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Abstract 

 

The concept of Semantic Web, introduced by Berners-Lee in 2001, emphasizes 

importance of expressing semantics of data stored on the web. The introduced data 

format called Resource Description Framework (RDF) is a meaningful way of expressing 

and exploring data relations. It provides basics for constructing semantics-oriented data 

formats including ontology. More and more often ontology and RDF are used to 

represent variety of data including N-ary relations and temporal information. On many 

occasions this results in complex data structures. Their utilization requires a full 

understating of used data configurations. 

The thesis introduces and describes a methodology for querying RDF-based data 

containing temporal information and built using non-trivial data structures. The 

methodology is suitable for dealing with logic-based data structures – ontology – and less 

constrained data formats – RDF. A significant contribution of the thesis is a fuzzy-based 

Linguistically Oriented RDF Interface – LORI. The interface includes specialized build-

in predicates suitable for constructing temporal queries and supporting imprecise phrases 

describing time and data features, and high-level predicates built based on them. A 

number of case studies focused on querying time-based events, as well as and their 

performance evolutions are presented. 
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1. Introduction 

  

 

1.1. World Wide Web – State of the Art 

The important concepts of Semantic Web [44] and Lined Open Data [16] – 

perceived as the prelude to Web 3.0 – are associated with a data representation format 

called Resource Description Framework (RDF) [22]. The significance of RDF comes 

from its ability to represent semantics of data in a form of relations existing between 

pieces of information. It can be said that RDF data constitutes an important step towards 

creating a foundation for methods and approaches leading to a more intelligent and 

human-oriented way of processing, analyzing and utilization of any data and information.  

There is an increasing trend of representing ‘richer’ information that contains 

multifaceted features and relations, as well as temporal information attached to them. The 

consequence of that is an introduction of not-trivial data structures. At the same time the 

users’ expectations regarding easiness and effectiveness of ‘interaction’ with data is 

growing. The users would like to see more human friendly ways of asking for relevant 

information. It seems very reasonable to say that with an increasing amount of data it is 

difficult for the users to ask questions with precisely identified quantitative and temporal 

values of data. Also, RDF that is not inherently suitable for expressing N-ary relations, 

and the proposed solutions [13] introduce complexity and difficulties in data processing 

and analysis.  

There is a growing demand for systems that are able to incorporate semantics in 

processing and analyzing data. Increasing popularity of ontology as defined in the context 

of the Semantic Web makes such tasks reasonably feasible. Ontology provides the ability 
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to use hierarchy of concepts, their definitions and relations, as well as rules defined based 

on these concepts in any domain of interests.  

Many real-world applications involve processing of temporal data. The temporal 

data and terms used to describe temporal patterns and information are quite often 

expressed in an approximate manner. This is especially visible in the case of knowledge 

provided by human experts who use imprecise terms describing qualitatively and 

temporally variety of facts, and building rules based on these facts. 

1.2.Objectives and Contributions 

In the context of the new developments related to advanced and semantic-oriented 

data representation formats on one side, and the users’ expectations of accessing and 

processing complex information and data on the other side, there is demand for 

mechanisms and tools addressing the users’ needs.   

This thesis is an attempt to equip new data representation forms with mechanisms 

providing the user with the ability to represent temporal and approximated – fuzzy – 

information. Here, we propose simple fuzzy and temporal ontologies containing basic 

concepts and relations that can be treated as a framework for building knowledge bases 

capable of representing and processing fuzzy temporal data. In order to enable reasoning 

with such data a number of built-in predicates have been designed and implemented. 

We introduce a Linguistically Oriented RDF Interface – LORI – that provides the 

users with the ability to exploit temporal data containing complex relations. LORI 

eliminates needs for an extensive knowledge of details related to the structure of queried 

data, and allows for using imprecise expressions built with quantitative and time-based 

terms.  

The processes of designing and developing ontologies, ontology-based mechanisms 

for querying data, and the query interface – LORI – embrace multiple aspects of dealing 

with temporal and complex data, and results in the following realizations:  
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- designing and developing ontologies capable of representing temporal as well as 

fuzzy information;  

- developing temporal predicates as built-in functions of Jena’s that can be utilized as 

atoms during a process of constructing ontology-based IF-THEN rules in SWRL 

(Semantic Web Rule Language);  

- designing an architecture of LORI based on an idea of two interfaces: 1) low-level 

one called ReasonerInterface which provides necessary rules and predicates to deal 

with temporal and complex data, built on Jena’s RDF/RDFS reasoner; and 2) 

UserInterface composed of high-level predicates and built by data expert based on 

ReasonerInterface; 

- developing temporal predicates as built-in functions of Jena’s RDF/RDFS reasoner; 

these predicates utilize fuzzy terms to express imprecise declarations of time; 

- proposing and developing a data structure for storing query results, with the ability 

to create sequences of queries, as well as to store, process and merge individual 

results; 

- identifying a flexible approach for mapping high-level queries to low-level ones; the 

proposed idea is based on a mapping file that allows for dynamic changes and 

modifications of mapping rules. 

 

1.3. Thesis Outline 

The thesis is organized in the following way. Chapter 2 contains generic 

background and related work. Such basic concepts as Linked Data, Semantic Web, and 

ontology … are introduced and briefly described. A subsection is dedicated to work done 

by others on the topics of fuzzy temporal data representation and reasoning. Chapter 3 is 

dedicated to the first phase of the work – representing temporal and fuzzy data in 

ontology and querying it. The details of ontologies capable of representing fuzzy data as 

well as temporal data are provided. All developed predicates that allow for constructing 

rules for querying data represented in ontologies are described. A simple illustrative 
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example how the proposed techniques can be used is included. The results of 

continuation of our work are shown in Chapter 4. This chapter includes detailed 

description of the proposed and developed method for querying fuzzy temporal data 

containing complex data structures. The proposed method uses Resource Description 

Framework (RDF) as data representation. A description of LORI – Linguistically 

Oriented RDF Interface is included tougher with simple example of its utilization. 

Chapter 5 contains implementation details and more experimental results. Part of the 

chapter is dedicated to details of software libraries and packages that have been used in 

implementation of LORI, while the other part includes descriptions of the results of 

testing and validation processes preformed on the implemented LORI. The chapter 

related to contributions and future work concludes the thesis. 
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2. Generic Background and Related Work 

 

 

 

2.1. Linked Data 

The World Wide Web has radically changed a way people disseminate and share 

data and information. People simply publish texts and documents on global information 

space, and create links between them for the purpose of exchanging knowledge. The 

amount of data stored on the web has grown rapidly. Specialized applications and 

systems are required to explorer, utilize and exchange information. The application of 

tagged information, meta data, markup languages and XML, has turned the web 

information into a more understandable and expressive data suitable for reading not only 

by humans but also by machines.  

Recently, the Internet has changed from a linked-documents space to a linked-

documents and data space. The connected structured data on the Web is known as Linked 

Data [4].  Understanding of current Web, Web of document, is essential as general 

architecture of World Wide Web is applied to make and sharing structured data which is 

known as Web of Data. The HTTP protocol, URIs, HTML and Hyperlinks are main used 

principles in the Linked data and Web of Data. Linked Data lay on the same architecture 

principles of the Web of documents. [11]  

This new Web is suitable for system agents and machines to exchange information 

and knowledge. Linked data relies on RDF, Resource Description Framework, as a 

standard to publish and link things in the different Web resources includes documents. It 

is simple and appropriate for current Web architecture.  

URL, Uniform Resource Locator, is address of documents in the web of documents 

and URI, Uniform Resource Identifiers, is address of entities and things in the Web of 

data. 
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Both URLs and URIs rely on HTTP, Hyper Text Transfer Protocol, which is 

fundamental universal mechanism for retrieving resources. URI, HTTP and RDF, 

Resource Description Framework, are main technologies that Linked Data relies on them. 

So the Web of Data can be considered as a new layer on the classic Web of documents.  

The URI identifies things on the Web of data and it is suitable for identifying things 

not only because it is a simple method to make a universal unique name but also it is 

accessing information describing to things.  

Principles that have been introduced by Tim Berners-Lee for publishing data on 

global data space are following [11]: 

 User URIs as name for things 

 User HTTP  URIs so that people can look up those names 

 When someone looks up a URI, provide useful information 

 Include links to other URIs, so that they can discover more things 

 

Publishing data in RDF format has been increased during the past years and lots of 

groups, organizations and individuals have agreed to use Linked Data as a new way to 

publish data. There is an open project under W3C, which is called Linked Open Data 

Community. Its goal is to extend the Web with data commons by publishing various open 

RDF datasets. These datasets are published on the web and by setting RDF links between 

data items from different data sources. The number of triples on the project was over two 

billion RDF triples on October 2007. This number had grown to 31 billion RDF triples by 

September 2011, [17]. Table 1 shows the amount of datasets that have been published on 

the Web of Data. Fig. 1 depicts the relations between 12 RDF datasets as of 2007, while 

Fig. 2 depicts the relations between 570 RDF datasets in 2014. 

 

 

 

 

 



7 

 

 

Table 1 - Number of datasets in LOD 

Date # Datasets 

May 2007 12 

Sep 2008 34 

Jul 2009 95 

Sep 2010 203 

Sep 2011 295 

Aug 2014 570 

 

 

 

 

 

 

 

 

Figure 1 - Relation of 12 RDF datasets on 2007 
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Figure 2 - Relation of 570 RDF datasets in 2014 
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2.2. Semantic Web 

The Semantic Web [44] also referred to Web of Data, which introduced by Tim 

Berners-Lee and developed by W3C is stacking of technologies that helping to build web 

of data. Although there are different interpretations for goal of Semantic Web, majority 

of original literature agreed constructing of machine readable global Web is the main 

goal for Semantic Web. The web of documents is intended to be used by human and 

machines use it under supervision of human. In semantic web, machines can understand 

and act upon data [11]. Constructing a global Web that not only human can understand it 

but also machines can understand it naturally is the first step of creating Semantic Web 

[43]. 

To reach this goal converting web of unstructured documents to web of structured 

data is essential. In this process Linked Data playas the main role to reach this goal [11]. 

It leads to make a new space that users and machines can publish, find and share data 

more easily.  

An example of World Wide Web usage is search engines that are important for 

users to fine information among global space. Despite lots of improvement on search 

engines during these days, they have serious problem for finding proper result as they are 

keyword base search tools, [9]. Low or no recall that user gets no result or not getting 

relevant documents. High recall and low precision that user gets relevant documents 

among lots of irrelevant documents which makes difficult for user to find proper 

information. Current search engine result is highly sensitive to keywords that users are 

using for search and if relevant documents use different terminologies then it leads 

missing relevant documents. Result of search engines are single documents and if 

relevant information is spread over different documents then user should find all relevant 

documents and extract information and put them together. 
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Semantic Web development is based on a stack approach, Fig 3, which each step is 

built on top of another step. Each layer is aware of lower layer and can interpret its 

information and also each layer is partially aware of higher layer, [9]. Resource 

Description Framework (RDF), Web Ontology Language (OWL) and Extensible Markup 

Language (XML) are language that is specifically designed for data.  

Semantic web technologies are stacked and combined to replace content of web of 

documents. These are used for create link between data in which machines can process 

knowledge among relations instead of text processing. Machines capture the meaning of 

information not by specifying its meaning but by specifying how information interacts 

with other information. In this way machine can mimic human deductive reasoning and 

inference. 

 

Figure 3 - Semantic Web stack 
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2.3. Ontology and Ontology-based Rules 

The term “ontology” originally came from Greek work and it is study of nature of 

existence of things and their descriptions in philosophy. The term “ontology” is borrowed 

from philosophy by computer science. There is difference of meaning for ontology in 

computer science and the term “an ontology” is used instead of “ontology”. The most 

popular definition of an ontology, in the context of the Semantic Web [44], is “an explicit 

and formal specification of a conceptualization of a domain of interest” [45]. 

For publishing data in a common global space, having a common terminology is 

essential. Different datasets in Web of Data need to understand each other and this 

semantic interoperability is possible with ontology. This corporation is either with 

mapping terminologies to a shared ontology or direct mapping of ontologies. Currently 

following ontology languages are most significant; RDF as data model for objects and 

relations between them, RDF Schema as a vocabulary description language and OWL 

that is richer vocabulary description language by compare to RDF and RDF schema. 

OWL is an extended vocabulary language for defining disjointness on concepts (classes), 

cardinality, equality, richer typing of properties, enumerated classes and characteristics of 

properties. 

Although distribution of understanding of information for people and machines is 

the most common goal of building ontology, there are some other goals for that, [45]. 

Reusing of domain knowledge recently became another important goal for ontology; one 

can use existing ontology for a particular common used domain, for example time, and 

extend it. Another goal for making ontology is to make domain assumptions explicit; it 

makes changes on our assumption of domain of interest easy if our knowledge about it 

changes.  
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Ontologies are more than just a vocabulary; they are sources of knowledge of a 

specific domain. Currently, most of ontologies are implemented in OWL (Web ontology 

language) that is based on RDF and designed by W3C. 

The most important aspect of ontologies used for Semantic Web applications is 

related to identifying two ontology layers: the ontology definition layer, and the ontology 

individual layer. The ontology definition layer represents a framework used for 

establishing an ontology structure – based on is_a relation between classes – and for 

defining classes (concepts) existing in a given domain. The ontology individual layer, on 

the other hand, contains concrete information as instances of defined classes. 

The ontology definition contains descriptions of all classes of an ontology. The 

classes are defined using datatype properties and object properties. These properties are:  

- the datatype property focuses on describing features of a class; datatype properties 

can be expressed as values of data types such as Boolean, float, integer, string, and many 

more (for example, byte, date, decimal, time); 

- the object property defines other than is-a relations among classes (nodes); these 

relations follow the notion of the RDF that is based on the triple subject- predicate-object, 

where: subject identifies what object the triple is describing; predicate defines the piece 

of data in the object a value is given to; and object is the actual value of the property; for 

example, in the triple John likes books, John is the subject, likes is the predicate and 

books is the object. 

