, but in statically typed languages k < n .

In order to create a realistic call-graph for an object-oriented program, we would like

to know, at compile-time, the set of possible methods that could be invoked at a particular

call-site. This should sound familiar, since that is why we are trying to generate the call-

graph in the first place. It is this circularity problem that makes interprocedural analysis

difficult to implement. Since such optimizations are not the primary focus of this thesis, I

will not go into great depth, but instead will give a brief overview of the process.

As an example of where interprocedural analysis detects optimization opportunities

that intraprocedural analysis does not, let us assume that the compiler is working on the

methods in Figure 2.2. In this example we assume a statically typed language. Notice that

the variables in G:/3 are statically typed and in particular, that variable k is guaranteed to be

bound to an instance of class K or one of its subclasses. That means that the class-set for k

is Vk = {K , M }. Furthermore, for this example we assume that every call-site for selector

5 in the entire application has an argument statically typed to be class K or class M. We will

show how interprocedural analysis will detect this fact and use it to avoid method dispatch.

Before generating code for any method, the compiler must generate the call-graph for

the application, during which it initializes and modifies the class-sets for each variable and

method. During this process, the compiler will compute the class-set of the single formal

argument to the selector S. This is accomplished by initially setting the set to be empty.

While creating the call-graph, the compiler will encounter call-sites for 5, and will have

maintained class-sets for the actual argument passed to 6. Each time such a call-site is

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

encountered, the class-set of the formal argument is set to the union of its current value and

the class-set of the actual argument at the call-site. Since we have assumed that the actual

argument at every call-site for S is statically typed to be class K or class M, the compiler

knows, before generating any code, that the formal argument obj for method H : or has the

class-set Voiy = { K , M } .

Now, suppose the compiler has completed forming the call-graph, and thus has ail the

class-sets for all the variables in the application. It now starts parsing method H : 5. The

first call-site, for selector {3, has receiver obj. This time, the compiler has a more refined

class-set than it did during intraprocedural analysis, since it knows that Vobj = {K, M}.

Obtaining the union of the possible-method sets for classes K and M, we get { K:/3 }, which

has size one and thus run-time dispatch can be avoided.

2.4 Receiver Class Prediction
Receiver class prediction relies on a different strategy than dataflow analysis. Instead of

looking at what methods are possible, it performs optimizations based on what is probable.

Since many more things are possible than are probable, dataflow analysis is in some ways

more conservative than receiver class predication. On the other hand, dataflow analysis is

deterministic, whereas receiver class prediction is heuristic.

Suppose the compiler knows somehow that at a particular call-site, the probability that

the receiver class is class C is 90%. It would be beneficial to take advantage of this fre

quency and somehow optimize the call-site for class C. This can be done by inserting a

class test into the code at the call-site. This test compares the current receiver class against

the (hard-coded) highly-probable class C. This test takes the form of an if..then..else block.

In the ’if’ portion (i.e. the classes are equal) the compiler can generate a JSR to whichever

method class C would invoke for the selector in question. In the ’else’ portion (i.e. the

classes are not equal), the compiler generates whatever code it would generate in the ab

sence of receiver class prediction. The exact nature of the code depends on what additional

optimizations the compiler can do, but at the very least it can fall back to generating the

code for run-time method dispatch.

As an example, suppose that method H:a from Figure 2.2 is being compiled, and that

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the compiler knows that it is 90% likely that the argument obj is an instance of class M

(we will discuss later how this information can be acquired). If we assume that no further

optimizations for this call-site are performed, the code for the j3 call-site would be expanded

to look like this:

if (class(obj) = ’M ’) then
return K:/?(args);

else
generate run-time method dispatch code;

end;

One important note to make here is that receiver class prediction works well in con

junction with dataflow analysis. In particular, within the ’else’ block, the class-set for obj

can be reduced by eliminating class M from it. As mentioned previously, the more refined

the class-sets for variables, the more likely that run-time method dispatch can be avoided.

In summary, this chapter has shown that run-time method dispatch can sometimes be

avoided by such techniques as static class hierarchy analysis, dataflow analysis or receiver-

class prediction. However, in general there is always a need for run-time method dispatch.

The rest of this thesis describes how method dispatch can be implemented efficiently.

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Part II

Single-Receiver Method Dispatch

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

As mentioned previously, a fair amount of research has been performed on method dis

patch for single-receiver languages [12, 13, 17, 23, 9, 20, 11, 10, 3, 16, 28]. However,

this research has concentrated almost entirely on non-reflexive languages. The next four

chapters together present one of the major contributions of this thesis: a broad category of

method dispatch techniques (called table-based techniques) for single-receiver languages

are extended to work for reflexive languages. During this process of generalizing the dis

patch techniques, it will be shown that they all perform very similar actions and can be

merged into an elegant and highly efficient framework.

Traditionally, table-based techniques have only been used for statically-typed languages,

in which a compiler can generate the dispatch table at compile-time and create an optimized

read-only data-structure for use at run-time. This strategy cannot be used for reflexive

languages because the data-structures representing dispatch information must be modifi

able at run-time. Furthermore, since reflexive languages are often highly interactive, the

recomputation of dispatch information at run-time should be as efficient as possible. In

statically-typed languages, the efficiency of the table generation algorithm was not partic

ularly important because it was a compile-time issue, not a run-time issue.

There are two separate but related components in a method dispatch technique: 1) the

actions required at each call-site in order to establish an address, and 2) the information that

needs to be maintained in order for the call-site specific actions to work. In short, a dispatch

technique consists of code and data. As was mentioned in Section 1.3, there are various

shades of reflexivity possible, and not all of the shades fit conveniently along a single

continuum. However, the most powerful form of reflexivity allows a string of characters

representing source code in the language in question to be evaluated without placing any

restrictions on which parts of the language can appear in the string. This encompasses

everything from invoking a method created from a string, to defining a new method within

a class, to adding an entirely new class to the environment and specifying where it exists in

the inheritance hierarchy. Many languages provide more restricted versions of reflexivity

because of the detrimental impact such flexibility has on method dispatch. It is the most

general form of reflexivity that we are referring to in this thesis.

There are a variety of reasons why research into reflexivity is important. First, reflexiv-

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ity provides a substantial degree o f additional expressive power. Second, there are certain

domains that benefit from or require reflexivity, such as pure object-oriented database lan

guages and real-time systems. On the other hand, reflexivity precludes almost all compile

time optimizations, which implies that efficient method dispatch is even more important in

such languages than in non-reflexive languages.

The approach taken in this thesis to make dispatch techniques applicable to reflexive

languages is to make them incremental. An incremental algorithm is one that does not re

quire complete-environment knowledge to work, and that can do small pieces of work over

time to build up the data-structures needed for dispatch. After each incremental modifica

tion, the data-structures are in a consistent state representing dispatch information for the

type hierarchy and method definitions seen so far. As new inheritance links and method

definitions are encountered, the data-structures are modified to reflect the potentially new

dispatch information. From this, it is obvious why an incremental algorithm is particularly

suited for reflexive languages.

Since these chapters deal with single-receiver languages, the method to invoke for a

particular call-site depends only on the name of the message and on the dynamic type of a

single “special” argument. In such languages, it is common to use a syntax that emphasizes

the difference between the “receiver” and the other arguments. Not only does the syntax

emphasize the semantic difference between receiver and normal arguments, it also provides

an intuitive semantic abstraction called message passing, where we can think of a method

invocation as being a request for a particular object (the dedicated receiver) to perform some

action (function). Contrast this with procedural languages in which there is no concept of

ownership of methods, making higher-level understanding of the program more difficult.

The standard procedural form is shown in Expression 2.1

a(o i,o2, ...,ofc) (2.1)

and the single-receiver object-oriented form is shown in Expression 2.2

O i .£t (o 2 , . . . , o j t) (2 . 2)

Note that the second form is a simply syntactic modification of the first. Implementations

of single-receiver object-oriented languages convert the second form into the first form with

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the use of a “hidden” first argument with a standardized name like this or self. More specif

ically, programmers do not need to explicitly indicate the existence of the first argument

because they have implicitly indicate it by defining the method within a particular class.

In the chapters making up this part of the thesis, we will often make references to

type/selector pairs, and use notation like {C , cr). In such references, “type” C refers to the

the dynamic type of the receiver object at a call-site, and “selector” cr refers to the name

of the message at the call-site. We will use capital roman letters to indicate types, and

lower-case greek letters to represent selectors.

Chapter 3 briefly describes all of the most commonly used single-receiver dispatch tech

niques, categorizing them as search-based, cache-based or table-based. After this introduc

tory chapter, Chapter 4 presents the Dispatch Technique Framework, or DTF. Chapter 5 is

in some ways the most important chapter in this part, for it is here that the fundamental

data-structures and incremental algorithms that provide for reflexivity are discussed. Fi

nally, Chapter 6 provides low-level details about how the published dispatch techniques of

Chapter 3 need to be modified in order to work in a reflexive environment, and shows the

process by which the commonality between the dispatch techniques was discovered.

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Single-Receiver Method Dispatch

Techniques

A variety of single-receiver method dispatch techniques have been proposed, each with its

advantages and disadvantages. The techniques can be divided into three broad categories:

search-based, cache-based and table-based. Search-based techniques determine the method

to invoke by performing a search through a collection of data-structures. Table-based dis

patch techniques pre-compute mappings from type/selector pairs to methods before dis

patch occurs. These precomputed mappings are stored in some form of table, although the

exact form and mechanism for accessing elements within the table varies from technique

to technique. Cache-based techniques do not precompute mappings, but instead rely on ei

ther local or global caches to determine whether the appropriate method (with respect to the

type/selector pair at the call-site) has already been computed and cached. If a cache-miss

occurs, some other technique (usually a search-based one) is used to find the appropriate

method, and the information (type, selector and method address) is cached so that subse

quent executions of the call-site can avoid searching.

Having given a brief description of the different kinds of single-receiver dispatch tech

niques, we will now present all commonly used techniques in each of the three categories.

This chapter does not represent any new research. Instead, it is a summary of existing

research that subsequent chapters will build upon. In order to clarify how each of the tech

niques work, we will use the inheritance hierarchy shown in Figure 3.1. For each technique,

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

we will show all of the actions and information necessary to dispatch a.5(), where a is a

variable whose static type is F and whose dynamic type is G. In the discussion, C is a type,

cr is a selector, and the notation C:a is used to indicate the method that is defined natively

in type C for selector cr. A type/selector pair is denoted (C, a).

number type selector
0 F 6
1 G 0
2 H a
3 K V

4 M

Figure 3.1: Sample Inheritance Graph

3.1 Search-based Techniques
3.1.1 ML: Method Lookup

In Method Lookup, which we will refer to as ML *, introduced for Smalltalk-80 in [17],

each type maintains a dictionary mapping the natively defined selectors to their associated

methods. These dictionaries are easily created during parsing. The search for the appropri

ate method starts in the method dictionary of C, the dynamic type of the receiver object.

If an entry for the selector in question exists, its associated method is used. Otherwise, the

dictionary of the parent of C is recursively examined, until a method is found or no more

parents exist. If a method is found, it is invoked, and if no message is found, a special

messageNotUnderstood method is invoked to warn the user. Figure 3.2 shows the method

dictionaries for Figure 3.1.

F:5 G G:(3 H H:5 K K: P M M: v

H:Ot

Figure 3.2: The Method Dictionaries for ML Dispatch

In dispatching a.5(), the method dictionary for type G is obtained (remember that the
'In [12, 13], and others, this is referred to as Dispatch Table Search (DTS)

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

dynamic type of a is G). Since selector 5 is not defined natively in G (and is thus not in the

method dictionary of G), the dictionary for the parent of G, type F, is obtained. Since this

dictionary does have an entry for 5, the associated method, F:£, is invoked.

Note that the above discussion of ML glossed over the issue of multiple code inheri

tance. It was stated that if a selector is not found in the dictionary of a class, the same action

is recursively applied to the parent of the class. Naturally, in an environment in which each

class can have multiple parents, this technique becomes a search through a tree, rather than

just the traversal of a linked-Iist. Furthermore, since multiple inheritance introduces the

concept of inheritance conflicts (see Section 1.2), special care must be taken. There are

two times at which inheritance conflicts can be detected: 1) time of dispatch, and 2) time

of definition. If conflicts are to be detected at time of dispatch, it is not sufficient to stop

searching as soon as the first method definition is found. Instead, all paths must be searched

in case there happens to be two or more definitions visible along different paths (in which

case a run-time error indicating an ambiguous method would be generated). On the other

hand, if conflicts are to be detected at the time of method definition, it implies that the

environment must maintain enough information to rapidly determine when such conflicts

occur. As we will see, such information is most conveniently and efficiently stored in a

table, and the environment ends up implementing a table-based dispatch technique for the

sole purpose of validating programs. Although not necessarily a bad idea, it begs the ques

tion of why one would use ML during run-time when the compiler already needs to create

a dispatch table anyway (and could thus use the table at run-time as well).

In general, the ML technique is space efficient but time inefficient, and is not usually

used by itself to implement dispatch. However, it is important because cache-based tech

niques usually use it when cache-misses occur. However, its practicality diminishes in the

face of multiple inheritance.

3.2 Cache-based Techniques
Each of the existing cache-based dispatch techniques is discussed in some detail in subsec

tions that follow, but a short summary of each of the techniques is provided first.

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. LC: Global Lookup Cache ([17, 23]) uses (C, cr) as a hash into a global cache,

whose entries store a class C, selector cr, and address A. During a dispatch, if the

entry hashed to by (C , cr) contains a method for the type/selector pair, it can be

executed immediately, avoiding the need for some cache-miss technique to be per

formed. However, if a cache-miss does occur, some other technique (like ML) is

called to obtain an address, after which the LC technique stores the resulting class,

selector and address into the global cache.

2. IC: Inline Cache ([9]) stores addresses at each call-site. The initial address at each

call-site invokes an arbitrary method of the appropriate name, but this does not lead to

incorrect execution because every method has a special method prologue that ensures

that the receiver class matches the expected class. If the test fails, then some cache-

miss technique (like LC or ML) is used to obtain an address, at which time the IC

technique modifies the call-site so that the next execution will jump to the method

dictated by the dynamic type of the receiver on the current execution of the call-site.

3. PIC: Polymorphic Inline Caches ([20]) store multiple addresses, modifying a special

call-site specific stub-routine. At compile-time, the stub-routines for each method

consist solely of a call to some cache-miss technique to determine an address, and

some code to regenerate the entire stub-routine. Each time the cache-miss technique

is called, the smb-routine is modified by adding an explicit class test to it. If the

test succeeds, a JSR (or inlining) is possible because the method to invoke has been

identified by the cache-miss technique. In this technique, a cache-miss only occurs

the first time a new dynamic type appears at a call-site.

3.2.1 LC: Global Lookup Cache

LC uses (C , cr) as a hash into a global cache, whose entries store a type C, selector cr, and

address A. During a dispatch, if the entry hashed to by (C , a) contains a method for the

expected type/selector pair, it can be executed immediately, avoiding ML. Otherwise, ML

is called to obtain an address and the resulting type, selector and address are stored in the

global cache.

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

As an example, suppose we wanted to use LC to dispatch a.5(). Suppose further that

our global cache, T, has room for 4 entries, is initially empty, and that the hash function

chosen is ((index(C)+index(cr)) mod 4. T[i] is the i th entry in the table, T[i].C is a type,

T[i].cr is a selector, and T[i].A is an address. For our example, we obtain the entry into the

global cache for C — G (the dynamic type of a) and a = 5. The hash function gives a

result of 1 + 0 = 1, so we check whether T[L].C = G and T[L].a = S. Assuming this is

the first call-site executed, the test will fail, so ML is called to perform a lookup for address

A, and the following assignments are made: T[1].C := G, T[l].cr := 5, and T \\] .A := A.

Finally, address A is called. Nov/, suppose that our call-site was within a for-Ioop. The

second time the call-site is encountered we once again hash to index 1, but this time the

comparison of type and selector within the table entry against the current type and selector

returns true, so the stored address can be executed, avoiding the expensive ML dispatch.

Figure 3.3 shows the lookup cache before and after this first call-site execution, where m l

represents the address of the 5 method in class F.

0 1 2 3 0 1 2 3

C= nil C= nil C= nil C= nil C= nil C= G C= nil C= nil
o = nil <T = nil <T = nil o = nil a = nil a = 8 O = nil o = nil
A= nil A= nil A= nil A = nil A= nil A= ml A= nil A = nil

a) uninitialized cache table b) after dispatching a. 5 0

Figure 3.3: The Lookup Cache before and after dispatching a.SQ

Obviously, the effectiveness of this technique is dependent on the size of the cache and

on the average number of times the same call-site is called. Unfortunately, these caches

would need to be prohibitively large to provide perfect hashing. Furthermore, thrashing

can occur due to the global nature of the cache. Even call-sites that are monomorphic in

nature (call-site always invokes same method) can incur multiple cache-misses if a different

call-site that hashes to the same index happens to be executed in alternation with this call-

site. Such situations are examples of hashing conflicts, and each time a conflict occurs, a

cache-miss technique must be called and the old result is lost.

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2.2 IC: Inline Cache

IC caches addresses at each call-site, and the most efficient implementation uses self

modifying code. Associated with each call-site is the address of the method which should

be invoked via an assembler language call routine. The initial address at each call-site in

vokes either a cache-miss technique like ML, which computes the proper address, or the

address of some heuristically determined applicable method address. The cache-miss code

then modifies the machine code by changing the ’call’ address from what it was before

to the new address (a call to the correct address for the current method). Subsequent ex

ecutions of the call-site invoke the previously computed method. Within each method, a

method prologue exists to ensure that the receiver type matches the expected type (if not,

the cache-miss technique is called to recompute the method address and modify the call-site

code to reflect the new address).

At call-site Method Prologue

call method373(obj, args); if (obj != Person) then
addr := ML(obj.type, cr);
modify address at call-site to be ’addr’
call addr(obj,args);

endif

Although IC reduces hashing conflicts compared to LC, they are still possible when the

receiver object at a particular call-site alternates between two or more different dynamic

types. Iterating over an array containing a heterogeneous collection of classes is a common

example of such thrashing, and is also a common activity in object-oriented programs. This

thrashing can sometimes be reduced if the method prologue code performs a subtype test

rather than a simple type-equality test, but the reduction in thrashing comes at the expense

of a more complicated test. Although the simple type-equality test is standard in various

language implementations, I am not aware of any languages that perform the subtype-test

version, and this may be an interesting area of future research. Hybrid approaches are also

possible, in which types are placed in related “groups” (either selector-specific or global)

and tests are performed on groups instead of types.

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2.3 PIC: Polymorphic Inline Cache

PIC extends IC by caching every computed address, rather than just the last one. This

avoids the primary disadvantage of IC, at call-sites where two (or more) receivers are

equally likely, resulting in a toggling of addresses (incurring LC or ML each time). PIC is

implemented somewhat differently than IC, since the compiler generates one stub-routine

for every call-site, and this same routine is always executed by the call-site. On the first

invocation of the stub-routine, ML is called. However, each time ML is called, the stub

is extended by adding code to compare subsequent receiver types against the current type,

providing a direct function call (or even code inlining) if the test succeeds.

PIC has two useful features that can provide even better performance. First, it is possi

ble to dynamically inline the code for the method within the stub-routine, removing even

the cost of function invocation. Second, it automatically maintains the set of dynamic types

actually used at each call-site. This information can be dumped after execution and used

in a second-pass optimizing compiler to generate partially filled stub-routines and inlined

code [8].

During the execution of the program, the stub routine generated by PIC for each call-site

will be dynamically modified (extended) every time it is executed, but initially it consists

of a block of code that does the following:

1. Calls a cache-miss technique to compute the method address, M , to execute for re

ceiver type T.

2. Executes self-modifying code that adds a test comparing the receiver type of subse

quent invocations (T) against the literal type for this invocation (#T)2.

3. Executes M(obj,args);

As an example, suppose the call-site ’obj.5(args)’ were encountered in the code. As

suming that the compiler could not avoid run-time method dispatch, it implements PIC

dispatch by generating, at the call-site, a JSR to stub0192 (i.e. some call-site specific func

tion). The stub0192 function initially looks like this:
2See Section 9.12 for alternative tests.

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

stub0192(obj, args)
T := type(obj);

M := ML(T,£);
extend stub0192 with a test for T = #T
return M(obj,args);

Note that the stub routine has hardcoded the selector references because it knows this

stub always refers to selector S. Furthermore, although the stub routine needs access to the

receiver object and arguments, this stub need not be a full-fledged function with its own

activation record (it can use the activation record from the call-site, since this routine is

called only from that specific call-site).

Now, suppose that the first time the call-site is encountered, ’obj’ is an instance of class

F. The JSR to stub0192 is executed, and after execution of the stub, the method F:5 has

been executed and the stub itself has been modified to look like this:

stub0192()
T := type(obj);
if (T = F) then

return F::J(obj,args);
else

M := ML(T,5);
extend stub0192 with a test for T = #T
return M(obj,args);

endif
end;

PIC is usually improved by having it use LC as its cache-miss technique. Although LC

might also fail, and require ML to be invoked, the addition of even a small LC reduces the

percentage of calls requiring ML to a very small number [12].

A disadvantage of PIC is the need for assembly-level code generation, since the avoid

ance of the extra activation record is only possible there. Furthermore, it may be necessary

to dynamically allocate function space for stub-routines on the heap and modify callsite

pointers as functions grow bigger, which may affect optimization and caching issues. Al

ternatively, a fixed amount of space could be allocated for stubs to grow into (which implies

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

some limit on how many types can be handled by the stub). This avoids the problems of

heap approaches but can end up wasting space and limits or precludes inlining.

Profiling Call-Site Class Distributions

In Section 2.4, we introduced the concept of receiver class prediction. Having now dis

cussed PIC, it is worth mentioning how call-site class frequencies can be computed for use

with receiver-class prediction.

The PIC technique is extremely useful for this purpose. A small amount of additional

code is added so that each time a particular conditional block is executed (i.e. dispatch

for a particular class), a count variable is incremented. The run-time environment pro

vides a mechanism for dumping all the call-site information and the associate frequencies.

Thus, call-site class frequency distributions are obtained by running the application using

this extended PIC dispatch (without doing any optimization). Just before the application

completes, the run-time environment stores to disk information for every call-site in the

application. In particular, the classes that occur at each call-site are recorded, along with

their relative frequency. The code is then recompiled, but this time the call-site information

is provided to the compiler. The compiler then knows the most common class(es) at each

call-site and performs receiver class prediction where appropriate.

3.3 Table-based Techniques
Each of the existing table-based dispatch techniques is discussed in some detail in subsec

tions that follow, but a short summary of each of the techniques is provided first.

1. STI: Selector Table Indexing ([7]) uses a a two-dimensional table in which both type

and selector indices are unique. This technique is not practical from a space perspec

tive and is never used in implementations.

2. SC: Selector Coloring ([10, 3]) compresses the two-dimensional STI table by allow

ing selector indices to be non-unique. Two selectors can share the same index as long

as no type recognizes both selectors. The amount of compression is limited by the

largest set of selectors recognized by a single class.

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. RD: Row Displacement ([11]) compresses the two-dimensional STI table into a one

dimensional master array. Behaviors are assigned unique indices in such a way

that when all selector rows are shifted to the right by the index amount, the two-

dimensional table has only one method in each column.

4. VTBL: Virtual Function Tables ([16]) have a different dispatch table for each class,

so selector indices are class-specific. However, indices are constrained to be equal

across inheritance subgraphs. Such uniqueness is not possible in multiple inheri

tance, in which case multiple tables are stored in each multi-derived class.

5. CT: Compact Selector-Indexed Dispatch Tables ([28]) separate selectors into one of

two groups. Standard selectors have one main definition and are only overridden

in subclasses. Any selector that is not standard is a conflict selector. Two different

tables are maintained, one for standard selectors and the other for conflict selectors.

The standard table can be compressed by selector aliasing and class sharing, and the

conflict table by class sharing alone. Class partitioning is used to allow class sharing

to work effectively.

During the discussion of the table-based techniques, we will provide example dispatch

tables based on the inheritance graph in Figure 3.1 on page 29. The exact structure of the

dispatch table depends on the dispatch technique. In our discussion, we will represent the

tables as global two dimensional tables. However, in an implementation, it is not neces

sary, and usually not desirable, to have global tables, since per-type or per-selector arrays

can improve data locality. In all table-based techniques, types and selectors are assigned

numbers which serve as indices into the dispatch table. We have chosen to index rows by

selectors and columns by types.

In this chapter, we will refer to the entry identified by class C and selector a as T[cr, C].

This notation is to be understood as shorthand for T[index(a), index(C)]. Furthermore, we

will often use L to represent selector indices, and K to represent class indices.

Two different kinds of index conflicts are possible. Selector index conflicts can occur in

certain dispatch techniques, when T[cr, C] returns an entry that does not represent selector

cr. Type index conflicts are also possible, occurring when T[cr, C] returns an entry that does

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

not represent type C. We will discuss how these conflicts are handled in the techniques in

which they arise.

3.3.1 STI: Selector Table Indexing

Selector Table Indexing is the most time efficient3, but space-inefficient, table-based dis

patch technique. It uses a two-dimensional table in which both type and selector indices

are unique. Even in non-static languages where it is possible to invoke a non-understood

message, no special code is necessary; the dispatch table stores the address of a special

error method for any type/selector pairs that do not have an associated method. Unfortu

nately, although this approach is fast, it is not feasible for even medium sized environments

because the space required is the product of the number of types and selectors. Table 3.1

shows how Figure 3.1 is represented using the STI technique. The algorithm for building

an STI dispatch table is shown in Algorithm 3.4.

selectors index F G H K M
S 0 F:5 F:<5 H:5 - -
P 1 - G:/J - K :p K:/3
a 2 - - H:q - -
u 3 - - - - M :v

Table 3.1: STI Dispatch Table

A simple, efficient algorithm to assign class and selector indices is easily implemented.

3.3.2 SC: Selector Coloring

Selector Coloring compresses the two-dimensional STI table by allowing selector indices to

be non-unique. Two selectors can share the same index as long as no type recognizes both

selectors. The amount of compression is limited by the largest set of selectors recognized

by a single type. Since this approach can be implemented by a graph coloring algorithm,

the selector indices are usually referred to as colors.

Table 3.1 can be colored to produce Table 3.2. Since no type understands both a and
3 Actually, although this technique requires the least number of machine instructions per call-site, this may

not correspond to faster dispatch because o f poorer caching effects due to the excessive amount of memory

required for the technique

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithms STI
L : = 1 ; K : = 1
fore;ach class C

K := K+I
index(C) := K
foreach selector er recognized by C

if index(S) is unassigned
L : = L + l
T[L][K] := methodFor(<x,C)

endif
endfor

endffor
end STI

Figure 3.4: Algorithm STI

/?, the rows for these two selectors can be merged into one. Similarly, the rows for 5 and u

can also be merged.

selectotrs index F G H K M
5, v 0 F :S F:6 H:S - M:u
a, p I - G:P H:a K :p K:p

Table 3.2: SC Dispatch Table

In languages where a message can be sent to an object that does not understand it (i.e.,

non-statically-typed languages), this approach is not quite as efficient as STI. In STI, a

message is not understood on ly if the entry in the table for the type/selector pair is not

associated with a meaningful method address. Recall that in this case it is initialized with

the address of a function that reports an appropriate error message. However, in the colored

table, two or more selectors cam share the same row, so the wrong message may be invoked.

As an example, suppose that a message is sent to an instance of class F with selector v.

Since selector v shares color 1 with selector S, the address in the table is (F ,S), from

Table 3.2. However, from Figure 3.1, class F does not understand selector v and so the

dispatch technique must some=how detect this.

This issue is resolved by adding a method prologue at the beginning of every method

definition, which tests the current selector (passed as a hidden argument in every method

invocation) against the expected selector (which is known at compile-time). If the compar-

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm SCstatic
"compute conflict table”
foreach selector cr

R := conflict table row for a
foreach selector cXi

if 3C that recognizes <xt-
add o~i to R.V

endif
endfor

endfor

"assign colors”
foreach row R in conflict table

index(cr) := smallest index not in R.V
endfor

end SCstatic

Figure 3.5: Algorithm SC-static

ison fails, an appropriate messageNotUnderstood error is generated. Otherwise, the rest of

the method code is executed.

A nonincremental algorithm for selector coloring is presented in [10] and summarized

in Figure 3.5. An incremental version is presented in [3] and discussed in detail in Sec

tion 6.3.2. The nonincremental algorithm for selector coloring is divided into two parts:

conflict table calculation, and color assignment. The algorithm relies on the concept of

a conflict table, and although it is an easy algorithm to implement, it is very unsuited to

reflexive languages due to its inefficiency.

• Conflict Table-, each row, r in a conflict table represents a particular selector, r.a, and

stores the set of selectors, r. V, that conflict with a. Two selectors conflict if any class

in the environment understands both.

3.3.3 RD: Row Displacement

Row Displacement compresses the two-dimensional STI table into a one-dimensional mas

ter array. Selectors are assigned unique indices in such a way that when each selector row is

shifted to the right by its index amount, the two-dimensional table has only one method in

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

each column. The table is then collapsed into a one-dimensional array. When dispatching,

the shift index of the selector and the index of the receiver type are added together to de

termine the index of the desired address within the master array. It is also possible to shift

types instead of selectors, as shown in [14]. However, it is observed in [11] that shifting

selectors yields better compression rates. Figure 3.6 shows how the type/selector table of

Table 3.1 can be compressed using this technique.

selector index
5 0 F:5 G:5 H:8 - -

P 2 - G:P - K:0 -
a 4 - - H:a - -
V 3 - - - - Mrv

5 P V a
master array 1 F:S G:5 H:5 G:|3 - K:p H:a Mrv -

Figure 3.6: RD Dispatch Table

In order to present an algorithm that computes an RD dispatch table, we need the fol

lowing terminology:

• Table-, the table, T, is a onedimensional master array. A selector index, L, and class

index, K, identify the entry T[K+L].

• Block: a block is a structure representing a contiguous collection of class indices. It

contains a starting index called start, and a block length called run.

• Row: a row structure contains a selector, a, and a collection of Blocks representing

all classes which use a. The number of such classes is referred to as the width of the

row. The primary block of a row is the block with the largest run.

• Free(s): The entries in the table T can be divided into two categories, used and

unused. All unused entries can be described by Blocks. That is, if entry T[zl] is used,

and entry T[z'+r] is the next used entry, a free block with start i and run r can be used

to represent all unused entries between these two entries. Free(s) is a doubly linked

list of all free blocks whose size is s. The method firstFree(s) returns the smallest

free block (across all freelists) whose size is greaterequal s. The method nextFree(F)

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

returns the next freeblock after F, unless F doesn’t have a next freeblock, in which

case it returns the result of calling firstFree(F.run+l).

• DRO sort order. The row structures are to be sorted in descending order based on

row width. All rows with width 1 are to be sorted in descending order based on the

start index of their primary block.

3.3.4 CT: Compact Selector-Indexed Dispatch Tables

Compact Selector-Indexed Dispatch Tables compress the STI table by using four differ

ent strategies: selector separation, selector aliasing, type partitioning, and type sharing.

Selector separation divides selectors into two groups: standard selectors have one main

definition and are only overridden in subtypes, and conflict selectors, which consist of all

selectors that are not standard. In Figure 3.1, selector j3 is a conflict selector, and all others

are standard. Two different tables are maintained, one for standard selectors, the other for

conflict selectors. Selector aliasing can be performed only on the standard selector table,

and relies entirely on types being sorted top-down and having at most one parent type. Note

that requiring a top-down sorting implies knowledge of the entire environment, and that CT

dispatch as presented in [28] is limited to single inheritance languages.

The CT technique obtains its excellent compression from two distinct mechanisms.

First, by relying on single inheritance and knowledge of all types in the environment, se

lector indices in the standard table are assigned on a per-type basis using a top-down or

dering of the type hierarchy. Before a selector is assigned an index, it is first checked to

determine if it already has an index. If so, it must be because the same selector exists in

some supertype and has already been assigned, so that index is used. Due to the nature

of selectors in the standard table, this never results in a selector being assigned different

indices in different types as long as the order in which selectors are traversed remains con

stant across types. The result of this is that all internal space in the STI table for standard

selectors is entirely removed (that is, the only unused space is at the end of each column).

The separation of selectors into standard and conflicting groups provides this selector alias

ing capability. Figure 3.8 shows the standard and conflict tables after selector aliasing has

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm RD
assign class indices in depth first preorder
create a Row structure for each selector cr
perform a DRO sort on the collection of Row structures
foreach row R with width > 1 (in DRO order)

L := unassigned
F := firstFree(R.primary.run)
while L is unassigned

max := F.run - R.primary.run
i := 0
while L unassigned and i < max do

L := F.start - R.primary.start + i
foreach non-primary block B in R

for K := B.start to B.start + B.run - 1
if T[L+K] is used

L := unassigned
break two levels

endif
endfor

endfor
i := i+1

end while
if L unassigned

F := nextFree(F)
endif

endfor
foreach block B in R

F := the freeblock containing entry T[L+B .start]
for K := B.start to B.start + B.run - 1

T[L+K] := methodFor(R.o\ classWithlndex(K))
endfor
update free lists (split F into two smaller freeblocks)

endfor
endfor
form a singly linked list o f every free entry in the master array
F := firstFree(l)
foreach row R with width = 1

K := R.primary.start
L := F.start K
T[L+K] := methodFor(R.<x, classWithlndex(K))
F := F.next

endfor
end RD

Figure 3.7: Algorithm RD

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

selectors index F G H K M
S, v 0 F:J F :6 H:5 - M:i/

a 1 - - H:a - -

selectors index F G j H K M
P 0 - G:0 - K:/3 K:p

Figure 3.8: CT Standard and Conflict Tables After Selector Aliasing

been performed.

selectors index F,G H K M selectors index F,G H K,M
5 , v 0 F:J H:J - ~M.iv a I - H:a

selectors index F G H K,M

P 0 - G:P - K:/3

Figure 3.9: CT Standard and Conflict Tables After Partitioning (ps = l , p c = 1)

Second, by allowing each type to partition its array of selector addresses into constant

size blocks (size ps for the standard table, and size pc for the conflict table), it is possible to

allow different types to share indices (on a per-partition basis) if the dispatch table entries

for all selectors in the partition for the two types are identical. However, a reduction in

table size does not necessarily imply a reduction in overall memory utilization, because

there is memory overhead involved in maintaining partitions, as discussed in [28]. Without

partitioning, type sharing will almost never provide any benefit, but with judicious choices

for partition sizes, this technique can use less space than any other. Figure 3.9 shows the

two standard tables (top two) and the single conflict table (bottom one) that result with

ps = 1 ,p c = 1, for Figure 3.1. Figure 3.10 shows the algorithm for computing the CT

dispatch tables.

