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Abstract

The interaction between phytohormones is an important mechanism which controls growth and developmental processes
in plants. Deciphering these interactions is a crucial step in helping to develop crops with enhanced yield and resistance to
environmental stresses. Controlling the expression level of OsAP2-39 which includes an APETALA 2 (AP2) domain leads to
phenotypic changes in rice. Overexpression of OsAP2-39 leads to a reduction in yield by decreasing the biomass and the
number of seeds in the transgenic rice lines. Global transcriptome analysis of the OsAP2-39 overexpression transgenic rice
revealed the upregulation of a key Abscisic Acid (ABA) biosynthetic gene OsNCED-I which codes for 9-cis-epoxycarotenoid
dioxygenase and leads to an increase in the endogenous ABA level. In addition to OsNCED-1, the gene expression analysis
revealed the upregulation of a gene that codes for the Elongation of Upper most Internode (EUI) protein, an enzyme that
catalyzes 16a, 17-epoxidation of non-13-hydroxylated GAs, which has been shown to deactivate gibberellins (GAs) in rice.
The exogenous application of GA restores the wild-type phenotype in the transgenic line and ABA application induces the
expression of EUI and suppresses the expression of OsAP2-39 in the wild-type line. These observations clarify the
antagonistic relationship between ABA and GA and illustrate a mechanism that leads to homeostasis of these hormones. In
vivo and in vitro analysis showed that the expression of both OsNCED-1 and EUI are directly controlled by OsAP2-39.
Together, these results reveal a novel mechanism for the control of the ABA/GA balance in rice which is regulated by OsAP2-
39 that in turn regulates plant growth and seed production.
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Introduction

Plant hormones have synergistic or antagonistic effects on the

physiological processes associated with growth and development.

ABA and GA are hormone partners and act through a

complicated network of antagonistic interactions. The coordina-

tion and interaction between phytohormone is essential to achieve

normal growth and development. In Arabidopsis (Arabidopsis

thaliana), a high endogenous level of ABA causes a reduction in

the endogenous level of GA [1], and vice versa [2]. ABA generally

regulates development by retarding plant growth, although there is

recent evidence suggesting a growth promotion effect of ABA

through reducing ethylene synthesis [3–5]. On the other hand, GA

promotes growth and is involved in seed germination, leaf

expansion, shoot and root elongation, and flowering and shoot

fruit development [6]. These antagonistic hormones have a mutual

biosynthesis, signalling and catabolism inhibition relationship [7].

Some components of the relationship between the GA and ABA

synthesis and signalling pathways have been elucidated. For

example, it has been shown that the upregulation of the ABA

biosynthesis gene XERICO is controlled by the DELLA protein

which is a negative regulator of GA response in Arabidopsis [7].

Further, GA suppression has been shown to occur through the

ABA-inducible protein kinase (PKABA1) present in the aleurone

layer of barley [8,9]. In addition, the FUS3 transcription factor

which specifies cotyledon identity in Arabidopsis has also been

found to regulate the synthesis of ABA and GA during late

embryogenesis [10,11]. However, a number of issues regarding

this relationship are still unclear [12–14].

Transcription factors control a variety of physiological processes

through altering the expression of genes involved in metabolic

pathways including hormone biosynthesis and signalling in plants.

One set of these is the large APETALA2 (AP2) transcription factor

family [15]. AP2 proteins are found only in plants and their unique

feature is that they include the AP2 DNA-binding domain. For

instant, there are 139 and 122 AP2 putative family genes in rice

(Oryza sativa L. subsp. japonica) and Arabidopsis respectively [16].

The AP2 gene family plays a variety of functions throughout plant

growth and development including the regulation of several

developmental processes like floral organ and epidermal cell
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identity, and they are involved in the mechanisms used by plants

to respond to various types of biotic and abiotic stresses (e.g.

(Shukla et al., 2006 [17]; Tang et al., 2005 [18]). The AP2 domain

specifically binds to the GCC box (the consensus DNA binding

motif is AGCCGCC) which was originally identified as an

ethylene response element (ERF).

The AP2 gene family has been found to control a wide range of

physiological processes including through the regulation of genes

involved in hormone metabolism and signalling. In Arabidopsis,

the DWARF AND DELAYED-FLOWERING 1 (DDF1) [19]

and the LEAFY PETIOLE (LEP) are AP2 transcription factors

involved in regulating GA metabolism and signalling [20]. In

addition, the JERF1 is an AP2 transcription factor which

modulates the expression of an ABA biosynthesis-related gene in

tobacco [21]. Ectopic expression of AP2 related genes in plants

causes a variety of phenotypic changes. While overexpression of

JERF1 increases salt and cold tolerance in tobacco, overexpression

of DDF1 caused late flowering and a dwarf phenotype in

Arabidopsis. These phenotypic alterations were apparently due

to an alteration in the endogenous hormonal balance in the plant.

The OsAP2-39 gene which codes for a member of AP2 family in

rice was initially identified as a strong nitrogen-responsive gene

and was transformed into rice. The purpose of this work was to

determine its role in controlling growth and development.

Expression profiling data revealed the change in the expression

of a large number of genes in the transgenic lines overexpressing

OsAP2-39 including some key hormone biosynthetic and catabolic

genes. We found that overexpression of OsAP2-39 increases the

endogenous level of ABA in rice through a direct regulatory

interaction between OsAP2-39 and a key ABA-biosynthesis gene

(OsNCED-1). In addition, either a high level of ABA or the direct

action of OsAP2-39 induces the expression of the ELONGATION

OF UPPER MOST INTERNODE I (EUI) gene [22–24]. EUI

reduces the level of the bioactive forms of GAs by epoxidizing the

active GAs in rice. Therefore, overexpression of EUI causes a

dwarf phenotype whereas mutation within this gene increases the

internode length in rice. The alteration in the ABA/GA ratio due

to the OsAP2-39 overexpression leads to a pleiotropic phenotype

including short stems, decreased tiller and panicle number, late

flowering and a low percentage of seed filling. Consequently,

transgenic plants have a much lower seed yield than does the wild-

type. Therefore, OsAP2-39 is a key participant in ABA synthesis

and GA catabolism in rice and is involved in maintaining hormone

homoeostasis which is crucial for normal plant growth and

development.