Both types of properties are important for defining ontologies. The possibility of 

defining class properties and relations between classes creates a versatile framework 

capable of expressing complex situations with sophisticated classes and the multiple 

different kinds of relationships existing among them. Once an ontology definition is 

constructed, its instances, called individuals, can be built. The properties of classes are 

filled out: real data values are assigned to datatype properties, and links to instances of 

other classes (individuals) are assigned to object properties. 



13 

It has been identified [27] that the OWL has limitations in the case of representing 

relations between complex properties. This has been overcome by putting together OWL 

and a rule language. As the result of that, the Semantic Web Rule Language (SWRL) has 

been introduced [27] [35] as a combination of OWL with RuleML (the sub-language of 

Rule Markup Language). 

In SWRL, a rule axiom consists of an antecedent (body) and a consequent (head). 

The basic element of both antecedent and consequent is an atom. SWRL defines five 

basic atoms that can be used to build a rule: 

- C(x) it is the simplest atom, it is used to check if a given instance x is the instance 

of concept C, for example, Person(John) represents an atom that checks if John is the 

instance of the concept Person; 

- P(x,y) it is the atom that allows for checking if two instances x and y are related to 

each other via a property P, for example, liveIn(John, Edmonton) is ”looking” at the 

existence of the property liveIn between the instances John and Edmonton; 

- Q(x,z) it is the atom that verifies if a data property Q of instance x has a value z, 

for example, lastName(John, Smith); 

- sameAs(x,y) holds if instances (individuals) x and y are the same; 

- differentFrom(x,y) holds if instances (individuals) x and y are different. 

All atoms presented above can be used with variables instead of instances (x, y) and 

values (z). In this case, the atom P(x,y) can be used in the following way - liveIn(?a, 

Edmonton), and it would represent a question: who lives in Edmonton? Using the SWRL 

together with an ontology, it is possible to build rules based on object properties of the 

concepts defined in this ontology. 

In summary, one of the most significant technologies for supporting the sharing, 

integration and management of information sources in knowledge base systems is 

ontology. In particular, the Ontology Web Language and its associated Semantic Web 

Rule Language [12] provide a powerful standardized approach for representing 

information and reasoning with it.  
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There are some steps for creating an ontology for a domain of interest. First of all 

defining ontology domain and scope; in the sense of what is the purpose of ontology and 

what type of question it should provide answers. The next step is defining existing 

concepts and concept hierarchy in the domain; there are 2 main approaches for creating 

hierarchy: top-down and bottom-up. In the first approach most general concepts are 

defined first and in the second approach the most specific concepts are defined first. The 

next step for creating an ontology is defining properties of each concept and their 

specifications and restrictions, for example value type, allowed values or cardinality. 

During the process of creating an ontology it is important to consider existing ontology 

related to domain of interest.  

It is important to know that there is not just one correct way to create an ontology 

model. The best model is depending on the purposes of model and future extension of the 

model. Also creating an ontology model is an iterative process and it evolves during 

ontology development. Another tip for creating an ontology model is that concepts are 

usually close to physical and logical objects; if someone describe domain of interest in 

sentences then concepts are most likely to be nouns and verbs.  

Creating an ontology itself is not a goal. It is developed to define a data structure 

and terminology for other software and agents to use. An example of ontology model is 

Wine ontology. It is definition of wines and foods and suitable combination of them. The 

wine ontology can be used by another software to make wine suggestions for menu of the 

day [34].   

In the wine ontology, two main concepts are Wine and Food. They have sub-

concepts as Fig. 4 depicts: 
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Figure 4 - Ontology hierarchy of Wine and Food 
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2.4. RDF / RDF Schema / SPARQL 

A standard content format is an essential agreement on Web of Data. This standard 

is important for publishing data as all different applications, agents and machines need to 

process this content and communicate based on it. In the current web XML, Extensible 

Markup Language, is common widely used to represent and describe data. Although it is 

easy and simple to use for exchanging data and also it is general framework for 

exchanging of data between applications over the Web, it is not suitable for Web of Data 

as it does not provide meaning for data [9].  

The concept of Semantic Web [44] has introduced a principal format of 

representing data called Resource Description Framework – RDF [22]. A building block 

of RDF is a simple triple: subject-predicate-object, where: subject identifies an entity the 

triple is describing; predicate defines a type of relation that exists between the subject and 

object; and object is an entity or a value describing the subject via being in relation with 

it. For example, in the triple 

John travel Tokyo 

John is an entity that is being described; travel is a relation that exists between the 

entities; and Tokyo is a value of this relationship. In other words we say that John 

travel(s|ed) to Tokyo. Further, a subject of one triple could be a subject of other triples. 

For example, the two following triples: 

John type Person;    John birth 1996 

Indicate that John is a person, and he was born in 1996. Additionally, an object of one 

triple could become a subject of another triple, or a subject of one triple can be an object 

of another. Overall, multiple entities can be involved in different relations and play 

different roles in these relations. That leads to a highly interconnected network of related 

entities.  

RDF triples can be used to represent any type of information in any domain. There 

are a number of initiatives focusing on building repositories of predicates called 
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vocabularies [18] [20]. Descriptions of all RDF components are contained in RDF 

Schema [24]. 

RDF link triples, that object of triple is a URI, is used for making link between RDF 

triples. Power of RDF is that one can make link between different resources over the Web 

by using URI on subject, predicate and object of a RDF triple. Here URIs is glue between 

RDF triples and leads to a graph, [11].  

One can consider a RDF triple as binary relationship with logical formula of 

Predicate (subject, Object). Figure 5 shows a RDF triple in graph view: 

 

 

Figure 5 - RDF triple in graph view 

 

 

RDF itself is a data model for building resources as RDF triples and not a data 

format. So for materializing it, we need a way to sterilize it. W3C has introduced two 

RDF serialization syntaxes, RDF/XML and RDFa. Also there are more RDF syntaxes 

that have been used widely, but they are non-standard syntaxes; Turtle, N-Triple and 

RDF/JSON, [11].  

The most used format for publishing RDF statements is RDF/XML. Generally it is 

XML document which RDF namespace is added to top of XML document. Following 

shows a RDF statement in RDF/XML syntax, [11].  

<rdf:RDF 

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 

xmlns:xsd="http://www.w3.org/2001/XMLSchema#" 

xmlns:uni="http://www.ualberta.ca/uni-ns#"> 

<rdf:Description rdf:about="www.ualberta.cs/~JS"> 

<uni:Site-owner>JohnSmith</uni:name> 

</rdf:Description>  

</rdf:RDF> 

www.ualberta.ca/~js #JohnSmith 
Site-owner 
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The element rdf:Description is used for defining a new RDF statement. The 

attribute rdf:about specify Subject of RDF statement by its URI. The uni:site-owner 

define property for www.ualberya.cs/~JS. The downside for RDF/XML syntax is that it 

is not suitable for human in terms of readability but it is machine-readable. Another RDF 

syntax is RDFa, Resource Description Framework in Attributes, which is embeds RDF 

statements in HTML documents. It is a set of attribute extensions to HTML and 

originally it was intended to add metadata. Set of attribute is: about, rel, src, href, 

property, datatype and typeof. Following is an example of a sample RDF statement in 

RDFa syntax:  

<div about=http://biglynx.co.uk/people#dave-smith          

typeof="foaf:Person"> 

  <span property="foaf:name">Dave Smith 

</div> 

Another way to sterilize RDF is Turtle which a plain text and compact format. It is 

possible to add namespaces as prefixes for RDF statements. The Turtle syntax is simply 

just sequences of Subject, Predicates and Object which are separated by a whitespace and 

terminated by ‘.’. Following is an example of RDF statement in Turtle syntax: 

<http://www.ualberta.cs/~JS> 

<http://www.ualberta.ca/uni-ns#Site-owner> 

“JohnSmith” 

 

N-Triple is Turtle mines some features like namespace prefix, shorthand. It is 

clearest way to express RDF statements as each RDF triple is defined in one line. It is an 

advantage of N-Triple as during the loading RDF documents, each line that a triple can 

be parsed at a time and it is suitable for large RDF documents. Although it is clear and 

suitable for large datasets, but it is not shortest way as N-Triple does not support 

namespace prefixes so all URI should contain namespaces and it leads to larger RDF 

documents with compare to order RDF syntaxes even RDF/XML, [11]. Following is an 

example of N-Triple syntax: 
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<http://www.ualberta.cs/~JS> <http://www.ualberta.ca/uni-ns#Site-

owner> “JohnSmith” 

 

As we said RDF is a language for expressing resources but it does not define any 

semantic level to data. Also it does not have any hypothesis about domain of interest that 

RDF is bout. For adding semantic and describing a particular domain of interest, user can 

define RDFS, Resource Description Framework Schema. In the RDFS one can defines 

things that exist in the domain as classes and properties and relation between them. RDFS 

defines restriction on relation between things in the domain by domains and ranges. A 

class in RDFS can be considered a set of objects that each individual object is called 

instance of that class. The rdf:type defines relation between instances and classes in RDF 

and RDFS.  

Another aspect of RDFs is possibility for defining hierarchy between classes and 

properties. In this way a class is subclass of another class if all instances of former class 

are instance of the later class. By this RDFS defines semantic for particular domain. The 

same hierarchy concept can be applied on RDFS properties. P is sub property of Q if Q(x, 

y) wherever P(x, y), [9]. 
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Figure 6 - RDF concepts of university resource 
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It is important to understand that with RDF one can define any statements about any 

resources and with RDFS can define restriction, subclasses and subproperties. The main 

classes of RDFS are: rdfs:Resource, rdfs:Class, rdfs:Property, rdfs:Literal and 

rdfs:Statement and main properties are: rdfs:type, rdfs:subClassOf, rdfs:subPropertyOf, 

rdfs:domain and rdfs:range. RDFS itself is expressed in RDF/XML syntax. Following is 

XML serialization of RDF concepts of university resources in Fig 6: 

<rdf:RDF 

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"> 

 

<rdfs:Class rdf:ID="lecturer"> 

<rdfs:subClassOf rdf:resource="#academicStaffMember"/> 

</rdfs:Class> 

<rdfs:Class rdf:ID="academicStaffMember"> 

<rdfs:subClassOf rdf:resource="#staffMember"/> 

</rdfs:Class> 

<rdfs:Class rdf:ID="staffMember"> 

</rdfs:Class> 

<rdfs:Class rdf:ID="course"> 

</rdfs:Class> 

<rdf:Property rdf:ID="involves"> 

<rdfs:domain rdf:resource="#course"/> 

<rdfs:range rdf:resource="#lecturer"/> 

</rdf:Property> 

<rdf:Property rdf:ID="isTaughtBy"> 

<rdfs:subPropertyOf rdf:resource="#involves"/> 

</rdf:Property> 

<rdf:Property rdf:ID="phone"> 

<rdfs:domain rdf:resource="#staffMember"/> 

<rdfs:range rdf:resource="&rdf;Literal"/> 

</rdf:Property> 

</rdf:RDF> 

 

In spite of RDF is a simple and straightforward language there is some critical point 

of view of RDF. The binary relation is the only possible relation in RDF. In the real 

world we use predicates with more than two arguments. For representing these predicates 

we need to create some binary predicates. Also properties in RDF are considered as 

resource and so properties can be used as the object in a RDF triple, subject-attribute-
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object.  Although it makes some degree of flexibility and, but it can be confusing for 

modelers as it is unusual for modeling languages. 

 

 

2.5. OWL 

OWL [23], Web Ontology Language; also it defines relations and instances of 

classes. In order for making the Web understandable by machines and software agents 

and performing useful reasoning tasks on the web, it is necessary to go beyond keywords 

and give meaning to defined resources and concepts over the Web.  

The OWL language has three variant sublanguages with different level of 

expressiveness. OWL Lite, OWL DL and OWL Full are these sublanguages. Each 

sublanguage is an extension of its predecessor. The following are true relations between 

these three OWL sublanguages: 

 Every legal OWL Lite ontology is a legal OWL DL ontology 

 Every legal OWL DL ontology is a legal OWL Full ontology 

 Every valid OWL Lite conclusion is a valid OWL DL conclusion 

 Every valid OWL DL conclusion is a valid OWL Full conclusion 

 

OWL Lite is intended for defining classification hierarchy and simple constrains. It 

uses just some of OWL language features and has more restriction and limitation than 

OWL DL and OWL Full. For example OWL Lite has a limited cardinality values as 0 or 

1. Another example of restriction in OWL Lite is equivalence of classes and subclasses 

relationships between classes are just allowed between named classes.  

OWL DL guaranteed that all entailments will be computed, completeness, and 

computations will finish in finite time, decidability. While OWL DL supports 

completeness and decidability, it has maximum expressiveness. It is called OWL DL 

because of its correspondence with description logics.  

OWL Full has maximum expressiveness without computational guarantees and 

syntactic freedom of RDF. In an ontology with OWL Full syntax, someone can add the 
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meaning of the predefined, either RDF or OWL, vocabulary. There is not much reasoning 

software to support all features of OWL Full. 

An Ontology language should allow users to write explicit formal conceptualization 

of domain models. Following are main requirements for an ontology language: 

 A well-defined syntax 

 Efficient reasoning support 

 A formal semantic 

 Sufficient expressive power 

 Convenience of expression 

 

Two requirement of an ontology language are important: expressive power and 

efficient reasoning support. The richer the language is, the more inefficient the reasoning 

support becomes. There is always a compromise between expressive power and efficient 

reasoning support. The most useful ontology language is the one supported by reasonably 

efficient reasoners and the one that can express large classes of ontology and knowledge. 
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2.6. Time / Temporal OWL / Temporal RDF 

Time is one of the most common concepts that could be found in spoken languages, 

systems and applications. Many real-world applications require management of temporal 

data. Because of importance of time in applications and domain knowledge, some custom 

temporal management solutions were developed. In particular, biomedical data, that time 

dimension is central, forced research in the area, [32]. One of the first biomedical systems 

to address the problem was the Time Oriented Database.  

