
University of Alberta

S u b t r e e O v e r l a p G r a p h s - T o w a r d s R e c o g n it io n

by

Jessica Anne Enright

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the
requirements for the degree of Master of Science.

Department of Computing Science

Edmonton, Alberta
Fall 2006

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Library and
Archives Canada

Bibliotheque et
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 978-0-494-22256-0
Our file Notre reference
ISBN: 978-0-494-22256-0

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

i * i

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

Subtree overlap graphs are the overlap graphs of subtrees in a tree. Several related classes and sub­

classes of the subtree overlap graphs are well-studied with polynomial time recognition algorithms

and applications. The subtree overlap graphs present a gap in knowledge. In this work we prove

that the subtree overlap graphs are equivalent to the subtree filament graphs, and are therefore the

complements of cochordal-mixed graphs. We also show that a number of graph operations, com­

positions and decompositions preserve the property of being a subtree overlap graph when applied

to the known subclasses of subtree overlap graphs. Overall, we develop several tools that may be

useful in future work on recognizing or building algorithms for subtree overlap graphs.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgements

Firstly, thanks go to my supervisor, Lorna Stewart. Loma proposed this topic of study, and encour­

aged and corrected me throughout. This work certainly could not have been done without her. The

members of my thesis committee provided very helpful feedback on the document itself. Many grad

student friends helped me in innumerable ways - they deserve far more than mere thanks. I’d like to

thank Lynn Evans Phillips and Robin Dawes for early inspiration. Finally, of course, thanks to my

family, which needs no explanation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

1 Introduction 1
1.1 O v erv iew .. 1
1.2 P relim inaries... 1
1.3 Set Representations of G ra p h s ... 2
1.4 A First Look at Subtree Overlap G ra p h s ... 4
1.5 Outline and Contributions.. 5

2 Graph Classes 7
2.1 Subclasses.. 7

2.1.1 Chordal G raphs... 8
2.1.2 Circle G raphs... 9
2.1.3 Comparability G ra p h s ... 9
2.1.4 Cocomparability G ra p h s ... 10
2.1.5 Interval G rap h s... 10
2.1.6 Permutation Graphs .. 11
2.1.7 Spider Graphs... 11

2.2 Subtree Filament G ra p h s .. 12
2.3 G-mixed Graphs.. 13
2.4 Subtree Overlap G raphs... 13

3 Equivalent Classes 16
3.1 Subtree Filament Graphs are Subtree Overlap g ra p h s ... 16
3.2 Subtree Overlap Graphs are the complements of Cochordal-Mixed G raphs 19
3.3 Restricted Paths in a T re e .. 22

3.3.1 Subpaths in a Tree with no Non-Leaf Boundary N o d e s 23

4 Consistency of a Representation 26
4.1 Consistency of General Representations.. 26
4.2 Consistency of Subtree Overlap Representations.. 28

5 Representations of a Few Simple Graphs 30
5.1 C y cles .. 30
5.2 Paths... 31

6 Internal and External Subtrees 35
6.1 Spider G raphs... 35
6.2 Chordal G rap h s .. 35
6.3 Cocomparability G ra p h s .. 36

6.3.1 External Subtrees of Cocomparability G raphs... 36
6.3.2 Internal Subtrees of Cocomparability G ra p h s ... 36

6.4 External Trees in Subtree Overlap G ra p h s ... 38

7 Compositions and Decompositions 41
7.1 Join C om position... 43

7.1.1 Complete Joining Two Noncomparability G raphs.. 43
7.1.2 Circle G raphs... 45
7.1.3 Cocomparability G ra p h s ... 45

7.2 Single Vertex Cutset C om position .. 46
7.2.1 Single Vertex Composition and External Subtrees.. 47

7.3 Modular Composition.. 48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8 Graph Operations 50
8.1 Adding and Removing Edges and V ertices .. 50

8.1.1 Interactions between edge and vertex removal and addition............................ 50
8.1.2 Chordal G raphs.. 51
8.1.3 Cocomparability G ra p h s .. 53
8.1.4 Circle and Spider G raphs.. 55

8.2 Subdividing Edges .. 56
8.2.1 Subdividing Edges in a Chordal Graph .. 56
8.2.2 Subdividing Edges in a Cocomparability G rap h ... 57
8.2.3 Subdividing Edges in a Spider G r a p h ... 57

8.3 Complementing... 57

9 Conclusion 59
9.1 Summary and Future W o rk .. 59
9.2 Concluding R em ark s ... 60

Bibliography 61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

7.1 A table showing which operations and compositions preserve the property of being
a subtree overlap graph when applied on listed classes of graphs. The classes are
listed across the top row of the table, the operations and compositions in the first
column. References to Theorems or citations proving that a given operation does
or does not necessarily preserve the property of being a subtree overlap graph on a
particular class are given..

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

1.1 An example of a subtree overlap graph on the left, and a corresponding subtree
overlap representation on the right. The nodes and thick lines on the right show the
underlying tree, with the subtrees indicated and labeled with the same labels as their
corresponding vertices on the left.. 5

2.1 An illustration of the hierarchy of the class of subtree overlap graphs and some of its
subclasses. Below the bold class labels are descriptions of set representation-based
characterizations of the classes. Classes lower in the figure are contained in classes
higher in the figure, along the lines connecting the classes... 7

2.2 An example of a circle graph on the left, its corresponding representation as chords
on a circle in the middle, and its representation as overlapping intervals on a line on
the right. The chord and interval endpoints are labeled with the same labels as their
corresponding vertices on the left.. 9

2.3 A comparability graph shown on the left, with a transitive orientation of its edges
indicated by arrows. On the right is a containment representation of the graph, as
produced by the method described by Golumbic and Scheinerman [16]. The leaves
and subtrees are labeled... 1 0

2.4 An interval graph on the left with labeled maximal cliques, and its representation as
the intersection of intervals on a line on the right... 11

2.5 An example of a spider graph on the left, and its corresponding representation as
sets of endpoints on a circle on the right. The endpoints are labeled with the same
labels as their corresponding vertices on the left.. 12

2.6 Two non-subtree overlap graphs. The cube is shown on the right, and a graph that is
non-subtree overlap graph from Theorem 2.6 with the partition required on the left. 14

3.1 A subtree overlap representation with labeled subtrees and nodes. Nodes 1, 5, and 4
are leaves of the underlying tree. Nodes 1 and 3 are leaf boundary nodes of subtree
a. Subtree a has no non-leaf boundary nodes. Nodes 2, 3 and 4 are boundary nodes
of subtree b. Node 3 is a non-leaf boundary node of subtree b. Nodes 5 and 3 are
boundary nodes of subtree c. Node 3 is a divergence node... 23

4.1 A relationship matrix and its overlap graph... 29

5.1 A cycle of arbitrary size with a few labeled vertices (a), its three possible represen­
tations as overlapping sets (b, c, d), and the realization of c and d as intervals on a
line (e, f). The ellipses indicate an arbitrary number of additional intervals, sets, or
vertices as appropriate... 32

5.2 An illustration of a path of three vertices, and two non-isomorphic subtree overlap
representations of a path of three vertices... 34

5.3 An illustration of two non-isomorphic subtree overlap representations of a path of k
vertices given a representation of a path of k — 1 vertices.. 34

6 .1 A comparability graph, with a labeled vertex that is neither a source nor a sink in
any transitive orientation of its edges, as shown in [25].. 36

6.2 An example of the construction to allow subtree c to be internal. The original star
representation is shown first, and then the constructed version.................................... 38

6.3 A subtree overlap graph. The dotted ovals with labels indicate named cycles, for
ease of reference.. 39

6.4 A subtree overlap representation of the graph in Figure 6.3. The black line is the
underlying tree. The labelled outlined shapes indicate subtrees................................... 39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.1 An illustration of the join decomposition... 43
7.2 A subtree overlap graph in part A, and its subtree overlap representation in B. The

letter labels for the vertices in A correspond to subtree labels in B. The underlying
tree nodes are labeled with numbers, and the nodes in each letter-labeled subtree are
listed on the right for clarity... 44

7.3 A bad cycle that must appear in any subtree overlap representation of Q' - two copies
of the graph in Figure 7.2 joined by the complete join com position.......................... 45

7.4 A spider representation of the subtree overlap graph in Figure 7 .2 45

8.1 A simple subtree overlap graph G ... 53
8.2 The graph in Figure 8.1, is the containment graph of the intervals shown here, prov­

ing that it is a permutation graph. The intervals are labeled with the vertices to which
they correspond in the graph.. 53

8.3 Two graphs, one of which (G\) is a circle graph - the circle representation is also
shown. The second graph, G' is not a subtree overlap graph.. 55

8.4 An illustration of the subdivision of the edge (va, Vb) in a graph with the new vertex
vc. The original graph is on the left, the subdivided version is on the right................ 56

8.5 A subtree overlap graph G .. 58
8 .6 A representation for the graph in Figure 8.5, showing that it is a circle, and therefore

spider, graph... 58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

1.1 Overview

Graphs are abstract objects composed of vertices, and edges connecting those vertices. Graph classes

are particular sets of graphs, defined based on some restriction. Often, the restriction is based on a

structural characterization, or a forbidden induced subgraph. The study of graph classes sometimes

allows us to solve problems on these restricted classes that cannot be solved on graphs in general.

In this thesis, we are concerned with classes of graphs defined by methods of representing them.

Many methods of representation are possible. Here we work with restricted set overlapping, con­

tainment, and disjointness. Our class of graphs are those that are representable as the overlap graphs

of subtrees in a tree.

We wish to better understand the properties of these graphs, and work towards their recognition.

In this thesis, we first present some motivation and background, and then proceed to refine our

understanding of the hierarchy of graph classes related to subtree overlap graphs, and finally describe

various operations and transformations and how they relate to the subtree overlap graph class.

1.2 Preliminaries

A set is an unordered collection of elements, in which each element appears only once. Let S and

S ' be two sets. The intersection of S and S ' is the set of elements found in both sets, and is denoted

S fi S'. The union of the two sets is the set composed of all elements in S, and all elements in S'. If

all elements in S are also in S ', but S ' has some element not in S, then we say that S is contained in

S ', or S C S'. Two sets are equal if they have exactly the same elements. For two sets Si and S 2 ,

Si — S 2 denotes the elements in S i that are not also in S 2 . An element e being in a set S is denoted

as e € 5. Unless otherwise noted, all sets used here are finite. The size, or cardinality of a set S is

the number of elements it has, denoted |S|.

A graph G is composed of the pair (V, E), where V is a set of vertices, and E a set of edges

between vertices in V. In general, we will use n = | Vj to refer to the number of vertices in a graph,

and m = \E\ to refer to the number of edges in a graph. Two vertices u, v £ V are adjacent if there

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is some edge between them in E, that is, (u, v) E E. Unless stated otherwise, all graphs in this

work are undirected, finite, and have no self-loops or multiple edges.

We will occasionally use directed edges. In this thesis a directed edge from a to b is denoted

(a b).

Let v be some vertex in V. v is an isolated vertex if v is adjacent to no other vertices in V . The

neighborhood of v is the set of vertices to which v is adjacent, and is denoted N (v). The degree of

v is the size of its neighborhood, |jY(w)|. v is a universal vertex if it is adjacent to all other vertices

in V.

An induced subgraph, H = (V ', E r) of G is a graph made of some set of vertices V C V, and

all edges in E between vertices in V f. That is, for any two vertices u, v E V ', such that (u, v) E E

if and only if (u ,v) E E '. We denote the subgraph of G induced by the vertex set V ' as G (V ').

A graph class or property is hereditary if the fact that the class or property holds for some graph G

means that it also holds for all induced subgraphs of G.

A clique is a set of pairwise adjacent vertices, and an independent set is a set of pairwise non-

adjacent vertices. The size of a clique or independent set is the. number of vertices in it.

Let V be a set of n vertices ordered from 0 to n — 1. The vertices in V are a path of length n — 1

if and only if vq E V is adjacent to exactly vi, vn- \ E V is adjacent to exactly u„_2, and Vi E V

where 0 < i < n — l i s adjacent to exactly vertices V i-i and u*+i. The vertices in V are a cycle

of length n if and only if each vertex Vi is adjacent to only mod «» and U(j+i) mod n- A tree

is a connected acyclic graph. A star is a tree consisting of one central vertex, and any number of

pendant leaves adjacent to exactly the central vertex. A caterpillar is a tree consisting of only a path

and leaves attached to vertices on that path.

1.3 Set Representations of Graphs

Let T be a set. Let S' be a set of subsets of T. That is, each s t E S is such that s, C T. Given

two sets, s i E S and s 2 E S, we are interested in some relationships that could exist between them.

If si D s2, then we will say that si contains s2, and s2 is contained in s i. If s i and s2 share no

elements, that is s i n s 2 = 0, then we will say that s i and s 2 are disjoint. We denote this as s i |s 2.

If s i and s2 share any elements, that is, .si fi s 2 0, then si and s 2 intersect. If si and s 2 intersect,

but neither contains the other, then we will say that they overlap, and denote this as si (j s2. Recall

that if two sets contain exactly the same elements, then they are equal.

The relationships among sets in S can be represented by graphs. A graph G = (V, E) is an

overlap graph of the sets in S if there is a bijection from V to S, such that two vertices u,, vj E V

are adjacent if Sj $ Sj.

A graph G = (V, E) is an intersection graph of the sets in S if there is a bijection from V to S,

such that two vertices Vi, vj E V are adjacent if s* intersects Sj.

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A graph G - (V, E) is a containment graph of the sets in S if there is a bijection from V to S,

such that two vertices u j , v3 £ V are adjacent if either st c Sj, or Sj C S{.

A graph G = (V, E) is a disjointness graph of the sets in S if there is a bijection from V to S,

such that each vertex v £ V corresponds to some set s £ S, and two vertices Vi, Vj £ V are adjacent

if and only if s*|sj.

For some graph G that is an overlap, containment, disjointness, or intersection graph of sets

s, € S, with the union of the sets T , we say that G has a representation R = (S , T), and without

loss of generality can dictate that there are no two sets s*, s,- € S such that s4 = Sj. We justify this

as follows. Suppose there is some representation R = (S , T) such that two sets s*, sj e S where Sj

equals Sj. We can then add an element p to T that is in only Sj, and any containers of Sj. Since p

was only added to sets that already had non-zero intersection, its addition cannot have disrupted dis­

jointness. Since no elements were removed, it cannot have disrupted overlapping. Since for any Sk

to which p was added, p was also added to all sets in S containing Sk, containment cannot have been

disrupted. If the nature of the sets in S is unrestricted, then every graph has intersection, overlap,

and disjointness representations [32]. Only comparability graphs have containment representations

[16].

If we restrict the type of set that T is, the type of set that the sets in S can be, or both, we can

restrict the class of graphs that is represented. We can define a class of graphs as being the graphs

representable by particular relationships between restricted types of sets.

For example, we might restrict T to be a line, and the sets in S to be intervals on T. We can

restrict T to be a tree, and the sets in S to be subtrees in T. This work is concerned mainly with the

overlap graphs of subtrees in a tree.

If G — (V., E) is a subtree overlap graph, we will say it has a subtree overlap representation

R — (S , T), where S is the set of subtrees of T, with exactly one subtree s £ S for each vertex in

v £ V.

Given an overlap representation R = (S ,T) for graph G = (V ,E) we say that the edges or

non-edges of G are due to relationships between sets in S. Let (vi,Vj) £ E be an edge between two

vertices in V. We can say that the (vi, Vj) edge is due to overlapping in R, since Sj $ Sj. Similarly,

if (vi,Vk) $ E is a non-edge between two vertices in V, we say that (tppuk) is due to containment

if Sj C Sfc or Sfc C Sj, and due to disjointness if Sj|sfc.