Results

The Rice OsAP2-39 Gene Sequence Analysis
The rice genome codes for 139 putative AP2 family proteins

with a variety of functions and domain structures [16]. The

OsAP2-39 (Os04g0610400) cDNA was isolated by using a PCR

strategy and cloned using standard protocols. The OsAP2-39

cDNA is composed of 666 bp and the genomic sequence contains

no introns. The Protein Basic Local Alignment Search Tool

(BLASTP) available at the National Center for Biotechnology

Information (NCBI) website (http://blast.ncbi.nlm.nih.gov/Blast.

cgi) showed that OsAP2-39 codes for a single AP2 domain present

at the N-terminal part of the protein. This domain includes 11

putative DNA-binding sites (Figure 1A) implying a strong binding

capacity. The OsAP2-39 protein is about 22.8 kDa with a

predicted average pI of 9.62. The hydrophobicity profile indicates

that OsAP2-39 domains are mostly hydrophobic and is a folded

protein (Figure 1B). Sequence and phylogenetic analysis showed

that OsAP2-39 is similar to other AP2 family members only within

the AP2 conserved domain, but the rest of the protein sequence

does not have a high level of similarity with other rice proteins

(Figure 1C) or proteins from other plant species. Based on the

BLASTP search results, a deduced amino acid sequence from

Author Summary

Hormones play an important role in controlling plant
growth and development through a dynamic and
complicated set of interactions. ABA and GA are well-
known as antagonistic partners although the mechanism
through which this occurs still needs further elucidation. In
this project, we found that a transcription factor isolated
from rice and coding for the AP2 domain (OsAP2-39)
directly controls a key ABA biosynthetic gene (OsNCED-1)
and also a gene that codes for a GA deactivation protein
(EUI). In addition, we show that ABA induces the
expression of EUI which in turn would lead to GA
deactivation. ABA also suppresses OsAP2-39 expression
which would lead to a reduction in ABA synthesis.
Therefore, OsAP2-39 links the ABA production and GA
deactivation processes which results in ABA/GA balance
and homeostasis.

Figure 1. OsAP2-39 (Os04g52090) has unique features among the
AP2 gene family. (A) Schematic representation of OsAP2-39 protein
domain structure showing the location of the AP2 domain and the
DNA-binding sites (indicated by shaded triangles). (B) A predicted
secondary structure of the OsAP2-39 protein based on the hydropho-
bicity profile showing that it is mainly hydrophobic and codes for
folded peptides. (C) Neighbour-Joining phylogenetic analysis of OsAP2-
39 protein in the context of closely related AP2 proteins from rice. Tree
topology with bootstrap support based on a percentage of 1000
replicates is constructed using the Clustal X and MEGA programmes.
OsAP2-39 (Os04g52090) outgrouped in the tree indicating overall
protein sequence dissimilarity.
doi:10.1371/journal.pgen.1001098.g001

OsAP2-39 Controls ABA and GA in Rice
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maize (Gene Bank accession number ACG28382) has the highest

degree of homology with OsAP2-39 (65% identity and 69%

similarity).

OsAP2-39 was localized in the nucleus of the onion epidermal

cells when it was fused with the C-terminal part of the GFP

(Figure 2). Although OsAP2-39 does not code for a conventional

nuclear localization signal, a prediction of subcellular localization

using bioinformatics tools such as LOCtree of the University of

Colombia available at (http://cubic.bioc.columbia.edu/cgi-bin/

var/nair/loctree/query) showed that OsAP2-39 is a nuclear

protein with a 95% chance of possibility. Together the sequence

analysis and the subcellular localization results of OsAP2-39

suggest that this protein is a transcription factor.

Altering expression of OsAP2-39 in Rice Causes
Pleiotropic Phenotypes

The OsAP2-39 cDNA was constitutively overexpressed in rice

under the control of a corn ubiquitin promoter. Four independent

transgenic lines were chosen for further studies using the

phosphomannose isomerase (PMI) activity assay [25] as a

selectable marker. These transgenic rice plants had pleiotropic

phenotypes which led to overall biomass reduction (Figure 3A–

3C). These included less green leaves at the 1–2-weeks old stage,

shorter inter-nodes including the upper most one, fewer leaves and

tillers (Figure 3B), reduction in seed yield (Figure 3C), and delays

in flowering by 1 to 2 week. The transgenic plant height was

reduced by 55%, tillers by 75%, and the number of the leaves by

74% comparing with the wild-type plants. Consequently the yield

of the transgenic plants was less than the wild-type by about 80%

(Figure 3B). The root system of the transgenic lines is also affected

by OsAP2-39 overexpression. It has about 30% less total length,

surface area, average diameter, and number of tips than the wild-

type (Figure 4 and Figure S1).

Wild-type plants transformed with an RNAi construct designed

to block the production of OsAP2-39 were made. Of the initial

lines produced, 5/29 initial transformed plants showed a decrease

in the level of OsAP2-39 transcript of up to 5-fold (Figure 5A).

While overexpression of OsAP2-39 leads to an increase in gene

Figure 2. OsAP2-39 is localized in the nucleus. OsAP2-39 is fused
to GFP and bombarded into onion epidermal cells. (A) GFP is in the
nucleus of a transformed cell (B) Nucleus of onion epidermal cells
stained with 49-6-Diamidino-2-phenylindole (DAPI). (C) Merged image
of (A) and (B).
doi:10.1371/journal.pgen.1001098.g002

Figure 3. Overexpression of OsAP2-39 causes a pleiotropic
phenotype in rice and significantly reduces the yield and the
Harvest Index (HI). 4-week old wild-type and transgenic rice plants
demonstrates the effect of the OsAP2-39 expression on the phenotype
(A); height and number of tillers and leaves (B); and the biomass (C).
doi:10.1371/journal.pgen.1001098.g003

Figure 4. The size of roots system is significantly reduced by
the OsAP2-39 overexpression in rice. The root system of the
transgenic line is about 30% smaller than the Wt.
doi:10.1371/journal.pgen.1001098.g004

Figure 5. Alteration the expression of OsAP2-39 affects the
expression level of ABA and GA related genes are altered in
the transgenic rice. Quantitative gene expression analysis using qRT-
PCR of several genes showed variation between the wild-type and the
transgenic line. (A) Knocking down the OsAP2-39 reduces the
expression of EUI and OsNCED-1 in the T0 plants. Similar results were
obtained in the T1 plants. (B) Overexpression of OsAP2-39 affects various
hormone related genes. Bars of the ABA, GA and auxin-related genes
are shaded with grey, dark grey and white, respectively. Actin 2
(Os10g0510000) was used as an internal control. Bars represent mean
6SE (n = 3).
doi:10.1371/journal.pgen.1001098.g005

OsAP2-39 Controls ABA and GA in Rice
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expression level of both EUI and OsNCED-1, the plants having a

decreased expression of OsAP2-39 also have a decreased level of

expression of both EUI and OsNCED-1 (Figure 5A). This supports

the direct OsAP2-39 regulatory effect on EUI, and OsNCED-I.

