Motion Compensated Continuous Blood Pressure
Measurements Using Recurrent Neural Networks

by

Shrimanti Ghosh

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

(© Shrimanti Ghosh, 2018



Abstract

High blood pressure (BP) is the leading cause of death and disability in the
world, affecting nearly 1.5 billion adults. It leads to many complications, in-
cluding stroke, heart failure, kidney disease, and coronary disease. In current
clinical practice, BP is measured either invasively by an intra-arterial catheter
that is invasive and causes pain or non-invasively by cuff using the oscillo-
metric method, which does not allow continuous BP measurement. Therefore,
development of an accurate, continuous, and non-invasive BP measurement
method is needed for hypertension diagnosis and management.

Prediction models based on pulse transit time (PTT) have been used for
continuous and non-invasive BP estimation. PTT has been reported to be
highly correlated with BP, which makes PTT a good candidate to be used for
continuous BP monitoring, including for continuous ambulatory monitoring.
PTT can be defined as the time lag between the R-peak of the ECG signal and
the peak of the blood oxygenation signal (PPG) signal, when measured within
the same cardiac cycle. In this study, windowed cross-correlation between
the adjacent peak points of ECG and PPG signals in the same cardiac cycle
is used to compute PTT automatically. We have performed sparsification of
PPG signal by computing a moving window maximum on that signal. This
pre-processing converts the PPG signal into a very sparse signal that ultimately
increased the accuracy and the efficiency of PTT calculation. We then use a
linear regression model to calculate BP continuously from PTT measurement
where unknown constants of that model are subject dependent and must be
calibrated.

To improve the classical PTT-based prediction during motion, along with

the ECG and the PPG signals, for the first time to our knowledge, we use
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signals from accelerometers and gyroscopes to predict BP. Accelerometers and
gyroscopes have been widely accepted as useful and practical sensors for wear-
able devices to measure and assess physical activity. To make a prediction
model, we use recurrent neural networks (RNNs), which can effectively learn
the multi-timescale dependencies from a sequential time series of BP values.
For this study, deep long short-term memory network (LSTM) and gated re-
current units (GRU) were used.

BP was monitored in five different scenarios (seating, standing, recumbent,
walking and cycling) from 50 healthy volunteers. We propose that the RNN
models can predict continuous BP sequences from physiological signals like
ECG, PPG and other parameters like PTT in posture and activity. Walk-
ing and cycling introduce baseline noise into both the ECG and PPG signals,
making it more difficult to accurately estimate the BP values. To predict
BP more accurately during activity, here we incorporated the accelerometric
and gyroscopic values in the model. After including these data, we are able
to achieve significant boost in the accuracy for all positions. The mean +
standard deviation is 0.08 4+ 4.5 for SBP and 1.7 £ 3.4 for DBP in seated
position and 2.3 £ 5.7 for SBP and 2.5 £ 4.2 for DBP while walking which
is permissible according to the accepted threshold for accuracy using GRUs.
Also, the root mean squared error between the reference standard and esti-
mated SBP and DBP are 4.22 and 3.73 respectively for motionless position
and are 6.10 and 4.80 for walking in case of GRUs. It can be stated that
the difference between the estimated BP from RNN and the reference stan-
dard was less than the accepted threshold in all scenarios. The deep learning
based method applied in this study appears sufficiently accurate in measuring
BP not only in motionless conditions but also for walking and cycling, where
motion artefacts are present. This novel approach has a significant potential
contribution in continuous BP measurement in different postures and activity

for hypertension management.
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Chapter 1

Introduction

High blood pressure (BP) is the most common cause of death or disability
world-wide and a major risk factor for a number of serious diseases, including
cardiovascular and kidney disease [1]. High BP detection and control rates
are extremely low, especially in low resource settings [2]. In current clinical
practice, BP measurement is performed either invasively by an intra-arterial
catheter or non-invasively by cuff using either oscillometric or auscultatory
methods. Invasive measurement is continuous in nature but carries risk (in-
fection, bleeding, thrombosis) and is used only for critically ill patients and
not for patients with chronic hypertension. Intermittent cuff inflation, the
gold standard for BP measurement in chronic hypertension, is non-invasive
but does not allow for continuous blood pressure measurement [3]. Develop-
ment of an accurate continuous non-invasive BP measurement technique would
revolutionize hypertension diagnosis and disease management [4].

Recently, various machine learning algorithms have been employed to im-
prove medical diagnosis, including predicting the risk of stroke and coronary
heart diseases [5, 6]. Further, there are mounting evidences that pulse transit
time (PTT i.e., the time delay for the pressure wave to travel between two
arterial sites) can provide the basis for convenient cuff-less BP measurement
[3]. Although major progress has been made on PTT-based BP monitoring
techniques, further research is still required to solve many issues associated
with this measurement technique.

PTT is the time that takes the pulse pressure waveform to propagate



through a length of the arterial tree [7]. PTT can be defined as the time
between the R-peak of the electrocardiogram (ECG) signal and the peak of
the photoplethysmogram (PPG) signal, when measured within the same car-
diac cycle [4]. The PTT-based approach for cuff-less BP monitoring has cap-
tured the interest of many investigators. Many studies employed waveform
measurement methods for cuff less and automated BP monitoring in general
[8]. The classical PTT estimation methods employ feature detection and have
been applied for cuff less BP monitoring [§].

In this study, a customized algorithm was designed to compute PTT au-
tomatically. Cross-correlation between the adjacent peak points of ECG and
PPG signals in the same cardiac cycle was used to compute PTT [9]. Accuracy
and the efficiency were increased when sparsified, preprocessed PPG signals
were used. Then BP was measured using linear BP-PTT relationship. This
BP estimation was reasonably accurate while stationary but not during motion
(with RMSE of 5.7 mmHg in stationary and 7.47 mmHg during motion).

To improve the accuracy of the linear model for BP prediction during
motion we use signals from accelerometers and gyroscopes along with ECG
and PPG signals to compute PTT. Accelerometers and gyroscopes have been
widely accepted as useful and practical sensors for wearable devices to mea-
sure and assess physical activity [10]. To make a better prediction model, we
used recurrent neural networks (RNNs), which can effectively learn the multi-
timescale dependencies from a sequential time series of BP values. Deep long
short-term memory network (LSTM) and gated recurrent unit (GRU) were
employed here. The RMSE achieved from GRUs are 4.22 and 6.10 for station-
ary and during motion respectively. RNNs are the family of neural networks
useful for processing temporal sequential data and have been successfully used
in various sequence learning tasks to model long-term dependencies. The neu-
ral network is able to discover the latent correlation between different time
series and learn from the dependency and predict the target values. This
problem can be framed as a multivariate temporal sequence prediction prob-
lem and an appropriate application of biomedical signal processing. We used

sequence-to-sequence learning framework to solve this problem [11].



1.1 Motivation

Blood pressure acts as one of the vital signs providing the useful informa-
tion about cardiac output and elasticity of the blood vessel and physiological
variation. Therefore, the measurement of BP is helpful for a physician to
understand and diagnose the integrity function of the cardiovascular system.
The invasive method of measuring the blood pressure by inserting a catheter
into the blood vessel to measure the arterial pressures accurately, still has
the disadvantage of accompanying pain and contamination, and the side ef-
fects arising from inserting the catheter-tip into a patient’s blood vessel. The
various indirect methods of measuring BP such as Riva-Rocci, oscillometric,
ultrasound, tonometry method, etc. were developed as possible solutions these
problems [12, 13].

However, there is the inconvenience of using the cuff attached to the pa-
tient’s arm for non-invasive BP measurement and also the limitation in measur-
ing the blood pressure continuously. Recently, the continuous and non-invasive
BP measurements using PTT, in inversely linear relationship with blood pres-
sure, have been extensively explored in the past few decades. Methods for
continuously monitoring blood pressure from other physiological parameters
have been widely studied. Most of these studies correlate blood pressure (BP)
with PTT [14]. For continuous measurement of blood pressure by this method,
constant patient dependent calibration coefficients are needed in addition to
the continuous extraction of PTT [15].

Current blood pressure devices (by oscillometry or sphygmomanometery)
are mainly based on air-cuff, which only can measure blood pressure inter-
mittently and may not be suitable for long term blood pressure monitoring.
Therefore, cuff less blood pressure monitoring method would be valuable in
stroke prevention and management. As an important risk factor, blood pres-
sure has prognostic value for stroke [3]. Continuous blood pressure measure-
ment can be used to assist for the preventing and predicting of stroke [3]. In
particular, cuffs are cumbersome and time consuming to use, disruptive during

ambulatory monitoring, especially while sleeping, and do not readily extend



to low resources settings.

Research is surely needed to improve the calibration of PTT to BP in terms
of accuracy and convenience. Methods involving a BP perturbing intervention
or frequent re-calibration with a cuff may be hard to adopt. One potential
method is universal calibration, wherein the parameters of the model relat-
ing PTT to BP are determined simply from the subject’s age, gender, and
other such information including cardiovascular risk factors. To enhance the
accuracy without significantly compromising convenience, a single cuff BP
measurement could be obtained from the subject every so often. Also research
is needed to enable independent determination of systolic and diastolic BP. A
single PT'T measure cannot indicate these two BP values when they are not
varying in the same direction (e.g., isolated systolic hypertension) [8].

Most experiments were based on signal processing on collections of data
[16]. Only a few authors investigated new solutions and devices for blood
pressure measurement based on PTT [16].

Existing methods for cuffless and continuous BP estimation are pulse tran-
sit time model [17, 18], and regression model, such as decision tree, support
vector regression and etc [19, 20]. These models suffers from accuracy decay
over time, especially for multi-day continuous BP prediction. Such limitation
has become the bottleneck that prevents the use of these models in practical
applications. It is worth to mention that the aforementioned models directly
map present input to the target while ignoring the important temporal depen-
dencies in BP dynamics. This could be the root of long-term inaccuracy.

While much progress has been made on ubiquitous BP monitoring via
PTT, significant work is still needed to best realize this approach in practice.
Also, from Computing Science perspective, latest deep learning methods based
on deep neural networks have not been significantly applied to predict BP
continuously from various physiological signals. For this reason we have come
up with a novel approach to try to solve this problem.

In this study, we measured BP under five different conditions (recumbent,
seated, standing, walking, cycling). Walking and cycling introduce baseline

noise into both the ECG and PPG signals due to the presence of motion arte-
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facts and have varying physiological states from resting, making it more diffi-
cult to accurately estimate the corresponding BP values. To our knowledge,
no prior research study has been performed to predict BP accurately during
motion. BP prediction problem can be framed as a multivariate temporal se-
quence prediction problem and an appropriate application of biomedical signal

processing.

1.2 State-of-the-Art in BP Measurements

When we consider non-invasive and continuous measurement methods, we
mean methods not needing skin penetration and the possibility to measure
BP values on long time periods. For medical doctors it is necessary to find
some method, which will measure accurately several parameters of systolic,
diastolic, mean BP.