Let R = (S ,T) be a representation such that there are no two subsets s , , s3 £ S such that

Si C Sj. We say that R has no containment. The overlap graph G o, and the intersection graph G /

of the sets in S are the same, as all non-edges of both G o and G j are due to disjointness in R, and

all edges due to overlapping.

Similarly, if R = (S', T) is a representation in which there are no two s.,, Sj £ S such that Sj|sj,

then we say that R has no disjointness, and the overlap graph of the sets in S is equivalent to the

containment graph of those sets.

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

When considering overlap representations, we assume that there are no sets consisting of only

one element, as such a set would represent an isolated vertex. Isolated vertices can instead be

represented by sets consisting of all the elements in the entire representation.

All sets used in representations will have the Helly property. That is:

Definition 1.1. Set S has the Helly property if, for any subset S', if all sets in S ' are pairwise

non-disjoint, then the intersection o f all sets in S ' is non-zero - they all have at least one element in

common.

We will define two notions here that will be used later in this work: isomorphism of representa­

tions and internal and external sets.

Two representations R \ = (Si, Ti) and R 2 — (S2 , Tf) are isomorphic if the following is true:

there is bijection / : S'i —> S 2 such that for all s», s } e Si

• Si C s j f (s i) C f { s j) ,

• S i D S j <-» f (s i) D f (s j) ,

• Si 15 S j < -> f (S i) 5 f (S j) ,

• S i \ S j <-> f { S i) \ f (S j)

Internal and External Sets and Vertices

Let R = (S, T) be some representation. Let Sj € S. If there is no set Sj G S such that Sj C s,, then

we say that s* is internal in R. If there is no set Sk € S such that Sk D Sj, then we say that Si is

external in R.

Let ip be one of the relationships - containment, disjointness, overlapping, or intersection. Let 7

be a type of set, for example, an unrestricted set, or a subtree in a tree. Let G = (V, E) be a ip graph

of sets of type 7 . Let V i be a vertex in V. We say that V i can be internal (with respect to ip) if there

is some 7 ip representation R i = (S i, 7 \) of G, in which s,, the element of S1 corresponding to vit

is internal. We say that Vi can be external if there is some 7 ip representation R 2 — (S2 , T f) of G,

in which s*, the element of Si corresponding to Vj, is external. Unless stated otherwise, in this work

we are concerned with overlap representations when discussing whether a vertex can be internal or

external.

1.4 A First Look at Subtree Overlap Graphs

A graph G = (V, E) where V = {t7 ...v„}is a subtree overlap graph if and only if there is some tree

T and set S = {si-..s„} of subtrees of T such that two vertices vt and vj are adjacent if and only if

S i 0 S j .

Note that here we have used the subscript convention that vx and sx are corresponding, with vx

being a vertex and s x a subtree. We will continue to use this convention for convenience throughout

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

e

cd

Figure 1.1: An example of a subtree overlap graph on the left, and a corresponding subtree overlap
representation on the right. The nodes and thick lines on the right show the underlying tree, with the
subtrees indicated and labeled with the same labels as their corresponding vertices on the left.

this work. Occasionally, we will also use the convention of a being some vertex, and sa being its

corresponding subtree.

To avoid confusion, we will use the term vertex when referring to elements of the graph G, and

node when referring to elements of the tree T , though, of course, T is itself a graph, and so has

vertices and edges. For an example of a subtree overlap graph and its subtree overlap representation,

see Figure 1.1.

Subtree overlap graphs generalize several well-known graph classes. We understand many prop­

erties of these subclasses, how to recognize them, and how to solve problems on them. We know

of many applications of the known subclasses, for example, they are useful in: scheduling [17],

the modelling of genetic structure [3], archaeological dating [17], and data storage ordering [17].

Despite the wide knowledge of the subclasses, we do not know how to recognize subtree overlap

graphs, or many of their properties.

It is natural to want to fill in this gap in knowledge. The ability to recognize subtree overlap

graphs might allow us to generalize some work done on the subclasses.

The research reported in this thesis was done with an aim toward recognition of subtree overlap

graphs. Many tools that could be useful in recognizing or designing algorithms for subtree overlap

graphs are presented here. We specifically consider operations and compositions and decomposi­

tions that have special relevance to the subclasses.

1.5 Outline and Contributions

In the remaining chapters of this thesis, we present some class hierarchy results, describe subtree

overlap representations for a few simple graphs, and then examine a series of graph operations in

the context of subtree overlap graphs and the subclasses.

Chapter 2 describes some graph classes discussed in this thesis, and further introduces the sub­

tree overlap graphs.

Chapter 3 shows that the subtree overlap graphs are exactly the subtree filament graphs, and

from that gives a proof that subtree overlap graphs are exactly the complements of cochordal mixed

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

graphs. This presents possibilities for future algorithms for constructing subtree overlap representa­

tions, given a particular kind of edge partition.

Chapter 4 shows that the consistency of a set representation can be checked in polynomial time.

This might have implications for which part of the recognition problem is hard - once we have

generated a representation, could we check it? From this point on, we focus primarily on subtree

overlap representations.

Chapter 5 describes the few possible non-isomorphic subtree overlap representations for a cycle,

and gives an exponential lower bound on the number of possible non-isomorphic subtree overlap

representations for a path.

Chapter 6 discusses internal and external subtrees in the known subclasses, as well as in subtree

overlap graphs in general. Here, we show that any chordal graph or spider graph can be external,

but this is not true for subtree overlap graphs in general.

Chapter 7 investigates a series of compositions and decompositions on the subclasses, as well as

subtree overlap graphs in general. We show that some compositions preserve the property of being

a subtree overlap graph when applied on some subclasses.

Chapter 8 examines several graph and tree operations, such as adding or removing edges or

vertices to or from graph, where the graph is a member of each of the subclasses. A particularly

interesting result from this chapter is that adding a new vertex adjacent to an arbitrary neighborhood

in a chordal graph preserves subtree overlap graph. The results found in this Chapter, as well as the

previous one, are summarized in Table 7.1.

Finally, in Chapter 9, we present some directions for future work, and summarize the work

presented here.

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Graph Classes

2.1 Subclasses

In this section we will present a few subclasses of subtree overlap graphs. Most of these are fairly

well-known, with known properties, recognition algorithms and applications.

They are presented not only as background information, but also as motivation for the study of

subtree overlap graphs. Figure 2.1 shows an illustration of the subclasses discussed here, and their

relationships to each other and to subtree overlap graphs.

Subtree Overlap Graphs
Overlap Graphs of Subtrees in

a Tree

\^ C en ek , 1998
Gofumbic and Scheinerman, 1989

Spider Graphs
Intersection Graphs of

Polygons in a Circle
Comparability Graphs
Containment Graphs of

Subtrees in a Tree Koebe, 1990;
Kostochka and
Kratochvil, 1997

Cenek, 1998
Pneuli, Even
and Lempel,

1971

Pneuli, Even
and Lempel,

1971

Golumbic, 2004
Golumbic, 2004

Golumbic, 2004

Cocomparabiiity Graphs
Overlap Graphs of Subtrees in
a Tree where all Subtrees have

a Point in Common

interval Graphs
Intersection Graphs of Intervals

on a Line

Permutation Graphs
Containment Graphs of

Intervals on a Line

Chordal Graphs
intersection Graphs of Subtrees

in a Tree

Circle Graphs
Intersection Graphs of Chords

on a Circle
Overlap graphs of Intervals on

a Line

Figure 2.1: An illustration of the hierarchy of the class of subtree overlap graphs and some of its
subclasses. Below the bold class labels are descriptions of set representation-based characterizations
of the classes. Classes lower in the figure are contained in classes higher in the figure, along the lines
connecting the classes.

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The background information here is by no means exhaustive. Many events in the historical

development of these classes are omitted here. For a more thorough accounting we refer the reader

to: [17,31,5,1].

2.1.1 Chordal Graphs

A graph is chordal if and only if every cycle of length greater than or equal to four has a chord, or,

equivalently, the graph has no chordless cycle of length greater than or equal to four.

Theorem 2.1. The following are equivalent statements for a graph G = (V , E)

• G is chordal.

• Every induced subgraph o fG contains a simplicial vertex. A vertex is simplicial i f and only if

its neighborhood induces a clique [17].

• G is the intersection graph o f subtrees in a tree [14],

• G is a subtree overlap graph that can be represented without containment [14],

• Every minimal cutset o f a G is a clique, and every induced subgraph o f a G has a clique cutset

18].

It is known that clique cutset composition and decomposition preserves the property of being

chordal. Clique cutset composition is as follows: Let G\ = (V i,E i) and G% — (V2 , £ 2) be

two graphs. Let Vc\ Q V\ and Vc2 Q V2 be two vertex sets that induce cliques in G% and G2 ,

respectively, such that |Vci| = | Vc2 \ - A clique cutset composition identifies each vertex in Vq\

with exactly one vertex in V c i , producing a larger graph. We will later consider the application

of restricted clique cutset decomposition and composition on other known subclasses of subtree

overlap graphs, as well as the class of subtree overlap graphs in general.

We know that the chordal graphs are the subtree overlap graphs that have subtree overlap repre­

sentations with no containment[14]. That is, if G = (V, E) is a chordal graph, it has some subtree

overlap representation R — (T, S), for every two non-adjacent vertices vi,V 2 € V, (vi, V2) f E ,

s i |s 2 - Since we know that every chordal graph has some representation as the intersection graph of

subtrees in a tree [14], we can modify that intersection representation by adding to each subtree a

new leaf that is in no other subtree. Now two subtrees overlap if and only if they intersected in the

original intersection representation, and no subtree is contained in any other.

Recall that if there is no containment in a representation, then the overlap and intersection graphs

are the same (Section 1.3).

The fastest known recognition algorithms for chordal graphs use the existence of a simplicial

vertex, and a lexicographic breadth-first search ordering. This algorithm runs in linear time in the

number of vertices plus the number of edges [27]. The idea of some important vertex, or the use of

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

d b

c

a
a

e
b

c

e
d

Figure 2.2: An example of a circle graph on the left, its corresponding representation as chords on a
circle in the middle, and its representation as overlapping intervals on a line on the right. The chord
and interval endpoints are labeled with the same labels as their corresponding vertices on the left.

a vertex ordering may contribute to recognition of subtree overlap graphs, but is not investigated in

this work.

Circle graphs were introduced by Even and Itai [10]. Circle graphs are the intersection graphs of

chords in a circle, or, equivalently, the overlap graphs of intervals on a line [13].

Theorem 2.2. [13] The circle graphs are exactly the interval overlap graphs.

Circle graphs can be recognized in polynomial time, as presented in [30], using the join decom­

position.

2.1.3 Comparability Graphs

A graph G = (V, E) is a comparability graph if there is a transitive orientation of its edges, that

is, there is some orientation of the edges in E such that, for all vertices u ,v ,w £ V , (u —> v) and

(v —> w) implies that there must also be the edge: (u —> w) [17].

Comparability graphs are the containment graphs of subtrees in a tree [16]. Golumbic and

Scheinerman [16] presented a method for constructing a subtree containment representation of a

comparability graph on a star, with every subtree containing the central node. In this containment

representation, all non-edges are due to overlapping, and all edges due to containment.

Briefly, their method [16] is as follows: let G = (V, E) be a comparability graph, and F a

transitive orientation of its edges. Let T be a star, with a central node q and leaf nodes l\,

For each vertex Vj £ V , we create a corresponding subtree Sj composed of q, and each leaf node

li such that (vi —> Vj) £ F . This method is lacking one trivial point: each subtree Sj also contains

lj. By this construction, ,s,; c Sj if and only if (vt —> Vj) £ F. Therefore, (vi, Vj) £ E if and only

if either s,: c Sj or .s.; D Sj. G is therefore the containment graph of the subtrees created on star T.

An illustration of a simple example of this construction can be found in Figure 2.3.

Comparability graphs can be recognized in polynomial time. McConnell and Spinrad [23] pre­

sented a linear-time algorithm for computing a modular decomposition of a graph, and, given that

2.1.2 Circle Graphs

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 2.3: A comparability graph shown on the left, with a transitive orientation of its edges in­
dicated by arrows. On the right is a containment representation of the graph, as produced by the
method described by Golumbic and Scheinerman [16]. The leaves and subtrees are labeled.

decomposition, assigning a transitive orientation of the edges should one exist. This is used to

recognize comparability graphs in 0 (n + m log n) time.

2.1.4 Cocomparability Graphs

Cocomparability graphs are the complements of comparability graphs. As described in the previous

section, comparability graphs are the containment graphs'of subtrees in a star. From this we can see

that all cocomparability graphs have subtree overlap representations on stars with no disjointness.

Here, all non-edges are due to containment, and all edges due to overlapping.

We also know that any overlap representation with no disjointness represents a cocomparability

graph. This can be seen from the fact that any non-edges in the graph represented must be due to

containment. Since containment is transitive, these non-edges must have a transitive orientation,

and therefore the complement of the graph is a comparability graph. So, every cocomparability

graph has a subtree overlap representation on a star with no disjointness, and every subtree overlap

representation with no disjointness represents a cocomparability graph. Thus, every graph that has

a subtree overlap representation with no disjointness can also be represented as the overlap graph of

subtrees on a star.

Recognition of cocomparability graphs can be done in polynomial time, from the recognition

algorithm using modular decomposition for comparability graphs. Modular decomposition will later

be examined in the context of subtree overlap graphs and the other subtree overlap graph subclasses.

2.1.5 Interval Graphs

Interval graphs were first introduced by Hajos in 1957 [17] and were one of the earlier classes of

intersection graphs studied. The interval graphs are the intersection graphs of intervals on a line

[31. 17].

Interestingly for this work, interval graphs are the intersection of chordal and cocomparability

graphs [17]. Both of these classes are also subclasses of subtree overlap graphs, and are further

discussed in this chapter.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Vertex a is in clique 1 e e
Vertex b is in clique 1, 2
Vertex c is in clique 2 ,3
Vertex d is in clique 3
Vertex e is in clique 1, 2

Figure 2.4: An interval graph on the left with labeled maximal cliques, and its representation as the
intersection of intervals on a line on the right.

Interval graphs can be recognized in linear time with respect to the sum of the number of vertices

and edges [4], This algorithm exploits a characterization of interval graphs based on cliques. Interval

graphs are exactly the graphs with maximal cliques that can be linearly ordered such that each vertex

occurs in only consecutive maximal cliques. An example of an interval graph with its representation

as intervals on a line and numbered maximal cliques can be found in Figure 2.4.

2.1.6 Permutation Graphs

L e tG = (V, E) be some graph, with vertex set V = { v i ,v 2.-.vn}. G is a permutation graph if there

is some permutation n = [7ri, 7r2 ...7r„] of the numbers 1 to n such that two vertices in V are adjacent

if and only if their indices appear out of order in ir. That is, the vertices u* and Vj, where i < j are

adjacent if and only if j appears before i in i t .

Theorem 2.3. The following are equivalent statements for a graph G = (V, E):

• G is a permutation graph.

• G is the intersection graph o f line segments between two parallel lines [31].

• G is the containment graph o f intervals on a line [9],

• G and G are comparability graphs [26],

Permutation graphs can be recognized in polynomial time [29].