Preliminary phenotypic showed that these RNAi lines were taller

and a higher tiller number. Unfortunately, the decreased

expression of the OsAP2-39 gene in any of the 4 lines was not

inherited in the following generation which made it impossible to

confirm this phenotypic analysis.

OsAP2-39-Transgenic Rice Responds to Exogenous
Application of ABA and GA

Overexpression of OsAP2-39 affects several physiological

processes. This includes low germination rate and shorter

internodes. Thus, overexpression of the OsAP2-39 in rice shows

a similar phenotype to that found in GA deficient mutants in

plants like the rice lines harbouring mutations within various GA

biosynthetic genes [26], the gibberellin insensitive dwarf1-1 (gid-1) [27],

the semi-dwarf-1 (sd1) [28], the slender rice-1 (slr1) [29], and the dwarf

and gladius leaf 1 (dgl1) [30] mutants. In addition, the Arabidopsis

mutants gibberellin insensitive dwarf1 (atgid1a and atgid1b) [31], sleepy1

(sly1) [32,33], and gibberellin-responsive dwarfs ga1-3 [34] have a

similar impact on phenotype.

Given these phenotypic similarities, GA deficiency was

investigated as a reason for the phenotype caused by the

overexpression of the OsAP2-39 and GA3 was exogenously applied

to the transgenic lines. In addition, the GA biosynthesis inhibitor

paclobutrazol (PAC) and ABA (as a GA antagonist) were used to

confirm the effect of the GA on the phenotype. Seeds from both

genotypes were germinated on a filter paper saturated with

different hormone solutions and the number of germinated seeds

was counted after 6 days. In a separate experiment, seeds were

planted in magenta boxes containing solutions of different

hormone treatments and incubated in the dark for one week.

The results showed that hormonal treatment can modify the

phenotype in the transgenic lines (Figure 6A–6D). Treating the

transgenic seeds with GA3 recovers the seedlings height (Figure 6A)

and also the seed germination rate (Figure 6D). In comparison

with the wild-type, treating the rice seeds with 10 mM PAC

decreases the germination rate (Figure 6D) and seedlings height

(Figure 6C). In addition, use of ABA delays seed germination in

the transgenic lines and shows more drastic effect on the growth of

transgenic lines than in the wild-type (Figure 6B). The results also

showed that treating rice plants at the 4-weeks old stage with

100 mM GA for 4 weeks with a dosage of 2 times/week rescued

the normal height and flowering time in the transgenic plants,

although the number of tillers did not recover with this

treatment(data not shown). This may reflect additional physiolog-

ical processes associated with axillary bud initiation and

development or could be due to inappropriate site and/or time

of GA3 application.

Thus, exogenous application of the GA3 recovers the

endogenous level of this hormone in the transgenic lines. This

leads to a restoration of most wild-type phenotypes in the

transgenic lines. On the other hand, decreasing the endogenous

level of GA by the application of PAC or reducing the effect of GA

by addition of ABA magnified the OsAP2-39 effect on the

transgenic line. This implies a shortage in bioactive GAs due to

improper gene expression.

Global Gene Expression Analysis Revealed Alteration in
the Expression of GA Signalling and ABA Biosynthetic
Genes

In order to determine the molecular events associated with

OsAP2-39 overexpression, global gene expression analysis on the

transgenic rice was carried out using the Affymetrix gene chip

microarrays. RNA samples were isolated from 4-week old leaves

and processed for microarray analysis. Comparing with the wild-

type, the gene expression analysis results showed an alteration in

409 genes in the transgenic rice lines (Table S1). The gene list

includes 172 upregulated and 237 downregulated genes. Because

microarray analysis may not detect every single gene whose

expression is modulated in the transgenic line, the expression of

additional genes involved in GA and ABA biosynthesis and

signalling were tested using quantitative real time PCR (qRT-

PCR) analysis. Interestingly, the results showed that the expression

level of genes involved in ABA biosynthesis and GA catabolic and

signalling pathways were changed due to the OsAP2-39 overex-

pression (Figure 5B). This includes the upregulation of a putative

OsNCED-1 (Os03g0645900), and OsNCED-3 (Os07g0154100) genes

coding for the 9-cis-epoxycarotenoid dioxygenase which are ABA-

biosynthetic enzymes [35]. The OsNCED-1 codes for a protein

with 83% identity and 90% similarity based on the Dayhoff matrix

to the maize VIVIPAROUS14 (VP14) protein (Figure S2) which

catalyzes the cleavage of 9-cis-epoxy-carotenoids to form C25 apo-

aldehydes and xanthoxin, a precursor of ABA in higher plants. As

a result, it is considered to be a key enzyme in the ABA synthesis

pathway [35]. The VIVIPAROUS14 expression level is directly

related with the ABA synthesis rate [35–37].

Consistent with this observation, the active endogenous ABA

level of the OsAP2-39 transgenic rice lines was found to be 2-fold

higher than the wild-type level (Figure 7A). In addition, the ABA

derivative compounds such as Dihydrophaseic acid (DPA) and

Abscisic acid glucose ester (ABAGE) levels are also increased in the

rice transgenic line (Figure 7B). In addition to the OsNCED genes,

the rice Zeaxanthin epoxiydase (OsZEP-1) (Os04g0448900) was

downregulated in the transgenic line. These genes are involved

in the ABA biosynthesis pathway. Free ABA is deactivated by

oxidation to phaseic acid and by the formation of glucose

conjugates. Induction of ABA oxidation may result from a feed

back inhibition loop interaction due to the excessive level of the

endogenous ABA in the transgenic line. Knockouts of the OsZEP-1

caused dwarf rice mutants [38] and the relative abundance of AB2,

which codes for a Zeaxanthin epoxiydase in tobacco (Nicotiana

Figure 6. OsAP2-39 transgenic line responds to hormonal
treatment. Transgenic seedlings (OsAP2-39-OEL-1 and OsAP2-39-OEL-
2) grown on 100 mM GA rescued the wild-type phenotype (A).
Treatment with 10 mM ABA (B) and 10 mM PAC (C) increase the effect
of the OsAP2-39 overexpression on the phenotype. Asterisks indicate
the effect of the treatment on the different genotypes. (D) The seed
germination rate increased after GA treatment and was reduced when
ABA and PAC were used.
doi:10.1371/journal.pgen.1001098.g006

OsAP2-39 Controls ABA and GA in Rice
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plumbaginifolia) is reduced due to the increase level of ABA [39].

These previous observations are consistent with the phenotype and

the ABA level obtained in the OsAP2-39 overexpressed lines.

The gene expression analysis also showed the upregulation of the

ELONGATED UPPERMOST INTERNODE (EUI) (Os05g0482400)

gene which encodes for a cytochrome P450 monooxygenase, an

enzyme which deactivates gibberellin through an epoxidation

reaction [22–24]. GA deactivation can occur through other

mechanisms. For example, in Arabidopsis GAs are deactivated

through GA 2-Oxidase including AtGA2ox7 and AtGA2ox8 [40]

and GA oxidase-6 (AtGAox6) [41]. The microarray and qRT-

PCR data showed that a putative gibberellin 2-beta-oxidase7

(Os04g0522500) is upregulated in the OsAP2-39 transgenic line. In

addition, the microarray and qRT-PCR data showed the upregula-

tion of 3 gibberellin receptor proteins: OsGID1 (Os07g0162700) and

GID1L2 (Os06g0214800, Os07g0162900) (Figure 5B).

This result indicates a regulatory role of OsAP2-39 on GA

activity in the transgenic line. Exogenous application of GA3

recovers the wild-type phenotype and application of the GA

inhibitor PAC magnifies the effect of OsAP2-39 on the phenotype

indicating a low endogenous content of active GA in the

transgenic line. Analysis of the endogenous level of GAs revealed

alterations in the hyroxylated GAs in the OsAP2-39 overexpression

lines (Table 1). However, non-13-hydroxylated GAs was under the

detectable limits. The non-13-hydroxylated GAs are supposed to

be the EUI substrates in rice and similar results were previously

obtained when the endogenous non-13-hydroxylated GA levels in

the EUI overexpressed line were measured even after an

exogenous treatment with GA3 [24].

EUI Is Induced by Endogenous and Exogenous ABA
Gene expression analysis revealed the upregulation of EUI in

the OsAP2-39 transgenic rice. EUI encodes an enzyme that

deactivates GA by catalyzing 16a, 17-epoxidation of non-13-

hydroxylated GAs. At the same time, the transgenic lines have a

higher endogenous ABA level than the wild-type. Since the

overexpression of EUI is associated with a high level of ABA in the

transgenic lines, the physiological relationship which links EUI

with ABA was tested. Wild-type rice plants were sprayed with

10 mM ABA and the expression of EUI in leaves after 1, 6,

24 hours of ABA application was measured using qRT-PCR. The

qRT-PCR results revealed that ABA induces EUI with a

maximum level of expression after 6 hours of ABA treatment

(Figure 8). Consistent with this result, sequence analysis of the EUI

promoter using the Plant Cis-acting Regulatory DNA Elements

(PLACE, http://www.dna.affrc.go.jp/PLACE/signalscan.html)

showed the presence of one ABA Response Element (ABR)

motif (CACGTG) in the EUI promoter at 22355 bp from the

ATG start codon. These results show that a high endogenous

ABA level is responsible at least in part for the EUI induction in

the transgenic rice line and would explain how ABA is able to

reduce bioactive GAs. After exogenous ABA treatment, OsAP2-

39 is down regulated demonstrating a feed back mechanism

leading to a reduction in the endogenous production of ABA

(Figure 8).

Figure 7. The free endogenous Abscisic Acid (ABA) and its
derivatives are increased in the OsAP2-39 transgenic rice. (A)
ABA content in the transgenic lines is about 2-fold higher than the wild-
type. (B) The ABA derivatives Dihydrophaseic acid (DPA) and Abscisic
acid glucose ester (ABAGE) levels are also increased in the rice
transgenic line. Hormones were extracted from two pools of 8 leaves
taken form two groups of transgenic lines and the Wt. Bars represent
mean 6SE (n = 2).
doi:10.1371/journal.pgen.1001098.g007

Table 1. Endogenous GAs level in rice (ng/g dry weight).

GA1 GA3 GA4 GA8 GA19 GA20* GA29* GA34 GA53* GA51

Wt 0.95 0.63 N.D. 0.38 9.28 2.21 0.27 N.D. 10.69 N.D.

OsAP2-39-OEL-1 1.16 2.25 N.D. 0.47 9.03 3.09 0.18 N.D. 8.08 N.D.

OsAP2-39-OEL-2 0.7 0.8 N.D. 0.38 9.3 2.86 0.16 N.D. 7.95 N.D.

Two OsAP2-39 expression lines (OEL) and one Wt lines has been tested. The results represent the mean of three readings.
*Showed consistent changes.
doi:10.1371/journal.pgen.1001098.t001

OsAP2-39 Controls ABA and GA in Rice
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Recombinant OsAP2-39 Protein Binds to the GCC-Box In
Vitro and Activates the ABA-Biosynthesis Gene OsNCED-1
and GA Catabolic Gene EUI In Vivo

The gene expression analysis revealed that OsNCED-1 and EUI

are upregulated in the OsAP2-39 transgenic lines. In order to

investigate the mechanism of OsNCED-1 and EUI upregulation,

the DNA sequences corresponding to the promoters of the both

genes was analyzed using the PLACE software. The results

showed that the OsNCED-1 promoter has 3 GCC sequence motifs

located at 610, 742, and 1027 bp from the first ATG codon of the

cDNA. Likewise, the sequence analysis showed that the EUI

promoter has one GCC box located at 2488 bp from the first ATG

codon of the cDNA. This motif is usually considered to be a

binding box for AP2 transcription factors and therefore is a

potential binding site for OsAP2-39. To check the possibility that

the OsAP2-39 protein binds to the GCC-box in vitro, recombinant

OsAP2-39 protein was produced in Escherichia coli (E. coli) and used

for Electrophoretic Mobility Shift Assays (EMSA). The results

demonstrate that OsAP2-39 strongly binds to the OsNCED-1

promoter sequence containing the GCC box motif. Substitution of

the GCC box with poly adenine and thiamine sequence (59-

ATATAT-39) inhibited the OsAP2-39-binding capacity to the

DNA sequence (Figure 9). This result indicates an in vitro binding

specificity of the OsAP2-39 to the GCC DNA motif.

In order to investigate a direct relationship between the OsAP2-

39 protein and OsNCED-1 and EUI gene expression, a

transcription activation assay using a transient gene expression

strategy was carried out using b-glucorinidase (GUS) as a reporter

protein. A fusion construct was made either between the promoter

region of OsNCED-1 or EUI and the GUS cDNA. In a separate

construct, OsAP2-39 cDNA was cloned under the control of the

35S constitutive promoter and used as a transcription activator in

the experiment. The pJD312 containing the firefly (Photinus pyralis)

luciferase cDNA driven by the CaMV 35S promoter was used as

the loading DNA control and the luciferase activity used to

normalize the GUS activity in every sample (Figure 10 A). DNA

from the three vectors was co-transformed into the tobacco leaves

using the particle bombardment method, with the empty vectors

used as negative controls. Tobacco leaves were incubated 40 hours

on Murashige and Skoog basal salt mixture (MS) solid media

supplemented with ABA or GA at room temperature before

protein from the leaves was isolated and used in the quantitative

GUS and luciferase assays. The results demonstrated that OsAP2-

39 slightly activates the expression of OsNCED-1 in tobacco

epidermal cells when it is incubated on MS hormone-free medium.

