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Abstract

Mathematical modeling is a tool in predicting tumour growth, cancer spread, and 

the effectiveness of a specific treatment. In this thesis I derive, from first princi

ples, a model for the radiation treatment of cancer which includes the effects of 

the cell cycle. I divide a malignant cell population into two compartments based 

on radiation sensitivities. The active compartment includes the four phases of the 

cell cycle, while the quiescent compartment consists of the G0 state. Analysis of 

this active-quiescent radiation model leads to a new interpretation of the a /  j3 ratio 

of the linear quadratic model. I rewrite the active-quiescent model as a nonlinear 

birth-death process in order to derive an explicit expression for a tumour control 

probability (TCP). Finally, I perform preliminary analysis on prostate cancer data 

obtained from the Cross Cancer Institute. I fit this data to a published deterministic 

model and critically analyze this model.
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Chapter 1 

Introduction

Cancer is a serious disease that affects millions of people worldwide. According to 
the World Health Organization, 12.5 percent of total deaths every year worldwide 
are caused by cancer. Also, in 30 percent of these cases, the patients could have 
been cured had they received early diagnosis and effective treatment. Time and cost 
are two factors that limit the number of patients eligible to receive early treatment. 
For these reasons, mathematical modeling is a helpful tool in not only predicting 
tumour growth and cancer spread, but also in determining the effectiveness of a 
specific treatment.

One of the common therapies used to treat cancer is external beam radiother
apy. This treatment works by transferring energy to a cell, which causes structural 
damage that affects cell viability.

Our main objective in this work is to derive a biologically realistic model for 
the radiation treatment of cancer, that can be used to predict the outcome of a given 
treatment schedule.

The most widely used mathematical model of the radiation treatment of cancer 
is the linear quadratic (LQ) model, which predicts the surviving fraction of clono- 
gens after a treatment of dose D  is applied to a tumour. This model, in its basic 
form, assumes that the tumour cell population is uniform, and that the effect of the 
treatment is independent of the cell cycle. We believe that this is an oversimplifi
cation, which prevents complete understanding of the system dynamics. Radiation 
has a more severe effect on cells that proliferate rapidly. We incorporate this in
formation into our model by dividing the cell population into two compartments: 
active and resting. We investigate the effects of the cell cycle parameters on our 
model by performing perturbation analysis. This analysis provides insight on the 
role the cell cycle has on the effectiveness of the radiation treatment. We are then 
able to compare the parameters in our cell cycle model with the parameters of the 
LQ model, which are hypothesized to correlate with the cell cycle. Also, we rewrite 
our cell cycle model as a birth-death process in order to derive the tumour control
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probability (TCP) of the system. The TCP is used to predict the results of a specific 
treatment, as well as to compare different treatment regimens.

This thesis is divided into five chapters. In Chapter 2, we give some basic cancer 
cell biology definitions and information in order to have a better understanding 
of the mechanisms of the disease. In Chapter 3, we review various formulations 
of both the LQ model, and the TCP, two of the most widely used models for the 
radiation treatment of cancer. In Chapter 4, we derive a mathematical model of the 
radiation treatment of cancer that includes active and quiescent cell phase dynamics. 
This model is formulated as a system of two ordinary differential equations (ODEs). 
In Chapter 5, we perform linear analysis on the model, as well as perturbation 
analysis, and find how the model parameters affect solutions. In Chapter 6, we write 
the cell cycle model as a birth-death process, and use this system to derive the TCP, 
which generalizes Zaider and Minerbos [29] TCP formulation to a non-uniform 
cell population . As a preliminary step to the application of the active-quiescent 
model to the specific case of prostate cancer, in Chapter 7, we discuss the effects of 
radiotherapy treatment on prostate-specific antigen (PSA) levels in prostate cancer 
patients. We also summarize the data-fitting work we did in order to determine the 
validity of a PSA model previously presented. In the final chapter, Chapter 8, we 
present a discussion of our work, and discuss possible future work.

2
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Chapter 2 

Cancer Cell Biology

In the study of cancer, it is important to have a basic understanding of the biolog
ical mechanisms that drive the disease. In the following sections, some important 
features of cancer cells are discussed, including the cell cycle; a basic cancer cell 
definition; how cancer cells differ from normal cells; and how radiation affects these 
cells.

It is also important to be familiar with general cancer terminology. We begin 
by stating that oncology is the study of malignant tumours, where malignant is 
equivalent to transformed, cancerous, and neoplastic.

Cancer is the result of multiple genetic mutations in genes that are directly in
volved with the cell cycle progression, differentiation, or apoptosis. For this reason 
it is important to understand the cell cycle, and its driving factors.

2.1 The Cell Cycle
The cell cycle, as shown in Figure 2.1, can be split into four phases, where the cul
mination occurs when the cell divides and two daughter cells are formed. Although 
not considered part of the cell cycle, it is also important to recognize that there is a 
resting phase Go that cells may enter. We think that the Go phase is very important 
when modelling radiation treatment of cancer because the cell is less sensitive to 
radiation when in this phase.

2.1.1 Cell Cycle Phases [16], [17]
Gi Phase

This phase is known as gap 1 phase. It occurs just after the cell has split, but must 
not be mistaken for the resting phase Go- During this phase, the cell begins to man
ufacture more proteins in preparation for division. It also experiences other growth: 
metabolism increases, RNA synthesis is elevated, organelles duplicate. This phase

3
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GO (2N)
(resting)

Figure 2.1: Schematic of the cell cycle, including the Go phase.

lasts about 18 to 30 hours.

S Phase

This phase is known as the stationary phase, although a cell in the S  phase is biolog
ically active. During the S phase, the DNA is copied so that when the cell divides, 
both cells will have a copy of this genetic information (Note: in human cells, all 
two meters of DNA are copied!). This phase lasts about 18 to 20 hours.

G2 Phase

The gap 2 phase occurs just before the cell begins to divide into two cells, and is 
a preparation stage for this chromosome duplication. Initially, in the gap 2 phase, 
there is an increase in protein and RNA synthesis. This phase lasts about 2 to 10 
hours.

M Phase

This phase is the mitotic phase, where the cell division occurs and two new cells 
are formed. The chromosomes are first lined up and pulled to either end of the cell, 
the membrane is pinched together, and two daughter cells are formed. This phase 
lasts about 30 to 60 minutes.

G0 Phase

This phase is called the resting phase. During this phase of inaction, cells have not 
begun to divide. This period of inaction can last anywhere from a few hours up

4
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to a lifetime, and is the phase with the most variable time frame. Once the cell is 
signalled to reproduce, it then moves into the G\  phase. Most stem cells found in 
normal tissues are in the G0 phase, and are not committed to division.

Phase Determination

A cell’s current location in the cell cycle, or current phase, can be determined by 
identifying which genes are currently active [20]. Also, we note that the time re
quired to complete an entire cell cycle is called the generation time.

2.1.2 Cell Cycle Checkpoints [17]
During the cell cycle, there are three main checkpoints. At these checkpoints, a de
cision is made to either stop the events, or to continue depending on the assessment 
of the condition of the DNA, as well as the events succession. If DNA damage is 
detected, then events are stopped so that the cell can repair the damage. However, 
if the damage is severe, the cell will undergo apoptosis (programmed cell death).

G | Checkpoint (restriction point)

After cell division, the new daughter cells enter this checkpoint. If a cell is big 
enough, and the environment is suitable, then the cell may proceed directly to Gj. 
If the cell fails at this check it moves into G0 (where most of the cells in our body 
are found). This checkpoint is the most important of the three.

It is important to note that before this restriction point, the cell depends on 
external growth factors to progress through G\. After the restriction point, the cell 
is independent of external factors.

G2 Checkpoint

If the DNA replicated properly, the cells are big enough, and the environment is 
suitable, then the cell may proceed. (And if not, reparation takes places.)

Metaphase Checkpoint

If the chromosomes are aligned on the spindle correctly, the cell may proceed.
The development of normal, healthy cells is a very tightly controlled system 

of division, growth, and death. In the case that this control system fails, normal 
development ceases to occur. When this cycle is uncontrolled, cells created form a 
mass which is a tumour.

5
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2.2 Cancer Cells
Cancer arises when multiple growth control gene changes occur in a single cell. 
These changes cause the cancer cell to either ignore, or override a regulating factor 
of mitosis. Once this single cell is transformed, cancer cells are produced as this cell 
passes through uncontrolled, repeated mitosis. The mass of cancer cells produced 
forms the tumour. As the tumour grows, it starts to release proteins that promote 
blood vessel growth to and within the tumour. This process is called angiogenesis. 
When angiogenesis begins to take place, the tumour will be composed of about one 
million cancer cells.

It is important to note the difference between benign tumours and malignant 
tumours. A benign tumour is one that does not spread or metastasize to other parts 
of the body (tumour cells remain at the original site). A malignant tumour is one 
that contains cells that signal the blood vessel formation at the site. By doing this, 
the cells have a source of food and oxygen, as well as a route to other parts of the 
body (via the bloodstream or lymphatic system). The cells that leave the original 
site through the newly formed vessels and latch on to another site form new tumours 
that are biologically identical to the first. This is what we call metastasis. Cancer 
cells can also move through tissue, without blood or lymphatic vessels [8],

There are two main groups of cancer genes: oncogenes and tumour suppressor 
genes (TSG) [16], [17],

2.2.1 Oncogenes
Oncogenes are mutated genes which code for proteins which are involved in cell 
cycle regulation. This means they control the growth of cells by pushing the cell 
through different paths. Genes that are potentially oncogenes (same genes but with
out mutation), are known as proto-oncogenes. These proto-oncogenes become can
cerous for many different reasons: over or under expression, inactivation, differing 
substrates, and different affinity for substrate.

2.2.2 Himor Suppressor Genes
Tumour suppressor genes, in their unaltered healthy state, restrict growth. They 
are inactivated during tumourigenesis, which leaves them unable to inhibit growth 
as per usual. An example of a tumour suppressor gene is the p53 protein. This 
protein inspects the DNA and when it discovers DNA that is damaged, it halts the 
chromosome duplication process and activates the DNA repair systems. If the DNA 
damage takes too long to repair, the p53 protein causes apoptosis. (More than 50 
percent of all cancers have a disabled p53 gene.)

6
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2.2.3 Effect on Cell Cycle
In cancer cells, control of the cell cycle can be lost in two ways. The cells can be 
signalled to divide continuously, so that they never enter the resting phase of the 
cell cycle, or a signal that would normally tell the cell to cease division may have 
been removed.

When a new cancer cell is formed, if it is detected early enough by the immune 
system, it will be destroyed. If it avoids detection, it begins division so a tumour 
can be established (a mass of cells that is difficult for the body to annihilate).

2.3 Cancerous and Normal Cell Differences
Although cancer cells do still progress through the same cell cycle as healthy cells, 
these transformed cells exhibit abnormal growth patterns due to multiple genetic 
mutations.

Cell Death
Tumour cells have no program for cell death. They are thought to be immortal, and 
will proliferate indefinitely in culture, with the right nutrients.

Hayflick Limit
Tumour cells have no limit on the number of cell divisions.

Serum Dependence
Tumour cells have a lower serum dependence than healthy cells. It has been 
demonstrated that tumour cells secrete their own growth factors.

Differentiation
Tumour cells don’t completely differentiate. Healthy cells become specialized 
cells suited for specific functions throughout the body, or make products usually 
associated with less differentiated states.

Contact Inhibition
Tumour cells have no contact inhibition of density dependence. The loss of contact 
inhibition can be detected by observing the formation foci of rounded cells or 
overlapping cells within the regular pattern of normal surrounding cells.

Anchorage Dependence
Tumour cells are anchorage independent. Instead of sticking to their neighbouring 
cells, cancer cells tend to ’’round up” and break attachments. The neighbour cells 
surface modification account for many of the properties associated with 
transformed cells. Proteins are lost from the cell surface and cause a decrease in 
cell adhesion. This leads to loss of density dependent growth and disorganized

7
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growth patterns. Altered cell surfaces also facilitate detachment from tissue in turn 
making metastases possible (cells can migrate to other parts of the body).

Tumourigenesis
Tumourigenesis is the formation of invasive or metastatizing tumours in a living 
host animal.

Proteolytic Enzyme Production
The breakdown of tissue barriers is accomplished by the large quantity of secreted 
enzymes, which is important for metastasis.

Angiogenesis Factor
Tumour cells release factors capable of inducing blood vessel formation to the 
tumour.

Nutrient Requirement
Nutrient requirements are lower than that of normal, healthy cells.

Abnormal Karyotype (genetic material make-up)
Cancerous cells may have an abnormal number of chromosomes, or chromosomes 
with abnormal structures such as translocations, deletions, duplications, or 
inversions [16]. A translocation describes a chromosome that has gained an end of 
another chromosome. Deletions and duplications describe instances where a 
section of DNA is either missing, or duplicated. An inversion occurs when a 
segment of a chromosome, is broken free, rotated 180 degrees, and returned to its 
original position in the same chromosome. If mutation in a critical cell cycle 
protein occurs, the cells will not be able to progress through the cell cycle as they 
normally would.

2.4 Radiation Treatment of Cancer
Radiation therapy works to treat cancer by attacking reproducing cancer cells, but 
also inadvertently affects the normal, healthy cells that are proliferating. This dam
age to normal cells is the cause of side effects. Every time radiotherapy is given 
there must be a balance between attacking cancer cells and avoiding destruction of 
healthy cells.

Radiation can be simply described as energy that is carried by waves or streams 
of particles. The key aspect in using this energy to treat cancer is that radiation 
has the capability of altering genetic material in a cell. As seen above, this genetic 
code controls cell growth and proliferation. For this reason, it is important to fully 
understand the cell cycle in order to understand how radiation is used as a treatment.