Noninvasive and continuous BP monitoring is not yet practically available
for everyday life. It is very challenging to make the devices easily wearable
as well as to reduce noise level and improve accuracy. Such devices should
not only provide accurate and reliable bloop pressure measurements but also
be easy to use in a convenient way that does not excessively burden the user
for daily use. Variations in individual’s physical characteristics and different
postures increase the complexity of continuous BP monitoring, especially out-
side the health centre or clinic. In [21] the wrist watch based system (called
BioWatch) was developed that can measure PTT and hence BP.

In [22], a PTT estimation method based on photoplethysmographic imag-
ing (PPGi) was presented. The method utilized two opposing cameras for
simultaneous acquisition of PPG waveform signals and is especially suitable
for implementation in dual-camera-smartphones, which could facilitate PTT
measurement among populations affected by cardiac complications.

Body sensor networks (BSNs) are widely used in medical health monitoring
[23]. A smart phone centric body sensor network can help measure pulse
transit time and continuously monitor blood pressure [23]. Their proposed

BSN system estimates BP based on PTT, which is calculated from ECG and



PPG signals.

A cuff-less continuous BP monitoring device, which is consisted of two
acquisition modules and an Android smart-phone, was presented in [24]. The
data were transmitted by a Bluetooth module in the system.

Recent technological advances, such as wearable sensing and smart phones,
have increased the feasibility of developing a non-intrusive continuous BP mon-

itor system.

1.3 Thesis Objectives

Unfortunately none of these methods are reliable, accurate and comfortable for
patient for continuous BP monitoring. The purpose of this study is to develop
a PTT-based blood pressure estimation method with personalized model and

easy implementation.

The objectives of the present study are,

e to evaluate the feasibility of PTT measurement during routine maximal
cardiopulmonary exercise testing by means of standard medical equip-

ment and

e to analyze the relation between blood pressure and PTT using both a

linear and a non-linear approach.

Continuous blood pressure was estimated using a previously published lin-
ear regression model in static condition as well as during motion. Results
shown that PTT-based BP estimation was reasonably accurate while station-
ary but not during motion.

For further improvements in estimation, deep learning based non-linear
models specifically recurrent neural networks (RNNs) were implemented to
predict continuous BP sequences from physiological signals like ECG, PPG

and other parameters like PTT in posture and activity.



1.4 Thesis Contributions

1.4.1 Contribution

e In this study, cuff-less, continuous BP was estimated using pulse transit

time during variations in posture and activity;

e The linear regression model predicted the BP from PTT comparatively
better during recumbent, seated and standing positions. However, walk-
ing and cycling introduce baseline noise into the signals, which limits

accurate determination of BP;

e Overall, PTT-based measurement shows promise in the seated or stand-

ing position but is inaccurate with movement;

e For further improvement, we propose that the RNN models (LSTM and
GRU) can predict continuous BP sequences from physiological signals
like ECG, PPG, PTT and accelerometric and gyroscopic values in pos-

ture and activity;

e The deep learning based method applied in this study appears suffi-
ciently accurate in measuring BP not only in motionless conditions but
also for walking and cycling, where motion artefacts are present. This
novel approach has a significant potential contribution in continuous BP
measurement in different postures and activity for hypertension manage-

ment.
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Chapter 2

Related Work

Researchers have proved the validity of using a non-invasive method to measure
blood pressure (BP) in various studies. Current non-invasive methods can be
classified into two categories: intermittent and continuous measurement.

Intermittent measurement based on the cuff method uses two traditional
techniques: auscultation and oscillometry. Continuous BP measurement meth-
ods include the volume-clamp [25, 26|, tonometry-based [27, 28], and pulse
transit time (PTT)-based methods.

Pulse transit time (PTT) has been reported to be correlated with blood
pressure, especially for the SBP [29, 30], and has been proposed as a potential
surrogate of blood pressure [18]. PTT can be measured between the charac-
teristic points of the electrocardiography (ECG) and photoplethysmography
(PPG) at peripheral sites [18]. Since ECG and PPG measurements can be
implemented by wearable devices, PTT provides a very practical solution for
continuous blood pressure monitoring. Numerous studies have focused on the
blood pressure estimation by using PTT [31, 32] and different applications
have been proposed based on the blood pressure estimation methods [33].

Experimental studies have indeed shown that 1/PTT, rather than PTT,
is linearly related to BP over a wide BP range [34, 35]. But the linear model
cannot provide accurate estimation because PTT was found highly correlated
with SBP rather than diastolic blood pressure (DBP) [36]. An accurate model
describing the relationship between PTT and blood pressure is crucial for the

PTT-based blood pressure estimation. Sophisticated models were further pro-



posed to enhance the accuracy of PTT-based blood pressure estimation. Some
studies investigated the relationship between PTT and blood pressure under
static and exercise status [37]. Considering the relationship between PTT and
blood pressure could vary from person to person, calibration was proposed by
some researchers to design personalized estimation model [38]. Nevertheless,
the major challenge for PTT-based blood pressure measurement is to derive
a personalized estimation model. Apart from the estimation accuracy, imple-
mentation of the estimation model in a device for clinical or healthcare use
is the ultimate goal. The linear mapping between PTT and blood pressure
has not been proved to provide the best blood pressure estimation. However,
it is still the best applicable method for approximate blood pressure trend
indications.

One possible way to access blood pressure without using a cuff is to measure
the velocity of propagation of pulse waves along the arterial tree. Actually, the
velocity of pulse pressure waves propagating along the arterial tree depends
on the value of blood pressure. Indirect measurement of blood pressure was
performed by continuously measuring pulse wave velocity (PWV) [17]. The
best site for measuring this velocity is located in the aorta because relationship
between PWV and blood pressure is only exploitable in central elastic arteries.
But it is difficult to perform non-invasively.

Along with the linear relationships, a number of studies obtained a non-
linear relationship between PTT and blood pressure [39]. In [40] artificial
neural network (ANN) model was developed to predict the blood pressure
based on PTT. When the PTT was input to the ANN, the corresponding
blood pressure value could be calculated. Recently, a research group proposed
a novel deep recurrent neural network (RNN) consisting of multilayered Long
Short-Term Memory (LSTM) networks, which are incorporated with a bidirec-
tional structure to access larger-scale context information of input sequence,
and residual connections to allow gradients in deep RNN to propagate more
effectively [11].

Although application of deep learning or deep neural networks in predicting

BP have been not successful until now.
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2.1 Other BP Measurement Methods

Several BP measurement methods are now available. The main methods in-
clude catheterization, auscultation, oscillometry, volume clamping, and tonom-
etry. Catheterization is the gold standard method [41]. This method measures
instantaneous BP by placing a strain gauge in fluid contact with blood at any
arterial site (e.g., radial artery, aorta). However, the method is invasive.

Auscultation is the standard clinical method [42]. This method measures
systolic and diastolic BP by occluding an artery with a cuff and detecting the
sounds using a stethoscope and manometer during cuff deflation. The first
sound indicates the initiation of turbulent low and thus systolic BP, while the
fifth sound is silent and indicates the renewal of laminar flow and thus diastolic
BP.

Oscillometry is the most popular noninvasive, automatic method for BP
measurement [43, 44]. This method measures mean, diastolic, and systolic
BP by also using a cuff but with a pressure sensor inside it. The measured
cuff pressure not only rises and falls with cuff inflation and deflation but also
shows tiny oscillations indicating the pulsatile blood volume in the artery.
The amplitude of these oscillations varies with the applied cuff pressure, as
the arterial elasticity is nonlinear. The BP values are estimated from the
varying oscillation amplitudes by using the empirical fixedratios principle.

Volume clamping is a noninvasive, automatic method used in research
[25, 26]. This method measures instantaneous (finger) BP by using a cuff
and a photoplethysmography (PPG) sensor to measure the blood volume.
The blood volume at zero transmural pressure is estimated via oscillometry.
Measurement at the finger allows uninterrupted recordings of long duration.
The transmission of the pressure pulse along the arm arteries, however, causes
distortion of the pulse waveform and depression of the mean blood pressure
level. Finger arteries are affected by contraction and dilatation in relation to
psychological and physical (heat, cold, blood loss, orthostasis) stress. In [25],
they concluded that Finapres accuracy and precision usually suffice for reliable

tracking of changes in blood pressure. Diagnostic accuracy may be achieved
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with future application of corrective measures.

Tonometry is another noninvasive method used in research that, in theory,
does not require an inflatable cuff [27, 28]. This method measures instanta-
neous BP by pressing a manometer tipped probe on an artery. The probe
must flatten or applanate the artery so that its wall tension is perpendicular
to the probe. However, manual and automatic applanation have proven to
be difficult. Tonometric end-systolic pressure provides an estimate of effective
arterial elastance(ratio of end systolic pressure to stroke volume). A measure
of external left ventricular afterload. As a result, in practice, the measured
waveform has been routinely calibrated with cuff BP whenever a BP change is
anticipated [45]. The error range was 41 mmHg over ten calibrations. Tonom-
etry method is not accurate enough to be used with confidence in clinical
practice.

In [11], they proposed a deep recurrent neural network (RNN) consist-
ing of multilayered Long Short-Term Memory (LSTM) networks, which are
incorporated with (1) a bidirectional structure to access larger-scale context
information of input sequence, and (2) residual connections to allow gradi-
ents in deep RNN to propagate more effectively. The proposed deep RNN
model was tested on a static BP dataset, and it achieved root mean square
error (RMSE) of 3.90 and 2.66 mmHg for systolic BP (SBP) and diastolic BP
(DBP) prediction respectively. But our proposed GRU unit achieved
the RMSE of 3.86 and 3.73 for SBP and DBP respectively, in which
our SBP prediction is a little better than their result reported in
[11].

Basically the existing BP measurement methods are invasive, manual, or
require a cuff. So, none are suitable for ubiquitous monitoring. Cuff use has
several drawbacks. In particular, cuffs are cumbersome and time consuming to
use, disruptive during ambulatory monitoring, especially while sleeping, and
do not readily extend to low resources situations. To discover the convenient
way to measure BP continuously and non-invasively, we still have to go through

rigorous and detailed experiments and research work.
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Chapter 3

Measuring Real-time
Physiological Signals

For our experiments we used a BioRadio portable device from Great Lakes
Neurotechnologies, Valley View, OH. BioRadio is a wireless data acquisition
system capable of recording, displaying, and analyzing physiological signals in
real time. Using sophisticated wireless and miniaturization technologies, the
BioRadio provides physiological data acquisition that is untethered thus allow-
ing one to move freely while monitoring physiological signals from a computer.

It is a wearable biomedical device with programmable channels for record-
ing and transmitting combinations of human physiological signals. The Bio-
Radio is worn by the person and is designed for acquiring physiological sig-
nals from sensors attached on the body. Physiological signals are amplified,
sampled, and digitized, which can be wirelessly transmitted to a computer

Bluetooth receiver and/or recorded to onboard memory for post-analysis [46].