However, when the MS was supplemented with 100 mM GA, the

Figure 8. Exogenous application of ABA induced EUI in the
wild-type rice leaves. A quantitative gene expression study using the
qRT-PCR analysis of EUI after 2 hours (2 H), 6 hours (6 H) and 24 hours
(24 H) of 10 mM ABA application showing that EUI is highly upregulated
in rice leaves when treated with ABA after 6 hours. Actin 2 was used as
an internal control. Bars represent mean 6SE (n = 3).
doi:10.1371/journal.pgen.1001098.g008

Figure 9. The recombinant OsAP2-39 protein specifically binds
to the GCC-box in vitro. Electrophoretic Mobility Shift Assay (EMSA)
showing the binding of OsAP2-39 Protein to 100, 200 and 400 ng of
DNA containing one copy of the GCC-box. The DNA-binding capacity of
the protein was not detected in a mutated DNA sequence missing the
GCC-box.
doi:10.1371/journal.pgen.1001098.g009

Figure 10. The OsAP2-39 transcription factor directly activates
OsNCED-1 and EUI and its activity is affected by the environ-
mental hormonal conditions. Transcription activation of OsAP2-39
using GUS based transient assay and 4-methylumbelliferyl b-D-
glucuronide (MUG) as the substrate. (A) Illustration of the reporters,
the effector and the loading calibrator constructs (not drawn to scale).
Tobacco leaves were bombarded with the construct containing the
OsNCED-1 (B) or the EUI promoter (C) fused to the GUS gene and then
leaves were incubated on MS media supplemented with water (0),
10 mM ABA or 100 mM GA. The 4-methyl umbelliferone (MU) was used
to generate the standard curve. Bars represent mean 6SE. (n = 8).
doi:10.1371/journal.pgen.1001098.g010
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OsAP2-39 was able to induce OsNCED-1 by almost 8 fold

compared with the control experiment (Figure 10B). Incubation of

the bombarded tobacco leaves on MS media containing 10 mM

ABA induces the expression of OsNCED-1 in the absence of the

OsAP2-39 activator protein. However, in the presence of the

OsAP2-39, the expression of OsNCED-1 was reduced to 1/3 when

compared with the control experiment. Interestingly, the results

also showed that OsAP2-39 is able to highly activate the EUI

promoter in the tobacco cells if incubated on hormone-free MS

medium. In addition, the results demonstrated that EUI is induced

by ABA and this induction was reduced in the presence of OsAP2-

39 (Figure 10B).

Together these results indicate that OsAP2-39 directly regulates

the expression of both OsNCED-1 and EUI and that this regulation

is modulated by other factors induced by ABA and GA. OsAP2-39

was found to be more active in upregulating the OsNCED-1 gene

in a high GA environment, which would lead to an increase in the

ABA content.

Expression Pattern of the OsAP2-39
Rice lines transformed with the OsAP2-39 gene have fewer filled

seeds in the spiklets (11A–B). Therefore it was of interest to

determine whether the OsAP2-39 gene affects the pollination and

fertilization processes in the flower. This was analyzed by

investigating pollen grain morphology and viability. Compared

to the wild-type, the results showed that OsAP2-39 overexpressing

plants produced slightly smaller pollen grains and had a higher

percentage with an irregular shape (Figure 11C–11D). Similar

observations were previously obtained when rice was treated with

both cold and ABA [42]. In addition, a low active GA level due to

EUI overexpression also leads to inhibited seed production in the

transgenic lines [24]. This fact highlights the contribution of ABA

and GA in this phenotype.

Our findings that OsAP2-39 affects pollen grain morphology is

consistent with the rice microarray data available through the

public GENEVESTIGATOR database [43] which demonstrates

that OsAP2-39 is highly expressed in rice anthers. Microarray and

qRT-PCR data presented in this work showed that OsAP2-39 is

expressed in the root at the early booting stage (Figure S3), when

the ABA level is elevated in some grass plants such as barley [44].

In order to confirm the site of OsNUE39 expression in the plant

tissue, the OsAP2-39 promoter was fused to the GUS reporter gene

and transformed into Arabidopsis wild-type plants (Figure S4).

Histochemical staining of GUS showed that OsNUE39 is

predominantly expressed in the roots of the seedling (Figure

S4A), roots of adult plants (Figure S4B); and in the pollen grains

(Figure 4SD–4SF). This result is consistent with the microarray

and RT-PCR data obtained from rice tissues.

The Effect of OsAP2-39 on Dehydration Tolerance
The plant hormone ABA regulates tolerance to environmental

stresses such as drought and cold. In order to study the influence of

high ABA on stress tolerance, the transgenic OsAP2-39 and wild-

type plants were treated under cold and water stress conditions.

While cold treatment did not show any specific effect on the

transgenic lines, leaves of the transgenic lines are more susceptible

to dehydration conditions than the wild-type.

Drought tolerance experiments were carried out following the

procedures described earlier by Yu et al. 2008 [45]. When plants

of the two genotypes were grown in two different pots under water

deprivation, wild-type plant dried faster than the OsAP2-39

overexpression line probably because of their large biomass which

normally reflects a higher transpiration rate (Figure S5). When the

two genotypes were grown in the same pot under water

deprivation, the wild-type was able to grow for a longer time

than the OsAP2-39 overexpression line likely due to their larger

root system (Figure 12A). Therefore it was difficult to reach any

definitive conclusions from these two experiments. In order to

better clarify this issue, an excised leaf water loss assay was done

and the results showed that the transgenic OsAP2-39 lost water

faster than does the wild-type (Figure 12B) indicating that OsAP2-

39 has a lower leaf dehydration tolerance than the wild-type.

It has been shown that dehydration induces ABA synthesis in

plants. In order to determine the effect of dehydration on OsAP2-

39 and OsNCED-1 expression, RNA was extracted from rice leaves

dehydrated for 2 h and tested using qRT-PCR. The results show

that OsAP2-39 and OsNCED-1 are highly induced by dehydration

(Figure 12C) and this in turn would lead to an increase in ABA

synthesis in that tissue. However, given that the overexpressing

OsAP2-39 lines are not more resistant to dehydration implies that

the increased production of ABA is not sufficient for drought

tolerance. Despite the fact that a high ABA level is normally

associated with stomatal closure and therefore drought tolerance,

it is possible that the guard cells in the OsAP2-39 lines did not also

have a higher ABA content.