2.1.7 Spider Graphs

The class of spider graphs was formally defined by Koebe [21]. The equivalent polygon circle

graphs were presented by Kostochka and Kratochvil [22], and their inception credited to a personal

communication with Fellows. Further work on spider graphs was done by Cenek [5],

A graph G = (V , E) is a spider graph if there is some bijection between V and a set of sets of

endpoints on a circle such that two vertices Vi and v3 are adjacent if and only if their corresponding

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 2.5: An example of a spider graph on the left, and its corresponding representation as sets
of endpoints on a circle on the right. The endpoints are labeled with the same labels as their corre­
sponding vertices on the left.

sets of endpoints, c,t and Cj , satisfy the property that there is no chord on the circle that can separate

all endpoints in c, from all endpoints in cj [21, 5]. An example of a spider graph and its spider

representation can be seen in Figure 2.5.

Cenek [5] showed that spider graphs are a subset of subtree overlap graphs. In that proof,

she shows a transformation from the circle-based representation to an overlap representation on a

caterpillar. Similar to the placement of intervals on a line in the proof of Theorem 2.2, Cenek places

subtrees in some order on the caterpillar, based on the order of the endpoints around the circle, with

the first subtree placed being the only one to contain a particular node at one end of the caterpillar.

Since she starts the endpoint ordering at an arbitrary endpoint, an arbitrary vertex in the graph can

have a subtree that is the only one to contain some node in the caterpillar. This fact will be used in

Section 6.1.

The class of spider graphs contains several of the graph classes already discussed here. Chordal

graphs and circle graphs are both subclasses of spider graphs. However, throughout this thesis, we

still sometimes discuss chordal and circle graphs to refine our understanding of when particular

operations can be applied.

A polynomial time recognition algorithm for spider graphs is presented in [21]. However, Spin-

rad [31] has expressed doubts as to the correctness of Koebe’s recognition algorithm.

2.2 Subtree Filament Graphs

In [15], Gavril introduced several classes of filament graphs, including interval filament graphs and

subtree filament graphs. The interval filament graphs are intersection graphs of interval filaments.

Let L be a line, and I a set of intervals on that line. Let P be a plane perpendicular to the plane

in which L lies, intersecting that plane exactly at L. For each interval ia € I , let f a be a curve

connecting the endpoints of ia in P, such that for all ii, e I , if ia\ib, then f a and ft, do not intersect.

From the construction, if ia overlaps ii, then f a n /& ^ 0. Note that, if ia C % then f a and ft, may

or may not intersect.

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Expanding the idea of an interval filament graph, Gavril [15] defined subtree filament graphs -

the intersection graphs of subtree filaments. Let T be a tree, and S a set of subtrees on T. Then let

P be a surface perpendicular to the plane in which T lies, intersecting with that plane at exactly T.

For each sa G S, let f a be a curve in P connecting all endpoints of sa such that, for all Sb G S, if

s0 |s6, then f a and fb do not intersect, and if sa () Sb, then f a and fi, do intersect. Again, if sa C Sb,

then f a and fb may or may not intersect.

This class contains the subtree overlap graphs. At first glance, it seems that it should be a larger

class than the subtree overlap graphs. However, later in this work, in Section 3.1, we will show that

the subtree filament graphs are exactly the subtree overlap graphs.

2.3 G-mixed Graphs

In the same work where subtree filament graphs are introduced, Gavril [15] presented the idea of

G -mixed graphs. If G is some family of graphs, then graph G = (V, E) is G-mixed if the edges of

G can be partitioned into two sets E \ and such that G' = (V, £ j) is in the family G, and the

edges in E<i are transitively oriented such that, for any three vertices u ,v ,w G V , if (u, v) G E \ and

(w —> v) G E 2 , then (u, w) G E i.

Using these characteristics of G-mixed graphs, Gavril [15] provided an algorithm for finding

maximum weight cliques on G-mixed graphs. He also shows relationships between some families

of filament graphs, and families of G-mixed graphs. He explicitly proves Theorem 2.4, where the

cointerval graphs are the complements of the interval graphs, and the cochordal graphs are the

complements of chordal graphs.

Theorem 2.4. The interval filament graphs are exactly the complements o f cointerval-mixed graphs.

Gavril also stated Theorem 2.5, but omits the proof, instead stating that it is very similar to the

proof of Theorem 2.4. We will later explicitly provide this proof, in Section 3.2.

Theorem 2.5. A graph is a subtree filament graph i f and only i f its complement is cochordal mixed.

2.4 Subtree Overlap Graphs

The subtree overlap graphs were defined in the first chapter. A subtree overlap graph G = (V. E),

V = {v\...vn } has a representation R = (S, T) where S = {si...sn } is a set of subtrees on the tree

T and Vi and v:j are adjacent if and only if Si (j Sj.

The subtree overlap graphs contain the spider graphs, circle graphs, cocomparability graphs,

interval graphs, permutation graphs, and chordal graphs, as discussed in each of the sections per­

taining to these classes. The subtree overlap graphs are equivalent to the subtree filament graphs, as

discussed in Section 2.2.

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

= G(V.|) V1 = {a, b, c, d, e>

G2 = G(V2) V2 = {f, g, h, i, j}

Figure 2.6: Two non-subtree overlap graphs. The cube is shown on the right, and a graph that is
non-subtree overlap graph from Theorem 2.6 with the partition required on the left.

Novillo [24] discussed the non-subtree overlap graphs, both showing that the cube is not a sub­

tree overlap graph and establishing a family of non-subtree overlap graphs. The cube and a graph

described by Theorem 2.6 can be found in Figure 2.6.

Theorem 2.6. A graph G is not a subtree overlap graph if it contains two disjoint induced subgraphs

G i and G 2 , where G\ is a cycle o f length at least 5, and G2 is a connected graph o f at least 5

vertices, such that each vertex v in G\ is adjacent to some vertex u in G2 , where u is adjacent to no

other vertices in G\ [24],

Cenek [5] studied subtree overlap graphs, refining their position in the hierarchy of all graphs.

Cenek shows that they contain the class of spider graphs. In the same work, bounds on the maximum

size of a minimal tree in a subtree overlap representation are shown.

As we have seen in the previous sections, many of the subclasses of subtree overlap graphs are

well-known. In particular, the chordal graphs, interval graphs, permutation graphs, cocomparability

graphs, and circle graphs have many known properties. The chordal graphs and cocomparability

graphs are also the subtree intersection and containment graphs, respectively.

If we know so much about the subtree containment and intersection graphs, why do we know so

little about the subtree overlap graphs? The subtree overlap graphs represent a gap in knowledge.

Filling in this gap is particularly appealing because some otherwise NP-complete problems are

polynomial-time solvable on some subclasses of subtree overlap graphs, as well as because known

subclasses have both natural structural characterizations, as well as natural set representation char­

acterizations.

Maximum independent set, maximum clique, and k-colouring can all be solved on chordal

graphs [12], as can minimum clique-cover [17], Maximum independent set [2] and maximum clique

[2] can be computed in polynomial time on circle graphs, k-colouring is NP-Complete on circle

graphs for k greater than 4, but polynomial for circle graphs of bounded degree. Clique cover on

circle graphs is NP-complete [19]. Maximum independent set, maximum clique, and k-colouring of

comparability and cocomparability graphs can be computed in polynomial time [17], Clique cover

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is polynomial from perfect graphs [18]. Koebe [20] showed that for bounded-degree spider graphs,

k-colouring can be solved in polynomial time, and a maximum independent set can be found in time

polynomial in the total number of endpoints in the spider representation. From circle graph, clique

cover is NP-Complete on spider graphs.

In addition, we know that, if given an overlap representation, a maximum independent set or

maximum clique on a subtree overlap graph can be found in polynomial time. [5, 6]

Given that recognition of well-known subclasses is polynomial, we wish to work toward a

polynomial-time recognition algorithm for subtree overlap graphs. While this is not achieved in

this work, a number of potentially useful tools are developed.

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Equivalent Classes

In this section, we present two proofs of class equivalence. Showing that graph classes are equivalent

allows us to refine our understanding of the graph class hierarchy. A better understanding of the class

hierarchy could improve our understanding of the properties of subtree overlap graphs.

First, we show that the subtree filament graphs and subtree overlap graphs are equivalent.

We then show that the subtree filament, and therefore subtree overlap, graphs are exactly the

complements of cochordal-mixed graphs. This result is stated in [15], where the proof is omitted.

We provide a proof.

Finally, we make some investigations into the overlap graphs of paths in trees, and show that if

we restrict the sites of overlapping on the paths, then we are reduced to the class of interval overlap

graphs, that is, circle graphs.

3.1 Subtree Filament Graphs are Subtree Overlap graphs

Gavril [15] introduced subtree filament graphs. The definition is repeated in Section 1.

We assume a representation of a set of subtree filaments F such that we know the tree T on

which the filaments are defined, and for each filament G F , we know the endpoints of fo on T,

and whether f i intersects each f j G F.

Before we begin the main proof in this section, we need a few lemmas about subtree overlap

representations:

Lemma 3.1. Let R = (S , T) be a subtree overlap representation and let Sa C S be such that all

elements o f Sa contain a common node u o fT . Let T ' be the tree T with a new leafp added, where

p is adjacent to u . For each Si G S, let s ' be Si if S i ^ S a, and Si plus the new node p i f Si G S a.

Now, for all Si, Sj G S, i f $ s j , then s ' § s ' and if s f \ S j then s^|s'-.

Proof:

Let S i , S j G S. If S i 0 s j , then there exist nodes x G S i f lS j , y G S i \ s j , and 2 G S j \ s i . Since adding

a new node to one or both of s, and Sj cannot remove these nodes, we have x G s ' n s'-, y G s ' \ s ' ,

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and z G .s '\s '. Therefore .s' \ s'j. If Sj|sj then s* n Sj = 0 and therefore the new node p is added to

at most one of .s* and Sj, thus we have s'|s'-.

L e m m a 3 .2 . L et /?, = (S, T) be a subtree overlap representation and let S a C S be such that all

elements o f Sa contain a common node, u, o fT and every element o f S that contains an element o f

Sa is also in S a. Let T ' be the tree T with a new leaf, p, added where p is adjacent to u. For each

Si G S, let s'i be Si i f Si f. S a, and Si plus the new node p i f Si G S a. Now, for all Si,Sj G S, if

Si ^ Sj then .s' 5 s'j, i f Si\sj then s^|s'-, and if Si C Sj then s\ C s'-.

Proof:

From Lemma 3.1 we know that if s* X) Sj then .s' I) .s', and that if s f s j then .s'|.s'. It remains to

show that if Sj C Sj then s ' c s'-. Let us assume that s* C sj. Then we can consider two cases:

either s* G S a or s, £ Sa. If st Sa, then Si = s't , and since s'- D Sj then s'- D s'. If s* G Sa, then

Sj G Sa- Therefore the node p in in both s ' and s'-, therefore s ' C s'-. □

Theorem 3.1. Let R = (S , T) be a subtree overlap representation. We can, without loss o f gener­

ality, assume that no two subtrees in S share an endpoint (leaf).

Proof:

As proof, we present a modification that can be made to a subtree overlap representation to

eliminate a shared endpoint without altering any overlapping or non-overlapping.

Let R = (S, T) be a subtree overlap representation and Sa C S a set of subtrees that all share

the endpoint q G T = (V, E). Let P be a set of |S a j nodes where P fl V = 0. We then make each

P i G P adjacent to exactly q, and added to T.

For each s, in S, let s ' be Sj if s* (j Sa, and s* contains no Sk such that Sfc G Sa- Otherwise, s'

is Si plus pi (if Si G S a), and each pk G P such that Sfc G s*. If any of these new leaves are now

leaves of multiple subtrees (i.e. a subtree and its containers) we repeat the procedure.

Each leaf pi G P was added to a set of subtrees Si such that every element of Si contained the

point q, and any subtree in S that contained any element of S’* was also in St .

Therefore, by Lemma 3.2, if s,: 0 Sj then s ' 0 s'-, if s*|sj then s ' | s ' , and if s,: c Sj then s- C s'-.

□
Let T = (V,, E) be a tree and V ' C V. The subtree induced by V ' on T comprises the subtree

of T induced by V ' U {x\x is a node on a path in T between two vertices of V'}. For convenience,

we will refer to the subtree induced by the endpoints of filament /* on tree T as ind(f i , T).

Theorem 3.2. A graph G = (If E) is a subtree overlap graph if and only i f it is a subtree filament

graph.

Proof:

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Every Subtree Overlap Graph is a Subtree Filament Graph

Given a set of subtrees S = on tree T, we show the construction of a set F of filaments

on T such that for all 1 < i, j < n filaments f j G F intersect if and only if s,t, Sj G S overlap.

This construction occurs in two stages: we initially create the filaments, and then modify them

to ensure intersection as required.

Let F be a set of filaments on the subtrees of S such that f i \ f j if either s, j Sj, or s.; c Sj. By the

definition of subtree filaments, we can construct such filaments - if s, D Sj, then /* is drawn entirely

above f j .

We now modify some filaments to create intersection where it ought to exist. For every pair of

filaments f i and f j that are non-intersecting, but .st () Sj, let p be an arbitrary point on T such that

p G Si fi Sj. Let f j be the lower of the two filaments above p. We take an point directly above

p on f j and draw it upwards so that it intersects fi . For each filament f t that we encounter when

drawing the point up, if Sk § Sj, we simply intersect it, otherwise if s* D Sj, we draw a point of fk

up as well, such that fk\ f j - We say that fk was pushed up. We call each of these parts of a filament

extended upwards a spike.

We show that the introduction of the spikes has not caused any two filaments to incorrectly

overlap. We do this by contradiction - given that spikes are drawn strictly upward, we need only

consider the containment case, and not disjointness.

Assume f i intersects f j and s, D S j . It must be that f j was extended upward in a spike to

intersect fi . f j can have been drawn up, or it can have been pushed up. It can have been extended

upwards to intentionally reach either f i or to reach some filament f u above / , . We therefore consider

four cases:

Case 1: f j was drawn up with the intention of overlapping - this is a contradiction against

Si ID Sj.

Case 2: f j was drawn upwards to intersect /„ , a filament above /* - in this case, f i would have

been pushed upwards, and not intersected f j .

Case 3: Some filament fk below f j was drawn up to intersect /*, and f j was pushed upwards.

In this case, Sk Q Si, Sj D Sk - a contradiction with s* D Sj, as there must be some node in Sk that

is not in s,, and therefore that same node in Sj that is not in s*.

Case 4: Some filament fk below /,■ was drawn upwards to intersect some filament f u above fi ,

and f j was pushed, but f i was not. In this case, it must be that Sk § s,, and similarly to the above

case, we then have some node in Sk (and therefore Sj) that is not in st , a contradiction to s, D Sj. □

Every Subtree Filament Graph is a Subtree Overlap Graph

Given filaments F = {f i - . . fn } on tree T, we show the construction of a tree T' and a set S of

subtrees of T such that for all 1 < i , j , < n, Si,Sj G S overlap if and only if / , and f j intersect.

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Let V be a tree with the same structure as T (and for convenience, we will refer to analogous

nodes on T and T ' as q and q'), but with n additional nodes P = {pi...pn } attached as follows: for

1 < i < n, pi is adjacent to one node q[such that qt is an endpoint of f i on T.

Now for 1 < i < n, Si consists of: each node q' in T ' such that q G ind(f i ,T) , the leaf pi, and

each leaf pj such that i nd(f i ,T) D i nd (f j , T) and / , does not intersect f j .

We now prove that for every two subtrees st , Sj € S, s, (j Sj if and only if f t intersects f j .

We consider several cases. We first consider the cases in which f i intersects f j , proving that this

implies s, $ S j , and then the cases in which f i \ f j , showing that this implies that Sj and S j are either

disjoint, or one is contained in the other.