3.3.5 VTBL: Virtual Function Tables

Virtual Function Tables ([16]) have a different dispatch table for each type, so selector

indices are type-specific, although they are constrained to be equal across inheritance sub

graphs. Since this constraint is not possible in multiple inheritance, each type stores multi-

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm CT
Order classes topdown
Separate selectors into standard and conflict sets

’’Standard Table Index Assignment”
K : = - l
foreach class C (ordered topdown)

L := -1
K := K+l
index(C) := K
foreach selector a recognized by C

L := L+l
index(S) := L
T[L,K] := methodFor(cr,C)

endfor
endfor

’’Conflict Table Index Assignment”
L K : = - l
foreach class C

K := K+l
index(C) := K
foreach selector cr recognized by C

if index(cr) is unassigned
L := L+l
index(S) := L

endif
T[L,K] := methodFor(cr,C)

endfor
endfor

Partition standard table into subarrays, each with ps elements
Partition conflict table into subarrays, each with pc elements

Within each partitioned subtable, merge identical columns together
end CT

Figure 3.10: Algorithm CT

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

pie tables; for selector a, type C has as many tables as there are root types4 for selector a.

Figure 3.11 shows the virtual function tables calculated by the compiler for Figure 3.1.

The compiler generates code consisting of a simple table lookup, which, at run-time,

finds the correct address to execute. The index into the table can be hard-coded by the com

piler in situations using single inheritance, but must be computed at run-time if support for

multiple inheritance is desired. For our example, dispatching a.SQ results in the compiler

generating the code:

addr := a->vtbl[0];
call addr;

since S has index 0. Note that each object instance contains a pointer to its virtual function

table. Since a is of dynamic type G, index 0 of the virtual function table for type G is

obtained as the address F:5.

F:5 G F:8 H H:5 K K:|3 M K: P

G: P H:a M: v

Figure 3.11: The VTBL’s for Figure 3.1

• Inheritance Paths: An inheritance path for the type/selector pair (C, a) is defined

as an ordered collection of classes Ci, C2 , C* in which C\ E parents(C) C,- E

parentsCCi-i), and E rootCIasses(cr). Multiple paths are induced by multiple

inheritance.

Figure 3.12 shows the code for creating VTBLs.

4 A root type for a selector is a type which defines the selector and has no supertypes that define the

selector.

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm VTBL
foreach selector cr

foreach class C (sorted top-down)
if a & selectors(C)

V := C.vtbl[0]
L := V.size
V[L] := methodFor(cr,C)
index(o\C) := L

else
foreach inheritance path Pi for (C, a)

if 3(7* in Pi
V := C.vtbl[i]
L := index(o\C)
V[L] := methodFor(cr,C)

endif
endfor

endif
endfor

endfor
end VTBL

Figure 3.12: Algorithm VTBL

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

A Framework for Table-Based Dispatch

Techniques

This chapter presents the Dispatch Technique Framework, or DTF, a collection of abstract

classes that define the data and functionality necessary to modify dispatch information in

crementally during environment modifications. Informally, an environment modification

is an action that requires that dispatch information be modified by recomputing the ap

propriate method to invoke for one or more type/selector pairs. Formally, an environment

modification is any of the following four actions:

1. adding a new method to an existing class.

2. removing a method from an existing class.

3. adding an inheritance link between two classes.

4. removing an inheritance link between two classes.

DTF provides new research in the following areas:

1. Data Structures: The framework identifies the method-set data structure, a critical

structure that allows inheritance management to be made incremental, allows de

tection and recording of inheritance conflicts, and maintains information useful in

compile-time optimizations.

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. Algorithms'. The framework demonstrates how inheritance management and main

tenance of dispatch information can be made incremental. A critical recursive algo

rithm is designed that handles both of these issues and recomputes only the infor

mation necessary for a particular environment modification. As well, the similarities

and differences between adding information to the environment and removing in

formation from the environment are identified, and the algorithms are optimized for

each.

3. Table-Based Dispatch: The framework identifies the similarities and differences be

tween the various table-based dispatch techniques. It shows how the method-set

data-structure and inheritance management algorithms can be used to allow incre

mental modification of the underlying table in any table-based dispatch technique.

It also introduces a new hybrid dispatch technique that combines the best aspects of

two existing techniques.

The method-set data structure, the incremental algorithms, and their ability to be used in

conjunction with any table-based dispatch technique results in a complete framework for

inheritance management and maintenance of dispatch information that is usable by both

compilers and run-time systems. The algorithms provided by the framework are incre

mental at the level of individual environment modifications. The following capabilities are

provided by the framework:

1. Inheritance Conflict Detection: In multiple inheritance, it is possible for inheritance

conflicts to occur when a selector is visible in a class from two or more superclasses.

The Framework detects and records such conflicts as they occur.

2. Dispatch Technique Independence: Clients of the framework provide to end-users the

capability to choose at compile-time or run-time the dispatch technique to use. Thus,

an end-user could compile a C++ program using virtual function tables, or selector

coloring, or any other table-based dispatch technique.

3. Dynamic Schema Evolution: The DT Framework provides efficient algorithms for ar

bitrary environment modification, including adding a class between classes already in

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

an inheritance hierarchy. Even more important, the algorithms handle both additions

to the environment and deletions from the environment.

4. Reflexive Languages: Dispatch tables have traditionally been created by compilers

and are usually not extendable at run-time. This implies that reflexive languages can

not use such table-based dispatch techniques. By making dispatch table modification

incremental, the DT Framework allows reflexive languages to use any table-based

dispatch technique, maintaining the dispatch table at run-time as the environment is

dynamically altered.

5. Separate Compilation: Of the five table-based dispatch techniques discussed in Sec

tion 3.3, three of them require knowledge of the complete environment. In situations

where library developers provide object files, but not source code, these techniques

are unusable. Incremental dispatch table modification allows the DT Framework to

provide separate compilation in all five dispatch techniques.

6. Compile-time Method Determination: It is often possible (especially in statically

typed languages) for a compiler to uniquely determine a method address for a spe

cific message send. The more refined the static typing of a particular variable, the

more limited is the set of applicable selectors when a message is sent to that variable.

If only one method applies, the compiler can generate a function call or inline the

method, avoiding runtime dispatch. The method-set data structure maintains infor

mation to allow efficient determination of such uniqueness.

The DT Framework consists of a variety of special purpose classes 1. Figure 4.1 shows

the class hierarchies. We describe the data and functionality that each class hierarchy needs

from the perspective of inheritance management and dispatch table modification. Clients

of the framework can specify additional data and functionality by subclassing some or all

of the classes provided by the framework.

The MethodSet hierarchy represents the different kinds of address that can be associ

ated with a type/selector pair (i.e. messageNotUnderstood, inheritanceConflict, or user-
‘in this discussion, we present the conceptual names o f the classes, rather than the exact class names used

in the C++ implementation.

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

>CC

EmptyMethodSet StandardMethodSct

N'ormalMethodSet

ConflictMethodSctFrccMcihodSct

ClassTable 2DTab!e

IDTable
ScparatcdTablcExtcndabIc2DTablc

2D-SIS ShiftcdSIS OuterSIS ClassSpeciflcSIS

AliasedSIS PartidoncdSISPlainSIS SeparatedSIS

CoIoredSIS

CIS

NonSharedCIS SharedCIS

OuterCIS

ParudonedClS SeparatedCIS

Figure 4.1: The DT Framework Class Hierarchy

specified method). The Table hierarchy describes the data-structure used to represent the

dispatch table, and provides the functionality needed to access, modify and add entries. The

SIS and CIS hierarchies implement methods for determining selector and class indices. Al

though these concepts are components of Tables, they have been separated out into classes

in their own right so as to allow the same table to use different indexing strategies.

Although the class hierarchies are what provide the DT Framework with its flexibil

ity and the ability to switch between different dispatch techniques at will, it is the high-

level algorithms implemented by the framework which are of greatest importance. Each of

these algorithms is a template method describing the overall mechanism for using inheri

tance management to incrementally maintain a dispatch table, detect and record inheritance

conflicts, and maintain class hierarchy information useful for compile-time optimizations.

They call low-level, technique-specific functions in order to perform fundamental opera

tions like table access, table modification and table dimension extension. The template

methods are discussed in detail in Chapter 5.

4.1 The DT Classes
The Environment, Class and Selector classes are not subclassed within the DT Framework

itself, but the MethodSet, Table, SIS and CIS classes are subclassed (clients of the Frame

work are free to subclass any DT class they choose). Figure 4.13 on page 79 shows the

internal state of the fundamental DT classes.

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.1.1 Environment, Class and Selector:
The DT Environment class acts as an interface between the DT Framework client and the

framework itself. However, since the client can subclass the DT Framework, the interface

is a white box, not a black one. Each client creates a unique instance of the DT Envi

ronment and as class and method declarations are parsed (or evaluated at run-time), the

client informs the Environment instance of these environment modifications by invoking

its interface operations. These interface operations are: Add Selector, Remove Selector,

Add Class Links, and Remove Class Links. The environment also provides functionality to

register selectors and types with the environment, save extended dispatch tables, convert

extended dispatch tables to dispatch tables, merge extended dispatch tables together and

perform actual dispatch for a particular type/selector pair.

Within the DT Framework, instances of Selector need to maintain a name. They do not

maintain indices, since such indices are table-specific. Instances of Class maintain a name,

a set of native selectors, a set of immediate superclasses (parent classes), a set of immediate

subclasses (child classes), and a pointer to the dispatch table (usually, a pointer to a certain

starting point within the table, specific to the class in question). Finally, they need to

implement an efficient mechanism for determining whether another class is a subclass.

4.1.2 Method-sets:

The MethodSet hierarchy is in some ways private to the DT Framework, and language im

plementors that use the DT Framework will usually not need to know anything about these

classes. However, method-sets are of critical importance in providing the DT Framework

with its incremental efficiency and compile-time method determination. For a given selec

tor, a method-set implicitly represents the set of all classes that share the same method for

that selector. Only one class in each of these sets natively defines the selector, and this class

is referred to as the defining class of the method-set.

The Table class and its subclasses represent extended dispatch tables, which store Meth

odSet pointers instead of addresses. By storing method-sets in the tables, rather than simple

addresses, the following capabilities become possible:

1. Localized modification of the dispatch table during environment modification so that

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

only those entries that need to be will be recomputed.

2. Efficient inheritance propagation and inheritance conflict detection.

3. Detection of simple recompilations (replacing a method for a selector fc>y a different

method) and avoidance of unnecessary computation in such situations.

4. Compile-time method determination.

Every entry of an extended dispatch table represents a unique type/seleetor pair, and

contains a MethodSet instance, even if no user-specified method exists for the type/selector

pair in question. Such empty entries usually contain a unique instance of EmptyMethodSet,

but one indexing strategy uses FreeMethodSet instances, which represent contiguous blocks

of unused table entries. Instances of both of these classes have a special methodNotUnder-

stood address associated with them. Non-empty table entries are StandardMethodSets, and

contain a defining class, selector, address and a set of child method-sets. 'The Normal-

MethodSet subclass represents a user-specified method address, and the ConfiictMethodSet

subclass represents an inheritance conflict that occurred due to multiple inheritance.

Associated with standard method-sets is the concept of dependent classes. F o r a method-

set M representing type/selector pair {C, a), the dependent classes o f M consist of all

classes which inherit selector a from class C. By ignoring non-defining dependent classes,

a method-set hierarchy for each selector can be maintained, which allows th e compiler to

determine which methods are uniquely determined at compile-time (thus avoiding run-time

dispatch and allowing for inlining).

Each selector a defined in the environment generates a method-set inheritance graph,

which is an induced subgraph of the class inheritance hierarchy, formed by removing all

classes which do not natively define a. Method-set hierarchy graphs are what allow the DT

Framework to perform compile-time method determination. These graphs can be main

tained by having each method-set store a set of child method-sets. For a. method-set

M with defining class C and selector a, the child method-sets of M are "the method-

sets for selector cr and classes Ct- immediately below C in the method-set: inheritance

graph for a. Figure 4.2 shows a small inheritance hierarchy and the methiod-set hier-

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

archies obtained from it for selectors a and /3. For this hierarchy, the method-sets are:

(A, a, {A}), (B, a , {B, C}) , (D, a , {£}>, (E, a , {E}), (A, /?, {A, B , £ }) , (C, /?, {C, £>»

a
A:a

E :aBra

A:p

D :a

C:p

class hierarchy method-set hierarchies fora and p

Figure 4.2: An Inheritance Hierarchy And Its Associated Method-set Hierarchies

The concept of dependent classes is what motivated us to name our fundamental datas-

tructure a method-set, since the inheritance hierarchy can be divided into a set of mutually

exclusive classes (where these sets are selector-dependent). However, note that a method-

set does not explicitly store its dependent classes; instead, the defining class and selector

stored in the method-set provide enough information to compute the dependent classes by

looking at appropriate entries in the dispatch table.

4.1.3 Tables:

Each Table class provides a fundamental structure for storing method-sets, and maps the

indices associated with a type/selector pair to a particular entry in the table structure. Each

of the concrete table classes in the DT Framework provides a different underlying table

structure. The only functionality that subclasses need to provide is that which is dependent

on the structure. This includes table access, table modification, and dynamic extension of

the selector and class dimensions of the table.

The 2DTable class is an abstract superclass for tables with orthogonal class and selector

dimensions. For example, STI, SC and CT use subclasses of 2DTable. Rows represent the

selector dimension, and columns represent the class dimension. The Extendable2DTable

class can dynamically grow in both selector and class dimensions as additional elements

are added to the dimensions. The FixedRow2DTable dynamically grows in the class di

mension, but the size of the selector dimension is established at time of table creation, and

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

cannot grow larger.

The concrete lDTable class represents tables in which selectors and classes share the

same dimension. For example, RD uses a lDTable. Selector and class indices are added

together to establish an entry within this one dimensional table.

The OuterTable class is an abstract superclass for tables which contain subtables. Most

of the functionality of these classes involves requesting the same functionality from a par

ticular subtable. For example, requesting the entry for a type/selector pair involves de

termining (based on selector index) which subtable is needed, and requesting table access

from that subtable. Individual selectors exist in at most one subtable, but the same class

can exist in multiple subtables. For this reason, class indices for these tables are dependent

on selector indices (because the subtable is determined by selector index). For efficiency,

selector indices are encoded so as to maintain both the subtable to which they belong, as

well as the actual index within that subtable. The PartitionedTable class has a dynamic

number of FixedRow2DTable instances as subtables. A new FixedRow2DTabIe instance

is added when a selector cannot fit in any existing subtable. The SeparatedTable class has

two subtables, one for standard selectors and one for conflict selectors. A standard selec

tor is one with only one root method-set (a new selector is also standard), and a conflict

selector is one with more than one root method-set. A root method-set for {C , a) is one in

which class C has no superclasses that define selector a. Each of these subtables can be an

instance of either ExtendabIe2DTable or PartitionedTable. Since PartitionedTables are also

outer tables, such implementations express tables as subtables containing subsubtables.

4.1.4 Selector Index Strategy (SIS):

Each table has associated with it a selector index strategy, which is represented as an in

stance of some subclass of SIS. The OuterTable and lDTable classes have one particular

selector index strategy that they must use, but the 2DTable classes can choose from any of

the 2D-SIS subclasses.

Each subclass of SIS implements Algorithm Determine Selector Index, which provides

a mechanism for determining the index to associate with a selector. Each SIS class main

tains the current index for each selector, and is responsible for detecting selector index

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

conflicts. For example, in the SC algorithm, two selectors may share a common color

index if the set of classes recognizing one selector is mutually exclusive from the set of

classes recognizing the other selector. However, if a new method is added for one selector

in a type that already has a method for the other selector, then a selector index conflict

will occur. When such conflicts are detected, a new index must be determined that does

not conflict with existing indices. Algorithm Determine Selector Index is responsible for

detecting conflicts, determining a new index, storing the index, ensuring that space exists

in the table for the new index, moving method-sets from the old table locations to new table

locations, and returning the selector index to the caller.

The abstract 2D-SIS class represents selector index strategies for use with 2D-Tables.

These strategies are interchangeable, so any 2D-Table subclass can use any concrete sub

class of 2D-SIS in order to provide selector index determination. The PlainSIS class is a

naive strategy that assigns a unique index to each selector. The ColoredSIS (used in SC)

and AliasedSIS (used in CT) classes allow two selectors to share the same index as long as

no class in the environment recognizes both selectors. They differ in how they determine

which selectors can share indices. AliasedSIS is only applicable to languages with single

inheritance.

The ShiftedSIS class provides selector index determination for tables in which selectors

and classes share the same dimension. This strategy implements a variety of auxiliary

functions which maintain doubly-linked freelists of unused entries in the one-dimensional

table. These freelists are used to efficiently determine a new selector index. The selector

index is interpreted as a shift offset within the table, to which class indices are added in

order to obtain a table entry for a type/selector pair. This class is used by RD.

The ClassSpecificSIS assigns selector indices that depend on the class. Unlike in the

other strategies, selector indices do not need to be the same across all classes, although

two classes that are related in the inheritance hierarchy are required to share the index for

selectors understood by both classes. This class is used by VTBL.

The PartitionedSIS class implements selector index determination for PartitionedTable

instances. When selector index conflicts are detected, a new index is obtained by asking a

subtable to determine an index. Since FixedRow2D subtables of PartitionedTable instances

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

are not guaranteed to be able to assign an index, all subtables are asked for an index until

a subtable is found that can assign an index. If no subtable can assign an index, a new

subtable is dynamically created.

The SeparatedSIS class implements selector index determination for SeparatedTable

instances. A new index needs to be assigned when a selector index conflict is detected

or when a selector changes status from standard to conflicting, or vice-versa. Such index

determination involves asking either the standard or conflict subtable to find a selector

index.

4.1.5 Class Index Strategy (CIS):

Each table has associated with it a class index strategy, which is represented as an instance

of some subclass of CIS. The OuterTable and lDTable classes have one particular class

index strategy that they must use, but the 2DTabIe classes can choose from either of the

2D-CIS subclasses.

Each subclass of CIS implements Algorithm Determine Class Index, which provides

a mechanism for determining the index to associate with a class. Each CIS class main

tains the current index for each class, and is responsible for detecting class index conflicts.

When such conflicts are detected, a new index must be determined that does not conflict

with existing indices. Algorithm Determine Class Index is responsible for detecting con

flicts, determining a new index, storing the index, ensuring that space exists in the table

for the new index, moving method-sets from old table locations to new table locations, and

returning the class index to the caller.

The NonSharedCIS class implements the standard class index strategy, in which each

class is assigned a unique index as it is added to the table. The SharedCIS class allows two

or more classes to share the same index if all classes sharing the index have exactly the

same method-set for every selector in the table.

The PartitionedCIS and SeparatedCIS classes implement class index determination for

PartitionedTable and SeparatedTable respectively. In both cases, this involves establishing

a subtable based on the selector index and asking that subtable to find a class index.

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2 Incremental Table-based Method Dispatch
All of the table-based techniques can be implemented using the DT Framework. However,

due to the non-incremental nature of the virtual function table technique (VTBL), an incre

mental implementation of VTBL would be quite inefficient, so the current implementation

of the framework does not support VTBL dispatch. All other techniques are provided, and

the exact dispatch mechanism is controlled by parameters passed to the DT Environment

constructor. The parameters indicate which table(s) to use, and specify the selector and

class index strategies to be associated with each of these tables.

1. STI: uses Extendable2DTable, PlainSIS, and NonSharedCIS.

2. SC: uses Extendable2DTable, ColoredSIS, and NonSharedCIS.

3. RD: uses lDTable, ShiftedSIS and NonSharedCIS.

4. VTBL: uses ClassTable, ClassSpecificSIS and NonSharedCIS.

5. CT: uses a SeparatedTable with two PartitionedTable subtables, each with Fixed-

Row2DTable subsubtables. The selector index strategy for all subsubtables of the

standard subtable is AliasedSIS, and the strategy for all subsubtables of the conflict

subtable is PlainSIS. All subsubtables use SharedCIS.

6. ICT: identical to CT, except that the standard subtable uses ColoredSIS instead of

AliasedSIS. This is a new dispatch technique, and all it required was the creation of

a class that inherits from a particular parent and defines a constructor that creates the

appropriate SIS instances.

7. SCCT: identical to CT, except that both standard and conflict subtables used Col

oredSIS (instead of AliasedSIS and PlainSIS respectively). This is a new dispatch

technique, and all it required was the creation of a class that inherits from a particular

parent and defines a constructor that creates the appropriate SIS instances.

The last two techniques are examples of what the DT Framework can do to combine

existing techniques into new hybrid techniques. For example, ICT dispatch uses selector

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

coloring instead of selector aliasing to determine selector indices in the standard table, and

is thus applicable to languages with multiple inheritance. Even better, SCCT uses selector

coloring in both standard and conflict tables (remember that the CT dispatch uses STI-style

selector indexing in the conflict table).

In addition to providing each of the above dispatch techniques, the framework can be

used to analyze the various compression strategies introduced by CT dispatch in isolation

from the others. For example, a dispatch table consisting of a PartitionedTable, whose

FixedRow2DTable subtables each use PlainSIS and SharedCIS indexing strategies, allows

us to determine how much table compression is obtained by class sharing alone. Many

variations based on SeparatedTable and PartitionedTable, their subtables, and the associated

index strategies, are possible.

4.3 Efficiency Issues At Compile-time and Run-time
Both compilers and run-time systems benefit equally from the dispatch technique indepen

dence provided by the DT Framework. In addition, the framework provides each of them

with additional useful functionality.

4.3.1 Compilers

The DT Framework provides compilers with the following advantages: 1) maintenance of

inheritance conflicts, 2) compile-time method determination, and 3) the ability to perform

separate compilation.

In languages with multiple inheritance, it is possible for inheritance conflicts to occur

when a class with no native definition for a selector inherits two distinct methods for the

selector from two or more superclasses. For the purposes of both efficiency and software

verification, compile-time detection of such conflicts is highly desirable.

One of the most substantial benefits that the DT Framework provides to compilers is

the recording of information needed to efficiently determine whether a particular class/sel

ector pair is uniquely determined at compile-time. In such cases, the compiler can avoid

run-time method dispatch entirely, and generate an immediate function call or even inline

the code. The DT Framework can provide this functionality because the extended dispatch

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

table allows one to determine the information stored in an SCHA table (from Section 2.2)

without having to explicitly maintain the set of methods for each type/selector pair.

Another powerful capability provided to compilers by the DT Framework is separate

compilation. Each library or collection of related classes can be compiled, and an extended

dispatch table stored with the associated object code. At link-time, a separate DT Envi

ronment for each library or module can be created from the stored dispatch tables. The

linker can then pick one such environment (usually the largest) and ask that environment to

merge each of the other environments into itself. This facility is critical in situations where

a library is being used for which source code is not provided. Since certain dispatch table

techniques require the full environment in order to maintain accurate tables (i.e. SC, RD

and CT), library providers who do not want to share their source code need only provide

the inheritance hierarchy and selector definition information needed by the DT Framework.

Finally, note that although it is necessary to use the extended dispatch table to incre

mentally modify the inheritance information, it is not necessary to maintain the extended

dispatch table at run-time in non-reflexive compiled languages. Once linking is finished,

the linker can ask the DT Environment to create a simple dispatch table from the extended

dispatch table, and this dispatch table can be stored in the executable for static use at run

time.

4.3.2 Run-time Systems

The DT Framework provides run-time systems with: 1) table-based dispatch in reflexive

languages, 2) dynamic schema evolution, and 3) inheritance conflict detection.

The utility of the DT Framework is fully revealed when it is used by run-time systems.

Because of the efficiency of incremental inheritance propagation and dispatch table modifi

cation, it can be used even in heavily reflexive languages like Smalltalk ([17]) and Tigukat

([26]). However, this functionality is provided at the cost of additional space, because

an extended dispatch table must be maintained at run-time, rather than a traditional dis

patch table containing only addresses. Note also that without additional space utilization,

dispatch using an extended dispatch table is more expensive than normal table dispatch be-

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

cause of the indirection through the method-set stored at a dispatch table entry in order to

obtain an address. By doubling the table size, this can be avoided by having the extended

dispatch table store both a MethodSet pointer and an address. In dispatch techniques like

RD and CT that are space-efficient, this doubling of size may be worth the improvements

in dispatch performance.

Some mechanism to support dynamic schema evolution is necessary to provide lan

guages with full-fledged schema-evolution. The DT Framework allows arbitrary class hi

erarchy links to be added and removed no matter what the current state of the classes.

Finally, the framework allows inheritance conflicts to be detected at the time they are

produced, rather than during dispatch. This allows reflexive languages to return error in

dicators immediately after a run-time environment modification instead of later when dis

patch fails. A common complaint with reflexive languages is a lack of timely error notifi

cation; the DT Framework provides a partial solution to this.

4.4 Performance Results
In the previous sections, we have described a framework for the incremental maintenance

of an extended dispatch table, using any table-based dispatch technique. In this section,

we summarize the results of using the DT Framework to implement STI, SC, RD, ICT and

SCCT dispatch and generate extended dispatch tables for a variety of object-oriented class

libraries.

In order to test the algorithms, we can model a compiler or run-time interpreter with a

simple parsing program that reads input from a file. Each line of the file is either a selector

definition (consisting of a selector name and class name), or a class definition (consisting

of a class name and a list of zero or more parent class names). The order in which the

class and selector definitions appear in this file represent the order in which a compiler or

run-time system would encounter the same declarations.

In [11], the effectiveness of the non-incremental RD technique was demonstrated on

twelve real-world class libraries. We have executed the DT algorithms on this same set of

libraries in order to determine what effects dispatch technique, input order and library size

have on per-invocation algorithm execution times and on the time and memory needed to

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

create a complete extended dispatch table for the library in question. The cross-product of

technique, library and possible input ordering generates far too much data to present here,

so we have chosen two representative libraries from [11], Parcplacel and Geode, as well

as the change log from a Smalltalk programmer in a company called Biotools. Table 4.1

summarizes some useful statistics for these classes.

Library C S M m P B
Biotools
Parcplacel
Geode

493
774

1318

4052
5086
6549

11802
178230
302709

5931
8540

14194

1.0
1.0
2.1

132
401
795

Table 4 .1: Statistics For Various Object-Oriented Environments

In the table, C is the total number of classes, S is the total number of selectors, M is

the total number of legitimate class-selector combinations, m is the total number of defined

methods, P is the average number of parents per class, and B is the maximum number of

selectors recognized by any one class (c.f. [11]). Note that only Geode supports multiple

inheritance.

Of the 15 different input orderings we analyzed, we present three, a non-random order

ing that is usually best for all techniques and libraries, a non-random ordering that is the

worst of all non-random orderings, and our best approximation of a natural ordering. By

natural ordering, we mean the ordering of class and selector definitions that would occur

during the development of the hierarchy in question. In the case of the Biotools hierarchy,

the natural ordering is easily obtained, since Smalltalk maintains a change log of every class

and selector defined, in the order they are defined. For the ParcPlace and Geode libraries,

we used a completely random ordering of the classes and selectors as a natural ordering,

since no ordering information is available.

Table 4.2 presents the total time and memory requirements for each of these data sam

ples, applied to each of the techniques on the best, worst and natural (real) input orderings.

The DT code is implemented in C++, was compiled with g++ -02, and executed on a

Sparc-Station 20/50. This code is publicly available from ftp://ftp.cs.ualberta.ca/pub/Dtf.

Overall execution time, memory usage and table fill-rates for the published non-incremental

versions are provided for comparison. We define fill-rate as the percentage of total table

entries having user-defined method addresses (including addresses that indicate inheritance

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ftp://ftp.cs.ualberta.ca/pub/Dtf

[| Timings (seconds) Memory (MBytes)
Library Order || STI SC RD ICT SCCT STI SC RD ICT SCCT

best 1 5-7 3 . 5 5 . 7 6 . 7 1 0 . 7 1 0 . 6 1 . 2 1 . 0 1 . 3 1 . 0
Biotools worst 1 1 . 4 7 . 0 1 0 . 9 1 1 . 4 1 1 . 6 1 1 . 3 1 . 2 1 . 2 1 . 3 1 . 0

natural | 1 8 . 3 1 3 . 8 2 0 . 2 2 1 . 9 2 2 . 5 1 0 . 7 1 . 1 1 . 1 1 . 8 1 . 0
best 1 8 ' 6 7 . 2 9 . 3 1 6 . 9 1 8 . 3 2 0 . 1 2 . 7 2 . 6 1 . 9 1 . 6

Parc I worst 2 3 . 4 3 0 . 5 1 2 6 . 0 3 7 . 2 3 4 . 9 2 0 . 6 3 . 0 4 . 2 2 . 2 1 . 8
natural | 2 4 . 2 2 8 . 0 1 0 6 4 . 0 7 3 . 2 7 7 . 3 2 0 . 1 3 . 1 5 . 6 2 . 6 2 . 1
best 1 2 5 . 3 2 7 . 1 133 . 1 6 1 . 4 6 8 . 4 4 4 . 5 8 . 7 7 . 0 4 . 8 4 . 3

Geode worst 5 9 . 9 8 4 . 3 9 3 7 . 0 1 2 5 . 7 1 3 3 . 4 4 4 . 8 8 . 9 1 1 . 8 5 . 6 5 . 0
natural | 6 7 . 4 7 5 . 7 6 0 3 2 . 0 __157 .7 1 7 4 . 1 4 4 . 3 9 . 0 13 .9 8 . 3 6 . 8

Table 4.2: General Time and Space Results for the DT Framework

conflicts). Note that in the case of CT, this definition of fill-rate is misleading, since class-

sharing allows many classes to share the same column in the table2.

In [3], the incremental algorithm for SC took 720 seconds on a Sun 3/80 when applied

to the Smalltalk-80 Version 2.5 hierarchy (which is slightly smaller than the Parcplacel

library presented in Table 4.2), where this time excludes the processing of certain special

classes. The DT Framework, applied to all classes in this library, on a Sun 3/80, took 113

seconds to complete. No overall memory results were reported in [3] (DT uses 2.5 Mb), but

their algorithm had a fill-rate within 3% of optimal (the maximum total number of selectors

understood by one class is a minimum on the number of rows to which SC can compress

the STI table). Using the best input ordering, the DT algorithms have a fill-rate within 1%

of optimal.

In [11], non-incremental RD is presented, and the effects of different implementation

strategies on execution time and memory usage are analyzed. Our current DT implementa

tion of RD is roughly equivalent to the implementation strategies DIO and SI as described

in that paper. Implementing strategies DRO and MI, which give better fill-rates and per

formance for static RD, requires complete knowledge of the environment. Their results

were for a SPARCstation-20/60, and were 4.3 seconds for Parcplacel, and 9.6 seconds

for Geode. Total memory was not presented, but detailed fill-rates were. They achieved a

99.6% fill-rate for Parcplacel and 57.9% for Geode (using SI)- Using the input ordering that

matches their ordering as closely as possible, our algorithms gave fill-rates of 99.6% and

58.3%. However, fill-rates for the random ordering were 32.0% and 20.6% respectively.
2 A more accurate measure o f fill-rate is possible, but is not relevant to this thesis. So as not to misrepresent

data, we do not describe CT fill-rates here.

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In [28], non-incremental CT is presented, with timing results given for a SPARCsta-

tion-5. A timing of about 2 seconds for Parcplacel can be interpolated from their data, and

a memory consumption of 1.5 Mb. Results for Geode were not possible because Geode

uses multiple inheritance. In the DT Framework, we use selector coloring instead of se

lector aliasing, which removes the restriction to languages with single inheritance. On a

SPARCstation-5, the DT algorithms run in 21.1 seconds using 1.9 Mb when applied to

Parcplacel, and run in 70.5 seconds using 4.8 Mb when applied to Geode.

We have also estimated the memory overhead incurred by the incremental nature of the

DT Framework. The data maintained by the Environment, Class and Selector classes is

needed in both static and incremental versions, and only a small amount of the memory

taken by Tables is overhead, so the primary contributor to incremental overhead is the

collection of MethodSet instances. The total memory overhead varies with the memory

efficiency of the dispatch technique, from a low of 15% for STI, to a high of 50% for RD

and SCCT.

4.4.1 Input Order

In order to obtain the statistics presented in Figure 4.5 to Figure 4.8, a simple driver pro

gram was written which creates an instance of the DT Environment and parses an input

file. Each line of the input file contains one of four directives (add/remove a selector for

a class, or add/remove class hierarchy links). Thus, each line results in the invocation of

one of the four DT Environment interface algorithms: Add Selector, Remove Selector, Add

Class Links or Remove Class Links. Timings presented here are in milliseconds, and re

fer to the total user and system time taken to parse the entire input file and incrementally

build an extended dispatch table for the environment. The experiments were performed on

a SparcStation-20/50 with 160Mb of RAM running SunOS4.1.4. The DT source code was

compiled using g++ -02. Some caveats on the timings should be noted. Relative perfor

mance results, in terms of execution speed, between the various dispatch techniques, are

not representative of the fastest possible times. In general, none of the techniques have been

optimized, and it is expected that a careful profiling will reveal many ways in which the

overall framework, and the specific dispatch technique implementations, can be improved.

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

On the other hand, fill-rate performance between techniques is optimal, but is discussed

elsewhere ([28, 11]) so is not readdressed here.

Not surprisingly, the order in which the environment is parsed can have a substantial

effect on both execution performance and dispatch table fill-rate, given the incremental na

ture of the DT algorithms. In order to measure this effect, each of the library environments

of Table 4.1 was ordered in multiple ways, and the DT algorithms were run on each in

put variation to establish timings and fillrates. From these experiments, it is possible to

establish the optimal ordering for storing static libraries, as well as indicate how expen

sive random orderings are in reflexive languages. We have divided each input ordering

using a primary ordering and a secondary ordering. The primary ordering determines how

class definitions and selector definitions are intermixed. Native selectors can be defined

immediately after each class definition, all selector definitions can occur after all class def

initions, or all class definitions can occur after all selector definitions. Within each primary

ordering, a secondary ordering establishes the order in which individual items (classes or

selectors) appear. Classes can be ordered top-down, bottom-up or randomly. Selectors can

occur by ordering the classes in various ways and and putting all native selectors for each

class together, or can be grouped according to name (all selectors of the same name appear

together). The DT Framework has been tested on the following input orderings:

1. CSD: classes are ordered top-down and all native selectors for each class occur im

mediately after the class definition

2. CSU: classes are ordered bottom-up and all native selectors for each class occur

immediately after the class definition

3. CSR: classes are ordered randomly and all native selectors for each class occur im

mediately after the class definition

4. CDSD: all class definitions occur before any selector definition. Classes are defined

by ordering them top-down. The order in which selectors appear is determined by

ordering classes top-down and defining all native selectors for each class in this or

dering together, before native selectors for others classes in the ordering.

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. CDSU: like CDSD except selectors are defined by ordering classes bottom-up and

putting all native selectors for each class in this order together.

6. CDSR: like CDSD except selectors are defined by ordering classes randomly and

putting all native selectors for each class in this order together.

7. CUSD: all class definitions occur before any selector definition. Classes are defined

by ordering them bottom-up. The order in which selectors appear is determined

by ordering classes top-down and defining all native selectors for each class in this

ordering together, before native selectors for other classes in the ordering.

8. CUSU: like CUSD except selectors are defined by ordering classes bottom-up and

putting all native selectors for each class in this order together.

9. CUSR: like CUSD except selectors are defined by ordering classes randomly and

putting all native selectors for each class in this order together.

10. CRSD: all class definitions occur before any selector definition. Classes are defined

by ordering them randomly. The order in which selectors appear is determined by

ordering classes top-down and defining all native selectors for each class in this or

dering together, before native selectors for other classes in the ordering.

11. CRSU: like CRSD except selectors are defined by ordering classes bottom-up and

putting all native selectors for each class in this order together.

12. CRSR: like CRSD except selectors are defined by ordering classes randomly and

putting all native selectors for each class in this order together.

13. RDD: all classes are defined before any selector, and classes are ordered top-down.

All definitions for the same selector occur together, and selectors occur by sorting

them in descending order based on the number of classes that recognize them (i.e.,

selectors recognized by more classes are defined before those recognized by fewer).

Note that the RDD ordering is the closest to the optimal ordering identified by [11]

for RD dispatch.

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

14. RDU: like RDD except that classes are ordered bottom-up (selectors appear in the

same order they do in RDD).

15. RND: the totally random ordering — the order of class and selector definitions is

completely random.

Due to the number of combinations possible, we do not present results for every com

bination of dispatch technique, library and input ordering in this thesis. Instead, we have

chosen representative examples. We will focus on SC dispatch and the Parcplacel library,

whose graphs are, for the most part, representative of other techniques and libraries.

The results have been divided into two subsections. In the first, we determine which

input ordering provides the best execution time and fill-rate performance. This is useful

because all object-oriented languages, reflexive or not, provide code reuse via libraries.

The DT algorithms can be used to create an extended dispatch table for each library. This

table would be stored with the library and loaded as the initial extended dispatch table when

application code is to be compiled. Thus, application code would incrementally modify a

precomputed table. The time taken for the DT algorithms to create a table for a library

represents the amount by which compilation would slow down if the D T algorithms were

used by the compiler. The second subsection presents results on the effects of random

input orderings on execution time and fill-rate, including per-modification timings. These

timings represent how long the execution of a run-time system would be delayed each time

a selector or class is added at run-time.

Static Input Orderings

There are two ways in which input order affects execution time. First, certain orderings

will require less inheritance propagation than others. For example, an input ordering in

which selectors are defined based on top-down class order will require much more inheri

tance propagation than an ordering in which selectors are defined based on bottom-up class

ordering (the former order must propagate method-sets that are subsequently overridden).

Second, certain orderings will require fewer calls to Algorithm Determine Selector Index.

Since Algorithm Determine Selector Index is usually the most expensive algorithm in the

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

DT Framework, avoiding it is desirable. Unnecessary calls to Algorithm Determine Se

lector Index can be avoided by ordering the environment so that selectors appear based on

top-down class order. In this way, the first call to Algorithm Determine Selector Index will

find an index free for the largest number of dependent classes. In the opposite order, with

selectors appearing based on bottom-up class order, indices are assigned based on only a

small number of the classes that will eventually recognize the selector, requiring additional

calls to Algorithm Determine Selector Index as selector definitions for classes higher in

the hierarchy are obtained. Note that the two manners in which input order affect exe

cution time compete with one another. One is minimized by selectors ordered by classes

top-down, and the other by selectors ordered by classes bottom-up.

Figure 4.3 shows the time, in milliseconds, taken by the DT Framework to create a

selector-colored dispatch table (SC), using each of the non-random input orderings. From

the graph, we can make the following conclusions. RDD, RDU, CDSD and CUSD are

roughly equal (which is better depends on the library being processed). All of these are

better than CDSU, CUSU, CSD and CSU. These overall trends hold true across all tech

niques, although the degree by which timings are affected varies with technique. Figure 4.4

shows the effects of input order on execution time for each of STI, SC, RD and CT3 on the

Parcplace 1 library. Results for SCCT are not shown because they are almost identical to

CT.

Input ordering has a slightly different effect on fill-rate. Figure 4.5 shows fillrates for

the non-random input orderings using SC dispatch, and Figure 4.6 shows fillrates for all

four of the dispatch techniques when these input orderings are applied to the Parcplacel

library.

Input orders RDD and RDU provide the best fill-rates, followed by CDSD, CUSD and

CSD (unlike for execution times, where CSD was worst). The bottom-up selector orderings

(CDSU, CUSU and CSU) give the worst fill-rates. Notice that, from a fill-rate perspective,

RD dispatch is most sensitive to input ordering, and STI dispatch is not affected at all.

Remember that RDD/RDU represent the input ordering identified by [11] as optimal for
3The results reported here are for ICT, a version of CT in which selector coloring is used instead of

selector aliasing.

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

IBMSmaKafc2.0
“I I 1---------1----------1---------1---------r

n n n
ROD ROU COSO CUSD CDSU CUSU CSU CSO

input order

Parcptaca 1

ROD ROU COSO CUSO CDSU CUSU CSU CSO
input order

an U H
ROD ROU COSO CUSO CDSU CUSU CSU CSO

input order

m . m m m
ROO ROU COSO CUSO COSU CUSU CSU CSO

input order

Figure 4.3: Input Order vs. Execution Time for SC dispatch

fill-rate performance in RD dispatch.

From the previous graphs, we can conclude that the best possible ordering for both

execution time and maximal fill-rate is RDD or RDU. Exactly which one is better depends

on the dispatch technique, library and input order, but, on average, RDD gives the best

results.

Random Orderings

Knowing the optimal static ordering is useful in determining how library code should be

stored to make recomputation of a library dispatch table optimal. However, in reflexive

languages, such fine control over input ordering is not possible. In order to determine how

the DT Framework performs on random input, we generated 10 versions of each of the

random orderings. The average execution time and fill-rate across these 10 input files gives

a good measure of the performance of the algorithms on random data. Figures 4.7 and 4.8

show the execution time and fill-rate performance respectively for some of these random

orderings. We have also included some non-random orderings for comparison. The totally

random ordering, RND, is approximately 2.5 times slower than the optimal ordering, RDD,

and about as fast as the worst ordering, CSD.

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

HD CD rn m □ m m .
ADO ROU CDSD CUSO CDSU CUSU CSU CSO

input onler

SC

120

1 60

m m □ n LJ LJ LJ i_
ROO RDU COSO CUSO CDSU CUSU CSU CSO

input order

CT
160

140

801
to5

20

l u hm m m _m
ROO ROU COSO CUSO CDSU CUSU CSU CSO

160

140

^ 120

1 10°
I ”I5

40

20

0
ROO ROU COSO CUSO CDSU CUSU CSU CSO

input order

Figure 4.4: Input Order vs. Execution Time for Parcplace 1

4.4.2 Per-invocation Costs of the DT algorithms

Since we are stressing the incremental nature of the DT Framework, the per-invocation

costs of our fundamental algorithms, Add Selector, Add Class Links and Manage Inheri

tance, are of interest. Rather than reporting the timings for every recursive call of Manage

Inheritance, we report the sum over all recursive calls from a single invocation of Al

gorithm Add Selector or Algorithm Add Class Links. The per-invocation results for the

Parcplacel library are representative, so we will summarize them. Furthermore, SC, ICT

and SCCT techniques have similar distributions, so we will present only the results for SC

and RD dispatch. In Parcplacel, Algorithm Add Selector is always called 8540 times, and

Algorithm Add Class Links is called 774 times, but the number of times Algorithm Manage

Inheritance is invoked from these routines depends on the input ordering. Per-invocation

timings were obtained using the getrusage() system call and taking the sum of system and

user time. Note that since Sun 4 machines have a clock interval of 1/100 seconds, the

granularity of the results is 10ms.

Figure 4.9 shows six histograms for SC dispatch. Each histogram indicates how many

invocations of each algorithm fell within a particular millisecond interval. The first row

represents per-invocation timings for the optimal ordering, RDD, and the second row for

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

IBM Stm ftaik 2.0 DigitaJk ST/V 3.0
“I 1----------1 I----------1----------1----------I---------r

U » » » » » * I » » » » < » l»
ROO RDU COSO CUSO CDSU CUSU CSU CSO

input order

Parcptace 1

_LJ
ROO ROU COSO CUSO CDSU CUSU CSU CSO

input onter

Goode

ROO ROU COSO CUSO CDSU CUSU CSU CSO
input order

ROO ROU COSO CUSO CDSU CUSU CSU CSO
input order

Figure 4.5: Input Order vs. Fill-Rate for SC Dispatch

the random ordering, RND. In all libraries, for all orderings, all algorithms execute in less

than 10 milliseconds for more than 95% of their invocations. Thus, without limiting the

y-axis of the histograms, the initial partition would dominate all others so much that no data

would be visible. For this reason, we have limited the y-axis and labelled the first partition

(and sometimes the second partition) with its number of occurrences. For Algorithm Add

Selector, maximum (average) per-invocation times were 30 ms (0.7 ms) for optimal order,

and 120 ms (0.6 ms) for random order. For Algorithm Add Class Links, they were 10 ms

(0.1 ms) and 4100 ms (27.3 ms), and for Algorithm Manage Inheritance, 30 ms (0.2 ms)

and 120 ms (0.25 ms).

Figure 4.10 shows similar timings for RD dispatch. The variation in timing results

between different random orderings can be as much as 100% (the maximum time is twice

the minimum time). For Algorithm Add Selector, maximum (average) per-invocation times

were 80 ms (0.9 ms) for optimal order, and 1970 ms (6.7 ms) for random order. For

Algorithm Add Class Links, they were 10 ms (0.1 ms) and 52740 ms (12763 ms), and

for Algorithm Manage Inheritance, 70 ms (0.2 ms) and 3010 ms (24.5 ms).

Figures 4.11 and 4.12 show the average time (in milliseconds) of a call to Algorithm

Add Selector and Algorithm Add Class Links respectively, demonstrating the impact that

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4.6: Input Order vs. Fill-Rate for Paxcplace 1

input order has on per-invocation efficiency.

The average per-invocation cost of adding a selector in environments with about half a

million type/selector pairs is approximately one millisecond. The average per-invocation

cost of adding class hierarchy links is at most 80 milliseconds. Note that although order

CSD is optimal for Algorithm Add Selector, it is the absolute worst ordering for Algorithm

Add Class Links. In this ordering, no inheritance propagation occurs during Algorithm

Add Selector, and redundant inheritance propagation occurs during Algorithm Add Class

Links. As expected, the best overall ordering is RDD. During Algorithm Add Selector,

the truly random ordering, RND, is not much more expensive than RDD. However, during

Algorithm Add Class Links, the random ordering is much more expensive than order RDD,

but is about 75% more efficient than order CSD.

4.4.3 Effects on Dispatch Performance

In [12], the dispatch costs of most of the published dispatch techniques are presented. The

costs are expressed as formulae involving processor-specific constants like load latency (L)

and branch miss penalty (B), which vary with the type of processor being modeled. In

this section, we observe how the incremental nature of our algorithms affects this dispatch

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0lfn«lllo

200

ISO

I
5

so

0
ROO ROU COSO CUSO CDSU CUSU CSU CSO CSR COSP CRSR RM)

200

\ too

I

so

0

ISO

I 100
1

so

m mo
COSO CUSO COSU CUSU CSU CSO CSRROO ROU cosn

Figure 4.7: Random Input Order vs. Execution Time for Parcplacel

speed.

At a particular call-site, the selector at the call-site and the class of the receiver object

together uniquely determine which method to invoke. Conceptually, in object-oriented

languages, each object knows its (dynamic) class, so we can obtain a class index for a

given object. This index, along with the index of the selector (which is usually known at

compile-time), uniquely establishes an entry within a global dispatch table. In this scheme,

we do a fair amount of work to obtain an address: get the class of the receiver object, access

the class index, get the global table, get the class-specific part of the table (based on class

index), and get the appropriate entry within this subtable (based on selector index).

The above dispatch sequence can be improved by making a simple observation: if each

class explicitly stored its portion of the global dispatch table, we could avoid the need to

obtain a class index. In fact, we would no longer need to maintain a class index at all

(the table replaces the index). In languages where the size of the dispatch table is known

at compile-time it is even more efficient to assume that each class is a table, rather than

assuming that each class contains a table. This avoids an indirection, since we no longer

need to ask for the class of an object, then obtain the table from the class: we now ask for

the class and immediately have access to its table (which starts at some constant offset from

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4.8: Random Input Order vs. Fill-Rate for Parcplacel

the beginning of the class itself). Thus, all of the table-based dispatch techniques must do

at least the following (they may also need to do more): 1) get table from receiver object, 2)

get method address from table (based on selector index), and 3) call method.

We want to determine how much dispatch performance degrades when using the DT

Framework, with its incremental nature, dynamic growing of tables as necessary, and the

use of extended dispatch tables instead of simple dispatch tables. Note that during dispatch,

indirections may incur a penalty beyond just the operation itself due to load latency (in

pipelined processors, the result of a load started in cycle i is not available until cycle i+L).

In the analysis of [12], it is assumed that the load latency, L, is 2 (non-pipelined processors

can assume L = 1). This implies that each extra indirection incurred by the DTF algorithms

will slow down dispatch by at least one cycle (for the load itself) and by at most L cycles

(if there are not other operations that can be performed while waiting for the load).

Figure 4.13 shows a conceptual version of the internal state of the fundamental DT

classes. In the figure, rather than showing the layout of all of the Table subclasses, we have

chosen Extendable2DTable as a representative instance. The only difference between this

table and any of the other tables is the nature of the Data field. This field (like most fields

in the figure) is of type Array, a simple C++ class that represents a dynamically growable

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Add Selector
“ i r

7£ 74

Add Class Links
“i r-

Inheritance Manager

0 20 40 60 80 100
time (ms)

Add Selector

0 20 40 60 80 100
rime (ms)

Add Class Links

50 100 150 200
rime (ms)

240
220
200
180
160
140
120
100
80

0 20 40 60 80 100
time (ms)

Inheritance Manager

0 20 40 60 80 100
time (ms)

40469

50 100 150 200
time (ms)

Figure 4.9: Per-invocation Timing Results For SC Dispatch
array. The Data field of the Array class is a pointer to a contiguous block of words (usually

containing indices or pointers to other DT class instances). Usually, such Arrays have more

space allocated than is actually used (hence the Alloc and Size fields), but this overhead is

a necessary part of dynamic growth.

From Figure 4.13, it can be seen that the Extendable2DTable class has a Data field

which is an Array class. This Array class handles dynamic growth as new elements are

added, and also has a Data field, which points to a dynamically allocated block of con

tiguous words in memory. Each word in this block is a pointer to a DT Class object. In

the figure, each Class object also has a Data field (another growable array), which in turn

points to a block of dynamically allocated memory. Each entry in this block is a pointer

to a MethodSet instance, which contains a pointer to the method to execute. Note that in

Figure 4.13 Class instances are not considered to be dispatch tables, and instead contain a

growable array representing the class-specific portion of the global dispatch table.

Given this layout, two extra indirections are incurred, one to get the table from the

class, and one to get the method-set from the table. Thus, dispatch speeds in all table-

based techniques will be increased by at most 2 x L cycles. Depending on the branch miss

penalty (B) of the processor in question (the dominating variable in dispatch costs in [12]),

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Add Selector Add Class Links
40
35
30
25
20

8487

CO
CDUe
CD

0 20 40 60 80 100
time (ms)

Add Selector

8414

200 400 600 800 1000
time (ms)

10
769

8

6

4

2

0
0 20 40 60 80 100

Inheritance Manager

200

150
CO
CDCJ
I 100 -no
8

50

time (ms)

Add Class Links

25!

Lb=
20 40 60 80 100

lime (ms)

5
8538

4

3

2

1

0
0 20 40 60 80 100

50
45
40
35
30
25
20
15
10
5
0

tima (ms)

Inheritance Manager

4C434
4<3

2000 4000
time (ms)

Figure 4.10: Per-invocation Timing Results For RD Dispatch

this results in a dispatch slow-down of between 50% (B=l) and 30% (B=6) when L=2.

Given these performance penalties, the DT Framework would not be desirable for use

in production systems. However, it is relatively easy to remove both of the indirections

mentioned, one by using a modest amount of additional memory, and the other by relying

on implementations of object-oriented languages that do not use object-tables. By remov

ing these indirections, the DT Framework has exactly the same dispatch performance as

non-incremental implementations.

We can remove the extra indirection needed to extract the address from the method-

set by using some extra space. As is shown in Figure 4.14, each table entry is no longer

just a pointer to a MethodSet instance; it is instead a two-field record containing both the

address and the MethodSet instance (the address field within the method-set itself becomes

redundant). This does slightly decrease the efficiency of incremental modification (it is no

longer possible to change a single MethodSet address and have it be reflected in multiple

table entries), but optimizing dispatch is more important than optimizing table maintenance.

Furthermore, the amount of inefficiency is minimal, given how quickly Algorithm Add

Selector executes. Finally, the extra space added by effectively doubling the number of

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T

59

j .

P

n
Figure 4.11: Cost of Algorithm Add Selector Invocation

table entries is not necessarily that expensive, especially in techniques like RD and CT. For

example, in RD, the space for the table is about 25% of the total memory used, so doubling

this table space increases the overall space by 25%.

The other extra indirection exists because in Figure 4.13 classes contain tables instead

of being tables. In the non-incremental world, the size of each class-specific dispatch table

is known at compile-time, so at run-time it is possible to allocate exactly enough space in

each class instance to store its table directly. At first glance, this does not seem possible in

the DT Framework because the incremental addition of selectors requires that tables (and

thus classes) be able to grow dynamically. The reason this is difficult is because dynamic

growth necessitates the allocation of new memory (and the copying of data). Either we pro

vide an extra indirection, or provide some mechanism for updating every variable pointing

to the original class object, so that it points to the new class object. Fortunately, this last

issue is something that object-oriented language implementations that do not use object

tables already support, so we can take advantage of the underlying capabilities of the lan

guage implementation to help provide efficient dispatch for the language. For example, in

Smalltalk, indexed instance variables exist (Array is an example), which can be grown as

needed. We therefore treat classes as being tables, rather than containing tables, and avoid

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

“ i t i i i r ■ i — r

70 -

■> —

SO - f—

•o —

» - (—

*0 -

" 1 l m I 1

ROO ROU COSO CUSO COSU CUSU CSU c a t

d u n s s t /v s o

CSR COSR CR3R M O

V -

o -

o -

o -

O - |—

o —

nr i t I t i 1 r i i

1 1 1 1

1 1 1 1

•0 . j , | j , j

n -

m -

so —

M —

» —

a -

» —

r r i i i i i i

1 1 1 1

ROO ROU COSO CUSO COSU CUSU CSU CSO CSR COSR CRSR RTO

a -

a —

a -

a —

a —

D —

ni i r i i i 1 1 1 i

i i 1 1

t i t i
HDD ROU COSO CUSD COSU CUSU CSU CSO CSU COSR CRSR POO (C O ROU COSO CUSO COSU CUSU CSU CSO CSR COSR CASR M

■ W la w

Figure 4.12: Cost of Algorithm Add Class Links Invocation

the second indirection. Figure 4.14 shows the object, class and table layouts that allow the

DT Framework to operate without incurring penalties during dispatch.

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Environment Extendable2DTable

Table G 3
Selectors ^B
C lasses ^ B
Roots ^B
MethodSets ■ 1
SelectorDict
ClassDict B B

Legend
Pointer □
Array/set B l
Dictionary
Word

Array

Data ■ J
Selectors
Classes ^B
SelectorRoots H i
SelectorMap ^B
ClassMap BB
SIS Q
CIS C3
Primary □
Environment t=P

\
\

\

Alloc gm
Size ■B
Init B1
Data C 3

CIS

Table CZD
sis

Primary
Table T 1

Class

■table

t
Data
NativeSelector I B
Parents I H
Children
Hierarchy H H
Name
Number H

MethodSet

Class
Selector
Children
Address

Selector

C 3 - *
DefTypes H i
Name
Number ■ i

‘Code

Figure 4.13: C++ Class Layouts for DT Classes

Object

Class

Slot 1

Slot n

Class

NativeSelectorsI
Parents I
Children I
Hierarchy I
Name
Number
Entry 1

Entry s

Table Entry

Address
MethodSet

code
method-set

Figure 4.14: Improved Table Layout to Optimize Dispatch

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

General Algorithms for Table-Based

Dispatch Techniques

This chapter presents a collection of technique-independent and technique-dependent al

gorithms, referred to as the Dispatch Table Algorithms or DT algorithms. Together, they

make up the critical components of DTF. Although this is probably the most important

chapter in this part of the thesis from an impact perspective, it is quite low-level, and can

be safely skipped by those individuals wanting a high-level understanding of the dispatch

techniques.

The algorithms presented here represent new research that demonstrates that all table-

based single-receiver dispatch techniques can be implemented using the same general al

gorithms, with technique-specific algorithms necessary only for data-structure access and

selector and type index assignment. Furthermore, the technique-independent algorithms

are incremental in nature,

The DT algorithms interact with a few fundamental data structures in order to mod

ify dispatch table information incrementally when the programming environment changes.

The environment changes (from the perspective of the DT algorithms) when selectors or

class hierarchy links are added or removed. We will refer to these four actions as environ

ment modifications. These actions are divided into two categories: method adding occurs

when selectors or class links are added, and method removal occurs when selectors or class

links are removed. Data structures to represent classes and selectors are needed. Classes

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Notation Definition
L a selector index
a a selector
K a class index
C,Ci classes
Ci < c class Ci is a subclass of class C
(C,a) notation to represent a type/selector pair
subcIasses(C) the set o f all subclasses of C
children(C) the set o f immediate subclasses o f class C
selectors(C) the set o f selectors defined natively in C
T a method-set (dispatch) table
T\<x,C] the method-set in T for (C , a)

Table 5.1: Notations and Definitions for the DT algorithms

maintain a name, a set of native selectors, a set of parent classes, and a set of child classes.

Selectors maintain only a name. The algorithms also need data structures to represent two

special constructs, method-sets and extended dispatch tables. These are discussed in sub

sections that follow. Table 5.1 summarizes some of the definitions we will be using in the

algorithms.

Algorithm Name Algorithm Purpose
Add Selector
Remove Selector

Add a selector to an existing class
Remove a selector from an existing class

Add Class Links
Remove Class Links

Add inheritance links to a class
Remove inheritance links from a class

Manage Inheritance
Manage Inheritance Removal

Inheritance propagation and conflict detection
Inheritance propagation and conflict detection

Determine Selector Index
Determine Class Index

Assign an index to a selector
Assign an index to a class

Table 5.2: DT Algorithm Purposes

There are four DT algorithms that act as the interface to the other algorithms. They

correspond to the four fundamental operations that cause environment modification: Algo

rithm Add Selector, Algorithm Remove Selector, Algorithm Add Class Links and Algorithm

Remove Class Links. Note that defining a class does not itself modify the dispatch informa

tion (assuming that class definition is separate from method definition). Only when selec

tors are added, or the class is connected to other classes via inheritance, does the dispatch

information change. In addition to the interface algorithms, there are some fundamental

algorithms to perform inheritance management, inheritance conflict detection, index deter

mination, and index conflict resolution. The DT algorithms, and their overall purpose, are

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm AddSeIector(inout cr : Selector, inout C : Class, in A : Address, inout T: Table)
I if index(o-) = unassigned or (T[tr, C] i=- fi and T[cr, C].cr ^ a) then
2 DetermineSeIectorIndex(o-, C, T)
3 endif
4 M c := T[a, C]
5 if M c-C = C and Mc-cr = cr then
6 Me-A := A
7 remove any conflict marking on M e
8 else
9 insert <x into selectors(C)
1 0 M n := newMethodSetCC, cr, A)
1 1 addChild(Afc, M N)
1 2 ManagelnheritanceCC, C, Afyv, nil , T)
13 endif
end

Figure 5.1: Algorithm Add Selector

summarized in Table 5.2.

This chapter relies heavily on the fundamental concepts of method-sets and extended

dispatch tables presented in Section 4.1.2. Section 5.1 describes all of the algorithms in

detail. Section 5.2 provides some example executions of the most important algorithms.

Section 5.3 demonstrates how the data-structures used by the DT algorithms can be used to

provide compile-time optimization information.

It is probably best to skim Section 5.1 briefly, then go to Section 5.2 and step through

the algorithms as you read the examples.

5.1 The DT Algorithms
5.1.1 Algorithm Add Selector

Algorithm Add Selector is one of the interface routines provided by the DT Environment.

Each time a compiler encounters a new method declaration for a selector, a, in a partic

ular class, C, it calls this routine. The compiler is assumed to have made an instance of

DT_Environment before it started any parsing. As well, a run-time system that encoun

ters a method declaration at run-time does exactly the same thing, calling Algorithm Add

Selector with the appropriate selector and class arguments.

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Lines 1-3 of Algorithm Add Selector determine whether a new selector index is needed,

and if so, calls Algorithm Determine Selector Index to establish a new index and move the

method-set if appropriate.

Lines 4-7 determine whether a method recompilation or inheritance conflict removal

has occurred. In either case, a method-set already exists that has been propagated to the

appropriate dependent classes, so no re-propagation is necessary. Since the table entries for

all dependent classes of (C, a) store a pointer to the same method-set, assigning the new

address to the current method-set has the effect of modifying the information in multiple

extended dispatch table entries simultaneously.

If the test in line 5 fails, Algorithm Add Selector falls into its most common scenario,

lines 8-12. A new method-set is created, a method-set hierarchy link is added, and Algo

rithm Manage Inheritance is called to propagate the new method-set to the child classes.

5.1.2 Algorithm Manage Inheritance
Algorithm Manage Inheritance, and its interaction with Algorithms Add Selector and Add

Class Links, form the most important part of the DT algorithms (along with the analogous

case for Algorithms Manage Inheritance Removal, Remove Selector, and Remove Class

Links). Algorithm Manage Inheritance is responsible for propagating a method-set pro

vided to it from Algorithms Add Selector or Add Class Links to all dependent classes of

the method-set. During this propagation the algorithm is also responsible for maintaining

inheritance conflict information and managing selector index conflicts.

Algorithm Manage Inheritance is a recursive algorithm that is applied to one class,

then to each child class of that class. Recursion terminates when a class with a native

definition is encountered, or no child classes exist. The algorithm has five arguments, but

two of them are critical: the class on which the current recursive invocation applies, and

the method-set to be propagated. The class is referred to as the target class, and denoted

by Ct • The method-set is referred to as the new method-set, and denoted by M m- The

other arguments will be discussed later. For now, simply note that each invocation of the

algorithm is attempting to propagate a new method-set, M n to a particular target class, Cr-

Table 5.3 contains some notation used in the algorithms.

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Notation Definition
Mc
Mn

The current method-set, T[a, Ct 1
The new method-set (established by interface algorithms)

M.C
M.cr
M.A

The defining class o f method-set M
The selector associated with method-set M
The address of the method associated with method-set M

Ct
Cm
Ct
Cb

The current target class
The defining class o f the new method-set. Shorthand for Mm-C.
The class from which C t currently inherits the method for M m -ct

The class from which method-set propagation is to begin
t r Boolean test indicating whether, after M m has been added to the

extended dispatch table, M m -ct is visible in C t from both Cm and Cr, where Cm C r _

Table 5.3: Notation and Definitions for IM Algorithms

Within a particular invocation of Algorithm Manage Inheritance, the primary goal is de

termining which method-set should be placed in the extended dispatch table for (Ct , M & .a).

There are only three possibilities: 1) the new method-set, M N is inserted into the table, 2)

the method-set, M e, that currently exists in the table for the entry is left untouched, or 3) a

new method-set is created/obtained to be placed in the table.

These three possibilities correspond to three distinct scenarios. In the discussion of

these scenarios, a refers to M N.a. Also, note that in Algorithm Manage Inheritance -Re

moval, method removal actually refers to the propagation of a method-set, since removal

of a method is implemented by propagating (adding) an appropriate method-set.

la Method-Set inserting (MI): This scenario occurs when we have previously estab

lished that the new method-set, M m, should be placed in the table for all dependent

classes of (C b , o). Thus, scenario MI occurs when Ct is a dependent class of M m,

and consists solely of inserting M m into the extended dispatch table and continuing

recursion.

lb Method-Set re-inserting (MRI): In class hierarchies with multiple inheritance, th.ere

is often more than one path from a base class, Cb to an arbitrary subclass, Ct - T*his

implies that during a recursive traversal of child classes, our inheritance management

algorithm can visit the same target class more than once. However, on the second and

subsequent visits, absolutely no work needs to be done. Scenario MRI occurs when

M m = M e 7̂ & and consists solely of terminating the recursion.

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 Method-Set child updating (MCU): Termination of the recursive traversal of the class

hierarchy stops when a class is detected which has a native declaration for a. In this

case, we want to leave the current method-set, Me, as is, since native definitions

override inherited ones. However, since each method-set maintains the set of its

child method-sets, we must update these links. Scenario MCU occurs when a native

definition (implicit or explicit) for a exists in Or, and involves updating method-set

child information and stopping recursion.

3a Conflict-creating (CC): In Algorithm Manage Inheritance, propagating a method-set

can result in an inheritance conflict. The boolean test ir from Table 5.3 is useful

because an inheritance conflict exists in O r if the test is true, and does not exist in

O r if it is false. We will discuss how to efficiently determine the truth value of 7r

later. Note that M e represents the method that Or currently executes for selector

a. Furthermore, M c-C represents the defining class of this method. Scenario CC

occurs when there exists a path between O r and Mc-C which does not pass through

Mm-C. It involves creating a conflict method-set and propagating this method-set to

all dependent classes of (Or, M .o).

3b Conflict-removing (CR): In Algorithm Manage Inheritance Removal, propagating a

method-set can result in the removal of an existing inheritance conflict. Scenario CR

occurs when M e is a conflict, there exists exactly two parent method-sets of M e

(i.e. | M c-P |= 2), and either Mm is empty or is an element of M c-P - It involves

propagating the single method-set element of M c-P — {Mm, M r} to all dependent

classes of (Or, M.cr), where M r refers to the method-set being removed.

Four fundamental Boolean tests exist that allow us to efficiently determine what sce

nario should be performed during a particular invocation of Algorithm Manage Inheritance

or Manage Inheritance Remove.

The four tests are:

1. Ct = Ci (does a native definition exist?)

2 . Cm = Ci (have we already propagated a method-set to this class?)

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. C i = nil (does the current class recognize the selector in question?)

4. 7r = true (after adding M,v, does an inheritance conflict exist?)

Table 5.4 shows how these four tests efficiently determine which scenario to perform

during Algorithm Manage Inheritance and Algorithm Manage Inheritance Removal. Many

combinations of truth values are not possible because the four tests are not entirely inde

pendent. For those combinations of truth values that are not possible, a list of one or more

assertion numbers is provided. The assertions are enumerated after the truth table, and ex

plain why that particular combination of values is not possible. In the assertions, cr is used

as shorthand for M ^.a.

o
’II&

Civ = Ci

• eoeII 7r MI scenarios MIR scenarios
T T T T 1,4,8,10 or 11 1 ,6 ,8 , 1 0 or 1 1

T T T F 1,4 or 8 1 , 6 or 8

T T F T 5,8 or 11 5,8 or 11
T T F F 8 8

T F T T 1 or 1 0 1 , 6 or 1 0

T F T F I or 1 0 I or 6
T F F T MCU MCU
T F F F MCU if isConflict(M e) CR else MCU
F T T T 4,10 or 11 6 , 1 0 , or 1 1

F T T F 4 6

F T F T II 1 1

F T F F MRI MRI
F F T T 1 0 6 or 1 0

F F T F MI 6

F F F T CC 1 2

F F F F MI MI

Table 5.4: All Truth Combinations of the Four Fundamental DT Tests

1. Ct is never nil: From the definition of target class, Ct -

2. C b is never nil: From the definition of base class, Cq-

3. M .C = nil =>■ M = Q: The only method-set whose defining class is nil is the empty

method-set, Q. This is the definition of the representation of the empty method-set.

4. In Algorithm Manage Inheritance, M n ^ Ci: During method addition, such an empty

method-set will never be propagated (Algorithm Add Selector always creates a new

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

method-set, and Algorithm Add Class Links only propagates non-empty method-

sets). This implies that in Algorithm Manage Inheritance, M m-C 7 ̂nil and M ^.a 7 ̂

nil, from Assertion 3.

5. Ct < Cb < Cm '- follows from the definition of these classes. Cb < C m is obviously

only true when Cm # nil.

6 . In Algorithm Manage Inheritance Removal, Cr is never nil: remember that Cr refers

to the class from which C t inherits cr, before a is added/removed from Cb- During

method removed, if the definition of cr in Cb is not visible to C t it is because some

class between Cb and C t has redefined cr. In either case, C t inherits a from some

real class and thus Cr cannot be nil.

7. I f Cr 7 ̂n il , C t < Cr: It is not possible to inherit a method from a subclass, so since

Cr is defined as the class from which C t inherits cr before Mm is inserted, C t < Cr,

if such an inheriting class, Cr, exists.

8 . Cm = Cr =>- Cr 7 ̂ C t- Suppose not, so it is possible that Cm = Cr = Ct-

However, in Algorithms Add Class Links, Remove Class Links and Remove Selector,

M n is always associated with a class strictly above Cb in the inheritance hierarchy.

Thus, our assumption is only possible from Algorithm Add Selector. In this situation,

Algorithm Add Selector does not need to do any inheritance propagation whatsoever,

since Mc .C = M N-C and Mc-cr = M^.cr. Thus, this assertion is true because it is

enforced to be true by our algorithms.

9. Cm f nil and Cr # nil and Cm f: Cr => tt is true: First, note that C m f Cr =>

Cr < Cm or Cr and Cm are not orderable.

(a) Suppose Cr and Cm are not orderable: By the definition of Cr, cr is visible in

C t from Cr before adding Mm- Since Cm f Cj, the new method-set does

not block the visibility of cr in C t from Cr, so after the method addition, cr is

visible in C t from Cr. Similarly, after method addition, cr is visible in C t from

Cm because C/ f Cm- Thus, 7r is true.

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(b) Suppose Ci < Cn'- Since C t < C/ (from 7), at least one path from C n to C t

has Ci along it. Suppose all paths from Cn to C t have C / along them. Then

C t would never have been reached by the algorithm, because, on a previous

invocation, the algorithm would have previously encountered the situation in

which C t = Ci, and recursion would have stopped. Since C t has been reached,

our supposition is incorrect, and there exists a path from C n to C t that does

not pass through C/, so a is visible in C t from C n - Since C i < Cn, there is a

path from (7/ to C t that does not pass through Cn, so a is visible in C t from

C i . Thus, 7r is true.

10. Ci = n il =>- x is false: Ci = nil =>- <x is not visible in Ct from C /. Condition x

requires that a be visible in Ct from both Ci and C o

l l . Cn — C i x is false : by the definition of x.

12. In Algorithm Manage Inheritance Removal, Ct f Ci => C i = C b '- Suppose Ct <

Cb < C i. Observe that there must exist a native definition for cr in Cb in order to

be able to remove a from Cb- Thus, before adding M N, C t would inherit cr from

Cb f Ci, which contradicts the definition of Ci- Therefore, Cb f C i. Suppose

C t < Ci < Cb- Algorithm Manage Inheritance Removal is initially invoked on

child classes of Cb, and would stop recursion when it encountered a subclass with a

native definition (i.e. when it encountered C/). But this implies that C t would never

be reached (since C t < Ci) unless there exists some other path from Cb to C t that

does not pass through C/. However, if this were the case, cr would be visible in C t

from both Cb and Ci, implying that a conflict exists, in which case an implicit native

definition representing a conflict would exist in Ct- This would mean that C t = Ci,

contradicting our initial assumption. Therefore, Ci f. Cb- Similarly, if Ci and Cb

were unrelated in the inheritance hierarchy, cr would be visible in C t from both C7

and Cb, and we have already shown that this is not possible, since C t f Ci- The

only remaining possibility is that C i = Cb-

13. In Algorithm Manage Inheritance Removal, C t f Ci = > x is fa lse : C t i f Ci

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

implies that, before M N is added, there was no inheritance conflict (remember that

an inheritance conflict results in an implicit native definition). Mm is either f2 (which

can never cause an inheritance conflict) or a method-set defined in some superclass

of Ci = Cb (see Assertion 12). In the latter case, since the definition in C i is

being removed, after adding Mm, a is not visible in C t from Ct, s o 7r is false. This

implication says that it is not possible to create an inheritance conflict during method

removal (i.e. during an invocation of Algorithm Manage Inheritance Removal).

In Table 5.4, legal truth value combinations are marked with the appropriate scenario

to perform. The table allows us to determine the most efficient number of tests necessary

to identify the desired scenario during an invocation of the inheritance management algo

rithms. Tests for Algorithm Manage Inheritance are summarized in Table 5.5 and tests for

Algorithm Manage Inheritance Removal are summarized in Table 5.6.

Scenario Tests
MCU Ct = Ci
MRI Ct / Cr and Cm —Ct
CC Ct £ Cr and Cm * Ct and tt = true
MI Ct ^ Cr and Cm Cr and it = false

Table 5.5: Determining Scenario During Manage Inheritance Invocations

Scenario Tests
MRI C t 7 ̂ Cr and C m = Cr
MI C t 7 ̂Cr and C m 7 ̂Cr
CR C t = Cr and isConflict(Mc) <uid 7r = false
MCU C t = Cr and (not isConflict(Mc) or w = true)

Table 5.6: Determining Scenario During Manage Inheritance Removal Invocation

All of these tests are simple comparisons, except for determining the truth value of 7r.

Remember that 7r is true if cr is visible in Ct from both Cm and Ci, when Cm 7 ̂ C/. It

is useful because an inheritance conflict exists in Ct if the test is true, and does not exist

in Ct if it is false. A naive algorithm could determine the truth value of 7r by traversing

down the inheritance hierarchy from both Cm and Ci, looking for Ct - However, a much

more efficient mechanism exists. Even though the truth value of 7r assumes that M m has

already been added, it is possible to use information stored in the table before M m is placed

to efficiently determine 7r. In Algorithm Manage Inheritance, we define E = {M | M =

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T[Mx.cr,Ci),Ci € parents(CV)} — {fi}. That is, E represents the set of non-empty

method-sets stored in the extended dispatch table for all parent classes of Ct • If | £ |> I,

a conflict would exist if M m were added to Ct • When Ct has a native definition for cr, E

is identical to M c-P, where M e is the method-set T[cr, Ct], and M .P is the set of parent

method-sets of M .

For Algorithm Manage Inheritance Removal, E is defined as for Algorithm Manage In

heritance, except that the method-set being removed, M r , is not considered as part of the

set. Later, we will see that in Algorithm Manage Inheritance Removal, M m does not refer

to M r , but rather to the method-set that should be visible in Ct if M r were removed. This

necessitates some other mechanism for obtaining M r , which will be discussed when Algo

rithm Manage Inheritance Removal is presented. In any event, once E has been obtained,

if | E | > 1, a conflict would exist in Ct if MjV were added (i.e. if M r were removed).

There are also certain times when computation of E is not even necessary. First, 7r

is immediately true if C t < Cm (from Assertion 9). Second, t v can never be true if Ct

has only one parent class (cr cannot be multiply visible if there is only one path by which

selectors can be visible). Third, tr can never be true if Cm = Cr (from the definition of 7r).

Thus, an efficient test for establishing the true value of t v is: (C/ < Cm) or (Cm C t and

|parents{CT) |> 1 and | E |> 1).

It is possible for this test to generate temporary conflicts where they do not truly exist,

during a particular invocation. However, by the time all invocations of Algorithm Manage

Inheritance or Manage Inheritance Removal are finished (for a particular invocation of

Algorithm Add Selector, Remove SelectorAdd Class Links or Remove Class Links), such

temporary conflicts will be removed.

So far, we have determined the possible scenarios that can occur during inheritance

propagation, and found efficient tests for establishing which scenario is applicable during

a particular invocation of Algorithms Manage Inheritance and Manage Inheritance Re

moval. However, before presenting the algorithms, there is an important issue that must

be discussed. Up to this point, we have not explained in any detail the role that a selector

index plays in the extended dispatch tables. We mentioned previously that the selector in

dex establishes a starting location within the table, and that the exact interpretation of the

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

index depends on the dispatch technique used. We must discuss this in more detail, be

cause Algorithm Manage Inheritance needs to be aware of a special type of conflict called

a selector index conflict. A selector index conflict can occur in certain table-based dispatch

techniques because selector indices are not necessarily unique. Two different selectors car*

share the same index as long as only one non-empty method-set needs to be stored in a.

particular extended dispatch table entry at a given time. A selector index conflict occurs

when an attempt is made to insert a method-set into a table entry that already contains a

non-empty method-set with a different selector. In these situations, one of the selectors

must be assigned a new index, and all method-sets in the table associated with that selector

must be moved to new locations, based on the new index value.

Algorithm Determine Selector Index is responsible for assigning a legal index to a se

lector. It is presented in Section 5.1.4. Algorithm Determine Selector Index needs to be

invoked in two distinct situations: 1) when the current selector does not yet have an index

(i.e. its index is unassigned), and 2) when a selector index conflict is detected. Algorithm

Add Selector only needs to invoke Algorithm Determine Selector Index when the index, L,

of the current selector, M^.cr, is unassigned. Otherwise, Algorithm Add Selector assumes

that no selector index exists and calls Algorithm Manage Inheritance. Algorithm Manage

Inheritance is perfectly suited for detecting selector index conflicts, and it directly invokes

Algorithm Determine Selector Index when it detects a conflict. Detecting a conflict involves

a simple test: M e # and Mc-cr ^ If this test is true, a selector index conflict

exists, and Algorithm Determine Selector Index is called to obtain a new selector index for

M N.a and move all existing method-sets for M^.cr to the new table entries indicated by

this new index.

Note that Algorithm Determine Selector Index can be called during any recursive in

vocation of Algorithm Manage Inheritance even though this means that, at the time it is

called, the new method-set has only been propagated to some of the dependent classes.

Algorithm Determine Selector Index will move the already propagated method-sets to their

new locations, and the subsequent recursive invocations will have a new selector index, L,

thus placing method-sets in their correct locations.

Unlike Algorithm Manage Inheritance, Algorithm Manage Inheritance Removal does

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

not need to worry about selector index conflicts, because it propagates either empty method-

sets or method-sets that already exist in the table.

Having established the possible scenarios for a particular invocation of Algorithm Man

age Inheritance, as well as how to efficiently determine which scenario to perform, we are

ready to present Algorithm Manage Inheritance. It has five arguments:

1. Ct , the current target class.

2 . Cb , the base class from which inheritance propagation should start (needed by Al

gorithm Determine Selector Index).

3. M/v, the new method-set which is to be propagated to all dependent classes of

4. Mp, the method-set in the table for the parent class of Ct from which this invocation

occurred.

5. T, the extended dispatch table to be modified.

Algorithm Manage Inheritance is shown in Figure 5.2. It can be divided into four

distinct parts. Lines 1-4 determine the values of the test variables. Note that M e = Q

when Miv-cr is not currently visible in Ct - We define fi.C = nil, so in such cases, Cr will

be nil.

Lines 5-9 test for a selector index conflict, and, if one is detected, invoke Algorithm De

termine Selector Index and reassign test variables that change due to selector index modifi

cation. Recall that Algorithm Determine Selector Index is responsible for assigning selector

indices, establishing new indices when selector index conflicts occur, and moving all se

lectors in a table when selector indices change. Note that selector index conflicts are not

possible in STI and VTBL dispatch techniques, so the DT Table classes used to implement

these dispatch techniques provide an implementation of Algorithm Manage Inheritance

without lines 5-9. Furthermore, due to the manner in which Algorithm Determine Selector

Index assigns selector indices, it is not possible for more than one selector index conflict

to occur during a single invocation of Algorithms Add Selector and Add Class Links, so

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm Managelnheritance(in Ct ■ Class, in Cb - Class, in Mn : Method-Set,
in M p : Method-Set, inoutT : Table)

“Assign important variables”
1 cr := M n -ct

2 Cn := M n -C
3 M e := T[a, Cn]
4 C i := M c .C

“Check for selector index conflict”
5 if M e 7 ̂ fi and Me-cr M n -ct then
6 DeteimineSelectorIndex(Mjv-o\C'B,T)
7 M e ■= T[cr, Ct]
8 Ct := Mc-C
9 endif

“Determine and perform appropriate scenarios”
1 0 if Ct = C i then “scenario MCU”
1 1 addChild(Mjv, Mc)
1 2 removeChild(iV/p, M e)
13 return

14 elsif { C i = Cn) “scenario MRI”
15 return

16 elsif (7r = true) then
17 M:= RecordInheritanceConflict(cr, Ct , {M n , M e })

18 else “scenario MI”
19 M := M n

2 0 endif

“Insert method-set and propagate to children”
2 1 T[.a, CT] '■= M
2 2 foreach Ci € childrenfCr) do
23 ManageInheritance(Ci, Cb , M , M c ,T)
24 endfor

end MI

Figure 5.2: Algorithm Manage Inheritance

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

if lines 6 -8 are ever executed, subsequent recursive invocations can avoid the check for

selector index conflicts by calling the version of Algorithm Manage Inheritance without

them.

Lines 10-20 apply the scenario determining tests to establish one of the three scenarios.

Only one of the three scenarios is performed for each invocation of Algorithm Manage

Inheritance, but in ail scenarios, one of two things must occur: 1) the scenario performs an

immediate return, thus stopping recursion and not performing any additional code in the

algorithm or 2) the scenario assigns a value to the special variable, M . If the algorithm

reaches the fourth part, variable M is to represent the method-set that should be placed in

the extended dispatch table for Cr, and propagated to child classes of Ct - It is usually

Mw, but during conflict-creation this is not the case. In line 11, procedure addChild adds

its second argument as a child method-set of its first argument, in line 12 , procedure re-

moveChild removes its second argument as a child of its first argument. In both cases, if

either argument is an empty method-set, no link is added.

When the DT Algorithms are used on a language with single inheritance, conflict detec

tion is unnecessary and multiple paths to classes do not exist, so scenarios conflict-creating

and method-set re-inserting are not possible. In such languages, Algorithm Manage Inher

itance simplifies to a single test: if Ct = Cr, perform method-set child updating, and if

not, perform method-set inserting.

Finally, lines 21-24 are only executed if the scenario determined in the third part does

not request an explicit return. It consists of inserting method-set M into the extended

dispatch table for (Cr, ct) and recursively invoking the algorithm on all child classes of

C t, passing in the method-set M as the method-set to be propagated. It is important that

table entries in parents be modified before those in children, in order for ir to be efficiently

determined.

The arguments to Algorithm Manage Inheritance Removal are similar, but not identi

cal to those for Algorithm Manage Inheritance. Selector index conflicts cannot occur in

Algorithm Manage Inheritance Removal, and since Cb, the base class, is needed only for

passing to Algorithm Determine Selector Index, C b is not necessary for Algorithm Manage

Inheritance Removal. However, it is necessary to explicitly pass in the selector for which

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the removal is occuring, because the propagated method-set, M N can be empty. In Algo

rithm Manage Inheritance, this argument was not needed because it can be obtained from

Mtf.cr, since M n # ft (Assertion 4).

Algorithm Manage Inheritance Removal is divided into only three parts, since index

conflicts are not possible. Lines 1-4 set the values of test variables. Note that for Algorithm

Manage Inheritance Removal, Ci will never be nil because M e will never be empty (it

represents the method-set of the selector being removed, or a removed conflict method-

set). However, since MN can be empty, C n can be nil. If this occurs, it indicates that no

method for the selector is visible (in C t) after the existing method is removed.

Lines 5-21 establish which scenario to execute, and perform the appropriate actions. In

line 11, remember that we have established that the truth value of it, if M N were added

to C t, is efficiently computable with the following test: (C7 < C n) or (C n # C/ and

|p a ren ts(C r) |> l a n d | £ | > 1). Everything in this test before £ exists to avoid calculating

£ , but since £ is needed in order to obtain a value for M, we must always compute it, so

the other tests are not used. Recall that, for Algorithm Manage Inheritance Removal, £ is

the set of non-empty method-sets stored for selector a and all parent classes of C t, where

the method-set being removed is not considered part of the set. Since the method-set being

removed is represented by Mp, we have all the information necessary to compute £ . Also,

notice from Table 5.6 that when C t = C j, it is not possible for C n = Cj, so we can avoid

that test. If 7r is false, there can be at most one element in £ . £ can also be empty, since it

does not contain ft — in such cases, M is assigned ft. Otherwise, M is assigned the single

element of £ .

Lines 22-25 are only executed if the scenario determined in the second part did not

perform an explicit return. The extended dispatch table entry identified by (Ct , cr) is

modified, and the algorithm is recursively invoked on all child classes of class Ct -

5.1.3 Algorithms Add Class Links and Remove Class Links

Algorithm Add Class Links is responsible for updating the extended dispatch table when

new inheritance links are added to the inheritance graph. Dynamic schema evolution is pos

sible, so new parent and child links can be added to a class which already has parent and/or

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm ManageInheritanceRemovaI(in Ct ’■ Class, in a : Selector, in M ff '■ Method-Set,
in M p : Method-Set, inoutT : Table)

“Assign important variables”
1 a := M p f.a
2 Cj\r := Mpi.C
3 M c := T[a, ClV]
4 C / := M c .C

“Determine and perform appropriate action”
5 if Ct 5 ̂ Ci then
6 if Cjv = Ci then “action MRI”
7 return

8 else “action MI”
9 M : = M n
1 0 endif

11 elsif isConflict(Mc) and not j S |> 1 then “action CR”
12 i f | E [= 0 t h e n
13 M:= Q.
14 else
15 M:= the single element o f E
16 endif

17 else “action MCU”
18 addChild(Myv, M e)
19 removeChild(Af>, M e)

2 0 return

2 1 endif

“Insert method-set and propagate to children”
22 T[cr, Cr] := M
23 foreach C,- € c h i ld r e n (C T) do
24 ManageInheTitanceRemoval(Ci, a, M, M e, G, T)
25 endfor
end ManagelnheritanceRemoval

Figure 5.3: Algorithm Manage Inheritance Removal

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm AddCIassLinks(in C : Class, in G p : Set , in G c •' Set, inoutT : Table) : Boolean

1 update parent and child sets o f all classes in {C } U G c U G p as appropriate
2 if inheritance graph is cyclic then
3 undo changes
4 return false
5 endif

6 if (| G c |> 0) then
7 foreach cr G selectors(C) do
8 M:= T[cr, Cl
9 foreach Ci G G c do
1 0 ManageInheritance(Ci. C, M, M, T)
1 1 endfor
1 2 endfor
13 endif

14 if (| G p |> 0) then
15 G := InheritedClassBehavior(C, Gp, T)
16 for < <t,M >G G do
17 if not isEmpty(M) then
18 ManageInheritance(C, C, M, nil, T)
19 endif

2 0 endfor
2 1 endif

end AddClassLink

Figure 5.4: Algorithm Add Class Links

child classes. Rather than having Algorithm Add Class Links add one inheritance link at

a time, we have generalized it so that an arbitrary number of both parent and child class

links can be added. This is done because the number of calls to Algorithm Manage Inheri

tance can often be reduced when multiple parents are given. For example, when a conflict

occurs between one or more of the new parent classes, such conflicts can be detected in

Algorithm Add Class Links, allowing for a single conflict method-set to be propagated. If

only a single parent were provided at a time, the first parent specified would propagate the

method-set normally, but when the second (presumably conflicting) parent was added, a

conflict method-set would have to be created and propagated instead. Algorithm Add Class

Links accepts a class C, a set of parent classes, Gp, and a set of children classes Gc-

Lines 1 -5 are responsible for updating class hierarchy links and ensuring the inheritance

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

graph remains acyclic. Lines 7-12 propagate the native selector of class C to classes in Gc-

Note that it is neither possible, nor desirable, to invoke Algorithm Manage Inheritance

on class C directly. It is not possible, because this would result in Cn = Ci = Ct within

Algorithm Manage Inheritance, which has been intentionally disallowed for efficiency rea

sons. It is undesirable because it would result in method-set propagation to children that

have already had propagation performed (since Gc need not be the entire set of child classes

of C). Thus, we call Algorithm Manage Inheritance in each child class found in Gc- In

lines 15-20, Algorithm Inherited Class Behavior returns the set of all method-sets inherited

in class C for cr from parents classes in the class set Gp. If different methods for the same

selector are inherited, Algorithm Inherited Class Behavior detects this and replaces the

multiple method-sets with a single conflict method-set to be propagated. Thus, the set G is

guaranteed to have at most one method-set for each selector in the environment. All such

method-sets are propagated to class C and dependent classes of C by calling Algorithm

Manage Inheritance on C itself.

Algorithm Remove Class Links is used to update the extended dispatch table when

inheritance links between classes are removed.

In line 5, similar to Algorithm Add Class Links, we treat native selectors separately

from inherited selectors. We iterate over every native selector in class C, and for each child

class of C, obtain the appropriate method-set inherited in the child class, given that the child

no longer inherits from C. Algorithm Inherited MethodSet returns the method-set inherited

in class C for selector a if no native definition existed in C and C had as parents only the

classes in the provided set.

In line 12, the inherited selector consists of the selector inherited from all parents of

class C not in the set Gp. Set G is guaranteed to have at most one method-set for each

selector.

5.1.4 Algorithm Determine Selector Index

Algorithm Determine Selector Index is called to obtain a selector index, given a class se

lector pair. If the selector already has an index, the algorithm must determine whether a

selector index conflict exists, and if so, compute a new index, store the index, allocate space

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm RemoveClassLinks(in C : Class, in Gp : Set o f Classes, in G c '■ Set o f Classes, in T : Table)

1 remove classes in G p from parent set of C
2 remove classes in G c from child set of C

3 if (| G c | > 0) then
4 foreach a G selectors(C) do
5 foreach C ielem en tG c do
6 Afjv := InheritedMethodSetO, Ci,parents(Ci) — {C} , { } , T)
7 ManagelnheritanceRemovalfCi, C, M m , nil, T)
8 endfor
9 endfor
1 0 endif

1 1 if (\ G p |> 0) then
1 2 G := InheritedClassBehavior(C,parents(C) —G p , T)
13 for < a , M >E G do
14 ManagelnheritanceRemovalCC, a, M, nil, T)
15 endfor
16 endif

end RemoveClassLinks

Figure 5.5: Algorithm Remove Class Links

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm DetermineSelectorIndex(inout a : Selector, in C : Class, inout T : Table)
1 Laid index(cr)

2 if L0id is unassigned or a selector index conflict exists
3 Lnew ■— indexFreeFor(classesUsing(cr) U dependentClasses(C,cr))
4 index(a) : - L new
5 if L0id unassigned then
6 for Ci G classesUsing(cr) do
7 f [fn e u i Gi] := T[L0id, Ci]
8 T[Laid, Ci] := fi
9 endfor
1 0 endif
1 1 extend selector dimension of table to handle Lnew
1 2 index(cr) := Lnew
13 endif
end

Figure 5.6: Algorithm Determine Selector Index

in the table to handle the new index, and move all method-sets for the selector from their

old positions in the table to their new positions.

In line 3, the function indexFreeFor is a technique-dependent algorithm that obtains an

index that is not currently being used for any class that is currently using cr, as well as those

classes that are dependent classes of (C , cr). The algorithm is responsible for allocating

any new space in the table necessary for the new index.

In line 5, if the old index is unassigned there are no method-sets to move, since no

method-sets for cr currently exist in the table. Otherwise, the method-sets for a have

changed location, and must be moved. The old locations are initialized with empty method-

sets.

5.1.5 Algorithm Record Inheritance Conflict
Algorithm Record Inheritance Conflict abstracts all the code necessary to record an inheri

tance conflict between two method-sets.

In the algorithm, we remove the empty division from the set G of conflicting methods.

No conflict has occured unless the resulting set has at least two methods, as checked in line

3. In lines 4-7 Method-Set M already represents a conflict method-set for class C, so all

other method-sets in G are new parent method-sets adding to an existing conflict. We make

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm RecordInheritanceConflict(in a : Selector, in C : Class,
1 in G : Set o f Method-Sets): Method-Set

2 G := G - fi

3 if normG > 1 then
4 if 3M € Gst isConflict(M) and M.C = C then
5 foreach Mi € G — {M } do
6 addChild(M, M t)
7 endfor
8 else
9 M:= newConflictMethodSet(C, cr)
1 0 foreach M € G do
1 1 addChild(Mf, M)
1 2 endfor
13 endif

14 return M
end RecordlnheritanceConflict

Figure 5.7: Algorithm Record Inheritance Conflict

the appropriate method-set links. Only one such conflict method-set can possibly exist in

G at any given time. In line 9, Algorithm newConfiictMethodSet creates a new conflict

method-set for class C and selector a. It is trivial, and is not presented here. Lines 10-12

ensure that the links between method-sets is updated.

5.1.6 Algorithm Inherited MethodSet

Algorithm Inherited MethodSet obtains the method-set that would be inherited in class C

for selector a if a native definition did not exist and class C only had the classes in Gp as

parents.

In lines 1-6, the algorithm loops over all classes in the specified parent set and obtains

the non-empty method-sets associated with them for cr. The resulting set, G, represents all

methods visible in class C from parents in Gp. The procedure methodSetFor(a,C) returns

the method-set representing the address to be executed for selector cr and class C. In STI

dispatch, this is identical to T[cr,C], but in SC and RD dispatch, the method-set obtained

via T[cr,C] may not even represent a (due to the table compression performed by these

techniques. Thus, if T[a, C].cr ^ cr, the procedure returns Q instead. The procedure is

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm InheritedMethodSet(inout a : Selector, in C : Class,
in Gp : Set o f Classes, in G : Set o f Method-Set,
inout T : Table)

1 foreach Ct- 6 Gp do
2 M:= methodSetFor(cr, Ct)
3 if not isEmpty(M) then
4 add M to G
5 endif
6 endfor

7 if \G \= 0 then
8 .M)\r := ft
9 elsif |£7 |= 1 then
1 0 M/v := the single element o f G
1 1 else
1 2 M n •"= RecordInheritanceConflict(cr, C, G)
13 endif

14 return
end InheritedMethodSet

Figure 5.8: Algorithm Inherited MethodSet

trivial, and is not presented.

If there are no parent method-sets (lines 7-8), removing the current selector means that

the empty method-set should be stored in dependent classes of C.

If there is exactly one parent method-set (lines 9-10), this parent method-set should be

propagated to dependent classes of C.

If there is more than one parent method-set (lines 1 1-12), an inheritance conflict has oc

curred. Algorithm Record Inheritance Conflict is called to record this inheritance conflict,

and the resulting conflict method-set is placed in the dependent classes of C.

5.1.7 Algorithm Inherited Class Behavior

Given a class, C, and a set of classes, G, Algorithm Inherited Class Behavior returns the

set of method-sets that would be inherited from classes in G if each of these classes was a

parent of class C. Since G can be a subset of the complete set of parents for class C, the

method-set set returned will not, in general, constitute all inherited selectors. If a particular

selector has both a native definition and a definition in a superclass, it is not included in the

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm InheritedClassBehavior(in C : Class, in G : Set o f Classes,
in T : Table) : Set o f MethodSet

1
2
3
4
5
6
7
8

H := {}
foreach selector cr do

M e •'= methodSetFor(o\ C)
if M c-C 7 ̂C then

M:= InheritedMethodSet(cr, C, G, { Me } , T)
add {a, M) to H

endif
endfor

9 return H
end InheritedClassBehavior

Figure 5.9: Algorithm Inherited Class Behavior

returned set (because it is not inherited in class C). However, in determining whether, for a

given selector, a conflict exists, the algorithm considers the method-sets for class C and all

classes in G. If more than one method-set represents the same selector, a conflict for that

selector is made and added to the set to be returned.

In line 1, set H will contain two-tuples as elements, where each tuple contains a selector

and a method-set. The selector is redundant when the method-set is non-empty, but neces

sary when empty method-sets need to be propagated (i.e. Algorithm Manage Inheritance

Removal). The set is guaranteed to have only one tuple per selector.

In line 3, the procedure methodSetFor(o.C) returns the method-set representing the ad

dress to be executed for selector cr and class C. In STI dispatch, this is identical to T[a, C],

but in SC and RE> dispatch, the method-set obtained via T[cr, C] may not even represent cr

(due to the table compression performed by these techniques). Thus, if T{o, C}.o ^ a, the

procedure returns Q instead. The procedure is trivial, and is not presented.

In line 5, Algorithm Inherited MethodSet, shown in Figure 5.8, returns the method-set

that would be inherited in class C for selector cr if no native definition existed in C and C

only had the parents in G.

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.2 Example Executions of the DT Algorithms
This section provides some sample executions of the DT algorithms on small inheritance

graphs designed to exercise every possible execution path.

Suppose we want to use the DT algorithms to generate a selector colored dispatch table

for an entire programming environment. Let the language compiler or interpreter call Algo

rithm Add Class Links whenever new hierarchy links are specified (usually when the class

is first declared). Furthermore, let the compiler/interpreter call Algorithm Add Selector

when a method definition for a selector in a particular class is encountered. As Algorithm

Add Selector is currently written, this must occur at time of definition, rather than time of

declaration, because Algorithm Add Selector requires a method address. However, such an

address is not a necessary part of Algorithm Add Selector, and could instead be assigned af

ter Algorithm Add Selector was called. Note that Algorithms Remove Selector and Remove

Class Links are unlikely to be used in compiled environments.

The DT Environment is initialized with an empty table. In this section, we will show

how the table is incrementally modified as we add class hierarchy links and selectors.

First, suppose class F is declared, with no superclasses (AddClassLinks(F,{},{},T)),

that classes G and H are declared as subclasses of F (AddClassLinks(G,{F},{},T) and

AddClassLinks(H,{F},{},T)), and that class I is declared as a subclass of both G and H

(AddClassLinks(I,{G,F},{},T). These links are made before selectors for any of these

classes are parsed. In all three cases, calls are made to Algorithm Add Class Links, but

a quick look shows that, since no selectors exist yet (i.e. the table is completely empty),

Algorithm Add Class Links modifies parent and child class sets, but does no method-set

propagation. The resulting inheritance graph is shown in Figure 5.10.

Now, suppose that a method (with address A) is defined for selector a in class F. Then

we call A ddS elector {a, F , A, T). Since a is new in the environment, it does not yet have

an index, so we call D eterm ineSelectorIndex(a, F ,T). This algorithm obtains an index

free for all classes using a (none) plus all dependent classes of (F, a), namely {F,G,H,I}.

The routine indexFreeFor returns the new index 0, having allocated space in the table as

necessary (and initializing new table entries to empty method-sets). Algorithm Determine

Selector Index sets the index of a to 0, and returns, since the old index was unassigned.

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 5.10: The Initial Inheritance Graph for Algorithm Manage Indieritance

Back in Algorithm Add Selector, the current method-set for selector a an< d class F is ob

tained, which is M e = fh No recompilation exists, since M c-C = nil F , a is added

to the native behavior of C and a new method-set, Mm =F:a, is created. Procedure ad-

dChild is called to add a link, but since M e is empty, no link is added. Finally, we call

Managelnheritance(F, F, F:a,nil, T).

Within Algorithm Manage Inheritance, we have CT = F, a = a, CN — F, M e = £2

and Ci — nil. No selector index conflict exists, so the algorithm determines which action to

perform. Since C t 7̂ Cr and Ci 7 ̂Cm and \parents(Cr) |= 1 , action me-thod-set insert

ing is established, which simply indicates that the method-set to be propagsated to children

is F:a. Next, Fro; is placed in the table for (F ,a), and Algorithm M anage Inheritance

is recursively invoked as ManageInheritance(G,F, F:ot,Cl,T) and ManageImheritance(H,F,

F:a,n,T).

The sequence of operations within class G is identical to class F (no* selector index

conflict, action method-set inserting identified, recurse over all children)* and recursion

continues to class I, which is similar to class F. Although | paren ts(C r) | |> 1, £ = {},

so action method-set inserting is still identified, and M N is placed in the tab le for (I, a).

No subclasses exist, so recursion terminates, returning to the invocation on class G, which

also returns since class G has only the one child class I. Thus, we arrive Uback at the ini

tial invocation on class F, which calls M anageInheritance(H , F, F : ca ,Q ,T). Once

again, the operations performed are identical to class F, and a recursive invocation for

M anageInheritance(I, H ,F : a, Q, T) occurs. However, on this invocation, M e = F:a

so Ci = F = Cm, s o action method-set re-inserting is identified, which perform s an im-

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

mediate return. The initial invocation of Algorithm Manage Inheritance for class F then

returns to Algorithm Add Selector, which also returns. The resulting extended dispatch

table is shown in Figure 5.11.

selectors index F G I H
a 0 F:a F:a F:a F:a

Figure 5.11: The Extended Dispatch Table After Selector a Added to Class F

Note that method-set re-inserting is very useful in avoiding (possibly substantial) redun

dant propagation, although in this particular example, it is not fully demonstrated. Suppose

class I had many dependent subclasses. The appropriate method-set would be propagated

to these subclasses during invocations of Algorithm Manage Inheritance along the class G

path. When recursion arrives back at class I through class H, absolutely no progation is

necessary for class I or any dependent child.

Next, suppose selector a were added to class G. In Algorithm Add Selector, no selector

index conflict exists, so M e = F : a is obtained. Since M c-C ^ G no recompilation

exists, so selector a is added to the native behavior of class G and a new method-set,

M n = G : a is created. Next, procedure addMethodSetLink is called to add a link be

tween parent method-set F:a and child method-set G:a, as appropriate. Finally, a call to

M anageInheritance(G , G ,G : a , n il , T) is made.

Within Algorithm Manage Inheritance, we have Ct — G, cr = a, Cn = G, M e =

F : a and Cj = F. No selector index conflict exists, so the algorithm determines which

action to perform. Since Ct # C i and Cr ^ Cn and |parents(Cx) |= 1, action method-

set inserting is established, which indicates that the method-set to be propagated to chil

dren is G:q. Next, G :a is placed in the table for {G, a), and the recursive invocation

M anageInheritance(H , G ,G : a , F : a , T) is performed.

In this second invocation of Algorithm Manage Inheritance, Ct = I , cr = a, Cn = G,

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

M e = F : a and Cr = F . No selector index conflict exists, so the algorithm deter

mines which action to perform. Since Ct # Cr and Cr ^ C n and Cr £ Cn and

| (parents(CT)) |> 1 and E = { F :a , G:a }, action conflict creating is established. Algo

rithm Record Inheritance Conflict is called to create a new method-set with defining class

Ct = I and selector cr that is marked as a conflict method-set. This new method-set is

identified as the one to place in the table and propagate to children. Thus, I : !a is placed

in the table for (I, a) and control returns to the caller, since class I has no children. The

invocation of class G also returns, having no further children, and Algorithm Add Selector

returns. The resulting extended dispatch table is shown in Figure 5.12.

selectors index F G I H
a 0 F:a G:a I:\a Fro:

Figure 5.12: The Extended Dispatch Table After Selector a Added to Class G

Next, suppose that selector /? is defined in class H. In Algorithm Add Selector, /3 does

not yet have a selector index, so Algorithm Determine Selector Index is called. It obtains

an index free for classes using (3 ({}) and all dependent classes of /? ({H,I}. Since the only

existing index is not free (i.e. empty) for both class H and class I, procedure indexFreeFor

returns the new index 1, having allocated and initialized new space in the table for empty

method-sets. Algorithm Determine Selector Index sets the index of to 1 and returns, since

the old index of was unassigned. Back in Algorithm Add Selector, the current method-

set, M e = ft, is obtained. Since M c-C H, no recompilation exists, so /? is added to

the native behavior of H, a new method-set, M n = H:/? is created, no link is made because

M e = ft, and Algorithm Manage Inheritance is invoked as ManageInheritance(H, H, H:0

, nil, T).

Within Algorithm Manage Inheritance, execution proceeds as it has previously, with

action method-set inserting identified, and propagation to class I, which also has action

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

method-set inserting. Control returns to Algorithm Add Selector, which itself returns. The

resulting extended dispatch table is shown in Figure 5.13.

selectors index F G I H
a 0 F :a G:oc I: la F:q:
P 1 - - H :p H :P

Figure 5.13: The Extended Dispatch Table After Selector /3 Added to Class H

Finally, suppose selector /3 is defined in class F. In Algorithm Add Selector, the index of

P is 1, and no selector index conflict exists, so the current method-set M e = is obtained.

Since M c-C ^ F , no recompilation exists, so selector P is added to the native behavior of

class F, a new method-set, M u = F:/3 is created, no link is added because M e — Cl, and

Algorithm Manage Inheritance is invoked as ManageInheritance(F,F, F:/3 , nil, T).

In Algorithm Manage Inheritance, the initial invocation with C t = F identifies action

method-set inserting, so F:/3 is placed in the table for (F, P) and the recursive invocation

ManageInheritance(G,F, F:/3 , Cl, T) is performed. For this second invocation with C t =

G, action method-set inserting is once again identified, F:fi is placed in the table for {G , P)

and the recursive invocation MI(I,F, F:fi , II, T) is performed. In this third invocation with

CT = I, things proceed differently. We have that CN = F, M c = H:/3, and Cj = H .

Since C t C/ and C/ ^ C ^ and C/ < Cn, action conflict-creating is identified. A new

conflict method-set, M = / : ! /? is created. This method-set is inserted into the table for

(I ,fi) , and the invocation terminations since class I has no children. The invocation for

class G also terminates, returning control to the initial invocation on class F, which calls

ManageInheritance(H, F, F:(3 , Q, T). Within this invocation, CT = H , CN = F, M c —

H:/3 and C/ = H . Since C t = Cr, action method-set child updating is identified. Method-

Set H:/3 is added as a child method-set of F:/3. Since M p = Cl, the call to removeChild does

nothing, since no link exists. Control returns to the invocation on class F, which returns to

Algorithm Add Selector, which also returns. The resulting extended dispatch table is shown

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

in Figure 5.14.

selectors index F G I H
a 0 F:a G:a: I:\ct F:a
13 1 F:j3 F:/3 1:1/3 H:/3

Figure 5.14: The Extended Dispatch Table After Selector /3 Added to Class H

The previous sequence of operations demonstrates all of the execution paths of Algo

rithms Add Selector and Managelnheritance (except for detection of selector index con

flicts within Manage Inheritance). However, we have not exercised Algorithm A dd Class

Links yet. In order to do this, suppose we have an existing environment consisting of five

classes, J,K,L,R and S. We assume that each of these classes has native behavior, and now

want to add classes J, K and L as parent classes of R, and class S as a child class o f R. The

hierarchy (with the links to be added indicated by dashed lines) is presented in Figure 5.15

The figure shows the state of the extended dispatch table before the hierarchy links are

added. During the creation of this extended dispatch table, Algorithm Manage Inheritance

performed action method-set inserting each time, so we do not step through the process.

Observe that selectors /?, 7 and v all share the same index.

selectors index J K L R S
a 0 3:a — L:a J :a S :a
6 1 J :5 K :6 L :6 3:6 —

7i 13, v 2 — K:/3 L:T R :u R :v

Figure 5.15: The Extended Dispatch Table Before Class Hierarchy Links Added

We now call A ddC lass L ink s(R, {J , K , L}, {S'}, T). The algorithm first adds R to the

child sets of classes K and L, adds K and L to the parent set of class R, adds class S to the

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

child set o f class R, and adds class R to the parent set of class S.

Next, since there are new child classes (i.e. G c is not empty), the algorithm iterates

over all selectors defined natively in class R (namely, {v}). Since v is defined natively in

class R, T[V,R] must be a method-set M= R:i/. For each child class in the new child set,

G c, we call Algorithm Manage Inheritance to propagate method-set D. Action method-set

inserting is identified, so Algorithm Manage Inheritance stores R:i/ for (S , v) and returns.

No further native selectors exist, so Algorithm Add Class Links continues on to parents.

Algorithm Inherited Class Behavior is called to obtain the selectors inherited in class

R from parent classes J, K and L. The set G is a set of two-tuples, where each tuple con

sists of a selector and the method-set inherited for that method-set. The set returned from

Algorithm Inherited Class Behavior is G = {(a , R :!a), (j3, K : /3), (7 , L : 7), (5, R :!£)}.

In particular, note that Algorithm Inherited Class Behavior has returned a conflict method-

set R: la, even though only one of the new parent classes (class L) defines a . Thus, al

though Algorithm Inherited Class Behavior ignores selectors defined natively in class R,

it does look at all inherited selectors (not just selectors from the new parent classes) when

determining whether a conflict exists. We call Algorithm Manage Inheritance for each

non-empty method-set in the set returned from Algorithm Inherited Class Behavior. The

resulting dispatch table is shown in Figure 5.16.

selectors index J K L R S
a 0 J:a — L:a R :la S:a
6 1 J:5 K :5 L :S — —

7 2 — — — R m R:i/
0 3 — K:/3 — K:/3 K:0
V 4 — — L:y L:y L:y

Figure 5.16: The Extended Dispatch Table After Adding Class Hierarchy Links

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.3 Using the DT Algorithms for Compile-time Optimiza

tions
This section summarizes how the DT algorithms can be used to determine when a method

is uniquely identified at compile-time. Each type/selector pair is characterized in terms

of its relation to other type/selector pairs in the environment. To this end, we define six

mutually exclusive partition types that are useful for various purposes. Each type/selector

pair {C, a) has one partition type.

1. undefined: a has not been defined any class in the application. In Figure 3.1, (F, 7)

is undefined since 7 is not defined in any of the application classes.

2 . unrelated: a has been defined in at least one class in the application, but has not been

defined in any class in the connected inheritance graph containing C. In Figure 3.1,

(F, u) is unrelated since u is not defined in any of the application classes F, G or H,

but is defined in class R.

3. sub-defined: a has been defined in at least one subclass of C, but has not been defined

in C or any of its superclasses. In Figure 3.1, (F, /3) is sub-defined since ft is defined

in class G, but not in F.

4. defined-determined: a is uniquely visible in C, but is not explicitly defined in any

subclass of C. In Figure 3.1, (K , ft) is defined-determined since is defined in K,

but not in any subclass of K.

5. defined-undetermined: a is uniquely visible in C and is defined in a subclass of C.

In Figure 3.1, (F, 5) is defined-undetermined since 6 is defined in class F and in

subclass H.

6 . conflicting: a is multiply visible in C and C does not explicitly define a. In Fig

ure 3.1, there is no multiple-inheritance, and thus no example of a conflict method.

However, in Figure 5.14 both (I, a) and (J, /3) are conflicting.

At every call-site, the compiler knows the selector and the static type (class) of the re

ceiver object. By asking the DT Environment for the partition type of this type/selector

111

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

pair, the compiler can establish whether a unique method exists fo r the call-site. In particu

lar, if the partition type is defined-determined, undefined, conflicting, or unrelated, a unique

method exists.

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Making Existing Techniques

Incremental

In Chapter 4, the concept of an environment modification was introduced, consisting of

four different actions: adding a new method to an existing class, removing a method from

a class, adding an inheritance link between two classes, and removing an inheritance link

between two classes. Although removing methods and class links does have its advantages,

we will concentrate on adding new methods and new class links. Note that modifying the

code associated with an existing method does not affect the dispatch information unless

the address of the method changes (and even then, it is a trivial modification that does not

necessitate any inheritance conflict checking or inheritance propagation). Furthermore, the

simple act of defining a new class (assuming such an act is independent of its position

within the class hierarchy) does not affect the dispatch information.

An environment modification represents an action that affects dispatch information.

A dispatch technique for a reflexive language must be sufficiently robust to detect such

changes in dispatch information and provide mechanisms for updating the data-structures

and/or code responsible for dispatch. Naturally, there is a continuum of possible mecha

nisms for performing such updates. Some techniques (like IC and PIC) require that the

code itself be modified, which can sometimes be easily accomplished, but may also be

extremely difficult. Self-modifying dispatch code is difficult to modify efficiently, poses

problems when the code to be modified is currently being executed, precludes code-page

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

sharing unless a copy-on-write architecture is present (which has its own collection of ef

ficiency issues) and can detrimentally impact the performance of optimizing compilers.

Thus, other techniques (like the table-based ones) attempt to place the dispatch informa

tion that will need to be modified in data-structures, since it is much easier to modify data

than code.

Since the modification of data-structures can occur at run-time, a method dispatch tech

nique for a reflexive language should make the modifications as efficiently as possible.

Thus, although most dispatch techniques could be made reflexive by simply recomputing

the entire collection of data structures each time a class link or method is added or removed,

such an approach is usually not practical because it would take too long to recompute all

the dispatch information. Reflexive languages often tend to have an interactive program

ming environment associated with them (since reflexivity makes such environments easy

to provide). In such languages, human-noticeable delays of more than a second are highly

undesirable, but recomputation of the entire dispatch data-structure will usually take longer.

Fortunately, it is almost never necessary to recompute the entire data-structure, because

only the most extreme actions (for example, adding a class above the root class) need

to modify all information. In most techniques, even this extreme example touches only

relatively few components of the data-structure. Thus, one goal of a reflexive dispatch

technique is to modify only those entries that are truly necessary. One simple mechanism

for achieving this goal is to make the algorithms for data-structure maintenance incremental

in nature. This means that the algorithms do not need whole-program knowledge in order

to work, and can instead build up the dispatch data-structure as an iterative process as new

classes and methods are encountered.

In summary, dispatch techniques for reflexive languages should avoid modifying code

(or provide an efficient means of doing so), and should be incremental in nature, modifying

only those elements of the dispatch data-structure that are strictly necessary.

This chapter represents new research. Traditionally, table-based techniques have never

been applied to reflexive languages. This chapter demonstrates for the first time how

all such techniques can be applied to reflexive languages. It discusses what needs to be

changed in each of the single-receiver dispatch techniques in order to allow them to work

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

for reflexive languages. For the most part, this reduces to making the algorithms incremen

tal in nature.

6.1 Search-based Techniques
The Method Lookup (ML) technique maintains a minimum amount of information, storing

only the native method definitions for each type. Adding a new method to a class only

involves adding the method to the method dictionary of the class. Although this is easily

accomplished at run-time, it can require extra space and time. In a non-reflexive environ

ment, although the dictionaries may need to be dynamically growable during initialization

(i.e. during compile-time), they do not need to be growable at mn-time, and can thus be

made of minimal size when creating the mn-tim e versions of the data-structures. Further

more, since the dictionaries are of fixed size, it is possible, and may be beneficial, to place

them on the stack rather than on the heap (depending on the architecture, stack access may

be faster than heap access). Finally, the compiler can spend extra time to provide perfect

hashes, improving lookup speed. In a reflexive language, the dictionaries must remain

dynamically growable, must therefore stay on the heap, and it may be too expensive to

maintain perfect-hash status at mn-time.

In summary, it is very easy to make ML reflexive, but doing so precludes some op

timizations that are possible in non-reflexive implementations. This performance penalty

will be common to most of the techniques.

6.2 Cache-based Techniques
Since the cache-based techniques do not precompute methods, but instead compute the

methods at each call-site, incremental versions o f the algorithms are somewhat easier to

implement than in the table-based paradigm. However, in all cache-based techniques it is

necessary to flush certain caches when new methods or class links are added (the cached

address may no longer be the correct one). Flus-hing caches introduces two problematic

implementation details that can be avoided in non-reflexive languages.

First, an additional data-structure must be maintained for IC and PIC that provides

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

access to every single cache (which means every single call-site in the application) so they

can be flushed. The memory overhead of this data-structure may become prohibitive for

large applications.

Second, flushing caches can slow the application down considerably, especially if the

cache-miss technique is a naive ML implementation. Every one of those call-sites must

perform an ML search before they can cache the new result and recover efficient perfor

mance.

6.3 Table-based Techniques
6.3.1 STI: Selector Table Indexing

Since class and selector indices are unique and orthogonal to one another, the algorithm

presented in Section 3.3.2 on page 38 works equally well in either an incremental or non-

incremental setting. However, the same caveats mentioned in Section 6 .1 apply here, with

even more detrimental impact. In a non-reflexive environment, the 2D STI table can be

efficiently collapsed into a ID table and stored on the stack rather than the heap. In a re

flexive environment, it will most likely be implemented as a dynamically growable array

of dynamically growable arrays, with all of the overheads associated with multiple pointer

dereferences to access entries and for implementing growable arrays.

6.3.2 SC: Selector Coloring

Although the details in this section may at first glance seem unnecessarily low-level, they

take on a deeper significance because this algorithm is the basis for DSI (Determine Selec

tor Index), which in turn is one of the fundamental algorithms in DTF.

In [3], an incremental version of SC is presented, which we will refer to as the AR

Algorithm. However, the declarative nature of the presentation does not provide any indi

cation of how to implement the algorithm efficiently. Furthermore, some errors exist in the

algorithm. We present a procedural version of the AR algorithm, point out the problems,

and develop a corrected algorithm. In order to understand Algorithm 6 .1, the following

terminology is necessary:

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Partition type: Each type/selector pair (C, cr) is assigned one of four different parti

tion types:

(a) specific: a is not yet defined in the system.

(b) separate: a is not recognized by class C, any superclass of C, or any subclass

of C, but is recognized by some class (i.e. is not specific).

(c) declared: a is not recognized by class C or any superclass of C (and is not

specific or separate).

(d) redefined: a is recognized by C.

• colorsFreeFor(G): The set of all colors unused by all classes in the set G. A class is

using a color,L, if it recognizes a selector whose color is L.

• classesUsingColor(L): The set of classes using color L.

The algorithm is quite straightforward, consisting of a nested loop iterating over all

classes, and, for each class, all selectors. Each class is assigned a unique index, k, but the

index, L, assigned to a selector need not be unique. In this algorithm, class/selector pairs

are assigned to one of four mutually exclusive partition-types, which establishes how the

index for the selector should be initialized or modified. However, a few errors must be

clarified before the algorithm will work properly.

First, lines 7-8 of the AR algorithm state that if (C, cr) is partition-type specific then

the color for a can be any color free for all subclasses of C. However, if we assume that

inheritance exceptions are represented as special method definitions (i.e. a method still

exists for the selector, but just generates an error), then it is sufficent to check only the leaf

classes of C. If inheritance exceptions do actually remove the selector, then class C and all

subclasses must be checked.

Second, lines 12-15 state that if (C, cr) is partition-type separate, it is sufficient to

check only class C to determine if the color can remain unchanged. This is not true, since

subclasses of C must also be checked. Once again, however, if inheritance exceptions are

modeled as special methods, only leaf classes need to be checked.

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm SC
1 K := 1
2 foreach class C
3 K := K+l
4 index(C) := K
5 foreach selector a
6 L0id ~ index(cr)
7 P := partition(cr,C)
8 if P = specific
9 L := any color in coIorsFreeFor(subcIasses(C))
10 elsif P = redefined
11 L 1= L old
12 elsif P = separate
13 if Lotj G colorsFreeFor(C) then L := L 0td
14 else L := any color in colorsFreeFor(classesUsingColor(L0;d))
15 endif
16 else “P = declared”
17 if Laid G colorsFreeFor(C) then L := L0id
18 else L := any color in colorsFrecForCclassesUsingColorfLoid))
19 endif
20 endif
21 index(cr) := L
22 T[L,K] := methodFor(<j,C)
23 endfor
24 endfor
end SC

Figure 6.1: Algorithm SC

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Third, in lines 16-19, when (C, a) is partition type declared, the algorithm is in error

on two counts. First, it is not sufficient to look only at classes using the current color unless

a deletion mechanism is used to collapse rows. Second, the AR algorithm is too restrictive.

That is, it may exclude a color that can be used. Instead of finding a color free for classes

using the current color, the algorithm should find a color free for all dependent classes of

{C , cr) and free for all classes currently using selector cr. Dependent classes were defined

in Section 4.1.2 on page 52.

All of the caveats with regard to non-reflexive versus reflexive implementations men

tioned in Section 6.3.1 also apply here.

6.3.3 RD: Row Displacement

There are only two real differences between the incremental version of RD dispatch pro

vided by the DT algorithms and the nonincremental version provided in [11]. The first

difference has to do with the optimizations the nonincremental version can make because

it has access to the entire class hierarchy before selector index assignment begins. In [11],

the width of a selector is defined as the number of classes that recognize the selector. The

nonincremental version sorts selectors according to their widths, but such sorting is not

possible in an incremental algorithm. The nonincremental version relies on this sorting to

fit the selectors with the highest width first (they are the most difficult to fit), progressively

fitting selectors with smaller and smaller widths, so that by the time the algorithm is down

to selectors with width one, they can be used to “fill in” holes left by selectors of greater

width. In fact, the non-incremental version relies heavily on the fact that all one-width

selectors are processed last. The algorithm requires that “empty” portions of the master

array be maintained as collections of freeblocks, where free-blocks of the same size are

connected in double-linked lists (using the first two elements of the freeblock to encode

this information). However, freeblocks of size one do not have enough room to maintain

double-linked lists without an extra indirection. In the non-incremental version, this is eas

ily solved by ignoring freeblocks of size one until all selectors with widths greater than one

are processed. Then the algorithm scans through the master array creating a single-linked

list of all remaining empty locations and processes the one-width selectors to fill in these

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

holes.

The incremental version cannot sort selectors by width, and cannot rely on onewidth

selectors occurring last. This is solved by always maintaining doubly-linked freeblocks,

which are easily implemented because tables in the DT Framework store method-sets rather

than method addresses (i.e. the indirection mentioned in the previous paragraph exists

for all entries anyway), so a special FreeMethodSet can be used to represent freeblocks.

Thus, even singleentry freeblocks can encode the doublylinked freeblock structure within

the master array (FreeMethodSet instances have next and previous fields pointing to other

FreeMethodSet instances representing freeblocks of the same size).

The second difference involves the ordering of classes in depth-first preorder. Ob

viously, a reflexive environment does not know all classes before the data-structures are

created, so such ordering is not possible. Fortunately, this ordering is not necessary to

the proper execution of the algorithm. Unfortunately, the ordering allows for much better

compression rates than are possible with the random orderings expected in highly reflexive

environments.

Algorithm 6.2 shows the incremental RD algorithm. In the DT algorithms, the inner

portion of the for loop represents the code needed to implement indexFreeFor for RD.

6.3.4 CT: Compact Selector-Indexed Dispatch Tables

An incremental version of the CT dispatch technique as it exists in [28] necessitates some

inefficiency, due to the inherently nonincremental nature of selector aliasing. In an incre

mental version, classes can be added as parent classes o f already existing classes. Since se

lector aliasing relies on assigning selector indices based on a topdown traversal of classes,

this would result in a need to change the indices of many selectors. Although the index

reassignment itself is not particularly expensive, the movement of method-sets from old

locations to new locations can involve a reshuffling of the entire table.

Fortunately, a simple observation makes incremental selector aliasing unnecessary; the

standard table can be compressed equally well by using selector coloring. Having sepa

rated conflict selectors out of the table, selector coloring will assign indices so as to not

leave any internal space (however, there are certain optimizations that can be made to the

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm RD
foreach class/selector pair (C, a) do

Create a row R by scanning T starting at index(C) looking for cr.
L := unassigned
F := firstFree(R.primary.run)
while L is unassigned

max := F.run R.primary.run
i := 0
while L unassigned and i < max do

L := F.start R.primary.start + i
foreach nonprimary block B in R

for K := B.start to B.start + B.run
if T[L+K] is used

L := unassigned
break two levels

endif
endfor

endfor
i := i+1

end while
if L unassigned

F := nextFree(F)
endif

endfor
foreach block B in R

F := the freeblock containing entry T[L,B-start]
for K := B.start to B.start + B.run

T[L,K] := methodFor(R.cr, classWithlndex(K))
endfor
update free lists (split F into two smaller freeblocks)

endfor
endfor

end RD

Figure 6.2: Algorithm RD

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SC algorithm that result in a few internal spaces, in exchange for faster dispatch-table com

putation).

Having resolved the issue of incremental selector aliasing, we now turn our attention

to incremental class partitioning and class sharing. Rather than creating standard and con

flict tables in their entirety, then partitioning them, we can maintain fixedsize subtables

that represent each partition. As addresses are added to the table, new subtables can be

dynamically created as they are needed. Although an extremely efficient mechanism for

incremental type sharing exists as long as we disallow adding of parent classes to existing

classes, it is even possible (albeit more inefficient) to handle dynamic schema evolution

(the ability to modify the inheritance hierarchy by inserting classes anywhere in the hierar

chy). Thus, the incremental version of CT consists of a table with two subtables, a standard

selector table and a conflict selector table. Selectors exist in only one or the other of these

tables, but the same class can exist in both (thus, class indices are selector dependent). Fur

thermore, each of these two subtables is divided into a collection of fixedrow subsubtables

representing partitions. Each subsubtable in the standard selector subtable is compressed

via selector aliasing and class sharing, and each subsubtable in the conflict selector subtable

is compressed via class sharing alone.

As discussed in Chapter 4, the incremental version of CT is only one of many variations

arising from separated and partitioned tables. We introduced a new dispatch technique,

SCCT, that merges the SC and CT dispatch techniques, keeping the advantages of both,

and removing the limitations of CT. In particular, SCCT is applicable to languages with

multiple inheritance, and provides even better compression than CT.

6.3.5 VTBL: Virtual Function Tables
An incremental version of the VTBL technique is expensive for two reasons. First, it

is not possible to store all current selector indices explicitly, because selector indices are

class specific. This problem exists for the same reason STI dispatch is not practical; the

product of classes and selectors requires far more memory than is feasible. This means

that selector index determination becomes a search, rather than just a field access. Even

efficient implementations like hash tables with binary search tree probes will be an order

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of magnitude more expensive than selector index determination in any other technique.

The second inefficiency is due to the need to handle dynamic schema evolution. If a

class is added as a parent of an existing class, C, all selectors defined in C or any subclass

of C which are not defined in any parent of C must have their indices reassigned. Thus, if

a class is added as a parent of a hierarchy with a single current root class, every selector of

every class in the hierarchy must be assigned a new index.

Note that although an incremental VTBL technique is potentially very expensive, it

is not impossible. It could even be used in reflexive languages, as long as every virtual

function table used thunks (software to select multiple indices for the same selector), rather

than just those tables involving multiple inheritance. However, since this would have a

profound impact on execution performance, it is far less desirable than any of the other

table-based techniques for reflexive languages.

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

P a r tin

Multi-method Dispatch

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The chapters making up this section are of a somewhat different flavor than those that

have come before. First, they are focused on the issue of multi-method dispatch, in which

the dynamic types of one or more arguments are used in determining which method to

invoke. In the most general version of multi-method dispatch, the language would provide

some syntactic mechanism for specifying which arguments should participate in dispatch

and which should not. One possible syntax for doing this is shown in Expression 7.1 of

Section 7.1.1.

This notation provides an obvious separation between dispatching and non-dispatching

arguments, maintains the message-passing paradigm, and leads naturally to the idea of

product-types and induced product-type inheritance graphs, which will be discussed in

Section 7.1.1.

Multi-method dispatch provides substantial additional expressive power to languages

and provides more efficient and elegant mechanisms for addressing thorny single-receiver

issues like double-dispatching and the binary-method problem. On the other hand, multi

method dispatch techniques are substantially slower than single-receiver techniques, re

quire more memory, and are more complex.

Because of the implementation issues associated with multi-method dispatch, little re

search has been done in this area. Only a few multi-method languages exist (Cecil, Dylan,

CLOS, etc.), and thus only a few multi-method dispatch techniques have been developed.

Thus, unlike Part II where the research involved unifying existing techniques into a com

mon whole and extending them to apply to a broader class of languages, the chapters in this

part of the thesis are focused mostly on fundamental research into new dispatch techniques

for multi-method languages. In particular, reflexivity does not play as much of a role here

as it did in Part II, because developing efficient techniques for non-reflexive languages is

of more immediate concern.

Chapter 7 provides some new terminology for dealing with multi-method languages and

briefly describes the existing multi-method dispatch techniques. Chapter 8 presents detailed

discussions of two new table-based techniques and compares their execution performance

and memory requirements against the existing techniques. This chapter also discusses a

third new technique that will be analyzed in future work.

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7

Introduction to Multi-method

Languages

Multi-method languages provide a natural extension to single-receiver languages by al

lowing the dynamic types of multiple arguments to participate in the determination of the

method to invoke. This chapter introduces some terminology and concepts that will be used

in subsequent chapters.

7.1 Terminology for M ulti-method Dispatch
7.1.1 Notation

Expression 7.1 shows the form of a fc-arity multi-method call-site. Each argument, o,-,

represents an object, and has an associated dynamic type, T l — type(oi). Let 7i represent

a type hierarchy, and | 7i | be the number of types in the hierarchy. In 7i, each type has a

type number, num (T). A directed supertype edge exists between type Tj and type Tt- if Tj

is a direct subtype of Tt-, which we denote as Tj -<i T*. If TJ can be reached from Tj by

following one or more supertype edges, Tj is a subtype of Ti, denoted as Tj ^ T{.

(o i , ..., Ofc).cr(c>fc+i , ..., on) (7.1)

Method dispatch is the run-time determination of a method to invoke at a call-site.

When a method is defined, each argument has a specific static type, T l. However, at a call-

site, the dynamic type of each argument, o,-, can either be the static type, T \ or any of its

126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A f A anA;
if(-)

anA = new A();
else

* The subscript beside the type is the
type number. m n iT) .

anA = new C();
anA.aQ;

(a) Type Hierarchy (b) Code Requiring Method Dispatch

Figure 7.1: An Example Hierarchy and Program Segment Requiring Method Dispatch

subtypes, {T |T ■< T 1}. For example, consider the type hierarchy and method definitions

in Figure 7.1a, and the code in Figure 7.1b. The static type of anA is A, but the dynamic

at a call-site until run-time, so method dispatch is necessary.

Although multi-method languages might appear to break the conceptual model of send

ing a message to a receiver, we can maintain this idea by introducing the concept of

a product-type. A k-arity product-type is an ordered list of k types denoted by P =

T l x T 2 x ... x T k. The induced k-degree product-type graph, k > 1, denoted P k, is

implicitly defined by the edges in P . Nodes in P k are fc-arity product-types, where each

type in the product-type is an element of P . Expression 7.2 describes when a directed

edge exists from a child product-type Pj = T j x T j x ... x T k to a parent product-type

Pi = T j x T j x ... x T j, which is denoted Pj -<i Pj.

The notation Pj -< Pi indicates that Pj is a sub-product-type o f Pi, which implies that

Pi can be reached from Pj by following edges in the product-type graph P k. Figure 7.2

presents a sample inheritance hierarchy P and one of four connected components of its

induced 2-arity product-type graph, P 2.

A behavior corresponds to a generic-function in CLOS and Cecil, to the set of methods

that share the same signature in Java, and the set of methods that share the same message

selector in Smalltalk. Behaviors are denoted by Bk, where k is the arity and a is the name.

type of anA can be either A or C. In general, we do not know the dynamic type of an object

Pj Pi O 3m, 1 < u < k : (77 T j) A (Vu ^ u, T j = T j) (7.2)

127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

An Inheritance Hierarchy, H:
One component of the 2-arity product-type graph, H~

A E F

t \ /
B G / \f

AxB BxA
C

Method Definitions on H2:
/ \ / \

I a DvP 1 1 i

y(A,A) -» Yi
Y(B , B) -» Y2
Y(A,C) -» Y3 I------------1

BxC
P (f,£) -► pi
P(C,G) —> P2
P(5.S) -> p3 \ /

CxC

Figure 7.2: An Inheritance Hierarchy, H and One Connected Component of H 2

The maximum arity across all behaviors in the system is denoted by K . Multiple methods

can be defined for each behavior. A method for a behavior named cr is denoted by aj. If the

static type of the i th argument of <jj is denoted by T l, the list of argument types can viewed

as a product-type, dom(cry) = T 1 x T 2 x ... x T k. With multi-method dispatch, the dynamic

types of all arguments are needed.1 We use the notation \B*\ to represent the number of

methods defined for B£. We will also use the selector name cr to refer to a behavior

when the arity is obvious.

In a single-receiver language, it is often useful to maintain an annotated type hierarchy

graph that for each type lists the set of behaviors that are natively defined on it (like in

Figure 3.1). Such a representation provides an effective summary of the relationship be

tween types and behaviors. It allows a designer or implementor to immediately establish

which method will be dispatched for a given behavior and dynamic receiver type, and is

especially useful in detecting inheritance conflicts. In table-based dispatch techniques, this

graph representation is more efficiently stored as a table that maps type/behavior pairs to

method addresses, as discussed in Chapter 3. Although a dispatch table is not as useful to

humans wanting to understand the relations between types and behaviors, it is an efficient
1 In single-receiver languages, the first argument is called a receiver.

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

mechanism for maintaining precomputed method addresses.

Induced product-type graphs provide us with an analogous graph representation fo r

multi-methods. Figure 7.2 shows a type-hierarchy, 7i consisting of six classes in two con

nected components and one of four connected components in the induced 2 -arity product-

type graph, %2. It also shows three user-defined multi-method definitions for behavior 7 ,

three multi-method definitions for behavior /3 and the implicitly defined inheritance con

flict method for 74 discussed in Section 7.1.2. We have annotated H 2 in Figure 7.2 with the

definitions for 7 . Ignore the conflict method 74 for now.

Having identified that H 2 (and, in general, H k) is quite useful, at least conceptually,

we observe that explicitly maintaining Tik is impractical due to space requirements. For

example, the Cecil language implements its compiler, Vortex, in Cecil, and the Vortex envi

ronment consists of 1954 classes. Since T-L2 shows the inheritance relationships between the

cross-product of all types, there are 19542 nodes. The number of edges naturally depends

on the number of edges in T-L, but is bounded below by | T-L |2, and above by | % |^ . There

fore, it is essential to define all product-type relationships in terms of relations between the

original types, as in Expression 7.2.

7.1.2 Inheritance Conflicts

As mentioned in Section 1.2, for single-receiver languages with multiple inheritance, the

concept of inheritance conflict arises. In general, an inheritance conflict occurs at a type T

if two different methods of a behavior are visible (by following different paths up the type

hierarchy) in supertypes T and Tj. Most languages relax this definition slightly. Assume

that n different methods of a behavior are defined on the set of types T = {7 \,..., Tn}, and

that T ■< T i , ..., Tn. Then, the methods defined in two types, T; and Tj in T , do not cause

a conflict in T, if T{ -< Tj, or Tj -< Ti, or 3 T^ £ T | Tu -K Tt- 8z Tu -< Tj .

Inheritance conflicts can also occur in multi-method languages, and are defined in an

analogous manner. A conflict occurs when a A>arity product-type can see two different

method definitions by looking up different paths in the induced product-type graph H k. In

terestingly, inheritance conflicts can occur in multi-method languages even if the underly

ing type hierarchy has single inheritance. For example, in Figure 7.2, % has two connected

129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

components, one of which has single-inheritance. Its induced product-type graph is also

shown in Figure 7.2. The product-type B x C has an inheritance conflict, since it can see

two different definitions for behavior 7 (73 in A x C and 72 in B x B). To remove this

conflict, an implicit conflict method, 74 , is defined in B x C as shown in Figure 7.2. Similar

to single-receiver languages, relaxation can be applied. Assume that n methods are defined

in product-types V = { P ^ ..., Pn}, and let P -< P i , ..., P„. Then, the methods in P j and

P j do not conflict in P if P f -< Pj, or Pj -< Pu or 3 P u € V \ P u -< Pi & P u -< P j . In

multi-method languages, it is especially important to use the more relaxed definition of an

inheritance conflict. Otherwise, a large number of inheritance conflicts would be generated

for almost every method definition.

The detection of inheritance conflicts is fundamental to the proper execution of all of

the dispatch techniques discussed in this thesis, although the published presentations of

some of the techniques do not make this obvious. The concept of poles in the published

version of CNT ([2]), and of glb-closures in the published version of LUA ([6]) can be

easily explained in a single statement: all inheritance conflicts must be added as implicit

method definitions. In Figure 7.2, we have annotated PL2 with a dashed box for method 74 to

indicate that it is added by the dispatch environment, rather than by the user. In languages

that disallow such ambiguities, these conflicts correspond to compile-time errors. However,

they can easily be treated as special methods that report the conflict at run-time.

7.1.3 Static Typing versus Non-Static Typing

In statically typed languages, a type checker can be used at compile-time to ensure that all

call-sites are type-valid. A call-site is type-valid, if it has either a defined method for the

message or an implicitly defined conflict method. In contrast, a call-site is type-invalid, if

dispatching the call-site will lead to method-not-understood. For example, the static type

of the variable anA is A in Figure 7.1b. The dynamic type of anA can be either A o r C

(which is a subtype of A). Since the message 7 is defined for type A, no matter what its

dynamic type is, anA can understand the message 7 . Therefore, the type checker can tell

at compile-time that the call-site anA.7Q is type-valid. If the static type of anA was D,

neither D nor any of its supertypes understand the message 7 . The type checker would find

130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

at compile-time that the call-site anA. jQ is type-invalid, and return a compile-time error.

With implicitly defined conflict methods in statically typed languages, no type-invalid

call-site will be dispatched during execution. However, in non-statically typed languages,

call-sites may be type-invalid. All dispatch techniques that use compression may return

a method totally unrelated to the call-site. Therefore, in non-statically typed languages,

a method prologue is used to ensure that the computed method is applicable for the dis

patched behavior. In multi-method languages, the prologue must also ensure that each of

the arguments is a subtype of the associated parameter type in the method.

7.1.4 A Formalism for Method Dispatch

Method dispatch is the process of determining the method to invoke based on the message

name, cr, and the dynamic type(s) T l x T 2 x ... x T k of the actual arguments. A picto

rial representation of this process is shown in Expression 7.3 and explained in subsequent

paragraphs.

M — t Ba — > Bk — >■ Bk(P) — ► K Bk(P)) — ► m (7.3)

Let A4 represent the set of all methods defined in the environment. The set A i can be

divided into equivalence classes based on the method name, which we denote Ba. Each of

these sets can also be divided into equivalence classes based on the method arity. We will

call the set of methods having the same name, cr, and arity, k, a behavior, and denote this

set by Bk. Recall that behaviors correspond to generic-functions in CLOS and Cecil, to the

set of methods that share the same signature in Java, and to the set of methods that share

the same message behavior in Smalltalk.

Within B k, only a subset of the methods will satisfy typing constraints with respect

to a particular product-type. We denote the set of methods that apply to product-type P

as Bk{P). A method applies to product-type P if P -< dom{a). In general, Bk(P) is

only computable at run-time, since the product-type P represents the dynamic types of the

arguments, not the static types.

The rules of inheritance establish a partial order on the methods in Bk(P), denoted

(-<, Bk(P)). A desirable property of this partial ordering is that there be a unique least

element. In general, this is not the case because methods can be defined in product-types

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

that are unrelated to one another yet having common child product-types. If the product-

type representing the dynamic types of all arguments at a call-site happens to be one of these

common child product-types, two different methods can be chosen that are not ordered with

respect to one another.

However, a unique least element can be guaranteed if we address the issue of inheritance

conflicts. We will assume that an implicit method definition exists in every product-type that

has an inheritance conflict for some behavior, Bk. For example, in Figure 7.2, an inheritance

conflict occurs i n 5 x C for message behavior B2, so an implicit definition of method 74

is automatically generated as soon as the conflict is detected. Inheritance conflicts are

detected by computing the greatest lower bound of the two product-types, which is easily

defined in terms of the greatest lower bound of two types.

The formalism shown in Expression 7.3 is useful because it provides concise notation

for talking about method dispatch. For example, in most object-oriented languages, B k is

determinable at compile-time, but Bka (P) is usually determinable only at run-time. How

ever, compilers can avoid method dispatch at a call-site if \Bk(Ps)\ = 1 , where Ps is the

product-type formed by the static types of the arguments at the call-site. The preceding dis

cussion was presented in terms of multi-methods, but the formalism applies equally well to

single-receiver languages by replacing references to product-types with simple types.