8
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2.4.1 Radiation and the Cell Cycle
Radiation is more effective on cells that are active and dividing quickly, while it is 
much less effective on cells that are in the Go resting phase, as well as on cells that 
divide slowly [20]. The term radiosensitivity is used to describe how sensitive a cell 
is to radiation damage.

Genotoxic agents are chemicals, such as those produced by radiation therapy, 
capable of causing damage to DNA. When cells are exposed to genotoxic agents 
several checkpoints are triggered. A cell that has suffered DNA damage will not 
enter into the S phase, thus avoiding damaged DNA from being replicated. This 
prevents fixation of mutations in the DNA of the daughter cells during replication. 
Also, if the damage to the DNA is not repairable, or takes too long to repair, the 
p53 protein will cause the cell to self-destruct through apoptosis.

When chromosomes are damaged as a result of genotoxic agents, cells will 
not enter mitosis until the damaged chromosomes are repaired. Normal, healthy 
cells will respond to this DNA damage by inducing both a G, and a G2 arrest. 
For both processes the tumour suppressor gene p53 is crucial. Those cells that 
have a malfunctional p53 protein are unable to induce cell cycle arrest after DNA 
damage. These unarrested cells quickly accumulate more mutations every time 
division occurs [16].

2.4.2 Effects of Ionizing Radiation
Ionizing radiation causes ionization, which is the loss of an electron in atoms or 
molecules. When an electron is lost, energy is transferred, and this energy disrupts 
chemical bonds, resulting in ionization. These ionizations, when induced by radi
ation, can act directly on molecules forming cellular components, or indirectly on 
water molecules. When acting on water, the ionizations cause water-derived radi
cals (highly reactive molecules that can bind to and destroy cellular components). 
These radicals quickly react with molecules near them, and this results in chemical 
bond breakage or oxidation of the affected molecules. In cells, there are a variety 
of possible radiation induced lesions, although the most harmful to the cell are the 
lesions which effect the DNA structure.

DNA occurs in pairs of complementary strands, and radiation can induce single 
strand breaks, or double strand breaks. Single strand breaks are the more common 
lesion of the two, and can usually be repaired by the cell (undamaged strand serves 
as template for production of complementary strand). Double strand breaks are 
caused by either a single event which severs both DNA strands, or by two indepen
dent single strand break events close in time and space. Double strand breaks are 
considered more harmful than single strand breaks, as they are difficult to repair. 
Even when repair is attempted, broken ends may be joined together, leading to mis-

9
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repairs. These misrepairs cause mutations, aberrations (of chromosomes), or cell 
death.

Deletion of DNA segments is the most common form of radiation damage in 
cells that survive radiation treatment. The deletion may be caused by the misrepair 
of two separate double strand breaks in a DNA molecule by joining of the two outer 
ends and loss of the section between the breaks. However, it may also be a result 
of the cleaning process, where enzymes digest nucleotides (component molecules 
of DNA) of the broken ends prior to rejoining them to repair a single double strand 
break [17].

2.4.3 High-LET and Low-LET Radiation
Radiations differ by their constituents (electrons, protons, neutrons, etc.), but also 
by their energy. Radiations that cause dense ionization along their track are called 
high-linear-energy-transfer (high-LET) radiation (such as proton beams), which 
represents a physical parameter to describe average energy released per unit length 
of the track. Low-LET radiations (such as X-ray or electron beams) produce ion
izations more sparsely along their track and so the energy deposits are more evenly 
distributed within a cell.

Radiation dose is the amount of energy per unit of biological material, and is 
measured in grays (Gy). One gray is defined as the absorption of one joule of 
radiation energy by one kilogram of matter.

High-LET radiations are more destructive to biological material than low-LET 
radiations. This is because at the same dose, the low-LET radiations cause the same 
number of radicals to be more evenly distributed within a cell, while high-LET 
radiations transfer most of their energy to a small region of the cell. The localized 
DNA damage caused by many ionizations in a small region of a cell from high-LET 
radiation is more difficult to repair than the more diffuse DNA damage caused by 
the ionizations from low-LET radiations.

10
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Chapter 3 

Review of the LQ Model and the TCP

3.1 The Linear Quadratic Model
The linear quadratic model (LQ model) is the most common cell survival formal
ism used when modelling radiation treatment of tumours. This LQ expression was 
originally used by Sinclair in 1966 [23], who found that an expression of this form 
fit the cell survival data he analysed, although he could not biologically justify this 
discovery. The model determines the surviving fraction of cells after radiation of 
a specified dose, where a cell survives the dose application if it is able to act as a 
progenitor for significant line of offspring. (The operational definition commonly 
used for cell survival is that a cell survives if it produces at least 50 offspring.) The 
LQ formula is written as S(D)  = eaD+PDl; where S ( D ) is the surviving fraction 
of cells after application of dose D,  and a  and (3 are the model parameters. Shortly 
after this LQ expression was proposed, others began to investigate the biological 
meaning of this expression.

In 1971, Kellerer and Rossi [11], who are now recognized as pioneers of radio- 
biology and radiation chemistry, published the two-step model of radiation action, 
which maintained the LQ form. In this model, they considered cells to have com
plex target sites which were impaired by a dual lesion. These lesions resulted from 
energy deposits via two charged particles, or instantaneously by one charged parti
cle. These charged particle energy deposition events were considered to be statisti
cally independent discrete events. The two-step inactivation process they described 
is depicted in Figure 3.1, where state 1 is no damage, state 2 is predamage, and state 
3 is damage, or dual lesion effect.

The system of differential equations that governs the behaviour of this process 
has a solution that can be expressed as a power series, where the coefficients are 
composed of transition frequencies between states. The solution of interest in this 
case is the component which is equal to the effect probability, or the fraction of 
objects in state 3 at absorbed dose D. This effect probability for the two-step scheme
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g<t>

Figure 3.1: The Kellerer and Rossi two-step inactivation process. State 1 is no 
damage, state 2 is predamage, and state 3 is damage. The frequency 
of events which affect the undamaged site is given by <f>\ the fraction 
of events which cause a dual lesion instantaneously is given by g; and 
the frequency of events which cause damage to a cell in the predamage 
state is denoted <j)'.

is:
E ( D ) = g < t > D + ^ D 2

assuming that g is small relative to 1, or equivalently, that instantaneous double 
lesions are less likely to occur than two event double lesions.

Kellerer and Rossi speculated that the damaging effects of radiation were chro
mosome aberrations, which was consistent with their model, as well as the idea that 
a site is composed of aligned, small, string-like targets.

The subsequent endeavor to justify the LQ model was by Chadwick and Leen- 
houts, in 1973 [5], The process they described is similar to the two-step scheme of 
Kellerer and Rossi, although Chadwick and Leenhouts asserted that the primary ac
tion of radiation is molecular bond breakage, where the molecule affected is DNA. 
The DNA is damaged by double strand breaks, which can occur either in one ra
diation event, or in two independent radiation events, referred to as single strand 
breaks. After a cell sustains a number of double strand breaks, it will no longer 
have the ability to proliferate. Another assumption made by Chadwick and Leen
houts was that it is possible for these broken bonds to be repaired. The LQ model 
S(D) = eaD+l3D2 was derived using these assumptions, and the parameters a  and 
f3 which appear in the exponent implicitly accounted for various factors which af
fected cell survival, such as the cell cycle. In 1968, Sinclair [24] declared that a sig-
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nificant shortcoming of the available hit and target models was that they assumed 
cell populations to be homogenous, meaning that radiation sensitivity in the cell 
cycle was ignored. Chadwick and Leenhouts demonstrated that the LQ model had 
the ability to incorporate these cell cycle effects, by allowing a  to vary throughout 
the cell cycle.

Another individual who made a significant contribution in radiobiology was 
Barendsen [1]. In the late 1960s, Barendsen examined cell survival curve charac
teristics for different dose distributions and radiation qualities, without making use 
of a model to describe these curves. In 1982, Barendsen [1] published a paper in 
which he developed a model that included fractionation effects. This model as
sumed that cell survival is given by the LQ formalism, although Barendsen rejected 
all previously suggested hypotheses on the basis that they failed to adequately pre
dict cellular damage as a function of dose, dose fractionation, and radiation quality. 
He did claim, however, that the LQ formalism could be employed without having 
a specific mechanism of action in mind. In order to include fractionation effects, 
Barendsen maintained the assumption that lesion production occurs either instan
taneously, or in two steps, as a result of interacting sub-lethal lesions, although he 
added the restriction that these sub-lethal lesions lose their capacity to interact with 
one another exponentially. Also, he assumed that the cell cycle is irrelevant to the 
sensitivity of the cells, so all fractions are equally effective. If n  is the number of 
fractions, and D  is the dose per fraction, then the number of lethal lesions to a single 
cell after dose D,  denoted by F, is given by:

F(D)  = - a D ( l  +  /3/a ■ D/n) .

Assuming that the lesions are uniformly distributed throughout cells, the survival 
probability of cells is given by

S ( D ) / S (  0) =  e~aD{1+Va-D/n)'

Although the LQ model seemed to confirm experimental results, the absence of a 
treatment time factor prevented universal acceptance. However, in the late 1970s, 
cell kineticists found that different tissues react at different rates after irradiation. 
Tissues in which cell proliferation is slow exhibit a late response to treatment, 
whereas tissues whose cell populations have a faster turnover respond acutely to 
treatment. This difference in response has been attributed to the fact that a cells’ 
sensitivity to radiation depends on a cells proliferation rate. In the model we present 
in Chapter 3, we incorporate this idea that the effects of radiation are cell phase de
pendent by considering a cell population divided into two compartments of different 
sensitivities. The remaining healthy cells in the population respond to cell damage 
or death by compensatory increased regeneration, which means they temporarily 
increase their proliferation rate. Classically, the application of the LQ model was
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to minimize the radiation damage of late-reacting tissues, or the healthy tissues 
surrounding the tumour. In this classical application, the standard LQ model suf
fices since the compensatory cell response occurs sometime after the treatment. In 
the case of early-reacting tissues, however, the compensatory proliferation occurs 
during treatment, and must be included in the model so that the cell killing is not 
overestimated. To incorporate the time factor, the surviving fraction can be multi
plied by a reproduction factor as follows:

T  is total time considered,
Tk is the time at which cell regeneration begins, and 
7 is the regeneration rate.

In [3], Buffa, Fenwick and Nahum present a variation of the LQ model which in
cludes the effects of sensitivity variations within the tumour, although it was thought 
to be of less importance then the variability of radiosensitivity over the population. 
Suppose that the sensitivity within a tumour is Gaussian distributed with variance 
aint. This leads to the following survival fraction:

where G  is the Lea-Catcheside factor, and w is the sensitivity redistribution time 
and inherently contains information on the length of the cell cycle. Below we give 
a simple derivation of the LQ model, including the generalized Lea-Catcheside 
factor, found in [21], and then later adapted in [22], This derivation uses the LQ 
model to approximate the Lethal Potentially Lethal (LPL) model, and is one of 
many attempts to mechanistically justify the LQ model.

To begin the derivation, we must be familiar with the LPL model. This model 
looks at DSB production, restitution, and binary misrepair in order to determine per 
cell averages of both potentially lethal (PL) and lethal (L) lesions.

Assume that a tumour formed of a non-cycling, uniform group of cells is irradi
ated. The total accumulated dose at time t  is given by D(t),  and the radiation dose 
rate is given by R(t)  =  Also, assume that the most significant radiation dam
age is DNA double strand breaks (DSBs). After a DSB occurs, it is usually repaired 
within a half hour, but could be misrepaired. If a misrepair occurs, this could cause 
cell death at the next mitosis. Per unit dose, the average number of DSBs produced 
is S. Most of these DSB lesions are restituted, which means that broken pieces of 
a DSB are rejoined, though not necessarily correctly. The restitution rate constant 
is denoted by A. Some DSB that do not undergo restitution, undergo binary mis
repair. Binary misrepair involves two chromosomes, each having suffered a DSB,

S(D)  =  e~^aD+PD2'>+1(T~Tk'>

where
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rejoining to each other. The result can be either a dicentric, which describes a chro
mosome that contains two centromeres, or a translocation. Dicentrics are usually 
lethal, whereas translocations can cause phenotype changes, and sometimes have 
serious implications, however they are not considered lethal. The binary misrepair 
rate constant is k . If we denote the average number of DSB per cell as U (t ), then 
the first equation in the LPL model is given by

= S R -  XU -  kU2. (3.1)
at

In equation (3.1), the first term, 5R  is the average number of DSB produced by 
irradiation in dt\ the second term, AU, is the per cell restitution rate; and the third 
term, k U2 represents the binary misrepair rate, under the assumption that we have 
mass-action chemical kinetics.

Now we consider the number of DSB that will be lethal. Since only a proportion 
of restitutions are not viable, we denote this proportion by a. Also, only a certain 
number of binary misrepairs will be lethal, and we denote this proportion by c. The 
average number of lethal lesions per cell is L(t). The average rate of lethal lesion 
production per cell is then given by

= aXU + c k U 2 . (3.2)
at

We can now begin the derivation of the LQ model. First, we assume that the 
term k U2 in (3.1) is negligible, although this might not be the case in (3.2). Using 
this assumption, (3.1) reduces to

U, <3.3)

and can be integrated to obtain

U(t) = 6e-xtg(t) (3.4)

where g(t) = D(s)eXsds.
We substitute this result for U(t) in equation (3.2) to obtain

= a \5 e ~ Xtg(t) +  ck (5e~xtg(t))2 . (3.5)

We integrate (3.5) for all time to determine the total number of lethal lesions
produced by the radiation treatment:

/ oo roc roc

dL(t) = aX5 /  e~Xtg(t)dt + cK52 (e~xtg(t) )2 dt. (3.6)
•OO J — OC J ~  OC

First integrate by parts the first term on the right hand side of (3.6) to get
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where is zero because as t  —> oo , e - A t 0 and g(t) is bounded as

f —> oo. As t  —> — oo, there will be some time turth such that the dose rate prior to 
this time is zero, so R ^ r t h  — t) = 0, for all t positive. Using this, and the fact that 
g(t) = D(t )ext, we have that

1
A
1
A

poo
1 g(t)e~xtdt
— OO

(3.8)

poo
1 D(t)exte~xtdt
— OO

(3-9)

poo

1 D(t)dt.
—  OO

(3.10)

Also, we know that J^  D(t)dt = D (oo), so we get

Lr oo c
„At '■ 0e g{t)dt =  —D(oo). 