Discussion

Phytohormones regulate plant growth and development

through a complex set of interactions. ABA and GA represent

an example of a multidimensional and antagonistic relationship

which has been studied over the last few decades. However, many

important aspects of this relationship remain undiscovered. Here

we demonstrate that a transcription factor containing the AP2

DNA–binding domain (OsAP2-39) regulates ABA and GA

crosstalk and homeostasis in rice. A hypothetical mechanism by

which OsAP2-39 controls active ABA and GA levels is shown in

Figure 13. Overexpression of this transcription factor leads to an

increase in the ABA content, which in turn reduces plant biomass

and delays development. The mechanism by which OsAP2-39

Figure 11. The overexpression of OsAP2-39 in the flowers
caused a reduction in the rice yield. A spikelet from Wt (A) and the
OsAP2-39 overexpressed line (OsAP2-39-OEL) (B) shows a reduction in
the number of filled seeds in the transgenic lines. Both spikelets are
dissected from plants of the same age although the seeds of the Wt
mature 2 weeks before the transgenic lines. Pollen grains isolated from
rice Wt flowers (C) and the OsAP2-39 overexpressed line (D) and tested
under the microscope. Bar = 2 mm.
doi:10.1371/journal.pgen.1001098.g011
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controls the active ABA and GA is complicated and affected by the

hormonal status in the tissue. OsAP2-39 slightly increases the

expression of the OsNCED-1, which is an ABA biosynthetic gene

(Figure 10B), in a hormone free environment. However, a high

GA content leads to the upregulation of its expression by about 8

fold (Figure 10B). As a result, high GA in turn activates the

expression of OsNCED-1 which has been shown to be directly

proportional to the ABA content in rice as observed in this study

and also in other plant species where OsNCED-1 orthologues

showed the same effect [46,47].

OsAP2-39 can induce EUI expression which in turn has

previously been shown to reduce the bioactive forms of GAs

[22–24]. In this study we found that this can occur through two

different pathways. The first is an increased ABA content and the

second is through the direct regulation of OsAP2-39. As a result of

these two pathways, the bioactive form of GA decreases and of

ABA increases. In order to retain homeostasis, high ABA content

inhibits OsAP2-39 gene expression. This set of mechanisms

represents one of the pathways in which GA and ABA interact

and communicate. In support of this hypothesis, the transactiva-

tion results in tobacco cells are consistent with the expression

behaviour of the OsNCED-1 and EUI in rice leaves when they are

subjected to exogenous application of ABA and GA. The increase

in the active ABA level might be due to the inhibition of the ABA

catabolism pathway. However the microarray data from the

OsAP2-39 overexpression line did not show any expression

alteration in the genes involved in this process.

Overexpression of the OsAP2-39 leads to changes in the

expression pattern of a large number of genes (Table S1). Some

of these are due to the direct action of this transcription factor. For

example, OsNCED-1 and EUI are both directly regulated by

OsAP2-39 (Figure 10). This in turn would lead to an alteration in

hormonal balance and change the level of expression of many

other genes which together causes the pleiotropic phenotype

present in these lines. This includes shorter internodes, a delay in

flowering, smaller root mass, decreased tiller number and a lower

seed yield. All of these phenotypes can be explained by the

increase in ABA content and decrease in active GA except for

the decreased tiller number. Information obtained from the global

gene expression analysis provides a possible mechanism for this

decrease in tiller number. These lines had a decreased level

of the putative auxin-responsive proteins (Os02g0769100,

Os10g0510500 and Os01g0753500) and also the upregulation of

a gene (Os02g0221900) which encodes a protein with similarity to

MORE AXILLARY BRANCHES-1 (MAX1), a protein that

regulates the rate of polar auxin transport in Arabidopsis [48–51].

Mutations within the MAX1 gene in Arabidopsis increase the

number of axillary branches; and overexpression of this gene

causes less axillary branches [49]. Therefore, one can hypothesize

a similar situation for the OsAP2-39 overexpressing lines and a

possible role for auxin transportation and signaling in the tillering

phenotype akin to that seen in Arabidopsis for the auxiliary

branching trait. Certainly, the idea that the axillary branching

mechanisms in both rice and Arabidopsis are controlled by a

Figure 12. The OsAP2-39 does not increase drought tolerance in
rice. Wt and transgenic rice plants were grown in the same pot (A).
When grown together, Wt was more tolerant to drought than the
transgenic line. (B) Water loss assay showing that leaves from the
transgenic line loses water faster than the Wt. (C) Gene expression
analysis of OsAP2-39, OsNCED-1 and EUI from Wt rice leaf tissue
harvested from plants grown under drought conditions demonstrating
that OsAP2-39 and OsNCED-1 are upregulated, while EUI is down
regulated under these conditions. Bars represent mean 6SE.
doi:10.1371/journal.pgen.1001098.g012

Figure 13. A schematic diagram of the involvement of OsAP2-
39 in the ABA and GA antagonism and homeostasis. The OsAP2-
39 controls the level of bioactive GA through two different pathways.
First is an indirect pathway (presented in black continuous arrows) in
which the OsAP2-39 activates the ABA biosynthesis gene (OsNCED-1)
which increases the endogenous ABA level in rice. A high ABA level
induces EUI expression which in turn deactivates GAs. Second is a direct
pathway (presented in red continuous arrows) in which the OsAP2-39
transcription factor directly upregulates EUI. A high ABA content down
regulates OsAP2-39 leading to ABA homeostasis. Both mechanisms lead
to a reduction in bioactive GAs and consequently the appearance of the
abnormal phenotypes seen in the OsAP2-39 overexpressing lines
(OsAP2-39-OEL).
doi:10.1371/journal.pgen.1001098.g013
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common pathway is a reasonable one. The MONOCULM 1

(MOC1) gene has been characterized and was found to control the

rice axillary branches [52]. However, the expression level of this

gene was not affected in the OsAP2-39 overexpressing lines

indicating a different mechanism for the alteration in axillary

branching in these transgenic lines. Given the notion that OsAP2-

39 is not found in Arabidopsis, and so far only in the rice and

maize sequence databases, it would not be surprising if this gene

controls ABA and GA levels and axillary branching via a novel

mechanism.

A high ABA content is frequently associated with cold and

drought tolerance in plants. When the transgenic and wild-type

lines were grown together under water deprivation, the transgenic

lines were more susceptible to water stress. These observations

were confirmed when transgenic excised leaves lost water faster

than did wild-type leaves.