3.1 BioRadio Configuration

The BioRadio device can be configured with a variety of sensors to acquire
physiological signals. Wireless streaming and recording is done over a Blue-
tooth 2.4-2.484 GHz band and approximately 100 foot range. Data can simul-
taneously be recorded to onboard memory for post analysis. Battery charging
is done over a micro-USB port and provides at least eight hours of measure-

ment time. The four character device ID is located on the back of the unit
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and can be used to identify numerous patients under observation. The Bio-
Radio allows the synchronized real time acquisition of ECG and PPG signals
which will be used to compute PTT. The synchronized data of ECG signals
are measured from 5 ECG electrode leads (for ECG) located on left arm, right
arm, left foot, right foot and chest and the Pulse Oximeter (for PPG) signal
is measured from the left index finger (see Figure 3.1). For signal acquisition,
the sampling rate is 250-16,000 Hz and the sampling resolution is 12, 16 and
24 bit [46].

Biopotential Channels
(4 differential or
8 single-ended)

Internal Power
accelerometry
& gyroscopes
Record To
Memory

On-board

memory Event marker

USB Rechargable
battery

Optional Sensor Input

Sensor Pods .
Pulse Oximeter

Figure 3.1: BioRadio Primary Module and Sensor Pod

3.2 BioCapture Software

The BioCapture software allows the user to collect, display, save and analyze
physiological data collected from the BioRadio. The intuitive design provides
access to hardware configuration, data collection, review and analysis.

The BioRadio device has an built in software called the BioCapture. The
BioCapture directly collects ECG and PPG signals from the sensors and ex-

ports the numerical values of the signals into an excel file and the software
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directly interacts with MATLAB environment by Microsoft. NET interface.
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Not Connected BioRadio ID: RG

Figure 3.2: Various physiological signal acquisition from the BioCapture
Software

From the BioRadio, various synchronized physiological signals can be ac-
quired and with the help of BioCapture software we are able to visualize and

monitor those signals in real-time shown in Figure 3.2.

3.3 Measurement of Motion Data

The BioRadio’s accelerometer measures gravitational force (also known as g-
force) and the gyroscope measures angular velocity. Both of these sensors take
measurements in three planes - x, y and z. Generally the device is attached
to the patient’s waist and the motion data is captured whenever the patient
walks or moves from a stationary position.

For motion sensors the sampling rate is 250 Hz and the resolution is 16 bit.
The accelerometer range is + 8 g and the gyroscope range is + -2000 °/sec
46].
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Chapter 4

Calculation of Pulse Transit
Time (PTT)

4.1 What is Pulse Transit Time (PTT)?

PTT is defined as the time required for the arterial pulse pressure wave to
travel from the aortic valve to periphery [47]. PTT can be defined as the
time between the R-peak of the electrocardiogram (ECG) signal and the peak
of the photoplethysmogram (PPG) signal, when measured within the same
cardiac cycle. PTT can therefore be easily measured, since only simultaneous
recording of ECG and PPG are required.

Pulse transit time is defined in Figure 4.1. Physiologically, PTT represents
the time delay between electrical systole in the heart (i.e., the R-wave of the
ECG) and the detected peripheral pulse wave (usually measured at the fin-
ger). Electrical systole occurs just before mechanical systole, in which blood

is ejected from heart through the aorta to the peripheral blood vessels [16].

4.1.1 Electrocardiogram (ECG) Signal

Electrocardiography (ECG or EKG) is the process of recording the electrical
activity of the heart over a period of time using electrodes placed on the
skin. The graph of voltage versus time produced by this non-invasive medical
measurement technique is referred to as an electrocardiogram.

Figure 4.2 is one example of a normal ECG waveform and P, Q, R, S, T
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Figure 4.1: Definition of Pulse Transit Time

are the consecutive peak points.

ECG records the electrical activity of the heart at rest. It provides infor-
mation about the heart rate and rhythm, and shows if there is enlargement
of the heart due to high blood pressure (hypertension) or evidence of a previ-
ous heart attack (myocardial infarction). The resting ECG is different from a
stress or exercise ECG or cardiac imaging test. However, the major difficulty
for our application arises from the contamination of ECG signal due to motion

artifacts induced by body movements in ambulatory condition [48].

4.1.2 Photoplethysmogram (PPG) Signal

A Photoplethysmogram (PPG) graph is often obtained by using a pulse oxime-
ter which illuminates the skin and measures changes in light absorption. A
PPG signal consists of an AC component and a DC component. The pulsatile
portion of the PPG signal is the AC component and is obtained when light
passes through the arterial blood. The DC component or non-pulsatile portion
is caused the absorption of light by blood in veins, bones and tissues [49]. This

signal contains important information about the heart rate variability, blood
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Figure 4.2: Electrocardiogram signal

pressure, respiration etc. Pulse Oximetry (PO) is the process of non-invasive
way of determination of the peripheral oxygen saturation (SpO2) of blood and
pulse rate, which is used to assess most basic body functions, based on the
analysis of photoplethysmographical (PPG) signal pulses. This measures the

volume of the blood vessel.

Figure 4.3: Photoplethysmogram signal

Figure 4.3 is one example of a normal PPG waveform.
Among the wide range of noise sources interfering with the PPG signal, the
motion artifacts caused by patient’s movements are very difficult to remove.

Due to the persistent motion of the person whose PPG is measured, the signal
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may be distorted and the pulsatile component is no longer identified from it.
This work focuses on the removal of motion artifact from the corrupted PPG

signal which enables to interpret the signal more easily and accurately.

4.2 Automated PTT Calculation

4.2.1 Processing ECG and PPG signals
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Figure 4.4: An example of clean synchronized ECG (in blue) and PPG (in
red) signals

Figure 4.4 describes the synchronized, clean ECG (in blue) and PPG (in
red) signals where the peaks are prominent and easily detectable. ECG is
the main tool used by the physicians for identifying and interpreting the heart
condition. To do so, the ECG should be free from noise and of good quality for
the correct diagnosis. In real time situations ECG are corrupted by many types
of artefacts. Figure 4.5 below illustrates another example of clean signals.

Different noises are affected by the ECG signal during its acquisition and

transmission. Noises with high frequency include Electromyogram noise, Addi-
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Figure 4.5: Another example of clean synchronized ECG (in blue) and PPG
(in red) signals

tive white Gaussian noise, power line interference, motion artifacts. The noises
contaminated in the ECG signal may lead to wrong interpretation. There is
a large scientific literature on how to de-noising ECG signals and an excellent
review of the state-of-the-art can be found in the book by Clifford in [50].

For ambulatory applications the dominant noise is created by motion arte-
facts. Motion artefacts are transient base line changes caused by changes in the
electrode-skin impedance with electrode motion. As this impedance changes,
the ECG amplifier sees a different source impedance which forms a voltage di-
vider with the amplifier input impedance therefore the amplifier input voltage
depends upon the source impedance which changes as the electrode position
changes [51]. These include electrical interference by outside sources. During
physical activity such as walking or cycling, the noise due to motion is much
larger than the ECG signals.

Figure 4.6 shows one example of a noisy signal recorded during walking
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Figure 4.6: Example of a noisy ECG and PPG signal captured during walking

and Figure 4.7 shows one example of a noisy signal recorded during cycling at
a normal pace.

From Figure 4.6 and Figure 4.7, one can observed that both the ECG and
PPG signals were affected by motion artefacts. The corresponding peaks of
both the signals are not easily distinguishable from this raw data. Artifact on
the electrocardiogram can result from a variety of internal and external causes.

The motion artefact that’s affecting the PPG signal seems to be a known
yet unavoidable artefact. Motion artefact can significantly limit the pulse
oximetry monitoring results generating frequent false alarms and loss of data.
The reason for this is that during motion and low peripheral perfusion, many
pulse oximeters cannot distinguish between pulsating arterial blood and mov-

ing venous blood, leading to underestimation of oxygen saturation [52].
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Figure 4.7: Example of a noisy ECG and PPG signal captured during cycling

4.2.2 Windowed Cross-correlation to Compute PTT

A common method for estimating the temporal dependence between events
in two time series (i.e. ECG and PPG) is to use cross-correlation. Using
cross-correlation, a vector or window of sequential measurement samples is
selected from each time series such that both vectors contain the same number
of samples. Using a Pearson correlation technique [9] one can calculate the
actual correlation between the two time series over time and determine the
interval of time separating the beginning of a correlated event in order to
compute the lag or offset we need to measure to compute PTT.

One way to examine how the strengths and lags of association between two
time series are changing over time is to use only short intervals of data from
each time series to estimate the association and then select these windows so
that their starting points represent increasing elapsed time from the beginning
of the experiment. This has the advantage of assuming local stationarity rather

than assuming stationarity over the whole time series which in most time not
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true.

The cross-correlation method must be able to track changes in the time
lag and strengthen the association between the two time series over the course
of the experiment. Suppose we measure two variables on multiple samples
separated by equal time intervals t,. If two vectors of observations X and
Y are measured and if an event measured in X occurs before a similar event
measured in Y, one might reason that the event in X may predict the event
in Y. It is also possible that an event measured in Y can predict an event
measure in X. Such changes in lag and strength of maximum prediction can
be indicative of an underlying dynamic relationship between the constructs
that gave rise to the data in measurements in X and Y. The variance of the
time lag and variance of strength of the cross-correlation will give estimates of
two types of non-stationarity in the bivariate time series.

Within some set bounds the method should estimate the interval of time
between measurement samples at which a maximum cross-correlation between
the two time series occurs and the strength of that cross-correlation. Within
that bounded interval of time, there may a lag between an event that occurs
in time series measured by X and a similar event that occurs in time series
measured by Y. The method should give an estimate of the time lag between
the event in X and the event in Y as well as the strength of the similarity
between the two events.

Suppose we want to cross correlate two time series each containing N
observations X = {21, 29, 23,...,xx} and Y = {y1, 10,3, ...,yn} with equal
sample intervals of time, At. If we assume stationary and choose a positive
lag of T observations, the cross-correlation between X and Y for a lag 7 is a

function of the cross-correlation r defined as:

- < 1 T (@—D)y+71-9)
X, Y = E 4.1

where 7 and § are the means and o, and o, are the standard deviations of X
and Y respectively. This is an ordinary Pearson correlation between the two

time series with a lag of 7 observations (a time interval corresponding to 7
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times At, the sampling interval).

Using short, overlapping windows that cover the time series results in a
moving estimate of correlation and lag that needs to be calculated in a way
that does not favor one variable over another, since global stationarity is not
assumed.

Suppose a window size w,,q, and a time lag 7 on the integer interval:

—Timaz <= T <= Tmaee and an elapsed time index ¢; from the beginning of
the data. For every 7,,,, there will always be an odd number of integers in
the interval. For each t; = {Tpaz + 1, Timaz + 25 s N — Tonaz — Winas }, & pair
of windows X and Y can be selected from the data and the cross-correlation
between the windows is calculated using Eqn 4.1.