X
(3.11)

To calculate the integral of the second term on the right hand side of (3.6), we 
again perform integration by parts as follows

fJ  —  C

-2At Jlg (t)dt
D- 2 A t

2A -9%0 + -2A t dt. (3.12)

Using the same arguments as above regarding the lifespan of an individual, we
have that 2A -g2(t) =  0. This leads to

/ oo -j roo
e~2Xtg2(t)dt = -  /  g{t)g(t)e~2Xidt.

■OO J  —  OO

Simplify to obtain

(3.13)

fJ  — c

e 2Xtg2(t)dt =
1 f
— / D(s)eXsdsD(t)e~xtdt
^  J  —oo J  —OO

J  f  f  D(s)ex ŝ~^dsD(t)dt
^  J  — oo J  —oo

—  Q
2A

(3.14)

(3.15)

(3.16)
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where G  is the Lea-Catcheside functional

o  roc  p t

G = —  / D(t)  /  e~x(t- a)D{s)dsdt.
J —OQ J  — OO

(3.17)

Now we substitute these results into (3.6) to get

L (oo) =  a \ - — f- c k 5 2 — G (3.18)

(3.19)

which is the LQ Model, with a  — a, and (3
The LQ model, in its basic form, provides a good approximation of most other 

ODE models that incorporate the repairable damage component into the tumour 
cell dynamics, and is a favoured choice due to its simplicity (only two adjustable 
parameters, a  and (3).

The ratio of the two adjustable parameters in the LQ model, a  and (3, has been found 
to correlate with the cell cycle length. Tissues which have a slow cell cycle are 
composed of cells which proliferate slowly. These slow cycling tissues correspond 
with a smaller a/f3 ratio. Brain tissue and the spinal cord are examples of slow 
cycling tissues, both of which have an a / (3 ratio of about 3 Gy. Tissues which have 
a fast cell cycle are composed of cells that proliferate quickly and are associated 
with a larger a / (3 ratio. Most tumours are composed of cells which cycle quickly, 
and have an a / (3 ratio of approximately 10 Gy. It is important to note that in 
radiotherapy, it is usually the case that the slow cycling tissues are those which 
we are trying to protect.

The probability that no malignant cells are left in a specified location after irradia
tion is known as the tumour control probability (TCP). This probability is used to 
determine an optimal treatment strategy where the dose to the tumour is increased 
without increasing the damaging effects of radiation of healthy tissues. In this sec
tion we discuss several models for the TCP of an irradiated tumour.

The most common and simplest expression for the TCP is one which relies 
on Poisson statistics. Let D  be the total radiation dose, and denote the surviving

3.1.1 The a / j 3  Ratio [4]

3.2 TCP Models
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fraction of cells after an application of dose D  by S(D).  Also, assume that the 
number of tumour cells present prior to the treatment is n, which implies that after 
treatment, nS(D )  cells survive. Define a random variable X  which represents the 
density of cells surviving the treatment, and let X  be Poisson distributed. The 
Poisson distribution is the limiting case of the binomial distribution for n  —> oo 
where nS(D )  =  A =  constant  is true. This condition implies that the number of 
cells present before treatment, n, is large, and that survival is a rare event. In the 
case this condition is true, the probability that k  cells survive is given by

\ ke~x
Pr(X  = k) = — , 

with expected value A. Substitute nS(D )  for A to get

Pr(X = k\ = ('nS{D))ke~nS 
k\

Let k  =  0, to obtain the probability that no cells survived the treatment, which 
is the TCP. The expression for the TCP is:

TCP =  Pr(X  =  0) =  e~nS{D). (3.20)

Expression (3.20) is only valid when the cell survival probability is small, and 
the number of cells surviving irradiation is much less than the initial number of 
tumour cells, which are the usual conditions in radiotherapy treatments.

In the following sections we critically discuss some other existing TCP theories. 
In particular, the model of Zaider and Minerbo is of interest, and we extend their 
TCP result in chapter 6.

3.3 TCP Model of Niemierko and Goitein
The biophysical model presented by Niemierko and Goitein [19] is a variation of the 
more general model first described by Goitein, Niemierko, and Okunieff [9]. This 
pared model contains only five parameters, in order to facilitate data fitting. The 
assumptions made are that: tumours are composed of non-interacting clonogens; 
clonogens have varying sensitivities; average tumour sensitivities vary among indi
viduals; and clonogen deaths are considered to be independent events.

Then the surviving fraction of clonogens is estimated using a variation of the 
LQ Model

dl a/0+d\
S(d) = S2 s U / m )  (3.21)

where d is the dose delivered to a clonogen in one fraction, S 2  is the probability of 
that a clonogen survives a 2 Gy dose, and the parameters a  and f3 are the LQ Model 
parameters.
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Variability in a single parameter, namely S 2, accounts for the varying sensitivi
ties among clonogens in an individual as well as among a population. For individual 
sensitivity variation, the values S™6, are assumed to be Gaussian distributed around 
the tumour mean S 2nd with a standard deviation avn(i.. Similarly, for sensitivities 
among a population, the values S l2nd are assumed to be Gaussian distributed around 
the population mean S 2 °p with standard deviation apop. The Gaussian probabil
ity density functions associated with an individual or a population are denoted by 
Gind and Gpop respectively. The TCP associated with this biophysical model is then 
given by:

T C P  = J  GpopT C P indd S f d-

This expression defines a mean value for the TCP of a population, using the 
following that the probability of surviving a dose of i Gy is

dfc / a j/3+dfc \
C _  Q ^ k=1 2 V &/P+2 JO i ~  o 2 ,

with mean

$  =  J  GindS i d S f d.

Also, mean TCP for an individual is given as

T C P ind = e ( -NC^ = ^ Vi'S~i)). (3.22)

Here,

N P  is the number of dose calculation points,
N C  is the number of clonogens,
Vi is the fractional volume associated with dose calculation point i, and
n is the number of fractions.

This model is useful because it includes the effects of varying radiation sen
sitivities among clonogens within a tumour, as well as the varying average clono
gen sensitivities among individuals in a population. Despite these advantages, the 
model calculates only an average TCP for the population, and not the TCP for an 
individual, and is independent of the overall treatment time.

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.4 The TCP Model of Webb and Nahum
The cell density model presented by Webb and Nahum in [27] is an extension of 
the model first proposed by Nahum and Tait [18]. This model incorporates both 
non-uniform clonogenic cell density as well as non-uniform dose. In order to do 
this, consider the tumour to be partitioned into M  small volume elements, and the 
dose and cell density within each of these elements uniform.

The probability that no clonogens survive after the tumour is irradiated by a 
total dose D, for subvolume j  is given by

M  9
e~N0,je J J (323)

3=1

where the initial number of clonogens in the j-th  volume element is defined as 
N qj =  P jV f j ,  and pj is the clonogen density of element j ,  V  is the total tumour 
volume in c m 3, and f j  is the fractional volume of element j .  In Ebert and Hoban 
[12], each subvolume consists of cells with different sensitivities. In this case, 
the TCP is dominated by the smaller values of a jD j ,  or the subvolumes of lower 
sensitivity. These lower sensitivity subvolumes have a substantial effect on the 
tumour response to radiotherapy, and at low doses the TCP is close to zero in these 
regions.

This model is useful due to its inclusion of the effects of an inhomogeneous 
tumour. However, this model depends only on the total dose of radiation adminis
tered, and therefore has no time dependence. This means that despite the treatment 
regimen, if the total dose applied is the same, the TCP will also be identical. This 
model could be improved by including the effects of a time dependent dose func
tion.

3.5 Zaider and Minerbo
A birth-death model earlier described by Kendall in [13], is applied to the radiation 
treatment of cancer by Zaider and Minerbo [29]. This birth-death process can be 
solved to obtain an expression for the TCP, which satisfies T C P ( t ) =  Po(t) where 
Pi(t) is the probability that i clonogens are alive at time t. In this model, the cell 
birth rate is denoted by b, and the cell death rate is denoted by 8. The death rate 
8 is composed of the sum of two components: death due to radiation, h(t), and 
radiation-independent death, d. The radiation death term h(t) is known as the haz
ard rate, and in the case of the LQ survival probability, is h(D(t )) =  (a  +  2(3 D)D.  
The equation for Pt(t), written in differential form, for i >  1, is

dP
~ =  (* — 1)bPi-\{t) — i{b + 8)Pi(t) +  (i +  l)8Pi+i. (3.24) 

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



In (3.24), the first term refers to the probability of gain of one clonogen, the 
second term refers to the probability of no change in number of clonogens, and 
the third term refers to the probability of loss of one clonogen. These three cases 
represent all possible events that can occur in a small time interval.

Equation (3.24) is solved using a generating function A(s, t), and in particular, 
T C P ( t ) =  A(s  = 0, t). The expression obtained for the TCP is as follows:

T C P ( t )  = 1 -

S(t)e (6—d)t

1 +  bS(t)e^b~d̂  f Q dt' (3.25)
tO S ( t / )e(b~ d'>t .

where S(D)  is the survival probability, usually taken to be the the LQ model.
Model (3.25) is perhaps the most intuitive model discussed here, while still in

cluding effects of a time varying dose rate and a radiation-dependent death rate 
component. This model could be extended by including the effects of varying sen
sitivities within a tumour, and we do this in Chapters 4 through 6 .

3.6 Other Variations
As well as obtaining expressions for the TCP, recent studies also look at expressions 
for the NTCP, or Normal Tissue Complication Probability. This NTCP quantifies 
the undesirable effects experienced by the patient due to the radiation treatment. 
Using both TCP and NTCP expressions simultaneously is beneficial in planning 
safer, but still effective treatment regimes.
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Chapter 4

Derivation of an Active-Quiescent 
Radiation Model

In this chapter, we derive a model for the radiation treatment of cancer cells that in
cludes active and quiescent cell phases. The derivation begins from first principles, 
at the microscopic level by considering target sites inside a cell that can potentially 
be damaged by radiation. A target site is damaged when an energy deposition via 
radiation occurs at that site, which we model as stochastic events. Based on this in
formation, we can describe the effects of radiation on the cellular level. The model 
includes a quiescent state, Go, and an active state, which combines Gi,S ,  G 2  and 
M-phases. In Chapter 5, we then perform linear analysis, followed by perturbation 
analysis in order to investigate the model dynamics. We also obtain an interpreta
tion of the model parameters so they can be compared to the LQ model parameters.

4.1 Derivation of an Active-Quiescent Radi
ation Model from First Principles

Radiation causes ionizing charged particles to deposit energy in discrete regions 
along the track they travel. We will call a single energy deposition event a single
hit event, and in the case where a region is hit twice within a sufficiently small time 
interval, we call this a two-hit event. We also assume that all events are stochasti
cally independent[1 1 ].

We split the model derivation into five steps. In Step 1, we look at a single cell, 
and define the probabilities that this cell is damaged by radiation. In Step 2, we look 
at a group of cells, but split this group into two compartments, active and quiescent, 
and apply the results from Step 1 to each compartment. In Step 3, we use radiation 
physics to derive expressions for the damage probabilities. In Step 4, we derive the 
radiation induced death rates for both cell compartments. Lastly, in Step 5 we use
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these derived death rates in an ODE model.

Step 1: One Cell
Consider a single cell, which contains specific sites, called active sites, that are 
susceptible to radiation damage.

Assume that a single cell has n active sites, labelled d\, d2, . . . ,  dm, . . . ,  dn, 
where di, i = 1, . . . ,  m  need two hits to be damaged, and d%, i =  m  + 1, . . . , n 
need only one hit to be damaged.

We consider radiation of energy E.  We define PHi as the probability that ra
diation with energy E  causes the site di to experience a single-hit event in a given 
unit of time At.  Similarly, we define P2H,i as the probability that radiation with 
energy E  causes the site d, to experience a two-hit event in a given unit of time At.  
We expect these two probabilities to be related, due to the fact that a two-hit event 
consists of two separate single-hit events, close in both time and space (see Step 3).

More explicitly,

Next, we compute the probability that at least one site experiences a single-hit 
event. Any of the n sites susceptible to radiation damage can experience a single-hit 
event. For sites 1 to n,

Similarly, we compute the probability that at least one site experiences a two- 
hit event, where only the sites susceptible to two-hit damage need to be considered 
here. For sites 1 to m,

rroo^singie nit dt ciij — r  

Prob(two hits at di) — P2H,i-

Prob(single hit at dt) = Pi

Prob (at least one of the di experiences a single hit) 
= 1 — Prob (none of the di experiences a single hit)

n

(4.1)

Prob (at least one of the di experiences a two-hit event) 
=  1 — Prob (none of the (^experiences a two-hit event)

m

(4.2)
i= 1
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Step 2: Many Cells
Consider a group of cells, where each cell has an associated number of active sites 
susceptible to single-hit damage and two-hit damage respectively. We investigate 
the probabilities that the k-th cell dies after a single-hit, or a two-hit event, where 
cell death is defined as a cell that produces less than 50 offspring.

At this point, we discern between active and quiescent cells. We separate cells 
into these two compartments, where the active compartment includes the cell cycle 
phases G\, S,  G2, M ,  and the quiescent compartment includes only Go- We denote 
the active cells by ui: i = 1 , . . .  ,p, and the quiescent cells by q%, i =  1 , . . .  ,r.