7.2 Multi-method Dispatch Techniques
Since multiple-dispatching languages are relatively new, there has not been a great deal of

published research on how to efficiently implement method dispatch in these languages.

However, since multi-method dispatch is a generalization of single-receiver dispatch, we

can obtain some initial ideas by looking at the single-receiver techniques and determining

whether they can be extended.

A generalization of the ML method lookup scheme is not practical because methods

are not associated with a single type, but rather distributed across multiple types. This

implies that the analog of ML would need to explicitly maintain all induced product-type

hierarchies, 'Hk. Since a type hierarchy with 1000 types results in one million nodes in

7i2, and one billion nodes in H 3, it is obvious that such structures cannot be maintained

132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

explicitly, and even if they were, searching them would be extremely expensive.

Although ML does not generalize when method definitions are stored in product-types,

an analogous technique is feasible if we instead store product-types in behaviors. We will

briefly introduce a simple technique, which we call PTS. Although this technique is simple,

it does not appear in the literature.

All of the cache-based single-dispatching techniques can be easily extended to work

for multiple-dispatching languages, although testing for cache-misses becomes more ex

pensive and the number of cache-misses will increase due to the increased variability in

method dispatch information (all arguments must now be identical, rather than just the

receiver). Although these techniques cannot fall back on an extension of ML during cache-

misses, they can use PTS as their cache-miss strategy.

The single-dispatching cache-based techniques can be generalized (if somewhat ineffi

ciently) to multi-methods. However, the same is not true of the single-dispatching table-

based method dispatch techniques. The equivalent of STI dispatch for a multi-method

dispatch with n arguments requires n + 1 dimensions, with a fill-rate close to zero. Further

more, naive extensions of SC, RD and CT compression techniques will not work because

it is the n-dimensional subtable o f types that dominates the space, not the two-dimensional

subtable of types and behaviors on which these techniques perform their compression.

There are, however, ways in which we can use the single-receiver techniques, as will be

shown when we describe the new dispatch techniques.

Before discussing the existing multi-method dispatch techniques in detail, we first

present a quick summary of each. The following techniques are published research from

others.

1. Extended Cache-Based Techniques are used in Cecil [4] and PCL [21]. The cache-

based techniques from single-receiver languages [12] are extended to work for product-

types.

2. CNT: Compressed N-Dimensional Tables [2, 15] represents the dispatch table as a

behavior-specific &:-dimensional table, where k represents the arity of a particular

behavior. Each dimension o f the table is compressed by grouping identical dimension

133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

lines. The resulting table is indexed by type groups in each dimension, and mappings

from type number to type group are kept in auxiliary data structures. It is these

auxiliary data-structures that take up the most space, so they are further compressed

using SC.

3. LXJA: Lookup Automata [6] creates a lookup automaton for each behavior. In order

to avoid backtracking, and thus exponential dispatch time, the automata must include

more types than are explicitly listed in method definitions (inheritance conflicts must

be implicitly defined). Although not discussed in [6], the automaton can be converted

to a function containing only if-than-else statements. At dispatch, this function is

called to compute the method address. Alternatively, the code in the function can be

inlined at each call-site.

4. EPD: Efficient Predicate Dispatch [5] improves on LUA by using language-level i f

statements instead of data-structures to provide state-transitions, by implementing

more efficient subtype testing and by using profiling information to ensure that the

most common argument distributions are dispatched most efficiently.

The rest of this chapter is dedicated to describing the techniques presented above. The

new techniques, MRD, SRP and PTS, are briefly described here, then described in detail in

Chapter 8 .

1. MRD: Multiple Row Displacement [27] extracts rows from behavior-specific A;-dim-

ensional tables and compresses them into a global master array using row displace

ment. The shift indices that are stored in index arrays are also compressed using row

displacement.

2. SRP: Single-Receiver Projections [19] maintains k extended single-receiver dispatch

tables and projects fc-arity multi-method definitions onto these k tables. Each table

maintains a bit-vector of applicable method indices, so dispatch consists of logi

cally anding bit-vectors, finding the index of the right-most on-bit and returning the

method associated with this index.

134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. PTS: Product-Type Search Each behavior maintains an ordered list of all product-

types that are defined on it, and this ordered list is compared against the dynamic

product-type at the call-site until one is found that is a superproduct-type.

7.2.1 CNT: Compressed N-Dimensional Tables

The Compressed N-Dimensional Table ([15]) approach maintains n-dimensional tables for

each behavior. For each behavior, the set of methods with arity n are collected and used

to populate an n-dimensional table representing the n-ary cross-product of TL. This table is

compressed by grouping sets of types together, along each of the n axes. Since types can

have different group indices along different axes, an additional n 1-dimensional arrays (of

size \H\), called group arrays, must be maintained to map type index to group index, along

each of the n dimensions.

The size of a compressed n-dimensional table for a particular selector is relatively easy

to establish. Once the set of method definitions for the behavior has been obtained, the

glb-closure of all types participating in each dimension is obtained. The product of the

cardinality of the resulting k sets represents the number of elements in the table. Since

most behaviors are of low arity and have low method counts, the number of elements in

these tables is surprisingly low. In fact, the group-arrays end up requiring much more space

than the n-dimensional tables themselves. However, two convenient features of the group

arrays allow them to be relatively space efficient as well. First, since elements of the arrays

represent groups, and there are very rarely more than 256 groups in any given dimension,

entries can almost always be represented using a single byte (unlike the n-dimensional

tables, which store addresses). Second, the group arrays can be compressed in a manner

analogous to the single-receiver dispatch techniques SC or RD.

An incremental version of the CNT algorithms is possible, and is in fact necessary in

order to handle large systems with large product-types, since in such situations it will not be

possible to generate the initial n-dimensional table and then compress it. Figure 7.3 shows

the 2-dimensional table for selector j3, assuming the hierarchy and definitions of Figure 7.2

on page 128. Both the uncompressed and compressed tables are shown, along with the

group-arrays that map type numbers to type groups.

135

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A B c E F G
A
B - 03 03 - - -

C - 03 03 - - 02
E
F - - - 0i - 01
G - - - 0 i - 01

B, C E, G
B 03 -

C 03 02
F,G - 01

dimension A B c E F G
1 - 0 1 - 2 2
2 - 0 0 1 - 1

Figure 7.3: Uncompressed, Compressed and Index Tables for CNT on ft

7.2.2 LUA: Lookup Automaton

The Lookup Automaton ([6]) approach generates a finite-state machine for each behavior.

Labels between states represent types, and the set of final states are method addresses.

Given a n-ary product-type for a dispatch, starting from an initial state, the first type in

the product-type is compared against all labels going out from the initial state. The path

whose label represents the closest supertype of the type in question is chosen. This process

is continued for each argument type, until, after n state transitions, an address has been

found.

Figure 7.4: The Naive Lookup Automata for Figure 7.2

Figure 7.4 shows the lookup automaton for selector /?, assuming the hierarchy and

136

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

definitions of Figure 7.2 on page 128. Suppose we are looking for the message to dispatch

for product type G x G and selector /3. Starting from state qo, we look at the first type in

the product type (G) and determine which state to transfer to. The algorithm suggested

in [6] makes a global order on all types that conforms to the partial order dictated by the

inheritance graph. This ordering is used to establish an order in which the types on the arcs

should be compared against the dynamic types in the target product-type. A sub-type test

is performed until an arc is found that is a super-type of the dynamic type in question. In

our example, one possible order is to test C, then B, then F. G is not a subtype of C, nor of

B, but is a subtype of F, so we transfer to g3. We then use the second type in the dynamic

product-type (G) to determine the next state transition. Since G is a subtype of type F (the

only arc from this node), the call-site represents a legal method, and it is fli.

If the lookup automata only needed to generate states and labels for the static types of

defined behaviors, this would be by far the best multi-method dispatch strategy. However,

when inheritance conflicts occur, additional nodes must be added to the automaton, and the

number of potential nodes at each state can become sufficiently large to make the technique

inefficient without resorting to optimizations that require a great deal more memory.

The process of generating a minimal LUA that does not require backtracking is non

trivial, and according to [6], no incremental algorithm for generating the LUA is currently

known. This implies that this technique is not practical for reflexive languages. One area

of future research involves developing such an incremental algorithm for LUA.

7.2.3 EPD: Efficient Predicate Dispatching

When LUA was implemented as part of the DT Framework, we noted that the proposed

data-structure implementation in [6] was extremely inefficient in non-reflexive languages,

and would be much more efficient using if-then-else statements. In fact, the results pre

sented in the MRD [27] and SRP [19] publications assumed this improved version of LUA,

in order to give it a chance against those techniques.

EPD is introduced in [5], and is dispatch technique that improves LUA even more than

we have. Rather than implementing the lookup automata as a data-structure as proposed in

[6], it is implemented in code as a collection of if-else statements as we had observed. In

137

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

addition, the sub-type tests needed to select the next node are implemented as a collection

of equality tests, Iess-than tests and array accesses. This strategy allows them to ensure

that the most often used methods are found as quickly as possible, and they argue that this

approach is faster than a more traditional implementation of subtype testing (using either

type-specific arrays or hierarchical encoding schemes like [2 2]).

138

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 8

New Multi-method Dispatch Techniques

This chapter presents two entirely new dispatch techniques (Single Receiver Projections

and Multiple Row Displacement) for multi-method languages, and briefly discusses an

other technique (Product Type Search) that is extremely simple yet does not appear in the

literature. The discussion here relies on the terminology presented in Section 7.1.

SRP has the following advantages over other techniques.

1. SRP provides access to all applicable methods, not just the most specific applicable

method. This is useful for languages like CLOS that support the next next function.

2. SRP is inherently incremental so it is applicable to reflexive languages and languages

that support separate compilation.

3. SRP uses less data-structure space than any other multi-method dispatch technique.

4. SRP has the second fastest dispatch time of all dispatch techniques.

5. SRP has the fastest dispatch time of all dispatch techniques if the others are extended

to support all applicable methods.

MRD has the following advantage over other techniques.

1. MRD provides the fastest dispatch time of all multi-method dispatch techniques.

139

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8.1 SRP: Multi-method Dispatch Using Single-Receiver Pro

jections
This section presents a new constant-time dispatch technique that is 0(A:), where k is the

arity of the behavior being dispatched. The overall strategy of this technique is to project

the product-type hierarchy H k onto k single-receiver tables. For this reason the technique

is referred to as multi-method dispatch using single-receiver projections, and abbreviated

SRP.

The original idea for this technique was suggested by Duane Szafron about four years

ago. The design of the algorithms, the implementation itself, the representation of infor

mation using bit-vectors, and all optimizations are mine.

The presentation has been divided into a number of subsections. In Section 8.1.1 we

introduce the technique with a variety of examples. In Section 8.1.2 we present the actual

data-structures needed. In Section 8.1.3 we present numerous optimizations that substan

tially reduce the space required by SRP. In Section 8.1.4, we present the algorithm for

dispatch. Finally, in Section 8.5 we discuss the benefits of the incremental nature of SRP.

8.1.1 Single-Receiver Projections by Example

We will use the type hierarchy and multi-method definitions shown in Figure 7.2 to intro

duce SRP. The induced product-type graphs, H k, introduced in Section 7.1.1 have excessive

space requirements. However, we can provide a slightly different representation that gives

us some of the advantages of H k without its excessive space requirements. In essence,

instead of building a £:-arity product-type graph, we can instead maintain k copies of the

hierarchy, which we denote as H i , ...,H k • In fact, even these projections of the hierarchy

are conceptual, and are actually implemented as dispatch tables instead of graphs.

In SRP, a method definition like 7 {A, C) —> 7 3 , is interpreted as two different defini

tions, one associating 73 with type A in Hi, and another associating 73 with type C in Hi-

Thus, SRP projects multi-method definitions onto separate conceptual copies of the type hi

erarchy. Since single-receiver languages usually represent this information with a dispatch

table, we can represent multi-method dispatch on k -arity methods using k single-receiver

140

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

dispatch tables.

In the terms of MRD and CNT, SRP compresses the fc-dimensional dispatch table as

sociated with each behavior by projecting it onto k single-receiver dispatch tables. Unfor

tunately, this projection loses some information, so a fundamental change must be made

to the information that is stored in the single-receiver dispatch tables. We will explain the

problem and its solution with some concrete examples. Figure 8.1 shows the results of

projecting the method definitions of Figure 7.2 onto two copies of H, called H i and H 2 -

One difference between the hierarchies in Figure 8.1 and a normal single-receiver hier

archy is immediately apparent. In the latter, there is never more than one definition for a

particular message in any given type. This serves as a warning that one should not blindly

assume that things will occur exactly as they would in single-receiver languages. This

difference and others will be discussed more fully later.

Annotated Hierarchy, T l

7 1,7 3

3 Y2.Y4

Annotated Hierarchy, T

A Y>

B Y2 G P2

c Y3.Y4

Figure 8 .1: Projecting Definitions of Figure 7.2 Onto Single-receiver Tables

We are now in a position to demonstrate how we use SRP to compute the method to

dispatch for a particular call-site. Through some examples we will show how and why

we need to extend the information normally stored in the single-receiver dispatch tables.

Suppose we have a call-site for behavior 7 and that the dynamic types of the two arguments

are A and C, forming the product-type P = AxC. We want to find the method to dispatch.

Figure 7.2 shows that the result should be 73 , defined in A x C. Since H i represents

information about the first argument of methods, we can look at H i shown in Figure 8 .1

and note that type A (the first argument of the product-type we are dispatching on) responds

141

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to methods in the set { 7 1 , 73 } - Similarly, in T-L2 type C (the second argument of the product-

type) understands methods in {7 3 , 7 4 }. The intersection of these two sets is {7 3}, which

contains the correct answer.

As a more problematic example, suppose we have behavior 7 and product-type C x A

From Figure 7.2, the result should be 7 1 . In %x, type C (the first argument of our product-

type) does not “natively” understand 7 , but it inherits definitions {7 2 , 7 4 } from type B. In

H 2, type A (the second argument of our product-type) has method-set {7 1 }. Unfortunately,

intersecting these sets gives the empty set, which is incorrect. Our simple algorithm must

be extended somehow. In single-receiver languages, definitions for a behavior a in type T

override the definitions in all supertypes of T. However, when used within SRP, ignoring

overridden methods excludes necessary methods from consideration. Therefore, we must

extend the set of methods obtained from each hierarchy to consist of all methods defined

“natively” and inherited from all supertypes. Our example for 7 and C x A then yields the

set {7]., 7 2 , 7 3 , 74} for type C in T-Lx and the set {7 1} for type A in T-L2. Intersecting these

sets yields the set {7 1}, which contains the correct answer.

What happens if the intersection results in a set with more than one element? If we

dispatch 7 on C x B, the set from 77 x is {71 , 7 2 , 7 3 , 7 4 } for type C, and the set from 7f2

is {7 1 , 7 2 } for type B. Intersecting these sets yields {7 1 , 7 2}- From Figure 7.2, the most

specific applicable method in this case is 72 , but how do we determine this from the in

formation in Figure 8.1? The natural solution is to maintain posets (partially ordered sets)

instead of just sets. In the terms of Section 7.1.4, the sets presented in the preceding ex

amples have been representing but we need posets representing (-<, B*(P)). From

Figure 7.2, note that there is no order between 72 and 73 , but that they are both more spe

cific than 71 and less specific than 7 4 . Thus, one possible poset for the information from %i

for type C is (74 , 73 , 7 2 , 71). For 7i 2 and type B, we can use the poset (7 2 , 7 1). Intersecting

these posets, we obtain (y2, 7 1), whose least element, 7 2 , represents the method to dispatch.

This is the essence of the SRP algorithm.

142

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

behaviors color A B C E F G
Ux 7 i 7 i 72 7 2 - - -

0 2 - - 02 - Pi Pi
y.2 7 , P 1 7 i 72 73 Pi - 02

Figure 8.2: Unextended Single Receiver Dispatch Table for Figure 8 .1

behaviors color A B C E F G
Ux 7 0 (73, 7 i) (7 4 , 7 3 , 7 2 , 7 1) (7 4 , 7 3 , 7 2 , 7 1) - - -

0 1 - - C02) - (Pi) (Pi)
n 2 1,0 0 (7 i) (7 2 , 7 1) (74 , 73 , 72, 7 l) (Pi) - (02)

Figure 8.3: Extended Single Receiver Dispatch Table for Figure 8.1

8.1.2 SRP Data Structures
Having presented the basic algorithm, we can now discuss how we extend the single

receiver dispatch tables to efficiently maintain posets of methods instead of a single method.

Although the single-receiver technique RD (Row Displacement) provides better compres

sion than SC (Selector Coloring), we will use SC in our examples because it is more suitable

for illustration. However, in Section 8.3, the performance results are based on an imple

mentation of SRP that uses RD, not SC. In SC, a two-dimensional table is maintained, rows

indexed by behavior color, and columns indexed by unique type numbers. Two behaviors

are allowed to have the same color if the sets of types understanding each behavior are

mutually exclusive.

As an example of how SC would be used in a single-receiver environment, Figure 8.2

shows the dispatch tables for 7 ^ and 7f2 if we use only the first “native” method for each

type (remember that single-receiver languages never encounter more than one such method

per behavior).

As already explained, the information in Figure 8.2 is not sufficient for SRP, since we

must maintain posets of methods for each class/behavior pair.

Figure 8.3 shows the extended tables for Hx and 7f2. Observe that in "Hi, the entry for

type B and behavior 7 contains the poset (7 4 , 7 3 , 7 2 , 7 i) because it has two native defini

tions (7 2 and 74) and two inherited definitions (74 and 7 3), with the constraints on method

ordering discussed previously.

An efficient implementation of posets must be provided for SRP to be feasible. The

143

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

most efficient mechanism for performing set intersections is to represent the sets as bit-

vectors, so intersection becomes a bitwise AND operation. Since the elements of our sets

represent methods, we need only assign a unique index to each method within a behavior.

This representation is particularly amenable to SRP because the maximum size of the bit-

vectors is |Z?*|, the number of methods with name a and arity k, which very rarely1 exceeds

32. This implies that the set of all possible methods can usually be represented in a single

32-bit word. Since this is the same amount of space used by a function address in a tradi

tional single-receiver dispatch table, we are able to encode substantially more information

in the same amount of space (at the expense of an extra indirection during dispatch).

A bit representation for methods also allows us to maintain (x , B*{P)) instead of just

This is accomplished by assigning bit indices to methods in such a way that Ex

pression 8 .1 holds, where bit(cti) is the integral bit position of method cr*- and bit-vectors

are assumed to index from right to left2 and start at 0. This mapping of methods to indices

implies that the set of methods associated with a behavior must be maintained. However,

our definition of a behavior is the set of methods with the same name and arity, so this re

duces to explicitly maintaining all behaviors as data-structures. The equation simply states

that the bit ordering must be a topological sort of the subtype order.

dom(ai) -< dom(aj) = > bit{<Ji) -< bit(crj) (8 . 1)

The only detail that has not been addressed is how to obtain the least element of the

poset (-<, B%(P)) when it is represented as a bit-vector. An efficient algorithm for obtaining

the first 1 bit in a bit-vector will suffice. This is a well-known operation, and several

architectures provide hardware support in the form of an f fs (find-first-set) instruction that

performs with the same efficiency as logical shift. This is discussed in more detail in

Section 8.1.5.

Figure 8.4 shows the true form of the SRP single-receiver tables for the method defini

tions in Figure 7.2. Each entry contains a bit-vector in which each bit represents a method.

For this example, the partially ordered set of methods for the behavior named 7 is 74 -< 7 3 ,
'Only methods like = = , < and other binary methods are usually defined more than 32 times.
2Right-to-left packing is almost always more efficient because it can avoid shifts and subtractions that

occur due to left-to-right packing.

144

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

behaviors color A B c E F G
Hi 7 0 1010 1111 1111 - - -

P 1 - - 01 - 10 10
h 2 7,P 0 1000 1100 1111 10 - 01

Figure 8.4: SRP Projection Tables

74 -< 72 , 72 -< 7 i, 73 -< 7 i. so the bit assignments &zf(7 4) = 0 , 6i£(7 3) = 1 . bit(j2) = 2 ,

and 6z£(7 i) = 3 satisfy Expression 8.1. For this ordering, and indexing from 0 on the

right, the bit-vector 1010 represents the ordered list (7 3 , 7 ^ . The figure also assumes that

bit(fi2) — 0 and bit (Pi) = 1 .

As a final example of using this technique to perform dispatch, suppose we want to

dispatch on product-type C x B in Figure 7.2. The algorithm starts by obtaining the bit-

vector, 1111, for type C and behavior 7 in H \. This bit-vector is bit-wise ANDed with the

bit-vector, 1100, for type B and behavior 7 in U 2. The result is 1100, and the first 1 occurs

at bit position 2. In our method ordering, bit 2 is 7 2 , which is the desired method.

We project 2-arity definitions onto H i and H 2- The /c-arity definitions are projected

onto H i , ..., Hk. It is acceptable to have behaviors of different arities appearing in the same

projection tables because behaviors are identified by the combination of a name and an

arity.

Naturally, this implies that Hi and H 2 will have the most definitions, since they are

used by all multi-methods, and that the number of methods on Hk declines as k increases.

However, although there are fewer higher-arity behaviors, they tend to be defined higher in

the type hierarchy and thus fill up more entries in the dispatch tables. In addition, program

mers tend to define more methods that vary on the lower dimensions. Although the higher

dimension types do not vary as much, they are usually fixed quite high in the hierarchy.

This produces more filled entries in the dispatch table.

8.1.3 Making SRP Space Efficient

This section describes a variety of optimizations that make SRP extremely space efficient,

and, in some situations, also improve dispatch time. One of SRP’s advantages is that it

maintains the set of all applicable methods. It is possible to extend the other multi-method

techniques to also maintain the set of all applicable methods, but this will decrease their

145

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

dispatch performance. In addition, three of the optimizations are also applicable to other

multi-method techniques if they are extended to handle all applicable methods. The tech

niques are: row-matching, projection groups and packed bit-vectors.

Collapsing H i , ..., H k into a single table

During our presentation of the basic algorithm, it was useful to refer to separate dispatch

tables for each of Hi, . . . ,H k - However, it is not necessary to maintain separate tables;

we could instead project all information for all argument positions into a single table. RD

provides better compression when adding many rows to a single table than when adding

fewer rows to many tables , and this is sometimes (but not always) true of SC as well. This

optimization is only applicable to non-reflexive languages. In languages that allow classes

and methods to be added at runtime, the data-structures that allow incremental modification

preclude this compression as discussed in [18]. This optimization is used in Section 8.3.

Dimension-Specific Type Maps

The technique presented in this subsection cannot be used with the previous optimization

since this one needs separate dispatch tables for H \, . . . ,H k - It is possible to maintain

dimension-specific type maps for each of the K argument-specific dispatch tables. Our

previous discussion has assumed that a global type number is used to access the type di

mension of each dispatch table. However, it is possible that not all types will participate in

methods in a particular argument position. This implies that the dispatch table for Hi may

not require | H | columns. Reducing the number of columns requires a type-to-index map

ping associated with Hi which is used at dispatch time to find the correct type-index within

Hi for a given type number. This optimization improves space at the expense of an extra

indirection per argument at dispatch time. However, in languages with a root-type, this op

timization provides no benefit in Hi if the root-type appears in argument position i of any

method definition. In existing multi-method languages, root-type definitions appear often

so this optimization may be of dubious value. However, future multi-method languages

may not rely so heavily on the use of root-types in multi-methods. This optimization is not

used in Section 8.3.

146

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Row-Matching

The single-receiver dispatch technique RD, as presented in [11], uses a free-list imple

mentation to efficiently assign shift indices to rows. At first glance, it might appear that

an algorithm based on string-matching with wildcards would provide better compression,

but in the single-receiver paradigm this is not true because different rows refer to differ

ent behaviors, and in most languages different behaviors always have different addresses.

Thus, string-matching provides no more compression than a free-list implementation that

only fits into empty entries because in single-receiver dispatch, the dimensions of the ta

ble being compressed are different (rows are behaviors, columns are types). However, as

discussed in [27], the situation is different for multi-methods because we are often com

pressing numbers (shift indices or bit-vectors) rather than addresses.

In [27] this extended RD implementation is called row-matching, to distinguish it from

the original row-displacement which uses free-lists. This idea of row-matching can also be

applied to SC. Rather than allowing two rows to share if at least one of the entries is empty,

we allow rows to share if either entry is empty or if both entries store exactly the same

information. The fewer unique entities stored within the tables, the more compression this

extension will provide. Surprisingly, adding row-matching to SC provides compression that

is often very close to RD. This implies that because SC is more efficient during incremental

dispatch-table updates, it may be the technique of choice for reflexive languages.

Projection Groups

The basic SRP data-structure shares a problem with all bit-vector implementations of set-

based algorithms. Although bit-vectors provide efficient set operations, they require con

stant space sufficient to maintain sets of the largest possible cardinality. Even if we limit

SRP to behaviors with fewer than 33 methods, we still require that every entry in the SRP

dispatch table be a 4-byte word. Since it is likely that multi-method languages will favor

behaviors with low method counts, we would like to provide a data-structure that takes

advantage of this.

Fortunately, it is quite easy to modify SRP so that it is optimized for small method

counts. A projection group is a collection of K tables, where K is the maximum arity

147

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

across all behaviors3. A particular projection group represents all behaviors with method

counts between some fixed minimum and maximum. Although the groups can be arbi

trarily chosen, from the perspective of space usage, it is advantageous to have a group for

behaviors with method counts 1 to 8 (table entries are 1 byte), method counts 9 to 16 (2

bytes), method counts 17-32 (4 bytes), method counts 33-64 (8 bytes), and method counts

65 and beyond. In a C++ implementation, the table entries of the tables in these projection

groups are unsigned chars, shorts, ints, long longs and arrays of unsigned char respectively.

As we will see in Section 8.3, most behaviors are defined with less than 8 methods,

so most behaviors will fall in the projection group whose tables have 1-byte table entries.

Furthermore, projection groups allow us to realistically handle behaviors with arbitrarily

large method counts. Since such tables will be very small (very few behaviors have large

numbers of methods), the fact that each entry requires many bytes is insignificant from a

space perspective.

Finally, the idea of projection groups can also improve dispatch performance. O f the

architectures that provide hardware support for find-first-set, some provide multiple in

structions that are optimized for various bit-vector sizes. Thus, we can take advantage

of a find-first-set that is optimized for I-byte bit-vectors where such support exists. Fur

thermore, in architectures requiring software implementations of find-first-set, the binary-

search implementation of find-first-set is more efficient on 1-byte words (three logical-and

masks and three comparison operations) than on 2 -byte words (four mask/comparisons),

etc. The results in Section 8.3 use this optimization.

Projection Groups and Packed Bit-Vectors

We have introduced the idea of projection groups, and presented the idea of grouping be

haviors by method counts so that we could use bytes, shorts or words as necessary to

represent the bit-vectors. As presented, it has absolutely no negative impact on dispatch

performance, so there is no reason not to implement it. In this section, we describe a mech

anism that provides substantially more compression, at the expense of both dispatch time

and call-site code size.
3In practice, K can vary depending on the projection group.

148

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SRP-Dispatch(B : /?*, P : Product-Type): Address
S := 11...1
for i ~ 1 to k do

M :=Tablei[TKB]
S := S A M.indexSet

endfor
index := first “on” bit in S
return addr(B ,method[index])

end

Figure 8.5: Algorithm SRP-Static-Dispatch

The idea is to split the projection group for behaviors of method count 1-8 into three

projection groups. One such projection group would store those behaviors with method

counts 5-8, and would still require a byte to represent each bit-vector. Another projection

group would store those behaviors with method counts 3-4, and two such bit-vectors could

be packed into each byte. Finally, another projection group would store those behaviors

with method count 2, and four such bit-vectors could be packed into each byte. Unfor

tunately, the compression comes at a dispatch-time cost. By packing multiple bit-vectors

into a single byte, we must somehow extract the bit-vectors at dispatch time, and this in

volves some relatively expensive shifts and logical ands. Alternatively, these extra projec

tion groups can be maintained without performing the packing. This is only of benefit in

situations where software support for ffs is necessary. In such situations, more efficient ffs

implementations are possible if it is known that there are only 2 or 4 bits to test. The results

in Section 8.3 include all of these optimizations.

8.1.4 The SRP Algorithm

Figure 8.5 shows the algorithm for determining the method to invoke. In the figure, the no

tation Tablei[T\ B] refers to the table entry in the ith argument-table identified by behavior

B and type T 1 (the ith argument in the product-type P). It is assumed that each entry, M,

has a field, M.indexSet, that represents the bit-vector of partially ordered applicable method

indices. The actual implementation does not need to start with a bit-vector of all ones (it is

displayed this way for clarity).

149

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8.1.5 Support for find-first-set (ffs)

There are a variety of arohitectures that have supported hardware find-first-set. These in

clude the Intel x8 6 , IntesI Pentium Pro, VAX 11/780, the Tera, and even the BESM-6 , a

Russian platform. In addlition, the Intel MMX and Sparc v9 have a population-count (ppc)

instruction from which fffs can be synthesized by three machine-language instructions.

As well, there are mi any common applications that benefit from hardware ffs. These

include finding the next schedulable process in the VMS operating system, efficient im

plementation of log2 (n), various image processing algorithms, and now, efficient multi

method dispatch.

There are also numerous software algorithms for ffs, including conversion to floating

point to examine the exponent, the log function, and binary search. The most efficient

software algorithm is usu. ally a binary search that masks out bit positions until one position

is identified. This requires 5 logical ands and 5 tests for behaviors with less than 32 meth

ods. However, as will be • discussed later, the code-size of the ffs implementation must also

be considered, so floating:-point conversions (or just a normalizing operation) may be more

appropriate even on architectures were they are not as fast as binary search.

8.2 MRD: M ultiple Row Displacement)
This section presents an entirely new dispatch technique that is extremely efficient for

statically-typed multi-metthod languages. The original idea for this technique comes from

Duane Szafron, and the eoriginal algorithms come from Candy Pang, an M.Sc. student

also researching multi-meethod dispatch. However, these algorithms were modified sub

stantially during subsequent joint research between myself, Candy Pang, Duane Szafron

and Yuri Leontiev, a Ph.D*. student working on type systems research. Candy Pang imple

mented much of the actual! code, once again using the DT Framework to provide numerous

useful classes and various functionality without needing to reimplement.

8.2.1 N-dimensional Dispatch Table

In single-receiver method dispatch, only the dynamic type of the receiver and the behavior

name are used in dispatchn. However, in multi-method dispatch, the dynamic types of all

150

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C , a,(A jD) p,(A,C)
| t aj(CJB) p,(B.D)

^ D 3 *<Xj(E,E)

E 4 • a , is an implicit conflict method.

(a)

D l 2nd Argument 2nd Argument
Ao B| c? D, Ei Ao B| C-, D, Bi

g Ao __ CL, CL, g Ao — R. Ri R.
E B, __ __ fit* CL, E B, — __ Ri r 2 r-t

C* __ Ofr> __ «-» ja C2 — . .

< d 3 __ Gb __ _ CL, < d 3
5. E, — a? OCr a 3 5. E, - — R, R7 Pn

(b)

Figure 8 .6 : N-Dimensional Dispatch Tables

arguments and the behavior name are used.

The single-receiver dispatch table can be extended to multi-method dispatch. In multi

method dispatch, each fc-arity behavior, B*, has a fc-dimensional dispatch table, £>*, with

type numbers as indices for each dimension. Therefore, each /^-dimensional dispatch table

has [K\h entries. At a call-site, <x(oi, o2, ..., o*), the method to execute is in

D^[num(Tl)][num(T2)]...[num(Tk)\, where T l = type(oi). For example, the 2-dimensional

dispatch tables for the type hierarchy and method definitions in Fig. 8 .6 a are shown in

Fig. 8 .6b. In building an n-dimensional dispatch table, inheritance conflicts must be re

solved. For example, there is an inheritance conflict at E x E for a, since both and

a 2 are applicable for the call-site a(anE, a n E). Therefore, we define an implicit conflict

method <23, and insert it into the table at E x E.

N-dimensional table dispatch is very time efficient. However, analogous to the situa

tion with STI in single-receiver languages, n-dimensional dispatch tables are impractical

because of their huge memory requirements. Recall that in the Cecil Vortex3 type hierar

chy there are 1954 types. Therefore, a single 3-arity behavior would require 19543 bytes

= 7.46 billion entries = 29.8 gibabytes.

151

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Ac -I - - . - 1 ai a . 1
B, -*1 - - — 1 « . « . 1
c, -1 - nt-> — 1 — . ai I
d 3 -I - a ? 1 - Oh 1
E, -1 - a? - 1 a . Oh 1

DZ

D

(a)

A c J - - — 1 nt. a . 1
B ,

C ; * - I n -, - 1 - a . 1
D ,

E * 1 - fit. . . “ 1 « I

L ,(. A)

£,(Q
L,(E)

/» A «

B :

Q
D3
a

D l A d

:-E

(b)

B ,

C:
D3
E

- -J-& U Ri R. 1
- 1 B. fc IF 1

- - 1 - - - 1
v.. 1 - . - - 1
- 1 B. R. R. 1

•1 - i - 1 B. 1 R, 1 R, 1
U~~- ! - 1 B. 1 IF 1 IF 1

/

Figure 8.7: Data Structure for Multiple Row Displacement

8.2.2 Multiple Row Displacement by Examples

Multiple Row Displacement (MRD) is a time and space efficient dispatch technique which

combines row displacement and n-dimensional dispatch tables. We will first illustrate MRD

through examples, and then give the algorithm. The first example uses the type hierarchy

and 2-arity method definitions from Fig. 8 .6 a. Instead of the single fc-dimensional array

shown in Figure 8 .6 b, each table can be represented as an array of arrays as shown in

Figure 8.7a. The arrays indexed by the first argument are called level-0 arrays, L0. There is

only one level-0 array per behavior. The arrays indexed by the second argument are called

level-1 arrays, Li(-). If the arity of the behavior is greater than two then the arrays indexed

by the third arguments are called level-2 arrays, L2(-); and so on. The highest level arrays

are level-{k — 1) arrays, Lk_ i(-), for k arity behaviors.

It can be seen from Figure 8.7a that some of the level-1 arrays are exactly the same.

Those arrays are combined as shown in Figure 8.7b. In general, there will be many iden

tical rows in an n-dimensional dispatch table, and many empty rows. These observations

are the basis for the CNT dispatch technique mentioned in Section 7.2.1, and are also one

of the underlying reasons for the compression provided by MRD. It is worth noting that

this sharing of rows is only possible due to the fact that we are compressing a table that

uses types to index into all dimensions. In single-receiver languages, the tables being com

pressed have behaviors along one dimension, and types along the other. Sharing between

two behavior rows would imply that both behaviors invoke the same methods for all types,

152

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and although languages like Tigukat [26] allow this to happen, such a situation would be

highly unlikely to occur in practice. Sharing between two type columns is also unlikely

since it occurs only when a type inherits methods from a parent and does not redefine or

introduce any new methods. Such sharing of type columns is more feasible if the table is

partitioned into subtables by grouping a number of rows together. This strategy was used

in the single-receiver dispatch technique called Compressed Dispatch Table (CT) [28].

We have one data structure per behavior, D*, and MRD compresses these per behavior

data structures by row displacement into three global data structures: a Global Master

Array, M, a set of Global Index Arrays, Ij, where j = 0,..., (K —2), and a Global Behavior

Array, B.

In compressing the data structure D* in Figure 8.7b, the level-1 array L\{A) is first

shifted into the Global Master Array, M, by row displacement, as shown in Figure 8 .8a.

The shift index, 0, is stored in the level-0 array, L0, in place of Li(A). In the implemen

tation, a temporary array is created to store the shift indices, but for the sake of clarity in

subsequent discussion, we will put them in L0 for simplicity of presentation. Figure 8 .8b

shows how Li (C) and Li (E) are shifted into M by row displacement, and how they are

replaced in L0 by their shift indices. Finally, as shown in Figure 8 .8c, L0 is shifted into

the Global Index Array, I0 by row displacement. The resulting shift index, 0, is stored in

the Global Behavior Array at B[a\. After D \ is compressed into the global data structures,

the memory for its preliminary data structures can be released. Figure 8.9 shows how to

compress the behavior data structure, Dp, into the same global data structures, M, I0 and

B. The compression of the level-1 arrays, Li(A) and Li(B), are shown in Figure 8.9a.

The compression of the level-0 array, L0, is shown in Figure 8.9b. Note that only Iq is used

in the case of arity-2 behaviors. For arity-3 behaviors, Ii will also be used. For arity-4

behaviors, J2 will also be used, etc. As an example of dispatch, we will demonstrate how

to dispatch a call-site /3(anE, aD) using the data structures in Figure 8.9b. The method

dispatch starts by obtaining the shift index of the behavior, /?, from the Global Behavior

Array, B. From Figure 8.9b, B[fi] is 5. The next step is to obtain the shift index for the

type of the first argument, E, from the Global Index array, I0. Since the shift index of

j3 is 5, and the type number of E, num (£), is 4, the shift index of the first argument is

153

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

L A M 1 2 3 4

/„

(a)

0 1 2 3 4 5 6 7 8 9
M II~ _ (Xi OCi

£,(Q tt? (X?
i,(E) a?! -Icxiichl

0 1 2 3 4 5 6 7 8 9
M 1 — 1 — i CE-. 1 o t . I c e . 1 tx - > l o e - . I — t o c . I o e - . I '

'o ±
B [f

, L- 1 - 3 4ro i o i o 1111 m

(c)

Ac 0 1 _ 1 - 1 - ! Ki i a .
B, 0
C3 d - 1 <*, 1 - 1 — 1 «->
Di
E 1 - 1 a , 1 - 1 a ! 1 cu.

k.ca

Cb)

D l A j f l

B , k)

c/T
oJT
E J ?

Dl Aq£
8,̂ 0
C2_L
DjX
m

JL,(H)

_Oi -££4-!£.,(Q

■ O' I « . I d l 1 £ , (E)

Figure 8 .8 : Compressing The Data Structure for a

A T

L. 1 2 3 4
7o i o i o i i i i m

1 -1 - loc-.la,la, laJa -.! - (Xi tti
/.,(A) Bi 1 Br B,

B . lk lk l

(a)

D* Ac
B
C;
D
EJ

11

11

I B, I Bt I B-

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
M [221 -lo h la .la .Ic h lo h l —1«. lot-.IB. IB. IB. 1B. IB-.I B,I

0 1 2 3 4 _5__6 7 __ 8 _9_
I o fo I 0 I 1 I iT T

8 1111 — I — I
a fl

B 1 0 I 5

Dp AdjS
Bijn
c

(b)
D^t
e£T

Figure 8.9: Compressing The Data Structure For /3

154

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

J0[5 + 4] = J0[9] = 11- Finally, by adding the shift index of the first argument to the

type number of the second argument, num(D) — 3, an index to M is formed, which is

11 + 3 = 14. The method to execute can be found in M[14] = f32, as expected.

MRD can be extended to handle behaviors of any arity. Figure 8 . 10a shows the method

definitions of a 3-arity behavior, S, and Figure 8.10b shows its preliminary behavior data

structure, Dg. Figs. 8.10c to 8.10e show the compression of this data structure. First, the

level-2 arrays, Lz^BxD), L 2(D xB) and L2(E xE) are shifted into the existing M as shown

in Figure 8.10c. Their shift indices (15, 14, 19) are stored in L\{B), Li(D) and Li(E). In

fact, every pointer in Figure 8 .10b that pointed to L2(B x D) is replaced by the shift index

15. Pointers to L^(D x B) are replaced by the shift index 14 and the single pointer to

L2(E x E) is replaced by the shift index 19. Then, the level-1 arrays, L\{B), Li(D) and

Li(E), are shifted into the Global Index Array ii as shown in Figure 8.10d. The shift

indices (0,1,5) are stored in L0. Finally, L0 is shifted into the Global Index Array I0 and its

shift index (7) is stored in the Global Behavior Array at B[5\, as shown in Figure 8.10e.

8.2.3 A Description of the Multiple Row-Displacement Algorithm

We have shown, by examples, how MRD compresses an n-dimensional dispatch table by

row displacement. On the behavior level, a preliminary data structure, D *, is created for

each behavior. £>* is a data structure for a k-arity behavior named a, as shown in Fig

ure 8.10b. It is actually an n-dimensional dispatch table, which is an array of pointers to

arrays. Each array in D* has size \H\. The level-0 array, L0, is indexed by the type of

the first argument. The level-1 arrays, Ji(-), are indexed by the type of the second argu

ment. The level-{k — 1) arrays, Lk-i(-), always contain method addresses. All other arrays

contain pointers to arrays a t the next level.

After the compression has finished, there is a Global Master Dispatch Array, M, K — 1

Global Index Arrays, Jo, ..., Ik-2, and a Global Behavior Array, B. The Global Master

Dispatch Array, M, stores method addresses of all methods. Each Global Index Array, I3,

contains shift indices for Ij+ X. The Global Behavior Array, B stores the shift indices of the

behaviors.

At compile-time, a data structure is created for each behavior. The level-{k — 1)

155

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

K , C , 5,(B ,D ,B)
t I 82(D ,B.D)

\ / i *53(E,E,H)

e5
• 5, is an implicit conflict method.

(a)

Ao Ao

L t(E)

(b)

0
M

I
1-

2 3 4 5 6 7 8 9 10 11 12 13 14
l a - . l a i l a . l a - . l a i l ~ l a . l o c J 8 .lR . 1R. lR .I lk

IS
Ri

16 17 18 19 20 21 22 23

L,(BxD) S, _ _

L,(DxB>L _ 81 Si
Lj(ExE) - 18.1 - 15 , 18,1

(c)

0 I 2 3 4 5 6 7 8 9 10 11 12 13 4 IS 16 17 18 19 20 21 22 23
M | - l a d a I a i l a d a d — l a , la-.lB .lR , |R , 1B, iB il Bil 8 , 1 S, I S. 18 ,1 8 ,1 — 1 Si 1S, 1

0 2 3 4 S 6 7 8 9
^k-2 !

D l• LU(B) _ Ao B, c. D, E.
A 1 - — — 15 I? B, n 1 - - 1 - 1 15 1 15

L,(D) - 14 - — 14 Cl
L,(E — 141 — 1 IS119l D, I 1 14 | - 1 - 1 14 M D)oo

' 1 > 5 8 m - l - l n l e. 5 1 — 14 1 - 1 15 1 19 lL.CE)
g BB I 0 1 5 (d)

0 I 2 3 4 5 6 7 8 9 10 II 12 13 14 15 16 17 18 19 20 21 22 23

M l - l - l « Tl a . l . a . l a , l o h l - l « , l a 4 B . l B . l B . l B . I & , I M & l 8 , I S . l 8 . l s , l - I S . r s T

*k-2 1

B

0 1 2 3 4 5 6 7 8 9 10 11

1 — 1 — 1 14115115|14l14l — 15 191
l O l O l I 1 t l s l S l l l ! — __ III

0 ^ i . 1 . 1 5 1a 8 8
0 I 5 I 7 (e)

Ds3 _L<,
Ao
B,
Ci
AqET
b. nr

Figure 8.10: Compressing the Data Structure for 5

156

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

arrays, Lk-u are shifted into M by row displacement. The shifted indices are stored in

Lk~2 - Then, the level-(Jc — 2) arrays, J fc_2, are shifted into the index array, Ik-2 - The shift

indices are stored in Lk-z- This process is repeated until the level-0 array, Lq, is shifted into

Jo, and the shift index is stored in B[a\. The whole process is repeated for each behavior.

The algorithm to compresss all behavior data structures is shown in Section 8.2.5.

The dispatch formula, for a call-site, cr(c>i,..., o*), is given by Expression 8.2, where

T 1' = type(oi).

M[Ik- 2[Ik-z[- Ji[Jo.[B lcrJ+ num C T1)]

+ num(7r2)] + ...] -i-n u m (T k~2)] + nu m (T k~l)] + n um (T k)] (8.2)

As an example of dispatchi with Expression 8.2, we will demonstrate how to dispatch a call-

site 5(anE, aD , aB) using the data structures in Figure 8.10e. Since 5 is a 3-arity behavior,

Expression 8.2 becomes Expression 8.3.

M[Ji[Jo [B[5]~f- num {E)] + num (D)] 4- num (B)] (8.3)

Substituting the data from Figure 8 . lOe into Expression 8.3 yields the method as shown

in Expression 8.4.

= M[Jx[Jo[11] -t- 3] + 1]

= Af[i i [5 + 3] + l] (8.4)

= M[Jx[8] + 1]

= M[15 + 1]

= M[16] = 6i

8.2.4 Optimizations
Single I

For simplicity of presentation, we defined an Index Array per arity position. Actually, we

only need one Global Index Array, I , to store all level-0 to level-{k — 2) arrays. Using

157

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

l a , la-,1 —I — loTI

* 2! ~ la.la->la->l - I

Ca)

fy7 *M A1
R 2 a . la-, la-,1 - 1 ► la,la-,1 - 1 - la - ,la ,la - ,ia - ,l —

(b)

or. (X’ _ _ OM
- OCi a? a? —

«2 R>
I« . lot-, la-. I — lot-.!

(c)

Figure 8.11: Row-Shifting vs. Row-Matching

a single Index Array provides additional compression, and has no negative impact on dis

patch speed. Expression 8.5 shows the modified dispatch formula that accesses one Global

Index Array.

M [I [I [. . . I { I{ B [a] + n u m (T 1)}

+ n u m (T 2) n u m (T h~2)] -1- m m i(Tfc-1)] + n u m (T k)] (8.5)

Row-Matching.

Note that the row-shifting mechanism used in our implementation of row displacement

is not the most space-efficient technique possible. When the row-shifting algorithm is

replaced by a more general algorithm called row-matching (based on string-matching),

we get a higher compression rate. In row-matching, two table entries match if one entry

is empty or if both entries are identical. For example, using row-shifting to compress

rows RI and R2 in Figure 8.11a produces a master array with 9 elements as shown in

Figure 8.11b. However, using row matching to compress RI and R2 produces a master

array with only 6 elements as shown in Figure 8.1 lc. Using row-matching instead of row-

shifting provides an additional 10-14% compression. Our improved algorithm cannot be

used in single-receiver row displacement, since different rows contain different behaviors,

and thus different addresses.

158

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Byte vs. Word Storage.

MRD stores function addresses in M. Each function address has four bytes. In a large

hierarchy, M is the most memory consuming data structure. To reduce the size of M,

a method-map, D^fRD, is introduced per behavior. Since all methods of a behavior are

stored in D ^ r d , a method can be represented by an index into Z)MRD s jnce js v e r y

unlikely that more than 256 methods are defined per behavior, only one byte is needed to

store the index to the corresponding D ff110. If M stores this index instead of the function

address, the size of M will be reduced to one-forth of its original size. However, there will

be an extra indirection to access the method-map at dispatch time.

Type Ordering.

In single receiver row displacement, type ordering has a significant impact on compression

ratios [11]. We have investigated type ordering in multi-method row displacement and

found that the impact is smaller.

8.2.5 The MRD Data Structure Creation Algorithm

The algorithm to build the global data stmcture for MRD is given below:

This algorithm uses three support routines: Array::add(Array), Array::getShiftIndex(),

and Behavior::createStructure(). The Array::add(Array) function shifts the given array

into the current array by row-matching or row-shifting, and returns the shift index. The

returned shift index is also stored in the given array. The Array::getShiftIndex() function

returns the shift index of the current array, which is stored in the current array when it is

added to another array. If the current array has never been added to another array, this

function returns —1. The Behavior::createStructure() function creates an n-dimensional

table for the current behavior.

8.2.6 Separate Compilation

With table-based dispatch, the tables must be built before they can be used. If a language

does not support separate compilation, then the tables can be built at compile-time when

the entire type hierarchy and all the method definitions are compiled. If a language supports

159

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Array M, I ;

createGlobalDataStructureO begin
for(each behavior B ^.) do

BehaviorStructure D* = .createS tructure();
createRecursiveStructure(D^.Lq, 0);
B^.shiftlndex = £)*.Lo.getShiftIndex();

endfor
end

createRecursiveStructure(Array L, int level) begin
for(int i=0; i<£.size(); i++) do

if(L[i] = null) then
continue;

elseif(L[i].getShiftIndex() = -1) then
if(level = k-2) then

L[i] = M.add(L [i]);
else

createRecursiveStructure(L[i],level+1);
L[i] = L[i].getShiftIndex();

endif
else

L[i] = L[i].getShiftIndex();
endif

endfor
I.add(L);

end

Figure 8.12: Algorithm BuildMRD

160

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

separate compilation, then neither the type hierarchy nor the set of all method definitions

for a particular behavior are available when a class is being compiled. In this case, the

dispatch tables must be built at link-time. Fortunately, these tables only take a few seconds

to build. In addition to building the dispatch tables, call-sites in compiled code must be

patched with base table start addresses and global behavior shift indices. However, this

is no more difficult than resolving other external references in separately compiled object

files.

8.3 Performance Results
In this section we present memory and execution results for the new techniques, SRP and

MRD, and two other techniques, CNT and LUA. When analyzing dispatch techniques,

both execution performance and memory usage need to be addressed. A technique that is

extremely fast is still not viable if it uses excessive memory, and a technique that uses very

little memory is not desirable if it dispatches methods very slowly.

The rest of this section is organized into three subsections. The first subsection dis

cusses the dispatch code required by the various techniques. The second subsection presents

timing results. The third subsection presents memory results.

8.3.1 Dispatch Code

This section provides a brief description of the required data-structures for each of the

four dispatch techniques in a static-typing context. The code that needs to be gener

ated at each call-site is also presented. In the subsections that follow, the code presented

refers to the code that would be generated by the compiler upon encountering the call-site

<y (0\ , 0 2 , • • ■, Ofc) •

The notation iV(o,-) represents the code necessary to obtain a type number for the ob

ject at argument position i of the call-site. Naturally, different languages implement the

relation between object and type in different ways, and dispatch is affected by this choice.

Our timing results are based on an implementation in which every object is a pointer to a

structure that contains a ’typeNumber’ field (in addition to its instance data). In the code,

161

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

symbols starting with a # are technique-specific literal constants inserted by the compiler.

All of the dispatch techniques have implementation variations, and although we show

many variations of MRD and SRP, for CNT and LUA we have chosen a representative im

plementation of each technique that provides a realistic time versus space tradeoff. Unlike

SRP, MRD and CNT, the time for LUA is highly dependent on method counts. We have

timed two different versions of LUA, one for method count two (LUA2) and another for

method count three (LUA3). All techniques have inlined method-computation to improve

dispatch speed, instead of using behavior-specific computation functions.

For example, the published descriptions of CNT and LUA both assume the existence of

behavior-specific dispatch routines. As we show in Section 8.3.3, this extra function call

dominates dispatch time, and should thus be avoided whenever possible. We have removed

the function-call suggested for CNT to make it more competitive with SRP in our timings.

If we had not done this, CNT would be even slower than LUA.

Subsections below discuss the dispatch code of the various techniques in detail, but

Figure 8.13 provides a summary of the code in a table for easy reference. For LUA, Fig

ure 8.13 shows the 2-arity computation code for a behavior with two methods (LUA2). The

code for LUA3 is similar but contains an extra subtype test in the else portion. In the code

for LUA2, the notation sub?L refers to an array that encodes subtypes of type T\. The shifts

and masks are required since we pack 8 sub-type relations in each byte. If we do not pack,

the space requirements are prohibitive. We have underestimated the dispatch time for LUA

since many methods have higher method counts. [6] presents an alternative solution that

trades space for time in such situations.

MRD

There are two versions of MRD presented in [27]. The second version, called MRD-B, uses

byte instead of word storage so it requires substantially less space than the first version,

MRD, at the expense of slightly higher dispatch time.

MRD has an M array that stores function addresses, an I array that stores level-array

shift indices, and a B array that stores behavior shift indices. The dispatch sequence is

given in Expression 8 .6 .

162

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Tech. Code needed to compute a method address

SRP D * RP[/ / * (« ! [iV(0 l) + m \ ^ n 2[N{p^) + m \ - & H k{N{ok) +])]

MRD M [I [. . . /[/[#&»■ + iV(0 l)] + ...] + Ar{ok- i)] + N(ok)])

MRD-B d m r d [m [jj- 7[I{ #6<r + N (o i)] + .. .] + N (ot _ 0] + N (o k)]])

CNT D ^ n t [GI{N(0 i)] x # (n f x n? x ... x n%_x) + G f [W fo)] * # (n ? x ... x n £ _ J + ...+

G%[N(ok)] }

LUA/2 if ((subr^Nio, .) » 3]) » ((jV (oi)& 0x7)& 0*l))

if ((subr ,[N(o2) » 3]) > > ((^ (0 -2)& 0x7)& 0rl)) { addressl }

address2

Figure 8.13: Dispatch Code For All Multi-method Techniques

(*(M[I [.../[/[#&' + JV(0l)]

+ Af(o2)] + •••]+ N(ok~ 1)] + AT(pk)]))(o 1 , 02 , Ok) (8 .6)

Note that the Global Behavior Array, B is known at compile-time, so B[a\ is known at

compile-time. Thus is a literal integer obtained from B[a\.

The dispatch sequence for MRD-B is given in Expression 8.7.

(*(D*rRD[M{ I [.../[/ [# 6" + N M]

+ Af(o2)] + . . .] + N(ok~\)] + N(ok)]]))(o i,o2, ...,Ok) (8.7)

CNT

For each behavior, CNT has a ^-dimensional array, but since we are assuming a static envi

ronment, this fc-dimensional array can be linearized into a one-dimensional array. Indexing

into the array requires a sequence of multiplications and additions to convert the k indices

into a single index. For a particular behavior, we denote its one-dimensional dispatch table

by D%NT.

In addition to the behavior-specific information, CNT requires arrays that map types

to type-groups. In [15], these group arrays are compressed by selector coloring (SC). Our

dispatch results are based on such a compression scheme, and assume that the maximum

163

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

number of groups is less than 256, so that the group arraay can be an array of bytes. Further

more, since the compiler knows exactly which group a rray to use for a particular type, it is

more efficient to declare n statically allocated arrays th an it is to declare an array of arrays.

Thus, we assume that there are arrays G\ , ..., Gn, and thiat the compiler knows which group

array to use for each dimension of a particular behaviorr.

If we assume that the compressed n-dimensional tabile for fc-arity behavior cr has dimen

sions Tii > n 2 > — > nk' where the n f values are behavior spoecific, and that the group arrays for

these dimensions are G f , G f , ..., Gf. then the call-site dispatch code is given in Expres

sion 8 .8 .

(* {D ^n t [G flJV M x # « x , n f x ... x nl_i)

-I- Gl[N(o2)) X # (n f x ... x n f _ x)

+ . . .

+ GJ[AT(ot)]])) (oi, 0 ^2, ...Ok) (8 .8)

Note that since the n f are known constants, the productss of the form: # (n f x ... x n f), can

be precomputed. Thus, only k — 1 multiplications are required at run-time.

Note that [15] assumes a behavior specific function—call to compute the dispatch using

Expression 8 .8 . Although this function-call reduces calll-site size, it significantly increases

dispatch time. We have remove the function-call by inlfining to make CNT more competi

tive in our timings.

SRP

SRP has K behavior tables, denoted S i , ..., S k where S?i represents the applicable method

sets for types in argument position i of all methods. TThese dispatch tables can be com

pressed by any single-receiver dispatch technique, such ais behavior coloring (SRP/SC), row

displacement (SRP/RD), or compressed dispatch table (SRP/CT). The timing and space re

sults, and the code that follows, are for SRP/RD.

In addition to the argument-specific dispatch tables, SRP has, for each behavior, an

array that maps method indices to method addresses, whnich we denote by .

164

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The dispatch code for SRP is given in Expression 8.9. Our timing and space results

assume that this is a hardware-supported operation with the same performance as shift-

right.

(* (! £ " ’[F F S { S i[N M + #fif] &

S2[iV(o2) + #6?] &

. . . &

Sk[N(ok) + #&£])])) (0l, 0 2 ,..., ok) (8.9)

Note that # 6f is the shift index assigned to behavior a in argument-table i and is a

literal integer.

LUA

LUA is, in some ways, the most difficult technique to evaluate accurately. First, there are

a number of variations possible during implementation, that have vastly different space vs.

time performance results. For example, in order to provide O(k) dispatch, the technique

must resort to an array access in certain situations, at the expense of substantially more

memory. Second, [6] does not provide any explicit description of what the code at a par

ticular call-site would look like. They discuss the technique in terms of data structures,

and do not mention that in a statically-typed environment, a collection of if-then-else state

ments would be a much more efficient implementation. It is only indicated later in [5] that

method dispatch will happen as a function-call to a behavior-specific function. Given this

assumption the call-site code for LUA is given in Expression 8 .10

dispatcho-(oi, o2, ..., ok): (8 . 10)

Although the published discussion of CNT also assumes such a behavior-specific call, we

have provided a more time-efficient implementation of CNT by inlining the dispatch com

putation (Expression 8 .8), at the expense of more memory per call-site. Unfortunately, it

is not feasible to inline the dispatch computation for LUA because the call-site code would

grow too much.

165

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Our timing results assume the best possible dispatch situation for LUA, in which there

are only two k-arity methods from which to choose. In such a situation, LUA needs to

perform at most k subtype tests. Although numerous subtype-testing implementations are

possible [22, 5], we have chosen one that provides a reasonable trade-off between time and

space efficiency. Each type, T, maintains a bit-vector, subr, in which the bit corresponding

to every subtype of T is set to 1, and all other bits are set to 0. Assuming the bit-vector is

implemented as an array of bytes, we can pack 8 bits into each array index, so determining

whether Tj is a subtype of T) consists of the expression: sub?;[num(Tj) » 3]&(1 < <

(•num (T j) & 0x7)). However, note that the actual subtype testing implementation does

not really affect the overall dispatch time because LUA invokes a behavior-specific dispatch

function, and this extra function call is, in general, much more expensive than the actual

computation itself.

The size of the per behavior function to be executed depends on the number of methods

defined for the behavior. In the best possible case, there are only two methods, <Xi and a-i

defined for each behavior in a statically typed language (if there is only one method, no

dispatch is necessary). We reiterate that this is a rather liberal under-estimate of the actual

time a particular call-site takes to dispatch. The simplest function that a behavior can have

is shown in the code:

dispatch_o-(oi , ..., o*) {
if (subTi[N(0 l) » 3] & (1 « (N(0 l) & 0x7)))

if (subTk[N(ok) » 3] & (1 « (N(ok) & 0x7)))
return call <7i(oi,..., o*);

return call <7 2 (0 1 ,..., ot);
}

8.3.2 Timing Results

In order to compare the address-computation time of the various techniques we generate

technique-specific C++ programs that implement the call-site code shown in Figure 8.13.

Each program consists of a loop that iterates 2000 times over 500 blocks of code represent

ing the address-computation for randomly generated call-sites, where a call-site consists of

a behavior name and a list of k applicable types (for a fc-arity behavior). Each block con-

166

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Platform Architecture OS Clock (MHz) RAM (Mb)
1 Sun Microsystems Ultra 5V10 Solaris 2.6 299 128
2 Prospec PH Linux 2.0.34 400 256
3 Sun SPARCstation 10 M odel 50 SunOS 4.1.4 150 128
4 SGI 02 IRIX 6.5 180 64
5 IBM RS6000/360 ADC 4.1.4 2 0 0 128

Figure 8.14: Platforms fo r Multi-Method Timing Experiments

sists of two expressions. The first expression assigns to a global variable the result of the

address-computation from Figure 8.13. N o actual method invocation is done since this time

is the same for all techniques. The secon<l expression in each group calls a dummy function

that modifies the previously assigned variable. This call is made to prevent the compiler

from performing optimizations that would eliminate the address computation completely.

For example, an optimization might only" perform the last assignment in each group of 500,

or might move the code outside the 2000-iteration loop. We have verified that the machine-

language code that is generated contains no such inappropriate optimizations. We also

time a loop over 500 constant assignments interleaved with calls to the dummy function in

order to time the overhead incurred. This time is referred to as noop in the results. The

actual method address computation time is obtained by subtracting the noop time for each

technique.

Each execution of one of these programs computes the time for 1,000,000 method-

address computations. For each technique, such a program is generated and executed 20

times. The program is then regenerated (Thus resulting in a different collection of 500 call-

sites) an additional 9 times, and each sucEi program is executed 20 times. This provides 200

timings of 1,000,000 call-sites for each o f the techniques. The average time and standard-

deviation of these 200 timings are reported in our results. In the graphs, the histograms

represent the mean, and the error-bars indicate the potential error in the results, as plus and

minus twice the standard deviation.

In order to establish the effect that architecture and optimization have on the various

techniques, the above timing results are performed on the five platforms listed in Fig

ure 8.14 using optimization levels from. -00 to -03. All code is compiled using GNU

C++ (in future work, we will obtain timings for a variety of different compilers).

167

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

eMe
I

0 . 1 5

0.1

0 . 0 5

O
n o o p M R D M R D - B C N T S R P L U A

Figure 8.15: Time Required To Compute a Method Address at a Call-site

In addition to obtaining empirical results for multiple runs of multiple randomly gen

erated programs implementing all techniques across multiple platforms with multiple opti

mization levels, we also experimented with multiple implementations of ffs for SRP. In the

graphs of this section, results labeled SRP indicate the results for SRP if ffs is provided as a

hardware instruction with the same time and call-site space footprint as logical-shift-right.

Results labeled SRPx assume software support for ffs using a binary-search implementa

tion, where the bit-vectors are known to be at most x bits long. Thus, SRP2 implements ffs

as a binary search over bit-vectors of width 2, and SRP32 implements ffs as a binary search

over bit-vectors of width 32. As mentioned in Section 8.1.3, the 2-method and 3/4-method

projection groups can either provide additional compression (if they are packed 2 or 4 to a

byte) or improve the speed of software ffs (if they are left unpacked). SRP2+ and SRP4+

refer to results for unpacked versions of bit-vectors with 2 and 4 bits respectively.

From Figure 8.15, it can be seen that MRD provides the fastest dispatch time on both

platforms, and did so for all five platforms tested (see Figure 8.14). Furthermore, LUA has

the slowest dispatch time on all platforms. However, the relative performance of MRD-B,

SRP and CNT varied with platform, although MRD-B was usually fastest, followed by

SRP, followed by CNT.

Figure 8.16 shows the time taken to compute the method address of a 2-arity call-site in

each of MRD, CNT, LUA and the various versions of SRP on Platform 1 under optimization

168

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

level -02. The results of timings across different arities, optimization levels and platforms,

are similar to Figure 8.16.
0 . 9

0.8

0 . 7

_ °-6
E 0 . 5

1
0 . 4

I
0 . 3

0.2

0.1

Figure 8.16: Method-computation Times for Platforml Using -02

From Figure 8.16, it can be seen that SRP provides comparable dispatch time to the

other techniques. On Platforms 1 and 3 it is the second fastest technique, slightly slower

than MRD, but faster than MRD-B and all other techniques. On Platforms 2, 4 and 5, it

was slower than MRD and MRD-B, but faster than CNT and LUA. LUA has the slowest

dispatch time on all platforms, even though we have restricted its computation time to

method counts two and three. Note that even with software implementations of ffs, SRP is

faster than LUA.

As discussed in [19], if call-site inlining is not possible or memory considerations are

irrelevant, LUA and EPD will have better best-case times than any of SRP, MRD or CNT,

but it is still unknown whether their average-case time is competitive.

8.3.3 Memory Utilization

We can divide memory usage into two different categories: 1) data-structures, and 2) call-

site code-size. The amount of space taken by each of these depends on the application, but

in different ways. An application with many types and methods will naturally require larger

data-structures than an application with fewer types and methods. In addition, although the

size of an individual call-site is independent of the application, the number of call-sites

(and hence the total amount of call-site code generated) is application dependent.

169

*
rh

nh
r-Fi

_lLL
n o o p L U A / 2 L U A / 3 M R D M R D - B C N T S R P S R P 2 S R P 2 * S R P 4 S R P 4 * S R P 8 S R P l S S R P 3 2

P l a t f o r m t

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

#Arity # Behavior
2 203
3 22
4 11

Method Count # Behavior
2 53
3 33
4 35

5-8 57
9-16 27
17-32 16
33+ 5

Arity # Behavior
2 95
3 13
4 0

Method Count # Behavior
2 21
3 11
4 32

5-8 23
9-16 13
17-32 6
33+ 2

(a) Cecil Vortex3 Type Hierarchy (b) Harlequin Type Hierarchy

Figure 8.17: Type Hierarchy Details for Two Different Hierarchies

Data-Structure Sizes

All dispatch techniques have some memory overhead associated with them. Since the

data-structure size is dependent on an application, we chose to measure the size required

to maintain information for the types and behaviors in the Cecil Vortex3 (Cecil compiler

[4]) hierarchy and the Harlequin 4 Dylan Duim hierarchy. The Cecil Vortex-3.0 hierarchy

contains 1954 types, 11618 behaviors and 21395 method definitions. The Dylan Duim

hierarchy contains 6 6 6 types, 2146 behaviors and 3932 method definitions.

A large proportion of these behaviors and methods do not require multi-method dis

patch. We filtered the set of all possible behaviors to arrive at the set of behaviors that

truly require multi-method dispatch. In particular, we do not consider any O-arity be

haviors because the addresses for such behaviors can be identified at compile-time. The

1-arity behaviors are also excluded since they can be dispatched with single-receiver tech

niques. Furthermore, we assume the existence of static-typing information, which allows

a compiler to avoid run-time method dispatch in many situations. For example, we ig

nore behaviors with only one method defined on them, since they too can be determined

at compile-time. Finally, for each remaining behavior, we remove any arguments in which

only one type participates. If there is only one type in an argument position, no dispatch

is required on that argument (because we are assuming statically typed languages). For
4HarIequin is a commercial implementation of Dylan, and Duim is Harlequin’s GUI library

170

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

example, if behavior a is defined only on A x A, B x A and C x A, then no dispatch on

the second argument is required. By reducing behaviors down to the set of arguments upon

which multiple dispatch is truly required, we get an accurate measure of the amount of

multi-method support the application requires. After the reduction, the Cecil Vortex3 hier

archy has 1954 types, 226 behaviors and 1879 methods, and the Dylan Duim hierarchy has

6 6 6 types, 108 behaviors and 738 methods. The method distributions of these hierarchies

are shown in Figure 8.17. Figure 8 .18a shows the data-structure memory usage when each

technique is applied to the Cecil Vortex3 hierarchy. The Dylan Duim hierarchy produces

similar results.

*

■ 4 S O

4 0 0 -

3 5 0

I
f f 3 0 0 -

|f 2 5 0 .

%
j | 2 0 0 -

5
3 1 5 0 .

f
1 2 1 0 O -

5 0 '

L U A M R D M R D - B S R P C N T

(«)
L U A M R O M R D - B S R P C N T

(b)

Figure 8.18: Static Data Structure Memory Usage

In these reduced Cecil Vortex3 and Dylan Duim hierarchies, many of the method def

initions have arguments typed as the root-type. Whenever an argument is typed as the

root-type all rows on the dimension of that argument are filled, so no compression is pos

sible. More research is needed to determine whether it is common practice to define many

methods with arguments typed as the root-type in multi-method programming languages.

This research is very important since the relative memory utilization of the techniques is

profoundly different if root-types are not used. For example, Figure 8.18b shows the re

sulting data-structure size for each techniques after removing all methods with root-typed

argument(s) from the reduced Cecil Vortex3 hierarchy. Although the scale of this graph is

quite different from that of Figure 8.18a, the important result is that CNT and LUA, which

compare favorably to other techniques in a), become much worse techniques in b). As

multi-methods become more common, we expect that the actual distribution of methods

171

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9 0

8 0

7 0

6 0

SO
4 0

3 0

O
O

L U A M R O M R D - B C N T S R P

6 0

50

4 0

3 0

t o

O
L U A M R O M R O - B C N T S R P

Technique Technique

Figure 8.19: Call-Site Memory Usage

will be somewhere between these two extremes. After removing all methods with root-

typed. argument(s), there are 1661 types, 160 behaviors and 1299 methods remaining in the

Cecil Vortex3 hierarchy.

Call-Site Sizes

Figure 8.20 shows the number of bytes required on Platform 1 with optimization -02 for

a two-arity call-site using each of the techniques. The relative sizes between techniques

remains similar for higher-arity behaviors, on all platforms, and for all optimization levels.
7 0 0

6 0 0

5 0 0

fS. *°°
a
% 3 0 0

200

l O O

O

Figure 8.20: Call-Site Sizes of Various SRP implementations

Call-site sizes are important because inlining method computation is usually (but not

always) faster than an extra function call. However, this inlining is only feasible if the

call-site code of the technique is sufficiently small (otherwise call-site sizes will quickly

172

n n n n i . m
L U A / 2 L U A / 3 M R C M R D - S y t a C N T S R P S R P 2 S R P 2 - S R P 4 S R P 4 * - S R P 8 S R P 1 6 S R P 3 2

P l a t f o r m 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

dominate memory usage).

In order to compare the call-site size of the various techniques, we generated another

set of technique-specific C++ programs. For each technique, a program was created that

dispatched 200 consecutive two-arity method invocations. The program placed a label at

the beginning and end of this code and reported the computed average call-site size based

on the difference between the addresses of the labels. Note that the call-site size for a

particular technique can vary slightly if the randomly generated arguments happen to be

identical, or if the constants in the dispatch computation happen to be less than 256 or less

than 65535, allowing them to be stored using smaller instructions.