The correlation is performed as following;:

Step 1: Read the ECG data and the PPG data and store the values
into two different arrays X and Y

Step 2: Perform Gaussian smoothing on the two signals with the necessary
choice of the value of the smoothing parameter (i.e. the standard deviation
0s);

Figure 4.8 describes the ECG(blue) and the PPG(red) signal after per-
forming Gaussian smoothing to de-Noise the signal

Step 3:: Detect the maxima of the PPG signal inside a sliding window.
We use the PPG as there are fewer outliers in the PPG signal than the ECG
signal. By setting the other PPG values to zero, the processed PPG signal
becomes very sparse. Then by performing all the operations on this sparse
signal the accuracy of the method is increased. Also because of the sparsity
of the signal the number of computations is reduced (i.e. the efficiency of the
method increased;

In Figure 4.9 we can see the sparse PPG(red) signal only with the maxima
and the ECG(blue) signal.

Step 4: Compute the sliding window correlation between the ECG and
the PPG signals within each window. Cross-correlation is used to find where
two signals match and also to determine the time lag between two signals.

The position of the maximum value indicates the time offset at which the two
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Figure 4.8: ECG(blue) and PPG(red) signals

signals are the most similar or in other words, what is the time shift between
the two signals [9]. In this case the index of maximum correlation correspond
to the Pulse Transit Time value we are looking for;

Step 5: Find the maximum value of cross-correlation as well as the po-
sition of the maximum correlation using a manual threshold C' on the cross-
correlation value;

Step 6: Store the Pulse Transit Time values into an array;

Step 7: Remove the noise in the PTT signal by using a median filter of
size M where M is an odd number;

Step 8: Compare the automated and the manually computed PTT values;

Step 9: Calculate the relative percentage of error.

In Figure 4.10 one can see the graph of the correlation coefficients with the
maximum correlation within a window.

To check the accuracy of the proposed method, we had to calculate the

PTT values for all data sets manually to set a ground truth level. Then we
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Figure 4.9: PPG signal with maxima(red) and ECG signal

compared the automated PTT values with the manually found PTT values to

measure the accuracy of the method.

4.3 Evaluation of the Accuracy of the PTT
Algorithm

To check the accuracy of the proposed algorithm, the PTT values were com-
pared to a reference standard, which was defined using a manual PTT calcu-
lation (i.e. calculating the peak to peak distance of the ECG and PPG signals
manually using MATLAB). The observed errors of PTT measurement were
within 1% of the reference. Root-mean-squared-error (RMSE) values were
calculated with and without sparsification (see Figure 4.13).

Figure 4.11 the detect peaks of the ECG signal and Figure 4.12 the detect
peaks of the PPG signal manually.

We compared the automated PTT values with the manually found PTT
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Figure 4.10: Graph of correlation coefficients in one window

values for all the data sets. Then calculated the relative percentage of error

using:

|PTTautomated - PTTmanual| * 100
P TTmanual

(4.2)

The Mean (u) and Standard Deviation (o) of the error estimation were
also calculated here (see Figure 4.13 and Table 4.1).

In Table 4.1, the mean relative error is around 1 % for all positions using
the moving window maximum approach to calculate PTT. So the proposed
algorithm with moving window maxima detection of the PPG signal to find
the PTT is pretty robust.

Where as in Table 4.1 we can see the result of correlation between ECG
and PPG without computing the moving window maximum of PPG signal
is very poor and the mean relative error is around 6 % for all scenarios. In
4.13 the x-axis denotes the number of data points which is around 23000 when

automated and manual PTT were compared.
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Figure 4.11: ECG signal (setting the threshold manually)

Table 4.1: Comparing the automated PTT and the manual PTT Mean + SD
of relative % error

Using Sparsification Without Sparsification
Recumbent 0.74 £+ 0.49 3.06 + 3.08
Seated 0.67 £ 0.44 4.04 + 4.31
Standing 0.66 + 0.43 4.97 + 5.72
Walking 1.38 + 1.11 8.01 +£ 7.27
Cycling 142 £ 1.19 9.05 £+ 9.18
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Chapter 5

From Pulse Transit Time to
Blood Pressure Measurements

Accurately converting PTT measurements to actual BP measurement is criti-
cal for the usability of this method in practice. Several calibration methods to
transform PTT measurements to real BP measurements have been described

in the literature [16, 8]. Most calibration methods are based on the following:

1. Define a parametric mathematical model that relates PTT measurements

to BP;

2. Measure PTT and cuff-based BP from a subject in order to obtain mul-

tiple pairs of PTT and BP values;

3. Estimate the parameters of the parametric model by fitting the model
to the PTT-BP measurements [18, 53, 54].

Using the parametric model to calibrate PTT measurements to diastolic,
mean, and systolic of standard BP cuff measurements will allow us to mea-
sure BP of subjects without a cuff by obtaining PTT estimates and using the
calibration function in real-time. This calibration function should be period-
ically updated to account for changes due to ageing and disease or errors in
the curve.

The mathematical relationship between PTT and BP has previously been

studied using physical models and empirical regression models [16, 8]. Most of
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the physical models are based on the MoensKortweg and BramwellHill equa-
tions [8], using an assumed function to relate the elastic modulus to BP [8].

Some of the popular BP-PTT models will be described:

e A simple linear approximation model was proposed in [55]:

BP =a* PTT +b (5.1)

where a and b are unknown subject-specific parameters.

e Another simple model proposed by [34, 35] is based on experimental BP
studies that shows that BP is inversely proportional to PTT over a wide

BP range:

a
PTT

BP = +b. (5.2)

e Proneca et al. [56] proposed a non-linear equation to relate BP values

from PTT:

BP = axIn(PTT) + . (5.3)

e Many of the previous simple physical models do not work asymptotically
(i.e., as PTT approaches 0 or co). A more recent physical model capable

of computing reasonable asymptotic values was proposed in [57]:

a

Regression models based on experimental PTT-BP data from the litera-
ture have been proposed. Many of these studies assume that PTT is related
to BP via a line with a slope and intercept. However, some studies have
shown that quadratic and other non-linear functions are better at predicting
BP from PPT. Non-linear models including [57]) resolve the asymptotic be-

haviour problem and are in general more accurate overall. However, they are
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generally characterized by more than two unknown parameters, which require
to measure more PTT-BP pairs in order to estimate them.

Taking all possible factors into consideration and according to [8], the
mathematical model described in Eqn. 5.2, is the preferred one because of
its experimental validation. In order to determine the parameters a and b a

straightforward least squares regression is used.

5.1 Incorporating Accelerometric and Gyro-
scopic Values along with PTT

e At the beginning, we used only the PTT values to calculate BP using
the equation (5.2). But this linear model was not able to capture the

hidden information from PTT during the motion. Here the input is
x = [PTTwalue] and the output y = [BPuvalue| are the scalar.
This is the single variate regression approach.
e After that along with the PTT values and to improve the prediction

during motion, we incorporated accelerometric and gyroscopic values as

well in the linear model. Here the input to the model is a vector
x = [ECG, PPG,PTT, Accl,, Accl,, Accl,, Gyro,, Gyroy, Gyro,)|
of nine elements.

The output y = [BPuvalue] is a scalar.

Accelerometric and gyroscopic values are the data from the motion sen-

sors. This is a multivariate regression analysis.

5.2 Calibration Protocol

During the calibration process, each subject is attached to the ECG electrodes
and to a pulse oximeter in a seated position. ECG and PPG data are recorded
using the BioRadio system described in Chapter 3. Four cuffed BP measure-
ments are taken after the ECG and PPG data measurements and used for

calibration.
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After calibration, PTT was then calculated over 20 heartbeats - 10 beats
taken prior to initiating the cuffed measurement and 10 beats taken after the
cuffed measurement. Measurements were performed in 5 different activity
scenarios (recumbent, seated, standing, walking at a regular pace, and cycling
at a comfortable pace). The proposed algorithm was used to predict BP from
PTT and was compared to the actual oscillometric BP measurement for each

activity conditions.

5.3 Calibration Algorithm

The algorithm for computing the calibration function between PTT and BP

is the following:

e Measure the PTT and cuff BP from the subject in the rest condition i.e.
the normal seated position typically used for BP measurement in clinical

settings;

e Define a mathematical model between the PTT and BP in terms of

(typically) two unknown parameters that depend on subject data;

e Estimate the parameters for that subject by fitting the model to the
PTT-BP paired measurements.

Then subsequent BP values can be calculated for each subject from the
PTT, measured under different conditions (recumbent, seated, standing, walk-

ing, cycling) and compared to the cuff-based oscillometric reference standard

7, 58.

5.4 Measurements of Pilot Study Data

5.4.1 Initial Pilot Study

For the initial study, the data were collected from 14 healthy subjects (8 women
and 6 men) with no prior hypertension. The baseline characteristics of these

14 participants were as follows,
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e mean age 34.4 + 11.6 years (range 22-54), weight 75.2 £+ 14.6 kg, height
173.6 £ 7.8 cm.

The training data set was collected in a seated position and the test data
set with the subjects seated, lying down, standing, walking and cycling. We
analyzed the five different activity levels separately. ECG and PPG signals
were recorded using the BioRadio device, but the accelerometric and gyro-
scopic signals were not captured.

The reference standard BP was measured using a calibrated oscillometric

device [59] (A&D Medical UA-651BLE).

5.4.2 Large-Scale Study

In this study, the data from 50 healthy subjects (24 men and 26 women) with
no prior history of hypertension were recorded. Separate data sets for training
and testing were used.

The baseline characteristics of the participants were:

e mean age 30.2 £+ 11.9 years (range 18-62), weight 67.6 £+ 12.5 kg, height
169.4 + 8.7 cm, body mass index 23.5 + 4.1 kg/m?, and mid-arm cir-

cumference 29.0 & 4.0 cm.

The training data set was collected with the subjects in a seated position
and the test data set with the subjects seated, lying down, standing, walking
and cycling. We analyzed the five different levels of activity separately. The
number of data points or time steps collected during training was 60000 and
the number of features was 9 (i.e. ECG, PPG, PTT, 3 Accelerometric and 3
Gyroscopic values for three axes, respectively).

The reference standard cuff-based BP was measured using a validated os-

cillometric device (A&D Medical UA-651BLE) [60].
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5.5 Estimation of Blood Pressure Using PTT
Calibration Linear Model

From the measured data sets a the parameters of the mathematical model

described in (5.2) are computed.

5.5.1 The initial pilot study with 14 subjects

In this study, cuff-less, continuous BP was estimated using pulse transit time
during variations in posture and activity. To show the importance of accurate
PTT computation, we estimated BP with and without sparsification. Without
executing the pre-processing (sparsification) of the PPG signal the acquired
PTT values were not accurate. But the least square algorithm was able to
predict BP with a high bias in the constants of 5.2. As a result, constant or
average SBP and DBP values were obtained which is not admissible since BP
varies and fluctuates minute to minute. Therefore, sparsification should be
used when estimating BP using PTT.

In the following Table 5.1 and Table 5.2, Root-Mean-Squared-Error values
in SBP and DBP prediction (with and without sparsification) are summarized.
One can observe that there is a vast improvement in the RMSE values after
performing sparsification on the PPG signal for both SBP and DBP predic-

tions.

Table 5.1: RMSE Comparison in mmHg between measured and calculated
SBP with and without sparsity.

H With Sparsity Without Sparsity H

Recumbent 8.0191 8.9083
Seated 5.0637 6.5119
Standing 6.1082 8.3313
Walking 19.2422 20.8162
Cycling 17.9353 19.1278

A Bland-Altman plots for SBP and DBP of the data are shown in Figure
5.1 and Figure 5.2. Data for 3 postures (seated, standing and walking) of

all 14 subjects were plotted and the analysis reveals agreement limits of mean
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Table 5.2: RMSE Comparison in mmHg between measured and calculated
DBP with and without sparsity

|

With Sparsity Without Sparsity H

Recumbent
Seated
Standing
Walking
Cycling

7.0670
6.3694
5.8375
9.6987
10.5284

9.2466
7.4087
6.1547
11.8634
11.8371

Table 5.3: Performance results of different positions on all subjects ( Mean
value + Standard deviation)

]\ SBP DBP H
Recumbent 4.6 £ 9.6 6.64 £ 5.2
Seated 0.07 & 5.8 2.1+ 73
Standing 0.7 £ 6.7 -4.3 £ 3.8
Walking 4.4+ 209 -2.64 £+ 104
Cycling -10.2 £ 16.0 -3.0 £ 13.1

+1.965D. Limit-of-Agreement for SBP was mean +1.965D that is 1.69+1.96
(12.89). Limit-of-Agreement for DBP was mean +1.965D that is —3.00+1.96

(7.4996).

From the Bland-Altman plot analysis, it was obtained that for both SBP

and DBP, only 8 out of 84 pairs of data points were located beyond the limits

of £1.965D.
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Figure 5.1: Bland-Altman plot of SBP of all 14 subjects obtained during
seated (*), standing (o), walking (+).
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Figure 5.2: Bland-Altman plot of DBP of all 14 subjects obtained during
seated (*), standing (o), walking (+).

5.5.2 Large-scale study with 50 volunteers

The results are compared for both linear model and RNN with and without

accelerometric and gyroscopic values to show the impact of incorporating these

motion detectors for BP prediction. Root-mean-squared-error (RMSE) values

and the mean and standard deviation (SD) of error values were calculated

between the reference standard and estimated systolic and diastolic BP values

(SBP and DBP respectively) from both the linear and non-linear models. The

following results are obtained from linear regression model. In this large scale

study, multivariate linear regression model is applied by introducing the data
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from motion sensors (Accelerometer and Gyroscope) along with the original

signals and the feature like PTT.

Table 5.4: Comparison of RMSE values between the reference standard and
estimated SBP with and without accelerometric and gyroscopic data

H With Accl. and Gyro. Without Accl. and Gyro. H

Recumbent 7.19 5.74
Seated 8.04 5.70
Standing 6.16 5.14
Walking 7.47 10.42
Cycling 8.15 11.01

Table 5.4 and Table 5.5 compare the RMSE values between the reference
standard and estimated SBP and DBP with and without accelerometric and
gyroscopic data. Table 5.4 the RMSE values in predicting systolic blood pres-
sure in motionless positions (i.e. recumbent, seated and standing) are more
accurate without the accelerometric and gyroscopic data. But during motion
(i.e. walking and cycling) a significant amount of improvement is observed in
the error estimate.

Similarly in Table 5.5 the RMSE values in predicting diastolic blood pres-
sure in motionless positions (i.e. recumbent, seated) are more accurate without
the accelerometric and gyroscopic data. But during motion (i.e. walking and
cycling) again a good amount of improvement is observed in the error estimate.

Table 5.5: Comparison of RMSE values between the reference standard and
estimated DBP with and without accelerometric and gyroscopic data

H With Accl. and Gyro. Without Accl. and Gyro. H

Recumbent 6.08 5.22
Seated 5.62 4.38
Standing 5.90 6.12
Walking 7.01 8.39
Cycling 5.38 7.84

In case of mean and standard deviation of error estimates in Table 5.6
and Table 5.7, a similar result is obtained. The error values in predicting

SBP and DBP in motionless positions are reasonably accurate without the
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Table 5.6: Comparison of Mean 4+ SD between the reference standard and
estimated SBP with and without accelerometric and gyroscopic data

H With Accl. and Gyro. Without Accl. and Gyro. H

Recumbent -0.8 £ 7.2 -0.9 £ 5.7
Seated -1.1 £ 8.0 -0.2 £5.8
Standing -0.4 £ 6.2 -0.3 £5.2
Walking 26 £75 2.0 +10.3
Cycling 3.3+ 7.5 3.3 £ 10.7

Table 5.7: Comparison of Mean 4+ SD between the reference standard and
estimated DBP with and without accelerometric and gyroscopic data

H With Accl. and Gyro. Without Accl. and Gyro. H

Recumbent -3.7 £ 4.8 -3.6 £ 3.8
Seated 2.5 +£5.0 1.5+ 4.2
Standing 3.3 +4.9 3.8 +4.8
Walking 1.6 + 6.8 2.0 £8.2
Cycling 3.8 £5.1 1.8+ 78

accelerometric and gyroscopic data, as there is no such presence of motion
artefacts. But during motion (i.e. walking and cycling) the error is less after
incorporating the motion sensors as well along with the ECG and PPG signals.

This shows the data from motion sensors actually helped our algorithm to
improve the accuracy. In the following chapters, we will show that the results
obtained from a recurrent neural networks are more accurate in comparison

to the standard linear regression model.
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Chapter 6

Estimation of Blood Pressure

from Recurrent Neural
Networks - LSTM case

A recurrent neural network (RNN), is a neural network model proposed in
the 80’s by [61] for modeling time series. The structure of the network is
similar to a standard multilayer perceptron, with the distinction that it allows
connections among hidden units associated with a time delay. Through these
connections the model can retain information about the past, enabling it to
discover temporal correlations between events that are distant in time from
each other in the data. While in principle the recurrent network is a simple
and powerful model, in practice, it is hard to train. Among the main reasons
is the problem of vanishing gradient and exploding gradient described in [62].

Recurrent neural networks (RNNs) have recently shown significant and
promising results in many machine learning tasks, especially when input and /or
output are of variable length [63]. More recently [64] reported that recurrent
neural networks are able to perform as well as the existing networks for ma-
chine translation.

One interesting observation, recently many of the success of neural net-
works were not achieved with so called ”vanilla recurrent neural network” but
rather with recurrent neural network with sophisticated hidden units, such as
long short-term memory (LSTM) units described in [65].

One of those long short-term memory unit is a gated recurrent unit (GRU)
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proposed recently in [66]. It is well established in the literature that the LSTM
unit works well on sequence-based tasks with long-term dependencies.

To make a prediction model, we used RNNs, which can effectively learn
the multi-timescale dependencies from a sequential time series of the PTT
values. For this study, deep many-to-one and many-to-many LSTM and GRU
architectures were used. These networks do not require any pre-processing of
the input sequences. Thus, raw signals of the BioRadio device can be used as
inputs to LSTM or GRU. The neural network is able to discover the latent
correlation between different time series and learn from the dependency and
predict the target values. This problem can be framed as a multivariate tempo-
ral sequence prediction problem and an appropriate application of biomedical
signal processing. We used sequence-to-sequence learning framework to solve

this problem as in [11].

6.1 Recurrent Neural Network Model

RNNs are the family of neural networks useful for processing temporal sequen-
tial data and have been successfully used in various sequence learning tasks
to model long-term dependencies [67, 68]. In particular, the RNNs based on
LSTMs can capture long range dependencies and nonlinear dynamics. LSTMs
were originally introduced in [65] and subsequently, used successfully to per-
form supervised machine learning tasks with sequential input and output.
Neural networks have been applied to medical problems and here LSTMSs are
applied to multivariate clinical time series prediction. One can see in Figure
6.1 and Figure 6.2 the proposed deep LSTM network for BP prediction from
multiple temporal sequences. These types of data are used as the input to
hidden layers in the recurrent structure. The dependency among the BP mea-
surements will be embedded into the network structure and the RNNs can use
their memory information to process sequences of inputs. RNN and its vari-
ants like LSTM are powerful dynamic systems for modelling sequential data
[69]. Unlike traditional RNN, LSTM replaces the activation function of the

neurons to a unit with an ingenious inner structure called LSTM [65]. LSTM
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doesn’t have the vanishing gradient problem and can store the memory of
thousands of past discrete time steps. The following set of equations represent

the process to perform parameter updates [67] in such as network:

f(t) =VY(Wypa(t) + Wyph(t — 1) + by), (6.1)
i(t) = W(Wyz(t) + Wiyih(t — 1) + b;), (6.2)
o(t) = VU (Wyox(t) + Whoh(t — 1) + b,), (6.3)
Cin(t) = tanh (W (t) + Wieh(t — 1) + b, ), (6.4)
c(t) = f(t) xc(t — 1) 4+ i(t) * cin(t), (6.5)

h(t) = o(t) * tanh(c(t)), (6.6)

where W is the sigmoid function. The input, forget and the output gates are
denoted by 7, f, and g respectively and ¢;, is the input of the LSTM cell. tanh
is the activation function of the input c;,.

Here the operator * is the Hadamard (element-wise) product. The function
h(t — 1) represents the previous output of the LSTM unit. In equation (6.5),
the current state c(t) is calculated from the previous state ¢(t — 1) and the
gates in the LSTM unit. The update equation (6.6) h(t) is the output of the
unit at the current time point ¢.

Figure 6.1 shows our proposed many-to-one LSTM architecture. Here the
input to the network is a vector

r; = [ECG, PPG, PTT, Accl,, Accl,, Accl,, Gyro,, Gyro,, Gyro,]

of nine elements at each time step 1.

The output y; = [BPuvalue] is a scalar.
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Figure 6.1: LSTM many-to-one architecture

During training every time a window of 100 time step is fed to the LSTM
and the network outputs the 100th BP value in the sequence.

As another approach, we also implemented the many-to-many LSTM archi-
tecture shown in Figure 6.2. In this case, during training every time a window
of 100 time step is fed to the LSTM and the network outputs corresponding
sequence of 100 BP values. However, the first model i.e. the many-to-one

structure performed better than the latter one (many-to-many).
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Figure 6.2: LSTM many-to-many architecture
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6.2 LSTM Network Training Algorithm

We developed an LSTM layer with different numbers of neurons (32, 64, 128).
In our implementation we used 32 neurons in the first hidden layer and 1
neuron in the output layer to predict BP values. The last layer is a dense
layer that use mean squared error (MSE) loss function and Adam version of
the stochastic gradient descent [70]. The model was trained with 50 epochs
and a batch size of 64 examples with a learning rate of 0.001. All the LSTM-
parameters were initialized with a uniform value distribution between -0.1
and 0.1. A dropout of 0.30 was applied to prevent over fitting. The MSE
loss curves (training and validation curves) with different epochs are shown
in Figure 6.4 All the experiments with the neural network were implemented
using Keras API [71] with TensorFlow and on two NVIDIA GeForce GTX
1080 GPU processors. It took 1 hour to train the network. But the testing
took less than 2 minutes.