We assume that two-hit events, more commonly called double strand breaks 
(DSB), play a minor role for the quiescent cells, and that when these cells do receive 
a DSB they have a good chance of repairing this lesion. Hence we assume that 
quiescent cell death due to two-hit events is negligible. The active cells, however, 
are affected by two-hit events, which can have an immediate effect.

The probability that a cell dies after experiencing single-hit event is aUk if the 
cell is active, and aqk if the cell is quiescent. Since only the active cells sustain two- 
hit event damage, we define the probability that a cell dies after experiencing a two- 
hit event as bUk. Therefore, the active cell compartment satisfies bUk =  0 (1). Both 
cell types are equally susceptible to single-hit events, and so we assume aUk, aqk =  
0 (1).

For the active cells, we denote the numbers of single-hit and two-hit active sites 
hi and respectively. For the quiescent cells, the associated number of single-hit 
active sites is Hi. Since a two-hit event occurrence is negligible for the quiescent 
cells, we ignore two-hit active sites for these cells.

Recall that hit events are stochastically independent, and that two single-hit 
events close enough in time and space comprise a two-hit event. Then the probabil
ity that an active cell uk dies is

Prob (uk dies) =  aUk Prob (uk has at least one single-hit event)
+  bUk Prob (uk has at least one two-hit event)
— max(aUk, bUk) Prob (uk has at least one single-hit event and one two-hit event).

The probability that a quiescent cell qk dies is

Prob (qk dies) =  aQk Prob (qk has at least one single-hit event).

Using expressions (4.1) and (4.2) we get that
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max(aUk,bUk) 1 -  J J ( 1  -  PHA) 1 -  J J (1  -  P2Hji)

Prob (qk dies) =  aqk ( 1 -  J J (1  -  PHti (4.4)
i= 1

In order to simplify the above probabilities, we make the assumption that all 
active cells are identical, and all quiescent cells are identical. This means that we 
have aUk =  au, aqk =  aq, bUk = b, hH = h, =  g, and H,t = H.

As a result of this assumption, probabilities (4.3) and (4.4) reduce respectively
to

where uk and qk now represent any active or quiescent cell.

Step 3: Radiation Physics
In this step, we derive expressions for the single-hit and two-hit event probabilities 
previously defined as Pn,i and P2h .i ■

The probability that an active site di is hit by radiation in the time interval A t  
is proportional to the energy imparted, as well the time interval. We let D (t ) de
note the dose accumulated at time t, and so R ( t ) =  cj ~  is the radiation dose rate. 
We note that the inclusion of spatial cell distributions could be important as radia
tion can be scattered and altered. However, we assume that the energy imparted is 
homogeneous to leading order. We then have that

Prob (uk dies) =  au ( l  -  (1  -  PH,z)h) +  b (1  -  (1  -  P2H,i)9) (4.5)

-  max(au, b) (1 -  (1 -  PH,i)h) (1 -  (1 -  P2 H,i)9)

and

Prob (qk dies) =  aq ( l  -  (1  -  PH,i)H) (4.6)

Pn,i — S A t E  
= SAtR(t) . (4.7)
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where SR(t) becomes the probability density function of Ph,i-
In order to compute P-m.%, we need to calculate the probability that two stochas

tically independent one-hit events occur close in time and space. We require that 
two single-hits occur in a time interval of length u> in order to produce a two-hit 
event.

Suppose that a single-hit event occurred in the time interval [t — At , t \ .  In 
order to have a two-hit event at time t, another single-hit must have occurred in the 
interval [t — w,t], From above, we know that probability density of a single-hit 
event is 8R(t). So we define

«  F ( 0 )  +  F ' ( 0 ) w  +  0 {lu 2 )

= 5R(t)uj +  0{ui2)

Using this first order approximation for F(u),  we can now compute A//,*-

We substitute these results into (4.5) and (4.6). These expressions are now func
tions of At ,  so we redefine them accordingly. The probability that an active cell dies 
as a result of radiation delivered over a time unit A t  is defined as \I/(At), and the 
probability that a quiescent cell dies as a result of radiation delivered over A t  is 
4>(At). We have that

\P(A£) :=  Prob (uk dies)
=  au (1 -  (1 -  5 A t R { t ) f )  +  b (1 -  (1 -  coS2R 2(t)At )9) 

-  max(au, b) ( l  -  (1 -  8AtR{ t ) )h) ( l  -  (1 -  u52R 2(t)At)9)

F(u>) = Prob (a single-hit event in [it - u , t ])

f  5R(t)dt  
J t — UJ

Expand F(cu) about oj =  0, using that F ( 0) =  0 and F ' ( 0) =  5R(t).

5R(t)dt

P 2 H , i  =  P h ,i F ( uj)

= 5R(t)At5R(t)oo 
= Lu52{R{t))2A t

and
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$ (A t) :=  Prob (qk dies)
=  aq (1 -  (1 -  6AtR( t) )H) .

Step 4: Radiation Induced Death Rates
If P(death) denotes the probability of death in a time unit At, then

r := lim
A t—*0 A t

defines the death rate. In order to find the death rates for both the active and the 
quiescent cells, we expand 'f'(A t) and <f>(At) about A t  = 0.

tf(A  t) =  ^ ( 0) +  ^ '( 0) A f +  0 (A f2)
=  (auh5R(t) +  bgS2ujR2(t))At  +  0 ( A t 2)

$>(A t) = $(0) +  $ '( 0 )A t +  0 (A t2)
=  (aqH 6 R ( t ) )A t  + 0 ( A t 2)

Then the death rates for active and quiescent cells can be computed.

j2 , . d 2 

X2, , D 2

Tu =  2™  (auhSR(t ) +  bg82LuR2(t))At  +  0 ( A t 2)

= auh5R(t)  +  bg5 u>R (t ) (4.8)

T, =  hmo(aqH 5 R ( t ) )A t  + 0 ( A t 2)

= aqH5R(t)  (4.9)

We define A 1 = auhS, A 2 = aqH5, and B  = bgd2co. Then we write (4.8) and
(4.9) as follows:

Tu =  AxR(t)  + B R 2(t) (4.10)
Yq = A 2R ( t ) (4.11)
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Step 5: ODE model
In order to use the above radiation induced death rates r„(t) and Tq(t) in an ODE
model, we first consider a cell cycle model for active and quiescent cells without
the effects of radiation. Let u(t) denote the density of active cells and q(t) denote 
the density of quiescent cells. Further, let f (u )  denote the reproduction of active 
cells, where we assume that the two daughter cells enter the quiescent compartment 
at birth. Moreover, 7  >  0 denotes the rate at which a quiescent cell becomes active. 
Then a simple cell cycle model is given as (see Swiemiak [26])

=  ,T// “>) + 7 ,  « - 12>qt =  2  f ( u )  -  7 q.

Now we include the additional effect of radiation, which interferes only indirectly 
with reproduction.

Ut = - /(u )+ 7? - r u(t)u „
It = 2f(u)  - - f q ~ r g{t)q,

where Tq(t) and Tu(t) are the rates defined above in (4.8) and (4.9).
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Chapter 5

Analysis of the Active-Quiescent 
Radiation Model

In this chapter, we perform both linear analysis and perturbation analysis on the 
model (4.12) derived in Chapter 4. We first analyze the case where the dose rate is 
constant, and then consider the case where the dose rate is time dependent.

5.1 A First Linear Model With Constant Dose 
Rate R

In this section, we perform linear analysis on the active-quiescent model given by
(4.12), with a constant dose rate, R(t)  = R.  We assume that the reproduction rate 
is a linear function of it, so we let f ( u )  =  /it/, with /t > 0. The model is then given 
by the following two ODEs:

ut = ~ n u  +  7<7 — Tuu (5.1)
qt = 2fj.u -  j q  -  Tqq .

We write (5.1) in matrix form

where we refer to the 2 x 2 matrix as J . This system has a unique equilibrium point 
(0,0), for all values of R  ^  R*, where R* is a critical value of R, which gives a 
line of equilibria.

For future reference, we note that the trace and determinant of J  are given by
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tr j  = -/*  -  7 -  ru -  r,
and

det j  =  -^7 + ̂  + 7 ^ +  rur?.

(5.3)

(5.4)

We divide our analysis into four cases determined by the magnitude of the dose 
rate R,  beginning with the instance where there is no radiation.

In this case, either the treatment has not yet begun, which means that the accumu
lated dose is zero, D = 0, or the treatment has stopped, which corresponds with a 
constant accumulated dose, D  = constant .  Both cases imply that the dose rate is 
zero, and that Tu =  T9 =  0 . The trace and the determinant of equation (5.2) are

tr J  =  — / i  — 7  <  0 and det J  =  — /x7  < 0 ,

and hence the unique equilibrium point (0 , 0 ) is a saddle point.

If u ^  0 and ^  0 then (u tl'jt — jau ^  0 . Hence the positive quadrant is 
invariant and positive solutions are increasing in u +  q.

The eigenvalues of J  are

Both components of Z\  are positive, so the unstable manifold lies in the first 
and third quadrants. The second component of Z2 satisfies

5.1.1 No Radiation : R  =  0

Ai,2 =  =*= ^ V V  +  7 ) 2 +  4A*7

and satisfy Ai >  0 and A2 < 0. The corresponding eigenvectors are

and

A2 + /JL =  ^  +  t ) 2 - 4 7 ^  +  M

0 “ +  7) , .. (^ +  7)
o -TV n2 2

< 0,
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so the stable manifold lies in the second and fourth quadrants. This confirms that 
solutions in the first quadrant are increasing in both u and q, and that the first quad
rant is invariant.

q

Figure 5.1: Schematic of the saddle point (0, 0). The unstable manifold enters the 
first and third quadrant and the stable manifold lies in the second and 
fourth quadrant.

Biologically, this means that in the case where there is no radiation adminis
tered, the number of both active and resting tumour cells will increase with time.

5.1.2 Dose Rate Small
Here, the dose rate R  satisfies the condition

R? {'jB +  A.1 A 2  +  A 2 B ) +  R  (1 1A 2  +  7 ^ i)  ^  

so that det J  < 0.
This means we have eigenvalues with opposite signs, \ i  > 0 and A2 <  0, and 

the unique equilibrium point (0 , 0 ) is a saddle point.
The eigenvalues in this case are

* 1,2 =  — — 7' 2  r “— — ±  -  7  -  Tu -  r , ) 2 -  4detJ,

with corresponding eigenvectors

Zl = { \ i + l  + ru) and Z2= (  \ 2 + l  + ru )  •

Since 7  >  0 and Ai +  n  +  T„ > 0, both components of Z x are positive, so the 
unstable manifold points in the positive direction. Also, since Ai > 0, we have that
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~ n  -  7 -  K x -  K 2 1
> -  -  7  -  K ,  -  K 2f  -  4detJ,

2
which implies

A2 +  // +  K \  — 2  V  (—A* — 1 — K \  — K 2)2 — 4detJ
2

+  /r +  K\
/j, + 'y + K i + K 2 n + 'y + K 1 + K 2

<    1- a  +  A i ----------------------- -----------------+  ji +  Au —

=  ~ n  -  7 -  K i  -  i f 2 +  V + K-l

=  - i - k 2  

<  0 .

So the second component of Z 2 is negative, which means that the stable mani
fold can never lie in the positive quadrant (see Figure 5.1).

This case is similar to the case with no radiation. The dose rate is so small that 
the treatment is ineffective, so the number of both active and resting cells continue 
to grow with time.

5.1.3 Critical Dose Rate
In this case, the dose rate satisfies R 2 (7 B  +  A XA 2 +  A 2B)  + R  (fiA2 +  7 ^ 1) =  /ry 
which implies det J  =  0. The eigenvalues are given by

Ai — tr J  — yr 7  

A2 =  0

with corresponding eigenvectors

The system no longer has a unique equilibrium, but a line of equilibria satisfying 
u =  (see Figure 5.2). In this case, the number of tumour cells approaches a
steady-state, which means the treatment is effective only in maintaining a constant 
tumour size.

and

The general solution of the system (5.2) in this case is given by

where Ci = M(o)(^+r„) «(Q)(7+r„)
M+T+r^+r, M+7-f-r\i+r\
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q

line of equilibria

Figure 5.2: Schematic of the line of equilibria in the case of critical R .

5.1.4 Dose Rate Large
In this case we assume that the dose rate R  satisfies R 2 (7B  +  A 1 A 2 +  A ^ B )  +
R  (1 1A 2  + 7 /I 1) >  7 7 , which implies that detJ > 0. We wish to rule out the case 
where (0 , 0 ) is a stable spiral, since this is biologically unrealistic.

To have a stable spiral, we must have (tr J ) 2 <  4-detJ and tr J  < 0 . Using (5.3) 
and (5.4), we have that

(trJ ) 2 =  /r2 +  7 2 +  T2 +  T2 +  2 / / 7  +  2r Fu +  2 7  Tu +  2  [FTq +  2 7  Tg +  2 r uT9 

< —4/^7 +  4/iT9 +  4 7 ^  +  4 r ur 9

Rearranging terms, we obtain the following requirement:

(n -  7 + ru -  rg)2 < - 8rj.
This is impossible, due to the constraints on the parameters, so we can never 

have a stable spiral. Therefore, the unique equilibrium point (0,0) is a stable node 
(see Figure 5.3).

In this case, the treatment causes the number of both active and resting tumour 
cells to decrease to zero with time.

5.2 Singular Perturbation Analysis of the Cell 
Cycle Model without Radiation

The cell cycle and the quiescent phase critically depends on the values of /1 and 7 . 
For this reason, we study the effects of these two parameters on our active-quiescent
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q

Figure 5.3: Schematic of the stable node (0,0).

model. To do this, we use perturbation arguments. First we look at the case where 
there is no radiation. After this case is understood, we analyze the case where the 
model includes the effect of a time dependent death rate due to radiation.