In the context of Web of data sharing, accessing and using temporal data is 

necessary and current technologies are either complex or not sufficient for handling 

temporal thing in Web of Data, [33]. 

OWL and SWRL are powerful technologies but they have limitation to handle 

temporal information. OWL just supports temporal data values as basic XML Schema 

dates, times and durations, [21]. SWRL includes operators for manipulating these values 

at a very low level. There are two approached to add time dimension. First of all, add 

temporal dimension to OWL that is not straightforward. Another way is developing a 

time model on top of OWL. In the second approach, we can model time at the user level 

without changing OWL itself. Our Time ontology model has three main subclasses, 

ValidTime, Event and Granularity. ValidTime just concerns about two main concepts of 

time, instant and interval that is representative of a moment and extend on time line. 

Topology of instant and interval and possible relations between two proper intervals can 

be viewed in figure 7 and figure 8, [30]. 
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Figure 7 - Allen’s interval relations 

 

 

 

Figure 8 - Instant and Interval in time line 
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The approach described in [29] represents temporal knowledge in an interval-based 

temporal logic. Such a model is suitable for expressing qualitative temporal relation 

between intervals such as before, after, meets and overlaps. Dutta [39] has proposed a 

model that describes time using a set of accurate disjoint intervals that can have different 

lengths, while Kim and Oh [10] have introduced a model for the vague representation of 

qualitative temporal relations between events. 

Pan and Hobbs [8] have introduced a model for representing time in an OWL-

represented ontology [23]. They offer a comprehensive description of temporal intervals, 

instants, durations, and calendar terms. They provide a vocabulary to represent facts about 

topological relations among instants and intervals.  

In general, introduction of time into RDF has been accomplished via creating a new 

extended version of RDF. For example, in [6][5] the authors use labeling and special data 

structures to introduce time into RDF graphs. However, the proposed query language is 

almost impossible to use in existing RDF stores. In the attempt to solve the storage 

problem, the authors of [3] introduce the tGRIN index structure that builds a specialized 

index for temporal RDF that is physically stored in a rational database. They use 

temporally annotated RDF triples of the form: subject-property:annotation-object. A 

similar approach – annotated triples – is used in [28]. Here, the authors focus on temporal 

validity intervals. They propose a temporal version of the SPARQL language for 

querying such annotated triples. 

As we mentioned earlier, RDF is recommended metadata model and language by 

W3C for building Web of Data. RDF is constructed by RDF triple that is a binary relation 

between subject and object via a predicate. Binary relation is simple and powerful 

relation not only for building huge graph of triples but also for building a querying 

language among RDF data. This binary relation has restriction.  
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2.7. Fuzzy Logic 

The concept of Fuzzy theory and set has introduced by Zadeh. In general fuzziness 

means uncertainty boundaries among set of objects. For instance, if someone wants 

assign a people to one of the human height’s concept like “Tall” or “Short” in dichotomy 

approach, a certain threshold is needed to be defined for constructing concepts over 

human height’s discourse, Fig 91.  

 

Figure 9 - Dichotomy sets and their characteristic functions 

 

In the other hand, in fuzzy logic each example can be assign to each concept with a 

degree of membership, Fig 10. 

                                                           
1 All fuzzy membership function figures have been borrowed from [46] 
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Figure 10 - Fuzzy sets and their membership functions 

Fuzzy membership function is definition of each concept over the universe of 

discourse. Someone can consider Fuzzy sets as a set of pairs of the {x, A(x)} which x is a 

sample of X and A(x) is its degree of membership. Here A(x) explains the degree of 

compatibility of example x to concept A. This is the main explanation of fuzzy sets, [21]. 

Generally any function A: X -> [0,1] can be considered a fuzzy membership 

function, but it should reflects the purpose of constructing fuzzy set. The fuzzy 

membership functions should mirror the level of detail we intend to capture and the 

perception of the concept to be represented and used in problem solving, [46].  

Following are common used categories of fuzzy membership functions: 

 

 Triangular Membership Functions 

 

The pairwise linear segments describes triangular membership function with 

a, m and b parameters. 
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The above expression can be written in the form of, 

 

 

Which m denotes a modal value of fuzzy set whereas “a” and “b” are the 

lower and upper bounds, Fig 11. 

 

Figure 11 - Triangle membership function 

 

 Trapezoidal Membership Functions 

The pairwise linear segments describes triangular membership function with 

a, m, n and b parameters. 

 

 

The above expression can be written in the form of, 

 

 

Figure 12 illustrates the Trapezoidal Membership Function. 



29 

 

Figure 12 - Trapezoidal membership function 

 

 Γ-Membership Functions 

They are expressed in the form of: 

 

 Where k > 0, as illustrated in figure 13: 

 

 

Figure 13 - Γ-Membership Function 
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 S-Membership Functions 

They are expressed in the form of: 

 

 

 

 

 

 

 

Figure 14 shows its memebrship function: 

 

Figure 14 - S-Membership Function 

 

 Gaussian Membership Functions 

The following shows these membership functions: 

 

 

In the Gaussian membership function the modal value m denotes the typical 

element of A and ϭ represents a spread of A, Fig. 15. 
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Figure 15 - Gaussian Membership Function 

 

In practice, absence of knowledge and incomplete information on system inputs, 

parameters and structure lead to uncertainly and imprecision, [46].  

 

 

2.8. Vague Temporal and Fuzzy Logic 

There are studies that focused on crisp temporal concept in ontology. But, in real 

world many of the temporal concepts are vague and imprecise, and it is not easy dealing 

with them. Fuzzy theory is a valid solution for handling these imprecise temporal 

concepts.  

Dubois and Prade [7] have proposed an approach to represent and process fuzzy 

temporal knowledge. Carinena at el [36] have focused on providing a formal definition of 

a grammar for expressing fuzzy temporal propositions. The definitions of such concepts 

as date, time extent, and interval, according to the formalism of possibility theory have 

been presented in [37]. 

Lamine and Kabanza introduced a set of fuzzy temporal operators that is 

corresponded with a set of classic temporal operators. They used operations in Zadeh’s 

interpretation instead of Boolean connectives such as and, or, not. Another approach was 
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proposed by Dubois and Prade [7] to represent and to process of fuzzy temporal 

knowledge, [7]. They introduced four main concepts: (i) time as a one-dimensional 

discrete axis, (ii) date as an instant of time, (iii) time extent that represents quantity of 

time, and (iv) interval as a period of time.  

Carinena at el [36] have focused on providing a formal definition of a grammar for 

expressing what they called fuzzy temporal propositions. They describe the language and 

show its application for determining degree of fulfillment of the proposed temporal 

propositions. The definitions of the concepts of date, time extent, and interval, according 

to the formalism of possibility theory have been presented in [37]. The authors introduce 

relations between the temporal entities such as dates and intervals interpreted as 

constraints on the distance between dates, and projected onto Fuzzy Temporal Constraint 

Satisfaction Networks. 

Another proposed work by Dutta is defining possibility of occurrence of an event in 

a time interval, [39]. One can evaluate temporal relation between a pair of events.  

 

2.9. Related Work 

Introducing time into relational databases was studied for adding time dimension. In 

particular, biomedical data, that time dimension is central, forced research in the area 

[32]. One of the first biomedical systems to address the problem was the Time Oriented 

Database. Because of importance of time in applications and domain knowledge, 

modeling time in Web of Data and particularly in RDF modeling is one of the key 

primitives. RDF itself just supports primitive date time that comes from XML date time 

datatype. The first approach for modeling temporal information in RDF was introduced 

by Gutierrez and Hurtado. They introduced determinate RDF triples and a query 

language.  

Generally there are two main approaches for adding time to RDF, versioning and 

time labeling. In the versioning approach, each change in triples of a RDF graph leads to 

creating a new version of RDF graph and saving old RDF graph. In the second approach, 
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labeling, for each change on RDF triple a new label with date time is assign to changed 

element. Valid time and transaction time are two different dimensions for representing 

temporal relations in temporal databases. The first one represents the time that data is 

valid in the model and the second one is the time that data is saved in the database. 

Generally labeling approach is more suitable for RDF modeling as in case of large scale 

RDF model and when changes are frequent versioning approach may have large overhead 

and performance issues on querying data. Also labeling approach follows nature of RDF 

in extensibility and distributing, [5]. 

Pugliese and Udrea extended Gutierrez work for case of indeterminate RDF triples. 

Also they introduced normalized tRDF database and normalization algorithm. The most 

used representing time in temporal database is a discrete and ordered linear representation 

and also it is used mostly for time in modeling time in RDF. In this representation, two 

main concepts are instant and interval that represent a moment and extend on time line. 

An interval time is a period between two instant of time. Topology of instant and interval 

and possible relations between two proper intervals has been introduced [30]. 

In general, some researchers focused on introducing concept of time into RDF by 

creating new extended RDF, querying language and temporal RDF repository for 

handling time like [6], [3], [1], [47] and [10]. Another approach is introducing time to 

RDF by using standard RDF and annotation for temporal dimension. In this approach 

time is encoded in the user data model; in this case handling temporal dimension for 

querying data is necessary. [32] used SWRL rules for retrieving data. 

The authors of [38] have focused on extending an existing framework of 

representing temporal information into ontology. They have proposed representation of 

concepts evolving in time, dynamic concepts, together with their properties as qualitative 

descriptions. They used natural language expression for temporal events without exact 

duration, starting or ending points. For the purpose of handling dynamic concepts they 

used two different mechanisms: 4D-fluents and N-ary relations. They have also used two 

concepts for expressing temporal information: interval and instant.  
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Methodology of handling temporal information containing uncertainty has been 

addressed in [42]. The authors have proposed modeling time using two different models: 

linear model and branching model. The first of the models is called Fuzzy Linear 

Temporal Logic or FLTL [41], while the second model proposed here is Fuzzy Branching 

Temporal Logic or FBTL. In the branching model, an event can have a number of 

possible branches. They used fuzzy logic for handling uncertainty in the logical 

information, and fuzzy temporal primitives for handling temporal information. They used 

three different types of temporal primitives: time interval, interval with possibility 

measures, and a fuzzy representation of a time instant.  

Hobbs and Pan [8] have introduced a model for representing time in an OWL-

represented ontology. They offer a comprehensive description of temporal intervals, 

instants, durations, and calendar terms. They provide a vocabulary to represent facts 

about topological relations among instants and intervals. The authors propose the class of 

eventualities to “cover events, states, processes, propositions, states of affairs, and 

anything else that can be located with respect to time” [8]. In the proposed model [8], the 

term “duration description” is different from the duration concept, i.e., the duration of an 

interval can have many different duration descriptions. It is useful to talk about 

descriptions as independent objects. They also introduce clock and calendar to distinct 

intervals. For instance, they indicate that a day as duration and a day as calendar interval 

are different. Additionally, Hobbs and Pan argue that time zone should be considered in 

the concept of time. It is to be mentioned that all parts of date time except seconds are 

related to time zone. They develop a time zone resource in OWL, which defines the 

vocabulary about regions, time zones, daylight saving policies, and the relationships 

between them. 

The main goal of the paper [31] is to integrate uncertainty with Allen’s interval-

based temporal logic. The authors have defined new formalism for extending classical 

interval algebra, as well as developed a temporal reasoning system capable of handling 

both qualitative and quantitative information. Their approach applies Temporal Constrain 
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Satisfaction Problem for building queries for temporal occurrence and relation between 

them.  

The issue of collecting information hampered by vagueness and uncertainty that 

comes from unreliable data source has been addressed in [2]. The authors have focused 

on uncertainty of the information. They have proposed a temporal framework, called 

Fuzzy-time Temporal Logic or FTL that takes into account a degree of truth of temporal 

expressions. A set of fuzzy temporal modalities has been defined in the context of this 

framework that respects a set of expected mutual relations. The framework is usable for 

crisp events and in this situation their FTL framework reduces to LTL. 

 The issue of reasoning with fuzzy temporal data has been touch upon in [48] and 

[40]. The first of the papers has proposed an extension to an existing temporal reasoning 

framework. It allows for managing uncertainty based on a many-valued logic. An 

extended reasoning algorithm has been provided. It can handle both temporal and 

uncertain information in an integrated way. The authors have used many-valued logic by 

means of the Lukasiewicz logic. In [40], the authors have focused on structured temporal 

information, and the lack of precise boundaries of historical events. They have proposed 

a framework based on fuzzification of Allen’s Interval Algebra. They applied it to 

information retrieval from Web documents.  
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3. Fuzzy Temporal Data in Ontology Environment 

 

 

 

The concept of Semantic Web has introduced an important form of knowledge 

representation – ontology. As a hierarchical structure of concepts together with their 

definitions, ontology provides means for expressing semantics of data. The ability to 

build rules with ontology concepts and to perform reasoning increases its attractiveness 

even further. This chapter describes a framework for expressing fuzzy temporal 

information using ontology. The framework is built based on ontology suitable for 

expressing facts and building rules that include fuzzy and temporal terms. This proposed 

fuzzy temporal ontology can be imported to any domain ontology and used a knowledge 

base in variety of applications. The chapter includes description of build-in predicates 

needed for constructing fuzzy temporal rules. Simple examples of application of the 

predicates are presented. 

 

 

3.1.Ontology For Representing FUZZY and Temporal Data 

 
A. Ontology of Fuzzy Data 

The fuzzy ontology used in the proposed framework should be capable of 

expressing fuzzy information. Therefore, the ontology we propose contains a number of 

concepts that are required for representing and storing fuzzy information. Its description 

can be divided into two parts: an overview at the definition level explaining classes and 

properties necessary to define fuzzy variables; and an overview at the individual level 

illustrating an application of fuzzy ontology for representing concrete fuzzy information. 
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1) Definition Level Description: The hierarchy of classes of the ontology for 

representing fuzzy information is shown in Fig 16. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It contains a set of concepts from the domain of fuzzy sets and systems. The 

concepts denote basic items required to express fuzzy data. The most important concepts 

are: 

- fuzzyVariable defines a class of fuzzy variables of interest, the definition includes 

datatype properties required to define a fuzzy variable – universe of discourse: 

discourseMin, discourseMax; name: fVarName, and a set of associated terms: fTermSet; 

- fuzzyTerm is a class of entities representing fuzzy linguistic labels defined for a 

given fuzzy variable; 

- fuzzyPair defines a class of pairs <membership value/element of discourse>; 

Figure 16 - Ontology for representing fuzzy information 
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- fuzzyMemberFunction is a class of membership functions associated with fuzzy 

terms, as we can see, Fig. 16, there are a number of subclasses representing different 

types of membership functions. 

An important part of the ontology – necessary for “building” fuzzy information – is 

object properties. A list of properties is shown in Fig. 17. The properties define 

fundamental relations that exist between different fuzzy concepts. 

 

 

 

 

 

 

The arrangement of both classes and object relations allows us to build a structure 

needed for expressing fuzzy information. Such a structure is illustrated in Fig. 18. The 

is_a relations (representing hierarchical structure of the ontology, Fig. 16) are not so 

essential when compared with the object relations. The relations between classes reflect 

“real-world” process of constructing fuzzy variables, i.e., each fuzzyVariable is composed 

(connected via the relation fuzzyTerms) with multiple linguistic labels (fuzzyTerms) 

defined in the universe of discourse of the variable, and further each label/term is linked 

with a membership function – it is done via the relation termMFunc. Membership 

functions could be of any different type: Gaussian, trapezoidal, and so on. 

 

 

 

 

 

 

 

Figure 17 - Object properties 
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2) Individual Level Description. A better understanding how to apply the proposed 

fuzzy ontology for representing fuzzy data can be achieved with an example of 

representing a concrete piece of information. This example shows an ontology-based 

definition of a fuzzy variable named BoilerTemp that is an instance of the class 

temperature. The variable contains three fuzzy labels/terms low, medium, and high linked 

with three membership functions. The definition of this variable is revealed in Fig. 19. 

Let us emphasis the fact that concrete pieces of information are represented as individuals 

(marked with diamonds) that is instances of specific/required classes (marked with 

circles) connected via proper object relations. 

 

Figure 18 - Ontology classes and properties as a structure for defining fuzzy 

information (* indicates that multiple fuzzy terms can be associated with a 

single fuzzy variable.) 
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As it can be seen, the variable BoilerTemp is an instance of the class fuzzyVar and it 

inherits features of two classes fuzzyVariable (presented above) and temperature. The 

BoilerTemp is linked via the property fTermSet with three labels: tempLow, tempMedium, 

and tempHigh. The labels are associated, via property termMFunc, with membership 

functions. Fig. 19 shows this only for the label tempHigh. Please note that membership 

functions are instances of another class: fuzzyMembFuncTrapezoidal, which is a subclass 

of fuzzyMemberFunction. 

 

B. Temporal Ontology for Fuzzy Data 

In order to express temporal fuzzy data we define a simple ontology of basic 

temporal concepts based on the time ontology described in Section II.C. In the ontology, 

time is represented as a single time point, or as a time interval. A time point, or time 

instant, identifies a single occurrence, while a time interval is a temporal entity with a 

beginning time and an ending time. Usually, the beginning and ending are determined 

with time instants. An important aspect of temporal data is time stamping of information. 

Figure 19 - Ontology-based definition of a fuzzy variable temperature 
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This is done with so-called Valid Time, i.e., the time that information is true in the real 

world. 

The temporal ontology, or should we say ontology for temporal fuzzy data, is 

shown in Fig. 20. The defined classes, based on terms presented in Section II.B, allow for 

representing basic temporal concepts. The concepts are:  

- ValidTime is a class representing possible “moments” when information is true in 

the real world. It includes two object properties: activation that links it with the class 

fuzzyTerm, and hasGranularity linking it with the class Granularity. It is a superclass for 

two other classes: Instant and Interval. The class Instant has a datatype property hasTime, 

while the class Interval has two datatype properties hasStartTime and hasFinishTime. 

- Event defines a class of entities occurring in time, it has two subclasses 

InstantEvent and IntervalEvent that are also subclasses of the classes Instant and Interval, 

respectively. The fact that InstantEvent (IntervalEvent) is also a subclass of Instant 

(Interval) allows it to inherit properties required to define a temporal event and link it 

with a fuzzy term; 

- Granularity is a simple class used to identify time granularity of individuals of the 

class ValidTime (and via inheritance of InstantEvent and IntervalEvent), its individuals 

are different time units, for example Seconds, Minutes, Hours, and so on. 

 

 

 

 

 

 

 

 

 

 

 

Figure 20 - Ontology – classes and properties – for temporal data 



42 

We combine this ontology with the ontology for fuzzy data (previous subsection). A 

fuzzy variable class temperature presented in the previous subsection can be augmented 

with a temporal aspect, i.e., it becomes a superclass of the class dataTemporal that is also 

a subclass of the class instantEvent, Fig. 21. An instant of the class dataTemporal is 

named dataTemporal_1. It is linked with the instance Hours of the class Granularity via 

the property hasGranularity. 

The representation of a series of BoilerTemp measurements is done by generating a 

set of instances dataTemporal_x. Each of them contains a time stamp, a value, and is 

linked with granularity (Hours in our case) and an instance of fuzzyTerm. 

 

3.2. FUZZY Temporal Predicates 

In order to deal with temporal data, it means, to construct rules that take into 

account temporal relations and temporal dependencies between different events, we need 

a library of constructs capable of dealing with temporal instances and intervals. Such a 

library gives us the ability to build rules that can express relations between temporal 

events and infer about them. For example, the rule 

 

if 

signal S1 is high about 10 sec before signal S2 is low 

then 

value of A should be 5 

 

has a component – about 10 seconds before – that requires a special temporal predicate 

for expressing time interval or instance in an approximated manner. A number of fuzzy 

temporal predicates have been identified and implemented in Protégé (ontology editor: 

http://protege.stanford.edu/). 

Before we describe the predicates, let us define basic terms that are used in the 

implemented temporal predicates: 

timeInstant = <NOW|…|specificDateTime|timeOfAnotherEvent> 
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used for expressing instant in time, it could be given explicitly with such words as NOW, 

YESTERDAY, LAST_SECOND, LAST_MINUTE, LAST_HOUR, LAST_DAY, or a 

specific date and time, for example “2012-05-06 16:23”, or implicitly via specifying a 

temporal event (for example, dataTemporal_1, Section III.B), the time stamp of this 

event is used to determine a specific instant in time; 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

timeInterval = <(periodStartDate, periodEndDate)> 

periodStartDate|periodEndDate = 

<specificDateTime|timeOfAnotherEvent> 

 
for defining a time interval via providing the beginning and ending time instants – 

explicitly via a specific date/time, or implicitly via events. 

 

A. Fuzzy Temporal Predicates 

Predicate #1: 

approx_at_instant(?degree1, ?event, ?timeInstant) 

 

Figure 21 - Fuzzy temporal variable temperature 
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This predicate is used to determine the degree of temporal overlapping between an 

event and an approximated instant in time. In other words it calculates the level of degree 

to which 1 In SWRL, the character “?” is used to denote a variable. The statement 

“something happened approximately around some time instant” is true. The parameters 

are: 

degree – output value from the interval <0,1>, it is a degree to which the event 

overlaps with “about” timeInstant; 

event – input, usually an individual from ontology with a value and a time stamp, 

we are determining if this event happened “about” timeInstant;  

timeInstant – input, it is a moment in time defined in a number of ways (see above). 

 

Predicate #2: 

approx_in_interval(?degree, ?event, ?timeInterval) 

 

This predicate is useful to determine the degree of overlapping between an event 

and an interval defined by starting and ending points. Its parameters are: 

degree – output value from the interval <0,1>, it is a degree to which the event 

overlaps with the interval; 

event – input, usually an individual from ontology with a value and a time stamp, 

we are determining if this event happened in the interval; 

timeInterval – input, defined as above. 

 

Predicate #3 

approx_at_instant_before(?degree, ?event, n, granularity,  

?referenceInstant) 

 

This predicate is to determine the degree of overlapping between an event and an 

instant that occurs about n granules of time before some instant of time. For example, the 

predicate approx_at_instant_before(?degree, ?event, 2, days, ?referenceInstant) will 
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calculate the degree of overlapping of an event with an instant at about 2 days before 

?referenceInstant. Its parameters are: 

degree – output value from the interval <0,1>, it is a degree to which the event 

overlaps with the moment that happened n time granules before referenceInstant; 

event – input, usually an individual from ontology with a value and a time stamp, 

we are determining if this event happened at about n time granules before 

referenceInstant; 

n – number of time units; 

granularity – determines the units of n; 

referenceInstant – input, defines a moment in time, it is defined using timeInstance 

(see above). 

 

Predicate #4 

approx_in_interval_before(?degree, ?event, n, nGranularity, 

?referenceInstant, m, mGranularity) 

 

This predicate determines the degree of overlapping of an event with an interval 

which spans across n granules of time, and this interval occurs m granules of time before 

?referenceInstant. The parameters are: 

degree – output value from the interval <0,1>, it is a degree to which the event 

overlaps with an interval that spans over m granules and occurs n granules before 

referenceInstant; 

event – input, usually an individual from ontology with a value and a time stamp; 

n – input, number of time units, “width” of an interval; 

nGranularity – input, determines the units of n; 

referenceInstant – input, it is a moment in time defined as timeInstant (see above); 

m – input, number of time units “between” the end of the interval and 

referenceInstant; 

mGranularity – input, determines the units of m. 
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Additionally, there is a need for a predicate that determines a degree of belonging of 

an even that has a value (in a specific domain) in a fuzzy term (linguistic label). This 

predicate is: 

 

fuzzification(?event, fuzzyTerm) 

 

Where the parameters are: 

event – input, an individual from ontology with a value; 

fuzzyTerm – input, an individual of the concept fuzzyTerm (has membership 

function and label). 

This predicate does not return the value of membership, it returns true if the 

membership is nonzero, and false if it is zero. 

 

B. Implementation Remark 

The presented predicates are implemented as SWRL built-ins. They can be used to 

build rules with fuzzy temporal components in the environment of Protégé 3.4. The 

reasoning process is preformed using Jess (crisp part) and FuzzyJ (fuzzy part). The 

development has been done using Protégé and FuzzyJ APIs in Eclipse. 

 

3.3. Illustrative Example 

A. Rule with the Predicate Instant Before 

The first example illustrates the application of the predicate #3. The “natural 

language” form of the rule is presented below: 

 

if 

signal S1 is high at about 5 sec before signal S2 is low 

then 

… 

 

We consider only activation of the rule’s antecedent without restricting the format 

of the consequence. In SWRL, the rule is: 
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S1(?x) ∧ fuzzification(?x, high)∧ 
S2(?e) ∧ fuzzification(?e, low)∧ 
approx_at_instant_before(?o, x, 5, seconds, ?e) 

->... 

 

The components of the rule are interpreted in the following way. The first term 

S1(?x) “returns” all individuals that are instances of the signal defined as the concept S1. 

Each individual has two parameters: value, and a time stamp. The second component 

fuzzification(?x, high) “takes” these individuals and based on their values determines 

their membership value in the fuzzy term identified by the linguistic term high. Again, 

the S2(?e) returns individuals of the signal S2, and fuzzification(?e, low) determines their 

membership values in the fuzzy term low. At this point, all individuals of the signal S1 

that have a non-zero membership value in the fuzzy term high, and all individuals of the 

signal S2 that have a nonzero membership value in the term low are identified. Now, all 

these individuals are processed by the built-in predicate approx_at_instant_before. This 

predicate “checks”, based on the time stamps, if an individual of the signal S1 is in the 

state high at about 5 seconds before an individual of the signal S2 is in the state low. The 

resulting waveform is shown in Figure 22. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22 - Activation of rule’s antecedent 
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B. Rule with Multiple Predicates 

For the second example we have selected a more realistic rule related to weather 

and road conditions. The rule determines the circumstances of developing slippery roads. 

One of possible rules provided by an expert 

 

if 

(snowfall is heavy and temp is low for about 5 hours) 

about 2 hours before 

(temp is very low for about 6 hours) 

then  

slippery 

 

indicates that roads will be slippery if a very low temperature is preceded by a heavy 

snowfall and a low (around zero) temperature. The temporal illustration of the situation 

leading to the slippery roads is presented in Fig. 23. The SWRL rule representing the 

expert’s knowledge about slippery roads is shown below. 

 

snowfall(?s) ∧ fuzzification(?s, high)∧ 
approx_in_interval_before(?o, ?s, 5, hours, NOW,8, hours)∧ 
temp(?t1) ∧ fuzzification(?t1, aroundZero)∧ 
approx_in_interval_before(?o,?t1, 5, hours, NOW,8, hours)∧ 
temp(?t1)∧ fuzzification(?t2, veryLow)∧ 
approx_at_instance_before(?o,?t2, 6, hours, NOW) 

->slippery 

 

The rule’s antecedent can be “divided” into three parts: the first two (about s and t1) 

are used to determine conditions preceding a very low temperature. The s represents 

hourly snowfall: it is checked if snowfall is high and if it occurred over a period of 5 

hours 8 hours ago. The t1 that stands for temperature is checked if it is aroundZero for 

the same temporal interval. The third part is used to determine if the temperature is 

veryLow in the last 6 hours. 
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Figure 23 - Conditions leading to slippery roads 
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4.  LORI: Linguistically-Oriented RDF Interface  

For Querying Fuzzy Temporal Data 

 

 

 

The concept of Semantic Web, introduced by Berners-Lee in 2001, emphasizes 

importance of expressing semantics of data stored on the web. The introduced data 

format called Resource Description Framework (RDF) is a meaningful way of expressing 

and exploring data relations. It provides basics for constructing semantics-oriented data 

formats. More and more often RDF is used to represent variety of data including N-ary 

relations and temporal information. On many occasions this results in complex data 

structures. Their utilization requires a full understating of used data configurations. 