Case 1: f i intersects f j and i nd(f i , T) (j i n d (f j , T). There are then the following nodes in T:

q G i nd(f i ,T) fl i nd(f j ,T) , r € i n d (f i , T) \ i nd (f j , T) , o € i nd (f j , T) \ i nd (f i , T) . There are

therefore the analogous nodes in T' that are in Sj and Sj\ q' e s t r) Sj, r' G sf \Sj , o' € S j\s,.

Therefore Si (j Sj.

Case 2: f i intersects f j and i n d (f i , T) D i nd(f j ,T) . In this case, the leaf pj of T ' is in sj and not

Sj. The subtrees Sj and Sj also share nodes, and s* contains some node not in Sj (from the

assumption that no two subtrees have the same endpoints) and therefore Sj Q Sj.

Case 3: f i \ f j , and ind(fi , T) \ i n d (f j , T). In this case, Sj and Sj share no nodes, and are disjoint.

Case 4: f i j f j , and i n d (f i , T) D i nd(f j ,T) . Since (S j \ P) C Sj, we need only ensure that there is

no Pk € P that is in sj but not in s,.

We do this by contradiction: assume that there is a pk in Sj that is not in Sj. Since pj G Sj, it

must be that k ^ j . This means that there is a filament f k such that i nd(f k , T) C i nd (f j , T) C

ind(f i , T), where fk intersects /j , but not f j .

Since i nd(f k , T) C i nd (f j , T) C i nd(f t , T), we know that f k is below both f i and f j at some

point in the surface P, and since f , \ f j , f j is entirely below /j. To intersect f i , fk must extend above

f i at some point, fk is then above f j at some point, causing them to intersect, a contradiction.

We have shown that every subtree overlap graph is a subtree filament graph, and vice versa. □

3.2 Subtree Overlap Graphs are the complements of Cochordal-
Mixed Graphs

In [15], Gavril gave a proof that a graph is an interval-filament graph if and only if its complement

is a co-interval mixed graph. He states that a graph is a subtree filament graph if and only if its

complement is cochordal mixed, and says that this can be proved by a proof similar to the one for

interval filament graphs.

Here, we explicitly provide that proof. We draw very heavily on Gavril [15].

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Theorem 3.3. A graph is a subtree filament graph if and only i f its complement is cochordal mixed.

Proof:

We know from Gavril [15] that the complement of a subtree filament graph is cochordal-mixed.

Briefly, the reason for this is as follows: Let Gp = (V, E) be a subtree filament graph, and R =

(F, T) a filament representation, where F is a set of filaments on tree T. Let S be the subtrees on T

that are induced by the endpoints of the filaments in F. For every edge (Vi,Vj) in Gp = (V, E) (or

non-edge in Gf) , either s» C Sj, Sj C .s,;, or Si\.Sj. This leads us to a partition of E into the disjoint

sets Ei = {(Vi,Vj) such that Si\Sj} and E 2 = { (vj —> Vj) such that s, C Sj). E 2 is transitive

because it is based on containment, and E\ is cochordal because its edges are due to disjointness.

Finally, if vt , Vj, and Vk are three vertices in V such that (vk —> vj) £ E 2 and (Vi,Vj) E E \,

then it must be that Sk C Sj and s,;|Sj , and therefore Sk\-Si and (vi,Vk) € E\ . G f is therefore

cochordal-mixed [15].

It remains to show that if a graph’s complement is cochordal mixed, then the graph is a subtree

filament graph. We will do this by constructing a set of filaments on a subtree, and showing that the

graph is the intersection graph of these filaments.

Let G = (V, E) be a graph. Let G = (V, E 1 U Ef) be a cochordal mixed graph, Ga = (F, E 2)

a transitive graph, and Gb = (V, E\) the complement of the chordal graph Gc = (V,Ei) . As

discussed in Chapter 2, we know that Gc is the intersection graph of some set of subtrees in a tree

T. Let S be such a set of subtrees of tree T. Two subtrees Sj £ S have non-empty intersection if

and only if (vi, Vj) £ £ j , which we can restate as (vi, Vj) £ E\ .

Let Vi and Vj be two vertices in V such that (vi,Vj) £ E\ , and (v* —> Vj) £ E 2, and s* (j

Sj. Assume that there is some third vertex Vk such that (vi,Vk) £ E \ and (vj,Vk) f E\ . Since

(vj,Vk) f- Ei implies (vj,Vk) £ f?i, and (uj —> Vj) £ E 2 , then from the definition of G — m ixed

graphs provided by Gavril [15] and given in Section 2.3, we have that (v,, v f) £ E \.

This contradicts (Vi,Vk) £ E\ . Therefore, every vertex adjacent to vt in Gc is also adjacent to

Vj. Thus, we can expand Sj to contain s,;, preserving disjointness, and so we can assume that for

two adjacent (in Gc) vertices vt and v:l, if (vi —> Vj) £ E 2 , then st c Sj.

So, this means that for two vertices and Vj in V, if (Vi,Vj) £ E, then Sj and Sj are non-

disjoint, and if (fii —> Vj) £ E 2 , then s* c Sj. If (vt ,Vj) f E and (w, Vj), (vi *- Vj) £ E 2 then

Si\sj. If (Vj —> Vi) £ E 2 then Si D Sj.

Now we will create and transform filaments above T. We add above each Si £ S a filament f i

connecting the endpoints of s*, such that for two subtrees s* and Sj, if Sj|sj, then f i and f j do not

intersect and if Sj D Sj, then f i is completely above f j .

Now we alter the filaments by adding spikes to them in order to represent the edges that are not

currently represented by filament intersection. Let P be a directed traversal ordering on Ga, such

that for no two subtrees s, C Sj does Vj occur before vt in the ordering.

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Now, we iterate through P. For each /«, where i < |P |, we consider each subtree f j , i < j <

|P |. If Vi is adjacent to Vj in G, and therefore s,; and Sj are not disjoint, and f i does not intersect f j

yet, then we stretch some point of fi, directly above a point q of T such that q £ s, fl S j , upwards

away from the plane of T to intersect f j . For every filament f k encountered on the way up such that

(vi —> Vk) £ Ei , we also stretch that filament upwards such that there is no intersection of f i and

fk, nor between any two such fk- However, there will now be intersection between f i and f j , and

between all the fk and f j .

We now show by contradiction that for every fk stretched in this way, Vk and Vj are adjacent

in G. Assume that (vk,Vj) £ E. Since $k and Sj are non-disjoint, we know that (vj,Vk) £ P i,

and so (vj.Vk) E\ . Combining this with the fact that (vj,Vk) must be in E\ U P 2> we have that

(vj,Vk) £ E 2 . Since during the construction of the spike we encountered fk below f j , we know

that Sk C S j , and therefore (v k —> V j) € E 2 . Since E 2 is transitive, and (v* —» V k) € E 2 , we

have [vi —> Vj) £ P 2 - this is a contradiction with these vertices being adjacent in G. Therefore

(v k , V j) £ E.

We have completed our construction of the subtree filaments. We show that G is the intersection

graph of these filaments.

Let Vi and Vj be two vertices adjacent in G — (V, E). Since these vertices are adjacent in Gc, Si

and Sj intersect. If Sj (j Sj, then by the spike construction f i intersects fj,. If s* C Sj, a spike was

added to f i so that f i intersects fj-

Let Vi and Vj be two vertices non-adjacent in G — (V, E). We have that (vi, Vj) £ E\ U P 2- We

will consider two cases: (Vi,Vj) £ E 2 or (Vi,Vj) £ E\ .

If (Vi,Vj) £ Ei , then s,: and Sj are disjoint, and therefore f i and f j do not intersect.

If (vj —> V j) £ E 2 , then s, C S j . We will show by contradiction that f i and f j do not intersect.

Assume that f i and f j intersect. This intersection must have been produced by a spike. Since we

would not have directly created a spike in /,; to f j , there must be some filament f k below f i that was

stretched upwards, and pushed Vi upwards, fk can have been stretched upwards to intersect either

f j , or some f i above f j .

Therefore we have f i such that vt and Vk are not adjacent in G, (vk —> Vi) € E 2 , and either

(vj,Vk) £ E or (vk,vi) £ E, (vj —> vf) £ P 2. However, in either case, by the transitivity of E 2 ,

if (vk —> vf) £ E 2 and (i>j —> v:l) £ E 2 , then (vk —► Vj) £ P 2 and (vk,Vj) could not be in E, a

contradiction.

Therefore, two filaments / , and Jj intersect if and only if v., and Vj are adjacent in G, and so G

is the intersection graph of the filaments created. □.

Corollary 3.1. As a Corollary o f Theorems 3.2 and 3.3, we have that the following are equivalent

statements about a graph G:

• G is a subtree overlap graph

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• G is a subtree filament graph

• G is the complement o f a cochordal mixed graph

The proofs of Theorems 3.2 and 3.3 imply that, if we were given a graph G, and a partition of

the edges of G into a transitive graph Ga and a cochordal graph Gb, then we can produce both a

subtree overlap representation, and a subtree filament representation for G. We first obtain a subtree

intersection model for Gb by an algorithm presented in [14]. Using this, and the construction in the

proof of Theorem 3.3, we produce a set of filaments F of which G is the intersection graph. We

then use the construction from the proof of Theorem 3.2 to create, from F, subtrees of which G

is the overlap graph. The time complexity of constructing the subtree intersection model using the

algorithm described originally in [14] is 0 (n 4). However, the limiting step in that algorithm was

the identification of a series of simplicial vertices. This can now be done in linear time [27], so the

limiting step here is the creation of the filaments and subtrees. Adding spikes to the filaments takes

0 (n 2) time due to the nested iteration through P. Creating a subtree overlap representation from

the filaments takes 0 (n2) due to the creation of the new leaves - for each filament, its intersection

with each other filament may need to be checked. The time complexity of the creation of filaments

and then subtrees is 0 (n 2), where n is the number of vertices in G. The overall time complexity is

therefore 0 (n2).

3.3 Restricted Paths in a Tree

We now turn our attention to the overlap graphs of paths in a tree. We will show that if the paths are

restricted in their overlapping in a certain way then the graphs representable are exactly the circle

graphs.

First, we must define a few new notions. Let s be some subtree in a subtree overlap representation

R = (S, T). A boundary node is defined with respect to a particular subtree. A node p is a boundary

node of s if that node is either a leaf of T, or has some neighbor node that is not in s. A non-leaf

boundary node is a boundary node that is not a leaf of the subtree. A divergence node is any node

in T with degree greater than 2. For an illustration of these definitions, see Figure 3.1.

The overlap graphs of intervals on a line (or subpaths of a path) are the circle graphs [13]. For

convenience of direct comparison to subtrees and trees, we will discuss these graphs as overlap

graphs of subpaths on a path here, and not as intervals on a line.

Observation 3.1. In an overlap representation o f subpaths o f a path, those subpaths o f a path have

no non-leaf boundary nodes.

This observation can be made by noting that subpaths on a path have only two endpoints, and

all nodes between those are in the subpath. For any of the non-endpoint nodes to be boundary

nodes, they would have to have a neighbor not on the subpath between the two endpoints, and the

underlying structure could not be a path.

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

c

• 51

Figure 3.1: A subtree overlap representation with labeled subtrees and nodes. Nodes 1, 5, and 4 are
leaves of the underlying tree. Nodes 1 and 3 are leaf boundary nodes of subtree a. Subtree a has no
non-leaf boundary nodes. Nodes 2, 3 and 4 are boundary nodes of subtree b. Node 3 is a non-leaf
boundary node of subtree b. Nodes 5 and 3 are boundary nodes of subtree c. Node 3 is a divergence
node.

3.3.1 Subpaths in a Tree with no Non-Leaf Boundary Nodes

Let G = (V, E) be an overlap graph of subpaths in a tree T such that no subpath has any non-leaf

boundary nodes.

Observation 3.2. In an overlap representation o f subpaths in a tree in which no subpath has a non­

leaf boundary node, no subpath may contain any divergence node d and more than one neighbour

ofd.

That is, for any subpath that contains a divergence node, that divergence node is an endpoint

of that subpath. This can be seen by contradiction. No subpath can contain any more than two

neighbours of any node, or else it would not be a subpath. Assume that some subpath contains a

divergence node, as well as two of its neighbors. There must then be at least one neighbor of the

divergence node that is not in the subpath. The divergence node is then a non-leaf boundary node of

that subpath, forbidden in this representation of G.

Observation 3.3. The set o f subpaths containing only nodes on a particular minimal segment o f

the tree connecting two divergence nodes, or a divergence node and a leaf in the tree, are a set o f

subpaths on a path. The corresponding vertices in G therefore induce a circle graph.

This follows from the fact that any such segment must be a path, and from Observation 3.2.

Let there be some divergence node d in the tree. Let W and X be two paths in the tree that

connect d to two different divergence nodes, or leaves. Let Q and R be sets that contain the sub­

paths containing nodes from W and X , respectively. Let Q,j and R,i be the subsets of Q and R,

respectively, that contain the members of Q and R that contain d. H is a subgraph of G induced by

the vertices corresponding to subpaths in Q. I is a subgraph of G induced by vertices corresponding

to subpaths in R. H and I are circle graphs, from Observation 3.3. IId is a subgraph of H (and

G) induced by vertices corresponding to subpaths in Q,j. /,/ is a subgraph of I (and G) induced by

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

vertices corresponding to subpaths in Qd-

Id and Hd are completely joined in G. Since no subpath in Qd can contain, or be contained in,

any subpath in Rd, but all share the node d, every subpath in Qd must overlap every subpath in R,i,

every vertex in Id must be adjacent to every vertex in Hd, and there are no other edges between H

and I. We present a transformation from this representation on a tree to a representation on a path.

Given a divergence node d with a neighborhood N of size |iV|, with at least |AT| — 1 of the

branches having no divergence nodes of their own, we can collapse these |iVj — 1 flat branches into

one branch with no divergence nodes while preserving overlapping of paths.

First, pick some order of the flat branches. Place the entirety of branch 1 (except d) onto the edge

between d and the first node in branch 2 , with all of branch 1 being contained in exactly the paths

of branch 2 that contained d. No overlapping has been introduced, though the overlapping of paths

from branch 1 that contained d with the paths from branch 2 that also did so has been destroyed.

Now, repeat this process with branches 2 and 3, 3 and 4, through \N\ — 2 and \N\ - 1.

Once all of these branches have been nested inside each other, we have a path with no branching

on it. There is no overlapping between subpaths that were formerly on different branches, only

containment and disjointness. Now it remains to restore the overlapping of the subtrees from former

different branches that contain d. Note that d now only has degree two, and so is not a divergence

node at all. Between d and its neighbor node that was not on any of the branches collapsed, add

| N | — 1 nodes in a path, such that the paths containing d from branch 1 contain all the new nodes, the

paths containing d from branch 2 contain all but the farthest of the new nodes, the paths containing

d from branch 3 contain all but the farthest 2 of the new nodes, etc. That is, if the new nodes are

labeled 1 through \N\ — 1 (with node \N\ — 1 being the closest to d), then the paths from the former

branch i contain nodes i , i + l...|7Vj — 1.

If we assign an orientation to the resulting structure such that the new nodes are to the left, and

the flattened branches to the right, then the overlapping can be proven as follows: for each pair of

former branches, branch i and branch j , where i < j , let the sets of paths containing d from these

former branches be called id and jd respectively. Since each path in id was inserted (at some nested

level) into the edge between d and the first non-d node in each of the paths in jd, then all of the paths

in jd extend farther to the right than any path in id- Since each of the paths in id contains a new node

to the left of d that is not contained in any path in jd, then all of the paths in id extend farther to the

left than any path in jd- Therefore, no path in id contains, or is contained in jd, but all paths in id

and jd contain d, so none are disjoint. Therefore, every path in id overlaps every path in jd, just as

they did before the branch collapsing operation.

