
Global Snapshots for Distributed Debugging�

An Overview

Z� Yang and T� A� Marsland

Laboratory for Distributed and Parallel Computing
Computing Science Department

University of Alberta
Edmonton

Canada T�G �H�

Email� �yang� tony��cs�ualberta�ca

Technical Report TR������

Abstract

The widespread adoption of distributed computing has accentuated the need for an e�ective

set of support tools to facilitate debugging and monitoring� In providing such support� one

fundamental problem is that of constructing a global snapshot or global state of a distributed

computation� This paper examines global snapshot algorithms from a distributed debugging

perspective� and proposes an abstract framework based on global snapshots� which is de�ned

to form a consistent state of the entire system� It is shown that by using a property preserving

algorithm this framework can be superimposed on the underlying computation� but not interfere

with it�

Keywords� Distributed computing� Distributed debugging� Global states� Snapshots�

� Introduction

Interest in distributed computing has grown dramatically in recent years� because it has opened a
cost�e�ective way to construct large systems from a collection of computers connected via networks�
Such distributed systems exhibit great potential for increased performance� system extensibility�
and increased availability�LPS���� However� to bring this potential to full play� there is a growing
need for an e�ective way to support distributed programming�

A distributed program may be viewed as a collection of processes residing� executing and com�
municating� but at geographically dispersed nodes which consist of one or more processors� one
or more levels of memory� and several I�O devices� Programming distributed systems is much

�



harder than for its counterpart 	 centralized systems� because of the parallelism inherent in a
distributed program� nondeterminism of the execution behavior and non�predictable communica�
tion delays between processes� To meet this challenge� much research has been done from several
aspects� for example� languages and semantics as illustrated in CSP at Oxford�Hoa�
�� MIT�s
Argus project�LS��� and Hermes in IBM�Str��� algorithms and correctness proofs as advocated
by Dijkstra�DS���� and implementations of several distributed systems such as Conic in Imperial
College�KMS��� and also Argus� as well as many others� This multitude shows the importance of
obtaining e�ective solutions to problems which arise in distributed programming� Research has
shown that many problems in distributed systems can be cast in terms of the problem of detecting
global states� Indeed� constructing a global state or global snapshot of a distributed computation
is viewed as a fundamental problem� Many researchers have proposed various algorithms for taking
snapshots� Chandy and Lamport�CL�
�� in their landmark paper� proposed an elegant solution�
called distributed snapshots� for detecting stable properties of distributed systems� This solution
is general enough to be adapted to speci�c implementation requirements and works for a broad
application domain� These uses include the detection of stable system properties such as deadlock
and termination�

Informally� a snapshot of a distributed computation is a global state which could have been
seen by some external observer with any reference point� and can thus be viewed as a point in
the history of the computation� We can imagine taking a sequence of such snapshots during a
distributed computation� initiated on command by a programmer or by the detection of a snapshot
condition� If such a trigger is a breakpoint in a computation� the snapshot could be a valuable
debugging tool 	 usually the system stops in a breakpoint� i�e� a snapshot state� until the debugging
process permits resumption of execution�

A contribution of this paper is to establish a framework for distributed debugging� However�
before we can discuss our framework in detail� we must present the system model on which snapshot
algorithms are based� We then describe the snapshot algorithms which would become a component
in our framework� The framework is presented in terms of breakpoints� local snapshots� global
snapshots� and the halting and restarting of the underlying computation�

� The system model

A distributed system is modeled by D � fP� Cg� where P is a �nite set of processes composing
an underlying computation� C is a �nite set of channels via which processes communicate� The
processes do not share memory but communicate exclusively by sending and receiving messages via
channels� These channels are assumed to be reliable and synchronous� No assumptions are made
about the relative speed of the processes�

This system model forms a high level of abstraction of a distributed system� It abstracts away
the physical organization of the system and the particular details of the underlying communication
network� it even abstracts the details of the distributed programming environment�

Our model di�ers from the one of Chandy and Lamport �CL�
� in that the interprocess com�
munications are assumed synchronous instead of asynchronous�bu�ered�� However� the following
de�nitions are derived from their work�

De�nition � A process is de�ned as a ��tuple� p � �S� init� E�� where S is a set of process states�
init � S is the initial state� and E is a set of events� The process state is represented by the program