In order to study the effects of the parameters 7  and fj, separately, we need a 
transformation that separates the actions of these two parameters.

5.2.1 A Useful Transformation
The cell cycle model without radiation, presented earlier, in (4.12), is

ut = -fj,u +  7  q (5.5)

Qt = 2fiu -  7 q.

We define new variables,

Z  = u + q (5.6)
W  =  2 u + q,

where Z  is equal to the total number of cells, and W  is equal to newborn cells plus 
the number of resting cells.

We make the necessary substitutions to obtain a system in Z  and W . This new 
system is given by the following ODEs,

Z t = n (W — Z) (5.7)

w t = 7 ( 2  Z - W ) ,

and is equivalent to (5.5). This transformation successfully separated the actions of 
the parameters, ju and 7 , so we use system (5.7) for our analysis.
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5.2.2 The Case of 7  Large and f i =  0(1)
The first case we consider is when the transition rate from the quiescent to the active 
cell compartment is large relative to the reproductive rate. We write 7  =  | ,  and the 
model becomes

Z t = fj,(W -  Z)  (5.8)
eWt = % 2 Z - W ) .

We rescale time so that = \, yielding

Z$ =  e/j,(W — Z)  (5.9)
W 0  = j ( 2 Z - W ) .

Here d is a fast time scale which describes the initial layer, while t  is the slow time 
scale for the long-time behaviour [15]. We expand the variables in the fast system
(5.9) as follows:

Z  =  Zq +  eZ\  +  e2Z 2 • • •
W  = W 0 +  eWi + e2W 2 . . . .

After substitution, we look at the leading order terms to obtain Z Q{) =  0 => 
Zo = constant = Zo(0 ), and

WM =  7(2Zo(0 ) -W b )
= (# o (0 ) -  2 Zo(0 ) ) e " ^  +  2 Zo(0 )

which converges to 2Zq(0) for 1? —> 0 0 .
To match the fast and slow systems together, we let i9 —> 0 0  for the fast system 

solutions, and take these limits as initial conditions for the slow system. The initial 
conditions for the slow system are: z0(t =  0) =  Z o(0) and w0(t =  0) =  2Z0(0).

We expand the variables of the slow system (5.8),

Z  =  z q  +  ez\ + e2 z2 . . .
W  =  Wo + ewi +  e2w2 .. .

and after substitution we take the leading-order terms which give
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z0t = n(w0 -  Z o )  (5.10)
0 =  7 ( 2  z o - w 0). (5.11)

From (5.11) we have that w0 = 2z0, so equation (5.10) reduces to z0t = /j,z0. 
Solving this with the specified initial condition gives

z0(t) = Z 0(0)e^.

This implies that

w0(t) =  2Zo(0)e/ii.

For a fast transition rate from the resting to active cell compartment, we find 
that the total number of tumour cells grows exponentially with rate //.

5.2.3 The Case of /j, Large and 7  =  0(1)
In this case, we assume that the reproductive rate is large relative to the transition 
rate from quiescent to active compartment. We write // =  f .

The slow system is given by

eZt = j i ( W - Z ) ,  (5.12)

Wt = 7 ( 2  Z - W ) ,  (5.13)

whereas the fast system is

Z# = j l ( W - Z ) ,  (5.14)

W# = 6 7 ( 2  Z - W ) .  (5.15)

Using the same process as the previous case, from (5.15), we have

W qq = 0 ,

which implies that
WoO) =  VFo(O).

From (5.14) we have

Zo* =  K W o(0) -  Zo),
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and solving this for Z Q({)) we get

Z o{0) =  e - ^ (Z 0 -  Wb(0 )) +  Wb(0 ). (5.16)

For d —> oo, (5.16) converges to Wo(0) .
As in the previous case of (5.2.2), we match the fast and slow systems together 

by taking ft —» oc in the fast system solutions and take these limits as initial 
conditions for the slow system. The initial conditions for the slow system are: 
zo(t =  0 ) =  ZQ(0) and w0(t =  0) =  ITo(O).

From equation (5.12) in the slow system, we have

0  =  p,(wQ -  z0),

which implies that z0 =  Wq. From (5.13), the second equation in the fast system, 
we replace wq with z0 to get

Z 0t = i {^Zq — Z q)

= jZo,

with solution Z 0 =  Z o(0)e7t.
For reproductive rate large, and transition rate small, the total number of cells 

grows exponentially with rate 7 .

5.3 Singular Perturbation Analysis for a Time 
Dependent Dose Rate

In this section, we study a dose rate R(t)  which varies with time, and investigate 
the effects of the parameters n  and 7  on the system 5.1.

Again, the cell cycle model is given by the following two ODEs:

ut = - / 2 U + ' y q - T u(t)u (5.17)

qt = 2 / j , u - j q - r g(t)q.

5.3.1 Slow Transition Between Active and Quiescent Compart
ments, and Slow Proliferation

The first case we look at is when both 7  and /1  are small. We let

7  =  e7  , jl =  en
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where e is small. Substituting these values into the active-quiescent model (5.17) 
yields

ut = —ejlu + ejq  -  Tu(t)u 
qt =  2 ejlu -  ejq -  Tq(t)q.

Now expand both u and q as follows:

u =  u0 +  eui +  e2u2 + . . .

Q = 7o +  «/i +  e2Q2 +  • • • •

Substitute these expansions into the model, and take the leading-order terms to get 
the system

uot r u(f)uo
Qot = ~~Fq(t)q0.

Solving this system gives

u0(t) + q0(t) = u0 (0)e_ ô +  qo(Q)e~ f ° Tvdt (5.18)

=  u0(0)e~AlD^ ~ B R2(t)dt +  q0(0)e~A2D^

||«o(i) +  9o(i)|| <  + C2e~MD{t). (5.19)

The case of R(t)  = R  = constant  reduces to:

uo(t) +  qo(t) = u0( 0)e~Vut +  go(0 )e_r,!*

IM * ) +  9o(*)|| <  Cie- AlRt- BR2t +  C2e~MRt. (5.20)

We note that equation (5.20) is a modified linear quadratic model, where the 
difference is the addition of the term that accounts for quiescent cell damage due to 
one-hit events.

5.3.2 Transformation With Radiation
Now we apply the transformation (5.6) to the cell cycle model with radiation pre
sented in (5.1). First we calculate the equation for Z  = u + q

%t — t^N — FUN  — TqR
= ( f i - r tl) ( W - Z ) - T q( 2 Z - W )
= (—n + r„ — 2 Tq)z + (qi — ru + r q)w.

We also calculate the equation for W  =  2u + q:
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Wt  =  j R - 2 T uN  - T qR

=  7 ( 2 Z  - W ) -  r q(2Z  - W ) -  2FU( W  -  Z )
= (27 + 2TU -  2Tq)Z  + (r, -  7  -  2ru)W.

The transformed system is:

= (ru(t) — 2r?(f) — fj,)z + (/x — ru(f) + rg(t))fr (5.21)
Wt =  (2Tu(t) -  2r q(t) +  2 i ) Z  +  (Tq(t) -  7  -  2Tu(t))W.

5.3.3 The Case of 7  Large and fj, =  0(1)
Here we again consider the case where the transition rate from the quiescent to the 
active cell compartment is large compared to the proliferation rate. We write 7 =  
and the system (5.21) becomes

zt = {ru - 2 r q - / i ) z  + {fi - r u + r q) w  (5 .2 2 )
eWt =  ( 2 7  -  2eT, +  2eTu)Z  + (eT5 -  7  -  2eTu)W.  (5.23)

We take the leading order terms of (5.23),

2 7 ^ 0  +  (~  7 W0 ) =  0

and rearranging we get W 0 = 2Z 0. We substitute this result into (5.22) to get

Zot =  ( r u -  2Tq -  n )ZQ +  ( ^  -  r „  +  Tq)2Zo

=  (/X -  r u)Z0 (5.24)

which can be solved to obtain

Z0(t) =  z o(0)e{* - AlD® - f i BRa,a). (5.25)

In the special case where R(t)  = R, = constant,  the solution to (5.24) is

Z 0(t) =  Z o(0 )e ^ - AlR- BRa)-t .

If // is small, we obtain a dose rate dependent linear quadratic model with a  = 
A i t  and [3 = Bt.  Notice that the one hit event damage on the resting cells, A 2 has
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no effect in this case. This means that the active cells control the system dynamics 
when the transition rate 7  is large. This agrees with the biological behaviour, since 
new cells would spend much less time in the quiescent compartment before entering 
the active phase of the cell cycle.

5.3.4 The Case of // Large and 7  =  0(1)
Here we consider that the proliferation rate is large relative to the transition rate. 
We write At =  f , and then system (5.21) becomes

eZt =  (eT u — 2eT q — jl) Z  + (£ 1  — eF u + eT q) W  (5.26)
W t = (21 - 2 F q + 2Fu)Z  + (Fq - 1 - 2 F u)W.  (5.27)

We take the leading order terms of (5.26) to obtain

0  =  —fiZo +  (IWq

which implies that Wo =  Z 0. Use this result to simplify (5.27), and it is then given 
by

Zot =  ( 2 7  — ZFq +  2Fu)Zo +  (Tg — 7  — 2Fu)Z q

=  ( 7  -  r q)Z0. (5.28)

We solve (5.28) to get

Zo{t) = Z o( 0 ) e ^ A2D{t). (5.29)

In the special case where R(t) = R,  the solution to (5.28) is given by

Z Q(t) = Z o { ^ - A2R)t. (5.30)

In this case, where the transition from quiescent to active is slow relative to 
proliferation, the A2 .R-term dominates, while the effect of the radiation on the active 
cells does not contribute to the first order system behaviour. Again, this makes sense 
because new cells quickly accumulate in the quiescent compartment, and therefore, 
although less sensitive to radiation, the higher density of cells found here causes 
this compartment to control the system dynamics.
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5.3.5 The Case of /; Large and 7 Large
The case where both 3  and 7 are large corresponds to a fast reproduction rate and a 
fast transition rate from the resting to the active cell compartment. Perturbation ar
guments show that this case reduces to the instance where the death due to radiation 
is negligible, and therefore provides no further insight to the system behaviour.

5.3.6 Model Comparison
We investigate the relationship between the parameters in the active-quiescent model, 
3  and 7, with the parameters in the LQ Model, a  and /?, for the case where R is 
constant. Typically, a small a / (3 ratio corresponds with a slow cell cycle, whereas 
a larger parameter ratio indicates a fast cell cycle. We summarize our findings in 
Table 5.1 below.

Case 3 7 a P
1 small small mm{Ai,A2) B
2 large small A2 0
3 small large A\ B

Table 5.1: Comparison between the parameters in the active-quiescent model, 3  
and 7, and the parameters in the LQ Model, a  and 3 ,  for the case where 
R  is constant.

Case 1

In this case, we have that both 3  and 7 are small, which corresponds with a slow 
cell cycle and a significant quiescent phase. We found that our a j  f3  ratio is equal 
to min(Ai ,A2)/B.  In the classical interpretation, a slow cell cycle corresponds 
with a small a / (3 ratio. Our ratio is relatively small, which confirms this classical 
interpretation.

Case 2

In this case, we have that 3  is large and 7  is small, which corresponds with a fast cell 
cycle. We obtained the ratio a//3 —> 00, which confirms the classical interpretation, 
in which the ratio is assumed to be large.

Case 3

In this third case, we have that 3  is small, and 7 is large. This corresponds with 
slow reproduction and effectively no quiescent compartment. We find that our a j (3 
ratio in this case is A \ f  B. In the classical interpretation, the a / (3 ratio should be
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relatively small.

From this comparison, we find that a large a j (3 ratio indicates the presence of a 
significant quiescent compartment.
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Chapter 6 

Birth-Death Processes

In this section, we derive an expression for the tumour control probability (TCP) 
of system (4.13). The TCP is the probability that no malignant cells are left in an 
affected region. This is a useful tool in predetermining the success of radiotherapy 
treatment over time for a cancer patient.

In order to derive the TCP, we first describe the biological process using a birth- 
death process. This birth-death process is described by a system of infinitely many 
differential equations, which we solve using generating functions. The solutions 
obtained from this system form the components of the TCP. Once derived, the TCP 
determines the success of different treatment strategies.

6.1 The Corresponding Birth-Death Process
A birth-death process is a homogenous, aperiodic, irreducible markov chain with a 
discrete state space, where state transitions can occur only between neighbouring 
states. In our case, the state space of the birth-death process is the number of active 
and quiescent cells, respectively. Also, in our case, the birth-death process will be 
a continuous-time process.

We begin by defining Pi(t) as the probability that i active cells are alive at time 
t, and similarly, Q-j(t) as the probability that j  resting cells are alive at time t. If 
i, j  < 0, then we define Pi(t) and Qj(t)  to be equal to zero. Also, at time equal to 
zero, the density of active cells is defined to be u(0 ), which implies that Pu(0)(0 ) =  
1. At time zero, the density of resting cells is defined as q(0), which implies that 
Qq(o)(0) =  1. We are interested in finding the probability that no malignant cells 
are left in the affected region, i.e. the TCP. In particular, TCP(f) =  P0(t)Q0(t).

In order to determine equations for both Pt{t) and Qj(t),  we must recall the 
biological process we intend to describe. First we consider a single active cell. This 
cell must have entered the active compartment from the resting cell compartment. 
Once a cell becomes active, it can: leave the active cell compartment by replicating;
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undergo cell death due to radiation; or it can remain in the active cell compartment.
Next we consider a single quiescent cell. This cell must have entered the qui

escent compartment from the active compartment. It is important to note, however, 
that when a cell leaves the active compartment, it replicates, and two cells must en
ter the quiescent compartment. This implies that it is never the case that the number 
of resting cells increases by only one. Once a cell has become quiescent, it can: 
leave the quiescent cell compartment by becoming active; undergo cell death due 
to radiation; or it can remain in the quiescent cell compartment.

6.1.1 The Discrete Time BDP
In order to mathematically describe the birth-death process, we consider events that 
can occur in a very small time interval, [t,t + At], One of the conditions of a birth- 
death process is that only one event can occur in this small time interval. Below we 
compute expression for both Pi(t +  At )  and Qj( t  +  At) .

Suppose we have i cells in the active compartment at time t  +  At.  To write 
an expression for Pj(f +  At) ,  we consider what could have happened in the time 
interval [t,t +  At]. There are three possibilities and each possibility corresponds 
with a term in the resulting equation.

•  If there were i + 1  active cells at time t, then in the time interval considered, a 
single cell left the active cell compartment. Cells can leave by dying with rate 
Tu, or by replicating with rate /r. The probability of losing one of i +  1 active 
cells in the time interval equals the product of: the probability of having i + 1  

active cells at time f; the number of cells at time t, which is i + 1 ; the sum 
of the rates at which a cells can leave the active compartment, I u +  /r, and 
the length of the time interval, At. Mathematically, this is (// +  Tu)(i +  
l)Pi+1(t)At.

• If there were i — I active cells at time t, then a single cell entered the active 
cell compartment in the time interval [f, t +  At], The only way which cells 
can enter this compartment is directly from the resting cell compartment, with 
rate 7 . The term that accounts for this case is different from the previous case 
in that instead of multiplying by the number of active cells, we must consider 
how many quiescent cells there were at time t . For this, we use the expected 
value of the density of resting cells at time t, jQj(t)-  The probability 
of gaining one active cell in [f, t +  At] is the product of: the expected value 
of the density of resting cells; the probability of having i — 1 active cells at 
time t; the rate at which quiescent cells become active, 7 ; and the length of 
the time interval, At. Mathematically, this is 7  jQj{t)Pi-i{t)At.

•  If there were i active cells at time t, then no cells have left or entered the active 
cell compartment in the considered time interval. This is calculated by taking
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(Pi(t) — (Probability that a cell left the active compartment in [t. t  +  At] +  
Probability that a cell entered the active compartment in [t, t  +  At])). Using 
our results from the previous two cases, the associated expression is given by
( l - A t ( n i  + r ui +  7 ^ 1  jQj(t ))^Pi(t) .

Now we take the sum of the terms associated with each of the above three cases, 
and obtain an equation for P ^ t  +  At). For i > 1, we have

OO

Pi(t +  At) =  (fjL +  ru)(i +  l)P i+i(t)A t +  7 ^ j Q i (t)P i_1 (t)A t
i =i

OO

+ ^1 — A t (j i i  +  r u
i=i

Here we suppose that we have j  cells in the quiescent cell compartment at time 
t +  At. In order to write an expression for Qj(t  +  At), we consider all events that 
could have occurred in time interval [t, t +  At],

•  If there were j  +  1 quiescent cells at time t, a single cell left the resting 
cell compartment in the time interval considered. Cells can leave by dying 
with rate Tg, or by becoming active with rate 7 . The associated term for this 
case is the product of: the probability of having j  +  1 resting cells at time 
t\ the number of resting cells at time t, j  + 1 ; the sum of the rates at which 
cells can leave this compartment, T9 +  7; and the length of time interval, At.  
Mathematically this is (7 +  Tq)(j  + l)Q]+i{t)At.

• If there were j  — 2 quiescent cells at time t, then two cells entered the qui
escent cell compartment in the time interval [t,t +  At], Cells can become 
quiescent only after a cell replicates, at which point both daughter cells enter 
directly into this compartment with rate /j. The expression describing this 
case is the product of: the probability of having j  — 2  cells at time t; the 
expected value of the number of active cells at time t, the rate
at which cells become quiescent, n\ and the length of the time interval, At.  
Mathematically, this is h Y a L i  iPi(t)Qj~2 (t)At .

•  If there were j  cells at time t, then no cells left or entered the quiescent cell 
compartment in the time interval considered. The probability is calculated 
by taking (Qj(t) — (Probability that a cell left the resting compartment in 
[t,t +  A i]+  Probability that two cells entered the resting compartment in 
[t, t +  At])). Using information from the previous two cases, this expression 

is given by ( l  -  A t ( j j  + Fqj  +
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We take the sum of these three cases to obtain an expression for Qj(t +  At).  
For j  > 0, we have

OO
Qj(t + A t)  = ( 7  + r  q)(j +  l)Q j+ i(t)A t  +  \i iP j( t)Q j- 2 {t)At

i—\
OO

+  ( i  -  A t { j j  + Tqj  + [I (6.2)
i=1

6.1.2 The Continuous Time BDP
We would like to write these equations in differential form. Rearranging the terms 
in both (6.1) and (6.2), we obtain:

Pi(t + At)  — Pi(t) = (fj, +  r„)(z +  l)Pi+i( t )At
00

+ l ^ j Q j { t ) P i - i { t ) ^ t  (6-3)
3 =1

OO
—A t^jii +

i=1

and

Qj(t + A t)  — Qj(t) = ( j +  Tq)(j + l)Q j+i( t )A t
OO

+ /j, '^2 ‘iPi(t)Qj - 2( t)A t  (6.4)
i= 1

OO
- A t ( j j  +  Fqj  +  /X ^  iPi(t))Qj(t).

i=1

Now we divide each side by A t,  and take the limit as A t  goes to zero of each 
side to obtain

l S , P i( f+  a !  ~ m  =  i ' A  [0 ' +  r . ) ( i  +  i ) f l +.W
OO

+ l '5 2 jQ j{ t )P i - i ( t )  (6.5)
3=1

OO
-  (fli + Tui +  7 ^ 2  3 Q3  ( t ) ) ^  (t) 

i=i
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and

i ‘f f o 9 , ( t +  a !  QAt)  =  i™ [ (T ' +  r « )0  +  1) f t « ( <)
OO

+[i'^2 iPi ( t )Qj „2(t) (6.6)
i= 1

OO

~ { l j  +  T q j  +  .
i=  1

On the left hand side of both (6.5) and (6.6), by the definition of the derivative, 
we have P;(f) and Qj(t)  respectively. On the right hand sides of these equations, 
A t  does not appear, so taking the limit as A t  goes to zero leaves them unchanged. 

We write equations (6.5) and (6.6) in differential form as follows:

OO
Pi{t) =  (/i +  r u)(i +  l)P i+1(t) + y ^ T j Q j (t)Pi_ 1(t) (6.7)

j=i
OO

- { n  + Tu)iPi(t) - 7  'Y ^ j Q j (t)Pl (t)
j = i

and

OO

Qjit)  =  (7 +  r , ) ( j  +  l)Qj+i{t) + n  ^2 iP i(t)Q j-2(,t)  (6.8)
i= 1

OO

- ( 7  +  r q)jQ j{t)  -  /x J^ iP i(f)(5 j(f) .
(=1

Equations (6.7) and (6.8) describe the birth-death process of the active-quiescent 
radiation model.

The expected values of Pi(t)  and Qj( t )  are given by the respective densities of 
the active and quiescent cells, earlier defined as u(t)  and q(t),  so we have

OO OO= E iPi(t)andq(t) = E
i=l j = 1

6.1.3 Mean Field Approximation of the Birth-Death Process
The birth-death process above describes the same biological process as the system
(4.13), and in order to show they are equivalent, we derive (4.13) from the birth- 
death process (6.7) and (6.8).
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We begin by multiplying equation (6.7) by i, and then take the sum from i =  1 
to i =  oo of both sides to obtain:

] )  = (fj, + ru) y : i(i +  l )P i+1(t)
i=1 i=1

oo oo

zPi_i(t) (6.9)
j —1 i=l

OO

- ( / /  +  r u) 1 ^ 2  jQ j( t)  J 2  iPi^>-
i~ 1 j—1 i=l

We replace the expected values of Pi(t) and Qj(t) with u(t) and q(t) where 
possible, and simplify to obtain:

^(0 — (̂  + ru) ̂ (̂i + i)2Pi+i(t) — (/̂  + r„) ̂ (̂z + i)pi+i(t)
i—1 i=l

oo oo

+77(0 -  l ) ^ - i (0  +  77(0  X ]  P*-i(0  (6-10)
7 = 1  7 = 1

oo

- ( / i  +  r ^ X ] * 2- ^ )  -7 7 (0 * 0 0 -
i=1

Changing indices, using n =  i — 1 in the third and fourth sums, and m  = i +  1 
in the first two sums, we obtain:

(f) =  ( / / + r u) y ;  m 2p m(t) -  + r u) X !  m p m{t)
m —2 m = 2

oo oo

+77(0 ^ n P „ ( t )  +  7 7 ( 0 l ] ^ ( 0  (6+1)
77=0 77=0

OO

-(/x  +  r u) X / 2p*(0 -7 7 (0 * 0 0 -
t=i

We use that ^ P n(f) =  1 by definition, and add and subtract (// +  r u)Pi(f)
77—0

from the right hand side to obtain
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ii(t) = (fj, + Tu) m 2Pm(t) + (// + Tu)Pi(t) -  (At + rM) y ; mPm(t)
m = 2 m = 2

oo

-(/•* + r„)Pi(i) + 7<7(i) ̂ 2 ( n )Pn(t) + (6-12)
71=0

oo

-(ju  +  r„) ?2Pi(t) -  7  q(t)u(t).
i—1

Again, adjust the indices, and substitute u(t) and q(t) where possible:

OO OO

u(t) = (fj, +  ru) m 2p m(t) -  (jU +  r j  m Pm(t) (6.13)
m = l  m = l

oo

+ 7 9 (i)u(t) +  7 ? ( 0  -  (/i +  r u) i2Pi(t) -  -jq(t)u(t).
i=1

Simplify to obtain the first equation of (4.13)

i(f) = -(qi + Tu)u(t) +  7 9 (f).u

We carry through similar steps for (6 .8 ). Multiply by j ,  and then take the sum 
from j  =  1 to j  =  oo on both sides to obtain:

= (T +  r ^ J ^ ' O '  +  O Q j+iW3=1 3 = 1
oo oo

+/z ^ 2  ip i{t) Y l i Q i - 2(*) (6-14)
»=i  i = i

OO oo oo

- ( 7  + r,) ̂  j 2Qj(t) -  n ^ 2 i P i ( t )  ^ 2  jQj{t).
j=1 i = l  3=1

We again replace the expected values of P*(f) and Qj(t) with «,(/,) and 9 (f) 
where possible, and simplify to obtain
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<K0 — ( 7  +  r g) y ^ ( j  +  i ) 2Qj+i(t)
3 =  1 

oo

- ( 7 + r , ) ^ y  +  i ) « i+iW  ®-i5)
i = i

oo

+f3u(t)
j =i j=i

Adjust indices, using m =  j  +  1 in the first two terms, and n =  j  — 2 in the 
third term to obtain

9(0 =  (7 +  r ?) X ] M 2Qm(0 -  (7 +  r 0  ^ (m )Q m (O  (6.16)
r a = 2  m = 2
00 00

+ //u (0  +  2 ) g n ( 0  -  ( 7  +  r 9) f Q j ( t )  ~  ^ ( 0 9 ( 0 -
n = 0 j=l

We add and subtract (7 +  r ?)Q i(0  from the right hand side, and simplify

9(0 = (7 + r ?) ] ^ M 2Qm(0 + (7 + r 9)<2i(0-(7 + r g)5^(™,)Qm(0
777=2 771=2

OO

- ( 7  + r ?)Q i(0  + iJ,u{t)'Y^nQn(t) (6.17)
71=0

OO

+ 2 / r u ( t )  E Q«(0 -  ( 7  +  r , )  ^ 2 j 2Qj(t) -  fiu(t)q(t).
71=0 j = l

OO

Use that Qn(t) =  1 by definition, and adjust indices to obtain:
77=0

OO OO

q(t) = {1 + Tq) Y J(rn)2Qm{t) + - { 1 + Tq)Y ,(™ )Q m {t)  (6.18)
777=1 771=1

OO

+fiu( t)q(t )  +  2/iu(t) -  (7 +  r q) Y ^ j 2Qj( t )  ~  fiu{t)q(t).
3 =1

Finally, we simplify to obtain the second equation in system (4.13):
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?(*) =  - ( 7  +  r ,)g (i)  +  2/i«(i).
We have shown that the active-quiescent radiation model (4.13) derived earlier 

is the mean field approximation of the birth-death process described by (6.7) and 
(6 .8).

6.1.4 Solution of the Birth-Death Process
We would like to solve the birth-death process, given by the system of infinitely 
many equations

Pi(t) = (/j, + Tu)(i + l)P i+1( t)+  jq{t)P i- 1(t) (6.19)

- ( f i  +  Tu)iPi(t) -  7 9 (f) P*(f)

Qj{t)  — ( 7  +  F9)(j +  l )Qj+i(t )  +  fj,u(t)Qj-2{t) (6 .2 0 )
- ( 7  +  r q)jQ j(t)  -  fiu(t)Qj(t).

In order to solve the system of equations (6.19) and (6.20), we define generating 
functions ^4(s, f) and B(s, f) as follows:

^C M ) = T ,Z o  p i(t)si (6-21)
=T,T=oQj(t)sj - (6-22)

We would like to determine the closed form equations for our system using 
these generating functions. We begin with A(s, t). We have:

F) A ^

w  =  <6-23)
i=0

We substitute the equation for P;(f) into (6.23) to get

dA
~dt

OO

=  5 3  [(A* +  r «)(* +  l)P i+i{t) +  7g(t)Pi_i(f)
i=0

- ( / /  +  Tu)iPi(t) -  7 q(t)Pi(t) sl
OO OO

=  {n +  r u) 5 3  s*(* +  i)P j+ i(f) +  7 9 (f) 5 3  s%pi - i(f)
i= 0  i=0

00 00

- ( f i  +  r u) 5 3  p p ,(f)  -  7 9 (f) 5 3  s ipM -
2 = 0  2 = 0  
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We change indices, using n = i + 1  in the first sum, and m  = i — 1 in the second 
sum to obtain

<94 00 00
—  =  (^ +  r „ ) ^ s " - 1(n )P „(t)+ 7 g (i)  ^ 2 s m+1Pm(t)

n = l  m = 0

' 0  +  r u) _
i—0 2=0

00d A.
Use that Pt{i)isl~l and A(,s, t ) =  P j( t)s \ and make the appro-

2 = 0  2 = 0  
priate substitutions and simplifications to get the closed form equation:

d A  BA
—  =  i q { t ) A ( s  ~ 1) -  (n + Tu) - ( s - l ) .  (6.24)

Now we determine the closed form equation for B(s ,  t). We have that

B B  00
<6-25>

j = 0

Substitute the expression for Qj(t) into (6.25) to obtain

BB OO

y .  [ ( 7  +  r q)( j  +  l)Qj+i(t) + fJ,u(t)Qj-2(t)Bt .3=0

- ( 7  +  r q) jQj ( t )  -  n u t y Qj i t )
OO

= ( 7  +  r,) y  ( j  +  l ) s 3Qj + l (t) +  nu{t)  y  sJQj^2(t)
j = 0 j = 0

OO OO

- ( 7 + r 9) y  j s3Qj {t) -  nu(t) y  ^QjO)-
i = o  j =0

Change indices using that n  =  j  + 1  in the first sum, andp = j  — 2 in the second 
sum to obtain:

dB  00 00
—  =  ( 7  +  r  q) ^ 2 { n ) s n- 1Qn{t) + i i u ( t ) ^ 2 sP+2Qp(t)

77=1 p— 0
OO OO

- ( 7  +  r 9) y  j s 3Qj (t) -  i m { t ) ^ s 3Qj {t).
j = 0 j = 0
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dB
Now we use that — - =  /  j js^~1Qj(t) and B ( s , t ) =  2 _ .Q j( t )s j> and sim-

j=o j =o
plify to get the closed form equation:

J D flTD
—  =  Hu(t)B(s2 -  1) -  ( 7  +  r ?) - ^ ( s  -  1). (6.26)

Rearranging (6.24) and (6.26) we have the system of closed form equations:

dA  dA
dt di

d B  dB

m  . d s (/i + r u( t ) ) ( s - l ) - A 7q ( t ) ( s - l )  = 0 (6.27)

dt +  ^ - ( 7  +  r ,( t ) ) ( s  -  i) -  B/iu(t)(s2 -  1) =  0. (6.28)

This system of two partial differential equations can be solved using the method 
of characteristics. We need to find curves in the (i, s)-plane which reduce the equa
tions in (6.27) and (6.28) to ODEs. Any curve in the (i, ,s)-plane can be described 
by the parametric equations: t = t(w) and s — s(w), where w is the parameter that 
measures the distance along the curve.

We first consider equation (6.27). To determine the initial condition, we sub
stitute t = 0 into (6.21) to get A (s,0) =  which means that at time t =  0 
there are exactly n  active cells in the system. This implies that the curve begins, i.e, 
w = 0, when s = s0, t = 0. In order to solve (6.27) using this method, we need 
to make the coordinate transformation from (s, t) to the new coordinates (s0, w), 
where the new s0 will be constant along the characteristics, and the new variable w 
will vary. The characteristic curve equations are:

dt
dw

^  =  (/i +  r„ ( t ) ) ( s -1 ) .

Solving these, using the required initial conditions t(so, 0) =  0 and
s(s0,0) =  so gives:

t(so,w) = w
s(s0,w) =  e/o™(M+r - M ) ^ ( s 0 - l )  +  l.

We have completed the coordinate transformation from (s, t) to (so, w). Substi
tute s(so , w ) and t(so, w) into (6.27) to obtain the ODE
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dA
dw

-  A j q ( w ) e ^ ^ + r^ ) ) d w ^ o _ i)  = o,

with solution

A (s0,w) = (s0)“(0) exp 

Solve for s0 and w in terms of s and t to obtain:

pw
l ( s 0 -  1) /  q { y ) e ^ ^ T^ dzdy

J o
(6.29)

w (s , t ) =  t
s0( s , t ) =  e-./oro(^+r « W )^ (s - i )  +  i.

Substitute these values for s0 and w  into (6.29) to get the solution to (6.27),

u(0)

x exp i e -fo(»+rAz))dz(s _  i) f  q(y)eSZ^+rAz))dzdy
J  o

Now we consider (6.28). In this case, we solve for B(s, t ) with initial condition 
B(s, 0) =  sq{°) which corresponds to the curve that has initial point s = s0, and 
t  = 0. Again, we want to make the coordinate transformation from (s, t) to (s0, w ) 
in our characteristic equations. The characteristic curve equations are:

—  =  1
dt
dw
ds
dw

= (7 + r,(f))(s-i)
with solutions

t ( s o , w )  =  w

s ( s q ,  w )  =  e J" (7+r*(“ ))A"(s0 - l )  +  l.

We have again made the coordinate transformation from (s, t )  to (s0, w ) .  Sub
stitute s ( s q ,  w )  and f(s0, w )  into (6.28) to obtain the ODE

dB
dw

B pN {w ) \e2fow( ^ ( ^ ( s 0 -  l ) 2 +  2eJo” (7+r ,W )^(So _  i) =  0,
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with solution

r rw
B(so,w) = (s0)9̂ e x p  y ( s 0 — l ) 2 /  u(y)e2J°^,+Fq̂ dz

Jo
pw

+2/i(s0 - l )  /  u ( y ) e J ^ 7+r^ z))dzd w  .
Jo

Again, solve for ,s0 and w in terms of s and t to get:

w (s,t)  = t 

S0( s , t ) =  e_ J’°(7+r»{t))‘if(s -  1) +  1.

Substitute these values for sq and w into (6.30) to get the solution to (6.28),

B (s ,t )  = (e~f°(7+r,(*))<fc(s _  +  1)«(o)

e x p  f - t ( s  — f 0 ( -y+rg(z) )dz  f u ( y ' j e 2 Jo( 'Y+r <l(z ) )d z cl y

L Jo

+2n(s -  l ) e - J ^ +V̂ z))dz [  u{y)eJJ{'1+v̂ z))dzdy .
Jo

6.1.5 The Tumour Control Probability
We can now write the explicit expression for the TCP:

TCP(f) =  P0(t)Qo(t)
=  A(s =  0, t )B (s  =  0, t)
— _  e-/(t))«(0)(i _  e -g(t)y(0)

(6.30)

where

exp —j e  /  q(y)e^v^dy
L Jo

+ye~29̂  f  u(y)e2ĝ y'>dy — 2 fie~9^  f  u(y)e9^ d y  
Jo Jo

f ( x )  = [  (// +  Tu(z))dz,
Jo

and

g (x ) =  [  ( 7  +  r q(z))dz 
Jo

(6.31)
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6.2 Active-Quiescent Model TCP Curves
In order to investigate the behaviour of the TCP (6.31) derived in the previous sec
tion, we look at graphs of the function plotted against time. In order to do this, we 
first determine realistic parameter values.

For an initial number of tumour cells, we use an estimate given in Wyatt et al.
[28], which is 108 cells at diagnosis. Now that we have chosen an estimate for the 
initial number of tumour cells, we must divide these cells into two compartments: 
active and quiescent. Since there is no readily available data on the states of tumour 
cells, we assume half of the cells are in the active state, and half are in the quiescent 
state.

The parameter that is the most difficult to determine is 7 , the transition rate from 
the quiescent to the active cell compartment. Prior to the recognition of this resting 
state, Go was included in the G\ phase, which accounted for a highly variable length 
in the cell cycle. For the parameter 7 , we use an estimate for the transition rate from 
the G\ phase, to the S  phase.

For the parameters A\ and A 2, we use estimates for the a  parameter in the LQ 
model since in both cases the parameters represent damage due to single-hit events. 
For Ai,  the parameter for the active cell single-hit damage, we use a value of a 
for radiosensitive prostate tumour cells. For A 2, the single-hit damage parameter 
for the resting cell compartment, we use an a  estimate for radioresistant prostate 
tumour cells. Similarly, for B,  the term which represents damage due to two-hit 
events, we use an estimate for the (3 parameter in the LQ model for radiosensitive 
prostate tumour cells. These a  and j3 estimates were taken from Leith et al. [14].

We summarize the values of the parameters used in Table 6 .1.

Parameter Value Used Units Reference
u0 1 0 8 / 2 cells [28]
% 1 0 8/ 2 cells [28]
V 0.0655 1/day [25]
7 0.0476 1/day [2 ]

Ai 0.487 Gy" 1 [14]
a 2 0.155 Gy- 1 [14]
B 0.055 Gy- 2 [14]

Table 6.1: Parameter estimates used to generate plots of the active-quiescent TCP.

6.2.1 Constant Dose Rate
In this case, we assume the dose rate is a constant value of 2.75 Gy Day-1 . Figure
6.1 depicts a plot of the TCP as a function of time for this treatment schedule.
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Active-Quiescent TC P for Constant Dose Rate
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Figure 6.1: Plot of TCP versus Time with Constant Dose Rate.

The plot shows that at approximately 750 hours, or one month, the TCP begins 
to increase, which suggests this is when the treatment begins to have a positive 
effect. By 1200 hours, or 50 days, the TCP has reached its maximum value, which 
indicates a high probability of tumour eradication.

6.2.2 Time-Dependent Dose Rate
In this case, we look at a treatment schedule which consists of 25 fractions, with 
each fraction having a dose of 9 Gy. These fractions are administered each morning, 
for a total of 25 days. Figure 6.2 depicts the plot of the TCP as a function of time 
for this schedule. Despite the fact that the last fraction of radiation was given at 
approximately 600 hours, it is only after 500 hours that the TCP begins to increase. 
This increase is followed by drastic oscillations. This dynamical behaviour is not 
well understood and more research needs to be done. The TCP is numerically 
computed, and the algorithm is sensitive to the large initial values for the number 
of both active and resting cells.
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Active-Quiescent TCP for Time Dependent Dose Rate
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Figure 6.2: Plot of TCP versus Time with Time Dependent Dose Rate.
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Chapter 7

Effects of Radiotherapy on the PSA 
Levels of Prostate Cancer Patients

When we began work on this thesis, we were interested in modeling the correlation 
between the effectiveness of a radiotherapy treatment and the level of prostate spe
cific antigen (PSA) in a prostate cancer patient. Shortly after this work had begun, 
we obtained data which contained PSA levels for more than 700 prostate cancer 
patients throughout their respective treatments.

Newly diagnosed prostate cancer patients are usually treated with either radia
tion therapy, orchidectomy (a surgical procedure to remove the testes), or hormone 
therapy. After this initial treatment, patients are monitored to determine the success 
of the treatment. More specifically, it is important to know early if the cancer will 
recur. It is in this monitoring process where PSA is a helpful tool.

PSA is a serum biomarker produced by the prostate tissue, which can be eas
ily measured from a blood sample. Although healthy men produce this antigen, 
prostate cancer patients exhibit higher levels of PSA. Also, PSA levels correspond 
with the severity of the cancer. Both surgery and radiation cause a decrease in PSA 
level, and if the treatment was effective, the PSA will remain at a lower level. How
ever, if the treatment was not successful, as the cancer begins to regrow, the PSA 
level will increase accordingly. Most often, an increase in PSA level is detectable 
before the tumour is clinically detectable. Treatment failure is characterized by 
three consecutive increases in PSA level post treatment (American Society of Ther
apeutic Radiology and Oncology).

In this chapter, we review the literature that motivated this work, include some 
information regarding the available data acquired from the Cross Cancer Institute 
(CCI), and discuss future work.
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7.1 The Model of Dayananda, Taylor and 
Whiting

In [7], Dayananda, Taylor, and Whiting use a deterministic model, previously pre
sented by Kaplan et al. in [10], as a foundation for a stochastic model for the impact 
of radiation on the PSA level.

In the deterministic model, X ( t )  denotes the PSA level at time f, and the PSA 
increase caused by tumour growth is defined as a X  (t ). Also, assume that treatment 
is applied at time t =  0, and that the PSA decrease due to radiation therapy is ke~at, 
where k  represents the intensity of the treatment, and a represents the intrinsic 
decay in tumour cells. Then the differential equation for the change of PSA level 
with respect to time is given by

d X
—  = a X ~ k e ~ at. (7.1)
at

With the assumption that at time t =  0, the PSA level was m, or X  (0) =  m, the 
solution to (7.1) is

X (t)
k

m  —
a + a

eat +
k

a + a
e . (7.2)

Based on the biological assumptions, from this solution the success of the ther
apy can be determined. If m <  then the treatment was successful, and no
relapse occurs. However, in this case, X (t ) decreases to zero, and then becomes
negative which is not biologically feasible. If then X ( t )  has a
minimum, so after the initial decline in X ( t ) ,  a relapse occurs. Lastly, in the case 
where m  > the treatment was not successful, and a relapse occurs immediately 
post-treatment.

In this deterministic model, the success of a given treatment is determined by 
the initial value m  o f  X (t) .

In order to derive the stochastic model, Dayananda et al. assume that X  (t) is a 
discrete random variable which takes nonnegative integer values. Then the change 
in X ( t )  can be written as a birth-death process, where our interval of interest is 
defined as [i, t +  St}.