This chapter presents a fuzzy-based Linguistically Oriented RDF Interface – LORI 

– for querying RDF data containing temporal information and built using non-trivial data 

structures. The interface includes specialized build-in predicates suitable for constructing 

temporal queries and supporting imprecise phrases describing time and data features, and 

high-level predicates built based on them. A simple case study using LORI interface for 

imprecise querying about time-based events is presented. 

 

4.1.RDF and Time Representation 

4.1.1. RDF Representation of N-ary Relations 
 

In its canonical form, RDF is used to represent a binary relation. An RDF predicate  

additional information that is related to a particular RDF predicate. A solution supported 

by W3C, based on N-ary Relation [26], is to represent a relation as a class. It means that 

any predicate that needs to be described by additional features, e.g., strength, certainty, is 
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an item “located” in the middle of the original triple. The idea is presented below. Let us 

assume that John traveled to Tokyo. We express this in the following way: 

John travel Tokyo 

If we want to provide additional information about the relation travel such as: 

duration, date, stayed-at, we need to create a class travelC and a number of properties: 

travel_where, travel_when, travel_stay_at. Then, the above triple is represented as a 

bunch of triples: 

John travel_who travelC 

travelC  travel_where Tokyo 

travelC  travel_when 2015-01-15 

travelC  travel_stay_at Hayat 

As we can observe, the property travel has been replaced by the class travelC. This 

new property class is described using three items (that play the role of objects) in new 

triples with travelC as their object. Please note, that new properties have been introduced 

to describe the property. 

 

4.2. Linguistically Oriented Interface for Querying RDF Data 

A specialized interface is required to query RDF data using imprecise terms 

describing temporal aspects of data, as well as to use imprecise quantitative descriptors 

that impose additional constrains on the results of queries. Such an interface – called 

Linguistically Oriented Interface (LORI) – is presented here. It is built based on 

RDF/RDFS reasoner [15] provided by Jena [14] that works with a set of basic entailments 

rules, Section 4.2.1 Jena’s RDF/RDFS reasoner allows for developing custom built-in 

predicates. A set of predicates that allow for querying temporal aspects of data, and 

processing complex data has been developed.  
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The above-mentioned predicates as well as entailment rules of RDF/RDFS reasoner 

are used to construct high-level predicates that provide the users with simpler and more 

straightforward ways of making inquiries. A set of mapping rules is used as a translator 

between the reasoner’s predicates/rules and high-level predicates. A diagram representing 

architecture of LORI is shown in Fig 24. The main building blocks of LORI are: 

CustomPredicates&RDFSchema – a component containing developed predicates and 

required data structures; ReasonerInterface – an element providing an access to built-in 

custom predicates and RDF/RDFS reasoner’s entailment rules; UserInterface – a set of 

high-level predicates available to the users; MappingEngine – a unit that uses mapping 

rules to translate queries built by the user to queries offered by ReasonerInterface. 

4.2.1. Predicates, Data Structures and Reasoner Interface 

A detailed description of LORI should start with an explanation and details 

regarding the CustomPredicates&RDFSchema component. However, before we can do 

this we should explain what type of input is acceptable for Jena’s reasoner. Jena’s 

RDF/RDFS reasoner works with entailment rules [15] in the form of triple_patterns [25]. 

These triples are executed against RDF data they identify RDF triples that match the 

‘fixed’ positions (i.e., positions that contain explicit values) and have arbitrary values on 

the ‘variable’ positions (i.e., positions with a ‘?’ character at their beginnings). For 

example, the triple_pattern:  

 

(?subject  foaf:first_name  'John') 

 

has the ‘fixed’ positions, foaf:first_name and 'John', and the variable position 

subject. As the result, we obtain a set of all entities (values of subject) that have the first 

name John, i.e., entities that are connected via the property foaf:first_name with 'John'. 

The triple_patterns use entities defined within the considered data. Essentially, they are 

SPARQL graph (triple) patterns that are being matched against data graphs [25].  
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Figure 24 - Configuration of LORI 

 

Processes of constructing queries in the case of temporal and complex data require 

knowledge and understanding of internal data structures. To address these needs we 

develop a number of predicates that simplify these processes. These predicates are built 

according to Jena’s syntax and requirements imposed by RDF/RDFS reasoner. As we can 

see later, these predicates are further mapped into very simple and human-friendly high-

level predicates that constitute UserInterface. 

 

4.2.2. Fuzzy Temporal Predicates 

A library of predicates capable of dealing with temporal instances and intervals is 

developed. Such a library gives the users the ability to build queries/rules that can express 

relations between temporal events and infer about them.  

An important part required by these predicates is a concept of a time instant: 

timeInstant = <specificTime|timeOfAnotherEvent> 
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The instant is given explicitly via the value of the parameter specificTime that can 

assume the values: NOW, YESTERDAY, LAST_SECOND, LAST_MINUTE, 

LAST_HOUR, LAST_DAY, or via providing date and time, such as “2012”, “2012-05”, 

“2012-05-06”, or “2012-05-06 16:23”.  

The four defined and implemented predicates are: 

approx_at_instant(?event2, ?predicate, ?timeInstant, ?cut)  

 – to determine a degree of temporal overlapping between an event and an 

approximated instant in time – it calculates the level of degree to which the statement 

“something happened approximately around a given time instant” is true.  

approx_in_interval(?event, ?predicate, interval_start, 

interval_end, ?cut)  

– to determine a degree of overlapping between an event and an interval defined by 

starting and ending points.  

approx_at_instant_before(?event, ?predicate, p, unit_p, 

?timeInstant, ?cut)  

– to determine a degree of overlapping between an event and an instant that occurs 

approximately a number of time granules before some instant of time. For example, 

the predicate approx_at_instant_before(?event, $property 2, 

days, ?time-Instant, ?degree) calculates the degree of overlapping of an 

event with an instant at about 2 days before timeInstant.  

approx_in_interval_before(?event, ?predicate, n, unit_n, 

?timeInstant, m, unit_m, ?cut) 

 – to determine a degree of overlapping of an event with an interval that spans across n 

granules of time, and this interval occurs m granules of time before timeInstant.  

 

The parameters of the predicates are: 

                                                           
2 In SWRL, the character “?” is used to denote a variable. 
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event –  a subject of RDF triple with property as its RDF property; if it is not given 

– nodes are identified by the parameter predicate;   

predicate – an RDF predicate that is the focus of a temporal analysis (this 

predicate should have time as its range); 

timeInstant – a moment in time defined in multiple ways based on temporal 

ontology; 

interval_start, interval_end – two timeInstant values representing the 

beginning and the end of a time interval; 

p – number of time units; 

unit_p – granularity of time units for p; 

n – number of time units, “width” of an interval; 

unit_n – granularity of time units for n; 

m – number of time units ‘between’ the end of the interval and timeInstant; 

unit_m – granularity of time units for m; 

cut – a value from the interval <0,1> indicating a desired degree to which the event 

should ‘overlaps’ with timeInstant, by default cut is equal to zero. 

 

The predicates – available at ReasonerInterface – utilize fuzzy temporal ontology, 

Section 3, and use the FuzzyJ reasoner [19] suitable to deal with fuzzy data. The 

predicates are implemented as functions called from within Jena, and they further call 

FuzzyJ procedures to perform fuzzy calculations and reasoning. The same predicates with 

a reduced number of parameters are available at UserInterface, Section 4.2.2. 

 

4.2.3. Storage Predicates 

The storage predicates increase functionality of LORI by allowing the users to store 

the results of queries, reuse them, merge them, and perform operations, including fuzzy 

ones, on them. The results are stored in a form of RDF data. This allows for a full 
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integration of the results with RDF data that the LORI is working with. We have created 

an RDF Schema that defines classes and properties to build such RDF triples, Fig 25.  

Three predicates for dealing with results of queries and use RDF Schema presented 

in Fig. 25 are developed. They are: 

StoreResult(?resName) takes a single parameter resName as a name of RDF 

graph representing the results; this name is used for accessing the results in the future; 

MergeResults(?resName1, ?resName2, ?resName3) used for merging 

two RDF graphs containing the results of two different queries, where resName1 is 

one of them, and resName2 is another, the result of the merge is stored in an RDF 

graph named resName3; and  

ShowResult(?resName) used for displaying an RDF graphs containing results of a 

single query, where resName is its identifier.   

 

These predicates constitute a very important part of the LORI – they allow for 

creating sequences of queries where the results of one query can be combined with the 

results of another query. 

 

<rdfs:Class rdf:ID="QueryResult" />  

<rdfs:Class rdf:ID="QueryResultNode" />  

<rdf:Property rdf:ID="hasNode">   

 <rdfs:domain rdf:resource="#QueryResult"/>   

 <rdfs:range rdf:resource="#QueryResultNode"/>     

</rdf:Property> 

<rdf:Property rdf:ID="hasFuzzyNumber">   

     <rdfs:domain rdf:resource="#QueryResultNode"/>  

     <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#decimal"/>     

</rdf:Property> 

<rdf:Property rdf:ID="hasSubject">   

     <rdfs:domain rdf:resource="#QueryResultNode"/>  

     <rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-

schema#Resource"/>     

</rdf:Property> 
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<rdf:Property rdf:ID="hasPredicate">   

     <rdfs:domain rdf:resource="#QueryResultNode"/>  

     <rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-

schema#Resource"/>     

</rdf:Property> 

<rdf:Property rdf:ID="hasObject">   

     <rdfs:domain rdf:resource="#QueryResultNode"/>  

     <rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-

schema#Resource"/>     

</rdf:Property> 

Figure 25 - The RDF Schema for storing results 

 

4.2.4. Fuzzy Processing Predicates 

The introduced data structures for storing results have created an opportunity to 

design and develop special functions operating on the obtained results. An important set 

of useful processing utilities includes fuzzy processing predicates. These predicates are 

implemented as functions inside Jena. They are further used via experts to define 

processing operators. The definitions are included in a mapping file.  

An example of a fuzzy processing predicate is Most. It performs fuzzification of 

data based on a defined fuzzy membership function. Section 4.2.5 contains details how it 

is applied to define a fuzzy processing operator, and how it is used together with storage 

predicates at UserInterface. Section 5 illustrates its application. 

 

4.2.5. UserInterface and MappingEngine 

 

Presented above predicates are still closely related to data, i.e., in order to use them 

the user has to know details regarding data structures. To avoid this, an expert in the data 

under consideration builds a set of high-level predicates that ‘isolate’ the user from data 

details and its complexity.  
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The expert constructs high-level predicates and mapping rules. The mapping rules 

define these predicates and specify a way of ‘transforming’ them into the predicates and 

entailment rules offered at ReasonerInterface, Section 4.2.1. MappingEngine performs 

such a translation process. An example of a mapping rule is shown below: 

 

highLevel_predi(parameter_set)  

-> triple_pattern1|…| triple_patternN 

 

The high-level predicates highLevel_predi should reflect inquiries frequently made 

by the users, and be of high importance with meaningful naming and intuitively 

recognized effects. Their parameters become inputs to individual 

triple_patternk().  

 

In the case of temporal predicates, Section 4.2.2, UserInterface offers the same predicates 

but with a reduced number of parameters. UserInterface temporal predicates are: 

 

approx_at_instant(?timeInstant, ?cut)  

approx_in_interval(?interval_start, interval_end, ?cut)  

approx_at_instant_before(?p, unit_p, ?timeInstant, ?cut)  

approx_in_interval_before(?n, unit_n, ?timeInstant, m, unit_m, 

?cut) 

 

Similarity, the storage predicates, UserInterface offers the same predicates as the 

ones defined at the level of ReasonerInterface, Section 4.2.3. The predicates 

MergeResult and ShowResult are the same, while the third predicate has an 

additional parameter: 

 

StoreResult(?resName, ?fuzzy_processing_operatorr) 

 

This new parameter fuzzy_processing_operatorr is an operator defined by an 
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expert – also in a mapping rules file – in the following way: 

 

FProcOperName(fuzzy_processing_operatorr) -> 

FuzzyProcessingParam(Most, Subject) 

It means that, the operator fuzzy_processing_operatorr contains the 

predicate Most, and data entities on which the predicate works. In the case above, these 

are Subjects of RDF triples representing the stored results.  

Fuzzy processing operators defined on processing predicates are very depended on 

the data under consideration. For specifics see Section 5. 

 

4.3. Case Studies 

4.3.1. “Travel” Data 

This case study shows how to apply LORI to query data containing temporal 

information and quite complex data structure. The considered RDF data contains triples 

describing traveling facts: destinations and dates, of a number of individuals. Additionally, 

the data also includes details regarding their illnesses, i.e., names of diseases, and times 

when they had it. An example of this data for two individuals X and Y is shown in Fig 26. 

As we can see, Fig 26, the description of a single trip contains a blank node (N_ or 

P_). It is needed in order to express two features: destination of the travel, and date when 

it took place. Information about a single disease also contains a blank node (M_ and Q_) 

to represent: disease name and a date when a person became ill.  

Such a structure of data shows an extra complication in data structure – something we 

would like to ‘hide’ from the user. At the same time, this gives us an opportunity to show 

how LORI works and simplifies queries. 
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Figure 26 - RDF triples representing data two individuals X and Y (for simplify the properties do not have prefix 

rdfs:get_ used in the text below) 

 

Complexity of data structure implies a need for high-level predicates. The mapping 

rules of three predicates that also work as their definitions are shown below:  

WHO_HAS_DISEASE(.*1) => 

 (?Subject rdfs:get_ill_who ?interconnectNode),  

 (?interconnectNode rdfs:get_ill_what ?*1) 

 

WHO_TRAVEL_TO(.*1) => 

 (?Subject rdfs:get_travel_who ?interconnectNode), 

  (?interconnectNode rdfs:get_travel_where ?*1) 

 

 

WHERE_PERSON_TRAVELED(.*1) => 

 (?*1 rdfs:get_travel_who ?interconnectNode), 

 (?interconnectNode rdfs:get_travel_where ?Object) 

  

The predicate WHO_HAS_DISEASE(.*1), where *1 represents an input parameter 

that should be a person, is mapped into two RDF triple patterns. The first of them returns 

all Subjects – persons in our case – and interconnectNodes – blank nodes – that are 
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connected via the property rdfs:get_ill_who. The second one takes the identified 

interconnectNodes and looks for any entities that are connected to it via the property 

rdfs:get_ill_what. In this way, we obtain a list of all persons – values of Subjects - who 

had the disease identified by the input parameter *1.   

The second predicate WHO_TRAVEL_TO(.*1) works in the similar way, but as 

the result we obtain a list of persons who travelled to the destination identified by *1.   

For the predicate WHERE_PERSON_TRAVELED(.*1) the first pattern leads to 

pairs: <*1 interconnectNode> that are connected via rdfs:get_travel_who. This provides 

all blank nodes connected to a given person – identified by *1. Then we ‘follow’ the 

blank nodes and obtain Objects, i.e., places to which the person *1 travelled.  

For queries about temporal aspects as well as for storing results, we use the 

temporal and storage predicates described in Section 4.2.1. For the case of fuzzy 

processing operators, we have mentioned that they are data dependent, so in this 

particular case the expert defines three operators that can be used as an input parameter 

for the predicate  

StoreResult(?resName, ?fuzzy_processing_operatorr) 

they are: 

FProcOperName(MostWho)=> FuzzyProcessingParam(Most, Subject) 

FProcOperName(MostWhere)=>FuzzyProcessingParam(Most, Object) 

FProcOperName(Most)=> FuzzyProcessingParam(Most, Both)  

In this case, fuzzy_processing_operatorr can assume values MostWho, MostWhere, 

Most. Each of them works on different parts of RDF triples:  the first one on subject, the 

second on object, and the third on both. 

At this stage we can also show how the predicate StoreResult() with a fuzzy 

processing operator is translated into triples and rules of ReasonerInterface: 

StoreResult(?resName, MostWho) => 

=> StoreResult(resName_temp) 

=> (resName_temp rdf:type queryResult) -> Result(?resName, Most, 
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Subject) 

 

As it can be seen, the predicate is translated into ReasonerInterface predicate 

StoreResult(), and the rule that allows RDF/RDFS reasoner to perform fuzzy processing. 

In the first query we identify all individuals who traveled most often to Tokyo in 

mid-January 2015, who had flu one week after traveling to Tokyo, over the period of 

about two weeks. The queries look like this: 

WHO_TRAVEL_TO('Tokyo'), 

approx_in_interval('2015-01-01', '2015-31-01'),  

-> StoreResult(ResultT, MostWho) 

WHO_HAS_DISEASE('flu'),  

approx_in_interval('2015-01-22', '2015-02-11'),  

-> StoreResult(ResultD) 

MergeResult(ResultT, ResultD, Result) 

ShowResult(Result) 

 

The UserInterface predicate WHO_TRAVEL_TO, together with a temporal 

predicate – approx_in_interval() is executed first. This results in a list of individuals – a 

single entry for each trip – who traveled to Tokyo. The travel takes place approximately 

between January 1st and 31st. The boundaries of the interval are ‘modified’ using fuzzy 

membership functions shown in Fig. 27 (a). The domain of this function is timeInstant. 

For the second predicate, the process is quite similar; it selects individuals who had flu 

over the period of three weeks – from January 22nd to February 11th, approximately.  

 

  

 

                              

                     (a)                                                         (b) 

 

  

Figure 27 - Membership functions: (a) modifiers of interval’s boundaries to make them approximate, and 

(b) for the predicate Most 
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The results of the first predicate are stored under the name ResultT. They are 

processed using the fuzzy processing operator MostWho to identify individuals who 

traveled to Tokyo most often. In other words, the results indicate how many times a 

person travelled to Tokyo, and this number is evaluated using the fuzzy membership 

function associated with the predicate Most, Fig. 27 (b). The results of the second high-

level predicate are stored with the name ResultD. They represent all individuals who had 

flu approximately between Jan 22nd and Feb 11th, 2015.  

The predicate MergeResult() combines both results. The fusion is based on the 

individuals – so, the persons who travelled the most to Tokyo and then had flu in the 

identified period of three weeks. A sample of the final results is shown below: 

… 

ResultT(1): John (Tokyo) -> temp: 1.0 trips: 1.0 

ResultT(2): Mary (Tokyo) -> temp: 1.0 trips: 0.5 

ResultD(1): John (Flu) -> temp: 1.0 

ResultD(2): Mary (Flu) -> temp: 1.0 

Result(1): John (Flu/Tokyo) -> temp: 1.0 trips: 1.0 

Result(2): Mary (Flu/Tokyo) -> temp: 1.0 trips: 0.5 

… 

As we can see, John who traveled to Tokyo at least 2 times, Fig 27 (b), and had a 

flu has been identified as a person who match the query to the highest degree. The part 

temp: indicates degree of satisfaction of the temporal requirement, trips: - satisfaction of 

the fuzzy operator MostWho. 

The second query should identify individuals who had measles at the beginning of 

May, and who traveled the most over the second week of May. 

WHO_HAS_DISEASE('measles'),  

approx_at_instant('2015-06-01'),  

-> StoreResult(ResultD) 

WHERE_PERSON_TRAVELED(),  

approx_in_interval('2015-05-07', '2015-05-14', 0.75),  

-> StoreResult(ResultP, MostWhere) 

MergeResult(ResultD, ResultP, Result) 
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ShowResult(Result) 

The results, shown below, indicate that the query is not successful. The first 

predicate provides a list of persons who had measles around May 1st, while the second 

gives a list of places visited by individuals – here Susan was in Toronto at least twice 

(trips: 1.0). Both queries have different types of entities as their responses and the result 

of merge has zero entries. 

… 

ResultD(1): John (Measles) -> (time) 1.0  

ResultD(2): Mary (Measles) -> (time) 1.0  

ResultD(3): Susan (Measles) -> (time) 1.0 

ResultP(1): Toronto (Susan) -> temp: 1.0 trips: 1.0 

ResultD(2): Calgary (Paul) -> temp: 1.0 trips: 0.5 

… 

 

4.3.2. DBLP Data 

In order to illustrate the query mapping system and the proposed approach to query 

RDF data with temporal and fuzzy terms we use the DBLP database (http://dblp.uni-

trier.de/db/). In particularly, we focus on a portion of the database – publication records 

for the years 1993-1999. RDF-XML files with the records have been downloaded. Based 

on the vocabulary used in the files we have created an RDF Schema (required by the 

RDF reasoner). An example of the schema with the most important elements is shown in 

Fig. 28.1. 

<rdf:Property rdf:ID="has-date">  

     <rdfs:domain rdf:resource="#Article-Reference"/>     

     <rdfs:range rdf:resource="#Calendar-Date"/>     

</rdf:Property>   

<rdf:Property rdf:ID="has-web-address">  

     <rdfs:domain rdf:resource="#Article-Reference"/>     

     <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>     

</rdf:Property>   

<rdf:Property rdf:ID="has-volume">  

     <rdfs:domain rdf:resource="#Article-Reference"/>     

     <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#double"/>     

</rdf:Property>   

     <rdf:Property rdf:ID="article-of-journal">  

     <rdfs:domain rdf:resource="#Article-Reference"/>     
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     <rdfs:range rdf:resource="#Journal"/>     

</rdf:Property>   

<rdf:Property rdf:ID="has-title">  

     <rdfs:domain rdf:resource="#Article-Reference"/>     

     <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>     

</rdf:Property>   

<rdf:Property rdf:ID="has-author">  

     <rdfs:domain rdf:resource="#Article-Reference"/>     

     <rdfs:range rdf:resource="#Person"/>     

</rdf:Property>   

<rdf:Property rdf:ID="full-name">  

     <rdfs:domain rdf:resource="#Person"/>     

     <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>     

</rdf:Property>   

Figure 28.1 - A fragment of the RDF Schema for DBPL 

   

A very small example of the data is shown in Fig. 28.2. It represents an entry related 

to a single publication. 

<rdf:Description rdf:about 

       ="http://dblp.rkbexplorer.com/id/journals/jei/SinhaGLSM96"> 

     <rdfs:has-author rdf:resource 

       ="http://dblp.rkbexplorer.com/id/people-dcc8bba393b2bd1c30db2c44765f0fa4- 

                  64465f01287e3deb3f6c940f9d4f8e20"/> 

     <rdf:type rdf:resource 

       ="http://www.aktors.org/ontology/portal#Article-Reference"/> 

     <rdfs:has-author rdf:resource 

       ="http://dblp.rkbexplorer.com/id/people-7ee2fa9aff5bbfd9f5f5152865b9b892- 

                 4bb329520237c41ff83bc28230bfce22"/> 

     <rdfs:has-date rdf:resource 

       ="http://www.aktors.org/ontology/date#1996"/> 

     <rdfs:article-of-journal rdf:resource 

       ="http://dblp.rkbexplorer.com/id/journals-97b83d9eb09081a97c187d7289b2d5fc"/> 

     <rdfs:has-author rdf:resource 

       ="http://dblp.rkbexplorer.com/id/people-947c115c9d544b6616049a4415bf3e54- 

                 017c5bf8ceab4ee468822c45696a98ab"/> 

     <rdfs:has-author rdf:resource 

       ="http://dblp.rkbexplorer.com/id/people-74824503207e2826d0c8230cf74f30a7- 

                16ce4b551357a941b11fd0f51581ece0"/> 

     <rdfs:has-title> 

           Classification and overview of research in real-time imaging. 

     </rdfs:has-title> 

     <rdfs:has-web-address> 

           http://dx.doi.org/10.1117/12.245842 

     </rdfs:has-web-address> 

     <rdfs:has-volume>5</rdfs:has-volume> 

     <owl:sameAs rdf:resource 

     ="http://dblp.l3s.de/d2r/resource/publications/journals/jei/SinhaGLSM96"/> 

     <rdfs:has-author rdf:resource 

       ="http://dblp.rkbexplorer.com/id/people-483d0c940233f2cd118a64a930160151- 

         5b9a283d0775e4fa85406b5f25ec5d34"/> 

  </rdf:Description> 

Figure 28.2 - RDF info about a single publication: Article-Reference 
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As it has been described above, the user’s level query hides details of RDF data 

representation. This means that for each type of data there is a need to create high level 

predicates that are mapped into a series of low level predicates and entailment rules of the 

RDFS reasoner. Such a process has been done here. The two sample user-level queries 

are:  

  

WHO_PUBLISHED(.*1) 

 =>(?MainSubject rdfs:has-author ?interconnectNode),    

   (?interconnectNode rdfs:full-name ?*1) 

 

WHO_PUBLISHED_WITH(.*1) 

 =>(?interconnectNode rdfs:has-author ?author1),  

   (?author1 rdfs:full-name ?*1),  

   (?interconnectNode rdfs:has-author ?author2),  

   (?author2 rdfs:full-name ?MainSubject) 

 

 The first of them WHO_PUBLISHED(.*1) is mapped into two simple RDF level 

rules. One of them matches ids of papers with ids of people who are authors of these 

papers (property rdfs:has-author). The other one provides full name of these people 

(rdfs:full-name). If an input parameter *1 is provided – it is a full name of a person – then 

this simple RDF rule filters all papers – only papers with *1 as the author are obtained as 

the result. 

 The second query is a bit more complicated. It is a combination of two “versions” 

of the previous query. The first part provides a list of papers and their first authors, or if 

the person’s name *1 is given, it returns papers written by *1. The second part matches 

people to the papers identified in the first part of this query, and provide names of the 

papers’ co-authors. As the result we obtain a list of peoples where each entry (for each 

person) contains all her publications and for each publication a list of its all co-authors.  

The query performed on the RDF version of DBLP database is shown below: 

WHO_PUBLISHED_WITH(),  

approx_at_instant('1996','has-date'),  

-> StoreResult(testResult, large, 'has-author') 
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ShowResult(testResult) 

 

 It uses the user’s level predicate WHO_PUBLISHED_WITH() (Section VII.B), 

together with a temporal predicate – approx_at_instant() (Section V.B). The first part 

WHO_PUBLISHED_WITH() results in the list of authors and their publications together 

with co-authors. The second part approx_at_instant('1996', 'has-date', ?satDegree) 

“filters” the list based on the temporal requirement. Here, we specify the year 1996 so the 

predicate approx_at_instant() selects only triples with a value of the RDF predicate 'has-

date' equals approximately 1996, i.e., using a fuzzy term approx 1996. This term can be 

defined arbitrary; in our implementation it has been defined in a way that the provided 

value of the parameter timeInstant (Section V.B) is used to build a fuzzy membership 

function, Fig. 28.3. The domain of this function is timeInstant +/- 1.5 years. 

 

 

 

 

                                               (a)                                              (b) 

  

 

The results are stored under the name testResult. The results are filtered with the 

term large on the predicate 'has-author'. This means that the number of co-authors on a 

given paper is “evaluated” using the fuzzy membership function associated with the label 

large, Fig 28.3. 

 The very last predicate ShowResult() displays a list of authors, coauthors and 

previously stored under the name testResult. A sample of the results is shown below: 

Figure 28.3 - Membership functions of terms approx (a), and large (b) 
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… 

testResult: "Sergey Gorinsky" -> 1.0 (5.0) 

testResult: "D. Prangenberg" -> 0.5 (3.0) 

testResult: "Alexander A. Zelensky" -> 1.0 (6.0) 

testResult: "J. Andrew Bangham" -> 1.0 (4.0) 

testResult: "Ursula Bernhard" -> 0.0 (1.0) 

testResult: "Jacques G. Trecat" -> 0.0 (2.0) 

testResult: "Yoichi Miyake" -> 1.0 (4.0) 

… 

 

 Every entry of the results contains its id: testResult, name of the author in "", a 

degree to which this author satisfies the statement “an author of a paper with large 

number of co-authors, and the actual number of co-authors. 
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5. Implementation Details and Performance Evaluation 

 

5.1.  Used Software Packages and Libraries 

5.1.1. Jena 

 For implementing LORI we used a software package Jena [14] that is an open 

source Semantic Web framework. Jena provides an API for reading and writing RDF 

graphs in different serialization formats such as RDF/XML, Turtle, and Notation 3. The 

class Model is the main class for representing an RDF graph. It is meant to have an 

interface with methods to help writing RDF-base applications. In general there are three 

RDF container concepts in Jena: 

- graph: a mathematical view of the directed relations between nodes in a connected 

structure 

- Model: a rich Java API with many convenience methods for Java application 

developers 

- Graph: a simpler Java API intended for extending Jena's functionality. 

The Jena packages that have been used in LORI implementation are listed in Table 2.  

Table 2 - Jena packages used in LORI implementation 

Package Description 

chh.jena.rdf.model The Jena core. Creating and manipulating RDF graphs. 

oaj.riot Reading and Writing RDF. 

chh.jena.datatypes Provides the core interfaces through which datatypes are described to 

Jena. 

chh.jena.ontology Abstractions and convenience classes for accessing and manipulating 

ontologies represented in RDF. 

chh.jena.rdf.listeners Listening for changes to the statements in a model 

chh.jena.reasoner The reasoner subsystem is supports a range of inference engines which 

derive additional information from an RDF model 

chh.jena.shared Common utility classes 

chh.jena.vocabulary A package containing constant classes with predefined constant objects 

for classes and properties defined in well-known vocabularies. 
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Jena has an inference subsystem that allows for ‘plugging-in’ multiple different 

inference engines or reasoners. The subsystem is used for entailing new RDF assertions 

based on rules, exiting RDF data, and descriptions of ontology/RDF classes. The Jena’s 

Inference System has a general rule engine that can be used for entailing any RDF data. 

The overall architecture of Jena inference subsystem is presented in Fig. 29.  

 

Figure 29 - Jena Inference Subsystem 

 

ModelFactory is used to link data sets with reasoners at the time a new Model is 

created. ModelFactory allows applications to access Jena inference mechanism. The 

mechanism returns not only original data statements but also statements that are derived 

from data based on provided rules. Another component – ReasonerRegistery – is used for 

registering new reasoners types. In this way, Jena makes the Inference Subsystem open to 

interaction with reasoners other than predefined reasoners. Predefined reasoners in Jena 

are: 

ModelFactory Ont/Model API 

Reasoner 

Registry 

Reasoner 

 

InfGraph 

Graph – base assertions 

  
Graph – Ontology definitions 

  

find 

bindSchema (optional) bind 

create 
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- Transitive reasoner: provides support for storing and traversing class and property 

lattices; it implements just the transitive and reflexive properties of 

rdfs:subPropertyOf and rdfs:subClassOf. 

- RDFS rule reasoner: implements a configurable subset of the RDFS entailments. 

- OWL, OWL Mini, OWL Micro Reasoners: a set of useful but incomplete 

implementation of a subset of the OWL/Full language. 

- Generic rule reasoner: a rule based reasoner that supports user defined rules; 

additionally it supports forward chaining, tabled backward chaining and hybrid 

execution strategies, [15].  

Jena RDFS reasoner supports almost all RDFS entailments, Table 3b. It can be 

configured to work at three different levels (modes): Full, Default and Simple. In Full 

mode RDFS reasoner covers all RDFS axioms and closure rules except bNode 

entailment. The Default Mode removes “everything is a resource” and “everything used 

as a property is one” (rdf1, rdfs4a and rdfs4b in Table 3a and 3b) and expensive checks 

for container membership properties. The Simple mode covers just the transitive closure 

of subPropertyOf and subClassOf relations, the domain and range entailments and the 

implications of subPropertyOf and subClassOf.  

The RDFS entailment holds for all the following patterns, which correspond 

closely to the RDFS semantic conditions, Table 3. 
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Table 3a - RDF entailments 

Rule Name if E contains then add 

rdf1 uuu aaa yyy . aaa rdf:type rdf:Property . 

rdf2 uuu aaa lll . 

where lll is a well-typed XML 

literal . 

_:nnn rdf:type rdf:XMLLiteral . 

where _:nnn identifies a blank node allocated 

to lll by rule lg  

 

Table 3b - RDFS entailments 

Rule 

Name 

If E contains: then add: 

rdfs1 uuu aaa lll. 

where lll is a plain literal (with or 

without a language tag). 

_:nnn rdf:type rdfs:Literal . 

where _:nnn identifies a blank 

node allocated to lll by rule rule lg. 

rdfs2 aaa rdfs:domain xxx . 

uuu aaa yyy . 

uuu rdf:type xxx . 

rdfs3 aaa rdfs:range xxx . 

uuu aaa vvv . 

vvv rdf:type xxx . 

rdfs4a uuu aaa xxx . uuu rdf:type rdfs:Resource . 

rdfs4b uuu aaa vvv. vvv rdf:type rdfs:Resource . 

rdfs5 uuu rdfs:subPropertyOf vvv . 

vvv rdfs:subPropertyOf xxx . 

uuu rdfs:subPropertyOf xxx . 

rdfs6 uuu rdf:type rdf:Property . uuu rdfs:subPropertyOf uuu . 

rdfs7 aaa rdfs:subPropertyOf bbb . 

uuu aaa yyy . 

uuu bbb yyy . 

rdfs8 uuu rdf:type rdfs:Class . uuu rdfs:subClassOf rdfs:Resource . 

rdfs9 uuu rdfs:subClassOf xxx . 

vvv rdf:type uuu . 

vvv rdf:type xxx . 

rdfs10 uuu rdf:type rdfs:Class . uuu rdfs:subClassOf uuu . 

rdfs11 uuu rdfs:subClassOf vvv . 

vvv rdfs:subClassOf xxx . 

uuu rdfs:subClassOf xxx . 

rdfs12 uuu rdf:type 

rdfs:ContainerMembershipProperty . 

uuu rdfs:subPropertyOf rdfs:member . 

rdfs13 uuu rdf:type rdfs:Datatype . uuu rdfs:subClassOf rdfs:Literal . 

 

The whole process of using Jena can be summarized in following steps: first step 

is creating RDF model which can be done by using ModelFactory.createRDFSModel. 

Next step is configuring the reasoner. A Jena resource object can be passed to 

http://www.w3.org/TR/rdf-mt/#defallocated
http://www.w3.org/TR/rdf-mt/#ruleslg
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ModelFactory.Create method for configuring behavior of Jena reasoners. The created 

reasoner will be configured by the properties of passed object. Another way to configure 

Jena reasoner is using Reasoner.SetParameter that is used for setting just a single 

configuration parameter. The next step is creating an inference model by attaching the 

reasoner to a set of RDF data. It depends on the implementation strategy to put all data in 

one model or separate them into schema and instance data. If you want to use a schema 

definition for more than one instance data, so it is better to create separate models. 

Reasoner.bindSchema is used for binding a RDF schema to reasoner and 

ModelFactory.createInfModel is used for binding data to reasoner and crating inference 

model. 

 

5.1.2. Jena Built-Ins 

Jena built-ins are procedural Java pieces of code that can be used in Jena rules as 

predicates performing various tasks. They can appear either in the rules’ body, head or 

both. There are some predefined primitive built-ins that are stored in a reasoner’s registry 

(Fig. 29). Each built-in returns either a true or false value as the result. Therefore, if a 

built-in is used in the body of a rule, and the result of this built-in is false then the head of 

rule will not be executed (the rule will not fire).  A list of primitive built-ins is shown in 

Table 4. 

Table 4 - Jena – a list of Primitive Built-in Functions 

Builtin Operations 

isLiteral(?x) notLiteral(?x) 

isFunctor(?x) notFunctor(?x) 

isBNode(?x) notBNode(?x) 

Test whether the single argument is or is not a literal, a 

functor-valued literal or a blank-node, respectively. 

bound(?x...) unbound(?x..) Test if all of the arguments are bound (not bound) variables 

equal(?x,?y) notEqual(?x,?y) Test if x=y (or x != y). The equality test is semantic equality so 

that, for example, the xsd:int 1 and the xsd:decimal 1 would 

test equal. 

lessThan(?x, ?y), Test if x is <, >, <= or >= y. Only passes if both x and y are 
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greaterThan(?x, ?y) 

le(?x, ?y), ge(?x, ?y) 

numbers or time instants (can be integer or floating point or 

XSDDateTime). 

sum(?a, ?b, ?c) 

addOne(?a, ?c) 

difference(?a, ?b, ?c) 

min(?a, ?b, ?c) 

max(?a, ?b, ?c) 

product(?a, ?b, ?c) 

quotient(?a, ?b, ?c) 

Sets c to be (a+b), (a+1) (a-b), min(a,b), max(a,b), (ab), (a/b). 

Note that these do not run backwards, if in sum a and c are 

bound and b is unbound then the test will fail rather than bind 

b to (c-a). This could be fixed. 

strConcat(?a1, .. ?an, ?t) 

uriConcat(?a1, .. ?an, ?t) 

Concatenates the lexical form of all the arguments except the 

last, then binds the last argument to a plain literal (strConcat) 

or a URI node (uriConcat) with that lexical form. In both cases 

if an argument node is a URI node the URI will be used as the 

lexical form. 

regex(?t, ?p) 

regex(?t, ?p, ?m1, .. ?mn) 

Matches the lexical form of a literal (?t) against a regular 

expression pattern given by another literal (?p). If the match 

succeeds, and if there are any additional arguments then it will 

bind the first n capture groups to the arguments ?m1 to ?mn. 

The regular expression pattern syntax is that provided by 

java.util.regex. Note that the capture groups are numbered 

from 1 and the first capture group will be bound to ?m1, we 

ignore the implicit capture group 0 which corresponds to the 

entire matched string. So for example 

regexp('foo bar', '(.) (.)', ?m1, ?m2) 

will bind m1 to "foo" and m2 to "bar". 

now(?x) Binds ?x to an xsd:dateTime value corresponding to the current 

time. 

makeTemp(?x) Binds ?x to a newly created blank node. 

makeInstance(?x, ?p, ?v) 

makeInstance(?x, ?p, ?t, ?v) 

Binds ?v to be a blank node which is asserted as the value of 

the ?p property on resource ?x and optionally has type ?t. 

Multiple calls with the same arguments will return the same 

blank node each time - thus allowing this call to be used in 

backward rules. 

makeSkolem(?x, ?v1, ... ?vn) Binds ?x to be a blank node. The blank node is generated based 

on the values of the remain ?vi arguments, so the same 

combination of arguments will generate the same bNode. 

noValue(?x, ?p) 

noValue(?x ?p ?v) 

True if there is no known triple (x, p, ) or (x, p, v) in the model 

or the explicit forward deductions so far. 

remove(n, ...) 

drop(n, ...) 

Remove the statement (triple) which caused the n'th body term 

of this (forward-only) rule to match. Remove will propagate 
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the change to other consequent rules including the firing rule 

(which must thus be guarded by some other clauses). Drop will 

silently remove the triple(s) from the graph but not fire any 

rules as a consequence. These are clearly non-monotonic 

operations and, in particular, the behavior of a rule set in which 

different rules both drop and create the same triple(s) is 

undefined. 

isDType(?l, ?t) notDType(?l, 

?t) 

Tests if literal ?l is (or is not) an instance of the datatype 

defined by resource ?t. 

print(?x, ...) Print (to standard out) a representation of each argument. This 

is useful for debugging rather than serious IO work. 

listContains(?l, ?x)  

listNotContains(?l, ?x) 

Passes if ?l is a list which contains (does not contain) the 

element ?x, both arguments must be ground, cannot be used as 

a generator. 

listEntry(?list, ?index, ?val) Binds ?val to the ?index'th entry in the RDF list ?list. If there is 

no such entry the variable will be unbound and the call will 

fail. Only useable in rule bodies. 

listLength(?l, ?len) Binds ?len to the length of the list ?l. 

listEqual(?la, ?lb)  

listNotEqual(?la, ?lb) 

listEqual tests if the two arguments are both lists and contain 

the same elements. The equality test is semantic equality on 

literals (sameValueAs) but will not take into account 

owl:sameAs aliases. listNotEqual is the negation of this (passes 

if listEqual fails). 

listMapAsObject(?s, ?p ?l)  

listMapAsSubject(?l, ?p, ?o) 

These can only be used as actions in the head of a rule. They 

deduce a set of triples derived from the list argument ?l : 

listMapAsObject asserts triples (?s ?p ?x) for each ?x in the list 

?l, listMapAsSubject asserts triples (?x ?p ?o). 

table(?p) tableAll() Declare that all goals involving property ?p (or all goals) 

should be tabled by the backward engine. 

hide(p) Declares that statements involving the predicate p should be 

hidden. Queries to the model will not report such statements. 

This is useful to enable non-monotonic forward rules to define 

flag predicates that are only used for inference control and do 

not "pollute" the inference results. 

 

A very important and powerful feature of Jena is its mechanism enabling 

development of custom built-in functions. These custom built-ins can be used in Jena 

rules in the same way like primitive built-ins.  A custom built-in is an extension of the 

following Java class com.hp.hpl.jena.reasoner.rulsys.builtins.BaseBuiltin. It can return an 
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output value different than true/false. For this, an output parameter should be set inside a 

body of a built-in function. A sample code for creating a custom built-in is shown below. 

It is an implementation of function POW(base, exponent) that takes two parameters and 

returns raising base to the power exponent. This value is returned as an output parameter. 