The constitutive overexpression of OsAP2-39 leads to changes in

pollen grain morphology. This may explain the low seed yield in

the transgenic lines. In fact, treatment of rice panicles with ABA

induces pollen sterility and subsequently causes a significant

reduction in grain number due to premature spikelet abortion

[42,53]. Therefore, the fact that the transgenic lines overexpress-

ing OsAP2-39 have a higher ABA content is consistent with the

phenotype obtained where seed yield was reduced by about 80%.

A low seed yield has been also observed when EUI gene was

overexpressed in rice plants [24]. This result further supports the

relationship between ABA synthesis and GA catabolism in rice.

In conclusion, overexpression of the OsAP2-39 gene leads to a

range of altered phenotypes that reduce biomass and seed yield

including shorter internodes, delayed flowering, and lower tiller

number. There are a large number of genes whose expression is

altered in these lines. Some of these including key control genes

regulating active ABA and GA levels are regulated directly by this

transcription factor while many others no doubt are altered by

changes in hormone levels. This work demonstrates for the first

time a relationship between ABA biosynthesis and GA catabolic

genes in rice. This relationship links the production of ABA and

the inhibition of active GA and thus, provides a direct link in the

antagonistic interactions between these hormones.

Materials and Methods

Plant Growth Conditions and Hormone Treatment
Rice (Oryza sativa L. Kaybonnet) was grown in a growth

chamber with a 16 h light cycle, at 29uC during the day and 23uC
during the night. Humidity was maintained at 70%. Plants were

grown in pots containing 75% vermiculite and 25% peat moss and

watered weekly with a nutrient solution [54]. Four-week old rice

plants were treated with 100 mM GA or 10 mM ABA twice a week

constitutively for four weeks.

OsAP2-39 Transgenic Rice
The construct for OsAP2-39 overexpressing was made using the

maize ubiquitin promoter. OsAP2-39 transgenic rice lines were

generated using Agrobacterium-mediated transformation method

and positively transgenic plants were selected using Phosphoman-

nose isomerase (PMI).

OsAP2-39 Interference RNA (RNAi)
DNA sequence of low similarity to other rice genes located at

the 39 end (314–664 bp) of OsAP2-39 was amplified by PCR using

the following primers: AP2SiRNAF (59- CACCTCGTCAGCCC-

GACCAGCAGCACG-39) and AP2SiRNAR (59- CTCCTCGA-

TCGGCGGCGGCAG-39), cloned into TOPO pENTER vector

(Invitrogene), and the inverted DNA sequences separated by a

GUS intron sequence were generated by site specific recombina-

tion method in the pANDA binary vector [55] down stream the

maize ubiquitin promoter using the Gateway LR Clonase Enzyme

Mix (Invitrogene). Transgenic rice lines were obtained using

Agrobacterium-mediated transformation and the positive lines were

selected according to Miki et al. [56].

Root Analysis
Roots of the wild type and transgenic plants were collected from

three weeks old plants growing in turface supplemented with a full

slow realize fertilizer (1 g/plant). Roots were scanned and

analyzed using the WinRHIZO software (v. 5.0, Regent

Instruments, Inc., Quebec, QC, Canada).

Endogenous ABA and GA Analysis
Five leaves from two OsAP2-39 transgenic rice lines and also

from wild-type were pooled, freeze dried and the ABA contents

were quantified at the hormone profile laboratory in the National

Research Council, Plant Biotechnology Institute (NRC-PBI)

Saskatoon, Canada and the method described by Chiwocha et

al. [57]. Endogenous GA analysis using GC-MS was carried out

using a MAT95XP mass spectrometer according to the previously

published protocol [58].

Sequence Analysis
The BLAST search program (http://www.ncbi.nlm.nih.gov/

BLAST/) was used to look for protein sequences homologous to

OsAP2-39 and map the protein domains. Rice sequences with

highest BLAST homology score were downloaded and used for

the phylogenetic analysis using the Molecular Evolutionary

Genetics Analysis (MEGA4) software [59]. The neighbor-joining

tree was generated with the Poisson correction method using the

same software. Bootstrap replication (1000 replications) was used

for a statistical support for the nodes in the phylogenetic tree.

Subcellular Localization of OsAP2-39
The OSAP2-39 cDNA sequence was cloned in frame with the

GFP protein under the control of the 35S promoter. The OSAP2-

39 cDNA sequence was amplified by PCR using the following

primer pair: APHindIII-ECoRIF: (59-CCCAAGCTTATGGC-

TCCCAGGAACGC-39) and APNdeI-ECoRR: (59-CCGGAA-

TTCCTACGCCTCCTCGATCG-39). After digestion with Hin-

dIII and EcoRI, the PCR products were cloned into pRLT2-GFP

plasmid (kindly provided from Dr. Robert Mullen, University of

Guelph), amplified in E. coli, and transformed by particle

bombardment into onion epidermal cells.

Histochemical staining for GUS activity
A DNA sequence spanning the 2019 bp of the OsNUE39

promoter was amplified by PCR using the following primer pairs:

promoterAp2F (59-CGCGGATCCAATCTTGCTAAAATTTT-

GGCAAAG-39) and promoterAp2R (59-CATGCCATGGGT-

CCGTTCTTGTTCGGGTCG-39) and cloned into the BamHI

and NcoI sites upstream the GUS reporter gene of the pCAMBIA

3301 vector (CAMBIA institute, Australia). Then the construct

was stably transformed into the Wt Arabidopsis Col and various

tissues of the transformed lines were assayed for GUS activity

using the standard protocol.

Recombinant Protein Production and EMSA
The recombinant full-length OsAP2-39 protein was expressed

and purified using the Intein Mediated Purification with an

OsAP2-39 Controls ABA and GA in Rice
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Affinity Chitin-binding Tag system (IMPACT) (New England

Biolabs, ww.neb.com) according to the manufacturers’ instruc-

tions. The OsAP2-39 cDNA sequence was amplified by PCR using

the following primer pair: APNdeI-ECoRF: (59-GGAATTCCA-

TATGGCTCCCAGGAACGCC-39) and APNdeI-ECoRR: (59-

CCGGAATTCCTACGCCTCCTCGATCG-39). The PCR

product and the pTYB12 plasmid (New England Biolabs) were

digested with EcoRI and NdeI. After ligation, the construct was

amplified in E. coli cells DH10B and transformed to the E. coli

expression host strain ER2566 cells. Electrophoretic Mobility Shift

Assay (EMSA) was carried out using the recombinant OsAP2-39

protein and the DNA products obtained using the PCR. The

GGCGGC-box containing DNA sequence was amplified from the

OsNCED-1 promoter using the following pair of primers:

PMSA2bF: (59-AATGTCTGCGGCGCCGGCGGC-39) and P-

MSA2bR: (59-AGTGTTCTGTTCCCCCGGGGAGATAAAC-

CC-39). As a negative control, DNA in the EMSE reaction, the

GCCGCC box motif sequence within the promoter was replaced

by (59-ATATAT-39) using the site directed mutagenesis PCR and

the following primer pair: PEMSA4F: (59-AATGTCTGCGGC-

GCTATATACTGCGGTGTTTGTT-39) and PEMSA4R: (59-

AGTGTTCTGTTCCCCCGGGGAGATAAACCC-39). The E-

MSA assay was carried out using the EMSA kit (E33075) from

Invitrogen (Invitrogen, www.Invitrogen.com). After purifying the

PCR product, a serial dilution of DNA (0, 100, 200, 300, and

400 ng) were mixed and incubated with 30 ng of the purified

OsAP2-39 recombinant protein according to the manufacturers’

instructions. The DNA/protein complex samples were loaded into

a Ready Gel TBE, gradient 4–20% polyacrelamide native gel (Bio-

rad Laboratories, www.bio-rad.com) at 200 V for 45 minutes. The

DNA in gel was stained using the SYBR Green provided in the

same kit.

Quantitative GUS Activation Analysis
As potential targets to OsAP2-39 transcription factor, DNA

sequences corresponding to the OsNCED-1 and EUI promoters

were cloned in an intron containing GUS reporter plasmid. The

DNA sequence (1 kb upstream the ATG start codon of the cDNA)

of OsNCED-1 was amplified from the rice genomic DNA using the

following promoter pair: OSNCEDF: (59-CAATAACTGCAG-

GACGAGACCCTTTGCCG-39) and OSNCED-1R: (59-AGG-

GAATTCTCGATCGCACAACAATCTGAGC-39). The DNA

sequence corresponding to the EUI promoter (2498 bp upstream

the ATG start codon of the cDNA) using the following primer

pair: EUallF1: (59-CTTTGCATTTGCCGCCGTGTT-39) and

EUallR1: (59-GGCAGCCTACTCTCTCTTTCCCCG-39). After

digestion with PstI and EcoRI, the PCR products were cloned into

the pCAMBIA1391Z vector (CAMBIA institute, Australia, www.

cambia.au). OsAP2-39 induced by the 35S promoter in the

pEGAD plasmid was used as an activator protein in the co-

transformation transient expression analysis. To normalize the

GUS activity values, firefly (Photinus pyralis) luciferase driven by 35S

promoter in the pJD312 plasmid (kindly donated from Dr.

Virginia Walbot, Stanford University) was used. Equal amounts of

DNA from the different plasmids constructs was transformed by

the particle bombardment to 4-weeks old tobacco (Nicotiana

plumbaginifolia) leaves. After incubation for 40 hours at room

temperature in the dark, the total protein was extracted from each

sample and GUS and luciferase activities were measured.

GUS activity was determined by measuring cleavage of b-

glucuronidase substrate 4-methylumbelliferyl b-D-glucuronide

(MUG) [60]. Luciferase activity was measured using the Luciferase

Assay System kit (Cat. E1500) (Promega, www.promega.com)

following the manufacturers’ instructions. Empty vectors were

used as negative controls in this experiment.

Microarray Hybridization and Data Analysis
Double-stranded cDNAs was synthesized from 5 mg of total RNA

from each sample. Labeled complementary RNA, synthesized from

the cDNA was hybridized to Affymetrix rice whole genome array

(Cat. Number: 900601). The hybridization signal of the arrays was

obtained by the GeneChip scanner 3000 and quantified by MAS

5.0 (Affymetrix). The probe set measurement was summarized as a

value of weighted average of all probes in a set, subtracting bottom

5% of average intensity of the entire array using a custom algorithm.

The overall intensity of all probe sets of each array was further

scaled to a target intensity of 100 to enable direct comparison. Data

was analyzed using GeneSpring software (Agilent, CA, USA). The

data was normalized with a default setting of the program, followed

by gene filtering which required that each gene must have either a

‘P’ or ‘M’ flag in the three replicate samples. Genes with 2-fold

change were identified first, and then ANOVA was used to identify

significant genes (Welch t-test p-value cutoff at 0.05).

qRT-PCR
For each genotype, leaf tissues from at least six plants were collected

and pooled. The samples from 3 different pools were homogenized in

liquid nitrogen prior to RNA isolation suing Tripure reagent (Roche,

http://www.roche-applied-science.com). cDNA was synthesized using

the qScript cDNA Supermix (Quanta Biosciences, http://www.

quantabio.com/). The qRT-PCR reactions were carried out using

the SYBR Green PCR Master Mix (Applied Biosystems, www3.

appliedbiosystems.com) and the primers mentioned in Table S2.

Supporting Information

Figure S1 A comparative analysis between the roots systems in

wild-type (Wt) and OsAP2-39 transgenic line (OsAP2-39OEL). Bars

represent mean 6SE (n = 4).

Found at: doi:10.1371/journal.pgen.1001098.s001 (0.06 MB TIF)

Figure S2 Sequence alignment of the deduced amino acid

sequences of the maize VP14 and the rice OsNCED-1.

Found at: doi:10.1371/journal.pgen.1001098.s002 (2.52 MB TIF)

Figure S3 The OsAP2-39-1 expression level measured using

microarray technique in various rice plant tissues throughout the

plant growth and development. Data present the absolute value of

gene expression.

Found at: doi:10.1371/journal.pgen.1001098.s003 (0.61 MB TIF)

Figure S4 OsNUE39 is expressed in the pollen grains and root of

Arabidopsis. The expression pattern of OsNUE39 determined by

GUS staining of OsNUE39 promoter fused to GUS in Arabidopsis

Wt. OsNUE39 is localized in the root and hypocotyls of the

seedlings (A) and roots of the mature plants (B) and also in the

flowers (C). (D) A closer look showing the GUS stain in the anthers

and on the stigma during pollination. (E) GUS stains in the anther

sac. (F) Dissected pollen stained with GUS. Bar = 2 mm.

Found at: doi:10.1371/journal.pgen.1001098.s004 (1.41 MB TIF)

Figure S5 OsAP2-39-1 overexpression lines (OsAP2-39-OEL)

dried slower than the wild-type rice pants due to low water

consumption.

Found at: doi:10.1371/journal.pgen.1001098.s005 (5.04 MB TIF)

Table S1 Genes expressed differentially in the OsAP2-39

transgenic rice leaves.

Found at: doi:10.1371/journal.pgen.1001098.s006 (0.74 MB

DOC)
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Table S2 Primers used in the qRT-PCR.

Found at: doi:10.1371/journal.pgen.1001098.s007 (0.05 MB

DOC)
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