�



counter and all variable values in the memory�

De�nition � An event of a process p is de�ned as a 	�tuple �p� s� s
� m� c�� We say an event occurs
if a process transitions from state s to s
 and sends �or receives� message m along the outgoing �
incoming � channel c � C� which is incident upon p� m and c are null symbols if no message is
involved in the event�

For a process� three types of events are possible� intraprocess events� sending a message� and
receiving a message between processes�

De�nition � A global state is a set of all process states and all channel states within a system�
such that in the global state�

�� Every message that a process receives would have been sent by the sending process of that
message�

� The channel state is a set of all messages sent by a process along that channel� but not yet
received by the receiving process�

Note� Because our model relies on synchronous communication� both the receiver and sender must
be ready before the communication can take place� Thus no message will be held up in the channel�
so only the process states need be counted�

The global state thus de�ned is always consistent in a sense that if a predicate function de�ned
on S� y�S�� becomes true� then y remains true at all later points in that computation� Also�

� If event e can occur in global state S� then the function next �S� e� returns the global state
immediately after the occurrence of e in global state S�

� A global state S� is reachable from global state S �denoted as S � S�� if and only if there is
a computation fSi � � � i � ng such that �j� k � � � j � k � n� S � Sj � S� � Sk�

De�nition � A �distributed� computation is de�ned as a sequence of events�

comp � fei � � � i � ng

where ei can occur in global state S� A computation is sometimes denoted by fSi � � � i � ng for
brevity�

� Global Snapshot Algorithms� A Survey

Our abstract framework of distributed debugging is based on global snapshots of the system� In
view of this� we provide here a survey on the global snapshot algorithms� In the next section� we
explain how global snapshots �t into our framework�

A global snapshot is taken at some point within a distributed computation that exhibits an
interesting property� It is a two phase procedure� a recording phase where all processes are required
to take respective local snapshots� and a dissemination phase where a global state is formed from
local snapshots� To meet the global state consistency requirement� we need some way to delimit the
�before� or �after� snapshot� There are two mechanisms that could be used for the demarcation� by
using a control message �marker� or by setting a clock to a prede�ned time� Thus� the algorithms we
survey fall into two categories� control�message�based and time�based global snapshot algorithms�

�



��� Control message Snapshot Algorithms

����� The Chandy and Lamport Algorithm

Chandy and Lamport�s algorithm�CL�
� is a landmark one for taking distributed snapshots� It uses
a process coloring scheme to enforce the consistency of a global snapshot� All events are de�ned to
be WHITE if they precede the snapshot and RED if they occur afterwards� Initially all processes
are WHITE� All processes having the same color� namely RED� will yield a consistency snapshot�
In the algorithm� a process wishing to initiate a global snapshot executes a procedure Turn Red�
thus sending out warning messages to begin the snapshot� The procedure Turn Red is outlined as
follows�

�� set color of itself to RED�

�� record current state of the process�

�� for each incoming channel� cpq� begin recording messages on cpq�

�� for each outgoing channel� cqp� send out a warning message before sending any more message
on it�

A process� upon receipt of a warning message on an incoming channel� executes Get Warning
procedure as outlined as follows�

�� if color � WHITE� then execute Turn Red�

�� stop recording incoming message on channel�

The Chandy and Lamport algorithm is concerned mainly with taking local snapshots� To
disseminate back to the initiator the state information recorded individually� each process in the
system is required to send its local snapshot to each of its neighbors �through all of its outgoing
channels�� As a process receives another process� local snapshots� it must� in turn� pass the snap�
shots to each of its own neighbors� All processes will eventually receive copies of local snapshots
of all other processes� In this manner� a global snapshot can be formed by all the processes in the
system�

This algorithm needs O�N � � messages for taking a local snapshot� and requires O�N � � messages
for defusing the state images of the processes� This message complexity leads to several variants
to improve the e�ciency�

����� The Spezialetti and Kearns Algorithm

Spezialetti and Kearns noticed that the independence of the two phases in the Chandy and Lamport
algorithm results in more message complexity 	 in particular� the dissemination phase is done
exhaustively in the sense that all processes� even if they do not require the snapshot� will ultimately
receive the total snapshots whereby they could form a global snapshot� They combined two phase
approach into an integrated algorithm 	 called Spezialetti and Kearns Algorithm�SK��� in which
they cleverly use a form of the Chandy and Lamport algorithm for taking local snapshots to
assemble the global snapshot in an e�cient way which we will summarize below�

�



In contrast to monochrome coloring of Chandy and Lamport algorithm� they utilize a multi�color
scheme for the local snapshoting� each process possesses two kinds of coloring variables�id color
and local color� An id color is a unique identifying color �not WHITE� which is its network name
and does not change over the lifetime of the system� and a local color� initially WHITE� A process
is said to be of the color of local color� An initiator changes its color by setting local color to its
id color� and then sending out a wave of warning messages which are also colored id color�

When a white process receives a colored warning� it sets local color to the color of the received
warning and follows the Chandy and Lamport algorithm� thus incorporating the process into the
snapshot� As the warning wave travels through the system� a region of the initiator�s color is
established� and all these processes have their local color set to the local color on the initiator�
The Spezialetti and Kearns Algorithm thus allows for several initiators of a global snapshot� in
this case regions of various colors form� Processes at the border of the regions will have di�erent
colors depending on the color of the �rst warning received on any of the incoming channels� A
snapshot is complete when all processes of the system are non�WHITE� It is assumed that there is
a spanning tree rooted at the initiator in each region that was created by the initiator when it sent
out a warning in the recording phase� Along the tree� each process sends its local snapshot to the
initiator� The di�erently colored warning by di�erent initiators lets the processes at the boundary
of the regions identify the initiator in the neighbor region� This identi�cation is also passed to the
initiator of the region�

Once the initiator of a region has received local snapshots from all the processes in its region�
it also knows the identi�ers of all initiators in all adjacent regions� The initiator in each region
disseminates the local snapshot of processes received to the initiator in the adjacent regions� This
goes the rounds until each initiator has received local snapshots from all non�adjacent regions as
well�

The Spezialetti and Kearns Algorithm results in a more e�cient global snapshot via phase�
merging in which earlier phase provides useful information to the later phase� It needs O�N � �
messages in the recording phase� and when there are m concurrent initiators needs O�mN � � ex�
changes of local snapshot in the worst case� so they are called �e�cient distributed snapshots��

����� The Venkatesan Algorithm

Distributed applications often require that many successive snapshots be taken to get vital informa�
tion about the computation� It is obvious that the Chandy and Lamport algorithm is not suitable
for this purpose because the communication overhead is excessive in terms of control messages�
Addressing this problem� Venkatesan proposed a notion of incremental snapshots and correspond�
ing protocol for taking such incremental snapshots� The Venkatesan algorithm�Ven�� is intended
to reduce the message complexity� It uses the fact that a recent snapshot of the system is already
available� and that the change in the system between successive snapshots is likely to be small
�namely message may not have been sent on some channel since the previous global snapshot�� As
in the Spezialetti and Kearns Algorithm for reducing the message complexity of the algorithm� a
spanning tree is assumed to exist 	 this is a one time pre�processing step� and is not considered
to be a component of the algorithm�

The Venkatesan algorithm assumes there is an initiator process to which all requests for a global
snapshot are forwarded� The very �rst snapshot taken uses the Chandy and Lamport algorithm
and is complete� Each subsequent snapshot is taken only if the previous one has completed �in�






cremental�� and has a version number one more than that of previous one� In this algorithm� four
types of control messages are used� initiation message� snapshot complete message� marker� and
acknowledge �ack� message� An incremental global snapshot is taken by sending� along with a
spanning tree rooted at the initiator� control messages� each of which carries the version number of
the global snapshot�

When receiving an initiation message or a marker with a higher version number� each process
records an incremental local snapshot by performing the following protocol steps�

�� sets states of each incoming channel to empty�

�� records its local state�

�� sends an initiation message to its each child�

�� records all received messages on incoming channels until a marker is received on that channel�
at which point it sends back an ack to the marker sender�


� sends markers on those outgoing channels that it sent at least one message since the most
recent local state recording�

�� waits for an ack of the markers it sent in above step�

�� waits for snapshot complete message from each child�

�� when it has received all expected ack messages and snapshot complete message� it sends its
parent a snapshot complete message�

When all the local snapshots as shown above have completed� the global snapshot is formed by the
initiator�

The message complexity of this incremental snapshot algorithm is O�N�U� where U is the set
of edges on which a message has been sent since the previous global snapshot�

����� The Li� Radhakrishnan and Venkatesh Algorithm

The above snapshots algorithms work with FIFO channels� The Li� Radhakrishnan and Venkatesh
Algorithm�LRV��� gets a global snapshot in a non�FIFO channel� Accordingly� it needs to tag each
message and marker sent along the channel� This tag is Marker no which is the ordinal number of
the latest global snapshot initiated as known to the sender process� and each process has a local
Marker no�

For simplicity� we consider the case where there is only a single initiator process� Each process
in the system uses an observer process to keep track of all the messages sent and received on each
channel� after it recorded its local state for the latest global snapshot initiated by the initiator�
When initiating a global snapshot� the initiator process�

�� increases its Marker no by one�

�� records its state and value of its observer�

�� sends a marker on each outgoing channel�

�



When receiving either a message or a marker� and if the tag on it is greater than value of its local
marker counter� a process does the following�

�� it sets its Marker no to that of message�marker tag received�

�� it records its state�

�� sends a marker tagged with Marker no on all outgoing channel�

�� tags all messages with incremented value of Marker no�

In this algorithm� we have the following state information�

local snapshot � frecorded stateg �

fmessages sent on each emanating outgoing channelsg �

fmessage received on each incident incoming channelg

channel state � f�message in transit at the previous global snapshot� �

�message received by the sender�s observer�g

The recorded local snapshots and messages recorded by the observer process are sent back to
the initiator along the edges of a spanning tree rooted at the initiator to form a global snapshot�

In this algorithm� for each initiation of local snapshots� the number of marker messages is equal
O�N �� whereas the message complexity in state assemble phase is O�mN � ��

����� The Lai and Yang Algorithm

As mentioned earlier� to ensure the global snapshot scheme works correctly� processes in the system
should be somewhat coordinated in taking local snapshots so that the formed global snapshot is
�meaningful��CL�
�� That is where the control message marker plays the role of the coordination�
Lai and Yang� however� argue that an �uncoordinated� global snapshot� in which processes take
local snapshots without any coordination among them� can be obtained and is useful in some
applications� Their algorithm requires no control message at all in taking a snapshot and does not
require channels to be FIFO� Instead� it uses an extra bit �illustrated as a message color� white and
red� in all messages that are sent after a process records its state� Lai and Yang�s Algorithm�LY���
works according to the following three rules�

�� every process is initially white and turns red while taking a local snapshot�

�� every message sent by white�red� process is colored white�red��

�� every white process starts a snapshot at its convenience �no coordination� 	 but no later
than a red message receipt� Thus� the arrival of a red message at a white process will invoke
the process to take a snapshot before receiving the message�

�



The algorithm assumes that every process can instantaneously turn red �in contrast to the Chandy
and Lamport algorithm in which only one process is required to have this �instantaneous� nature��
and keep a log since the last snapshot� The behavior of a process upon receipt of a message of a
new color is the same as that of a process in the Li� Radhakrishnan and Venkatesh Algorithm when
it receives a message�marker of a higher Marker no� Because of this similarity� we consider it to
fall into the class of control�message schemes�

In this algorithm� if only one process can instantaneously initiate the algorithm� then O�N �
control messages are required�

��� A Time�based Algorithm� The Morgan Algorithm

It has been noted that if global time is available� the design and description of distributed algorithms
can be signi�cantly simpli�ed� In the context of global snapshots� Morgan provides an elegant
treatment of the snapshot algorithm based on factorization �Mor�
�� i�e�� the snapshot algorithm
can be factored into two separate parts� a logical clock algorithm and a remaining�time�based
algorithm� Many researchers have proposed di�erent schemes to make global time logically or
physically available� For example� use of Lamport�s logical clock �Lam��� and its variants� or use
of a synchronized clock to guarantee with very high probability that the clocks have a skew of less
than a �t seconds by using network time protocol�Mil��� which synchronizes clocks of nodes on a
geographically distributed network� Assuming the availability of the global time� we have Morgan�s
time�based global snapshot algorithm�Mor�
� in which at some prede�ned time t� all processes
record their state and do the following�

�� mark all the outgoing messages with the time at which they were sent�

�� record the state before continuing the underlying computation�

�� record all messages received on or after t which were sent strictly before t� These are exactly
the messages in the channels at time t�

�� On all input channels that carry a message sent on or after t� transmit the recorded state and
message sequences to the process that has responsibility to form a global snapshot�

� An Abstract Framework of Distributed Debugging

As we pointed out earlier� a global snapshot should be taken in such a way that in the global state S
the underlying computation possesses a stable property� An example of a stable property is �com�
putation has terminated�� This example indicates that we may partition the overall computation
into a sequence of computational phases� comp� �� comp� �� � � � �� compi �� compk�� So that
�ith phase has terminated� is a stable property 	 called a breakpoint� Thus� a global snapshot can
be used for distributed debugging� More formally� we de�ne a distributed computation consisting
of n processes P�� P�� � � � � Pi� � � � � Pn� each of which can reach a state Si after a �nite time� such that
a predicate function y�Si� holds� Also the computation reaches a global state S and possesses the
following properties� similar to those outlined by Chandy and Lamport �CL�
��

��
Vn
i�� y�Si� �� y�S�

�



�� As soon as y�S� is true� the stable property holds and remains true within �nite delay� so that
the computation can be halted for debugging�

�� The next computation phase can be initiated from the state S such that
�y�Si� �� BPTi� � �BPTi �� y�Si����
where BPT is breakpoint having a boolean value�

In practice� y is an externally de�ned function that is usually de�ned by the programmer� During
the execution of the computation� by applying y to global state S� the value y�S�may be determined
by a process in the system� BPT � true implies that the stable property holds and the breakpoint
is reached�

From the above� we derive an abstract framework of distributed debugging as follows�

Debugger �� � take a local snapshot�

take a global snapshot and form a global state S�

BPT �� y�S��

if BPT � true then f

halt to debug�

restart�S�g

�

Now we further elaborate this framework� The notation is a liberal extension of the Com�
munication Sequential Processes �CSP�� as de�ned by Hoare�Hoa�
�� Suppose that a distributed
computation is a CSP program�

P � � P�k � � �kPik � � �kPn �

where for every � � i � n�

Pi �� INITi� STATEMENTSi

We assume that each STATEMENTSi is de�ned as�

STATEMENTSi
def
� 	� �t�T guardt �� �sequence of statements�t �

that is� the guarded sequence of statements denotes the underlying computation� where T �
t�� � � � � tm is an application dependent index set� the input�output commands can only appear in
the guards and if for some alternatives there is no guard� then guard � true is assumed� For the
purposes of debugging� we need some kind of arrangement in the underlying computation such that
the global snapshot can be taken� and debugging can be carried out� The solution should meet some
requirements� for example� it is superimposed on the underlying computation but is independent
of the speci�c problem that is being solved� it should be a communication scheme to ful�ll its duty
but does not require additional channels� it should also be independent of the number of processes
n and should not change speci�c neighborhood relationships among the Pi� determined solely by
the underlying computation�





A natural solution to a CSP program above is to add another alternative� guarded by the
debugging requirement� and we call this alternative the debugger�

Pi �� INITi �

	� �t�T guardt �� �sequence of statements�t�

� debugger�

�

Note that the CSP alternative debugger is the Debugger we de�ned in our abstract framework
above�

We assume that we have designated an arbitrary process as an initiator in the underlying
computation� It starts a global snapshot and collects the stable state information taken by all
processes� There is a predetermined spanning tree rooted at the initiating process� In the algorithm
described below� which is a combination of the Chandy and Lamport and the Spezialetti and Kearns
Algorithms� we further denote ci�p as a channel leading to the parent of a process Pi� and ci�j�J as
a channel of a process Pi to one of its k children �j � �� � � � � k��

Thus� for the underlying computation�

P � � P�k � � �kPik � � �kPn ��

we have three cases� Pi is a root �designated as an initiator�� or is an intermediate node� or is a
leaf� Using Hoare�s notation �Hoa�
�� these cases are described as follows�

Case �� Pi is the root�

Pi �� INITi �

	� �t�T guardt� 
red �� �sequence of statements�t �

� Bi� 
red �� red �� true� recording�

�j�J red� 
send�j�� ci�j �marker�� �� send�j� �� true�

�j�J red�
�

j�J

send�j�� ci�j� �info� done� ��

Done ��
�

j�J

done�j�� form global state�

�j�J Done� ci�j � halt�� �� halting�

�

where info
def
� state�i� � done� and done is a boolean bit to inform a process� parent that all local

snapshots in the subtree are complete and state information is being sent�
Whenever the root process is in a stable state� it may initiate a global snapshot by sending

out a marker message along outgoing channels to its children� while recording its own local state
�process state plus channel state�� then it waits for all of them to participate in the global snapshot
and collects the information from them� When all children return a �done� message� the global

��



snapshot is complete� the root process may now halt the program by instructing the children to
halt�

Case � Pi is an intermediate node� Pi plays a dual role� as a root �of a subtree� and as a child�
So it must propagate the warning message to all its children� it also must collect and send the state
information of the children to its parent�

Pi �� INITi �

	� �t�T 
red� guardt �� �sequence of statements�t �

�j�J 
received�j�� ci�p � marker�� ��

receivedp �� true� �red �� skip

�
red �� red �� true� recording� �

�j�J red� 
send�j�� cc�j �marker�� �� send�j� �� true�

�j�J red�
�

send�j�� cc�j� �info� done� ��

Done ��
�

j�J

done�j�� collect state of subtree�

� red� Done� ci�p� state of subtree �� skip�

� red� Done� ci�p � halt�� �� halting �� true�

�j�J halting� cc�j � halt�� �� halted

�

Case �� Pi is a leaf�

Pi �� INITi �

	� �t�T 
red� guardt �� �sequence of statements�t �

� 
received� ci�p � marker�� �� red �� true� received �� true� recording�

� red� ci�p � state info �� done �� true

� done� ci�p � halt�� �� halted

�

When a leaf process reaches a local stable state and is instructed to take a snapshot� it records and
sends the local state to its parent� �nally the leaf process halts as instructed�

In all three cases� the arrays send�i� and receive�i� are used to ensure that marker is sent
�received� only once� Thus the overall operation of P is as follows� At a certain point in the
computation when its local state is stable� the root chooses to initiate a global snapshot by sending
a marker message� to traverse the spanning tree� and to wait for a boolean result done� which should
be true only after a local snapshot has been taken� Whoever receives this marker will spread it down
the tree and participate in a global snapshot� Eventually� each process delivers its state information
and when done signals its parent� The whole program is now ready to halt for debugging�

theorem � The global snapshot algorithm in the above framework gives a consistent global state�

��



Proof�
�Correctness� After a global snapshot is taken� the underlying computation is stable� It is necessary
to show that a global snapshot is feasible and meaningful� When initiating a global snapshot
based on same prede�ned condition� a process takes a local snapshot� and sends a marker message
traversing the spanning tree� The underlying computation in this process is frozen� no further
communication in the underlying communication between processes is carried out� As the marker
message traverses the spanning tree� all processes will do the same� recording local state and
freezing the computation� because of synchronous communication� no channel state needs to be
recorded� In �nite time �because the communication delay is �nite as we assumed in our model��
the whole underlying computation is frozen� The system is in state S� thus the global snapshot is
feasible� The rest of the proof� that is� the global state S is meaningful� is similar to the correctness
of the Chandy and Lamport algorithm �CL�
� page ������� and will not repeat here�

�Termination� Each process eventually takes its local snapshot� A process will propagate the
marker message when it gets its marker� Hence� as long as there is an edge along the spanning
tree to every other node� each process will send a marker down the tree� Because the reliable com�
munication is assumed� markers are not lost� they eventually reach and all processes take the local
snapshot� Same arguments hold for collecting the local snapshots and halting the computation� �

The global snapshot algorithm ensures that the snapshot state S could have occurred in the follow�
ing two senses�

� it is possible for the program to reach S from initial state S��

� it is possible to reach a later state S� from S�

Hence� after the program halts at a breakpoint�program�s state is in S�� the restart algorithm should
ensure that the program will eventually be in a state reachable from S �hence reachable from S���

The idea behind the restart algorithm is very simple� At the point when the program restarts�
the algorithm reestablishes the state of all the channels recorded during the global snapshot� and
puts the program into the same state as S� We omit the CSP representation of the restart algorithm
which can be readily found in the literature �Mor�
��

Before we complete our discussion on a global snapshot�based distributed debugging framework�
several points should be noticed�

�� The debugger always takes the system from one consistent state to another� This requires
that breakpoints must be set in such a way that they are all consistent with each other� and
with the interactions between them�

�� This framework is superimposed on the underlying computation� since it halts the compu�
tation at global state S reachable from Si��� and then restarts it eventually from a state Si

reachable from S� thus Si�� �� S �� Si� The framework� therefore� e�ectively preserves
the computation upto and including state S� In this sense� the framework does not alter the
underlying computation�

�� This framework carries out the debugging function without introducing additional communi�
cation channels�

��



� Conclusion

Distributed computing systems have come into widespread use only recently� Experience with
programming and debugging them is limited� This paper examines global snapshot algorithms
from a distributed debugging perspective� and proposes an abstract framework based on a global
snapshot which is de�ned to be a consistent state of the entire system� When a program� by means
of some �nite sequence of interprocess communication� reaches global stability� where each process
is locally stable� the global stable property �i�e�� breakpoint y� holds� The system could stay in
this state for debugging� and from this state restart its execution� By using a property preserving
algorithm it is shown that this framework is superimposed on the underlying computation� but
does not interfere with it�

The presentation of our framework is inspired by CSP which provides a concise notation and has
su�cient expressive power to serve its purpose� However� it is our belief that linguistic support �a
language provision� is needed to allow for debugging of distributed programs that are supported by
high level programming languages� We are working on this issue� and hope to report the research
result in the future�

Acknowledgment

The research of �rst author is sponsored in part by an International Scienti�c Exchange Award
and also through Grant OPG��� held by the second author� Access to these sources through the
Natural Science and Engineering Research Council �NSERC� of Canada is gratefully acknowledged�

References

�CL�
� K� Mani Chandy and Leslie Lamport� Distributed snapshots� Determining global states
of distributed systems� ACM Transaction on Computer Systems� ����� February ��
�
Pages ����
�

�DS��� E� W� Dijkstra and C� S� Scholten� Termination Detection for Di�using Computation�
Information Processing Letter� ������ August ����

�Hoa�
� C� A� R� Hoare� Communicating Sequential Processes� Prentice Hall International� Series
in Computer Science� ��
�

�KMS��� J� Kramer� J� Magee� and M� Sloman� The CONIC Toolkit for Builiding Distributed
Systems� In IEE Proceedings D� pages ������ March ���� Vol� ���� No� ��

�Lam��� Leslie Lamport� Time� Clock� and the Ordering of Events in a Distributed System�
Communication of ACM� ������ July ���� Pages 

��
�
�

�LPS��� B� W� Lampson� M� Paul� and H� J� Siegert� Distributed Systems � Architecture and
Implementation� An Advanced Course� Springer�Verlag� ���� LNCS ��
�

�LRV��� H� F� Li� T� Radhakrishnan� and K� Venkatesh� Global State Detection in Non�FIFO
Networks� In Proceedings of �th Conference on Distributed Computing Systems� pages
�������� ����

��



�LS��� B� Liskov and R� Schei�er� Guardians and Actions� Linguistic Support for Robust�
Distributed Programs� ACM Transactions on Programming Languages and Systems�

���� ���� Pages ��������

�LY��� Ten H� Lai and Tao H� Yang� On distributed snapshots� Information Processing Letters�
�
�
�� May ���� Pages �
���
��

�Mil��� D� L� Mills� Network Time Protocol Speci�cation and Implementation� DARPA internal
report RFC ��
� DARPA� ����

�Mor�
� Carroll Morgan� Global and logical time in distributed algorithms� Information Processing
Letters� ���
�� May ��
� Pages ������

�SK��� Madalene Spezialetti and Phil Kearns� E�cient distributed snapshots� In Proceedings of
Sixth International Conference on Distributed Computing Systems� pages �������� ����

�Str�� Robert E� Strom� Hermes� An Integrated Language and System for Distributed Program�
ming� In ���� Workshop on Experimental Distributed Systems� Huntsville� AL� October
���

�Ven�� S� Venkatesan� Message�optimal incremental snapshots� In Proceedings of nineth Inter�
national Conference on Distributed Computing Systems� pages 
����� IEEE Computer
Society PresS� ���

��


