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ABSTRACT

A hypergroup is essentially a locally compact Hausdorff space
in which the product of two elements is a probability measure.
Such spaces have been studied by Dunkl, Jewett and Spector.
Hypergroups naturally arise as double coset spaces of locally
compact groups by compact subgroups. The main purpose of this
thesis is to initiate a study of amenable hypergroups analogous to
that of amenable locally compact groups.

Let K be a hypergroup (convo in the sense of Jewett)
admitting a left Haar measure. A left invariant mean on L_(K)
is a positive linear functional of norm one, which is invariant
under left translations by elements in K . We say that K is
amenable if there is a left invariant mean on L (K) . Amenable
hypergroups include commutative hypergroups ana central
hypergroups.

In this thesis, it is shown that several, but not all,
characterizations of amenable groups extend to hypergroups. But,
in contrast to the group case, a class of commutative hypergroups
K for which every invariant mean on L_(K) is a topological
invariant mean is exhibited. The cardinality of the set of all
topological invariant means on L_(K) is alsc given.

Let WAP(K) [(UC(K)] be the space of all weakly almist
periodic [uniformly continuous] functions on K. It is proved
that WAP(K) ¢ UC(K) and that the two spaces coincide if and only
if K 1is compact. It is also shown that there is a class of

hypergroups K including amenable hypergroups for which WAP(K)



admits a unique invariant mean.

The Banach algebra L, (K) is shown to be Arens ragular if
and only if K 1is finite. It is further proved that if K is
nondiscrete or infinite, discrete and amenable, then the radical

L ]
of LI(K)' is not norm separable.
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CHAPTER 1

INTRODUCTION

C. Dunkl [25]), I. Jewett [52]), and R. Spector [87)]
independently initiated the theory oi hypergroups in the early
1970’s . Hypergroups are sufficiently general to cover a variety
of important examples including double coset spaces, but yet have
enough structure to allow a substantial theory to develop. The
definitions of hypergroups given by the three authors are not
identical but the ideas are essentially the same and all
intzresting examples are hypergroups by all the definitions.

. Jewett calls hypergroups "Convos" in his paper [52]. 1In
(77), J. S. Pym obtained generalizations of known results about
convolution algebras over semigroups which are close to
hypergroups. A fairly complete history is given in K. A. Ross’s
survey article [82]. 1In recent years, spectral synthesis
properties of commutative hypergroups [11], ([54], and
representation theory on compact and central hypergroups [90],
(46], [6], have been extensively studied by harmonic analysts. 1In
(56] and [95], almost periodic functions and weakly almost
periodic functions were studied. Some work on probability theory
and harmonic analysis for hypergroups can be found in [6], [7],

(32]) and [33]. The above papers of course do not include all the



work done on hypergroups since the tlieory was born.

Let G be a locally compact group, and let C(G) be the
Banach space of bounded continuous functions on G with the
supremum norm. A linear functional m on C(G) is called a
mean if m(1l) = |mll =1 .

For £t €eC(G) , aeG, define af(g) = f(ag) , ge€G.

A mean m on C(G) is said to be left invariant if
m(af) =m(f) for all feC(G), a€G. G is called amenable
if there is a left invariant mean on ¢€(G) . In [72], J. von
Neumann made a systematic study of amenable discrete groups. He
showed that any solvable group is amenable and that the free group
on two generators is not amenable. J. Dixmier obtained some
fundamental characterizations of amenable discrete groups in
[(21]) . The term "amenable" was introduced by M. M. Day [17]).
Since the appearance of his paper, the subject of amenability has
continued to grow, and has been found useful in many areas of
mathematics and related fields. Amenability of locally compact
groups was initially studied, among others, by E. Granirer, F.P.
Greenleaf, A. Hulanicki and H. Reiter. F. P. Greenleaf (42)] is a
classic reference, and at present the most recent monograph of A.
L. T. Paterson [73] and a relatively new book »f J. P. Pier [74]
contain more up to date material on amenable locally compact
groups.

The main purpose of this thesis is to initiate a systematic

study of amenable hypergroups, which are analogues to amenable



locally compact groups. Many of our results are on hypergroups
with left Haar measures. It is still unknown if an arbitrary
hypergroup admits a left Haar measure, but all the known examples
of hypergroups do. Let K be a hypergroup with a left Haar
measure A , and let L (K) be the Banach space of all
essentially bounded Borel measurable functions on K with the
essential supremum norm. Unless otherwise stated, we use the
definitions and notations of I. Jewett [52].

Again, a linear functional m on L_(K) is a mean if
m(l) =lmll =1 .

We say that K 1is amenable 1if there is a mean m on
L (K) such that m( f) =mn(f) for all xeK, felL (K,
where xf(y) = f(x *y) , yeK.

A mean m on L (K) is called topologically left [right]
invariant 1if m(¢ * f) = m(f) [(m(f * ) = m(f)] for all
$ € L (K) with ¢ =20 . ||¢||1 =1, and feL (K), where
d(x) = ¢(x) and x —— x denotes the involution on K . The
set of all two sided [left] topological invariant means on L (K)
is denoted by TIM(L_(K)) ([TLIM(L_(K)))

A mean m on L (K) is called inversion invariant if
m(f) = m(f) for all f e L (K) , and the set of all topological
and inversion invariant means on L (K) is denoted by
TIIM(L_(K))

This thesis consists of six chapters. Chapter 2 contains a

sunmary of definitions and notations used throughout the thesis.



In Chapter 3 , we define and study the properties of amenable
hypergroups. Examples of amenable hypergroups are given in
section 3.2 . Compact and commutative hypergroups are amenable,
and the maximal subgroup of an amenable hypergroup is amenable.

It follows that K is amenable if and only if

TLIM(LE(K)) *# O(TIIM(L (K)) » ¢ ). It is a well known result of

E. Granirer [40] and W. Rudin [84) that if G is a non-discrete
locally compact group which is amenable as a discrete group, then
there is a left invariant mean on L (G) which is not
topologically left invariant. We show in this section that this
is not the case in general for hypergroups.

In Section 3.3, we extend some of the important and well
known characterizations of amenable locally compacc groups to
hypergroups. In particular, we prove an analogue of the
Day-Rickert fixed point theorem for hypergroups. It is shown
that the Reiter-Glicksberg property (RG) characterizes
amenability of hypergroups. We also show that K satisfies
Reiter’s condition (Pl) if and only if K 1is amenable.
Inspired by the work of L. Gallardo and O. Gebuhrer
(32, Chapitre TV], we study hypergroups which have property (P,) .
A commutative hypergroup satisfies (P,) if and only if the
support of the Plancherel measure on the dual contains the trivial
character. We show that every hypergroup which satisfies (P,)
is amenable, or equivalently has property (Pl). The converse is

not true in general. However, if K has a compact supernormal



subhypergroup (7), then K satisfies (Pz) if (and only if) K
is amenable.

In [59]), A. T. lLau introduced and studied a class of Banach
algebras which he called F-algebras. They include the Banach
algebra LI(K) . He obtained several characterizations of
F-algebras which admit topological left invariant means. It
follows from the definitions that the F-algebra Ll(K) has a
topological left invariant mean if and only if K is amenable. 1In
(75, p. 82], J. P. Pier calls F-algebras Lau algebras.
Properties related to amenability are also considered in [32,
Chapitre IV] for commutative hypergroups.

In [15, § V ], C. Chou gave a different proof of his earlier
result (12) that if G 1is a o-compact non-compact amenable
locally compact group, then the cardinality |TIM(L_(G)| = 2 .

E. Granirer, assuming the continuum hypothesis, proved this result
in (39, § IIT]). Recently, A. T. Lau and A. L. T. Paterson
proved in [62, Theorem 1) that if G 1is an arbitrary non-compact
amenable locally compact group, then ITLIM(Lb(G))l = 22d , where
d 1is the smallest cardinality of a cover of G by compact
subsets of G . Subsequently, Z. Yang proved in

(98, Corollary 3.4], by extending the ideas of C. Chou

(15, § V ], that if G 1is non-compact and amenable, then the

cardinality of TIIM(L_(G)) is at least (and hence equal to)
d

22 . The interested reader is referred to [73, Chapter 7],

74, § 22] and [42] for earlier references on the subject.




Motivated by the work of the last three authors ([62), (98],

we prove in Section 3.4 that if K is non-compact and amenable,

d
then |TIIM(L_(K))| = |TIM(L_(K))| = 2% , where as before, d

is the smallest cardinality of a cover of K by compact sets. We

also prove that if in addition the maximal subgroup of K is

d
open, then |TLIM(L (K))| =2% . It is 1 if K is compact,

We give some applications of these results.

Chapter 4 is devoted to a study of weakly almost-periodic
functions and almost-periodic functions on hypergroups. This is a
continuation of the work of S. Wolfenstetter [95] on weakly
almost-periodic functions for hypergroups. Let WAP(K) (AP(X)]
be the space of all weakly almost [almost] periodic functions on
K , and let UC(K) be the space of bounded uniformly continuous
functions. In Section 4.2, we prove that WAP(K) < UC(K) and
that they are equal if and only if K 1is compact. This result is
due to E. Granirer [39, p. 62-64) for the case when K is a
group.

It is well known that if G 1is any locally compact group,
then WAP(G) admits a unique invariant mean [42, § 3.1]. We show
in Section 4.3 that there is a class of hypergroups K including
amenable hypergroups for which WAP(K) admits a unique invariant
mean.

Chapter 5 contains two main theorems on the second dual of
the Banach algebra Ll(K). The first generalizes a result of N,

J. Young [99, p. 59-62]. We prove in Section 5.2 that Ll(K) is



Arens reqular if and only if K is finite. E. Granirer proved in
(41, p. 321-324) that if G is a non-discrete locally compact
group or an infinite discrete amenable group, then the radical of
the Banach algebra LB(G)* is not norm-separable. We show that
this result remains valid for hypergroups.

We should mention that several but not all of our proofs are
similar to the group case. In places where the proofs are almost
identical, we omit the details or only give a sketch. To make it
easjier for the reader, we give a fairly complete set of
references. The reader is referred to the above mentioned books
([42], [73, [74]) on amenability for more information.

In Chapter 6, we state some problems in hypergroups and/or

groups which remain open for further research.



CHAPTER 2
PRELIMINARIES

In this chapter, we include some definitions and notations
used throughout the thesis. We also obtain a few basic
properties of bounded uniformly continuous functions on

hypergroups.
§ 2.1 Notations and Definitions,

Let X be a locally compact Hausdorff space. The following

notations are used throughout the thesis:

C The complex numbers

C(X) The bounded complex-valued

continuous functions on X

CO(X), CC(X) The members of C(X) which are
zero at infinity, with compact

support respectively

CZ(X) The members of CC(X) which

are non-negative



clA or A
1a
Borel set

M(X) = co(x)*

MY (X), M_(X),
and M, (X)

M’ (X)

ML (X)

SX

[ oau)
fu

The closure of the set A < X

The characteristic function

of the nonempty set A S X

A member of the smallest
c-algebra which contains the

open sets

The regular Borel complex

measures on X

Those which are non-negative,

with compact support, both

Subset of M+(X) consisting of

probability measures
Those with compact support
The point mass at x e X

J f du

The measure, if it exists,
such that
J g d(fu) = I gf du , for all

g € C_(X)
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f The complex conjugate of a

function £ on X

Hme Sup|f(x)| for a bounded

function £ on X

Hull The total variation norm of

M e M(X)
spt £ The support of the function £
spt u The support of the measure u

Always, an unspecified topology on M'(X) is the cone
topology. This is the weak topology induced on M+(X) by the
family C;(X) U (1) , and equal to the weak" topology if and
only if X 1is compact, where 1=1_, .

X

Definition 2.1.1

A non-void locally compact Hausdorff space K will be

called a hypergroup if the following conditions are satisfied:

(1) M(K) admits a binary operation * under which it

is a complex algebra.

(2) The binary mapping * : M(K) x M(K) —— M(K)

given by (u,v) —— a4 * v 1is non-negative



(3)

(4)

(5)

11

(0 * v =20 whenever u, v 20) and continuous on

ut (k) « MY (k) .

If x, yeK, then S, ¥ sy is a probability

measure with compact support.

The mapping (x,y) — spt s, * 8y of Kx K

into the space B(K) of compact subsets of K is
continuous, where B&(K) is given a topology on
subsets studied by Michael in [66]. A subbasis
for the topology of 6(K) is given by all

GU,V =(Aeb(K) tAnU=2, ASV )}, where

U, V are open subsets of K.

There exists a (necessarily unique) element e
i * = * =
in K such that ax ae se sx ax for all

X € K.

There exists a (necessarily unique) involution

. o
X —— X (a homeomorphism x —— X of K onto

(=]
o

itself such that x = x for all x € K) such
that for x, ye K, e € spt 5, * SY if and only
if x=y, and (u*v) ' =v *ga for all

M, v € M(K) , where 1 e M(K) is defined by

u(A) = u(&) for Borel subsets A of K and

R=(x:xenr).
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The element e will be called the identity of K.

Hypergroups naturally arise as double coset spaces of locally
compact groups by compact subgroups [52, § 8) . In particular,
locally compact grcups are hypergroups. The definition of
hypergroups above is the one given by I. Jewett [52) who called
them convos. A survay of the subject appears in K. A. Ross
(82] .

If f 1is a Borel functionon K and x, y € X, the left
translation _f or Lt and the right translation fy or Ryf

are given by

LE(Y) = (E(y) = €(x *y) = [ £d 8, #8 =¢£ (x) =REM) ,

if this integral exists. The function # is given by
t(x) = £(x)

Many of our resuvlts require the existence of a left Haar
measure. Throughout, K will denote a hypergroup witu a left
Haar meas':2 A . Hence, by definition, A 1is a non-negat*ive

reqular oorel (not necessarily bounded) measure on K such that

ax « A=A for every x € K. The modular function 4 |is
defined on K by the identity A * § = A(x)A . The mapping
X

X — A(x) is a homomorphism from the hypergroup K to the
multiplicative group of positive real numbers. Note that A is
constant on the sets (x) * (y) (x, y € K) with the value

A(x)A(y) [52, 5.3] . If K 1is compact or discrete, then it
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admits a left Haar measure. Compact hypergroups are unimodular
[52, § 7). A hypergroup K is called commutative if

S ¥ ay = ay *3§, for all x, yeK. All commutative
hypergroups admit Haar measures, as shown by R. Spector [88] .
More hypergroups admitting left Haar measures will be mentioned
along the way.

The integral I---dl(x) is often denoted by I---dx . If
the presence of a left Haar measure is not needed, we use other
symbols (eg. J) to denote the corresponding hypergroups.
Notations and facts which are used without explicit reference can
be found in [52] .

Let (Lp(K) , H°Hp ), 1sps=wo, denote the usual Banach

spaces of Borel functions. For f € L, (K) , we write
1

£ (x) = £(X)A(X) (xe€K) . Then f e L, (K) with
Hf*ll1 =l . If fe L,(K) , xeK, 1spsa, then
foHp s Hpr , and this is not an isometry in general [52, 3.3]

The mapping x —— xf is continuous from K to
(Ly (K) Il-llp) , 1sp<o [52, 2.2B and 5.4H).

For xe K, f e L,(K) , write fo3d, = f_A(x) (Note that
X

f o axis denoted f * 6x in [47, § 20]) . Then, it is easy to

see that, for x € K, feLP(K) sy 1=pso,
1
fyr £08, €L (K) , and lif |ls a(x)P ligll, . and
Il fo apr sIIpr . Also, if 1 sp < o, then the mappings

X —— f  and x — fo s, from K into (Lp(K) , H-Hp) are
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continuous [47, 20.4] .
Write P(R) = ( ¢ ¢ L(K) : 920, II¢IIl =1), and
P,(K) = P(K) n C(K) .
The proot of the next result is similar to the group case

(see [52, § 5] and [47, 20.15)) .

Lemma _2.1.2 Let U be the family of all neighbourhoods of e

and regard U as a directed set in the usual way :
U2V if UsSV.

For each U € U, choose a function ¢ € C;(K) such that

J ¢U(x)dx =1 and ¢U vanishes outside U . Then

{ &, ) S P_(K)
u UeU ¢

is a bounded approximate identity for Ll(K).

For non-empty subsets A, B of K ,b write

A*B= U spt §, %9
XeA
yeB

Y

A non-empty closed sub-et H of K 1is called a

subhypergroup of K if H=H and H*HSH . Let

G(K) = { xe€ K: ax *§ =85 *& =46_ ) .
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Then G(K) 1is closed in K and a locally compact group. It is
called the maximal subgroup of K. For each x €K,

y € G(K) , there exists a unique 2 € K such that sx J ay = sz
(52, 10.4B] . We write z = xy .

Let H be compact subhypergroup of K . The double cosets
of H in K are the sets HxH=H ¢ (x) *H, xe€ K. The
collection of double cosets of H will be denoted by K//H. It
will be given the quotient topology with respect to the natural
projection M : K —— K//H , defined by I(x) = HxH . K//H

becomes a hypergroup under the convolution defined by

IfdaHxH*SHyH=Jfoﬂ(x*t*y)dt,

feC,(K//H) , X, yeK.

There is a left Haar measure on K//H , given by
IdexH=IfoH(x) dx ,

f e C_(K//H) [59, 14.2)

We close this section with the definition of hypergroup
joins. Let H be a compact hypergroup and J a discrete
hypergroup with H N J = {e}) , where e is the identity of both
hypergroups. Let K =HUJ have the unique topology for which
both H and J are closed subspaces of K . That is, a set
A< K is open in K if and only if A H is open in H . Let
o be the normalized Haar measure on H and define the operation

on K as follows:
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(i) If 8, teH then 68-6 *§

t = %s t
(ii) If a, beJ and a=#Db then
8a°6b=83*6b
(iii) If seH and ae€eJ (ase) then
Gs'éa=8a°88=6a
(iv) If aeJ and a® e, and
85 ¥5, = z p sb , Where cb's are

beJ
non-negative, only finitely many are non-zero

and z Cp = 1, then
beJ

b b’
beJ\ (e}

We call the hypergroup K the join of H and J and

write K=H, J . Observe that H 1is an open subhypergroup of
K, but J 1is not a subhypergroup unless or H 1is equal to
{e} . R. C. Vrem showed in [92, Proposition 1.1] that

K=H, J always has a left Haar measure. Indeed, if o is the
normalized Haar measure on H , and J has the discrete Haar

measure

DEEI L

xeJ

where
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1

el = § %3 ((e))
e
% X
then
o+ Z [x]8,
xeJ\(e)

is a left Haar measure on K . He also showed in

(92, Proposition 1.3) that K//H & J as hypergroups.

§ 2.2 Invariant Subspaces OF L _(K) .

Recall that L (K) is the space of bounded Borel measurable
complex valued functions on K . We identify functions which
differ only on a locally null set with respect to the left Haar
measure A . Then L (K) 1is a Banach algebra with the essential
supremum norm H-Hoo , and Ll(x)* =L (K) [52, 6.2] . C(K) is

a norm closed subspace of L (K) in a natural way. Write

JC (K) =
={ fe C(K) : x — of is continuous from K to (C(K) , H-Hm)),
uc,(K) =

=( fe C(K: X — fx is continuous from K into (C(K) , H°Hm)),
and UC(K) = UC[(K) n ch(K) . Functions in ch(K) [UCe(K)] are

called bounded right [left] uniformly continuous functions on
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K , and functions in UC(K) are called bounded uniformly
continuous. A subset X <L (K) is called left [right])
translation invariant it xf € X {tx € X] for all xe K,
feX. Both C(K) and L (K) are (two-sided) translation

invariant (52, 3.1B and 6.2B].

Lemma_2.2,1 Each of the spaces UCn(K) ' UCt(K) , UC(K) 118
norm closed conjugate closed, translation invariant subspace of
C(K) containing the constants and the continuous functions

vanishing at infinity. Furthermore,

(i) UC, (K) = L (K) * UC, (K) = L;(K) * L_(K) i
(ii) UC,(K) = UC,(K)" % L (K) = L (K) * L (K)" ;
(iii) uc, (K) * Ll(K)° < uc_(K) and

Ll(K) » UCe(K) < UCe(K) ;

(iv) UC(K) = LI(K) * UC(K) = UC(K) ¢ Ll(K)

Proof: It is easy to see that Uce(K) is a norm closed,
conjugate closed right translation invariant subspace of C(K)
containing the constants and the continuous functions vanishing

at infinity (see [52, 4.2F) . Let ¢ € Ll(l() » £ €L (K . The

ot -6 % £(y) | = | [ [ 00 - 60 ) f(@)adu |
Sl 1 6 - o1l

Since x — x¢ is continuous, ¢ * f is continuous. Now,
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e, *(e* )-8, % ¢x il sliell 11s +0-5 *all,,

and also |l ¢ * £l thl.‘l Hell, .« Therefore, ¢ * f € UC (K) .
Ucn(x) becomes a Banach left Ll(K) - module (see

[8, p. 49) for the definition of a Banach left A-module). Let

c>0 and f € UCQ(K) be given. Choose a neighbourhood V of

e such that |18 +f-¢f]l <c forall xeV. Let ¢, bea

non-negative function in Ll(K) such that vall1 =1 and ¢y

vanishes outside V . Then
| oy * £x) = £0x) | = | [ oy(y) 8, % £(dy = [ £0x) @y(y)ay |

SIV dy(y) | 8, * £(x) - £(x) | dy s¢€ .

That is, |l o, * £ - £ Ilu° < ¢ . Thus Ll(l() * UCQ(K) is norm
dense in uc, (K) . Since Ll(K) has a bounded approximate
identity, by Cohen’s factorization theorem [48, 32.22] , we have
Ll(K) * UC, (K) = UC (K) . This proves (i)

If f e ch(K) , write f=¢ *h ,6 o¢e Ll(K) '
h € UCq(K) . Then, for xe€ K,

5,*f=8_ % (¢*h) =(5 *¢) *heUC (K

since 5x * 9 e Ll(K) . Hence UC (K) is left translation

invariant. Similar assertions are true for UC, (K) since

f —— ¢ is a linear isometry of C(K) onto itself and

(5] =1
for xe€ K, f e C(K) . (Note that f € uc, (K) if and only if

e UC, (X))
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To prove (iii) , let ¢ e Ll(K) , L & UC,(K) , X, Y€ K.
Then |l (f + ®) - y(t * ) I, s 1l 2 - yt l_l¢ll , and hence
£ e UC, (K) . If feUC(K) and ¢ e L,(K) , then

ove=(ted) e Uc, (X) .

To see (iv) , note from (i) and (iii) that
Ll(K) * UC(K) S UC(K) . Also it follows as in the case of
UC, (K) that L, (K) * UC(K) = UC(K) . Since f — $ is a
linear isometry of UC(K) onto itself, we have

UC(K) = UC(K) * L, (K) .

ema

(a) Let f € C(K) be such that x —— xf is continuous
from K into (C(K) , H-Hm) at the identity x =e . Then
fe uc, (K) . Indeed, 1if (¢V’Veu is the bounded approximate

identity for LI(K) as in 2.1.2 , then (ov * f}Veu converges

to f in the II-Hm norm.

(b) If the maximal subgroup G(K) of K 1is open, then
uc, (K) is an algebra. To see this, let f, g e UCQ(K) '

X € G(K) , ye K. Then

LAEG) (¥) = (£9)(¥) = LE(N[,(Y) = (V)] + a(y) [LE(¥) = £,

since sx * Sy = sxy . Thus the mapping x — x(fg) 18

continuous from K into (C(K) , lI-ll ) at e , and hence by

(a), fg e UC, (K).
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(¢) If K 1is compact or discrete, then C(K) = UC(K)

(52, 4.2F) .

In contrast to the group case ([73, 2.33) , there is a class
of nondiscrete noncompact hypergroups K for which

C(K) = UC(K) as we shall show next.

Proposition 2.2.3 Llet K=H, J, H compact, J discrete,

HNJ = (e} . Then C(K) = UC(K) .

Proofg: Let f e C(K) and write g = f|H . Then
g € C(H) = UC(H) since H 1is compact. If x € H, then

S - a(y) , yeH

xfy) = f(y) =
0 » Y € J\(e)

Because H is open in K , the mapping x — xf (and similarly
x — f) is continuous at e from K to (C(K) , H-Hm) . By

2.2.2(a) , f € UC(K) . o

It is known that if K 1is nondiscrete, then C(K) = L_(K)

(91, Theorem A.6).

Proposjtion_2.2,4 If the maximal subgroup G = G(K) of a

hypergroup K 1is open, nondiscrete and noncompact, then
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uc, (K) * C(K) .

Proof: let feC(G) , £e¢UC(G) (73, Problem 1-3) . Let %
be the function on K givenby f=¢f on G and zero
otherwise. Then f e C(K) but tevuc (k) , (if Eeuc (K ,
then EIG = £ € UC (G)) .

Lemma_2.2.5

(1) Ea{xf:xex)=clp(x)tf-czu'(x)tf,

f e UC_(K) or feLp(K), l1sp<o, where Co A is the

closed convex hull of the set A ;

*

(ii) co” ((f:XeK)

w'-cl M'(K) * £, felL (K ;

=w'-cl P(K) * £

(iii) The sets Co ((f:xeK) in (i) and

*
co¥ {xf : XxeK) in (ii) are left translation invariant ;

(iv) If X is a closed convex subset of UC (K) (or
LP(K) , 1lsp<w) , then the following are equivalent:
(a) X 1is translation invariant ;
(b) P(K) * XS X ;

(c) M'(K) *XsSX.
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(v) For a weak' closed convex subset Y of Lb(K) '
(a), (b), (c¢) 1in (iv) are equivalent.
There are similar statements for right translations of

functions in Uct(K) + L (K) , etc. (see [58, § 4)) .

Broog:
(1) If ¢ € P(K) , choose a net (uy) of probability

measures with finite support such that {ua) converges to

(#A) . Then, by 2.2.1(i) , it is easy to see that

I w, * £ - f ll, converges to zero for f e Uc,(K) [52, 5.4H] .
If u e M (K) , then choose a net (¢a) S P(K) such that (¢ax}
converges to u . Then || w, * £ - f IIm converges to zero.

This proves (i) for f e uc, (K) and it is even easier for

f e LP(K) y, 1sp<o,
*
(iii) To see that Co' (. f: xe€K) is left
translation invariant, 1let u € M'(K) . Then there is a

net (u ) < M(K) with spt My finite such that {(u,) converges
to u . Then u, * f converges to u * f 1in the weak* topology

of L_(K)
(iv) This follows from (i)

The rest of the proof is similar. We safely omit the details

(see [58, § 4]).



CHAPTER 3

AMENABLE HYPERGROUPS

§ 3.1 Introduction,

In this chapter, we initiate a systematic study of amenable
hypergroups. Let K be a hypergroup with a left Haar measure. A
linear functional m on L (K) is called a mean if
m(1) = |mll =1 .

We say that K is amenable if there is a mean m on
Lm(K) such that m(xf) =m(f) for all xe K, f e LQ(K)

In Section 3.2 , we give some important examples and discuss
stability properties of amenable hypergroups. We prove that a
hypergroup K is amenable if and only if

TLIM(L,(K)) # ¢ [TIIM(L_(K)) = ¢]

E. Granirer ([40] and W. Rudin ({84] proved independently
that if G 1is a nondiscrete locally compact group which is
amenable as a discrete group, then there is a left invariant mean
on L (G) which is not topologically left invariant. This type
of study goes back to S. Banach ([3]) . In contrast to the group
case, we show that there is a class of commutative hypergroups K
for which every (left) invariant mean on L_(K) is a topological

(left) invariant mean.

24
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In Section 3.3 , we establish some important
characterizations of amenable hypergroups. We prove an analogue
of the Day-Rickert fixed point theorem. We show that a
hypergroup K satisfies the Reiter-Glicksberg property if and
only if K is amenable. Reiter’s condition (Py) is also shown
to characterize amenability of hypergroups. Finally, we show that
if a hypergroup satisfies (P,) , then it is amenable or
equivalently has property (Pl) , and that the converse is not
true in general. This is in contrast to the group case.

In ([59] , A. T. Lau introduced and studied a class of Banach
algebras which includes Ll(K) . He called such algebras
F-algebras. Using the theory of von Neumann algebras he extended
several important characterizations of amenable locally compact
groups to F-algebras which admit topological left invariant means.
It follows that the F-algebra Ll(K) has a topological left
invariant mean if and only if K is amenable. Following [75] ,
we refer to F-algebras as Lau algebras.

M. M. Day [17] and E. Granirer ([36] initiated the study
of the cardinality of the set of invariant means. Recently, A.
T. Lau and A. L. T. Paterson proved in ({62, Theorem 1] that if
G 1is a noncompact amenable locally compact group, then

d

| TLIM (L_(G) | = 2%

where d is the smallest cardinality of a cover of G by compact
sets. By extending C. Chou’s ideas [15, §V ], 2. Yang proved

in [98, § 3] that if G is noncompact and amenable, then
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a
2
| TLIM (L,(G) | = | TIM (L (G) | = | TIIM (L (G) | = 2° .

Inspired by these, we prove in Section 3.4 that
2d
| TIM (L,(K) | = | TIIM (L _(K) | = 2% ,
for an arbitrary amenable noncompact hypergroup, where d is
defined exactly as before. We also show that if in addition the

maximal subgroup G(K) of K is open, then

54
| TLIM (L_(K) | =2° .

We give some applications of these theorems.

§ 3.2 Amenable Hypergroups, Examples and Stability Properties.

In this section, we define amenable hypergroups, give a few

examples, and discuss some stability properties.

Definjtion 3.2.1 Let K be a hypergroup with a left Haar
measure A , and let X be one of the spaces UC(K) , Ucn(K) ,
C(K) or L (K) . A linear functional m on X 1is called a
mean if

e,

(i) m(f) =m(f) for all feX;
(ii) £z 0 implies m(f) 20 [ f20 loc. A a.e. implies

m(f) 20] and m(l) =1.
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It is easy to see that a linear functional m on X is a
mean if and only if m(l) =|imll = 1 and thus the set I(x) of
all means on X is a nonempty weak' compact convex set in
x" (74, Proposition 3.2] .

Amean m on X 1is called a left invariant mean [LIM] if

m(xf) = m(f)
for all feX, xekK.

A hypergroup K 1is called amenable if there is a LIM on
C(K) .

A right invariant mean [RIM] on X 1is a mean such that

m(fx) = m(f)
for all feX, xe K.

A mean m on X 1is called a topological left (right)

invariant mean ([TLIM] ([TRIM]) if
m(¢ * £) =m(f) (m(£*P) =m(f))
for all feX,

¢ € P(K) = ( ¢ € Ll(K) t pzo0, H¢Hl =11} .

A mean m on X ( =UC(K) , C(K) or L (K)) is said to be
inversion invariant if
m(f) = m(t)
for all f e X . Note that if an inversion invariant mean is one
sided invariant, then it is automatically two sided invariant.
We denote the set of left ([topological] invariant means on
X by LIM(X) ([TLIM(X)] . The sets IM(X) , TIM(X) , IIM(X) and

TIIM(X) are similarly defined. For example, TIIM(X) is the set
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of all topological inversion invariant means on X ( = UC(K) ,

C(K) or LB(K)) .

lemma _3d.2.¢2
(i) Every TLIM on X is a LIM;

(i1) If X = UC,(K) or UC(K) then every LIM on X is

alsoa TLIM.

Proof:
(i) Let m bea TLIM on X . Since the modular function
A is constant on (x) ¥ {y} with value A(x)A(y) for all

X, ye K, it follows that ¢ * xf =(¢od_ )¢ for
X

feX, ¢ e€P(K). Also ¢od e P(K) . Hence,
X
m( £) =m(o * f) =m((¢d038 ) *£f)=mn(f), feX, xekK.
b4

(ii) Let m be a LIM on X and ¢ € Pc(K) . S3ince the
mapping x —— s, * f (f e€eX) 1is continuous from K into
( C(K) ,ILIL) and the point evaluation functionals in x*
separate points of X , we have
¢ *f = IK (5, * £) #(x)dx .
Thus

<m, ¢ * £> = <n, jK (8, * £) ¢(x)dx >

IK <m, 5 * £> $(x)dx



29

= <m, £> .

Now, (ii) follows by the density of Pc(K) in P(K) . o

Theorem _3.2.3 Let X be one of the spaces UC(K) , Ucn(K) , C(K)
or L (K) . Then K is amenable if and only if

LIM(X) @ [TLIM(X) *o ] .
In this case, IM(X) =& and thus TIM(X) se . Also

TIIM(X) * @ for X =UC(K) , C(K) , L (K) .

Proof: To prove the first statement, let m be a LIM on
UC(K) , and E a compact symmetric neighbourhood of e . Using
an approximate identity for L, (K) contained in P(K) one can
easily see that m(¢, * £+ J:O) =m(¢, ¥ £ ¥ ‘7’0) for all
wo, ¢1, 02 € P(K) , fe Lm(K) (74, p. 35] .

Let

€ P(K)
O A(E)

E
Then ¢, * £ * ¢, € UC(K) since ¢, = 60 .

Write m'(f) = m(¢o * £ ¢0) » felL (K) . Then m is a
TLIM on L (K} , since

(¥ £) =m(dy * (6% ) *dg) =m(By *£* Py =W (),
for all ¢ eP(K) , felL (K .

It is easy to see that if m is an IM or IIM then m'
is a TIM or TIIM , respectively [74, p. 35-37]. To see the

last statement, let m be a LIM on UC(K) and n a right
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invariant mean on C(K) (If n is a LIM on C(K), then
n(g) =n(t) , £ec(k) gives a RIM on C(K)) .
Define
F(x) = <m, fx> , £ eUC(K) ,xe K.
Then F € C(K) .Next, put ml(f) =<m, £, £ e UC(K) . Then m

is a two sided invariant mean on UC(K) . Indeed, since

<m, (yf)x> =<m, J(£)> = <m, £.> = F(x)

and

= *

<m, (fy)x> IK <m, fu> d sx &y(u)

= jK Fru) d 8, ¥ 8, (u) = F (x) ,

we have
<m1, yf> =<n, F> = <m1, f>
and
<my, fy> = <n, Fy> =<n, F> = <my, £> .

So, m is a TLIM on UC(K) . m, 1is also a TRIM because

1 1

£+ d=[p £, 0may,

¢ e PC(K) , f € UC(K)
To complete the proof, note that if m is an IM [TIM] on

X (=UC(K) , C(K) , L (K)) , then

is an IIM [TIIM] on X.

Let X = UC(K) , UCQ(K) , C(K) or Lm(K) . The next result
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is not hard to prove (cf. [30, Proposition 2.1)) .

Lemma_3J.,2.4 Let INI(X) be a conjugate closed subspace of X .

The following are equivalent:

(1) a(l, M(X)) = inf |1 - £ll =1 ;
fell (X)
(ii) There is a mean m on X such that m(II(X)) =0 ;
(iii) ess inf h s 0 [inf h s 0] for all real valued
h € T(X)

The equivalence of (i) and (ii) below is known as

Dixmier’s criteria.

Corollary 3.2.5 Let HO(X) [Ul(X)] be the subspace of X

spanned by (xf -f:xeK, feX) ({(¢*f-f:¢e€P((K),

f « X )] . The following are equivalent:
(1) There is a LIM (TLIM] on X ;
(i1) ess inf h =0 (int h = 0) for all real valued
hely(X) (N (X)) ;
(1ii) d(1, UO(X)) =1 ( d(1, Ul(X)) =1

Proposjtion 3.2.6 Let X uc, (K) C(K) or L _(K) . Then K

is amenable if and only if M, (X) [Hl(X)] is not uniformly

dense in X, and in this case we have
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(a) cl no(X) = (feX:m(f) =0 for all m e LIM(X)) ¢
(b) cl nl(x) = (feX:m(f) =0 for all me TLIM(X)) .

If UC(K) is an algebra (in particular, if G(K) is open) then
this is also true for X = UC(K) .

Proof: If K is amenable then no(X) [ﬂl(X)] is not
uniformly dense in X by 3.2.5 . Conversely, suppose first that
nl(Ucn(K)) is not dense in UCQ(K) . Then there exist
*

f, € UC (K) , ¢ €UC (K) such that

¢(f0) =1, ¢("1(UCH(K)) =0 .
Fix u, € P(K) and put ¢&(f) = ¢(u0 *f) , fel (K), so that
°IUCQ(K) = ¢ . As observed earlier (3.2.3) ,
¢(u1 * f)y = ¢(u2 v+ f) fer nl1 U, u, € P(K) . Hence

d(u v £) =@(uy * (u*f)) =¢(uy*f) =29,

felL (K) , ueP(K). Following an idea of A. T. Lau (sce,

for example, (86, p. 17]) , write

V(E) =3 @+,

8o =

where 0*(f) =¢(f) , fe L (K) . Then V¥ 1is topologically left
invariant, V(£ =1, and ¥(f) = ¥(f) for all f e L (K)

* .
Since L (K) 1is a C -algebra, we can write

el = et + tei,
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uniquely (22, 12.34) .

For ue P(K) , let tu denote the linear operator on

* 4
L, (K) given by tut =u*f (fel (K) . Then tu v and

t; ¥~ are both positive linear functionals with the same norm as

v' , ¥, respectively. In fact,

e v =<t v, 1> =<t L=Vl

(22, 2.1.4] .
+

Since ¢: V=V, we have c: v¥ =yt ana c; v =V . If

W+(fo) £ 0 (say) , let

‘l’+

et

m:

Then m 1is a TLIM on L_(K) with m(fo) #+ 0. This shows K

is amenable and

[}
o

cl Ul(UCq(K)) ={( f e UCQ(K) : m(f)

for all m e TLIM(UCq(K)))

Since cl HO(UCq(K)) = cl ﬂl(UCq(K)) and

TLIM(UCI(K)) LIM(UCq(K)) , we have the result for X = UCq(K)
When X = Lm(K) or C(K) or UC(K) 1is an algebra, the

. *
proofs are even easier because they are C ~algebras. Q

Remark _3.2.7
(i) Let K be amenable. Then we have always HO(X) S Hl(X)
with cl My (X) = cl nl(x) if and only if every LIM on X is a

TLIM , and hence cl HO(X) = ¢l Hl(X) when X = UC(K) or
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uc, () .

(11) There are similar statements of 3.2.6 for two sided
(and inversion) invariant means. For example, if Fl(x) is the

subspace of X spanned by
(6*vf£-f,g%)-g:t, geX,d, VveP(K) ),

then K is amenable if and only if Fl(X) is not dense in X,

where X = UC(K) , UCR(K) » C(K) or L (K), and in this case

cl FI(X) =(feX:m(f) =0 for all me TIM(X) ) .

(iii) The following mappings are one to one and onto:

(a) m - ——> of TIM(X) onto TIM(UC(K)) ,

™ uc(K)

X = UC(K) , UC (K) , C(K) , L_(K)

(b) m—sm of TLIM(X) onto

|uc, (K)

TLIM(UC, (K)) , X = L_(K) or C(K)

(¢) m—nmn from TIIM(X) onto

|UC(K)

TIIM(UC(K)) , X = C(K) or Lm(K) (see

[73, 1.9 Corollary]).

Definitjon _3.2.8 We say that a net (¢ )} < P(K) converges

wveakly [strongly] to left (right) invariance 1if
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Sy ¥ 0~ 9 (8y © 8y = 8y)
converges to zero in the weak | ll-ll1 - norm] topology of Ll(K)

for each x e <. It is wveakly [strongly] convergent to
topological left (right) invariance if

¢ *o, -9, ( ’a *o-9,)
converges to zero in the weak | ll-Il1 - norm) topology for each
¢ € P(K) .

The functions in P(K) define means on L (K) and form a
weak' dense convex subset of the weak' compact set Z(Lb(K)) of
all means on L (K) . It is easy to see that there is a net in
P(K) weakly convergent to [topological] 1left (right)
invariance if and only if there is a [topological] 1left (right)
invariant mean on Lb(K) .  Furthermore, if {¢a) ¢ P(K)
converges weakly to [topological] left (right) invariance then
any weak" limit point of (¢d) in LB(K)* is a [topological]
left (right) invariant mean on L (K) (see [42, 2.4.3]) . If
there is a net (¢a} ¢ P(K) converging strongly to left (and
right) [topological] invariance, then there is clearly a net
(wB) ¢ P(K) weakly converging to left (and right) [topological]
invariance. The converse is also true and a consequence of

(39, p. 17-18]

lemma_3,2.9 Let {¢a) $ P(K) converge weakly to

13 . . . *
[topological} left (and right) invariance and m, any weak
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cluster point of (¢a) in Lb(K)' . Then there is a net (wp’
in the convex hull Co (oa) such that (wﬂ) converqges strongly
to [topological] left (and right) invariance and
w - lim wﬁ =-mn, .

B

We now give examples and discuss stability properties of

amenable hypergroups.

Examples_3.2.10

(a) Commutative hypergroups are amenable: If K |is
commutative then Ll(K) is a commutative Lau algebra and hence
there is a TIM on L (K) . This is a consequence of the
Markov-Kakutani fixed point theorem and shown in [59, p. 168]

(see also 3.3.1 Dbelow)
(b) Compact hypergroups are amenable: the normalized Haar
measure is a unique LIM on C(K) . It is the unique TLIM on

L_(K) , and it is also inversion invariant (cf. (52, 7.2A])

Example 3.2.11 Let K be a hypergroup such that (x) * (y} is

finite for all x, ye K. Write Kd when K is equipped with

the discrete topology. In this case, the discrete measures

w
Z aisxi ’
1=1

) a sequence of complex numbers such that
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Y lagl <,

i=]
form a closed self adjoint subalgebra of M(K) . Hence, the

convolution in M(K) naturally induces a hypergroup structure on

K Such hypergroups naturally arise as direct prcducts of

q -
discrete hypergroups and locally compact groups. They also
include the commutative hypergroups of normalized characters on
Z-groups [83, 5.5 Theorem) .

We say that K 1is amenable as a discrete hypergroup if Ky
is amenable. Clearly, if Kd is amenable then so is K . Also
every LIM on C(Kd) is a TLIM .

We next prove that every subgroup of an amenable hypergroup

is amenable. We need the following:

Definition_3.2.12_ (Bruhat_ functions)

Let H be a subgroup of the hypergroup K . That is, H is
a closed subgroup of the maximal group G(K) . Let F be a
continuous non-negative function on K such that
(i) For each x € K there exists t e H such that
F(xt) > 0 ;
(ii) If WS K 1is compact, then F coincides on WH
with some function V € CZ(K) (46, Lemma 1.2]
Write

Fy(x) = J'H F(xt) dt (X € K)

Then the integral exists and is positive, and F, is continuous.
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To see that F, is continuous, let W be a compact
neighbourhood of xe€ K and y as in (ii) above. Then for

Yy €W, we have
Py =R [ =1 [ weemae - uiywiat |
Hn Wespt ¢ H n Wespt ¢

If € >0 is given, then by (52, 2.2B] and [52, 4.2F] vwe

can find a neighbourhood V of x contained in W such that

wa-ydIIlmo(Hn&*sptW)<c,

for all yeV, where ¢ is a fixed left Haar measure on H .
So, Fl is continuous.
Next, put
B (x) =~§{%§7 , XxeK.
Then
(1) [geoxe) at =1

(ii) If W s K 1is compact, then B coincides on WH
with some Y e C;(K) . B 1is called a Bruhat
function for H [79, Ch. 8, §1.9] .

N. Rickert initially proved in [81] that a closed subgroup
of an amenable locally compact group is amenable. There are many
proofs of this fact available in the literature now ((42], [50],
[79]) . The one given by H. Reiter (79, Ch. 8, § 5.5] works

for hypergroups as we shall see next.
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Proposition_3.2.13 Every (closed) subgroup H of an amenable

hypergroup K is amenable. In particular, the maximal subgroup

G(K) is amenable.

Proof: Let B8 be a Bruhat function for H . For ¢ e C(H) ,
put

£4(x) = In B(Xt)#(t) dt , xeK.
Then f is continuous (this can be proved as above) and

NN s Lol .

¢
Let m bea LIM on C(K) . Define
<m’, ¢> = <m, f¢> + ¢ € C(H) .

Then m’ is a LIM on C(H) because

IH B(Xt) ¢(ht) dt = JH B(XAt) ¢(t) dat (h € H)

Il

[ BCmx)e) oty at

£4(h%) = (£,) (x) ,
and so

<m’, h¢> = <m, h(f¢)> = <m, f¢> =<m’, f> .

Hence, H 1is amenable. a

A subgroup H of K 1is called normal if xH = Hx for all
Xxe€e K. Let H be a normal subgroup of K . Let K/H be the
set of all cosets xH , x € K, equipped with the quotient
“dpology with respect to the natural projection p(x) = xH . Then

K/H 1is a hypergroup under the convolution
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Ifdsxn-ayﬂsj'topdsx-sy,

X,y €K, £ecC_(K/H) [46, p. 84] .

Proposition_3.2.14¢ K 1is amenable if and only if both K/i{ and

H are amenable.

Proof: let m bea LIM on C(K) , and write
M(f) =m(fep), fe€C(K/H) .This M is a mean on C(K/H) . We

have
(Eom ) =[eopas e =[eas, e,
=fo ° p(Y)
for all x,ye€eK, feC(K/H) . (see [52, § 2.3) or

{49, 12.46])). Hence, M 1is a LIM, because
M(,uqf) = M(uf ° P) =m( (£ °Pp)) =m(f - p) = M),

for feC(K/H) , xe K. So, K/H is amenable, and H |is
amenable by 3.2.13 .
Conversely, let my be a LIM on C(H) and m, a LIM on

C(K/H) . For f e Ucn(K) write f'(Xx) = <m xf H> . Then f’

1I
is bounded, continuous and constant on the cosets of H in K,
and hence we can write f' =F o.p , F e C(K/H) . Put

<m, f> = <m,, F> . Observe that

GF(YH) = £ (x o y) = I <m, “f|u > ds, 8 (u)



41

=<my oyl >

since u —— uf is continuous from K into (C(H) o 11411))

In

and the point evaluation functionals in C(H)* separate points of
C(H) . That is, xuf ° P = () . This shows that m is a LIM
on UC (K) and hence K is amenable. o

Let K be a hypergroup, and let
Z(K) = {(x € K : ay v ax = sx . sy for all yeK). K is
called a central or a 2-hypergroup [46] if K/2(K) n G(K) is
compact, where G(K) 1is the maximal subgroup of K . Central
hypergroups admit left Haar measures and are unimodular

[46, p. 93]

orolla 3 5 Z-hyperqroups are amenable.

Proposition_3.2.16 Let H be a compact subhypergroup of K

with the normalized Haar measure o . If K is amenable, so is
K//H . 1If sx s O =0 Sx for all x e K (see [7, p. 549)

and (54, p. 179]) , then _nhe converse is also true.

Proof: Let m bea TLIM on C(K) . For f e C(K//H) , write
<M,f>=<m, £ - 1I>, where T is the natural projection of K

onto K//H . Let ¢ € PC(K//H) . Then
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¢ o £(HxH) = jwumuyu)u,

(£°) (HyH) d HyH
XH

=[x [oomy £omFotex atay
H

[52, 14.2F)
=[g@emeqgom (Bex) at

=(c e (doM) v (£1(x) .

Hence, ¢+ £ oll=(0ce (p oM)) ¢« (£cTT) . But ¢ - M and

hence o « (¢ - ) is in P(K) . Now,

<M, def>=<m, (e f) clI>=<m,ce (oM ¢ (f 10>

=<m, £foll>=cM£f>,

Thus, M is a TLIM on C(K//H) and hence K//H 1s amenable.

To prove the converse, for f e C(K) write
£/ (x) = J‘Hf(x e t) dt = £ s o (x)

Then £’ 1is continuous, bounded and constant on cosets (Indeed,

if f=zo0, £f'(z,) =sup f'(z) ,2z

ze{xX)*H

o) o € (X} v H, then since

f'(z0 v+ t) = £’ (2 for all teH, we have f’'(u) = f’(z

o) o)

for ue (z,) s (t) . This shows that f’ 1is constant on

{x) » H. Finally, observe that

{x)}) *» H = spt qua=spto-6x=ﬂv {x) for all x € K)
If m is LIM on C(K//H) , put <M,f>=<m, F >,

where f’ =F o I . Now, note that

F(xH « yH) = .[H f'(x s+ tey) dt
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.IKf' dsxvacsyijf' s, s 8, 90
- IKJ‘K £ (uet) 5, ¢35 (u) do(t)
= J’KJ’K £'(u) 48, + 8, (u) do(t)

[ f'(uet) = £ (u) for all teH ] . This implies

(xf)’(y) = uF ° T (y) , and hence <M,xt> = <M,f> for all

feC(K)y, Xxe€eK. Hence, M is a LIM on C(K) and so K is

amenable.
Remark _3.2.17
(i) Let K be an arbitrary hypergroup and H a compact
subi.ypergroup with the normalized Haar measure o . Then
(a) o+« ax = sx +» o for all xe K if and only if

cef=fs o forall f e CC(K) [C(K)] .

(b) If o« §,=8,%0 forall xeK, then itis

easy to see that
| fdstaayH=JfoHd8x-6Y
for all f e C(K//H) , x, yeK, and clearly (x) * H=H « (x)
for each x € K. Also, in this case, if there is a left Haar
measure on K//H ( = K/H) then K 21mits a left Haar measure
such that
fxf(x)dx = J'K/HIH £(x » t) dt dHxH ,

feC_(K

(ii) Let K=H,J , where H 1is a compact hypergroup and
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J a discrete hypergroup with HnJ = (e) . If o is the
normalized Haar measure of H , then ‘sx CoC =0 6x tor all

X € K [92, Proposition 1.2) .

Definjtion 3.2.18 Let H be a compact subhypergroup of an
arbitrary hypergroup K . Following ([7) , we say that H is

supernormal in K if (x) eHe (x) SH for all xeK. If H
is supernormal, then 0 =0 on for all x € K, where o
is the normalized Haar measure of H [7, 549] .

The converse is not true in general. In fact, (e) |is
supernormal in K if and only if K 1is a group.

Let H be supernormal in K. Then X//H ( = K/H) 1is a

group under the convolution
desxﬂ*syH=JfoHd6x-6y=JHf°ﬂ(x-t'Y) at

for all f e CC(K/H) , X, ye K, where U 1is the natural
projection TI(x) = xH = HXH , as shown in [93, Thc >rem 2.1]
(see 3.2.17 (i) (b) above) . Hence, if an arbitrary hvpergroup K
admits a compact supernormal subhypergroup, then K admits a left
Haar measure by 3.2.17(i) (b)

If H is a compact hypergroup and G any discrete group

with Hn G = (e) , then H is supernormal in K = HG .

Corollary 3.2.19

(i) If K admits a compact supernormal subhypergroup H
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tuen K is amenable if and only if K/H is amenable.
(11) I1f K= HAJ , vhere H is a compact hypergroup and J
a discrete hypergroup with HAJ = (e) , then K is amenable if

and only if J is amenable.
Proof: Follows fiom 3.2.16 , 3.2.17 (ii) and 3.2.18 .
Let G be a locally compact group and let B denote a

subgroup of the topological automorphism group Aut G

(47, p. 426] . We call G an [Fux];3 - group provided the

closure B~ of B in Aut G is compact (cf. (69]) . For each
Xe G, let ([(x] ={B(x):BeB )}, and write
Gy = ([x] : x € G) , equipped with the quotient topology. Then
Gp 1s a hypergroup with the operation

f £A8, 8, JB_ £ o1 (B(x)y) dB = IB_ £ o M(xB(y)) 48 ,
f e C.(Gy) , where T is the natural projection map
X ~——3 [x] . GB admits a left Haar measure given by

J'GBf d[(x] = f £ o l(x) dx ,

feC(Gy) . Let G =G~B and H = (e) xB with the

product topology. Define a binary operation on G’ by
(xla) (YIB) = (B(X)Yl GB)

Then G is a locally compact group, H’' a compact subgroup of



G' , and the mapping H’'(x,a) H' — [X] 1is an isomorphism i
the hypergroup G’'//H’ onto the hypergroup GB (sece

(52, S 8.3])) . Note that G’ is the semidirect product of G
and B .

The next result is now immediate from 3.2.16 .

corollary _3.2,20 Let G be an amenable locally compact

[FIA]B - group. Then the hypergroup G, is amenable.

B

Example 3.2.21
(a) Let SL(2,C) be the locally compact group (with t

usual topology) of all 2 - 2 complex matrices with determii:
1, and SU(2) the compact subgroup of unitary matrices in
SL(2,C) . It is well known that SL(2,C) is nonamenable (s
for example (74, § 14]) . However, the hypergroup
SL(2,C)//SU(2) 1is commutative (52, 15.5] and hence amenabl
(see also [52, 15.6})

(b) Let H be a compact group and G a (discrete) f
group on two generators with HnG = (e} . Since G is
nonamenable [74, Proposition 14.1) the hypergroup K = H,G
nonamenable by 3.2.19 (ii) , but the maximal subgroup of K
H which is compact (and hence amenable)

let J, L be hypergroups with left Haar measures. Then
is easy to see that the hypergroup J « L has a left Haar

measure. Tre next result is a consequence of 3.2.14 if eit
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J or L is a group.

Proposition 3.2.,22 J x L is amenabls if and only if both J and

L are amenable.

Broof: If m, is a LIM on Ucn(L) and m, is a LIM on
C(J) , for felUC (I xL), xeJ, write (f:x)(y) =£f(x,y),

y €eL. Then (f:x) € Ucn(L) because

£1 .

I, (£2x) - yo(f”‘)”m Sie,yyf - (e.¥g) " =

Write F(x) = <m, (f:x)>, xeJ . Since

"n o,

H(f:x) - (f:xo)Hm SI'(x,e)f - (xo,e)f -

we have F e C(J) . Finally put <m, f> = <m_,F> .Now,

2'
[(a,b)f ;X ](y) = (a,b)f(x'Y)
= J‘JJL £(u,v) d&, « & (u) d§ » 5 (V)

- jJ p(E1W) (¥) A8, « & (u)

Hence,

(a,p)f ¢ X ] = J p(Eu) d8, » 8 (u) ,

because the mapping u —— b(f:u) is continuous from J into
*
(C(L) ,IFIL) and the point evaluation functionals in C(L)

separate points of C(L) . Thus



48

<@y, (a,pft X)>= J' <m, L (£:u) > A8, ¢ 8, (u) = F (x) .

So m is a LIM on Ucn(J x L) and hence J x L is amenable.
Conversely, if m is a LIM on C(J x L) , write

<M,f>=<m, £oII> for fecC(L), wh re W(x,y) =x for all

(x,y) €« I3 xL. Then M isa LIM on J. Hence J (and

similarly L) is amenable. o

Proposition 3.2.23 If the hypergroup K is the directed union of

a system of amenable subhypergroups, then K is amenable.
Proof: See [74, Propostion 13.11] . o

E. Granirer ([40] and W. Rudin [84] proved independently
that if G 1is a locally compact group which is amenable as a
discrete group, then there is a LIM on Lm(G) which is not a
TLIM . For an earlier work of D. Stafney on this see
(86, Chapter V] or (89, § 3] . The next result shows that this

is not the case in general for hypergroups.

am 3 . . u an

Let I_ be the non-negative integers and I_v (=) its one

point compactification. Let 0 < a s % . Define:

8§ = the identit, element,
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+
d_ o sn amin(m,n) s, mnel , men,
0 , t<n
- 1-2a -
Gn . Sn ((t)) i-a , t=n
k
a , Tt=n+k>n,

and n=n for all n.
The compact commutative hypergroup obtained this way is

denoted by Ha . The normalized Haar measure on Ha is given by

(l-a)ak , k2o
A((k)) =
0 , k=wo,

It is easy to see that Lb(Ha) has a unique LIM , namely

the Haar measure. Indeed, let m be a LIM on Lb(Ha) '

feL (H), ¢ce F{H ) . Then H¢n - ¢Hl converges to zero,
where ¢n =¢ on {0,1, ... ,n), and zero otherwise. Hence
n
m(¢ » £} = 1lim m(¢n « f) = 1lim -[ Z ¢(k)(1-a) ak Sk o f
n n
k=0
n
= 1im [ T 6k (1-a) ak) m(f) = m(f)
" x=0

Thus, every LIM on Lb(Ha) is a TLIM, and hence the
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Haar measure is the unique LIM on Lb(“a) (see 3.2.10 (b)) . o

Consider now the subhypergroup H = (1,2, ... ,») of the
hypergroup Ha in the previous example and the hypergroup
Jo = (0,@) , the convolution on J, being given by

_ 1-2a
60 . ao = 13 «Sm + I 60 .

Then H, = HyJd (92, Example 4.5) . Motivated by this and

0
2.2.3 we have the following:

eo 2. Let H be a compact hypergroup, J a discrete
hypergroup with |J| =2, HnJ = (e}, and let K=H,J.
Then every LIM on L (K) is a TLIM . Furthermore, every LIM
M on LB(K) is of the form

*

<M, f> = <m, fl
J

> + <m, 1(e}>IHfda, £el (K ,

for some LIM m on lm(J) , Where J* = J\(e) , and o is the
normalized Haar measure of H .

The correspondence M —— m 1is one to one and onto.

Proof: Let M bea LIM on L (K , xed . feL(K)
(recall that - is the convolution in K , and that the points

* . .
J are isolated points in K)
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( £(x) ’ yeHkH

£t(x o y) , Yy € J* r Y ® X
xE(Y) = £(xy) =

c, Sy £do + T *cbf(b) , Yy =X, where
beJ

§ ¢8§ =7 §

. , C. ¥ 0, only
X X beJ b b

")

\ finitely many are non-zero, I ¢Cp, =1.

beJ
Now,
£ (x) + Y€H
* °
x(f] DY) = f(x o y) , YedJ , y=*xXx
I ¢ f(p), y=x
*
beJ
and
o, y=x
f = °
x( IH)(Y) C, IH fdo , y=x ,
where fl denotes the function f1 , on K, etc.. This
* J
J

implies that xf = x(f| *) + x(lH) JH f do . Hence,
J
<M, f> = <M,xf> = <M,x(f| *)> + <M,x(1H)> IHf do

J

J*

>+ <M, 1> {H f do (1)

Let ¢ € P(K) . Since
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T y)y) = I ,o(y) dy <o,
. J

yeJ
and
r ¢(y)tyléy v £(2) = (ol ) » £(2) ,
* 1 ]
yeJ J
we have
M, (8 )= (oo ay) ae>. (2)
* J
J
Next,
[ owt@earay , zen
(¢, ) » £(2) =
B [ [ ¢<y)dy]f(z) , zed
Hence,

<M, (¢|H) s £ > = <M, (¢|H) o f | > + <M, 1H> JH(¢|H) ¢« f do

*

by (1)

= [IH ¢(y)dy] <M, f| § M, 10 [jH ¢(y)dY][IH 4 dUJ (3)

J

By (2) and (2) , we have

<M, ¢ ¢ > =

= <M, 1H>[IH ¢(y)dy](IH f do] + <M, f> - [JH ¢(Y)dY]<H, f|H>




= <M, f> |, by (1) .

Hence, M is a TLIM, which proves the first statement of the

theoren.

If M is a LIM on I‘m“‘) put <m,f> = <M, £ o II> , where
T is the projection of K onto K//H ( «J) . Then it is easy
to see that m is a LIM on %JJ) and using (1) that

M £> = <m, £ > <m 1> Iu £ do ,
J
f € Lm(K)

Notice the abuse of the notation that f here means the

| e
J

function on J which is equal to f on 7' and zero at
X=e.

To establish the converse, let m be a LIM on %JJ)
Write f’(x) = jH f(xvt)dt, £ =F.0, felL (K . Put
<M,f>=<m,F>. Then M 1is a LIM on L, (K) since
(xf)’(y) = x(f’)(y) = xHF(yH) for all X,y €e K. Now,

<M, f> = <H, fl
J*

> + <M, 1H> IH f do

by (1)

= <m, fl > + <n, l(e}> jH f do

*
J

since (fl ) = fI and (IH) = 1H .

Finally, it is easy to see that the mapping M —— m is one
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to one.

Propogition 3.2.26 Let K be a hypergroup with a left Haar
measure such that (x) ¢ (y) is finite for all x,y ¢ K.,

Suppose that K contains a normal nondiscrete subgroup H of
finite index. If H is amenable as a discrete group, then there

is a LIM on LB(K) which is not a TLIM.

Proof: Let m bea LIM on L (H) which is not a TLIM, and
let v be the normalized Haar measure on K/H . We take the
restriction of A to H ¢to be the left Haar measure on H ( H

is open in K) . For xeK, fe Lm(K) , put
£'(x) = <m, xfl > . Then f’ 1is bounded, continuous and constant
H

on the cosets of H in K (see [40, p. 619-620]}) . Next, put

<M,f> = <p,F>, where f’' =F Il . Then,

wqF o M= F(xH e yH) = £ (x o y) =<m, _(,£)>= (,6)(Y) .

for all x,y e K, since (x) ¢ (y) 1is finite. Hence M is a
LIM on L (K)
0
For felL(H , let f be the function in L _(K) given by
f=f on H anc¢ zero otherwise. Then
<m,f> , X € H

(£)"(x) = ,
0 otherwise .
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Then, <M, #> = v((H)) <m, 2> .
Let ueP(H), fe L,(H) be such that m(u s £) = m(f) .

Then uUs f=usf, and U< P(K) . Therefore,
M(U o £) = v((H)) m(ue £) » v((H))m(E) = <M, &>,

Thus, M is not topologically left invariant. o

corollary 3.2.27 Let G be any locally compact nondiscrete

group which is amenable as a discrete group, J a finite
hypergroup, and K =G xJ . Then there is a LIM on L_(K)

which is not a TLIM .
§ 3.3 Characterizations of Amenable Hypergroups.

In this section, we generalize some of the very important
characterizations of amenable locally compact groups to
hypergroups.

Throughout let K be a hypergroup with a left Haar measure
A . We begin with an analogue of the Day-Rickert fixed point
theorem. Let E be a locally convex Hausdorff linear topolcgical
space (l.c.s.) and S a nonempty compact convex set in E .
Suppose that there is a [separately] continuous mapping
(x,8) —> x*s of Kx S into S . Then the weak vector valued
integral IK uss dsx . ay(u) (seS, x,ye€K) exists, is

unique and belongs to S [85, 3.27 Theorem] . We denote this



integral by (sx ) ay) 8, 8o that

<¢, (3, 98,) * 8> = IK <p, us> ds o Gy(u) '

4
"
for all ¢ e€eE .
The next result is due to M. M. Day (18, Theorem 1) and
N. W. Rickert (81, Theorem 4.2) for the case when K is a

group. (See also P. Eymard (31, p. 6-15]) .

Theqiem 3,3.1 K 1is amenable if and only if K satisfies the

following fixed point property Fl (F,] ¢

Whenever there is a jointly [separately] continuous
mapping (x,s) —— x*s from Kx S into S, where S is a

nonempty compact convex set ina 1l.c.s. E such that

(1) e's =s for each s €S ;
(ii) s —— x*s is affine for each x e K ;
(iii) X+ (y*s) = (Sx . ay)'s for all x,y € K,
s eSS,
then there is a point Sg € S such that x's, = s, for all
¥x e K.
Proof: Suppose K 1is amenable. Let (x,8) —— X*'s be a

separately continuous mapping of K x S into S satisfying the
nypothesis (i), (ii), (iii), and let m be a LIM on C(K)
J.let A(S) be the Banach space of all continuous complex valued

affine functions on S . Defi-e f, (x) = <¢, x>, for xeK,

¢
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deA(S) , where s €S is fixed. Then t0 is continuous and
Ilf¢llm s lloll .

Let T : A(S) — C(K) be the bounded linear operator given
by T(¢) = t¢ , ®€A(S) . Since ™n is a mean on A(S) ,
there is a point 8, € S such that <T*m,¢> - <¢,so> , ¢ € A(S)
[10, Lemma 1.23] . For ¢ eE' , xeK, define

<¢ox,8'> = <¢p,x*8'~- , 8 €S . Then ¢ox e A(S) and
Lpox(¥) = <d0X, yo8> = <4, x+(y+s)> = <4, (8§, +38,)'5>  (yeK)

= IK <¢,u-s> ds, v 5 (u) = J’K £4(u) 48, + 8 (u)

*
(E | S A(S))
S
= ¢ (£5) (V) .
Since m is left invariant,
<9, x-so> = <¢ox, so> = <T*m, ¢ox> = <m, T(¢ox)> = <m, f¢ux>

= <m,x(f )> = <m,f¢> = <nm,T¢> = <T*m,¢> = <¢,so>

¢

*
for all ¢e€eE . Hence x's. =s for each x € K, because

0 0
E' separates the points of E . Thus K satisfies (Fz)

If K satisfies the fixed point property (Fq) let I be
the set of all means on UCQ(K) . Then I 1is a nonempty compact
convex set in (UCQ(K)* , weak*) . Define (x,m) —— x'm from
Kx Z into T by <xm, f> = <m,xf> , XxeK, fe UCn(K) '

me X . Then it is easy to see that the mapping (x,m) — x°m

is continuous. We have



.sxusy-tsj' (8, * £) d8, * 8 (u) (x,y €K, £ €US, (K)

and hence

<xe*(y'm), £> = <m, § o8 s f>= IK <n, su e B> dso «§ (u)
y X Yy X

= IK <m, uf> dax . ay(u) = I <u-'m, £> d&x . sy(u).

Thus x-(y'm) = (sx . Sy)-m for all x,ye€eK, meX, Dbecause
tha weak* topology is the a(UCn(K)*,UCn(K)) topology. Hence
there is a mean me ¥ such that x‘m=m for all x € K. That

is, m is a LIM on UCQ(K) and hence K 1is amenable.

Definjtion_3.3.2 By a representation T of K on a Banach
space E , we mean a mapping T : X —— 'I‘x of K into B{E) ,
the bounded linear operators on E , such that
(1) 'I‘e = I , the identity operator :
(ii) IITXII <1 for each x € K ;
(iii) X —— sz (s € E) 1is continuous and

<G, Ty v (Tys)> = J’K<¢, T s> 8, + 8 (u) ,

* .
X, yeK, seE, ¢e€E . (That is, T T =T .

X, Yye K; see also 4.2.3(1))
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let C. = Cco (sz
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XxeK) and J the

subspace of E spanned by (sz -8:XeK,seE ). Obgerve
that J and cl Cg are invariant under T (cf. 2.2.5(iii)) .
We say that K satisfies the Reiter-Glicksberg property (RG)
if whenever T 1is a representation of K on a Banach space E ,
then d(o,cs) = d(s,J) for each 8 € E, vwhere
d(s’,A) = inf |ls’ - tIl for a subset A< and s’ € E .

teA
Theorem_3.3.3 K 1is amerable it and only if K satisfies the

Reitc-Glicksberqg property
Proof: Let

d(o,cso)

= § > anc write

0

’

z

Then I

by the Hahn-BRanach theoren

K be amenable.

. * , "
1s a convex weak compact set in E

(RG)

€ E be such that

Let 0

S

*
(eE :lgll =3 and Re < ¢, T,S,>z1 for all xeK).

It is non-empty

(79, Ch. 8, 6.2)

Next consider the map (x,¢) — x*¢ from K- I tco X
given by <x-+¢, s> = <@, sz> ., XeK, ¢e¢Z, se€E (note
that
Re<x-¢, Tyso> = Re<¢, Tx(TySO)>
= Re j <¢, Tuso> dsx . 6y(u)
= J Re <@. Tuso> déx . By(u) z 1)
It 1s easy to see that (x,¢) —— x+¢ is continuous and that the
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hypotheses (i), (ii) and (iii) of the fixed point property are
satisfied. Thus there is a ¢ ¢ £ such that x'¢ = ¢ for each
X €« K. Hence, it follows that <¢,ao> =1, <¢nm sz> = <¢,8> ,
for xe€eK, se¢E, and ll¢ll = % . This implies
d(o,cs) =d(s8,J) for each s« E (see (79, p. 183)) . That is,
K satisfies the property (RG) .

Conversely, if K satisfies the property (RG) , consider
the represcontation x — sx o f of K on UC, (K) . Then
1 =4d(o0, Cl) = d(1, UO(UCR(K)) , and hence there is a LIM on

UC,(K) by 3.2.5 (cf. (38, Theorem 5]) . So, K is amenable. o

Let D = co (ax : Xxe K}, and HD(X) ={ feX: 0e€ norm
closure of D f ) , where X = UC(K) , ch(K) , C(K) , or
Lm(K) . The next result is due to W. R. Emerson [30, Theorem 1)

and J. C. S. Wong and A. Riazi [97, Theorem 4.1) for the case

when K 1is a group.

Iheozgm 3:3.4

(i) If X = UCq(K) or UC(K) , then HD(X) is closed
under addition if and only if K is amenable, «nd in this case
My(X) = cl 1 (X)

(ii) Suppose that spt 8, ° éy is finite for all x,y € K.

(a) If K is amenable, then

d

My(X) = cl M (X) for X =C(K) , L (K)
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(b) 1t nD(x) is closed under addition, then K is

amenable and HD(X) = ¢l UO(X) , X=C(K) or LB(K) .

Proof:
(i) If there is a LIM on Ucn(K) , consider the

representation x —— sx e f of K on Ucn(K) . Then
d(0, Def) = A(f, HO(UCN(K)) by 3.3.3 , and hence
my(UC, (K)) = cl M (uc, (K)) .

Conversely, if HD(UCn(K)) is closed under addition, then as
in the group case [30, Proposition 1.3)] , HD(UCR(K)) is a
conjugate closed subspace of UCQ(K) with inf h s 0 for all
real valued h e HD(ch(K)) . Indeed, if h e nD(ch(K)) is real

valued and inf h=¢ > 0, then

n
ciaxi ] *hiy) = ) ¢ IKh(u) ds;( *8,(u) e,
i=1 i

i i i
i=1
Next, for xe K and f € UCq(K) , Wwrite
V=}-(5 + 8 e 8 + ...+ 8 e e & )
n n X X 4 * X v X !

n times
and

fo=v e (8, £-£)
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Then Ilf“llm s % lI£ll,  which converges to zero. Thus,

Gx e f-f¢ UD(Ucn(K)) by 2.2.5(i) . That is, UD(UCQ(K))
contains no(ucn(x)) , and hence there is a LIM on uc, (K) by
J.2.4 .

(ii) (a) Follows as in (i) since x — sx o f 1is a

representation of Ky on X (= C¢(kK) , L_(K)) and Kq is

amenable. To prove (b) , first observe that if h e L, (K) is
real valued and ess inf h=¢ > 0, then ess inf yshze for

u €D . Since the vh's are contained in D by the hypothesis,
if follows that HD (L_(K)) 1is a conjugate closed subspace of

L (K) containing HO(LQ(K)) and hence amenable by 2.2.5 . Now,
if f e nD(Lm(K)) and m is a LIM on L (K), then m(f) =0 .

Hence, cl "o(Lm(K)) = HD(LQ(K)) by 3.2.6 (a) . o

Remark_3.3.5 T. Miao has recently solved Emerson’s original
problem ([30, p. 187] . Indeed, he has proved in [(65] that if
G 1is any locally compact group then G is amenable as a discrete

group if (and only if) HD (L_(G)) is closed under addition.

corollary _3.3.6 Let K be amenable. If a is a complex
number and f € X ( = UC(K), UC (K)) then a+l € cl Def 1if and

only if m(f) = a for all LIMS m on X .
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Proof: Follows from 3.3.4(i) (See also (79, 7.3(c))) . 0

The interested reader is referrad to [59) for more
characterizaticns of amenable hypergroups which are consequences

of the Reiter-Glicksberg property (RG) .

Definition 3.3.7 We say that K satisfies Reiter’s condition

(Pl) [P:] if whenever € > 0 and a compact [finite]) set
E € K are given, then there exists ¢ € P(K) such that

H&x v ¢ -¢ll<ec for every xe€E .

The proof of the next result is adapted from A. Hulanicki

(50, § 4]

Theorem_3.3.8 K is amenable if and only ir K satisfies

*
Reiter’s condition (Pl) [(Pl)]

Proof: If K 1is amenable, let € >0 and E §$ K compact be
given. Fix B € P(K) . Choose X9iXor eoe Xy € K and open
n
neighbourhoods Vv of x., 1sisn such that E< U v_ ,
X, i . X,
i i=1 7i
and H8y-8 - sxi-BHl < g for all ye in , l1lsisn,

Next, using an approximate identity for Ll(K) contained in

P(K) , we can find ¢ € P(K) such that |[lysg - Bll < e . By
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3.2.8 and 3.2.9 , there exists ¢ = ¢a € P(K) such that
0

HB-¢° - 00”1 <e, and H(ka-W)-¢° - ¢0“1 <c, lsksn,
[sx ey e P(K)] . Put ¢ = B-¢o ¢ P(K) . We then have
k

llyeop - O”l = H(W-B)-¢o - (ﬂ-¢o)H1 s llyeg - BH1 <ec . This implies

stk-(w-¢) - 6xk-¢H1 <eg, 1sksn. let ze vxk for some

1sksn. Then
Hsz-¢ - oll Hsz-¢ - sxk-¢ul + stk-¢ - ¢H1
= H(SZ-B)-¢° - (ka'8)0¢oﬂl + stk0¢ - ¢H1

s 186 _ef - 8_ ofll. + 118 ¢ - ¢!l
2 xk 1 Xy 1

A

£ 418y 00 =8, sy + sy 2(ur) - olly

< 2¢ + stk-(w-¢) - ¢H1

i

2¢c + HSXROW)-B-¢O - BO¢0H1

A

2e + H(sxk-w)o3-¢o - (sxk-w)-¢oul +

+ H(sxk-w)-¢o - ¢0H1 + HB-¢0 - ¢0H1

A

2e + 2HB0¢0 - ¢0H1 + H(kaOW)-¢o - ¢0H1 < 5S¢ .

If K satisfies (P;) then it is easy to see that there is a net
(¢a} ¢ P(K) converging strongly to left invariance. a
corollary 3.3.9 K is amenable if and only if there is a net

{(¢,) < P(K) such that Hu-¢a - ¢aH1 converges to zero for all

u e M (K) .
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Broof: See (73, 44 Theorem] . L]

Let E be a two sided Banach L, (K)-module [8, p. 49] .
Then E" is also a two sided Banach LI(K)-modulc. By a

derivation D of Ll(K) into E* wve mean a linear map
|
D: LI(K) — E

such that D(dey) = D(4)'y + ¢:D(y) for all ¢,y € L,(K) . If
te¢E', then the map &, : L (K) — E' given by

8¢(¢) = ¢-f -~ fr¢ is a bounded derivation. A derivation of this
form is called an inner derivation. Following B. E. Johnson
(53, p. 60) , we say that the Banach algebra L1(K) is amenable
if every bounded derivation of L, (K) into E' is an inner

derivation. The next result follows from [59, Theorem 4.1)

Proposition_3.3.10 If the Banach algebra L,(K) is amenable then

K is amenable.

The converse is not true in general. The author is very

thankful to Dr. Brian Forrest for suggesting the following:

Example 3.3.11 This is the same as (11, Example 4.5) . Let

n

G=R and let B be the group of rotations in G . Consider

the hypergroup K = GB (see the discussion preceeding 3.2.20)
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As a set, K is identified with R = (0,») . The hypergroup

K is isomorphic with K and so LI(K) and A(K) are
isometrically isomorphic, where A(K) is the pointwise algebra of
Fourier transforms on K. Fix p in (0,0) . It is known that
all of the functions in A(K) are continuously differentiable in
(0,) [79, Ch. 2, 6.3(4)] . Let § be the first derivative
evaluated at p : 8(f) = £'(p) for feA(K) . For nz3 , §

is continuous in the topology of A(K) and can be defined on all
of A(K) . Accordingly, & is a point derivation at p (see
(11, p. 326)) . This shows that Ll(K) is not weakly amenable
(We say Ll(K) is weakly amenable if every bounded derivation of
Ll(K) into a commutative Banach module E [¢°'s = s*¢ for all

¢ € Ll(K) , S € E] 1is necessarily zero ([2)) . Finally, note
that if Ll(K) is amenable, then it is weakly amenable (2] ,

and that K is amenable since it is commutative. Since Ll(K)

is isometrically isomorphic to the closed subalgebra of Ll(m")
consisting of the radial functions, we have a closed subalgebra of

an amenable algebra which is not weakly amenable.

The remaining results in this section are motjvated by the
work of L. Gallardo and O. Gebuhrer ([32, Chapitre V] and J.
Dieudonné [20] . Let P,(K) = ( ¢ e L,(K) i ¢z0, II¢|I2 = 1) .
We say that K satisfies (P2) , 1f whenever ¢ > 0 and a
compact E S K are given there exists ¢ e PZ(K) such that

lls ¢ - ¢ll, <&, for all xeE . The proof of the next result
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is slightly more delicate than the group case because the relation

x(fg) = xtxg does not hold in general for hypergroups.

Theorem_3,.3.12 If K satisfies (Pz) then it satisfies
Reiter’s condition (P,) . Conversely, it ¢ in Reiter'’s

1
condition (Pl) can be chosen of the form (AT 1A , Where A
is a Borel set in K with 0 <A(A) <o, then K has property
(pz) *
Proof: If K satisfies (Pz) , let e >0 and compact E S K
be given. Let ¢ e P,(K) be such that st-¢ - ¢H2 < ¢ for all

x € E, and put y = ¢2 € P(K) . Following [11, p. 319) , write

s,V () = v(y) = [(lu(z) = wy)] a8+, (2)

[x 1e2) = 6(¥)1% a5 5, (2) + 208(1)8,28(v) - 6> (¥)]
X

G, (y) + G, (y) .

JK G, (y)| dy s 2llgll, 115 ¢ - ¢ll, < 2¢ , all xeE,

- 2 _ 2
G (¥) = [¢[6%(2) - 20(2)8(y) + ¢ (v)] a8 3, (2)

5,00 (y) - 25 so(y)o(y) + 6%(y)

[8,°8(y) = 8(y)1° + 8_20%(y) - (5, 00)%(y) .
So [ G (Y)dy = lIs s6 = 8112 + 119112 - 115 +0)112

s 21l e¢ - oll, + 2[H¢H2 - 18 e¢ll,)]
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s 4 Hax-¢ - ¢H2 < 4c for all xeE.

Hence, |ls oy - vll, < 6 for all x«¢E . Conversely, it
o= T%KT 1A € P(K) , where A is a Borel set in K with
0 <A(A) <w, satisties |15 +¢ - ¢ll, <c? for all xeE, let
!
ymoda—T PR

A(A) 2
(cf. [50, p. 100]) . Then

s, 0w = i3 = soay [ 18¢e1a(0) - 23,0 |2dy

2

Yy Ix [8,01,(Y) = 1p(Y)| dy = 2 118 ¢ - oll, .

Hence, H6x0w - WHZ <€ for all x eE.

Let g4 — Tu be the left regular representation of K on

LZ(K) , given by Tuf =uef , fe L2(K) , U € M(K)

Proposition_3.3.13 The following two statements are equivalent:
(1) K satisfies (PZ) ;
(ii) K satisfies (F) : There is a net (£,) € L2(K) ,

- ¥
HfaHZ =1, such that f ef converges to 1
uniformly on compact subsets of K .
In this case, we have
(iii) (G) : |j" du| s It ll for all u e M(K) ;

W) (D) : NIt Il = [lull for all u e Mt (k)
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Proof:

(1) — (1) If €¢>0 and a compact set E S K are given
choose f e L,(K) , llIfll, =1 such that |1 - fct“(x)l <e¢ for
all x€E, and let ¢ = |f| . Then, O0s ItOf#(X)I s ¢ged~(Xx) ,
and 0s ) - ¢-¢“(x) s1- It-f#(x)l s|1- t-t#(x)l <eg,
x€E. Now,

1,8 = 013 =< 0 -0 0~ =Il o2+ 1ol -2 <o, o>
s2 (1 - <o, x¢>) < 2c for all xekE.

(i) — (ii) is easy.

(ii1) — (iii) If fa-fa# converges to 1 uniformly on
compact subsets of K , then

Lim <T £y, £,> = Lin fx £ of! qu = Jl[; du (U € M(K))

This implies that |[, du| s UT|l for all u e M(K)

(iii) — (iv) 1is clear.

The next result is in [32] for a second countable
commutative hypergroup. For the sake of completeness, we give a

proof.

Lemma_3.3.14 Let K be commutative hypergroup with the
Plancherel measure n on the dual K . Then the trivial
character 1 is in spt nm if and only if K satisfies (F) or
equivalently (Pz)

roof: If 1 esptn then by considering the inverse Fourier
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transform one can easily find a net (£,) € Lz(K) ' H!aﬂz -]
such that ta-ta* converges to 1 uniformly on compact subsets
of K (see [52, 13.7B] and (11, Lemmas 3.1 & 3.2)) . The

converse follows from the implication (ii) — (iii) of 3.3.13

and (52, p. 41) . o
Example 3.3.15 Let K be the hypergroup given in (52, 9.5]
(known as Naimark’s example) . Then 1 ¢ spt m and hence K

does not satisfy (P But K is amenable (or satisfies

2)
(Pl)) because it is commutative. An example of a commutative
discrete hypergroup which does not satisfy (Pz) (That is, the

trivial character 1 ¢ spt n) can be found in (33, 6.2.3] .

eorem_3 6
(1) If H is a compact sub-hypergroup of K such that
cho = a-ax for all x € K, where o is the normalized Haar
measure of H , and K//H satisfies (F) , so does K ;
(ii) If H 1is a compact normal subgroup of K such

that K/H has property (F) then K satisfies (F) ;

(iii) If K and K are hypergroups having property

1 2

(Pz) , then K. x K has property (Pz) H

1 2
(iv) If K=HJ , H compact, J discrete,
HJ = (e} , then K has property (F) provided J satisfies
(F) . In particular, if J 1is an amenable (discrete) group then

H,J <catisfies (F) ;
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(v) If a hypergroup K has a compact supernorx»:l
sub-hypergroup H then K has property (Pz) if (and only if)

K is amenable.

BProof:

(1) If f,ge CC(K//H) , then it is easy to see that
(€sg)oll = (foM)e(geM) . This shows that if (f ) S L,(K//H) ,
llfall2 =1 is such that fa'fa# converges to 1 uniformly on
compact subsets of K//H , then (faon)-(faon)# converges to 1

uniformly on compact subsets of K , faoﬂ € Lz(K) , and

lig oml, =1 .
(ii) Same as (i)
(iii) Let € >0 and a compact set E s K, x K, be

given. We assume that E = E1 X E2 ,

1=1,2. Let ¢, eP,(k;) (i=1,2) satisty

Ei S Ki compact,

st-¢i - ¢i”2 <eg, all x e E; , and write
o(x,y) =6, (x)8,(y) , (x,¥) € Ky xK, . Then ¢ eL,(K xK,),
¢=0, II¢H2 =1, and it is easy toc see that

18 ¢ - ¢H2 < 2¢ for all (x,y) € E, xE

(x,y)" 1% %2
Liv) If J has property (F) then so does K by (i)
and [92, Proposition 1.2] .
(v) If K is amenable then K//H is amenable by
3J.2.16. since K//H 1is a group [93, Theorem 2.1] it has
property (F) . Thus K has property (F) by (i) and

(7, 2.2.1 Lemma) .
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§ 3.4 On the Size of the Set of Topological Invariant Means on
L (K) .

In this section, we obtain the exact cardinality of the set
of topological invariant means on L (K) . Some applications are
also given. The main results and their proofs are inspired by
recent papers of A. T. Lau and A. L. T. Paterson [62) and 2Z.
Yang [98] .

Throughout this section, K will dacrnote a noncompact
amenable aypergroup with left Haar measure A . Let d be the

smallest cardinality of a cover of K by compact sets.

e 3.4, Let A be a closed set in K that can be written

as the union of less than d compact subse“s of K . Then

m(A) =0 for all LIMs m on Lm(K) , Where m(A) = m(lA)
Proof: For Xxe€e K, we have (x) * ArA#* e if and only if

xeAs R [52, 4.1A] . Since A+A 1is the union of less than d

compact subsets of K [52, 3.2B) , there exists x € K such that

-4}

{x}) » A\A = ¢ . By induction, we can find a sequence (xn}n=1 S K

such that {xi} » An(xj} ¢+ A=¢ (i#j) . For x,y € K, we have

(X} » {y)JrpA 2 if and only if ye (x}) * A . Also 5, ¢ By is
X

a probability measure. Hence, 8, * 1 vanishes outside

{x} * A, and less than or equal to one on (x) « A . That is,
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6x . 1A s l(x)-A for x € K. This implies that m(A) s 5 for

each positive integer n , and hence m(A) = 0 .

Remark _3.4.2
(a) If f e CO(K) and m a LIM on UC(K) , then

m(f) =0 . For, if f e C.(K) , xeK, then
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spt éx-f S (x) o spt £ . The rest follows as in the proof of the

lemma (see (74, Proposition 2.1.2)) .

(b) If felL(K)nL(K) then m(t) = 9 for every TLI
on L (K) . In particular, if A is a Borel set in K with
A(A) <o, then m(R) =0 (See [40, Proposition 1]) .

Let V be a cover of K by compact sets with |V| =4,

where |1 | is the cardinality of UV . Let Q= Q(V) be the

M

set

of all finite subsets of V and consider 1 as a directed set

In the usual way : A > A’ if A s A’ . Fix a TLIM m, on
L (K) . Let U be a compact symmetric neighbourhood of e and
‘tk’:~1 A countable set in L (K) . The next result is due to

4. Yang (98, Theorem 3.3]) for a locally compact noncompact
amenable group. Similar formats appear in  [15, § V] and

(39, Theorem 5] for the case when G 1is o-compact.

Lemma_3.4.3 There exists a net (v,) ¢ P_(K) = P(K) n C_(K)
means on I (K) with the directed set ! such that

(1) If A=A, then U s spt vy nUeespty =03
A ’

of
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(ii) (wx) converges strongly to topological lett
invariance (and right invariance if m is a TINM) ;

(1i1) If m is inversion invariant so is each wx :

0
(iv) If m is any weak" cluster point of ‘WA) in
*
LB(K) , then m(fn) =m, (fn) y, N=1,2, ...
If K is o-compact then we can find a sequence

(wn) S PC(K) satisfying (i), (ii), (iii), and (iv)

Proof: We assume that m, is inversion invariant (the other

cases are even easier) and for convenience that Ilfnllm s 1 for
all n . Let (¢,) be a net in P_(K) converging to m, in the
weak* topology with ¢a# = ¢a for all a . Since (¢a)
converges weakly to topological invaviance, by 3.2.9 , we can
assume that (¢a) converges strongly to topological invariance

*
and that w -1lim ¢a = m Now, well order the set (1 by

Q

0"

(Aa)l$a<d and let a <d be an ordinal. Suppose that for each
< a we have constructed a mean WA € PC(K) satisfying
3
(a) If B <7y <a then U e spt Y nU e spt wA =0 3
B 7

1
(b) If B < a, then “(55 . U,.-\B - V’IAB“]. < _I_A_[_;T , and

A

[y o8 - wA II1 < TXET , for all s €U AB H

(¢ If B <a, then y is inversion invariant ;

(@) If B<a, thun ju, (f) -m0<fi)|<ﬁ—ﬂ1, for
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1Sis|3\ﬂ| .

Write A = U spt V, + Ay =0 . For seKk,
R<a B

Uesnspt WB =0 (B<a) if and only if s e U ¢ spt wB .
That is, the neighbourhood Ues of s meets at most one

element of the family (spt wB) . Thus A, is closed and
1sB3<a
therefore U3 J Aa . U3 is closed [52, 4.1E]

Since the latter set is the union of less than d compact

sets, by 3.4.1 , mO(U3 A e U3) =0. Fix ¢ € PC(K) with

spt ¢ sU, ¢ = ¢* . Let 0 <€ <1 be given. Choose
Syr cee S, in U:a and neighbourhoods Vi of S; l1=<isn
al - l
such that UA_ < U v, Hés-¢ 85.-¢L1 < € and
i=1 i
kubs - ¢oés IIl <eg¢, for s € vi , 1s1=n. Next find

i

\

Ve P_(K) s ch that ooy - ¢Hl e, |llyep - ¢H1 < ¢ . Finally,

since (¢,} converges strongly to topological invariance and

' .
w —I;m ¢a =m, , Wwe can find ¢ao = ¢0 such that

he b - < . - B> ol e -
I¢ ¢ %”1 €, ||¢0 ¢ ¢0|l ‘e, ”(‘Ssj ¥) c>0 ¢OII1 <€,

1y -— < 3 <
“¢0'(v‘6si) ¢lly <€, for 1=is=n,

_— . 3., und
|#p(E) = my(£)] <&, 1=1i= A |+ and g (U7eA oU”) < .
1 4 ‘ [ f
Next, define ¢0 € p(K) by <¢0 ’ f> = <¢0 ' W lBa> ’

f el (K), where B.=K\U>eA «U>. Then
© X a
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”°6 - ¢°H1 <g', €<€ < I%% . Let Y, =odvdyv0. Then
1 4

w*a € P_(K) , and it is easy to see that “aa'wxa - wkaul < ¢’ ,

n
Hy, o8 _ -y  Il, <7¢', for se¢ U Vv, , and
Aa ] Aa 1 {=1 i

|wa(fi) - mo(ti)l <4’ , for 1sis |Aa| (see the proof

of 3.3.8) . Now, spt wa SUse spt ¢b s U, and

2

U« spt w*a NUeA =@ if and only if U® » A,nspty, =@

(32, 4.1B) . Also, U spt ¢6 e Un 02 . Aa =¢ if and only if

"

spt ¢6 * Un U3 o Aa @ if and only if

H

spt ¢6 N U3 . Aa eU=0e . Since spt ¢6 < Ba , We have

@ . Each spt wA , B<a, |is
B

symmetric, and hence A, is symmetric. This shows that ¢, and

U Aa NU e spt wla

hence wA is inversion invariant. So, wA satisfies (a),
a a

). (c), and (d) . Thus by transfinite induction we have a net
(wl)keﬂ < PC(K) of means on Lb(x) such that each wA satisfies
(a), (b), (¢), and (d) . It is not hard to show now that the
net (wA}AeQ satisfies all the properties of the lemma. By easy

modifications of the above arguments, we have the last statement

(see [15, p. 225-226])

Let (I be a directed set, and let ¢ () be the Banach
space of bounded reai valued functions on Q , with the supremum

norm. Write
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d=(¢0c¢ cm(ﬂ)' : ¢(x) s lim sup x(A) for al. x € cm(n) ) .
A€

Then ¢ is the set of all ¢ el (Q)' such that ¢ =0,
llgll = 1, and ¢(x) = 1lim x(A) whenever the limit exists. Let
A

A be an infinite set and 1 = Q(A) 1is the set of all finite
subsets of A directed by inclusion.

The next result is in (98, Lemma 2.1] .

Lemma_3J.4.4 If ¢ 1is as above for the directed set (Q(A) ,

|A]
then |[&| = 22

Let L:(K) be the Banach space of real valued essentially
bounded Borel measurable functions on K (with respect to the

left Haar measure A ) . Let be a net of means on

(¢A}AEQ
Li(K) given by functions in P(K) . Suppose that for each s € K
there is a neighbourhood U of s which meets at most one
element of the family (spt ¢A)AeQ . Let V¥ be the weak* closed
vonvex hull of the set of all weak* cluster points of (¢A)A€Q

in L:(K)* . Then ¥ 1is a nonempty weak* compact convex subset
of the set ZI(LI(K)) of all mneans on LE(K) . Let ¢ be defined
for the directed set Q as before. Define 1T : L:(K) ——alm(ﬂ)

by WM(£)(A) = ¢, (f) , fe L'(K) , A eQ . The proof of the next
rest .t is exactly as in [98, Lemma 3.1] . Note that the group

structure and the topological invariance of the net (u are

A}AEA
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not used there.

Lemma 3.4.5 There exists a linear isometry of tm(n)' into

L:(K)' which maps ¢ wegk* homeomorphically onto V.

The next theorem is due to C. Chou [12, Theorem 5.3) for a
o-compact and noncompact amenable locally compact group. E.
Granirer, assuming the continuum hypothesis, gives a different
proof of this result in [40, p. 61)] . It is due to A. T. Lau
and A. L. T. Paterson [62, Theorem 1] and 2. Yang
(98, Theorem 3.3] for an arbitrary locally compact noncompact

amenable group.

Theorem 3.4.6 ULet K be a noncompact amenable hypergroup. Then

,d
[TIIM (L_(K))| = 2

Proof: The net constructed in 3.4.3 has at least

(v,}
AAaeq
2d

* *
2 weak cluster points in Li(K) by 3.4.4 and 3.4.5 . We
next observe that each TIIM on LE(K) extends to a TIIM on
L(K) :If m isa TIIM on LT (K) , write

M(f + ig) = m(f) + im(g) , f,g € L. (K

The next result is due to A. T. Lacu and A. L. T. Paterscn
[62, Theorem 1] for the case when K 1is a group (see also

(98, Corollary 3.4])
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Iheorem _3.4.7 Let K be a noncompact amenable hypergroup. Then
d
ITIIM (L_(K))| = |TIM (L_(K)| = 2° . If the maximal subgroup

d
G(K) is open, then [TLIM (L_(K))| = 2% .

Proof: To prove the first statement, by 3.4.6 , we only need

q
to prove |[TIM (L (K))| s 2° .

Let H be a compact subhypergroup of K such that K//H |is

metrizable (91, Theorem A.4] . Let H be an open noncompact

0
o-compact subhypergroup of K containing H (see ([52, 10.1B)
and [95, p. 71B]) . The smallest cardinality of the cover of
K//H by compact sets is d . Let E be a compact sukset of
K//H . For x € K, the set (Ho//H) +» HXH » (HO//H) is open and
o-compact in K//H . Since E can be covered by a finite number
of such sets, it is separable by [91, Lemma A.2) . Hence, there
is a dense subset T of K//H with cardinality d . Let o be
the normalized Haar measure of H , and let ¢ € P(K) . For

f el (K), the function (0sg) s £+ (0¢¢) =0« (¢ = £+ ) s 0

is continuous and constant on the double cosets of H in K.

Indeed, if g 1is a nonnegative bounded continuous function and

h=0eqges o, then there is a z. € HxH such that

0
h(zo) =sup h(z) . If s,teH, then
ZeHxH
d +«hes (z.) =h(z, = I hds « 38§ + 8§, and h is
3 £ 0 0 s ZO t
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constant on (s) ¢ {zo) ¢ (t) . This shows that h is constant
on HzH = HxH . Consider A= ( ced) » £ (00d)’ : £ €L (K) )
as a subspace of C(K//H) . Since every function in C(K//H) is

d..9,

determined by its values on T , we have |C(K//H)| s ¢
If m isa TIM on L (K), then

m((ced) o £ ¢ (cogp)’) = m(g) for all f e L_(K) , and hence m

can be considered as a continuous linear functional on A .

d d

2

LA 2 .

Therefore, |TIM (L_(K))| s |A"] s |c(k//H)| = ¢
To see the second statement, we first assume that G = G(K)
is open and noncompact. Let L ke a o-compact noncompact open
subgroup of G(K) and H a ompact normal subgroup of L such
that L/H 1is separable ([62, p. 79]) . Write
(K/H)r = (Hx : X € K} . Using [52, 10.3B and 10.4B]) , one can
show that for each x € K, the mapping Hg —— Hgx of L/H
into (K/H)r is continuous (g e L) . Also, the set
(L/H)X = (Hgx : g e L) = (Hy : y € Lx} 1is open in (K/H)r .
Therefore every compact set E ¢ (K/H)r is separable, and hence
there is a dense set in (K/H)r with cardinality d . If G is
compact and open then (K/G)r is discrete and |(K/G)r| =d .
The rest ¢f the proof now follows as in the group case

(62, Theorem 1)

The next result is due to C. Chou for the case when KX |is

group [13)
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Coreollary 3.4.8 If K is an infinite discrete amenable

hypergroup, then

K|
|IM(L,(K)) | = [TIM(& (K))| = |LIM(L_(K))| = 22| .

corollary 3.4.9 Let K=HJ , H compact, J discrete and
infinite with JnH = (e) . If K is amenable then

J|

= = = 2'
|TLIM(L;(K))| = |TIM(LB(K))| = ITIIM(LE(K))l =2 .
Proof: This follows from 3.4.7 and 3.2.25 .

Corollary 3.4.10 Let K be a noncompact amenable hypergroup.

If any of the sets TLIM(Lm(K))\TIM(Lw(K)) '

TIM(L_(K))\TIIM{L (K)) or TLIM(Lm(fg)\TIIM(Lb(K)) is noni?pty,
then its cardinality is at least 22 It is equal to 2° in
the second case (and in all cases if the maximal subgroup of K

is open)
Prcof: See [98, p. 323]

corollary _3.4.11

d
(i) ITIM(X) | = 2° for X =1 (K) , C(K), "C (K) or
UC(K) ;
K
(ii) |TIIM(X) | = 2° for X =1L (K), C(K) or UC(K) ;
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d
(iii) | TLIM(X) | = 22 if the maximal subgroup is open,

where X = L, (K), C(K), or UCn(K) .

Proposition 3.4,12 Let K be a noncompact amenable hypergroup.
Then the convex sets TLIM(LB(K)) ) TIM(LB(K)) and TIIU(Lb(K))

do not have any weak" exposed points or weak" Gy points (ses
[39' po 11-13]) .

Proog: If m, is a weak' G point then it is easy to see

8
that there exists a sequence (fn} S Lm(K) such that

mo(fn) = m(fn) for all n=1,2, ..., and for all

m € TLIM(L (X)) . This is impossible by 4.3.3 , 4.3.4 and

4.3.5 . o

The fcllowing is due to E. Granirer (40, Proposition 5] for
the case when K 1is a o-compact, noncompact, amenable, locally

comp.ct group.

Proposition 3.4.13 et K be a noncompact amenable hypergroup.
Let Hl(X) [Fl(X)] be the subspace of X , spanned by

{¢ef - £ : ¢ €e P(K) , feX)

[{(¢sf - £, he) = h, f,heX, ¢,0 2 P(K) })] , where X = UC(K),
ch(K), C(K) or Lw(K) . Then X/ cl Hl(X) ® C1 and

X/ cl Fl(X) @ C1 are not norm separable.
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Proot: Suppose that X/ cl Fl(X) e Cl is norm separable.
Choose a sequence (£,) € X such that B + cl Fl(X) e Cl |is
dense in X , where B 1is the linear span of (fn) . Let m, be

a TIM on L (K) and consider the set
M= (me TIM (Lb(K)) : m(fn) = mo(fn) y N=1,2, .00 )

If me M , then since m( cl rl(x)) =0 and m(l1) =1, s0 We
have m(f) = mo(f) , all feX . Hence m= m, by 3.2.7 .

This is a contradiction since the set

{me TIM : m(f ) = mo(f ) »n=1,2, ... ) has cardinality
d n n

22 . Thus X/ cl Fy(X) e €1 and hence X/ cl M (X) o €1 is
not norm separable. o
Remark 3.4.14 Let K be a hypergroup. Then

* *
w -cl HO(Lm(K)) =w ~-cl "1(15(K))
L_(K) if K 1is noncompact

cl Hl(L (K)) ={ feL (K) : Jfdrx=0)

if K 1is compact

(See [40, p. 621-622])



CHAPTER 4

WEAKLY ALMOST PERIODIC FUNCTIONS ON HYPERGROUPS

§ 4. Tntroduction.

This chapter deals with weakly almost periodic functions on
hypergroups. Let K be a hypergroup with a left Haar measure,
and WAP(K) the space of all weakly almost periodic functions on
K. In [10, Theorem 4.10] , R. Burckel proved that if G 1is an
arbitrary locally compact group, then WAP(G) = C(G) 1if and only
if G 1is compact. E. Granirer improved this in ([39, p. 62-64]
In fact, he showed that UC(G) = WAP(G) 1if and only if G is
compact, and that if G is noncompact and amenable, then
UC(G)/WAP(G) 1is not norm separable. Both proofs use the well
known result that WAP(G) admits a unique invariant mean for any
locally compact group. Recently, S. Wolfenstetter proved in
[95, 2.6 Theorem] that an arbitrary hypergroup J 1is compact if
and only if WAP(J) = C(J) . His proof is different from the
group case, and based on this result, he showed that neither
almost periodic functions nor weakly almost periodic functions are
algebras in general. In saction 4.2 , we prove that

WAP(K) & UC(K) , and that they are equal if and only if K |is

84



compact. Our methods of proof are inspired by those of B. E.
Johnson [53, p. 23-27) and H. A. M. Dzinotyiweyi
(27, Theorem 3.2) . In this section, we also obtain some results
on almost periodic functions AP(K) .

In section 4.3 , by using some of the methods in section
3.2, we show that there is a class of hypergroups K , including
amenaole hypergroups, for which both AP(K) and WAP(K) admit

unique invariant means.
§ 4.2 Weakly Almost Periodic Functions.

This section is devoted to a study of basic properties of
almost periodic functions and weakly almost periodic functions on
hypergroups.

Let J be an arbitrary hypergroup. For f € C(J) , write
OL(f) = (xf : xeJ) and OR(f) = {fx : Xe€J) . A function
f e C(J) 1is called [weakly] almost periodic if the orbit OL(f)
is relatively ([weakly] norm compact in C(J) . We denote the
set of all [weakly] almost periodic functions on J by
[WAP(J)] AP(J) . Parts of the next result are in [95] but
notice that the functions in UC(J) n WAP(J) are called weakly

almost periodic there.

Lemma_4.2.1 WAP(J) and AP(J) are norm clesed conjugate

closed translation invariant subspaces of C(J) containing the
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constants. Furthermore,
(i) AP(J), CO(J) S WAP(J) ¢
(ii) If £eC(J), then f e WAP(J) (AP(J)] 4if and
only if OR(f) is relatively weakly [norm)
compact in C(J) :
(1ii) Both WAP(J) and AP(J) are closed under the

operation f — ¥ .

Proof: It is easy to see that WAP(J) [AP(J)] is a norm
closed conjugate closed right translation invariant subspace of
C(J) containing the constants. To see that WAP(J) is left
translation invariant, let f ¢ WAP(J), x € J . The weak
topology of the weak closure of OL(f) is a compact topology,
stronger that the pointwise topology, and the latter is Hausdorf!

Hence, the two topologies coincide, and since y — sy* f is

continuous in the pointwise topology [52, 31A) , it is indeed
weakly continuous. By the Krein-Smulian theorem

[24, p. 434-435] , the closed convex hull CL(f) of =~ ) is
relatively weakly compact. Hence, the weak vector va.ued integr:
8, (8,05) = Ix(su‘f) as,

y € J , exists and is contained in CL(f) ([9, Chapter III, § 3]

*3 (u)

or [85, 3.27 Theorem]) . Since OL(sx-f) is coritained in the
weak compact set CL(f) , it is relatively weakly compact. That
is WAP(J) [and similarly AP(J) ] is left translation invariant

(i) 1is proved in (95, 2.6 Theorem]
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To prcve (ii) , we follow the lines of [95, 2.4 Theorem] .
Embed J into the topological semigroup Mé(J) by the
homeomorphism x — 8, (52, 2.2B]) . Each f ¢ C(J) extends to
an ¥ ec(M,(3)) , given by F(u) = J'J £du, ueM ()

(52, 2.2D) , Then f -— f is a lincar isometry and hence
continuous in the norm (and weak) topologies of C(J) and
C(M,(J)) . Now, if £ eWAP(J) , HeM,(J), then

bL(f) = {uef : w € M (J) ) is contained in the closed convex hull
of OL(f) by the above arguments, and hence 5L(f) is relatively

weakly compact. It is easy to verify that (uef) =& o« f for

u
ueM (J), where & -« f(v) =fev), ve M. (J) , and
therefore OL(f) = (EL(f))~ . The righthand side being the

continuous image of 5L(f) , is relatively compact in the weak
topology of C(Mé(J)) . Since Mé(J) is a topological semigroup,
OR(f) is relatively weakly compact in C(Mé(J)) . It follows
easily that OR(f) is relatively wecakly compact in C(J) . By

symmetry, we have (ii), and (iii) follows from (1ii) easily. u

It is shown in [95, p. 68-69) that AP(J) ¢ UC(J) . In
what follows, K will denote a hypergroup with a left Haar
measure A . The next result is due to T. Mitchell
(67, Theorem 7] for a locally compact group. The interested
reader is referred to (73, 2.33] for more information. Our

methods of proof follow ideas of B. E. Johnson (53, p. 23-27]
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Theorem_4.2.2 UC,(K) = (f € C(K) : x —— xf is continuous from
K to (C(K) , weak) ) , and similarly

UC,(K) = (f € C(K) : x — fx is weakly continuous from K to

C(K) } .

Proof: Let f € C(K) be such that x — Sx- f is weakly
continuous. If ue CC(K) , then the weak vector valued integral
IK (sx-f) u(x)dx exists in C(K) . Because the point evaluations

in C(K)* separate points in C(K) , we have
ue f = J.K (sx-f) u(x) dx .

Let < PC(K) be the bounded approximate identity for

Py yeu
Ll(X) , as in 2.1.2 . Let £ >0 and y €« C(l()‘t be given.
Choose a neighbourhood W of e such that

| <y, 8 2 f> - <y,f>| <e forall xeWw. If V is a
neightourhood of e contained in W , then

<0, byt> = <, 0] = |[y<u, 8 0> (%) dx - [p<u, £> 6y(x) dx|

s IKI(W' §yof> = <y, f>| ¢,(x) dx sc . Thus, the net (¢, *f);
converges to f 1in the weak topology of C(K) . Thus f € UCq(X)
since each ¢U-f € UC_(K). If f e C(K) 1is such that x — fx

is continuous from K to (C(K), weak), then by similar

arguments the net (f « 3U}U€u converges weakly to f , and hence

f e UC,(K) since each f &U € UC,(K) . o
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Ropirks _4.2.3
(1) Let x— T, be a mapping of K into B(E) , the
bounded linear operators on a Banach space E , such that
(1) 're = I , the identity operator :
(i1) HTxH SsM<o for all xe€ X ;
(1ii) X — sz (s € E) is weakly continuous

and  <p, T,(Ts)> = J‘K<¢, T, 8> d5 %5 (u)

for all x,ye€e K, seE, ¢ € E. That

is, TxTy = Tax*sy , X,y € K.
Then the mapping x — TS (s € E)Y 1is norm continuous
(see 3.3.2)
To prove this, put u-+s = JK T,S du(u) , s e€E,
[T MC(K) . If u e M(K) , choose a sequence (un) < MC(K) such

that Hun - ull converges to zero, and write u-s = lim uoS .
n

Then E becomes a unital left Banach M(K)-module. Consider E

as a left Banach Ll(K)—module given by
¢'s = (A@)*s (¢ € Ll(K) , S € Ej

Let (¢U,Ueu < PC(K) be the bounded approximate identity for
Ll(K) as in 2.1.2 . Then it is easy to see that ¢U~s
converges to s weakly as in the previous result (see also
[53, p- 27]) . Hence, by Cohen’s factorization theorenm,

Ll(K)-E =E . Now, if s € E, write s = ¢:'s’ , ¢ € Ll(K) .

s'" e E. If (xa) converges to x in K , then
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HTxas - szH = Hxa's - x'sll s M sta-¢ - ax.¢u lls’ll which

converges to zero. Hence, the mapping x —— T, 8 (s € E) 1is

norm continuous.

(ii) If T is as in (i) (That is, T is a
representation of Kon E ), then E can be given a unital left
Banach M(K)-module structure so that
<P, U*8> = IK<¢, uss> du(u) , n1e€M(K) , seE, ¢ € E* . In
particular, the mapping u — p-s is weakly continuous on M+(K)
[52, 2.2D) . Conversely, if E 1is a unital Banach M(K)-module
such that uy — u*s (s € E) 1is weakly continuous on M+(K) .
then T S = sx-s (x € K, s € E) will define a representation of
K on E . This correspondence is a bijection (for a fixed

Banach space E ).
(ii1i) If E 1is a unital left Banach M(K)-module, put

*
<¢-u, s> =<¢, u's>, ¢e€E ,seE, ueMK .

ko, . ,
Then E 1s a unital right Banach M(K)-module. If u —> u-s
. . , *
1s weakly continuous on M+(x) , then u — ¢y is weak
. + , . . .
continuous on M (K) and this is also weakly continuous if E is

reflexive or K 1is discrete. a

Propostjon 4.2.4 WAP(K) ¢ UC(K).
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Proof: Let f € WAP(K) . Then OL(f) [OR(t)] is relatively
weakly compact in C(K) , and hence X — < x— £, is

weakly continuous as before. Thus f € UC(K) by 4.2.2. o]

Let G be a locally compact group. Then WAP(G) admits &
unique invariant mean (42, § 3.1] . Using this fact, E.
Granirer proved in [39, p. 62-64] that WAP(G) = UC(G) if and
only if G is compact and that if G 1is noncompact and amenable
then UC(G)/WAP(G) 1is not norm separable. We do not know whether
for an arbitrary hypergroup WAP(K) admits an invariant mean, and
hence Granirer’s me' od cannot be used to prove that if K !s
noncompact, then UC(K) # WAP(K) . However, if WAP(K) admits an
invariant mean then it is unique. Thus, it follows as in the
group case that if K 1is noncompact and amenable, then
UC(K) /WAP(K) 1is not norm separable (see 4.3.6) . H. A. M.
Dzinotyiweyi showed in [27, Theorem 3.2] that WAP(S) = UC(S)
if and only if S 1is compact for a large class of semigroups S
which include all locally compact groups . His proof is
elementary and does not use the theory of invariant means. We
shall prove next, by adapting his methods, that if K is

noncompact then UC(K) # WAP(K). We need the following:

Lemma_4.2.5 Let K be any noncompact hypergroup, and E a

compact set in K . Then there xist infinite sequences (xp)
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(y,} of distinct points of K such that

U (U Ee(x )e(y )eE) g U (U Ee(x_)e(y.)*E) = o .
m=1 n>nm n m n n=1 n<m n m

Proof: The proof proceeds by induction. Svuppose, for some

positive integer p we have finite sequences (Xy0 oo ,xp} and

(Yl, “oe ,Yp} such that

p-1 p-1
mgl (pgn>§-cxn)-(ym)-s) n ngl (ngmsg-(xn}-(ym)-n) =e.
Write
Xp = (X, Xpd o Yy =Yy e aYR)
p-1
Ly, = mL=11 (pgn>§'(xn)~{ym}'E) '
and
p-1
Up i ngl (ngms;'(xn)‘{ym)'E)
Then

Lp N Up =g . (1)

The set (£ « Up) . (Yp « E)° is compact (52, 3.2B] , and since
K 1is noncompact there exists xp+1 € K\Xp such that

Xo41 (B u,) (Y, * E)° . Then

UgNE =X s Y, "E=¢ (2)
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by [52, 41B) . Similarly, since

(E » xp)° . (Lp UE- (Xpyqy) * ¥y * E) o £ i{s compact, we can

find yp+1 € K\Yp such that
Vo+1 ® (E-xp) * (L, UE » (Xp4y} * Yy * E) o £ . Hence,
E-xp-(ypﬂ)-En(LpUE'(xpﬂ)-YP-E)=¢- (3)
Now, Up+1 N Lp+1 =
= (Up UE » Xp . {yp+l) * E) n (Lp UE » (xp+1) . Yp * E)
= (Up N Lp) U (Up N (E » (xp+1} . Yp ¢+ E))
U ((E » xp . ‘Yp+1} *E) n (LpU ) 0 (xp+1) . Yp * E)
= o
by (1), (2) and (3) . 0

The next result is a consequence of a well known theorem of

A. Grothendieck [44, Theorem 6] .

Lemma _4.2.6 Let K be a hypergroup and f € C(K) . Then
f € WAP(K) if and only if

}

lim 1im f(xn . ym) = 1lim 1lim f(xn . ym) , whenever (x_ } ., (yj,

m n n m

ire sequences in K such that all relevant limits exist.




94

Theorem 4.2.7 Let K be a hypergroup with a left Haar measure
A . Then K 1is compact if and only if UC(K) = WAP(K) .

Proof: If K is compact, then it is easy to see that
UC(K) = C(X) = WAP(K) (52, 2.2D and 4.2F) . If K is

noncompact, let ¢ € C:(K) , IK ¢di=1, E=spt ¢ . Let

{xn) and (ym) be sequences of distinct elements of K such
o
that if H, = u (U Ee(x )e{y_)*E) and
m=1 n>m
o
H = U (U Ee(x_ )u(y_)*E) , then H NH, =e . Let
2 n=1 n<m n m 1 2
h e L (K) be defined by h(x) =1 if xe Hl and zero otherwise
(Note: H1 is o-compact) . Let
£(x) = IK h d(gr) » 8+ (#42) = (¢8)" » h » (x) , x e K. Then
f € UC(K) . To see that f ¢ WAP(K) , note that

f(xn . ym) = JK f(u) daxn . Sym(u)

= IK IK hd(er) « 8 = ($A) daxn » 8, (u)

= IK hd(gr) +d8, w5, = (9N)
n m

and

spt (@A) » 5x 8

* (pA) =E (X } » (y } +E
n Yn n m

< H, if n>m and ¢ H, if m>n . Thus, f(xn . ym) =1 |if

n>m and =zero if n<m. Hence, 1lim lim f(xn * ym) =1,
m n



95

while 1lim lim f(xn J ym) =0, So, f ¢ WAP(K) by 4.2.6. o
n m

Proposition 4,2.8 WAP(K) [AP(K)] contains all the bounded

positive definite [multiplicative bounded continuous] functions

on K.

Proof: The proof is standard (see [10, Corollary 3.3] and

(52, § 11]) . o

We now obtain some stability properties of WAP(J) and
AP(J) for arbitrary hypergroups J . We only give the proofs for

WA2(J) : the proofs for AP(J) are similar.

efinitjo .2.9 Let J , L be hypergroups. A continuous

mapping ¢ of J onto L 1is called a homomorphism if

IL £A8, 0 * Say) = J'J £ ¢ds,es, forall fecC.(L),

X,y € J . In this case, L 1is called a homomorphic image of
5. If ¢ is a homomorphism of J onto L, then there is a
positive continuous map ¢, : M(J) — M(L) , which preserves

convolution and involution (see [55, Propostion 2.3] and the
proof of the next lemma)

If H is a closed normal subgroup of J , then the natural
projection M is a homomorphism of J onto J/H . Also, if H
is a compact subhypergroup of J such that éx s 0 =0 e ax for

every xeJ , then J//H ( =J/H) 1is a homomorphic image of
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J , where o is the normalized Haar measure of H (3.2.17) .

The next result is of independent interest.

Lemma_4.2.10 Let J, .. be hypergroups, and ¢ a homomorphism
of J onto L . Then
(i) ker ¢ = (x € J : ¢(x) = e } is a normal

subhypergroup of J ;

(ii) ¢|G(J) maps G(J) into G(L) :
(iii) If ¢ is open and ker ¢ s G(J) , then
J/ker ¢ 3 L .
roof:
(1) If ze (o(x)) * (¢(ej)}, xeT, 2z=¢(x),

then there exists f e Cz(L) such that £(z) >0, f£(4(x)) =0,

and hence

0 < IL £d8, .y * 8¢(eJ) - JJ fop ds_ s aeJ = f(¢(x)) =0 .

This shows e, € ker ¢ . Let x,y € ker ¢ . Then

—_— o - + —_
fle,) = I £o0 3, Sy » feC,(L) , and hence ¢(z) =e  for all

Z € {X)*{Y; . To see ¢(§) =¢{(X) , xeJ, we note that
[yea8, 8 . = [0 ases, , £echy . 1t
J ¢(X) ¢(X) X % C
~ +
fey) = £(d(e;) >0, feCl(L), then [ £ds, . *6 . >0.
¢ (x)
Hence, ker ¢ 1is a subhypergroup of J . To see that ker ¢ is

normal, we verify that (x) s ker ¢ = (z e J : ¢(x) =¢(2)) . 1If
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z€ (x)o(y) , Yekeré, o(z) *9d(x), choose f eCh(L) such
that f(¢(2)) >0, f£(é¢(x)) =0 . Then
0 < I oo dsxvsy = f(d(x)) = 0, a contradiction.

Conversely, if ¢(z) = ¢(x) , then

fop d§ o5 = £d8 o8 = £ds | 8 .
Ja 2%t L ok (2 Ju (k) 90

Now, z e (X)+ ker ¢ if and only if ker ¢ n (X) » (2) =o . If
(X) » (z) n ker ¢ =@ , then e, ¢ ¢((X) » {2})) , a compact set.
Choose f € C:(L) such that f(eL) >0 and

£(@((X) » (2))) =0 .This implies

0= JJ £oo dsicaz = IL £5 w8y, = IL £ d8¢ Syrx) >0

¢ (x) (x)

and thus (X} * (z) nker ¢ = o .

(ii) If xe G(J) , then

f(eL) = I fod d6§*6x = J f d6¢(§)"¢(x) tor all f ¢ CC(L) , and

hence ¢(x) € G(J) .
(iii) is easy. Q

Propostijon 4.2.11 Let J, L be hypergroups, and ¢ a

homomorphism of J onto L . Let ¢ be the induced map given by
3 :C(L)y — C{J) , @(f) = fo¢p , fecC(L) . Then
»(WAP(L)) = WAP(J) n #(C(L)) , and &(AP(L)) = AP(J) n $(C(L)) .
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Proof: We have x(t°¢) = ¢(x)f°¢ for all feC(L), xXe€J,
and hence OL(f°¢) = 5(0L(£)) since ¢ is onto. ¢ is a linear
isometry of C(L) into C(J) , and thus ¢ (and ¢ 1) is
norm-norm and weak-weak continuous. It follows easily that
oL(fo¢) is relatively weakly [norm] compact if and only if
OL(f) is relatively weakly [norm] compact (see

(64, Lemma 5.2]) . o

Let J be a hypergroup. Let H be a normal subgroup of J
or a compact subhypergroup of J such that sx-a = oasx for all
Xx €J , where o 1is the normalized Haar measure of H. We
denote the projection of J onto J/H by 1 (in both cases)

We have the following:

Corollary 4.2.12 T(WAP(J/H)) = WAP(J)  fI(C(J/H)) , and

T(AP(J/H)) = AP(J) n TT(C(I/H))

Corollary 4.2.13

(1) If a hypergroup K contains a compact supernormal
subhypergroup H , then WAP(K) n fi(C(K/H)) = f{(WAP(K/H)) , and

T (AP(K/H))

AP(K) n T(C(K/H))

]

(ii) If K=HS , H compact, J discrete, HnJ = (e} ,
then every f € WAP(J) [AP(J)] 1is of the form f = gIJ for some

g € WAP(K) [AP(K)]
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Broof

In both cases, wa have sxw = ausx for every x € K .

corollary 4.2.14 Let J be a hypergroup such that (x)e(y) |is
finite for all x,yeJ . Then f € WAP(J) [AP(J)] .f and only

if f£eWAP(J,) [AP(Jy)] and feC(J) .

Propostion 4.2.15 Let H be a comapct subhypergroup of a

hypergroup J with the normalized Haar measure ¢ . Then
os (AP(J))s0 = AP(J) n TI(C(I//H)) < T(aP(I//H)) ,

o+ (WAP(J))vo = WAP(J) n fi(c(a//H)) s fI(WAP(J//H))

Proof: Let f e WAP(J) n fi(c(J//H)) . Then, £ = F.l, where

nm:J3— J//H is the projection, and F € C(J//H) . We have

F (HxH+HyH) = IH f(xetwy) dt [52, 14.2F)
= (0%8,) * £(y) .
X
That 1is, HxHFoII = (0"8)0() «+ f, xeJ . Hence,
H(OL(F)) = (FHXH oMM : xeJ) = ((0‘:8)0() o f : x€J} S CL(f) ,

the closed convex hull of OL(f) (This fact was observed
earlier) . Since {1 is a linear isometry and C (f) is weakly
compact, it foliows that OL(F) is relatively weakly compact.

Thus, F e WAP(J//H) . This proves that the right hand side



100

inclusion holds for the weakly almost periodic functions.

If f € WAP(J) , then oe+f € WAP(J) since
0, (0+t) S C (f) , and hence 0+fec = ce((oef)°) € WAP(J) . We
obsarved in the proof of 3.4.7 that osfec is constant on the
double cosets of H in J (for any f ¢ CéJ)) . Hence, |
o« (WAP(J)) » o s WAP(J) n fi(c(J//H)) , and the converse
inclusion follows easily because osfec = f for all

f e fi(c(a//H)) . 0

Remark_4.2.16

(i) If follows easily from [95, § 3] that the right hand
side inclusions in 4.2.15 may be proper. 1In fact, let
G = R @ S0(2) be the semidirect product of Rz and S0(2) ,
and H = ((0,0) x S0(2)) the compact subgroup of G . Then
G//H » ("‘2)50(2) as hypergroups. If A(G) [A(R®)] is any class
of functions on G [mz] , we denote by AH(G) [Aso(z)(mz)] the

set of those functions in A(G) [A(Rz)] , which are constant on

the double cosets of H in G [SO(2)-orbits in mz] . Now, by
considering the homomorphism j : x — (x,e) of R2 into
R2 ® SO0{2) = G, one can easily see that
2 2 .
WAP, (G) € WAPgh 5) (RY) 4 APy(G) < APgq (2) (RY) Finally, use

(95, 3.9 Remark] (see also [14))
(ii) In (95, p. 71-72) , S. Wolfenstetter has given an
example of a hypergroup K for which both AP(K) and WAP(K) are

not algebras (see also (56, Remark 1)) . This is a hypergroup
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on N the nonnegative integers, arising from Jacobi

o ’
(3:3)

polynomials P (x) . The interested reader is referred to R.

Lasgser [57] for a class of hypergroups on N arising from

0
certain polynomials. Using this example K we can easily produce
many hypergroups J for which WAP(J) and AP(J) are not
algebras. To see this, let J, L be hyperqroups, and ¢ a
homomorphism of J onto L. For £, ge C(L) , we have

$(£9) = £9o¢ = (£-9) (g°d) = #(£)6(3) . If WAP(J) [AP(J)] is an
algebra, then so is WAP(L) [AP(L)) by 4.2.11 . Now, let K

be the (discrete) hypergroup as in [95, p. 71-72) . If G |is
any locally compact group then AP(KxG) and WAP(K<G) are not
algebras. Also, if G 1is a compact group such that KnG = (e} ,

then AP(Gy/K) and WAP(G,K) are not algebras.
§ 4.3 Invariant means on WAP(K) .

In this section, we shall show that there is a class of
hypergroups J including amenable hypergroups for which AP(J)
and WAP(J) admit unique (left) invariant means.

Let J be a hypergroup. For f € WAP/T) , ¢ € WAP(J)' '
f¢(x) = <¢,xf> (x € J) . Since x —— xf is weakly continuous

f, € C(3) , and

((Eg) (1) = [5<0, 8> s 08 (u) = <6, (()> = (D) y(y) - Thus

= i WAP(J int
OL(f¢) (OL(f))¢ . Also, the mapping f — f¢ of AP(J) 1nto
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C(J) 1is bounded and linear. Hence, t¢ € WAP(J) . Similarly, if

£eAP(T) , then fy €AP(J) .

Lemma_4.3.1 let m be a mean on WAP(J) [AP(J)] . Then, for
each f ¢ WAP(J) [AP(J)]) there exists a unique P(f) € cL(f) '
the closed convex hull of OL(f) , such that <m,f¢> = <¢,P(f)>
for ¢ € WAP(J)' [AP(J)’] , and P : £f — P(f) is a bounded
linear operator on WAP(J) [AP(J)] with P(1) =1llpll = 1,
Furthermore, (i) if m is a LIM, then P(xf) = P(f) for
xedJ, feWAP(J) [AP(J)]) :+ (ii) if m is a RIM, then

P(f) 1is a constant for f e€ WAP(J) [AP(J)]

. *k
Proof: Let f € WAP(J) . Then there exists F e WAP(J) such

that <F,¢> = <m,f,> for ¢ e WAP(J)" [F =f : dm(u)] . Let
J

¢

() be a net of finite means on WAP(J) converging to m in
the weak' topolcgy. Since the closed convex hull CL(f) of
OL(f) is weakly compact we can (and will) assume that

J uf dua(u) converges to some P(f) e CL(f) in the weak
topology. It is now easy to see that P(f) =F (see

(42, p. 84-85)) . To see (i) , if m is a LIM, then
<P(xf),¢> = <m,(xf)¢> = <m,x(f¢)> = <m,f¢> = <¢,P(f)> ,

and hence P(xf) =P(f) , xe€eJ. If m is a RIM, since

(£4) (V) = [ £ () as s, (u) = [ <o, £> s o5 (u)
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- <¢,x(yf)> = <gox, > ,

Y

wvhere <¢ox,f> = <¢,xt> , We have
<¢,P(f)> = <m0f¢> = <m, (f¢)x> = <m, f¢°x> = <pox,P(f)> = <¢'X(P(t))> .

Hence P(f) = x(P(f)) , for each xe€¢eJ , and so P(f) 1is a

constant. We have thus proved (ii) . o

A version of the next result for topological semigroups
appears in (42, Theorem 3.8.4] . J. Dixmier also gives a result
of this sort for discrete amenable semigroups in

(21, Theorem 7] .

Propostion 4.3.2 let m bea LIM on WAP(J) , and for

f € WAP(J) , let CL(f) denote the closed convex hull of

0, (f) . Then
(1) CI(f) has a unique constant function, namely m(f)1l :
(ii) WAP(J) = Clocl <( f - f: xeJ, feWAP(J))> .

Similar statements are true for AP(J)

Proof: Let n be a RIM on WAP(J) , and write

P(f) = JJ gf dn(u) ,  Q(f) = IJ of dm(u) for f e WAP(J) . Then

P(f), Q(1) € CL(f). Since
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n n
Q[ z A xif ] = z Ay Q[xif ] =Q(f) for x;e€J, A =0,
i=1 j=)

n
z A{ =1 (by 4.3.1 (i)) , we have Q(g) = Q(f) for all
i=1

g € CL(f) . But P(f) € CL(f) , and thus
Q(f) = Q(P(f)) = f L(P(f) dm(u) = P(f) , because P(f) is a
J

constant by 4.3.1(ii) . Also, x(P(f)) = x(Q(f)) = Q(xf) = P(xf)
for all xe€eJ . Now, if f e ker P = (f € WAP(J) : P(f) = 0} ,
then P(xf) =0 forall xeJ . So, P(g) =0 for all

g e CL(f) . Let f € WAP(J) be arbitrary. Then

P(f - P(f)) = 0, and hence CL(f - P(f)) = 0 . But

CL(f) = CL((f = P(f)) + P(f)) S C;(f -~ P(f)) + P(f) . Then

CL(f) S P(f) + ker P. Also, P(f) € CL(f) . If there were two
constant functions al, B1 € CL(f) , then write al = P(f) +g,
Bl = pB(f) +g’, for some gq,g’ € ker P . Then

xl - B1 =g9g-g" €ker P, and this implies « =8 . Hence,
CL(f) has a unique constant, namely P(f) . If f e WAP(J) ,
then P(f - <) = P(f) - P(,f) = P(f) -P(f) =0, for xeJ.
Hence, cl <{xf -f:xeJ, feWAP(J))> S ker P . Conversely,

if f e ker P, then 0

P(f) € CL(f) , and therefore, if € > 0

n
is given, there exist x., e J , Ai 2 0 with Z Ay = 1 such
i=1

that || s < € . This implies

nr~1 o
>
-
bd
)
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n n n
f = [ £~ Y A, f ] + ) A £ Y oAy [: - . I ] +q9,
j=1 3 =1t i i

with llgll <ec . Hence, fecl A f-f:ixed, feWAP(T))> .
Thus

WAP(J) = Cl o ker P = Cl o cl <{xf -f:xX€eJ, £feWAP(T))> ,

and P(f) = m(f) . The proof is similar for AP(J) . o

Corollary 4.3.3 et m bea LIM and n a RIM on WAP(J)
[AP(J)] . Then m=n. In particular, if K 1is an amenable

hypergroup, then WAP(K) has a unique invariant mean.

Proof: It follows as in the group case (42, § 3.1] that
CL(f) N C1=Cp(f) nCL=(m(£)1) = (n(f)1) for f e WAP(J) ,

where CR(f) is the closed convex hull of OR(f) . o

Let G be a locally compact group. Then it follows from a
well known fixed point theorem of C. Ryll-Nardzewski that WAP(G)
admits a unique IM [42, § 3.1) . But, for hypergroups, the
operators Lx ¢t £ — xf (f e WAP(J)) are far from being
non-contractive [52, 3.3) , and hence his theorem cannot be
applied here in general. However, by making use of some methods
of §3.2 , we shall show that there is a class of hypergroups K
which properly contains amenable hypergroups and for which AP(K)

and WAP(K) admit unique invariant means (see also [64, § 5])
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Propostion_4.3.4

(1) Let J, L be hypergroups, and ¢ a homomorphism of
J onto L. If there is a LIM m on WAP(J) , then there is a
LIM M on WAP(L) :
(ii) If H is a normal subgroup of J , then there is a
LIM on WAP(J) 1if and only if there is a LIM on WAP(J/H) :
(iii) There is a LIM on WAP(JxL) if and only if both
WAP(J) and WAP(L) admit LIM’s ;
(iv) If H is compact subhypergroup of J such that
sx-o = avsx for all x e€J , then there is a LIM on WAP(J)
if and only if there is one on WAP(J/H) :
(V) If K=HxJ , J discrete and H compact with
HnJ = (e) , then WAP(K) has a LIM if and only if WAP(J)

admits a LIM. Similar results are true for almost periodic

functions.
Proof:
(1) By 4.2.11 , we can put <M,f> = <m,fo¢> ,

f € WAP(L) . Then M is a LIM on WAP(L) because
¢(x)f°¢ = x(fo¢) for all xe€J , fe WAP(L) , and ¢ is
onto .
(i) If there is a LIM on WAP(J) , then there is one
on WAP(J/H) by (i) . Conversely, let m be the unique IM on

WAP(H) . For f e WAP(J) , write f’(x) = <m’xf|H> . Then
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f — £’ is a bounded linear mapping of WAP(J) into C(J) and
OL(f)' = OL(f') . Hence, f’' € WAP(J) . Also ¢’ is constant on
the cosets, and hence we can write £’ = Foll , F € WAP(L) by

4.2,11 . If m is a LIM on WAP(J/H) , put <M,f> = <m, , F> .

1
Then M is a LIM on WAP(J) .

1'

(iii) (cf. 3.2.22) Let m, be a LIM on WAP(J) and

1

m a LIM on WAP(L) , respectively. For f ¢ WAP(JxL) ,

2
XxXeJ ' write (f:X) (y) = f(x'y) (y € L) . Then
y(E:X)(2) = JL(f:x) (u) ds

tsz(u) = IL f(x,u) dé -sz(u)

Yy
f(x,z) = ((e,y)f : x](z) .

Y
" (e,y)

This implies OL(f:x) S (OL(f):x) . Since f -— (f:x) 1is a

bounded linear mapping of WAP(JxL) into C(L) ,

(f:x) € WAP(L) . Next write f’(x) = <m2,(f:x)> , x€J . Then

f’ € C(J) [To see this, consider the map j : L — JxL given by

j(y) = (e,y) , Y € L, and define the map J : C(JxL) — C(L) by

J(f) = foj . It is clear (f:x) = (x,e)fed » for feC(IL),
x€J . Since J is weak-weak continuous, the mapping
X — (f:x) 1is weakly continuous from J to C€(J)] . The

mapping f — f’ 1is bounded and linear from WAP(J«L) into

C(J) . Also, it is easy to see .hat

[(a’b)f ; x] - JJ (fru) A5« 8 (u)

(u —> (f:u) 1is weakly continuous) . This implies that

(L(£) (%)) = [(a'e)f]'(x) , and hence O (f') s O (f)' . Thus
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f' € WAP(J) . Finally, put <m,f> =«<m,£f'>, £ e WAP(JxL) .
Then it is easy to see that m is a LIM on WAP(JxL) , as in
3.2.22 . The converse follows from (i) since the projection of

JxL onto L (J) 1is a homomorphism.

(iv) For f € WAP(J) , write f£'(x) = IH f(xet) At .
Then £’ € WAP(J) . The rest is as in (ii) (see 3.2.16) .

(v) This follows from (iv) since sxcu = o-&x for
every x € K . o

We now state the main result of this section which follows

almost immediately from 4.3.3 and 4.3.4 .

Theorem_4.3.5 Let K be a hypergroup. In each of the following
cases WAP(K) [AP(K)] admits a unique invariant mean:
(i) K=JxG , where J is an amenable hypergroup and G
is any locally compact group;
(11) K contains a compact supernormal subhypergroup:
In particular, this is the case if K = H,G where H is any

compact hypergroup and G a discrete group with HnG = (e)

Procf: If G 1is a locally compact group, then WAP(G) admits
a unique invariant mean (42, § 3.1] . Hence (i) follows from
4.3.4(ii) or (iii) . To prove (ii) , recall that K//H is a
locally compact group, and sx-o = 0-8x for every x € K, and

use 4.3.4(iv) . o
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Remark 4.3.6 Let K be an amenable noncompact hypergroup. Then
NC(K)/WAP(K) is not norm separable. This follows from the fact

that if m, isa TIM on L (K) , and (f )

n'n=1 4 Lm(K) then the

cardinality of the set

d
(meTIM (L_(K) : m(f) =m(€) , n=1,2, ... ) is 2% ,

where d is the smallest cardinality of a cover of V¥V by compact
sets (83.4) (see [39, p. 62-64] for details) . It is now
known that if G is any locally compact, noncompact group, then
UC(G)/WAP(G) contains a linear isometric copy of lm and hence
not norm separable. The interested reader is referred to

(28, Chapter 4) for more information.



CHAPTER 5
ON THE SECOND CONJUGATE OF THE BANACH ALGEBRA L1(K)
§ 5.1 Introduction.

In this rather short chapter, we extend two known results on
the second dual of the group algebra Ll(G) to hypergroups. N.
J. Young proved in [99, p. 59-62]) that if G is a locally
compact group then Ll(G) is Arens regular if and only if G is
finite. In [41, p. 321-324] , E. Granirer, by developing ideas
of S. L. Gulick [45, Lemma 5.2] , proved that if G is a
nondiscrete locally compact group, then the radical of Lm(G)* is
not norm separable. We show that both of these results remain

valid for: hypergroups.
¥
§ 5.2 On the Banach Algebra Lm(K) .

Let K be a hypergroup with a left Haar measure A . We

%*
recall the definitions of two Arens products in L (K) = Ll(K)**

(1) . The first Arens product is defined as rollows: Given
$WeLl (), feL(K), F,GeL (K , define
f¢, FE e L (K) , FGeL (K) by

<fp,y> = <f,¢sy> ,

110
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<Ff,¢> = <F,f¢> , and

<FG,f> = <F,Gf> .,
The second Arens product is defined in a similar way: We define
0f, fF e L (K) , PGelL (K)' by

<Pt Y> = <f,yed> ,

<fF,¢> = <F,¢f> , and

<F:G,£f> = <G, £fF> .

Then Lm(K)* is a Banach algebra under either Arens product
[1]. It is easy to see that f£f¢ = ¢ ¢f and ¢f = fe¢ |,
¢ € L,(K) , fe L (K) [96, Lemma 4.1] . We say that L, (K) is
Arens regular if F'G = FG for all F,Ge L (K)

If Ll(K) is commutative (that is, K is commutative),
then Ll(K) is Arens reqular if and only if Lm(K)* is
commutative under the first (or second) Arens product
[23, Proposition 1]

In [99, p. 59-62] , N. J. Young proved that if G is a
locally compact group then Ll(G) is Arens reqular if and only if
G 1is finite. H. A. M. Dzinotyiwei [27, § 4] and J. S. Pym (77]
obtained this result for a class of semigroups which include all
locally compact groups. We show below that Young’s theorem

remains valid for hypergroups.

Lemma_5.2.1 The following are equivalent:
(1) Ll(K) is Arens regular;

(ii) Given bounded sequences (¢n) ' (wm) in Ll(K) and
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felL (K) , the iterated limits 1lim lim <f,¢_ey_> ,
o n n nm

lim lim <f,¢n-wm> are equal when they both exist.
m n

Proof: This 18 a special case of a theorem of J. S. Pym

((23, Theorem 1) and (76, § 4]) . o

Lemma_5.,2.2 Let J be a nondiscrete hypergroup, and W an
open neighbourhood of e in J . Then there exist infinite
sequences (cn) , {Dm} of compact sets with nonempty interior and

contained in W such that

U [ U c v Dm] n Ul [ U c,» Dm] =2 .

m=1 ‘n>m n= n<m
Proof: The proof proceeds by induction. Suppose we have finite
sequences (cl, e Cp} and {Dl, oo g Dp} of compact sets
with nonempty interior and contained in W such that if
P P p-1
X =Uc , vy = UD . L = U [ U c_+D J , and
P x=1 k P x=1 k P op=1 pzn>mn m
p-1
u_ = U [ U ¢c_+«D ] , then
P np=1 n<m5pn mn
a ¢eXx Uy UL U ;
(a) e e X, UY¥, UL, Uy

(b) Xp N Yp =0 ;
(c) xp N Lp =0 ;

d U =o0;
(d) Yp N p =2 and
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(e) Lb N Up = 3 (See [27, Lemma 4.2]) .

Since the compact sets (e} and Yp are contained in the open
set W\(xp U Up) there is an open neighbourhood V of e such
that V ¢ W\(X U (4 Uu

ha \ ( P U Yp U Lp Up) and V-Yp W\(xp p) (see
(52, 3.2D)). Next, choose a symmetric neighbourhocod U of e

such that UsUSV, Let C be any compact set in U\{e)

p+l
with nonempty interior. Then

(1) ee cp+l U cp+1-Yp by (52, 4.1B)] :

(2) cp+l N (vp U Lp) =@ ;
(3) cpﬂ.yp n (Up U xp U cp+1) =0 .

Similarly, by making use of (a), (b), (¢), (1) and (3),

we can find a compact set Dp+1 S W with nonempty interior such

that
(4) eeD ., U Xo * Dpyy
(5) Dp+1 n (Xp * Dp+1 U Up U Xp+1) =0 ;
(6) xp . Dp+1 N (cp+1 . Yp U Lp U YpU Dp+1) =0 .
It is novw easy to see that the sets Xp+1' Yp+1,
Up+1 = Up U Xp * Dp+l and Lp+1 = Lp U Cp+1 v Yp satisfy (a),

(b), (¢), (d) and (e), and this completes the proof of the lemma

by induction. o

We now state and prove the first main result of this chapter.
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Theorem _5.2.3 Let K be a hypergroup with a left Haar measure
A . Then Ll(K) is Arens regular if and only if K is finite.

Proof: If K is infinite, then by the previous result and

4.2.5 , there exist sequences of compact sats (Cn) ) (Dm} with

[
nonempty interior such that if Hy = Uijlu Ch* Dy ] and
’ m=1‘n>m

]
H,.= U U c_o Dm then Hl N H2 =0 . Let (fn) ' (gm) be

2 n=1‘m>n
. : _ 1
sequences in Ll(K) given by fn = X—E;— 1Cn and
= 1 : . ¢ ; =
I = A(Dm) 1Dm and let h € L,(K) Dbe defined by h =1 on the

o-compact set H, and zero otherwise. Then fn'gm vanishes

1
outside Cn-Dm , and hence

<h,fn-gm> = IK h(x) £f.09,(X) dx =1 if n>m and zero if n<m .

Hence, the two iterated limits of <h,fn-gm> clearly exist and
are unequal. So, L, (K) is not Arens regular by 5.2.1.
If K 1is finite, then Ll(K\ .s reflexive and hence Arens

regular. o)

There is a natural multiplication on ch(K)* under which it
is a Banach algebra: For f e UC (K) , ¢« ch(K)* , define
pf(x) = ¢(xf) (x € K . Then ¢f ¢ ch(x) . Indeed,

(PO = [(80) (was w8 (u) = [y<q, £ 8 05 (u) = <b,(,0)>

Hence, if {x,} converges to x in K, then
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Hxa(¢t) = (el s llgll Hxat - «fll, + which converges to zero.

Next, define ¢v € UC, (K)* Dby <gy,£>= <o, ¥f> (¥ € UC, (K)") .
Then Ucn(K)* becomes a Banach algebra with a unit (see

(37, p. 130)] or ([71, § 4]) . The next result shows that

UC, (K)' can be identified with a closed subalgebra of L _(K)'
with respect to the first Arens product. The ideas involved in
the proof are essentially in (51, § 3], [34, Theorem) and

(89, 2.3, 5.2, 5.3] .

Propostion_5.2.4 Let K be nondiscrete and let N be the

adjoint of the inclusion map of UCQ(K) into L (K). Then
(i) The following are equivalent:
(a) E 1is a right annihilator in Lb(K)‘ H
(b) E L (K) = (0) ;

(c) EeckerT= (¢ el (K : $(UC, (K)) = 0)

3 L
= UC, (K)
(ii) E is a right identity of L (K)' if and only if
E=1T1(5 ), where &_ e UC (K) is given by
e e n
ée(f) = f(e) for f € ch(K) H
(iii) There are no left annihilators and no left
identities in L_(K)" ;
L
(iv) F € UCq(K) if and only if F-LI(K) = (0}
*
(v) Let E be a right identity in L_(K) . Then

*
EL (K)' is aclosed right ideal in L_(K) , and
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4
toa ‘.composition L (K)' =UC (K)” e EL (K)' is
Nty . aical and an algebraic direct sum. If in
cdootion, lEI = 1 , then
) L ue * » c L h
b L (K) o n(K) ¥ L (K) /U n(K) (as Banac

algebras) .

Proof:

(1) (b) & (c) : If Ee UCQ(K)L  felL (K,
then <Ef,¢> = <E,¢~-f> =0 for ¢ € Ll(K) . Conversely, if
Ef=0, feL (K, EeL (K , then
<E,pef> = <E, (A¢ ) of> = <Ef,(A¢) > =0 . Hence, E ¢ UCQ(K)L
since UCQ(K) = Ll(K)-Lm(K)

(a) & (c) : If Lm(K) E= (0} , then
<GE,f> = <G,Ef> =0 for all f e Lm(K) , G € Lm(K)* . Thus
Ef =0 for f e Lm(K) by the Hahn-Banach theorem. Conversely,
if Ef=0 forall feL(K , clearly L (K) E=0.

(ii) If E is a right identity for L_(K)' , then

<E,¢sf> = <Ef,¢> = ¢ ,Ef> = <PE, > = <f, >

pef(e) = <5, 90> .

Conversely, if Ti(e) = § then <FE,f> lim <$aE,f> , (where

Qa

e ]
(¢a) S Ll(K) converges to F 1in the weak* topology (see

(96, Lemma 4.1E])), = 1lim <8a,Ef> = lim <Ef, ¢ > = lim <E,_of>
[0 4 [0 4 [0 4

= 1lim 5a-f(e) = lim <¢a,f> = <F,f> , as required.
a a

(iii) This follows from (i) and (ii)
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(iv) It is easy to see that ¢f = fe3 , ¢ € L, (K) ,
fel (K) (see [96, Lemma 4.1)) . Hence, if F € UC,(K) then
<F3, f> = <F,$t> = 0 and since every element in Uct(K) is of
the form Gf the converse is also true.

(v) E Lm(K). is closed since E is idempotent, and
clearly it is a right ideal in LB(K)' . Now, if ¢ € LI(K) ,
feL (K , GeL (K", then
<EG,¢ef> = <(EG)f,d> = <G,d~ +£f> = <G,¢sf> . Hence EG =G on
Uc,(K) . For GelL (K)' write G= (G- EG) + EG . Suppose
EG=0 on UCQ(K) . Let {¢a) S Ll(K) converge to E in the

weak* topology. Then <EG,f> = lim <8ac,f> = 1lim <3a.Gf>
a a

= lim <Gt,¢ > = lim <G,8a-f> = lim <EG,$ ¢f> =0 (fe L (K))
(4 4 24 a

That is, if EG =0 on UCQ(K), then it is zero. Hence, the sum
is an algebraic and a topological direct sum. To see that 1 is
a homomorphism, note that

<Gf,¢> = <G, @sf> = <M(G) ,Pef> = jx <M(G), > #(x) dx = <M(G)f,¢> ,
GeL (K", #eC_(K), feUC(K) . Hence, M(G)f=Gf for

*
GelL (K , feUC(K . Next,

<N(GF) , f> = <GF,f> = <G,Ff> = <G,M(F) > = <N(G),NM(F) > = <N(G)N(F), > .

*
That is, TW(GF) = N(G)N(F) for all G,FeL (K) . To complete

the proaf of (v) , we have to show that the restriction map

* .
. ° ELm(K)* — UCR(K) is an onto linear 1isometry when

n
|ELm(K)

[HEIl =1 . If & e ch(Y\* , by the Hahn-Banach theorem there
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exists a norm preserving extension V e Lm(K)* . Then

o = EWIUCN(K) and hence |ll¢ll s [IEVIl . But
HEY!l s [IEI {IWll = 18]l , and therefore IIE¥I! = |i®]] . Finally, note
that EV, = E¥, on UC (K) implies v, = v, . o

E. Granirer proved in (41, p. 321-324) , by developing ideas
of S. L. Gulick (45, Lemma 5.2) , that if G is a nondiscrete
locally compact group (or an infinite amenable discrete group),
then the radical of LB(G)* is not norm separable. We shall next
extend this result to hypergroups. K. A. Ross proved in
[91, Theorem A6] that if K is nondiscrete then L (K) = C(K)

We need the following lemma which is due to S. L. Gulick
[45, § 5] for the case when K 1is a group (see also

(41, p. 322])

Lemma_5.2.5 If K 1is a nondiscrete hypergroup then L (K)/C(K)
is not norm separable.

[+]

Proof: We first claim that there is a sequence (Un}n=1 of
open sets in K such that Un N Um =0 (n*m) and e € Un for
each n (see (91, Lemma A5]) . Suppose first that K is
metrizable. Choose a sequence of points (xn) converging to e

and a sequence of open neighbourhoods (wn}:=1 of these points

with the property that the sets W; are pairwise disjoint. Let
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{ki)z,l » k=1,2, ... Dbe pairwise disjoint subsequences of

®
positive integers. If U, = U wW_2 , then U_ 1is open,
ko kg k

UynNUy=2 (k= and ece ﬁ; for each k. If K is
nonmetrizable, then (since K is nondiscrete) there is a
compact subhypergroup H of K such that K//H is metrizable

and nondiscrete (see the proof of (91, Lemma A5)) . Hence,

n=1 ©Of pairwise disjoint open sets

there exists a sequence {Vn)

[+ ]
in K//H such that He U V- . Finally, if U_=T Y(v) ,
n=1 n n n

n=1,2, ... , where T is the projection of K onto K//H,

then (U }un is the desired sequence of open sets. This proves

n'n=1
the claim. Next, for each subsequence a = (ny} of positive

1

integers write h, =1 Then Hha - me z 7 for each

f e C(K) Indeed, if |[f(e)] < % there is an open neighbourhood

W of e such that |[f(e)] < 1 for xeWw. Then

[+
Iha(x) - f(x)|m 2-% for xe U U W, and each U, N W is
=1 i i

[+ 1]
open and nonempty since ee n U_ . If |[f(e)| = % , then we

1
can find an open neighbourhood W of e such that |[f(x)]| z 7

for all x e€ W . Pick any Un different from Un. ,
0 1

for x € Wn Uno , A

Bl

i=1,2, ... . Then Iha(x) - £(x)], =
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nonempty open set. Also, if a« and B8 are two different
subsequences of positive integers then Ilh, - hB“m = 1 . Hence,

L (K)/C(K) is not norm separable. o

corollary 5.2.6 If K is nondiscrete, then LB(K)/Ucn(K) ’
LQ(K)/UCC(K) and Lm(K)/UC(K) are not norm separable.

Proof: This follows easily from the remark in [39, p. 62-63] .

o

L . :
corollary _5.2.7 The space UC, (K) of right annihilators in

* . . .
Lb(K) 1s not norm separable, provided K is nondiscrete.

Theorem 5.2.8 Let K be a nondiscrete hypergroup with a left
Haar measure. Then the radical R(LB(K)*) of Lb(K)* is not

norm separable.

. . L
Proog: R(LE(K)*) contains the nonseparable space UCQ(K) by
5.2.4(i) (80, p. 56] . o
Remark_5.2.9 Let K be amenable. Then the radical

*
R(ch(x) ) = {(0) if and only if K is compact. If K is

noncompact, then
(1) R(UCq(K)*) is not norm separable, and

Cain * , 1 .
(11) R(Lm(K) ) properly contains UCQ(K) . To see this,
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consider the set
J= (me Lm(K)* t m is topologically left invariant and m(l) = 0).

Then J is a left ideal and J2

= (0) . Furthermore, if E is a
right identity in L (K)' then JSEL(K)' :Let mneJd,

FeL (K", feL (K . Then <Ff,g> = <F,fg> = <F,(§h)et>

(g € Ll(K)) , and hence <Ff,g> = [IK q dA]<F,t> for all

felL (K), ge Ll(K) , if and only if F 1is topologically left
invariant. Thus F 1is topologically left invariant if and only

if Ff = <F,f>1 for all felL (K), and this is equivalent to

EF = F since <E,1>=1. That is, JSEL (K)' . The rest of

the claim is easy to see (37, p. 130-133] . Now, let m, be a

0
TLIM on Lb(K) and A = {(m - My i M is a TLIM on LE(K)) ¢ J.
~d
If K is noncompact, then |A| =z 2° , where d is the smallest

cardinality of a cover of K by compact sets (by 3.4.6) .

Hence, we have (i) and (ii) by 5.2.4(v) . If K 1is compact,
then UC, (K) = C(K) , and c(K)* = M(K) is semisimple since the
left regular representation is faithful ([52, 6.2I] and

(80, Theorem 4.6.7])



CHAPTER 6

QUESTIONS AND REMARKS

In this chapter, we state some problems in hypergroups and/or
groups which remain open for further research. Throughout, let K

denote a hypergroup with a left Haar measure.

1. We observed in 2.2.2 that if the maximal subgroup G(X) of
K 1is open then UC,(K) is an algebra.

Is UCQ(K) always an algebra?

It is well known that if G is a locally compact group, then
UC (G) = C(G) if and only if G 1is compact or discrete
(73, 2.33] . This is not the case in general for hypergroups
(2.2.3 and 2.2.4) . Characterize all hypergroups K for which

C(K) = UC, (K)

2. Let K be amenable. We proved in 3.2.13 that every
(closed) subgroup of K 1is amenable. Is every subhypergroup of

K necessarily amenable?
3. The Banach algebra Ll(K) is left amenable if and only if K

is amenable [59, Theorem 4.1] . This shows that if Ll(K) is

amenable, then K 1is amenable. There is a commutative hypergroup

122
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K (3.3.11) for which Ll(K) is not weakly amenable and hence
not amenable. Find all amenable (commutative) hypergroups K for
which the Banach algebra LI(R) is amenable (weakly amenable)
(see (2], [53)) . It would be worthwhile to study these problems
at least for the following classes:

(1) Hypergroups arising from certain polynomials

introduced and studied by R. Lasser [57) ;
(2) Hypergroups GB induced by [FIA]B-groups (83] :
(3) 2Z-hypergroups ([46], [83]) .

4. Amenability of K 1is characterized by Reiter’s condition
(Pl) (3.3.8) . (Pz) always implies (Pl) , but the converse
need not be true (3.3.12 and 3.3.15) . A commutative

hypergroup K satisfies (Pz) if and only if the support of the
Plancherel measure on the dual has the trivial character. Such
hypergroups seem to be useful in probability theory ((32],[33)).
Hence, it is not unreasonable to pursue further studies on

hypergroups which satisfy (Pz)

5. Let H be a compact hypergroup, J a discrete hypergroup

{e} , |J]z2, and K =HyJ . Then every LIM on

with JnH
IB(K) is a TLIM (3.2.25) , which is in contrast to the group

case ([40,[84]) . On the other hand, if G 1is a locally compact
nondiscrete group which is amenable as a discrete group, and J a

finite hypergroup, then LIM(Lm(K))\TLIM(Lb(K)) +# 92 , where
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K=GxJ . It is interesting to study this problem in more detail.
In particular, the following question seems to be reasonable: Let
K be a commutative nondiscrete hypergroup. Assume that (x)s(y)

is finite for all x,yeK. 1Is LIM(LE(K))\TLIM(LE(K)) 20 ?

6. We established in § 3.4 that if K is noncompact and
d

amenable then |TIM(L_(K))| = |TIIM(L (K))| = 22 , where d is
the smallest cardinality of a cover of K by compact sets. We
also proved that if the maximal subgroup G(K) of K is open

d
then |TLIM(Lb(K))| = 22 , and it is conceivable that this is
true for all hypergroups. Does there exist an explicit one to one
correspondence between TIM(Lm(K)) and TLIM(LE(K)) ? Note that

this result (if established) may be new even in the group case.

7. We showed in § 4.3 that there is a class of hypergroups K
including amenable hypergroups for which the [weakly] almost
periodic functions [WAP(K)] AP(K) admit a unique invariant
mean. Does WAP(K) or AP(K) admit a (unique) invariant mean
for every hypergroup ? There are also other questions available
on (weakly] almost periodic functions for hypergroups. For
example, one can study the structure of WAP(K) (see [64, § 5] ,
[95, § 3] and [14])) and the sizes of the spaces WAP(K)/AP(K) ,
WAP(K)/C,(K) , UC(K)/WAP(K) etc. (see [28, Chapter 4] and

(14])
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8. The Banach algebra Ll(K) is Arens regular if and only if K
is finite (5.2.3) . A stronger result is known for the case when
K is a group. In fact, if G is any locally compact group, then
the topological center of Ll(G)" is LI(G) ([61),([63)) . For
a compact group, this is in [51) . The center of Ucn(G)' is
M(G) [61] . Study these problems for hypergroups. It is
interesting to note that UCN(K)* is isometrically isomorphic to
a closed subalgebra of LB(K)* . The ideas in ([51] may be

useful here.

9. It is still not known if the radical of Zm(G)* is not norm
separable for the case when G 1is an infinite nonamenable
discrete group. Let G be a noncompact locally compact group.

Is the radical R(UC (G)*) nonseparable ? ([41])
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