Theorem 3.4. Repeated application o f the transformation outlined above on subpaths in a tree with

no non-leaf boundary nodes, the overlap graph o f which is G, results in a set o f subpaths in a path,

the overlap graph o f which is G. The overlap graphs o f subpaths in a tree with no non-leaf boundary

nodes are therefore exactly the circle graphs.

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Proof:

Given that a single application of the transformation to a set of subpaths in a tree with no non­

leaf boundary nodes preserves overlapping as well as the transformation’s preconditions, repeated

application will also preserve overlapping. At any point, the transformation can be legitimately

applied to any divergence node closest to the leaves.

Since the transformation can always be applied to this type of representation, each application

destroys a divergence node, and there were a finite number of divergence nodes at the beginning,

the repeated application of the transformation will eventually destroy all divergence nodes. At this

point we have a path as the underlying tree. As overlapping has been preserved, the overlap graph

of the subpaths on the path is the same as the overlap graph of the subpaths on the original tree. □

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

Consistency of a Representation

We are interested in recognizing subtree overlap graphs. One approach to the recognition problem

is to view it as two sub-problems - creating a representation if possible, and then checking to see if

the representation created is valid. It is useful to know which phase of this problem is the difficult

one. Here, we consider the task of checking a particular format of representation information.

4.1 Consistency of General Representations

Let S = { s j , ..., s„} be a set of sets, no two of which are equal. The relationship matrix for S is an

n x n matrix M with entries:
0 i f S i $ S j

1 i f S i \ S j

—\ i f S i Z) S j

c i f S i Cl S j

Recall from Chapter 2 that we do not allow sets to be equal.

No information about the elements in the sets themselves is included in M , only information

about their relationships with regards to overlapping, containment, and disjointness. If M is the

relationship matrix for the set of sets S, we say that S realizes M . We say that a relationship matrix

M is realizable if there exists some set S of sets that realizes M .

Given M , we can construct an overlap, disjointness, containment, or intersection graph of the

realizing set of sets S, if S exists, without knowing S itself. Therefore, each relationship matrix also

represents overlap, disjointness, containment, and intersection graphs.

We can then pose the question: given a relationship matrix M , can we check in polynomial time

if M is realizable? We answer this question by presenting here a method for constructing sets to

realize M , if M can be realized.

Theorem 4.1. Relationship matrix M is realizable if and only if Algorithm 1 produces a set o f sets

that realizes M.

Proof:

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm 1: Builds a set of sets S that realizes relationship matrix M , if possible
Input: A n x n relationship matrix M
Output: true if M can be realized, false if not
c a n R e a l i z e (M)

S <— 0

foreach i, 1 < i < n
S i < - 0
S <- 5 U {Si}

#COMMENT - Overlap Phase begins here
foreach s,t , S j € S

if M irj =j)
Create three new elements a, b and c
Si * Si U {a, b}
Sj <— S j U {b, c}

#COMMENT - No-overlap Phase begins here
This is to ensure that sets that overlap no other sets are not empty
To each subtree Sj such that s ? = 0 add a unique new element
#COMMENT - Containment Phase begins here
Let D be an ordering of the sets in S, such that there is no set s* preceding any set
Sj in D, where My = D
foreach s* £ D

Add to S i all elements of every set S j , where M y — D
#COMMENT - Consistency Phase begins here
foreach i , j e 1 , 2 . .n

if M i j = D and ->(s* D Sj)
return false

else if M j j — C and ->(sj C S j)
return false

else if M itj = () and -i(s, () Sj)
return false

else if M fj = | and ->(si|sj)
return false

return true

First, if the sets satisfy the relationships, then clearly the relationships are consistent. To show

that if the sets do not satisfy the relationships, then the relationships are inconsistent, we will exam­

ine cases.

Case 1. The Contains Check Fails

Subcase 1.1: M ij = D and s*|sj

It is not possible for two sets that should be in a containment relationship to be disjoint, as the

outer one was expanded during the containment phase to include the elements in the inner one.

Subcase 1.2: M y - D and (s* C Sj or s» j))

Si cannot have occurred before Sj in the D ordering in the containment phase. At some point in

the containment phase, all elements of Sj were added to s , . Sj cannot have been changed after that,

so Si must contain Sj. This case therefore cannot occur.

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Case 2: The Overlapping Check Fails

Subcase 2.1: M ij = 0 and Sj|sj

This case cannot occur. During the overlap phase, for every pair of i and j such that — $,

a common element was added to s, and Sj . These two sets therefore share at least one element, and

cannot be disjoint.

Subcase 2.2: M Vj — (j and s,t D Sj

During the overlap phase, three elements, a, b, and c were created for this pair of sets, a was

added only to s», c only to Sj, and b to both, a and c were not added to any other sets during

the overlapping phase. For c to be an element of s», it would have had to be added during the

containment phase. Only sets Sk, for which Mk,j = D would have gained c, or sets containing

containers of Sj . Since M i j =/=D,Si must contain some container of Sj. This is then an inconsistency

in M , since containment is transitive.

Case 3. The Disjointness Check Fails

= | and n ^ 0

Since no element in common was added to these two sets during the overlap phase, and single

unique elements in the no-overlap phase were added to only one set, heir shared elements can only

be due to expansion during the containment phase. If st contains some set non-disjoint from Sj, then

the sets cannot be disjoint. M is inconsistent.

We have shown that if the sets produced by Algorithm 1 do not realizable M , then M is in­

consistent with respect to set properties. By definition, if the sets realize M , then M is consistent.

Therefore M is consistent if and only if the sets produced by this algorithm realize it. □

While we have produced sets that realize the matrix M if such sets exist, these sets are likely not

a smallest realization of M, where the smallest representation has the fewest elements in the union

of all sets created. While new elements are created only in the overlap phase, three new elements

are created for every overlapping pair. The sets in S can be seen as a representation of the overlap,

containment, disjointness, and intersection graphs represented by M.

4.2 Consistency of Subtree Overlap Representations

We have shown that we can check the consistency of a relationship matrix, where the sets described

by the relationship matrix are unrestricted. However, we are interested primarily in subtree overlap

graphs.

We would therefore like to resolve two questions: given a relationship matrix M , is the overlap

graph of M a subtree overlap graph? More importantly, given a relationship matrix M , can M be

realized by a set of subtrees in a tree? We have not resolved either of these questions.

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a b C d
a - 5 1 5
b 5 - 5 i
c i 5 - 5
d 5 - i 5 -

Figure 4.1: A relationship matrix and its overlap graph.

It is important to note that these questions are not equivalent - the overlap graph of a relationship

matrix may be a subtree overlap graph, without that particular matrix providing a valid subtree

overlap representation. As an example, consider the possible relationship matrices of which the

overlap graph is a cycle. A matrix with no containment can produce the four-cycle as an overlap

graph (Figure 4.1), but cannot itself be satisfied by subtrees in a tree.

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Representations of a Few Simple
Graphs

There are a few simple graphs for which we would like to know all the representations. We are

particularly interested in graphs with very few or unique subtree overlap representations. Such

graphs could be ultimately useful in the recognition problem - in constructing a representation they

might be components of a graph that restrict the number of possible representations. Here we look

at cycles, which have few non-isomorphic representations, and paths, which have many.

5.1 Cycles

Firstly, we use a lemma due to Rosgen [28]:

Lemma 5.1. [28] Let G = (V, E) be an overlap graph, and R = (S, T) an overlap representation

o f G. Let v ,u £ V be two non-adjacent vertices. Let V2 be V — {t>} — N(v) . Let A u C V2 be

the vertex set o f the connected component o f the graph G 2 = (V2 , E) in which u appears. I f in R,

sv D su, then sv D s» for all Si corresponding to Vi £ A u.

We can now proceed to show that:

Lemma 5.2. Let G be a chordless cycle o f arbitrary size greater then three. G has exactly three

non-isomorphic set overlap representations.

Proof:

Let C = (V, E) be a chordless cycle of arbitrary size. In any overlap representation of C, by

Lemma 5.1, for any set Si corresponding to some vertex Vi £ V such that .s, contains some set Sfc

corresponding to some other vertex, Vk £ V , Si also contains all other sets in the subtree overlap

representation of C that it does not overlap.

Let vt £ V and Vj £ V be neighbors, and Vk £ V be some vertex non-adjacent to vl . Let the

set corresponding to u,, Sj, contain all sets except those overlapping it. Sk must be disjoint from all

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

but its overlappers, and s,, which contains Sk- If it were not, it would contain st - a contradiction.

However, Sj may contain all sets except its overlappers, as Si is an overlapper of Sj. At most two

overlapping sets may contain all but their overlapping sets - in any group of three or more, at least

two are non-overlapping. There are therefore three options for representation: no set may contain

any other, one set may contain others, or two overlapping ones may contain others. An illustration

of the three possible representations of a cycle can be found in Figure 5.1. □

Lemma 5.3. Let G — (V , E) be a chordless cycle o f arbitrary length greater than three. G has

exactly two representations as the overlap graph o f subtrees o f a tree, both o f which can be expressed

as intervals on a line.

Proof:

Of the three non-isomorphic representations proven to exist in Lemma 5.2, one cannot be pro­

duced by subtrees in a tree - the one with no containment. A realization of that representation with

subtrees would result in a cycle in the underlying tree. The other two can be realized by intervals on

a line, as shown in Figure 5.1.

While we have shown that there are only a few non-isomorphic overlap representations of the

cycle, and only two non-isomorphic representation of a cycle as intervals on a line, or subtrees in a

tree, note that there are many possible actual representations. There are many sets of sets that can

realize those representations, though many of those sets of sets will be isomorphic. □

5.2 Paths

The path might appear to be an even simpler graph than the cycle. However, it turns out that, while

the cycle has few non-isomorphic representations, the path has many. While we haven’t determined

the precise number of non-isomorphic representations of a path of length n, we have an exponential

lower bound, as described in the rest of this section.

Let Pk = (V , E) be a path of length k, and R = (S , T) a subtree overlap representation of Pk-

Let us assign left and right sides to Pk for convenience, numbering each vertex in V. Let the indices

of vertices (and corresponding subtrees) increase from left to right. That is, is adjacent to exactly

V2 , Vi is adjacent to exactly Uj_i and t',+ i for all 1 < i < k, and Vk is adjacent to only Vk-\.

Theorem 5.1. There are at least 2k~2 non-isomorphic subtree overlap representations o f Pk-

Proof:

Due to Lemma 5.1, if some subtree .s, contains some subtree Sj on this path, it must also contain

all subtrees in the ’’direction” of Sj along the path. If we assign the path left and right sides, then if

Sj is to the left of s,, .s, must contain all subtrees to its left, except for those it overlaps. Any subtree

si to the left of s?; cannot contain any subtrees to its right, as then it would then have to contain s*.

This is a conflict, as Sj D sj.

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

zero or more vertices

At least one vertex

S;
o)

- ~<RT - ~gTH i= ^ r r : = t F = ^ r - z : '
_______________________ J * i--5i

Figure 5.1: A cycle of arbitrary size with a few labeled vertices (a), its three possible representations
as overlapping sets (b, c, d), and the realization of c and d as intervals on a line (e, f). The ellipses
indicate an arbitrary number of additional intervals, sets, or vertices as appropriate.

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Therefore, if .s.; D Sj are two subtrees in a subtree overlap representation of Pk such that j <* ,

then there can be no subtree sp,p < j , sp D sj such that / > p.

For the purposes of establishing a lower bound, let us only consider the number of representa­

tions in which containment must always go from right to left - that is, s* D Sj —> i > j .

We then wish to know how many possible minimal non-isomorphic subtree overlap representa­

tions of Pk there are, given the directional containment restriction.

We will show how to construct, for any k of at least three, a set of 2k ~ 2 pairwise non-isomorphic

subtree overlap representations for Pk- Throughout this proof we assume that the numbering and

directional contains restriction are in effect.

First, consider the path P3 . There are two non-isomorphic representations of P3 : either S3 may

contain si or not. These two can be seen in Figure 5.2.

Now consider a path Pk- Assume there are 2 fe-3 representations of the path P k-i, or Pk without

Vk, and that in all of them Sk- i has some node not in any other subtree. We can assume this because,

since Vk is not contained in any other subtree (due to the directional contains constraint), a leaf can

be added to the representation that is only in v*.

For each of the 2fe -3 representations of Pk~ 1, we can construct two representations of P*. For

convenience, we will refer to the subtrees on the first and second representations with 1 and 2

superscripts, respectively. We construct the representations as follows: Let R k - i = (S k - i , T k - i)

be a representation of P k - 1 . Let T\ be equal to T k-i- Let T2 be equal to T k -i with an additional

leaf P2 adjacent to only the node q2 that is found only in s _ l . Let S 1 and S '2 be copies of the

subtrees in Sk - 1 on Tj and T2, respectively. Let qi be the node in only s2_ l in T\. Let the subtree

*1 be T i —qi. Let s \ be q2 and p2. Two representations of Pk are then P i = ((S 1 U {s£}), T)) and

P 2 - ((5 2 U K }) ,T 2).

P i and R 2 are non-isomorphic: in P i, Sk contains other subtrees, and in R 2 it contains no

others. Given the assumption that all 2" ~ 3 representations of Pk- 1 are pairwise non-isomorphic,

there are 2 " “ 2 representations of Pk

An abstract illustration of the construction of P i and R 2 from R k - i is shown in Figure 5.3.

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

V1 v2 v3

• • •

Figure 5.2: An illustration of a path of three vertices, and two non-isomorphic subtree overlap
representations of a path of three vertices.

Representation for Pw

*k-1

Representation for Pk ^

Figure 5.3: An illustration of two non-isomorphic subtree overlap representations of a path of k
vertices given a representation of a path of k — 1 vertices.

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Internal and External Subtrees

Not every subtree is external in every subtree overlap representation. Some subtrees can never be

external in any subtree overlap representation. Understanding which vertices in a subtree overlap

graph can be external or internal in some valid subtree overlap representation is relevant not only

to eventually constructing subtree overlap representations, but also to the application of decompo­

sitions to be discussed in future chapters. In this section, we consider the problem of internal and

external subtrees in some of the subclasses of subtree overlap graphs. Specifically, we pose the

question: Given a subtree overlap graph G — (V , E), and a vertex e V, does there exist a subtree

overlap representation for G in which s* is internal? That is, is vt a vertex that can be internal?

Similarly, we wish to know if can be external.

6.1 Spider Graphs

Lemma 6.1. Any vertex in a spider graph can be external.

Proof:

As discussed in the introduction, there is a transformation from a spider representation to an

overlap representation of subtrees in a caterpillar. This transformation involves iterating through the

endpoints on the spider representation. The starting point is arbitrary, and the subtree corresponding

to the set of endpoints that has the first endpoint encountered is placed first on the caterpillar. The

subtree placed first on the caterpillar is the only one to contain the node at the extreme end of the

caterpillar’s spine. This subtree is therefore not contained in any other. Since this subtree is arbitrary,

any vertex in a spider graph can be external. □

It is cu rren tly unknow n i f an arbitrary vertex o f a sp ider graph can be in ternal.

6.2 Chordal Graphs

Chordal graphs have subtree overlap representations without containment [14]. Therefore there is a

subtree overlap representation for every chordal graph in which every subtree is both external and

internal.

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.3 Cocomparability Graphs

6.3.1 External Subtrees of Cocomparability Graphs

Let G be some cocomparability graph. First, observe that any subtree that corresponds to a vertex

that in G can be a source or a sink is internal in some representation of G without disjointness, and

external in some other representation of G without disjointness. We know this from the construc­

tion method for a containment representation of a comparability graph presented by Golumbic and

Scheinermen [16] and discussed in Chapter 2. However, there are some vertices in cocomparability

graphs that can never be sources or sinks in a transitive orientation of the complement [25]. An

example of such a vertex, taken from Olariu [25] can be found in Figure 6.1.

This vertex can never be a
source or a sink in any

transitive orientation of the edges
of this graph.

Figure 6.1: A comparability graph, with a labeled vertex that is neither a source nor a sink in any
transitive orientation of its edges, as shown in [25].

However, it seems reasonable that with some transformation to introduce disjointness in the

representation, any subtree might be made external. We therefore make the following conjecture,

and leave it for future work:

Conjecture 6.1. Let G = (V, E) be a cocomparability graph, and v € V an arbitrary vertex in V.

Then v can be external.

6.3.2 Internal Subtrees of Cocomparability Graphs

Theorem 6.1. Let G = (V, E) be a cocomparability graph, and Vmtemai £. V an arbitrary vertex

in V. Then Vinternai can be internal.

Proof:

Let G — (V, E) be a cocomparability graph, and R = (5, T) a subtree overlap representation of

G such that T is a star, and there is no disjointness in R. Let Vinternai be an arbitrary vertex of G.

Let Sd € S be the set of subtrees that are contained in slnternai . Let S a € S be the set of

subtrees that overlap sinternal ■ Let S c € S be the set of subtrees that contain Sinternai-

Let T\ be a star isomorphic to T . Let the tree T 2 be isomorphic to T , but with the following

leaves: let P be a set of \Sd\ leaves, with each leaf pd corresponding to a subtree s(i e Sd- Let pd

be adjacent to any node 92 £ I 2 such that q £ Sd in R, and q is not the central node of T. For

convenience, we will refer to the nodes on T\ and T2 that correspond to the node q on T as q\ and

<72, respectively. Let there be an edge between the central nodes of T\ and T2 .

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

We define a set S' of subtrees on the union of T\ and T2 . Each subtree in S' is defined as follows:

Sj such that Sj € S 4 comprises exactly every node q2 G T2 such that q 6 s, in f?, and every leaf

Pj such that i = j or Si D Sj in R.

s'i such that Si G (S — Sd — { s i n t e r n a l }) comprises exactly every node q \ G Tx such that q G s t

in R, and every node of T 2 except each leaf pj such that Sj 0 s3 in R.

s‘internal comprises exactly every node q x on T\ such that q G smternal in R.

It remains to prove that for all 1 < i , j < n , s ' () s ' if and only if Sj 0 Sj. We do this by

examination of several cases.

Case 1: s ' G (Sa U S c) and s ' G S ci- s ' contains all nodes of T2 except each leaf pu such that

Sk Q Si. Therefore s ' contains s ' unless s ' contains some leaf pk such that Sk 0 s». The subtree s'

will contain such a leaf if and only if either sj (j s*, or some subtree s; C Sj is such that si (} Sj.

However, this implies that s3 $ s* - since Sj certainly contains some node not in s3, they shared at

least the central node in the original representation, and Sj contains the node in si that is not in st.

Therefore, s ' contains a leaf that is not in s ' (and therefore s' 0 s'-) if and only if s* 0 sy.

Case 2: s\ G (S 0 U S c) and s ' G (S„ U S c). If s* $ Sj, then s ' 0 s'j, as the nodes q, r, o, where

q G s , , q £ Sj , r G Sj, r G s . , , o ^ s-(, o G sy- must exist in T, and therefore 91, r i , 01 must exist in

7 i , such that ?! G s'i:qx <£ s ' , r i G s - , r i G s'j,Oi ^ s ' ,0 1 G s ' .

If Si D Sj, then all nodes on Ti that are in s ' are also in s ', and we need consider only the nodes

on T2. Let us assume that there is some leaf pk € T2 that is in only s'-, and not s-, and show a

contradiction. There is therefore some subtree Sk G Sd, such that Sfc 0 s*, but Sk C Sj. This is a

contradiction: if Sk overlaps s,, then it must have some node not shared with s*, a contradiction to

the transitivity of containment.

Case 3: s ' G S i and s ' G S’j. If s* 0 Sj, then s ' 0 s'-, as the nodes 9 , r, o, where

q € S i , q £ S j , r € S i , r € s 3 , o $ S i , o £ S j must exist in T, and therefore 9 2 , r 2 , o 2 must exist in

T2, such that q 2 G s ' , q 2 $ s'j, r 2 G s ' , r 2 G s ' , o2 $ s ' , o2 G s ' .

If Si D Sj, then by the construction, every node of T2 — P in s ' is also in s ' , and every leaf

Pk e P that is in s'- is also in s '.

Case 4: C onsider s'internal and s ' e (SQ U S c) I f s-e 0 sintcrnal, then s ' 0 s'internal, as the nodes

9 ,r , o, where 9 G Sj,9 ^ Sinternai,T G Si,v G Sin X & rn a [0 ^ Sj,o G Sinternai must exist in X1, and

therefore 9 1 , r i , 01 must exist in Ti, such that

g i G s’i,q i $ ^internal'1 ^ 1 ^ F ^internal’’ ^ ^ ^mternafl ’

If Sj G) Sintemah then by the construction every node qx G Ti that is in s'internal is also in s',

because in R, every node q in T that is in Sinternal is also in si-

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Case 5: Consider s'internal and s ' € (Sd) Here, we know that Sinternai 2 > s-i- Since every node in

s'internalis in Ti> and every node in si is in T2 , and T t and T2 are disjoint, s 'nferna,|s '. □

Figure 6.2: An example of the construction to allow subtree c to be internal. The original star
representation is shown first, and then the constructed version.

6.4 External Trees in Subtree Overlap Graphs

Lemma 6.2. There exists a subtree overlap graph with a vertex that can not be external.

Here we present a vertex that can never be external.

Let G be the graph shown in Figure 6.3.

We know that in a subtree overlap representation of a cycle at least one subtree must contain

all others except its neighbors on that cycle (proof of Lemma 5.2). Consider a subtree overlap

representation for G, and let s0 be the containing subtree from C\. Let Vdo be the vertices on C\

that are not neighbors of vc>. For every subtree s,i0 6 S,i„, Sdo C sa.

We show that for any choice of vQ the subtree sc, which corresponds to the vertex c must, for

every representation of G, be contained in some other subtree.

We consider three cases:

Neither c nor a neighbor o f c is va

In this case, whichever vertex is vQ has a corresponding subtree sa, which must contain sc. For an

illustration that a valid subtree overlap representation can be constructed in this way, see Figure 6.4.

b is v0

Assume that va = b and sc is not contained in any other subtree. We first show that sa and se,

corresponding to vertices a and e, must be disjoint in this representation: sa cannot contain se, as

then it would also contain sc. se cannot contain any other subtrees corresponding to vertices on C\.

There must be some subtree sz corresponding to a vertex on C2 that contains all subtrees on C2

except the subtrees corresponding to the neighbors of vz . Since sa |se, sz cannot be sa nor se. Thus,

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

/
/
I
I
I
\

Figure 6.3: A subtree overlap graph. The dotted ovals with labels indicate named cycles, for ease of
reference.

a

Figure 6.4: A subtree overlap representation of the graph in Figure 6.3. The black line is the under­
lying tree. The labelled outlined shapes indicate subtrees.

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

some subtree sz corresponding to some vertex on C2 must contain both se and sa. However, by

Lemma 5.1, sz must also contain sc. sc would then be contained.

c is va

Assume that v0 = c, and sc is not contained in any other subtree. As neither a nor e are neighbors

of c, sa and se, corresponding to vertices a and e, must be disjoint in this representation.

There must be some subtree sz corresponding to a vertex on C2 that contains all subtrees on C2

except the subtrees corresponding to the neighbors of vz . Since sa |se, sz cannot be sa nor se. Thus,

some subtree sz corresponding to some vertex on C'2 must contain both se and sa. However, by

Lemma 5.1, sz must also contain sc. sc would then be contained.

The subtree corresponding to vertex c must always be contained in some other subtree in every

valid subtree overlap representation of G. □

It is currently unknown if every vertex in a subtree overlap graph can be internal.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7

Compositions and Decompositions

Compositions are methods of building up a graph by combining two other graphs in some way.

Decompositions are the reverse - breaking a graph down into smaller pieces. Decomposing a graph

can allow algorithms to work on smaller parts of it, or may even iteratively break a graph down into

small, recognizable parts with particular properties.

We are particularly interested in composition and decomposition because they could contribute

to a recognition algorithm for subtree overlap graphs. Knowing which compositions and decompo­

sitions preserve what properties allows us to consider them for future use in algorithms acting on

subtree overlap graphs.

We consider the join composition, the modular composition, and a single vertex cutset compo­

sition because these have special relevance to some known subclasses of subtree overlap graphs.

The join decompositon is used in recognition of circle graphs [11]. The modular decomposition is

used in recognition of cocomparability graphs [23], The single vertex cutset is a very simple and

restricted case of clique cutset decomposition, known to preserve the property of being chordal [8].

The results in this chapter, as well as the chapter on graph operations, are summarized in Table

7.1.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

Table 7.1: A table showing which operations and compositions preserve the property of being a subtree overlap graph when applied on listed classes of graphs.
The classes are listed across the top row of the table, the operations and compositions in the first column. References to Theorems or citations proving that a given
operation does or does not necessarily preserve the property of being a subtree overlap graph on a particular class are given.

Chordal Cocomparability Circle Spider Subtree Overlap
Join Composition
Modular Composition
Single Vertex Cutset
Vertex Addition
Edge Addition
Edge Removal
Edge Subdivision

Not necessarily - Thm 7.1
Not necessarily - Thm 7.5

Yes - Thm 7.2
Yes - Thm 8.1
Yes - Thm 8.2
Yes - Thm 8.2
Yes - Thm 8.2

Partially - Thm 7.1
Yes - [23]

Partially - Thm 7.2
Not necessarily - Thm 8.4
Not necessarily - Thm 8.3

Partially - Thm 8.3
Partially - Thm 8.3

Y es-[11]
Yes - 7.4

Yes - Thm 7.2
Not necessarily - Thm 8.6
Not necessarily - Thm 8.5
Not necessarily - Thm 8.5
Not necessarily - Thm 8.4

Not necessarily - Thm 7.1
Not necessarily - Thm 7.5

Yes - Thm 7.2
Not necessarily - Thm 8.6
Not necessarily - Thm 8.5
Not necessarily - Thm 8.5
Not necessarily - Thm 8.4

Not necessarily - Thm 7.1
Not necessarily - Thm 7.5
Not necessarily - Thm 7.3
Not necessarily - Thm 8.6
Not necessarily - Thm 8.5
Not necessarily - Thm 8.5
Not necessarily - Thm 8.4

7.1 Join Composition

The join decomposition was described by Cunningham and Edmonds [7]. It can be applied on a

graph G = (V, E) if G can be partitioned into four parts Vi, V2 , V3 and V4 such that there are no

edges between Vi and V3 or V4 , nor any edges between V4 and V2 , and every vertex in V2 is adjacent

to every vertex in V3. While Vi and V4 may be empty, (Vi U V2) and (V4 U V3) must both have at

least two elements.

The decomposition consists of disconnecting V2 (and therefore Vi) from V3 (and therefore V4),

and adding a vertex adjacent to exactly all vertices in V2 , and another vertex adjacent to exactly all

vertices in V3 . We call these added vertices placeholder vertices. An illustration can be found in

Figure 7.1.

The join composition is, informally, just the reverse of the decomposition. Two graphs G 1 and

G 2 can be joined by identifying a placeholder vertex on each. Let vp\ and vP 2 be the two placeholder

vertices. We then remove vpi and vP2 , and make every member of the former N (vp 1) adjacent to

every member of the former N (vp2).

Figure 7.1: An illustration of the join decomposition.

7.1.1 Complete Joining Two Noncomparability Graphs

Let G be the subtree overlap graph in Figure 7.2.A. G — g is non-cocomparability. Any graph for

which there exists a subtree overlap representation with no disjoint subtrees is a cocomparability

graph. Since G — g is non-cocomparability, any subtree overlap representation must have at least

two disjoint subtrees.

Consider what happens if we take two copies of G — g (we will call them G\ and G 2) and

completely join them, producing a graph G '. If G' is a subtree overlap graph, then it has a subtree

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

G =

c

Figure 7.2: A subtree overlap graph in part A, and its subtree overlap representation in B. The letter
labels for the vertices in A correspond to subtree labels in B. The underlying tree nodes are labeled
with numbers, and the nodes in each letter-labeled subtree are listed on the right for clarity.

overlap representation R ' = (S ' ,T ') , where S ' is the set of subtrees representing both the vertices

from G i, and the vertices from G2.

There are two subtrees from G \, s ia and s \b , that must be disjoint. There are two subtrees from

G2 , $2 a and S2 B, that must be disjoint. As G'i and G 2 have been completely joined, there must be

pairwise intersection between S2A and s 2b , and .saa and sjb - That is, there must be some point b in

the tree that is in both s ia and s 2a , as well as a point a that is in the intersection of s ia and s 2b , a

point c that is in the intersection of s ib and $2 a, and a point d that is in the intersection of s \b and

S2B-

So, to summarize, the points a, b, c, and d on the tree T are defined as follows:

a G (s i a fl S2b)

b e (s i a n s 2a)

c G (siB n S2a)

d G (s \ B n S 2 B)

Recall that none of the four subtrees may be contained in any other, and that s ia and s \ b must

be disjoint, as must s2a and s2b- This forces a, b, c, and d to be distinct. If any two were not,

those two would be forcing an intersection or containment between s ia and s ib or s2a and s 2b-

An illustration can be seen in Figure 7.3.

So, then, there is a cycle in the tree, which is forbidden. The cycle can be found as follows:

Let pab € s ia be a path from a to b. Let pbc G s2a be a path from b to c. Let pcc* e s ib be a

path from c to d. Let p,ia G s2b be a path from d to a. Let Gc be the union of pai>, pbc, Pcd, and pd,a-

Gc must contain a chordless cycle of length greater than or equal to four.

Since the complete join of G\ and G2, called G', must contain a cycle in its overlap representa­

tion, it is not a subtree overlap graph.

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 7.3: A bad cycle that must appear in any subtree overlap representation of G' - two copies of
the graph in Figure 7.2 joined by the complete join composition

Since the noncocomparability graph G is a subtree overlap graph, chordal graph, and spider

graph (Figure 7.4), we have Theorem 7.1:

Theorem 7.1, The complete join composition o f chordal graphs, spider graphs, or subtree overlap

graphs does not necessarily preserve the property o f being a subtree overlap graph.

Figure 7.4: A spider representation of the subtree overlap graph in Figure 7.2

7.1.2 Circle Graphs

The join decomposition and composition preserve the property of being a circle graph, and therefore

the join composition on circle graphs preserves the property of being a subtree overlap graph [1 1],

As discussed above, the join decomposition was used by Gabor et al. [11] in polynomial time

recognition of circle graphs.

7.1.3 Cocomparability Graphs

Lemma 7.1. The join composition o f two cocomparability graphs G\ and G 2 preserves the property

o f being a subtree overlap graph if some vertex adjacent to the placeholder vertex in each graph is

either a sink or a source in some transitive orientation o f the edges o f each o f G\ and Gi-

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Let G i = (V \,E {) and G 2 = (V2 , E 2) be two cocomparability graphs with no isolated vertices.

Let G' be the graph produced by applying the join composition to G\ and G2. Let R i = (S i,T i)

and i ?2 = (S2 ,T 2) be subtree overlap representations for G\ and G 2 , respectively, where Tj and

T2 are stars, and in each representation some subtree overlapping the subtree of the placeholder

vertex is external. We know that there are two such representations from [16]. and 5 2 are sets

of subtrees on the stars 7 j and T2. Let spi £ S i and sp2 € S 2 be the subtrees corresponding to the

placeholder vertices. Let Shi C S i and S';l2 c 5 2 be the sets of subtrees adjacent to the placeholder

vertices, and the ones that will therefore be completely joined in the composition.

We present a method of transforming R i and f?2 into a representation for G '. Let n c be the

central node of Ti.

Observation 7.1. There is no s;, £ (S i — Shi) such that for s*, Sj £ Shi G C Sb C s.,-.

The justification for this is as follows by contradiction: Sb does not overlap spi, but s*, Sj $ spi .

Therefore, Sb can neither contain, nor be contained in sp 1 , implying that s& f) spi - a contradiction.

□
First, we remove the placeholder subtrees from R i and i ?2

Add to n c a leaf p that is in only the subtrees in Shi- We know this cannot disrupt overlapping

because no subtree in Shi can be contained in any subtree not in Shi, from Observation 7.1 and the

fact that we have transformed R i such that some subtree in Shi is external.

We know that there are no three subtrees sa, Sb, and sc in S'i (or, symmetrically in S2) such that

sa and Sb are in Shi, -s'c is not in Shi, and sa C sc C s;,. We can see this by contradiction - if this

containment situation were to exist, then sc would overlap spi, a contradiction to sc not being in

Shi-
We transform R 2 in the same way, adding a leaf q.

We then identify p and q.

In this final representation, R$, made by transforming and joining R i and i?2, all subtrees in Shi

overlap all subtrees in Sh2 , the placeholder subtrees have been removed, and no other overlapping

has been disrupted. We therefore have a representation for G', proving that G" is a subtree overlap

graph. □

If Conjecture 6.1 is true, then this proof can be modified to show that the join composition on

two cocomparability graphs will always preserve the property of being a subtree overlap graph.

7.2 Single Vertex Cutset Composition

The single vertex cutset composition is a restricted version of the clique cutset composition. The

composition consists of joining two graphs by identifying two vertices - one from each graph. The

decomposition can be applied when there is a single vertex cutset.

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

We consider it here because of its simplicity, and because the clique cutset decomposition can

be applied to chordal graphs. The treatment of the single vertex cutset composition here might be

a first step towards an eventual understanding of the clique cutset composition on the subclasses of

subtree overlap graphs.

7.2.1 Single Vertex Composition and External Subtrees

Theorem 7.2. Let G \ and G 2 be subtree overlap graphs. I f at least one o f G\ or G 2 is a chordal

graph or spider graph, or at least one o fG \ or G 2 is a cocomparability graph Gc, and the vertex to

be identified in that graph is a source or sink in some transitive orientation o f the edges o f Gc, then

the single vertex composition on G 1 and G 2 will preserve the property o f being a subtree overlap

graph.

Proof:

Let va and Vb be the vertices from G\ and G 2 to be identified in the composition, producing G '.

If sa is external in some representation R i = (T j, S \) of G \, then we can create a subtree

overlap representation R! — (Tr, S ') for G '. Let R 2 = (T2 , S 2) be a subtree overlap representation

of-G* Let p 6 sa be a node on Tj. Let q <S si, be a node on T2 . To produce RI, we add an edge

between p and q, add all of T\ to any subtree in S 2 that contains Sb, and union the two subtrees sa

and Sb into one, which we shall call sn/,. We now have a representation in which overlapping within

S i has not changed, overlapping within S 2 has not changed, every member of S 2 either contains or

is disjoint from every member of S i, and sab overlaps all subtrees that were previously overlapped

by either sa or S&. We therefore have a representation of G '.

Since we know that any vertex in a chordal or spider graph can be external, and the ones that are

sources or sinks in some orientation of the edges of the complement can be external in a cocompara­

bility graph, then we know that if G\ is any of these, then sa can be external in some representation,

and therefore R ' can be created. □.

If Conjecture 6.1 is true, then this proof will also imply that the single vertex composition on two

subtree overlap graphs, one of which is a cocomparability graph, will always preserve the property

of being a subtree overlap graph.

Theorem 7.3. The single vertex composition on subtree overlap graphs does not necessarily pre­

serve the property o f being a subtree overlap graph.

Proof:

Let va and vi, be the vertices from G\ and G 2 that we will identify in the composition. Let G'

be the graph resulting from the composition.

If neither va nor vi, can ever be external in a subtree overlap representation, then identifying va

and Vb will cause a representational impossibility: there will be some subtree corresponding to a

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

vertex from G \ that must contain all subtrees corresponding to vertices from G 2 , and vice versa - a

contradiction. There would therefore be no valid subtree overlap representation of G '.

We know that there is a subtree overlap graph with a vertex with a corresponding subtree that can

never be external in any representation, from Lemma 6.2. If G\ and G'2 are both the graph shown

in Figure 6.3, and va and are the vertices that can never correspond to external subtrees, then we

have the above situation. There is no valid subtree overlap representation for two copies of the graph

in Figure 6.3 with the c vertices from the two copies identified. □

7.3 Modular Composition

Modular decomposition is used in the recognition of comparability graphs, and can therefore be used

in the recognition of cocomparability graphs. We know that this composition preserves the property

of being a cocomparability graph [23], and thus we need only consider spider graphs, chordal graphs,

and subtree overlap graphs.

A module in a graph is a set of vertices with identical neighborhoods - every vertex not in the

module is either adjacent to all vertices in the module, or no vertices in the module. In modular

decomposition, a module is replaced with a single vertex. In modular composition, a single vertex

is replaced with a module.

Theorem 7.4. The modular composition on circle graphs preserves the property o f being a subtree

overlap graph.

Proof:

Let G\ = (Vj, £ j) and G'2 = (Vj, E f) be two circle graphs. Let vrn e Vj be a vertex in G\ that

we will replace with GY

G\ and G 2 have representations as subtrees on a path. Let f?.2 = (S'2 , Tf) be such a representa­

tion of G2 . Let R \ = (Si, T) be such a representation of G \, with srn at one extreme of the path

T j . Such a path exists by Lemma 6.1

Let p be the endpoint node of sm that is not a leaf of 7Y Let q be the neighboring node of p that

is not in sm .

Note that subtree s* overlaps sm if and only if it contains both p and q.

We now remove sm from S\ . We place, on the edge between p and q, all of T2 . That is, p and q

are no longer adjacent, p is adjacent to one former leaf of T2 , and q is adjacent to the other former

leaf of T2 . All nodes of the former T2 are added to all subtrees from Si containing both p and q.

This has not changed the relationships between subtrees in S i, except for the removal of sm .

This has not changed the relationships between the subtrees in S2 , as the entire tree on which they

exist has been added, intact, to Tj. Currently, no subtree in S2 overlaps any subtree in Si. We want

every subtree in S2 to overlap all subtrees from Si that currently contain the subtrees from S i .

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

We therefore add to each node r on the former T<i a leaf node w that is in only subtrees from S 2

that contain r, and no subtrees from S \. Every subtree in S 2 overlaps exactly the subtrees in Si that

contain both p and q, and therefore exactly the ones that previously overlapped sm. □

Theorem 7.5. The modular composition on spider graphs, chordal graphs, and therefore subtree

overlap graphs, does not necessarily preserve the property o f being a subtree overlap graph.

Proof:

The graph G as shown in Figure 7.2 is both a spider (Figure 7.1.1) and a chordal graph. Replacing g

with a copy of G — g results in a non-subtree overlap graph, as it is equivalent to completely joining

two copies of G, which we know produces a non-subtree overlap graph from the proof of Theorem

7.1. By extension, the modular composition on subtree overlap graphs does not necessarily preserve

the property of being a subtree overlap graph, and the modular decomposition on subtree overlap

graphs, spider graphs, and chordal graphs, does not necessarily preserve the property of not being a

subtree overlap graph. □

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 8

Graph Operations

This chapter explores some basic tree and graph operations with regards to the preservation of being

a subtree overlap graph. Removing and adding vertices and edges are the most basic possible atomic

actions on a graph. Understanding the impact of these basic operations on the subtree overlap graphs

with respect to which preserve inclusion in the class could contribute to a recognition algorithm for

subtree overlap graphs.

8.1 Adding and Removing Edges and Vertices

Vertices and edges are the stuff that graphs are made of. The consequences of adding or removing

edges or vertices from the known subclasses of subtree overlap graphs could be critical to under­

standing the construction of subtree overlap graphs, and from there perhaps their recognition.

In this section, we will examine whether the addition and removal of vertices and edges from

graphs of various subclasses preserves the property of being a subtree overlap graph.

8.1.1 Interactions between edge and vertex removal and addition

Before we start on the particular subclasses, we can make an observation on the relationship between

edge operations and vertex operations in general.

Lemma 8.1. Let F be some hereditary class o f graphs. Let P be some property that all members

o fF have. Since F is hereditary, removing a vertex from any member o fF preserves P. I f adding a

vertex adjacent to arbitrary vertices in any member o fF preserves P, then adding or removing any

edge to or from any member o fF also preserves P. Conversely, if adding or removing an arbitrary

edge from a member o f F does not necessarily preserve P, then adding or removing an arbitrary

vertex to or from a member o fF does not necessarily preserve P.

Proof:

Let G = (V, E) be some member of F. Let va be some vertex in V. Let N be the original

neighborhood of va. We can consider adding or removing an edge as an operation composed of

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

removing a vertex, and then re-adding it with a different neighborhood.

Let H be the graph induced on G by the vertex set V — va. We know that H is a member of F.

If we can add a new vertex to any neighborhood of any member of F and preserve F, then we can

re-add va to the graph with either one extra neighbor, or one neighbor fewer, depending on whether

we want to add or remove an edge, and preserve P.D

8.1.2 Chordal Graphs

Here we will start with a general theorem, and then restate it in the more restricted single-vertex

case.

Let Gc = (VC,E C) be a chordal graph, and G = (V ,E) a subtree overlap graph. Let Vz C V be

a set of vertices such that for some subtree overlap representation of G, R = (S , T), there is a node

q £ T that is in every subtree sz £ S z, and there are no subtrees sa,Sb £ Sz , sc <f S z , s c £ S such

that sa C sc C Sb. Let Vy C Vc be an arbitrary subset of the vertices in Vc. Let E b — {(vi, Vj)\vi £

Vz , Vj £ Vy. For sets and graphs so defined, we have the following:

Theorem 8.1. The graph G 2 = (V U Vc, E U E c U E b) is a subtree overlap graph.

Proof:

Firstly, note that we have completely joined the vertices in Vz and Vy, thus attaching a chordal

graph, and a subtree overlap graph.

Let R c = (S c, Tc) be a subtree overlap representation of Gc with no containment. Let £>X C S

be the set of subtrees that contain some subtree in S z, but are not themselves in S z. Let p be a node

of T shared between all subtrees in S z . We can perform the following transformation on R and R c

to produce R 2 , a subtree overlap representation of G’2 .

Transformation

First, we add an edge between p and an arbitrary node of Tc. Expand every subtree in (Sz U S x)

to contain all nodes in Tc.

To each subtree Si £ S v, add a new leaf node q-t adjacent to an arbitrary node in Si such that Qi

is contained in exactly s* and every member of S x.

Now we must prove that this transformation has produced exactly the required overlapping. To

do this, we will consider pairs of subtrees.

Let Si, sj € S z . The nodes added to s* are exactly those added to Sj, therefore since and Sj

were not previously disjoint, their relationship is preserved. An identical argument can be used for

S i , S j £ Sx .

Let Si, Sj £ S c. Since neither subtree is contained in the other in R c (that is, before the transfor­

mation), adding leaves to the tree cannot have disrupted their relationship (Lemma 3.1).

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Let Si G Sz, Sj G Sx . Before the transformation, either s, 0 Sj or Si C Sj, by the definitions of

Sz and Sx. Since every node added to s,j was also added to Sj, their relationship is preserved.

Let Si G Sz, Sj G Sy. Si contains some node not in Sj. The intersection of .s,; and Sj is

non-empty, and Sj contains the leaf qj while s,L does not. Therefore § Sj.

Let sL G Sz, Sj G Sc, Sj £ Sy. In this case, no new leaf was added to Sj, and therefore SiD Sj.

Let Si G Sx and Sj € Sc. All nodes in Tc, as well as the new leaves, are in s.t, therefore st D Sj

Let Si G S but not in Sx or Sz, and Sj G Sc. As no nodes have been added to Sj,

Let Si G (Sx U Sz), Sj G S but not in (Sx U Sz). Since prior to the transformation Sj did

not contain sit s* has been expanded, and Sj has not been changed, their relationship has not been

disrupted.

We have that all relationships within S and Sc are maintained, all subtrees in Sx contain all

subtrees in Sc, all subtrees in S but not in Sz or Sx are disjoint from all subtrees in Sc, and all

subtrees in Sz overlap all subtrees in Sy. We therefore have a subtree overlap representation for G2 .

□
This may seem at first to be of no use, since we cannot identify if an arbitrary set of vertices in a

subtree overlap graph can have subtrees with some point in common in a subtree overlap represen­

tation, as well as obey the containment rule, and therefore serve as a Vz in the transformation.

However, there are some particular cases in which we know a set of vertices can have subtrees

that all have some point in common. If G = (V, E) is a cocomparability graph and Vz = V, then

we can perform this operation, since there is a representation in which all subtrees share an point in

common, and there are no subtrees outside Sz to break containment rules.

In addition, if Vz is a clique in G, then we can apply the operation. We know that, due to the

Helly property, all subtrees in Sz must share some node in common, and since there are no two nodes

Si, Sj G Sz such that s,: c Sj, and so there cannot be any third vertex Sk such that s* c s/t c Sj.

A single vertex is a subcase of both the cocomparability and clique cases, and so we can always

add a single vertex to an arbitrary neighborhood of a chordal graph, producing a subtree overlap

graph.

Theorem 8.2. Adding or removing edges that are all incident at a single vertex to or from a chordal

graph results in a subtree overlap graph.

Proof:

Given that chordal is a hereditary class, and arbitrary vertex addition preserves the property of

being a subtree overlap graph, we have from Lemma 8 .1 that adding or removing arbitrary edges to

or from a chordal graph preserves the property of being a subtree overlap graph. □

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8.1.3 Cocomparability Graphs

Theorem 8.3. Adding an edge to a permutation (and therefore cocomparability, circle, or spider)

graph may not preserve the property o f being a subtree overlap graph, but removing an edge from a

cocomparability graph does, if one o f the vertices at which the edge is incident is a source or a sink

in some transitive orientation o f the edges o f the complement.

Proof:

Adding an Edge

Let G be the graph shown in Figure 8.1. G is a permutation (and therefore cocomparability, circle,

and spider) graph, as shown by the interval containment representation in Figure 8.2. From Novillo

[24] (Theorem 2.6), we know that G with an edge added between j and / is not a subtree overlap

graph.

a
• -

c d

' J

Figure 8.1: A simple subtree overlap graph G.

s j l

a a

Figure 8.2: The graph in Figure 8.1, is the containment graph of the intervals shown here, proving
that it is a permutation graph. The intervals are labeled with the vertices to which they correspond
in the graph.

Removing an Edge

Let G = (V, E) be a cocomparability graph.

Let (va,Vb) be an arbitrary edge in E , such that va is a source or a sink in some transitive

orientation of the edges of G. From [16], as discussed in Chapter 2, we know that there is a subtree

overlap representation R = (S , T) of G in which T is a star, and sa is external. As we have done

throughout this thesis, we assume that there are no isolated vertices in G.

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

We show that we can build a representation R' = {S', T ') of the graph G' = (V, (E —

{(va,'t’b)})), and therefore G' is a subtree overlap graph and removal of such an edge in a co­

comparability graph always results in a subtree overlap graph.

We define some relevant sets, describe the building of the representation, and then prove its

correctness.

Let S i be the subtrees in S contained in Sb, and S„ be the subtrees other than sa and Sb that

overlap sa or Sb but are not in S i. Recall that there are no subtrees containing sa. For any subtree

Sj G S, where Sj is not sa or Sb, Sj is in exactly one of S 0, or S c, since they are mutually exclusive

classes, and there is no disjointness in R. These classes are defined with respect to the original

representation of G.

First, we perform the construction, as described in the proof of Theorem 6.1, to produce a repre­

sentation in which Sb internal. We know, from the proof of Theorem 6.1, that overlapping has been

preserved up to this point. Recall that after this construction we have the stars 7 \ and X2 connected

by an edge between their central nodes. We call the construction at this point Stage 2, and the tree

made of the conjoined Tj and T2 we call T '. We will refer to the subtrees and sets of subtrees on

the new representation from this point on with a prime superscript. Thus, .s' is a subtree on the new

representation, s* is its corresponding subtree on the original representation.

Next, for each subtree s'k such that sk overlaps both sa and Sb but Sfc ^ S i, we add a leaf p'k

adjacent to the central node of Ti that is contained in exactly s'k and any subtree containing s'k

previous to the addition of the leaf. We add this leaf also to T ' . As shown in the proof of Lemma

3.2, adding such leaves cannot disrupt overlapping. Finally, we expand s'h to contain all nodes in .s',.

We call this final representation Stage 3.

We must show that for every subtree .s' £ S ' — {s^, s'h}, .s' (j s'a if and only if sa Q s* - we

consider this in several cases.

Let Si G S i. In this case, no nodes in s'b were also in .s' at Stage 2, and the addition of those

nodes to s'a cannot have disrupted the relationship between s'a and s ' between Stages 2 and 3.

Let Si G S0- In this case, if .s' overlapped s'h as well at Stage 2, then a leaf p ' was added that is

in only .s' and its containers - thus s ' (j sj, at Stage 3. If s ' c s', at Stage 2, then the growth of s',

cannot have affected their relationship, and s ' C s'a at Stage 3.

All overlapping except that between sa and Sb has been preserved, and thus we have a represen­

tation R> = {S', T ') for 6 " at Stage 3. □

Theorem 8.4. Adding a vertex adjacent to an arbitrary set o f vertices in a cocomparablity graph

does not necessarily preserve the property o f being a subtree overlap graph.

Proof:

Cocomparability is hereditary, and adding an edge does not necessarily preserve the property of

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

being a subtree overlap graph, therefore from Lemma 8 .1 adding a vertex with arbitrary neighbor­

hood does not necessarily preserve the property of being subtree overlap graph. □

8.1.4 Circle and Spider Graphs

Theorem 8.5. Adding or removing an arbitrary edge from a circle (and therefore spider) graph

does not necessarily preserve the property o f being a subtree overlap graph.

Proof:

We know from Theorem 8.3 that removing an edge may not preserve the property of being a subtree

overlap graph. Find in Figure 8.3 the graphs G i, and G'. G\ is a circle graph - its circle representa­

tion is also shown in Figure 8.3. However, from Novillo [24], G" is not a subtree overlap graph. G'

can be produced by adding edge (j , e) to G \. □

a e

e
c

e

a

e

od

Figure 8.3: Two graphs, one of which (G f) is a circle graph - the circle representation is also shown.
The second graph, G' is not a subtree overlap graph.

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Theorem 8.6. Adding a vertex adjacent to an arbitrary neighborhood to a circle (and therefore

spider) graph does not necessarily preserve the property o f being a subtree overlap graph.

Proof:

The class of circle graphs is hereditary, adding or removing edges from a circle graph does not

necessarily preserve the property of being subtree overlap graph, and so from Lemma 8.1, adding

a vertex with arbitrary neighborhood to a circle graph does not necessarily preserve the property of

being a subtree overlap graph. □.

8.2 Subdividing Edges

Here we consider whether subdividing edges in each of the subclasses preserves the property of

being a subtree overlap graph. Subdivision of an edge can be defined as follows: let G = (V, E)

be a graph, with va, Vb € V and (va.Vb) e E. To subdivide (va, vf), we add a new vertex vc to V,

remove the edge (va,Vb) from E, and add to E the edges (va,v c) and (vb,vc). An illustration of

this can be found in Figure 8.2.

Figure 8.4: An illustration of the subdivision of the edge (va, vf) in a graph with the new vertex vc.
The original graph is on the left, the subdivided version is on the right.

8.2.1 Subdividing Edges in a Chordal Graph

Lemma 8.2. Subdividing an edge in a chordal graph always produces a subtree overlap graph.

Proof:

Let G = (V, E) be a chordal graph. Let e G E be the edge we wish to subdivide. Let va , V b &V

be the vertices at which e is incident. Let S n = N(vb) — {tv}. Observe that subdividing e with vc

is equivalent to removing Vb, adding vc as a leaf to va , and then adding Vb adjacent to ,SV U {tv}-

H — G — {Kb} is a chordal graph. We can add a single vertex, vc adjacent to only va to produce

H ', still a chordal graph. Then, we can add tv to H ', adjacent to the vertices in Sjv U {vc}. Since

H ' is chordal, by Theorem 8.1, the result is a subtree overlap graph. □

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8.2.2 Subdividing Edges in a Cocomparability Graph

Lemma 8.3. Let G = (V, E) be a cocomparability graph. Subdividing an edge e = (va, Vb) G E,

such that va is a source or sink in some transitive orientation o f the edges o f G, results in a subtree

overlap graph.

Proof:

Here we draw on the proof of Theorem 8.3. Let G = (V , E) be a cocomparability graph, with

a representation on a star R = (S , T). Let va and vi, be two adjacent vertices in V, and sa and s/,

their corresponding subtrees in S. If the transformation to remove the overlap between sa and Sb is

applied, we have a valid representation of G in which sa D Sb-

We know that there is no container of Sb that is contained in sa, since there could not have been

in the the original representation without the edge removed and no subtree would have been moved

into that position during the transformation. There is therefore some node q in sa and in the final

representation that is in only sa, Sb, mutual containers, mutual overlappers, and subtrees that contain

Sb and overlap sa.

We can therefore add to q a leaf that will be contained in all containers and overlappers of sa or

Sb that contain q. The new subtree will be q and the new leaf - overlapping only sa and Sb- We have

a representation of G with the edge between va and vi, subdivided. □

8.2.3 Subdividing Edges in a Spider Graph

Lemma 8.4. Subdividing an edge in a circle (and therefore spider) graph does not necessarily

preserve the property o f being a subtree overlap graph.

Proof:

We know that removing an edge in a circle graph does not necessarily preserve the property of being

a subtree overlap graph by Theorem 8.5. Let G = (V, E) be some circle graph. Let J be a non­

subtree overlap graph produced by removing some edge (va, Vb) G E from G. Let J ' be the graph

produced from G be subdividing the edge (va,Vb) G E. J ' has J as an induced subgraph, and is

therefore not a subtree overlap graph. □.

8.3 Complementing

Here we show that taking the complement of a graph from the well-known subclasses of subtree

overlap graphs does not necessarily preserve the property of being a subtree overlap graph.

Let G be the graph shown in Figure 8.5. As the complement of G is two completely joined

non-cocomparability graphs, it is not a subtree overlap graph, as discussed in Section 7.1.1. As G is

a chordal, spider, and circle graph (Figure 8 .6), we know that taking the complement of a graph from

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

any of these classes does not necessarily produce a subtree overlap graph. The comparability graphs

are not a subclass of subtree overlap graphs [5], and therefore the complement of a cocomparability

graph is not always a subtree overlap graph.

C

Figure 8.5: A subtree overlap graph G

Figure 8 .6 : A representation for the graph in Figure 8.5, showing that it is a circle, and therefore
spider, graph.

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 9

Conclusion

Here we will summarize the work presented in this thesis, discuss some directions for future work,

and then make some concluding remarks.

9.1 Summary and Future Work

Through the work done here, we have discovered some properties of the class of subtree overlap

graphs and its subclasses.

Subtree overlap graphs are equivalent to the subtree filament graphs, and therefore the comple­

ments of cochordal-mixed graphs. This ties in to previously done work, and allows for possible

future work. Given that the subtree overlap graphs are the complements of cochordal-mixed graphs,

and a constructive proof of this provided, we could produce a subtree overlap representation given

some pieces of information on edge partitioning of the cochordal-mixed graph. This has promise for

resolving recognition of subtree overlap graphs.

The overlap graphs of paths in trees with no non-leaf boundary nodes are equivalent to the over­

lap graphs of intervals on a line and therefore the circle graphs. This emphasizes the importance of

the restriction of the nature of overlapping allowed, in addition to restriction of the type of overlap­

ping sets themselves in defining an overlap graph class.

Some very simple graphs - the cycles - have few non-isomorphic subtree overlap representations,

whereas other very simple graphs - such as the paths - have many non-isomorphic subtree overlap

representations. In a scheme to produce a representation, we might pay special attention to the cycles

in a graph.

Various compositions and operations can be applied to graphs in the subclasses of subtree overlap

graphs, and produce a graph that is still a subtree overlap graph. With these compositions and

operations in hand, we might be able to contribute to a method of recognizing subtree overlap graphs

by building them up from smaller parts, or breaking them down into smaller graphs for faster running

of a recognition algorithm. If Conjecture 6 .1 is true, we will have further results on these operations

and decompositions as applied to cocomparability graphs.

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9.2 Concluding Remarks

The work presented here is perhaps best viewed as the development of a toolbox that could contribute

to recognition, or other, algorithms for subtree overlap graphs. However, some results presented

are interesting in their own right. The equivalence of subtree overlap and subtree filament graphs

contributes to our understanding of the graph hierarchy. The work on relationship matrices as a

method of specifying parts of a representation allows us to check the consistency of a set of set

relationships, and in combination with the result that subtree overlap graphs are cochordal mixed

presents possibilities for future work. The work presented here contributes to the understanding of

subtree overlap graphs, and their relationship with graphs in subclasses of subtree overlap graphs.

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[1] Jorge L. Ramirex Alfonsin and Bruce A. Reed. Perfect Graphs. John Wiley and Sons, Ltd.,
2001.

[2] Alberto Apostolico, Mikhail J. Atallah, and Susanne E. Hambrusch. New clique and indepen­
dent set algorithms for circle graphs. Discrete Appl. Math., 36(1):1—24,1992.

[3] S. Benzer. On the topology of the genetic fine structure. In Proceedings o f the National
Academy o f Science, volume 45, pages 1607-1620, 1959.

[4] Kellogg S. Booth and George S. Lueker. Linear algorithms to recognize interval graphs and
test for the consecutive ones property. In STOC ’75: Proceedings o f seventh annual ACM
symposium on Theory o f computing, pages 255-265, New York, NY, USA, 1975. ACM Press.

[5] Eowyn Cenek. Subtree overlap graphs and the maximum independent set problem. Master’s
thesis, University of Alberta, Department of Computing Science, 1998.

[6] Eowyn Cenek and Loma Stewart. Maximum independent set and maximum clique algorithms
for overlap graphs. Discrete Appl. Math., 131(1):77-91, 2003.

[7] W. H. Cunningham and J. Edmonds. A combinatorial decomposition theory. Canadian Journal
of Mathematics, 32:734-765, 1980.

[8] G. A. Dirac. On rigid circuit graphs. Abh. Math. Sem. Univ. Hamburg, 25:71-76,1961.

[91 B. Dushnik and E.W. Miller. Partially ordered sets. American Journal o f Mathematics, 63:600-
610, 1941.

[10] S. Even and A. Itai. Queues, stacks, and graphs. Proc. International Symp. on Theory o f
Machines and Computations, pages 71-86, 1971.

[11] Csaba P. Gabor, Kenneth J. Supowit, and Wen-Lian Hsu. Recognizing circle graphs in poly­
nomial time. J. ACM, 36(3):435-473,1989.

[12] Fanica Gavril. Algorithms for minimum colouring, maximum clique, minimum covering by
cliques, and maximum independent set of a chordal graph. SIAM Journal o f Computing,
1(2):180—187, 1972.

[13] Fanica Gavril. Algorithms for a maximum clique and a maximum independent set of a circle
graph. Networks, 3:261-273, 1973.

[14] Fanica Gavril. The intersection graphs of subtrees in trees are exactly the chordal graphs.
Journal o f Combinatorial Theory (B), 16:47-56, 1974.

[15] Fanica Gavril. Maximum weight independent sets and cliques in intersection graphs of fila­
ments. Inf. Process. Lett., 73(5-6): 181—188, 2000.

[16] M. C. Golumbic and E. R. Scheinerman. Containment graphs, posets and related classes of
graphs. Annual New York Academy o f Science, 55:192-204,1989.

[17] Martin Charles Golumbic. Algorithmic Graph Theory and Perfect Graphs (Annals o f Discrete
Mathematics, Vol 57). North-Holland, 2004.

[18] Martin Grotschel, Laszlo Lovasz, and Alexander Schrijver. Polynomial algorithms for perfect
graphs. In Claude Berge and Vasek Chvatal, editors, Topics on perfect graphs, volume 21 of
Annals o f Discrete Mathematics, pages 325-356. North-Holland, 1984.

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[19] Mark Keil and Lorna Stewart. Approximating the minimum clique cover and other hard prob­
lems in subtree filament graphs. Discrete Applied Mathematics, 145(14): 1983-1995,2006.

[20] Manfred Koebe. Colouring of spider graphs. In Topics in Combinatorics and Graph Theory,
pages 435-442. Physics-Verlag Heidelberg, 1990.

[21] Manfred Koebe. Spider graphs - a new class of intersection graphs. Master’s thesis, Emst-
Moritz-Arndt-Universitaet, Sektion Mathematik, 1990.

[22] Alexandr Kostochka and Jan Kratochvil. Covering and coloring polygon-circle graphs. Dis­
crete Math., 163(l-3):299-305,1997.

[23] Ross M. McConnell and Jeremy P. Spinrad. Linear-time modular decomposition and efficient
transitive orientation of comparability graphs. In SODA ’94: Proceedings o f the fifth annual
ACM-SIAM symposium on Discrete algorithms, pages 536-545, Philadelphia, PA, USA, 1994.
Society for Industrial and Applied Mathematics.

[24] Diego Novillo. Overlap graphs of subtrees in a tree, 1994.

[25] S. Olariu. On sources in comparability graphs, with applications. Discrete Math., 110(1-
3):289-292, 1992.

[26] A. Pneuli, S. Even, and A. Lempel. Transitive orientation of graphs and identification of
permutation graphs. Canadian Journal o f Mathematics, 23:160-175,1971.

[27] Donald J. Rose, R. Endre Tarjan, and George S. Leuker. Algorithmic aspects of vertex elimi­
nation on graphs. SIAM Journal o f Computing, 5(2):266-283,1976.

[28] William Rosgen. Set representations of graphs. Master’s thesis, University of Alberta, Depart­
ment of Computing Science, 2005.

[29] Jeremy Spinrad. On comparability and permutation graphs. SIAM Journal o f Computing,
14:658-670, 1985.

[30] Jeremy Spinrad. Recognition of circle graphs. Journal o f Algorithms, 16:264—282,1994.

[31] Jeremy P. Spinrad. Efficient Graph Representations. AMS, Providence, the fields institute
monographs 19th edition, 2003.

[32] Edward Szpilrajn-Marczewski. Sur deux proprietes des classes densembles. Fundamenta
Mathematicae, 33:303-307,1945.

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