The results are compared for both linear model and RNN with LSTM
architecture with and without accelerometric and gyroscopic data to show the
impact of incorporating these motion detectors for BP prediction. Root-mean-
squared-error (RMSE) values and the mean and standard deviation (SD) of
error values were calculated between the reference standard and estimated
systolic and diastolic BP values (SBP and DBP respectively) from both the
linear and non-linear models.

In Figure 6.3 the model summary and the details of the number of pa-
rameters used in each layer during training are described. Unlike traditional
deep neural network, which uses different parameters at each layer, an RNN
shares the same parameters across all steps. This reflects the fact that we are
performing the same task at each step, just with different inputs. This greatly
reduces the total number of parameters we need to learn.

In Figure 6.4, the loss - mean squared error vs. number of epoch curves
for training (in blue) and validation (in green) are shown. Validation error
decreases with training error i.e. there is no overfitting in this case.

In the following tables, the RMSE and the mean and SD of errors are
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Layer (type) Output Shape Param #

1stm_1 (LSTM) (None, 32) 5376
dropout_1 (Dropout) (None, 32) 0
dense_1 (Dense) (None, 1) 33
activation_1 (Activation) (None, 1) 0

Total params: 5,409
Trainable params: 5,409
Non-trainable params: 0

Figure 6.3: LSTM model summary and the parameters

reported using our proposed LSTM (many-to-one) architecture.

Table 6.1: Comparison of RMSE values between the reference standard and
estimated SBP with and without accelerometric and gyroscopic data

H With Accl. and Gyro. Without Accl. and Gyro. H

Recumbent 4.40 4.40
Seated 4.83 4.92
Standing 3.88 4.01
Walking 6.54 8.05
Cycling 7.54 7.93

Table 6.2: Comparison of RMSE values between the reference standard and
estimated DBP with and without accelerometric and gyroscopic data

H With Accl. and Gyro. Without Accl. and Gyro. H

Recumbent 4.57 4.75
Seated 3.95 4.18
Standing 4.90 5.37
Walking 5.22 5.35
Cycling 4.81 5.60

The Table 6.1 and Table 6.2 compare the RMSE values between the refer-
ence standard and estimated SBP and DBP with and without accelerometric
and gyroscopic data. In case of both SBP and DBP prediction from LSTM,

the results are far better using accelerometric and gyroscopic values not only
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Figure 6.4: Loss - MSE vs. Epoch curve for training and validation for the
LSTM

during motion (i.e. walking and cycling) but also in static positions (i.e. re-

cumbent, seated and standing).

Table 6.3: Comparison of Mean 4+ SD between the reference standard and
estimated SBP with and without accelerometric and gyroscopic data

H With Accl. and Gyro. Without Accl. and Gyro. H

Recumbent 0.2 +£4.2 -04+4.4
Seated 0.02 £ 4.8 -0.5 £ 4.6
Standing -0.2 £ 3.9 -0.3 £4.1
Walking 2.6 £6.0 2.6 £ 7.8
Cycling 29+ 64 3.0+78

Table 6.4: Comparison of Mean 4+ SD between the reference standard and
estimated DBP with and without accelerometric and gyroscopic data

H With Accl. and Gyro. Without Accl. and Gyro. H

Recumbent -3.24+3.3 3.4 4+ 34
Seated 1.5 £ 3.7 1.6 £4.0
Standing 2.5 4.2 3.5 +4.1
Walking 2.7+ 45 29+£53
Cycling 2.0+ 4.4 1.8 £ 5.8
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Similarly, in case of mean and standard deviation of error estimates in
Table 6.3 and Table 6.4, the same results are obtained. This shows the data
from motion sensors played an important role in estimating SBP and DBP
continuously from physiological signals using the proposed network.

LSTMs are better at capturing long-term dependencies than vanilla RNNs.
One can think of the hidden state h(t) as the memory of the network. h(¢)
captures the information about what happened in all the previous time-steps.

RNNs allow a lot of flexibility in architecture design.
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Chapter 7

Estimation of Blood Pressure

from Recurrent Neural
Networks - GRU case

It has been observed by, Bengio et al. in [62] that it is quite challenging
to train RNNs to capture long-term dependencies because the gradients tend
to either vanish (in most of the cases) or explode (happens but rare). The
exploding gradients problem refers to the large increase in the norm of the
gradient during training. Such events are due to the explosion of the long-
term components, which can grow exponentially more than short term ones.
The vanishing gradients problem refers to the opposite behaviour, when long
term components go exponentially to the value 0, making it impossible for the
model to learn correlation between temporally distant events.

This makes gradient-based optimization method difficult to implement.
The reasons are the variations in gradient magnitudes and the effect of short-
term dependencies. Many research studies have shown how to reduce the
impact of this problem by suggesting many approaches. There have been two
dominant approaches to handle this problem:

One of the approaches is to devise a better learning algorithm than a simple
stochastic gradient descent proposed in [72, 73|, for example using the very
simple clipped gradient, by which the norm of the gradient vector is clipped,
or using second-order methods which may be less sensitive to the issue if

the second derivatives follow the same growth pattern as the first derivatives
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(which is not guaranteed to be the case).

The other approach, which is more relevant to our problem, is to design
a more sophisticated activation function consisting of affine transformation
followed by a simple element-wise nonlinearity by using gating units. The
earliest result was a recurrent unit called LSTM proposed in [65] in 1997 and
the more recent a gated recurrent unit (GRU) proposed by [66] in 2014. RNNs
employing either of these recurrent units have been shown to perform well in

tasks that require capturing long-term dependencies.

7.1 Gated Recurrent Unit Model

GRU was proposed to make each recurrent unit to adaptively capture depen-
dencies of different time scales. Similarly to the LSTM unit, the GRU has
gating units that modulate the flow of information inside the unit without
having separate memory cells [74].

The activation of h’ of the GRU at time ¢ is a linear interpolation between

the previous activation h;_’ and the candidate activation h,’ :

htj = (1 — th)ht_lj + thhtj (71)
where an update gate z/ decides how much the unit updates its activation.

The update gate is computed by:
2 = o(W.x(t) + Uh(t — 1)), (7.2)

By taking a linear sum between the existing state and the newly computed
state is similar to the LSTM unit. The GRU, however, does not have any
specific mechanism to control the degree to which its state is exposed, but
exposes the whole state each time. The candidate activation h;j is similar to

the traditional recurrent unit defined in and as [64]:
he = tanh (Wx(t) + U(x(t) = h(t — 1)))’ (7.3)

where r; is a set of reset gates and here the operator * is the Hadamard

(element-wise) product. When r;/ is close to 0, the reset gate effectively makes
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the unit act as if it is reading the first symbol of an input sequence, allowing
it to forget the previously computed state.

The reset gate r,/ is computed similarly to the update gate by:

rd = o(Wox(t) + Uh(t — 1)), (7.4)

7.2 Difference Between LSTM vs GRU

The key difference between a GRU and an LSTM is that a GRU has two
gates (reset and update gates) whereas an LSTM has three gates (namely
input, output and forget gates). GRU is related to LSTM as both are utilizing
different way if gating information to prevent vanishing gradient problem. Here

are some key differences between GRU vs LSTM units:

e The GRU unit controls the flow of information like the LSTM unit, but
without having to use a memory unit. It just exposes the full hidden

content without any control;

e GRU is relatively new, and from my perspective, the performance is
on par with LSTM, but computationally more efficient (less complex

structure as pointed out);

e GRUs train faster and perform better than LSTMs on less training data

if you are doing language modeling (not sure about other tasks);

e GRUs are simpler and thus easier to modify, for example adding new

gates in case of additional input to the network;

e LLSTMs should in theory remember longer sequences than GRUs and

outperform them in tasks requiring modeling long-distance relations.

In Figure 7.1(a), i, f and o are the input, forget, and output gates respec-

tively. The parameter ¢ and ¢ denote the memory cell and the new memory
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Figure 7.1: Visual representation of (a) LSTM and (b) GRU

cell content. In Figure 7.1(b), r and z are the reset and update gates and h

and h are the activation and the candidate activation functions.

7.2.1 Discussion

It is easy to notice the similarities between the LSTM unit and the GRU
from Figure 7.1. The most prominent feature shared between these units is
the additive component of their update from t to t + 1, which is lacking in
the traditional recurrent unit. The traditional recurrent unit always replaces
the activation, or the content of a unit with a new value computed from the
current input and the previous hidden state. On the other hand, both LSTM
unit and GRU keep the existing content and add the new content.

This additive nature has two advantages. First, it is easy for each unit
to remember the existence of a specific feature in the input stream for a long
series of steps. Any important feature, decided by either the forget gate of
the LSTM unit or the update gate of the GRU, will not be overwritten but be
maintained as it is.

Second, and perhaps more importantly, this addition effectively creates
shortcut paths that bypass multiple temporal steps. These shortcuts allow
the error to be back-propagated easily without too quickly vanishing (if the
gating unit is nearly saturated at 1) as a result of passing through multiple,

bounded non-linearities, thus reducing the difficulty due to vanishing gradients
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[75]. These two units however have a number of differences as well. One feature
of the LSTM unit that is missing from the GRU is the controlled exposure of
the memory content. In the LSTM unit, the amount of the memory content
that is seen, or used by other units in the network is controlled by the output
gate. On the other hand the GRU exposes its full content without any control.

Another difference is in the location of the input gate, or the correspond-
ing reset gate. The LSTM unit computes the new memory content without
any separate control of the amount of information flowing from the previous
time step. Rather, the LSTM unit controls the amount of the new memory
content being added to the memory cell independently from the forget gate.
On the other hand, the GRU controls the information flow from the previous
activation when computing the new, candidate activation, but does not inde-
pendently control the amount of the candidate activation being added (the
control is tied via the update gate). From these similarities and differences
alone, it is difficult to conclude which types of gating units would perform
better in general. Although [64] reported that these two units performed com-
parably to each other according to their preliminary experiments on machine
translation, it is unclear whether this applies as well to tasks other than ma-

chine translation.

7.3 GRU Network Algorithm

We created our GRU layer with different numbers of neurons (4, 8, 16) and it
performed comparatively well with 4 neurons in the first hidden layer and 1
neuron in the output layer to predict BP values. The last layer is a dense layer
and we used mean squared error (MSE) loss function and Adam version of the
stochastic gradient descent [70]. The model was trained with 50 epochs and a
batch size of 64 examples with learning rate of 0.001. All the GRU-parameters
were initialized with the uniform distribution between -0.1 and 0.1. A dropout
of 0.30 was applied to prevent overfitting. The MSE loss curves (training and
validation curves) with different epochs are shown in figure 7.2. Validation

error decreases with training error i.e. there is no overfitting in this case. All

92



the experiments with the neural network were implemented using Keras API
[71] with TensorFlow and on a double NVIDIA GeForce GTX 1080. It took

45 minutes to train the network. But the testing took less than 2 minutes.
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Figure 7.2: Loss - MSE vs. Epoch curve for training and validation for the
GRU

In the following tables, the RMSE and the mean and SD of errors are
reported using the proposed GRU (many-to-one) architecture.