P { X ( t ,  t +  8t) = n  +  f \X ( t )  = n )  = an5t (7.3)

P { X ( t , t  + St) = n — l \X ( t )  = n} = ke~atStn  (7.4)

We define the probability that X ( t )  =  n  as pn(t), and then the difference-differential
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equations for this process are as follows:

=  n ( t ) k e -  (7.5)

and for n  > 0

dPljf*  =  ~ { a n  +  ke~at)pn(t) + a (n  — l)pn_i(t)  (7.6) 

+ke~at(n + l)pn+1(t).

Using the standard generating function G(z, t), the following PDE is derived:

^  =  a z ( z - l ) ~  + ke~at (7.7)

As in the deterministic case, we assume that X(O') = m  which corresponds with 
the boundary condition

G(z ,0 )  = z m. (7.8)

The solution to (7.6) is, for n  >  1,

A.W  =  (7.9)

where u(t) =  — e-(a+a)t)_
Using data for PSA level profiles of prostate cancer patients, Dayananda et al 

compare the fit of both the deterministic model and the stochastic model. Covariates 
depending on an individual patient, the stage and grade of the cancer, and the treat
ment characteristics are hypothesized to have a significant influence on the values 
of the parameters a, a, and k.

The only obvious advantage of the stochastic model versus the deterministic 
model is that the PSA level will never become negative in the stochastic case. The 
assumption that the PSA level takes only discrete values hinders the model’s accu
racy, whereas the deterministic model has the capability to predict all possible PSA 
values. Also, both models presented in [7] assume that the treatment is adminis
tered at time t =  0, which prevents the model from being able to track the PSA 
levels throughout the therapy, which could in reality extend over several weeks or 
months.

Both the stochastic model and the deterministic model were fitted to data for 
the PSA levels of prostate cancer patients, and the parameter values obtained were 
a = 2.17yr-1, a  =  2.83yr-1 , and k = 60yr-1 [6]. No error bound information was 
provided in this paper.
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7.2 The Data
In February 2004, we made contact with Dr. David McGowan, at the Cross Cancer 
Institute. In 1988, he developed a database to record prostate cancer patient data. 
Now the database contains information for 771 prostate cancer patients of the CCI 
throughout the course of their respective treatments. The database includes infor
mation such as the grade of cancer, patients respective treatments, their PSA levels 
throughout the course of the treatment, and follow-up information after treatment 
had been completed.

The prostate cancer patients of the Cross Cancer Institute (CCI) were treated 
using either one of, or a combination of, radiation therapy, orchidectomy, and hor
mone therapy. We were interested in studying the case where patients were treated 
exclusively with radiation therapy, so the first step was to determine which group 
of patients fell into this category. Out of the 771 total patients, 175 had received 
an orchidectomy or hormone therapy (either exclusively, or in combination with 
radiation therapy).

Another consideration was the PSA testing method used. Until March of 1999, 
the CCI used the Hybritech PSA testing method. During this month, they began 
to use a different PSA measuring system, called the Roche Assay method. Each 
method used different test reagents, which resulted in slightly different PSA read
ings. Out of the 596 patients who were treated with only radiation therapy, 362 
were treated when the Hybritech system was in use, and only 6 were treated when 
the Roche system was in use. We decided to use only the data from those treated 
prior to March 1999. The last consideration before working with the data was to 
eliminate patients who had fewer than 3 PSA-level entries, which was the chosen 
minimum number of points to perform the data fitting, as well as the patients whose 
data contained errors, such as an invalid date. After these patients were identified, 
and removed from the list, there were a total of 258 patients who satisfied the re
quired criteria.

7.3 Data Fitting to Deterministic Model
Based on our data, we critically discuss Kaplan’s deterministic model (7.1). As 
we fitted Kaplan’s model to our data, we found that many biologically realistic 
properties were neglected in the model. This in turn motivated us to study a more 
detailed model in Chapters 4-6.

Using the data for 258 prostate cancer patients who had undergone only radia
tion therapy, we were able to determine the parameters for the deterministic model
(7.2). In order to do this, we used a least squares method to fit the model to each 
individual patient, and after doing this, took the average values over the data set of 
the three parameters a, a, and k. The average values of these parameters for our
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data, with the respective standard deviations, as well as the parameter values found 
by Dayananda et al., who used prostate cancer data from the University of Michigan 
Cancer Center, are given in the table below.

Parameter Average Value Found 
(year-1)

Standard Deviation 
(year-1)

Dayananda’s Value 
(year-1)

a 2.9406 7.4937 2.17
a 1.1518 2.1511 2.83
k 66.7093 129.7624 60

Table 7.1: A comparison of the Kaplan deterministic model parameters obtained 
by us using prostate cancer data from the CCI, and those values ob
tained by Dayananda et al. using prostate cancer data from the Univer
sity of Michigan Cancer Center.

7.3.1 Critical Analysis of Kaplan’s Deterministic Model

In some cases, the fit appeared to be quite good, and the parameter estimates found 
by Dayananda et al. were accurate. We show two such cases in Figures (7.1) and
(7.2) below.

Patient 56, k=80.3155, alpha=0.33856, a=4.796

  Data
 Daya Fit

Time (Years)

Figure 7.1: Fit for patient 56. k  =  80.3155, a  =  0.3386, a  =  4.7960, and 
m  =  8 .2 .

PSA Decreases to Negative Values

In the case where the treatment is successful, the model predicts that the PSA will 
continue to decline with time, predicting negative PSA values in finite time. Re
alistically, if the treatment is successful, the PSA level should decrease with time
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Patient 22, k=12.0307, alpha=1.1552, a=1.1148

—  Data 
 Daya Fit

E 4

Time (Years)

Figure 7.2: Fit for patient 22. k  =  28.8867, a  =  1.7760, a  =  1.7461, and 
m  =  8 . 2 .

until it reaches a healthy base level. Once this base level has been reached, the PSA 
should remain at this constant lower healthy level. An example of the prediction of 
negative PSA values can be seen in the Figure 7.3, where the value of PSA after 2.6 
years is -0.0786 ng/ml.

Patient 435, k=28.8867, alpha=1.776, a=1.7461
10

  Data
 Daya Fit8

E 6 
c
o> 4 
>OJ
<co 2 0. *

0

•20 0.5 1 1.5 2 2.5 3
Time (Years)

Figure 7.3: Fit for patient 435. k  =  28.8867, a  =  1.7760, a  =  1.7461, and 
m  =  8.2. Notice that Kaplan’s model predicts negative values.

No Initial Rise in PSA Levels

In many cases, the data shows an initial rise in the PSA level, before decreasing. The 
model does not have the capacity to predict this initial increase. Figure 7.4 shows 
a case where there is an initial increase with a plot of the deterministic model fitted 
to this data.
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Patient 4, k=13.748, alpha=0.49426, a=0.50285

  Data
 Daya Fit

E 20

® 15

co 10

Time (Years)

Figure 7.4: Fit for patient 4. k  =  13.7480, a  =  0.4943, a  =  0.5029, and m  =
13.8. Notice the initial rise in PSA level.

Treatment Assumed to be Instantaneous

In this model, it is assumed that the treatment is applied at time t  = 0. Also, 
it is assumed that the PSA level just prior to treatment is m, which is written as 
X (0) =  m. This implies that the treatment is instantaneous, which is unrealistic. 
Radiation therapy schedules usually last weeks, and the dose is given in daily frac
tions. In the data, there are cases in which the treatment appears initially successful, 
followed by a recurrence, followed by a decrease in PSA. This is probably a result 
of fractionated therapy, which most of the patients received. (It is not the case that 
treatment was applied only at time t  — 0.) An example of an instance where the 
model fails to describe a decrease in PSA is seen in Figure 7.5.

Patient 57, k=181.9813, alpha=0.34677, a=5.3609
120

—  Data 
 Daya Fit100

Eoi
c

§  60 0)
£  40

Time (Years)

Figure 7.5: Fit for patient 57. k  =  181.9813, a  =  0.3468, a  =  5.3609, and 
m  =  37.0. At 6 years, there is decrease in PSA, probably due to a 
second treatment.
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Negative a and k Values

When fitting the deterministic model to our data, there were some cases where a  
or a were negative. In the model derivation, it is assumed that all parameters are 
nonnegative, and the analysis of the model is carried out using this assumption. Due 
to this, we are unable to apply the theoretical results to our data. The parameter 
a  represents the rate at which the PSA level is influenced by the tumour. In the 
case that a  is negative, it means only that the PSA is decreasing, which presents 
no problems. The parameter a represents the decay of the therapy effects. In the 
case that a is negative, this means that the therapy benefits to the tumour increase 
exponentially with time. In Figures 7.6 and 7.7, we show a case where a  is negative, 
as well as a case where a is negative.

Patient 58, k=1.3466, alpha=0.08427, a=-0.13617

—  Data 
 Daya Fit

E
c
0
>_0
<COCL

Time (Years)

Figure 7.6: Fit for patient 58. k  =  1.3466, a  — 0.0843, a  =  —0.1362, and 
m  — 8.5. Notice that the a  value is negative.

7.4 Development of a New Model
As shown in the previous section, the deterministic model (7.1) is not biologically 
realistic. In order to improve this model, it is important to include dose rate depen- 
dance so it is possible to monitor the cumulative effects of the treatment, regardless 
of the treatment schedule. Also, although it is usually assumed that only viable 
cells secrete PSA, we believe that the secretion difference in active and resting cells 
should also be considered, as this could have an impact on system dynamics. The 
model from Chapter 4-6 needs to be extended to include PSA dynamics. Then, a 
new fit of this model to our CCI prostate cancer data set should be done.
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Patient 651, k=33.8459, alpha=-0.65394, a=0.70749
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Figure 7.7: Fit for patient 651. k  =  33.8459, a  =  —0.6539, a  =  0.7075, and 
m  =  64.0. Notice that the a  value is negative.
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Chapter 8 

Discussion

In this thesis, I mathematically describe the radiation treatment of cancer cells, be
ginning at the cellular level. Using this mathematical description, which consisted 
of a system of two ODEs, I was able to subsequently derive an expression for the 
TCP, which is useful in determining the outcome of a specific treatment schedule.

Initially, my motivation came from examining the relationship between the radi
ation treatment of prostate cancer tumours, and the change in PSA levels. I applied 
an existing model of Kaplan et al. to a data set obtained from the CCI, which con
sisted of PSA levels for 258 prostate cancer patients throughout the course of their 
respective radiotherapy treatments. The shortcomings of Kaplans model motivated 
me to further investigate the effects of radiotherapy on cancer cells. These effects 
have been studied extensively for many years. The first widely recognized math
ematical model of this process came only in 1966, when the LQ model was first 
developed. Many later mathematical models of the radiation treatment of cancer 
have considered an inhomogeneous cell population of varying radiosensitivities, 
without classifying the mechanism behind these variations. It is only recently that 
the quiescent, or Go, phase was recognized as a cellular state which the cell can 
enter from the classical four phase cell cycle. It has been shown that cells in this 
quiescent state are less sensitive to radiation than cells which are proliferating. For 
this reason, I felt it was important to consider this resting state when developing our 
model. I proceeded to divide the cell population into two compartments: a quies
cent compartment G0, and an active compartment, which includes the G\, S, G?, 
and M  phases of the cell cycle. The derivation of the active-quiescent radiation 
model began from first principles, where I considered how radiation affects a single 
cell. Once cell specific target sites that could be damaged via energy deposits were 
established, the model was extended to groups of cells in the two respective com
partments. The result of this derivation was a system of two ODEs, which includes 
the effects of a time-dependent radiation dose rate, and incorporates the dynamics 
of the active-quiescent cell cycle (see 4.13).
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Once the active-quiescent radiation model was established, I was interested 
in studying the effects of the two parameters which governed a cells movement 
through the quiescent and active phases. The first parameter, /i, describes the pro
liferation rate, and the second parameter, 7, describes the transition rate from the 
quiescent to the active cell compartment. Using perturbation analysis, I found that 
the relative sizes of these parameters have a significant effect on the solutions of the 
active-quiescent system. When /j, and 7 are both small, I obtain a modified linear- 
quadratic model. When 7  is large and n  is small, I found that the one-hit event 
damage on resting cells has no effect, while when /i is large and 7 is small, the 
effect of radiation on the active cells does not contribute to the leading order system 
behaviour.

Further, I was interested in comparing the active-quiescent model with the LQ 
model, which is the standard model used when modeling the effects of radiation. 
The size of the ratio of the two parameters in the LQ model, referred to as a / (3 ratio, 
has been hypothesized to correlate with the length of the classical four phase cell 
cycle. My comparison of these two models led to the confirmation that a large a / [3 
ratio corresponds to a fast cell cycle, and a smaller a / (3 ratio corresponds with a 
slow cell cycle. I hypothesize that a large a / [3 ratio indicates a significant quiescent 
compartment.

My next goal, following the model analysis, was to extend the results of Zaider 
and Minerbo by deriving an expression for the active-quiescent TCP. To do this, 
I follow a similar method as that used in [29], The first step was to extend my 
model to a nonlinear birth-death process (see 6.7, and 6.8). Following this, I was 
able to solve this system of infinitely many differential equations using generating 
functions. Once the solution was obtained, I found an explicit expression for the 
active-quiescent TCP, or the probability that there are zero tumour cells at time t. 
This expression can be used to analyze a variety of treatment plans of varying dose 
rates, number of fractions, and overall treatment time.

8.1 Further Studies
In order to extend the model presented in this thesis, I would like to investigate 
the effects of the active-quiescent cell cycle on the PSA level during radiotherapy 
treatment of prostate cancer. This could be accomplished by adding a third equation 
to the active-quiescent model which determines the PSA level during treatment. 
This three-ODE model could then be fitted to the CCI data set to determine the 
effects of the quiescent phase on cell PSA secretion.
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