In this thesis we have assumed that method computation code is inlined at each call-site.

If we use behavior-specific dispatch functions instead, call-site sizes are identical across

techniques. In this scenario, only data-structure size is important. We are currently investi

gating the impact of not inlining method computation. Surprisingly, in some situations, on

some architectures, the inlined code is slower.

8.4 PTS: Product-Type Search
The motivation for developing PTS came from looking at how to extend cache-based

single-receiver techniques to multi-method languages. Although the structure of LC, IC

and PIC can be easily expanded to test multiple types rather than a single type, problems

occur when cache-misses occur. ML is a wholely unrealistic cache-miss technique for

multi-method languages. ML stores method dictionaries with types, and performs a search

starting at the dynamic type, looking up the inheritance hierarchy until a type is found that

matches the behavior in question. A naive generalization of this approach to multi-methods

would involve maintaining the induced product-type graphs of all applicable arities as run

time data-structures. Since the number of nodes in Hk is | H |fc, this is expensive for k — 2,

and infeasible for k = 4 even when | H \= 1000, and most sophisticated environments have

many more than 1000 types.

However, it is possible to implement a search-based technique that is similar in nature

to ML by switching the focus from types (or product-types) to behaviors. Rather than

generalizing ML to store a list of behavior/method mappings in product-types, we can store

173

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a list of product-type/method mappings in behaviors. When first looking into multi-method

languages, it was assumed that the concept of distance between two product-types would

allow the determination of the most specific applicable method. Although distance between

product-types can be accurately defined, and relatively efficiently determined, the concept

of distance turned out to be unnecessary because a better alternative presented itself. In

particular, the product-type/method mappings are ordered so that the first product-type

is the most specific one, and the last product-type is the least specific one (the order of

unrelated product-types does not affect the correctness of this technique, but may affect its

efficiency).

Dispatch in this technique consists of asking whether the dynamic product-type at the

call-site is a sub-product-type of the first product-type in the list, and continuing succes

sively until the first applicable product-type is found. Because this dispatch technique

involves a linear search, we refer to it as Product-Type Search.

Although this technique is extremely simple to implement and requires a minimal

amount of information, there has been nothing published about it. One reason for this lack

of attention may be that the technique is obviously not O(k), since the method count affects

performance. This observation has a variety of negative ramifications. First, efficiency-

concious programmers will be tempted to avoid polymorphism, sacrificing proper design

for the sake of speed. This same effect can be seen in the C++ community, where virtual

methods under multiple-inheritance are avoided because of an awareness that they are sub

stantially slower than single-inheritance virtual methods. Second, the dependence of the

efficiency of PTS on method-count makes accurate analysis difficult because of the need

for accurate metrics about method-count distributions across various behavior arities. For

the table-based techniques, in which method count does not make a difference, one number

suffices to describe the speed of dispatch. In order to be able to compare PTS against the

table-based techniques, a single number must also be obtained for it, but this requires that

the relative proportion of behaviors with certain method-counts be known and simulated.

Since the distribution of method-counts is likely to depend on behavior arity, the accumu

lation of such metrics is a non-trivial process, and may differ from language to language.

PTS has a number of advantages over other multi-method dispatch techniques. First, it

174

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is incredibly easy to implement. Second, for low method-counts (the most common case),

it may actually be faster than the table-based techniques. Third, it is inherently reflexive in

nature, since adding another product-type to the behavior dictionary is trivial in both time

and space and does not require flushing of caches or propagation of information.

On the other hand, PTS does have some disadvantages. As mentioned previously, it is

not O(k), performing poorer for behaviors with high method counts. Since there are certain

behaviors that tend to have very large method counts (binary methods like equality), this

technique is probably not appropriate for them.

Although we have had PTS around in a variety of incarnations for some time, I do not

yet have any empirical results for it, for the same reason that results for LUA and EPD are

difficult; they all need accurate metrics to provide realistic distributions for behavior arity

and method count. Once such metrics have been established, we will be able to compare

PTS, LUA, and EPD against the table-based CNT, MRD and SRP techniques.

8.5 Reflexivity in Multi-method Dispatch Techniques
In Part II it was observed that existing single-receiver dispatch techniques rely heavily on

information computed at compile-time to speed up run-time method dispatch and that no

real concern is given to the speed or memory utilization of the algorithms used to com

pute the compile-time information. This is problematic because reflexive languages must

execute these algorithms at run-time rather than at compile-time, so their space and time

performance become important. The situation is similar with CNT, LUA and EPD, none of

which are incremental. The algorithms presented in [15] for CNT require a global type or

dering, which in turn implies complete-environment knowledge and precludes incremental

maintenance. Furthermore, although CNT can be modified (in future work) to be incremen

tal, it is unlikely that LUA or EPD will be used in reflexive languages. EPD implements

its data-structures in code, which makes reflexive modifications much more complicated

because it involves recompilation of code. This becomes especially problematic in multi

threaded environments where code may be being executed while it is being recompiled.

Furthermore, recompilation of code will almost certainly be slower than the data-structure

modifications provided by techniques like SRP and PTS. In situations where the efficiency

175

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of dispatch modifications is important, this may become a dominating factor in deciding

which technique to use.

Of the new techniques presented, MRD is the only one that is not particularly suitable

for reflexive languages. Since MRD effectively collapses a multi-dimensional array into

two single-dimensional arrays, adding a method requires that the shift indices of all rows

in all dimensions be recomputed, so it is not incremental.

One of the advantages of SRP is its reliance on single-receiver dispatch techniques.

Since Part II has shown how such techniques can be made incremental, SRP is also in

herently incremental. In fact, the incremental nature of the SRP technique provided an

additional benefit, making it very easy to implement the projection-group optimizations

of Section 8.1.3. Behaviors are added to the lowest method-count projection group, and

when enough new methods are defined for the behavior, it migrates to the next highest

projection-group. Since the algorithms are incremental, removing information from one

projection-group and adding it to another projection-group can be performed efficiently.

Finally, PTS is also suitable for reflexive languages, mostly because it maintains so lit

tle information that it is easy to update it. Incremental modfication of the data-structures

is much faster in PTS than it is in SRP, but PTS suffers from potentially very slow dis

patch performance for high method counts. In reflexive languages, it is likely that a hybrid

combination of PTS and SRP will be the best choice.

176

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Part IV

Future Work and Conclusions

177

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 9

Future Work

There are numerous directions i:_n which future research can proceed. This chapter briefly

summarizes some of these directtions.

9.1 Metrics
During the research into dispatch, there were often times when accurate analysis of the

efficiency of a technique was ncot possible without accurate metrics about the relative dis

tribution of certain object-orientced constructs. This section discusses the kinds of metrics

that would be useful, and subsequent sections give concrete examples of where such met

rics would help in analysis.

Some of the questions that oHbject-oriented metrics would answer include:

• how deep are the inheritamce hierarchies?

• how common is multiple imheritance?

• what is the most common iinheritance structure?

• how many call-sites can b e optimized away?

• how many call-sites are maonomorphic, polymorphic and megamorphic?

• what are the method-countr distributions?

• what are the behav ior-arityv distributions (in multi-method languages)?

178

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Naturally, the answers to these questions differ from application to application. How

ever, by determining the bounds, the average case, and the variance, they will provide

enough information to give more accurate analysis of some o f the dispatch techniques. It is

likely that different language categories will have different average answers, and thus will

benefit from different techniques.

9.2 PTS: Product-Type Search
The research into multi-method dispatch in this thesis has concentrated on table-based dis

patch techniques, but a certain amount of preliminary work was done on search-based and

cache-based techniques as well.

How PTS compares with the other multi-method techniques is an open and very inter

esting question. Equally interesting is the simplification to single-receiver languages and

whether PTS can compete with ML. I suspect that in languages with shallow inheritance

hierarchies and/or single-inheritance, ML will still be best. However, in languages with

deep inheritance hierachies (where ML needs to search through many types that do not

have the behavior) or in languages with multiple-inheritance (where ML would need to

search multiple paths), PTS may be a valid competitor.

9.3 CNT: Improving Compression
The published version of CNT suggests the use of SC to compress the group arrays. Our

experiments have shown that the group arrays are actually the dominant space cost since

the n-dimensional tables are usually surprisingly small, but this may be due to Cecil’s

bias towards behaviors with very low method count. Two versions of CNT have been

implemented in DTF, one that uses SC to compress group arrays, and one that uses RD to

compress them. Not surprisingly, RD provides better compression.

As well, the algorithms published in [15] for CNT assume a global type order, and thus

require complete-environment knowledge, precluding CNT for use in reflexive languages.

For the purposes of this thesis, the implementation of CNT first populated an SRP table,

and the necessary information was then extracted from this table. Although this approach

179

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

still does not allow CNT to work for reflexive languages, it is a step in the right direction.

Developing an incremental algorithm for CNT is another interesting direction for future

work.

It is worth noting that I had initially assumed that CNT would be much more memory

intensive than either of SRP or MRD, and it was only after analyzing the surprisingly low

memory footprint that I realized why CNT does so well. The dominating memory cost

is the group arrays, and since the group arrays map types to groups, the array entries are

almost always less than 256 (only larger if there are more than 256 explicit/implicit product-

types defining methods for a particular behavior), which implies that the arrays can be one

byte instead of four bytes. After realizing this, I introduced projection groups to SRP and

compression of the I array to MRD to provide similar space savings to those techniques.

9.4 EPD: Efficient Predicate Dispatch
Although EPD dramatically improves on LUA, it is not yet known how it performs against

MRD, SRP and CNT. EPD is much more difficult to analyze because it does not give

constant-time dispatch. Although having an upper-limit on dispatch time may be important

in certain situations, it is usually the overall execution performance of an application that is

important, which is directly related to the average-time taken to perform an individual call-

site method dispatch. It may provide better best-case time performance than any of SRP,

MRD or CNT, but measuring average-case time is much more difficult. First, average-

case time analysis for EPD is application specific. Second, average-case dispatch time

is dependent on the average cardinality of the glb-closure of types participating in each

dimension of a multi-method dispatch, which implies that it is dependent on the number of

methods associated with a behavior.

Although EPD has the potential for faster overall performance, this potential only ex

ists given the assumption that call-site code sizes and/or overall memory considerations are

irrelevant. In languages like Java and Smalltalk, which have byte-code interpretation, the

time-penalty incurred by an extra function call is usually relatively low, so such an assump

tion is sometimes appropriate. However, in languages like C++, and in JIT compilers for

Java, the cost of an extra function-call is very high relative to the cost of method compu-

180

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tation itself. In particular, the time taken to dispatch a two-arity method in SRP, MRD and

CNT is lower than the cost o f a function call, which implies that if LUA and EPD require

a function call, even their best-case time will be much worse than any of these techniques.

Furthermore, the worst-case performance of LUA is much poorer than the table-based tech

niques unless one relies on auxiliary data-structures in situations where numerous types are

applicable in a particular dimension. By relying on such data-structures, the overall space

utilization and dispatch computation size increase dramatically.

It can be argued that wonst-case situations occur very rarely in EPD because of the use

of profiling information, which guarantees that the most common situations are efficiently

determined. Although this is sometimes true, there are a variety of caveats associated with

it. First, profiling is inherently application-specific. This poses problems when dealing with

third-party libraries that do mot provide source code. Optimizing dispatch call-sites within

library code based on the profiling information of one application provides no guarantee

that the distribution of dynamic types will be the same for another application. If instead,

the library code is optimized based on the profiling information of a set of applications,

very little actual optimization will be possible because what is “most common” in one

application may differ widely from what is common in another. Thus, in many situations

only the “main” code of an application can benefit from profiling optimizations. Since one

of the major goals of object-oriented programming is code reuse, third-party libraries are a

large component of an applic ation.

Second, not only is the average-case time dependent on method count (which dictates

the glb-closures in all dimensions), it is also highly dependent on the exact type-numbering,

since this numbering providers the efficient subtype testing that EPD relies upon. Depend

ing on how well the numbering scheme clumps related types together, the number of tests

necessary can be small or large. In general, there is no universal optimal number scheme

because what works best for one behavior may be pathological for another behavior. Given

EPD’s scheme of using a binary search tree to select a node transition based on type num

bers, the more type fragmentation, the more comparisons necessary, which directly affects

both computation time and computation code size. There are example behavior distri

butions that result in pathologically bad type numberings, necessitating large numbers of

181

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

comparisons to find the desired result. How common these examples are, and whether they

can be avoided is an area of future research.

9.5 LUA: Lookup Automata
Although EPD is an extension of LUA, some of the extensions performed in EPD make it

unsuitable for reflexive languages, since it is a code-based technique. Although LUA would

itself be much more efficient if its lookup automata were implemented in code instead of

data-structures, a search-based version applicable to reflexive languages may be feasible.

A complete implementation of the LUA algorithms as specified in [6] was written by

Candy Pang, an M.Sc. student. She used the DT Framework as a starting point, and I made

extensions to the framework as she required them during her implementation. The LUA

implementation includes all of the (sometimes convoluted) optimizations suggested in [6],

as well as others developed by Candy and me. This allows us to obtain timing results from

a version of LUA that performs dispatch entirely in data-structures, but those results are

not reported in this thesis (they are much, much slower then any of the techniques shown

here). The results for LUA shown in this thesis are for an optimized version applicable to

languages with static typing in which the data-structures are implemented as collections of

if..then..else statements.

I also painstakingly implemented an intermediary version in which the data-structures

from the general version were optimized into more efficient structures (under the assump

tion that the language was statically-typing). Although this version had substantially better

performance results than the general data-structure version, it was only comparable in ef

ficiency to other techniques presented in this thesis for behaviors with very low method

counts.

In order to make LUA applicable to reflexive languages, incremental algorithms for

implementing the automata creation need to be developed. It may turn out that for reflex

ive languages, the best technique uses a combination of PTS (for very low method-count

behaviors), LUA (for relatively low method counts) and SRP (for everything else).

182

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9.6 Dispatch-Code Inlining
One of the implicit assumptions made during much of the research into multi-method dis

patch techniques was that inlining the dispatch code would provide substantial performance

gains over incurring an extra function-call to a dedicated routine. Naturally, such inlining

came at the expense of more memory, and in fact one of the areas of research was in how

the space/time tradeoff was affected by such inlining.

Recently, however, there are some indications that inlining dispatch code may in fact

cause performance slow-downs rather than speed-ups. An analysis of the assembly lan

guage code being generated in the inlined and non-inlined versions suggested two possible

explanations. First, the dispatch-computation routines are rather specialized since they do

not require any explict local variables, and usually only require the use of one or two reg

isters. In hindsight, I should have realized that the cost of a function call depends on the

number of registers that need to be saved and restored. Subsequent tests demonstrated that

function calls need not be particularly expensive if few registers need to be saved.

Although this first observation could have explained why there wasn’t a huge differ

ence between inlined and non-inlined versions, it did not explain why non-inlined versions

could actually be faster. Further exploration of the assembly code revealed that optimiz

ing compilers were not intelligent enough to perform effective register allocation when

call-site code was inlined. When the call-site code was wrapped in a dedicated function,

the determination of which values to place in registers is easy because there are very few

such values per dispatch function. However, when the code for a thousand call-sites are

inlined together, the compiler has a large set of values that are all used equally often, and

must choose a few such values to place in registers. This is an example of a time when

more code available to the optimizer actually results in performance degradation, rather

than improvement. This result was observed when using gcc with optimizing flags -02 and

-03, and it is certainly possible that other compilers will perform better in this case (this is

discussed in Section 9.8).

After establishing these two explanations for how non-inlined dispatch could beat in

lined dispatch, I also discussed the issue with individuals more familiar with the low-level

details of instruction caching, branch prediction, etc. The consensus from these discussions

183

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

was that such an effect was a well known phenomenon, and that it was due to instruction

caching effects. First, less code means fewer instructions, allowing the same instructions

to occupy the instruction cache for longer periods of time. Second, separation of code into

functions may improve the cache-hit percentage in such instruction caches.

My own experimentation has demonstrated that the first two explanations do have some

impact on performance, and experts in the area insist that instruction caching issues are also

at work. It will be interesting to establish what proportion of the overall effect is due to

each of these explanations.

Finally, the results about the relative performance of non-inlining versus inlining may

be an artifact due to the manner in which results were obtained. A loop executing 2000

times over 500 inlined call-sites (as opposed to 500 function calls) is not an accurate repre

sentation of an object-oriented program. This in turn leads to another area of future work

discussed later; implementing the various dispatch techniques in a real language.

9.7 Real Language Results
Although the results presented in the thesis provide an accurate measure of relative per

formance between techniques for a particular category of languages, the manner in which

results were obtained do ignore some important aspects. For example, a technique that

uses twice as much memory but performs dispatch twice as fast might seem like the best

choice if efficiency is the priority. However, this assumes that all of the computation of the

program is due to dispatch, which is certainly not true. If the program only spends 10% of

its time in dispatch, then there is actually only a 10% improvement in overall performance.

If the memory needed for dispatch consists of 50% of the total memory required, then the

slower, but more memory-efficient technique may be a better choice.

To address issues of this sort, we would like to compare the various dispatch techniques

in real programming languages. Java is a good first target for single-receiver dispatch

techniques, and, if extended to provide multi-method dispatch, can also serve as the testbed

for the multi-method dispatch techniques.

184

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9.8 Extending Framework
Although the existing framework provides the most comprehensive collection of dispatch

techniques, and the first concrete “fair” comparison between a variety of techniques, there

are still many techniques to be implemented. Of particular interest would be a compari

son of IC and PIC against the table-based single-receiver techniques. This would establish

whether IC and PIC do actually benefit from an avoidance of pipeline stalls as claimed

in [12]. Of equal interest would be an implementation of PTS and EPD to see how they

fair against SRP, CNT and MRD in dispatch and memory efficiency for multi-method lan

guages.

In addition to adding more dispatch techniques to the framework, there are a few ways

in which the existing results can be improved. As mentioned previously, the results pre

sented in the thesis are based on multiple mns of multiple randomly generated programs

implementing all techniques across multiple platforms with multiple optimization levels.

One further extension is to perform all of these using multiple compilers. Since differ

ent compilers are likely to implement different optimizations, this will allow us to identify

those low-level optimization techniques most favorable to various dispatch techniques.

As well, more accurate measurements of the amount of space taken up by dispatch tech

niques must be performed. Since dispatch memory is distributed between actual dispatch

code, method prologues and run-time data-structures, some existing literature is somewhat

careless about reporting the full impact that a particular technique has on memory.

Finally, numerous issues impact the performance results given in this thesis for multi

method languages. For example, the simple loop-based timing approach may pose a prob

lem. It reports an artificially deflated execution time for all techniques due to caching

effects. Since the same data is being executed 10 million times, it stays hot. This problem

can be partially solved by generating large sequences of random call-sites on different be

haviors with different arguments. However, this approach might actually discount caching

effects that would occur in a real program, since random distributions of call-sites will have

poorer cache performance than real-world applications that have locality of reference.

185

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9.9 “Best” Technique Analysis
One far-reaching goal of such research would be a complete analysis of the impact that

every variation of every object-oriented dimension has on compile-time optimizations, run

time dispatch efficiency, run-time data-structure computation efficiency, and run-time data-

structure memory usage.

The culmination of this research would be a multi-dimensional chart that takes into

account the various dimensions affecting performance and the relative importance placed

on optimizations, dispatch-time and memory usage.

It is likely that the best multi-method dispatch technique(s) will be a hybrid of many

of the existing techniques. One of the advantages of having per-behavior data structures is

that each behavior can implement any multi-method dispatch technique independent of the

others. Each of the techniques is best for some subset of behavior arity and method count

distribution, and each has its own unique collection of advantages and disadvantages. Since

behaviors are usually known at compile-time, the compiler can determine which technique

to use based on compile-time information (behavior arity and behavior method-count). This

is somewhat different from the single-receiver world, in which RD is a clear winner from a

space perspective, and SC is a winner from the reflexivity perspective.

9.10 Formalizing Dimensions of Object-Oriented Languages
Chapter 1 introduced a variety of dimensions associated with object-oriented languages,

and discussed the variations possible within each dimension. Within this thesis, these di

mensions, and the variations within each dimension, were used informally to establish

broad classes of languages, like statically-typed non-reflexive single-receiver languages, or

non-statically-typed reflexive multi-method languages.

However, in addition to using these dimensions in such informal ways, I would like

to look into more formal mechanisms for describing, analyzing and implementing object-

oriented languages in terms of these dimensions. The dimensions (and variations) presented

in Chapter 1 consist only of those that have profound effects on method dispatch, but many

other dimensions exist (for example, are control structures implemented as message sends

186

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

or as new syntax). Establishing which concepts should be called dimensions, and what

variations are possible within each dimension are non-trivial issues, but if a comprehensive

collection of dimensions could be established, numerous benefits could be obtained. First,

specifying the exact variation for each dimension provides an extremely concise mecha

nism for summarizing the capabilities, features and flaws of individual languages. Second,

there are likely to be collections of dimensions that interact with one another, dictating the

best strategies for providing efficient implementations. Thus, a good dimension structure

may allow us to start implementing not at the level of individual languages, but at the level

of entire language categories. For example, the research in this thesis indicates that of the

existing dispatch techniques, SRP is probably the best choice for non-statically-typed, re

flexive, multi-method languages. The specification of three dimension variants concisely

describes the category of language being referred to, and the advice is that any language in

that category should probably use SRP.

This thesis has assumed that the variations within a dimension are mutually exclusive,

but depending on which concepts are choosen as dimensions, this is not always the case.

Deciding whether such a one-dimensional continuum is the most desirable alternative (and

whether it is even possible) is non-trivial in its own right. Alternative structures might allow

some hierarchical structure among dimension variants to provide a more robust (albeit more

complex) formal model.

9.11 Prototype-based Languages
One of the dimensions of languages not discussed in this thesis is whether the language

is class-based or prototype-based (or, more generally, the kind of meta-type structure pro

vided by the language). It is possible that prototype-based languages provide some imple

mentation advantages to offset their lack of conceptual uniformity.

9.12 Single-Receiver Cache-Based Techniques
The published versions of IC and PIC both do type-equality testing to determine whether a

cache-hit occurs. Although this test is fast, it induces thrashing in IC and unnecessary code

187

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

bloat in PIC. It is currently unknown whether having method prologues perform subtype-

testing would provide a performance improvement. On the one hand, the test is more

expensive. However, sub-type testing would only need to call a cache-miss technique in

IC if the method address changes, rather than if the receiver class changes (two different

receiver classes will often invoke the same method). In PIC, the sequence of if-then-else

statements would be kept shorter by using subtype-testing, but the order of tests would have

to be according to a bottom-up traversal of the inheritance hierarchy (precluding code gen

eration based solely on frequency of class appearance, although the expense of frequency

analysis might preclude such ordering anyway). Furthermore, the profiling advantages of

PIC mentioned in Section 3.2.3 would be last if subtype-testing were implemented.

9.13 Optional or Incremental Static Typing
This thesis has demonstrated in numerous places that static-typing allows for much more ef

ficient dispatch technique implementations, as well as providing more software validation

and optimization information. On the other hand, languages with (explicit) static typing

tend to be pedantic and more confining than non-statically typed languages, which makes

them less suited to rapid prototyping and exploratory application design. Often, applica

tions are written initially in a non-statically typed language to “find out how to do it”, then

rewritten in a more efficient and rigorous statically-typed language.

Rather than implementing the same code twice, it would be advantageous to have a

language that allowed static typing of variables to be optional. Variables that are explicitly

typed are checked for type-safety and can take advantage of optimizations that apply to

individual variables. In such a language, implementation would consist of a prototyping

phase for rapid development, followed by an “optimization” phase in which variables are

statically typed. This allows a highly incremental means of providing increased run-time

efficiency without sacrificing development-time efficiency.

188

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 10

Conclusion

This thesis addresses the effects that certain language dimensions have on method dispatch,

and provides the following original research contributions:

1. A detailed description of all commonly used dispatch techniques for both single

receiver and multi-method languages in one document.

2. Development of technique-independent algorithms and data-structures for incremen

tal dispatch table maintenance and inheritance conflict detection in single-receiver

table-based dispatch techniques.

• All table-based single-receiver dispatch techniques can now be used in reflex

ive languages. Traditionally, such techniques have only been applied to non

reflexive languages.

• Since the new algorithms for the various techniques are so similar, it is possible

for language implementors to provide all dispatch techniques, rather than just

one technique. This allows programmers to choose the technique best suited to

their particular situation, in terms of memory utilization, compile-time perfor

mance and run-time performance.

• Demonstration via empirical measurements of the relative performance of the

various single-receiver dimensions with respect to dispatch time, table modifi

cation time and memory usage.

189

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

— For statically-typed, non-reflexive, single-receiver languages, VTBL pro

vides the best trade-off between dispatch performance and memory utiliza

tion. However, VTBL is restricted to statically-typed non-reflexive single

receiver languages and is thus not as general as any of the other techniques.

— STI, RD, SC and CT can all be applied to non-statically-typed, reflexive,

single-receiver languages (a proper superset of both statically-type lan

guages and non-reflexive languages). Although all of these techniques

were initially published for use in non-reflexive languages, this thesis demon

strates how they can be generalized to reflexive languages.

— For non-reflexive, single-receiver languages (statically or non-statically-

typed), RD is the clear winner, giving dispatch performance and memory

utilization very close to VTBL, but applying to a much broader category

of languages. However, RD suffers in highly-reflexive languages in which

run-time modifications are common or when the time taken to perform a

particular modification is critical. This inefficiency during table modifica

tion is due to the fact that RD compresses its dispatch information very

well, and when the dispatch information changes, a substantial amount of

dispatch information may need to be modified.

— For reflexive, single-receiver languages (statically or non-statically typed),

SC provides an excellent tradeoff between dispatch efficiency (only slightly

worse than RD), memory utilization (somewhat poorer than RD), and dis

patch table modifications (substantially faster than RD).

— For single-receiver languages in which memory utilization is more impor

tant than dispatch efficiency, CT is the best choice. Although dispatch

is substantially slower, it can provide substantially better compression than

VTBL, RD, SC or STI. However, CT only works for languages with single

inheritance.

— STI is never practical for languages with even medium-sized class libraries

due to its excessive memory requirements. In certain situations STI may

appear to provide faster access to table entries due to the avoidance of extra

190

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

additions or multiplications incurred by RD and SC. However, this does not

usually correspond to faster dispatch because of poorer caching effects due

to the excessive amount of memory required for the technique.

3. Development of a framework for single-receiver table-based dispatch techniques

• Language implementors are provided with all of the functionality necessary

to implement dispatch, freeing them to concentrate on more language-specific

issues.

• The framework lead to the development (using mix-and-match facilities pro

vided by the framework) of a new hybrid dispatch technique with the advan

tages of both progenitors, and the disadvantages of neither. In particular, the

hybrid technique (SCCT) replaces the selector aliasing portion of CT, which

restricts CT to single-inheritance, with the more general selector coloring ap

proach of SC. This provides a technique with even better compression than CT

without its restriction to single-inheritance.

• The framework demonstrates that most of the functionality performed by the

existing table-based dispatch techniques is actually technique-independent in

nature. The only functionality that is technique-dependent is data-structure ac

cess (different techniques implement their tables differently) and selector/class

index assignment (different techniques compress selectors and classes in dif

ferent ways). Furthermore, the technique-independent algorithms are reflexive

and highly efficient. In particular the algorithms allowing dispatch tables to

be modified incrementally as classes and methods are parsed or evaluated, and

such incremental modifications are performed in low-millisecond time.

4. Development of two entirely new multi-method dispatch techniques (SRP and MRD)

and exploration of a third (PTS) which is surprisingly obvious yet does not appear in

the literature.

• SRP (Single-Receiver Projections) projects the naive n-dimensional data-structure

on to multiple copies of an extended single-receiver dispatch table. It relies on

191

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

one (or more) of the single-receiver dispatch techniques to compress the tables.

• MRD (Multiple Row Displacement) uses multiple applications of the single

receiver RD technique, collapsing each dimension into a sequence of offsets

which in turn are collapsed into other sets of offsets, until the entire structure is

collapsed.

• PTS (Product-Type Search) maintains a sorted list of applicable methods and

performs dispatch by sequentially comparing elements of this sorted list against

the call-site product-type. For behaviors with low method count, this technique

may provide the best overall dispatch, but it suffers when multiple product-

types must be checked.

5. This thesis provides the first detailed comparison of all existing multi-method dis

patch techniques. Published techniques were not accurately compared against other

techniques because the implementors did not have a framework into which their tech

nique could be added. The thesis, in addition to creating the MRD, SRP and PTS

dispatch techniques, implemented the published CNT and LUA techniques and per

formed empirical tests to determine how they all compared in dispatch performance

and memory utilization. The following conclusions were obtained from this analysis:

• On average, MRD is the fastest technique for non-reflexive, statically-typed

languages.

• On average, SRP is the most space-efficient technique, provides for next-method,

and is inherently incremental, making it much better suited than any existing

technique for reflexive languages.

• LUA as initially proposed cannot compete with any of the other techniques in

dispatch performance or memory utilization. However, a successor technique

called EPD may very well outperform all of the dispatch techniques. However,

neither LUA or EPD is well suited to reflexive languages.

• CNT uses less space than MRD and on certain platforms provides faster dis

patch than SRP. It is important because its dominating space cost is not in-

192

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

curred by method addresses, but rather type-to-group mappings, which take up

less space than addresses. This observation lead to the development of versions

of MRD and SRP that were substantially more space efficient than initially ex

pected.

• Which dispatch technique is best for multi-method languages is not nearly as

clear-cut as it is for single-receiver languages. The relative importance of dis

patch speed and memory utilization is more of an issue because these tech

niques require substantially more memory than single-receiver techniques. Fur

thermore, CNT, MRD and SRP all have similar dispatch times, and the relative

ordering between techniques depends on the architecture being used.

• SRP is inherently reflexive since it is based on single-receiver dispatch tech

niques that are reflexive. PTS is also inherently reflexive due to its extreme

simplicity. CNT as published is not reflexive, but modifications to the algo

rithms should allow it to be reflexive. MRD is not well suited to reflexive

languages because run-time modifications to the dispatch table require many

dimensions to be adjusted. LUA can be reflexive if it is implemented as a data-

structure, but the dispatch penalty incurred is too substantial. EPD implements

the lookup-automata in code, which makes reflexivity problematic, but it may

be possible to simply recompile the dispatch routines at run-time in order to

provide such reflexivity.

193

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[1] ECOOP’97 Conference Proceedings, 1997.

[2] Eric Amiel, Olivier Gruber, and Eric Simon. Optimizing multi-method dispatch using
compressed dispatch tables. In OOPSLA’94 Conference Proceedings, 1994.

[3] P. Andre and J.C. Royer. Optimizing method search with lookup caches and incre
mental coloring. In OOPSLA’92 Conference Proceedings, 1992.

[4] Craig Chambers. Object-oriented multi-methods in cecil. In ECOOP '92 Conference
Proceedings, 1992.

[5] Craig Chambers and Weimin Chen. Efficient predicate dispatch, 1998. Technical
Report UW-CSE-98-12-02.

[6] Weimin Chen. Efficient multiple dispatching based on automata. Master’s thesis,
Darmstadt, Germany, 1995.

[7] Brad Cox. Object-Oriented Programming, An Evolutionary Approach. Addison-
Wesley, 1987.

[8] Jeffrey Dean and Craig Chambers. Towards better inlining decisings using inlining
trial. In ACM Conference on LISP and Functional Programming, 1994.

[9] L. Peter Deutsch and Alan Schiffman. Efficient implementation of the Smalltalk-80
system. In Principles o f Programming Languages, Salt Lake City, UT, 1994.

[10] R. Dixon, T. McKee, P. Schweizer, and M. Vaughan. A fast method dispatcher for
compiled languages with multiple inheritance. In OOPSLA’89 Conference Proceed
ings, 1989.

[11] K. Driesen and U. Holzle. Minimizing row displacement dispatch tables. In OOP-
SLA’95 Conference Proceedings, 1995.

[12] K. Driesen, U. Holzle, and J. Vitek. Message dispatch on pipelined processors. In
ECOOP’95 Conference Proceedings, 1995.

[13] Karel Driesen. Method lookup strategies in dynamically typed object-oriented pro
gramming languages. Master’s thesis, Vrije Universiteit Brussel, 1993.

[14] Karel Driesen. Selector table indexing and sparse arrays. In OOPSLA’93 Conference
Proceedings, 1993.

[15] Eric Dujardin, Eric Amiel, and Eric Simon. Fast algorithms for compressed multi
method dispatch table generation. In Transactions on Programming Languages and
Systems, 1996.

194

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[16] M.A. Ellis and B. Stroustrup. The Annotated C++ Reference Manual. Addison-
Wesley, 1990.

[17] A. Goldberg and David Robson. Smalltalk-80: The Language and its Implementation.
Addison-Wesley, 1983.

[18] Wade Holst and Duane Szafron. A general framework for inheritance management
and method dispatch in object-oriented languages. In ECOOP’97 Conference Pro
ceedings [1].

[19] Wade Holst, Duane Szafron, Yuri Leontiev, and Candy Pang. Multi-method dispatch
using single-receiver projections. Technical Report TR-98-03, University of Alberta,
Edmonton, Canada, 1998.

[20] Urs Holzle, Craig Chambers, and David Ungar. Optimizing dynamically-typed ob
ject oriented languages with polymorphic inline caches. In ECOOP’91 Conference
Proceedings, 1991.

[21] Gregor Kiczales and Luis Rodriguez. Efficient method dispatch in pci. In 1990 ACM
Conference on Lisp and Functional Programming, pages 99—105, 1990.

[22] Andreas Krall, Jan Vitek, and R. Nigel Horspool. Near optimal hierarchical encoding
of types. In ECOOP’97 Conference Proceedings [1].

[23] Glenn Krasner. Smalltalk-80: Bits o f History, Words o f Advice. Addison-Wesley,
Reading, MA, 1983.

[24] Yuri Leontiev. A type system for an object-oriented database programming language.
Master’s thesis, University of Alberta, 1999.

[25] Yuri Leontiev, M. Tamer Ozsu, and Duane Szafron. On separation between inter
face, implementation and representation in object DBMSs. In Technology o f Object-
Oriented Languages and Systems, 1998.

[26] M.T. Ozsu, R J. Peters, D. Szafron, B. Irani, A. Lipka, , and A. Munoz. Tigukat:
A uniform behavioral objectbase management system. In The VLDB Journal, pages
100-147, 1995.

[27] Candy Pang, Wade Holst, Yuri Leontiev, and Duane Szafron. Multi-method dispatch
using multiple row displacement. In ECOOP’99 Conference Proceedings, 1999.

[28] Jan Vitek and R. Nigel Horspool. Compact dispatch tables for dynamically typed
programming languages. In Proceedings o f the Intl. Conference on Compiler Con
struction, 1996.

195

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