The Table 7.1 and Table 7.2 compare the RMSE values between the refer-
ence standard and estimated SBP and DBP with and without accelerometric
and gyroscopic data. Similar to LSTM, SBP and DBP prediction from GRU
results are far better using accelerometric and gyroscopic values not only dur-
ing motion (i.e. walking and cycling) but also in static positions (i.e. recum-
bent, seated and standing).

One can see the mean and standard deviation of error estimates in Table 7.3
and Table 7.4 where the results are similar. This shows the data from motion

sensors played an important part in estimating SBP and DBP continuously
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Table 7.1: Comparison of RMSE values between the reference standard and
estimated SBP with and without accelerometric and gyroscopic data

H With Accl. and Gyro. Without Accl. and Gyro. H

Recumbent 3.86 4.16
Seated 4.22 4.24
Standing 3.34 3.68
Walking 6.10 7.44
Cycling 6.64 7.12

Table 7.2: Comparison of RMSE values between the reference standard and
estimated DBP with and without accelerometric and gyroscopic data

H With Accl. and Gyro. Without Accl. and Gyro. H

Recumbent 3.96 4.39
Seated 3.73 3.86
Standing 4.40 4.62
Walking 4.80 4.95
Cycling 4.44 4.86

Table 7.3: Comparison of Mean 4+ SD between the reference standard and
estimated SBP with and without accelerometric and gyroscopic data

H With Accl. and Gyro. Without Accl. and Gyro. H

Recumbent 0.2 £3.9 -0.5 £ 4.2
Seated 0.08 £ 4.5 -04 +£4.3
Standing -0.2 £ 34 -0.3 £ 3.7
Walking 2.3 £5.7 24 £ 7.2
Cycling 3.8+ 5.0 1.5£+71

Table 7.4: Comparison of Mean 4+ SD between the reference standard and
estimated DBP with and without accelerometric and gyroscopic data

H With Accl. and Gyro. Without Accl. and Gyro. H

Recumbent 2.7+ 3.0 3.1 £32
Seated 1.7+ 34 1.4+ 3.6
Standing 24+ 38 3.0 £4.10
Walking 2.5+ 4.2 1.4 £5.0
Cycling 1.8 +4.1 1.4 + 438

from physiological signals using deep learning techniques.
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Chapter 8

Conclusion

8.1 Discussion

In this study, cuff-less, continuous BP was estimated using pulse transit time
during variations in posture and activity. To show the importance of accurate
PTT computation, we estimated BP with and without sparsification. Without
executing the pre-processing (sparsification) of the PPG signal the acquired
PTT values were not accurate. But the least square algorithm was able to
predict BP with a high bias. As a result, constant or average SBP and DBP
values were obtained which is not admissible since BP varies and fluctuates
minute to minute. Therefore, sparsification should be used when estimat-
ing BP using PTT. This pre-processing increased the accuracy and efficiency
(computational time) of our proposed method.

The linear regression model predicted the BP from PTT comparatively
better during recumbent, seated and standing positions. However, walking and
cycling introduce baseline noise into both the ECG and PPG signals, making it
more difficult to accurately determine ECG signals from the heart as opposed
to the one created by the motion. This limits the accurate BP estimation. If we
consider a difference between the experimental BP measurement and reference
standard of less than 5 + 8 mmHg as indication of acceptable accuracy [76],
then the PTT-based estimation in this study appears sufficiently accurate if
one is seated or standing but not for other activities.

To improve the BP estimation in all posture and activity, we applied deep

learning based approach as we collected a reasonably large dataset from 50
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healthy volunteers as deep learning needs a lot of data to train the model.
As the problem is multidimensional time series prediction problem, we im-
plemented RNN models (specifically many-to-many and many-to-one LSTM
and GRU) that can predict continuous BP sequences from physiological signals
such as ECG, PPG but also motion sensors like accelerometers and gyroscopes.
The captured signals in the seated or standing positions are relatively com-
parable to oscillometric BP; however, walking and cycling introduce baseline
noise into both the ECG and PPG signals and have varying physiological states
from resting, making it more difficult to accurately estimate the corresponding
BP values. To predict BP more accurately during activity, the acceleromet-
ric and gyroscopic values were used to compensate for motion artefact. The
BioRadio’s accelerometer measures gravitational force (also known as g-force)
and the gyroscope measures angular velocity. Both of these sensors take mea-
surements in three planes - x, y, and z directions. The motion artifacts that
affect the ECG and PPG signals are a known, yet unavoidable issue caused
by activity.

The training dataset was collected with the subjects in a seated position
and the test dataset with the subjects seated, lying down, standing, walking
and cycling. As we trained the models on the data collected in motionless
condition, it is expected that the model should perform well on the test data
from seated, recumbent and standing positions. But we also have test data
collected during motion (i.e. while walking and cycling) which the model did
not see during training. This problem is called an extrapolation problem
and deep learning or any other algorithm has not offered any solution for the
extrapolation problem [77]. Also, as BP values vary tremendously from person
to person, we had to train the network for each subject, that means we needed
to calibrate the system for each person.

However after including accelerometric and gyroscopic data, we achieve
significant increase in the accuracy for all positions specially during motion
by using RNNs. The mean + standard deviation is 0.08 + 4.5 for SBP and
1.7 4+ 3.4 for DBP in seated position and 2.3 4+ 5.7 for SBP and 2.5 + 4.2 for
DBP while walking which is permissible according to the accepted threshold
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for accuracy using GRUs. Also, the root mean squared error between the
reference standard and estimated SBP and DBP are 4.22 and 3.73 respectively
for motionless position and are 6.10 and 4.80 for walking in case of GRUs.

Between LSTM and GRU, although the achieved accuracy are very sim-
ilar, GRU performed slightly better than LSTM in all contexts. It can be
stated that the difference between the estimated BP from RNN and the ref-
erence standard was less than the accepted threshold in all five scenarios. We
demonstrated that modeling the temporal dependency in BP dynamics can
significantly improve long term BP prediction accuracy, which is one of the
most challenging problems in cuffless BP estimation. We proposed a novel
deep RNN with LSTM and GRU to tackle this challenge. The experimental
results show that the deep RNN model achieves the state-of-the-art accuracy
for static as well as during motion for continuous BP prediction.

The deep learning based method applied in this study appears sufficiently
accurate not only in motionless conditions (recumbent, seated, standing) but
also for walking and cycling, where motion artifacts are present. If we have a
large labeled dataset, deep learning works great in that case. This novel ap-
proach has a significant potential contribution in BP measurement in different

postures and activity for hypertension control and management.

8.2 Future Work

In the future, the current model should be further developed such that it
learns the multi-scale dependency more accurately and performs multi-tasking
by predicting SBP, DBP and mean blood pressure (MBP) in parallel. Such
auxiliary training could be applied during training phase and could improve
the overall performance and accuracy. Also, if we can build a system that
is generic for all individual, that would revolutionize hypertension diagnosis
and management. However this is still an open problem to come up with
a machine that will automatically predict blood pressure from a few other

parameters where no calibration is needed prior to this.

57



Bibliography

1]

2]

[10]

[11]

[12]

Lim SS, Vos T, Flaxman AD, Goodarz D, Shibuya K, Adair-Rohani H,
and Al-Mazroa MA et al. A comparative risk assessment of burden of
disease and injury attributable to 67 risk factors and risk factor clusters

in 21 regions, 1990-2010: A systematic analysis for the global burden of
disease study 2010. The Lancet, 380(9859):2224-2260, 2012.

V. L. Burt et al. Prevalence of hypertension in the us adult population:
Results from the third national health and nutrition examination survey,
1988-1991. Hypertension, 25:305-313, 1995.

Heather Ting Ma. A blood pressure monitoring method for stroke man-
agement. BioMed Research International, 2014(571623):7 pages, 2014.

H. Gesche et al. Continuous blood pressure measurement by using the
pulse transit time: Comparison to a cuff-based method. Springer-Verlag,
2011.

X. H. Fang et al. Longitudinal study of blood pressure and stroke in over
37,000 people in China. Cerebrovascular Diseases, 11(3):225-229, 2001.

P. W. Wilson et al. Prediction of coronary heart disease using risk factor
categories. Clirculation, 97(18):1837-1847, 1998.

T. Wibmer et. al. Pulse transit time and blood pressure during car-
diopulmonary exercise tests. Physiological Research, Institute of Physiol-
ogy, Academy of Sciences of the Czech Republic, Prague, Czech Republic,
63(ISSN 0862-8408):287-269, 2014.

Ramakrishna Mukkamala (member IEEE) et. al. Toward ubiquitous
blood pressure monitoring via pulse transit time: Theory and practice.
IEEE Transactions On Biomedical Engineering, 62(8), 2015.

J. L. Rotondo K. King S. M. Boker, M. Xu. Windowed crosscorrelation
and peak picking for the analysis of variability in the association between
behavioral time series. Psychological Methods, 7(3):338-355, 2002.

Che-Chang Yang and Yeh-Liang Hsu. A review of accelerometry-based
wearable motion detectors for physical activity monitoring. Sensors 2010,
TT72-7778, ISSN 1424-8220, 2010.

Peng Su et. al. Long-term blood pressure prediction with deep recurrent
neural networks. arXiv:1705.04524, 2018.

K. G. Ng and C. F. Small. Survey of automated noninvasive blood pres-
sure monitors. J. Clin. Eng., 19:452—-487, 1994.

58



[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[25]
[26]

[27]

A. P. Avolio M. F. O'Rourke R. P. Kelly, C. S. Hayward. Noninvasive
determination of age-related changes in the human arterial pulse. Circu-
lation, 80:1652-1659, 1989.

Ko S. Choi Y, Zhang Q. Noninvasive cuffless blood pressure estimation
using pulse transit time and hilberthuang transform. Comput Electr Eng,
39:103-111, 2012.

Joharinia S. Younessi Heravi MA, Khalilzadeh MA. Continous and cuffless
blood pressure monitoring using ECG and SpO2 signals. J Biomed Phys
Eng, 4(1):27-32, 2014.

M. Cerny L. Peter, N. Noury. A review of methods for non-invasive
and continuous blood pressure monitoring: Pulse transit time method is
promising? Published in IRBM journal, 35:271282, 2014.

Ichikawa S. Takeuchi Y. Togawa T. Chen M.W., Kobayashi T. Continuous
estimation of systolic blood pressure using the pulse arrival time and
intermittent calibration. MedBiol Eng Comput, 28(5):569574, 2000.

C. C. Y. Poon and Y. T. Zhang. Cuff-less and noninvasive measurements
of arterial blood pressure by pulse transit time. in Proceedings of the
27th Annual International Conference of the Engineering in Medicine and
Biology Society (IEEE-EMBS 05), page 58775880, 2005.

Y.-T. Zhang X.-R. Ding X. Hong Q. He F. Miao, N. Fu and Y. Li. A
novel continuous blood pressure estimation approach based on data min-
ing techniques. IEEFE Journal of Biomedical and Health Informatics, 2017.

S. Deb M. Jain, N. Kumar and A. Majumdar. A sparse regression based
approach for cuff-less blood pressure measurement. Acoustics, Speech and
Signal Processing (ICASSP), IEEE International Conference on, page
789793, 2016.

S. S. Thomas et al. Biowatch: A non-invasive wrist-based blood pressure
monitor that incorporates training techniques for posture and subject
variability. IEEE Journal of Biomedical and Health Informatics, 2015.

K. Ivanov et al. He Liu. Toward a smartphone application for estimation
of pulse transit time. Sensors, (ISSN 1424-8220), 2015.

Hao Lin et.al. Noninvasive and continuous blood pressure monitoring
using wearable body sensor networks. IEEE Computer Society, 2015.

P. Sridhar S. Ilango. A non-invasive blood pressure measurement using
android smart phones. ITOSR Journal of Dental and Medical Sciences,
13(ISSN 1424-8220):28-31, 2014.

B. P. M. Imholz et al. Fifteen years experience with finger arterial pressure
monitoring. Cardiovasc. Res., 38:605616, 1998.

K. H. Wesseling et al. Physiocal, calibrating finger vascular physiology
for finapres. Homeostasis, 36:6782, 1995.

G. M. Drzewiecki et al. Deformational forces in arterial tonometry. New
York, NY, USA: IEEFE Press, 28:642645, 1984.

59



[28]

[29]

[30]

[39]

[40]

[41]

J. S. Eckerle. Tonometry arterial. Encyclopedia of Medical Devices and
Instrumentation, J. G. Webster, Ed. New York, NY, USA: Wiley, 1988.

F. Fischer N. Lutter, H.G. Engl and R.D. Bauer. Noninvasive continuous
blood pressure control by pulse wave velocity. Zeitschrift fur Kardiologie,
85(3):124126, 1996.

D. M. Davidson M. A.Winchester R. A. Allen, J. A. Schneider and C. B.
Taylor. The covariation of blood pressure and pulse transit time in hy-
pertensive patients. Psychophysiology, 18(3):301306, 1981.

D. Shapiro E. Rubenstein J. D. Lane, L. Greenstadt and D. James. Pulse
transit time and blood pressure: An intensive analysis. Psychophysiology,
20(1):45-49, 1983.

D. J. Pitson and J. R. Stradling. Value of beat-to-beat blood pressure
changes, detected by pulse transit time, in the management of the obstruc-
tive sleep apnoea/hypopnoea syndrome. FEuropean Respiratory Journal,
12(3):685692, 1998.

S. I. Yagi T. Asakawa T. Kawasaki, S. Sasayama and T. Hirai. Non-
invasive assessment of the age related changes in stiffness of major
branches of the human arteries. Cardiovascular Research, 21(9):678687,
1987.

L. Geddes et al. Pulse transit time as an indicator of arterial blood
pressure. Psychophysiology, 18:7174, 1981.

G. Zhang et al. Pulse arrival time is not an adequate surrogate for
pulse transit time as a marker of blood pressure. J. Appl. Physiology,
111:16811686, 2011.

D. J.Webb R. A. Payne, C. N. Symeonides and S. R. J.Maxwell. Pulse
transit time measured from the ECG: An unreliable marker of beat-to-
beat blood pressure. Journal of Applied Physiology, 100(1):136141, 2006.

J. van Jones G. V. Marie, C. R. Lo and D. W. Johnston. The relationship
between arterial blood pressure and pulse transit time during dynamic
and static exercise. Psychophysiology, 21(5):521527, 1984.

C. C. Y. Poon Y. L. Zheng and Y. T. Zhang. Investigation of temporal
relationship between cardiovascular variables for cuffiess blood pressure
estimation. in Proceedings of the IEEEEMBS International Conference
on Biomedical and Health Informatics (BHI 12), page 644646, 2012.

Murray A. Zheng D. Non-invasive quantification of peripheral arterial

volume distensibility and its non-linear relationship with arterial pressure.
J Biomech, 42(8):1032-7, 20009.

Younessi Heravi et.al. A new approach for blood pressure monitoring
based on ECG and PPG signals by using artificial neural networks. Inter-
national Journal of Computer Applications (0975 8887), 103(12):36-40,
2014.

B. H. McGhee and E. J. Bridges. Monitoring arterial blood pressure:
What you may not know. Crit. Care Nurse, 22:60-79, 2002.

60



[42]
[43]
[44]

[45]

[46]
[47]

[48]

[49]
[50]

[51]

[52]
[53]
[54]

[55]

[56]

[57]

D. Perloff et al. Human blood pressure determination by sphygmomanom-

etry. Circulation, 88:24602470, 1993.

G. Drzewiecki et al. Theory of the oscillometric maximum and the systolic
and diastolic detection ratios. Ann. Biomed. Eng., 22:8896, 1994.

B. S. Alpert et al. Oscillometric blood pressure: A review for clinicians.
J. Am. Soc. Hypertension, 8:930938, 2014.

S. Hansen and M. Staber. Oscillometric blood pressure measurement used
for calibration of the arterial tonometry method contributes significantly

to error. Eur. J. Anaesthesiol., 23:781787, 2006.

BioRadio. Great lakes mneurotechnologies, valley view, oh.
https://glneurotech.com /bioradio /bioradio-specifications/.

Smith R.P. et.al. Pulse transit time: an appraisal of potential clinical
applications. Thorax, 54:452-457, 1999.

Tanmay Pawar et.al. Impact analysis of body movement in ambulatory
ecg. Proceedings of the 29th Annual International Conference of the IEEE
EMBS, 2007.

M. K. Diab. Masimo Corporation. Plethysmograph pulse recognition pro-
cessor. U.S. Patent Application, US 044,918 B2, 2006.

Patrick E. McSharry Gari D. Clifford, Francisco Azuaje. Advanced
methods and tools for ecg data analysis. Artech House Publishers, 2006.

Manal Afify Jadallah Standford L. Yates Stephen R.Quint H.Troy N Nagle
Gary M, Friesen Thomas C. Jannett. A comparision of the noise sensi-
tivity of nine qrs detection algorithms. IFEFE Transactions on Biomedical
Engineering, 37(1), 1990.

Barker S J. Motion resistant pulse oximetry: A comparison of new and
old models. Anesth Analg., 95(4):967972, 2002.

D. J. Hughes et. al. Measurements of youngs modulus of elasticity of the
canine aorta with ultrasound. Ultrasonic Imag., 1:356367, 1979.

B. Gribbin et. al. Pulse wave velocity as a measure of blood pressure
change. Psychophysiology, 13:8690, 1976.

Qin Y Pan W Yu M Xiang H, Liu Y. Calibration of pulse wave transit time
method in blood pressure measurement based on the korotkoff sound delay

time. World Congress on Medical Physics and Biomedical Engineering,
page 4269, 2012.

Aubert X Carvalho P Proenca J, Muehlsteff J. Is pulse transit time a
good indicator of blood pressure changes during short physical exercise
in a young population? Engineering in Medicine and Biology Society

(EMBC), page 598601, 2010.

S. S. Thomas et. al. Biowatch 2014; a wrist watch based signal acquisition
system for physiological signals including blood pressure. in Proc. IEEE
36th Annu. Int. Conf. Eng. Med. Biol. Soc., page 22862289, 2014.

61



[58]

[59]

M. H. Moradi S. Mottaghi and L. Roohisefat. Cuff less blood pressure
estimation during exercise stress test. International Journal of Bioscience,
Biochemistry and Bioinformatics, 2(6), 2012.

Protogerou A Nasothimiou E Kapralos C Stergiou GS, Tzamouranis D.
Validation of the Microlife Watch BP Office professional device for of-
fice blood pressure measurement according to the international protocol.
Blood Press Monit. 2008, 13:299-303, 2008.

Claudio Fania Elisabetta Benetti and Paolo Palatini. Validation of the
A-D BP UA-651 device for home blood pressure measurement according

to the european society of hypertension international protocol revision
2010. Blood Press Monit. 2014, 19(1):50-3, 2014.

Hinton G. E. Rumelhart D. E. and Williams R. J. Learning representa-
tions by back- propagating errors. Nature, 323(6088):533536, 1986.

P. Simard Y. Bengio and P. Frasconi. Learning long-term dependencies
with gradient descent is difficult. IEEE Transactions on Neural Networks,
5(2):157166, 1994.

A. Graves. Supervised sequence labelling with recurrent neural networks.
Studies in Computational Intelligence. Springer, 2012.

K. Cho D. Bahdanau and Y. Bengio. Neural machine translation by
jointly learning to align and translate. Technical report, arXiv preprint
arXw:1409.0473, 2014.

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural
Computation, 9(8):17351780, 1997.

D. Bahdanau K. Cho, B. van Merrienboer and Y. Bengio. On the prop-
erties of neural machine translation: Encoder-decoder approaches. arXiv
preprint arXiwv:1409.1259, 2014.

Geoffrey E Hinton David E Rumelhart and Ronald J Williams. Learning
internal representations by error propagation. Technical report, DTIC
Document, 1985.

Andrej Karpathy and Li Fei-Fei. Deep visual-semantic alignments for
generating image descriptions. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), page 31283137, 2015.

Yoshua Bengio Yann LeCun and Geoffrey Hinton. Deep learning. Nature,
521(7553):436-444, 2015.

Jimmy Ba Diederik Kingma. Adam: A method for stochastic optimiza-
tion. 3rd International Conference for Learning Representations, San
Diego, 2015.

Chollet Francois et. al. Keras. published by GitHub, 2015.

N. Boulanger-Lewandowski Y. Bengio and R. Pascanu. Advances in op-
timizing recurrent networks. In Proc. I[CASSP 38, 2013.

62



[73]

[76]

[77]

T. Mikolov R. Pascanu and Y. Bengio. On the difficulty of training recur-
rent neural networks. In Proceedings of the 30th International Conference
on Machine Learning (ICML13). ACM, 2013.

KyungHyun Cho Yoshua Bengio Junyoung Chung, Caglar Gulcehre. Em-
pirical evaluation of gated recurrent neural networks on sequence model-
ing. NIPS 2014 Deep Learning and Representation Learning Workshop,
2014.

S. Hochreiter. Untersuchungen zu dynamischen neuronalen net-
zen. diploma thesis, institut fur informatik, lehrstuhl prof. brauer,
technische universitat munchen.  URL http:// www7.informatik.tu-
muenchen.de/Ehochreit, 1991.

Association for the Advancement of Medical Instrumentation. Non-
invasive sphygmomanometers - part 2: Clinical investigation of auto-
mated measurement type. 2013.  Arlington, VA. 2013. Available at
WWW. AGMS. OT4.

Gary Marcus. Deep learning: A critical appraisal. arXiv:1801.00631
[es. Al

63