As it is shown below, the result is bind to the second parameter. 

package com.ge.research.sadl.jena.reasoner.builtin; 

 

import com.hp.hpl.jena.graph.Node; 

import com.hp.hpl.jena.reasoner.rulesys.BindingEnvironment; 

import com.hp.hpl.jena.reasoner.rulesys.RuleContext; 

import com.hp.hpl.jena.reasoner.rulesys.Util; 

import com.hp.hpl.jena.reasoner.rulesys.builtins.BaseBuiltin; 

 

public class Pow extends BaseBuiltin { 

    public String getName() { 

        return "pow"; 

    } 

 

    public int getArgLength() { 

        return 3; 

    } 

     

    public boolean bodyCall(Node[] args, int length, RuleContext context) { 

        checkArgs(length, context); 

        BindingEnvironment env = context.getEnv(); 

        Node n1 = getArg(0, args, context); 

        Node n2 = getArg(1, args, context); 

        if (n1.isLiteral() && n2.isLiteral()) { 

            Object v1 = n1.getLiteralValue(); 

            Object v2 = n2.getLiteralValue(); 

            Node pow = null; 

            if (v1 instanceof Number && v2 instanceof Number) { 

                Number nv1 = (Number)v1; 

                Number nv2 = (Number)v2; 

                if (v1 instanceof Float || v1 instanceof Double  

                ||  v2 instanceof Float || v2 instanceof Double) { 

                 double pwd = Math.pow(nv1.doubleValue(), 

nv2.doubleValue()); 

                    pow = Util.makeDoubleNode(pwd); 

                } else { 

                 long pwd = (long) 

Math.pow(nv1.longValue(),nv2.longValue()); 

                    pow = Util.makeLongNode(pwd); 

                } 

                return env.bind(args[2], pow); 

            } 

        } 

        return false; 

    } 

} 

Figure 30 - Jena built-in: example of returning a value via parameter 
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All predicates – manifestations of built-ins at the level of rules – we have created 

in this project are custom built-in. In most cases, our built-ins return true as the result, 

while an actual result of a predicate is returned via an output parameter. For example, 

approx_at_instant() predicate takes at most four parameters, and one of them is actually 

an output variable that is set inside the  body of  the built-in. The built-in’s code is: 

package mine.BuiltIn.FuzzyTemporal; 

import com.hp.hpl.jena.graph.Node; 

import com.hp.hpl.jena.reasoner.rulesys.BindingEnvironment; 

import com.hp.hpl.jena.reasoner.rulesys.BuiltinException; 

import com.hp.hpl.jena.reasoner.rulesys.RuleContext; 

import com.hp.hpl.jena.reasoner.rulesys.Util; 

import com.hp.hpl.jena.reasoner.rulesys.builtins.BaseBuiltin; 

import mine.JenaInferenceUse.RDF.Instant; 

import mine.JenaInferenceUse.RDF.Interval; 

 

public class approx_at_instant extends BaseBuiltin { 

@Override 

     /** 

* Return a name for this built-in, normally this will be the name of 

the functor that will be used to invoke it. 

      */ 

public String getName() { 

 return "approx_at_instant"; 

} 

 

    /** 

* Return the expected number of arguments for this functor or 0 if the 

number is flexible. 

      */ 

public int getArgLength() { 

 return 4; 

} 

 

/** 

* @param args the array of argument values for the builtin, this is an 

array of Nodes, some of which may be Node_RuleVariables. 

* @param length the length of the argument list, may be less than the 

length of the args array for some rule engines 

* @param context an execution context giving access to other relevant 

data      

      */ 

public boolean bodyCall(Node[] args, int length, RuleContext context)  

throws BuiltinException 

 { 

  TemporalHelper th = new TemporalHelper(context); 

 

  boolean result = false; 

  boolean hasUnbound1stArgument = false; 

  double operationResult = 0.0; 

 

  int numberOfArguments = args.length; 
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  checkNumberOfArgumentsInRange(3, 4, numberOfArguments); 

 

  BindingEnvironment env = context.getEnv(); 

  Node n0 = getArg(2, args, context); 

  if (n0.isVariable()) 

{ 

   hasUnbound1stArgument = true; 

} 

 

  double argument0 = 0.0; 

  if (!hasUnbound1stArgument) 

   try { 

    argument0 = th       

    .getArgumentAsADouble(2, getArg(2, args, context)); 

   } catch (FuzzyTemporalException e) { 

    e.printStackTrace(); 

   } 

    

  Instant tempArgument3; 

  Interval argument2, argument3; 

  String argumentTimePredicate = ""; 

   

  try {    

   if(length == 4) 

   { 

argumentTimePredicate = th.getArgumentAsAnString(3, 

getArg(3, args, context)); 

   } 

    

   argument2 = th 

.getArgumentAsAnInterval(0, getArg(0, args, context),      

argumentTimePredicate, context); 

   tempArgument3 = th 

.getArgumentAsAnInstant(1, getArg(1, args, context), 

context); 

    

   argument3=new Interval(tempArgument3, tempArgument3, 2, 4); 

 

   FuzzyJImp _fJ = new FuzzyJImp(argument2, argument3); 

   operationResult = _fJ.getMaxOfIntersection(); 

 

  } catch (FuzzyTemporalException e) { 

   e.printStackTrace(); 

   // throw new BuiltinException(this, context, "Error : " + 

   // e.getMessage()); 

   // FuzzyTemporalException("Error : " + e.getMessage()); 

  } 

 

  if (hasUnbound1stArgument) {  

// Bind the result to the first argument. 

   Node outputResult = null; 

   outputResult = Util.makeDoubleNode(operationResult); 

   env.bind(args[2], outputResult); 

 

   result = true; 

  } else 

   result = (argument0 == operationResult); 
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  return result; 

 } 

 

} 

Figure 31 - Jena built-in: approx._at_instant() 

 

Each built-in function should contain two methods: getName and bodyCall. The first 

method must return a name of this built-in function. That name is used as a predicate 

name in Jena rules. The second method contains implementation of the built-in. This 

implementation is invoked when a Jena rule containing this predicate is fired. 

5.1.3. FuzzyJ 

The package FuzzyJ is a set of Java classes used for handling fuzzy concepts and 

reasoning. Originally it is an extension of FuzzyCLIPS and it has been developed in 

National Research Council of Canada. The main classes of FuzzyJ are: FuzzyVariable, 

FuzzySet, FuzzyValue.  

The FuzzyVariable class is used for creating a fuzzy universe of discourse, such as 

temperature or pressure. For defining a fuzzy variable its name (like temperature), units 

(like degrees C) and a universe of discourse (like a range of 0 to 100) are needed. Name 

and unit are just used for displaying, while a universe of discourse is defined as a set of 

lower and upper bounds for fuzzy sets defining a fuzzy variable. Following is an example 

of creating a fuzzy variable for temperature with universe of discourse from 0 to 100, and 

with a unit “C”:  

FuzzyVariable temp   

= new FuzzyVariable("temperature", 0, 100, "C");  

 

The FuzzySet is a mapping of a set of real numbers to membership values in the range [0, 

1]. It is represented by a set of pairs of ui/xi where xi is the real number and ui is a 

membership value associated with xi. An example is {0.0/0.3, 1.0/0.5, 0.0/0.7} which 

represents a triangular fuzzy set. The following is code for creating this fuzzy set: 
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FuzzySet fSet = new triangleFuzzySet( 0.3, 0.5, 0.7 ); 

 

 

 

Figure 32 - Triangular fuzzy set 

 

For creating a more complex fuzzy set we can use a FuzzySet constructor in the 

following way: 

double yValues[] = {0, 1, 0.65, 1, 0};  

double xValues[] = {0.1, 0.3, 0.4, 0.5, 0.8};  

FuzzySet fSet = new FuzzySet( xValues, yValues, 5 ); 

 

 

Figure 33 - ‘Complicated’ fuzzy set 

FuzzyJ provides a set of subclasses for creating a fairly complete set of common 

fuzzy sets of different shapes. A hierarchy of fuzzy sets is shown in Fig. 34. 
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Figure 34 - Hierarchy of FuzzyJ’s Fuzzy Sets 

 

For example, the TriangleFuzzySet is sub-class of the TrapezoidFuzzySet. It is 

basically a trapezoid shape with its left and right sides connected at the same point. Also 

the TrapezoidFuzzySet is sub-class of the LRFuzzySet that has three different parts: left, 

right, and middle part. The left and right parts can have any various shapes and the 

middle part has always value set to 1. If the LRFuzzySet has linear shape on both left and 

right sides then it becomes to a TrapezoidFuzzySet. 

FuzzyJ supports a range of operations on fuzzy sets. The most common are (for more 

FuzzyJ operations see [19]): 

Fuzzy complement gives complement of fuzzy set. Mathematically it is: 

(NOT), ucompl(x) = 1 - u(x), or ycompl = 1 - y. 

FuzzySet 

LFuzzySet 

LRFuzzySet 

PIFuzzySet 

GaussianFuzzySet 
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SingletonFuzzySet 

TriangleFuzzySet 

RectangleFuzzySet 

LeftGaussianFuzzySet 
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Fuzzy intersection gives the intersection of two fuzzy sets. An intersection operator is 

similar to the logical operator AND it means that the membership (y) value at any x is the 

minimum of the membership values of the two fuzzy sets, Fig. 35. 

 

Figure 35 - Intersection of two fuzzy sets 

 

 Fuzzy union gives “a sum” of two fuzzy sets. Union operator is similar to logical 

operator OR where the membership (y) value at any x is the maximum of two 

membership values of the two fuzzy sets, Fig 36.  

 

Figure 36 - Union of two fuzzy sets 

 

Maximum of intersection gives the maximum membership value of the intersection 

set formed by tow fuzzy set, Fig. 37. 



83 

 

 

Figure 37 - Maximum of intersection of two fuzzy sets 

 

 

5.2. Testing and Performance Validation of Developed Software 

We used a real-world data obtained from Alberta Agriculture Department for testing 

our framework built using the proposed approach. The data set contains two years of data 

representing information about animal movements and diseases. The objective of 

performed data interaction and processing has been to track an animal disease as it moves 

between different counties, and find the county that was the origin of that disease.  

5.2.1. Data Structures 

The considered RDF dataset contains triples describing animal movements between 

counties in Alberta, the province of Canada. The data set has two main parts. The first 

one is about movement of animals from counties to auction centers. That data includes 

movement dates, kinds and numbers of moved animals. The second part is similar to the 

first part but it contains movement from auction places to target counties. The RDF 

dataset also contains information about animal diseases occurring in each county. That 
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data includes: dates when veterinarians visited farms, names of counties where farms are 

located, observed syndromes, clinical diagnosis, and number of affected animals.  

 The RDF schema is a meta-data that defines a vocabulary of concepts and terms used 

in the RDF data. It is shown in Fig. 38. It includes definitions of: classes of data, 

properties (relations) existing between classes and their types, domains and ranges, ways, 

and how classes and properties are related to each other. 

RDF triples of each part of the dataset follow the pattern of defining N-ary relations, 

Section 4.1.2. It means that they have nodes representing relations. This allows for 

expressing some additional information describing these relations.  In Fig. 38, we can 

observe such “relation nodes” as: “VPS_”, “Manifest_” and “Permit_”. “VPS_” is a node 

used to describe more information about an animal disease: county’s name, date of 

occurrence, symptoms, disease name and affected animals. The “Manifest_” is used to 

better describe a movement of an animal from counties to auctions, while “Permit_” 

provides means to express information about animal movement from auction to counties 

dataset. 
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Figure 38 - RDFS for agriculture dataset 
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Figure 39 - Sample of RDF data 
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Fig. 39 shows a sample of RDF data representing a disease spreading from one 

county to another county. It is extracted from actual RDF data manually. As we can see 

there is reported “TUMOR/MASS” disease in “SUNDOR” county on “2012-02-02”. 

Also, an animal movement from “SUNDOR” country to “OYEN – SPECIAL AREA 3” 

country occurred on “2012-02-10” and “2012-02-11”, and an auction site “OLDS” was 

involved. Further, an animal disease was reported on “OYEN – SPECIAL AREA 3” 

county on “2012-02-15”. The same disease occurred in “SUNDOR” county – and this 

creates a possibility that this disease was spreading within the province due to the 

movement of animals. This and similar examples of important movement/disease 

information can be found by writing a simple query using LORI.  

Due to high level of complexity of this RDF dataset, an expert needs to create high 

level predicates for other users to use them during construction of their queries. These 

high level predicates make the users’ queries simpler, as well as provide the users with 

the ability of merging the results of queries performed using LORI. Below, there is a list 

of high level predicates related to the agriculture data: 

 COUNTY_HAS_DISEASE (.*1) ->  

  (?MainSubject rdfs:VPS_county ?interconnectNode), 

  (?interconnectNode rdfs:VPS_Disease ?*1) 

 COUNTY_RECEIVED_FROM (.*1) ->  

  (?MainSubject rdfs:Permit_receiver ?interconnectNode), 

  (?interconnectNode rdfs:Permit_sender ?*1) 

 COUNTY_SENDED_TO (.*1) ->  

  (?MainSubject rdfs:Manifest_sender ?interconnectNode), 

  (?interconnectNode rdfs:Manifest_receiver ?*1) 

 COUNTY_RECEIVED_FROM_COUNTY (.*1, .*2, .*3) ->  

  (?MainSubject rdfs:Permit_receiver ?interconnectNode), 

  (?interconnectNode rdfs:Permit_sender ?auction), 

  (?interconnectNode rdfs:hasDatetime ?permitDatetime), 
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  (?*1 rdfs:Manifest_sender ?interconnectNode1), 

  (?interconnectNode1 rdfs:Manifest_receiver ?auction),  

  approx_at_instant_before(?interconnectNode1,?*2,?*3,?permitDatetime,?tManifest), 

  greaterThan(?tManifest, 0.0) 

 

The predicate COUNTY_HAS_DISEASE(*1) returns all counties that reported a 

disease. The parameter “.*1”, which is optional, passes a disease name (instance) to the 

predicate for “filtering” the counties that reported a specific disease. The definition of 

that high level predicate includes two triples “connected” via a “relation node” (Section 

4.1.2). Here we define a variable “?interconnectNode” to represent that node. That node 

can have any name – it does not affect the result because it is just a variable name that is 

used by the Jena inference system. The predicate COUNTY_RECEIVED_FROM(*1) 

returns all counties that have receives animals from auction places. The parameter “.*1” 

can be passed for filtering the results for a specific auction place. The 

COUNTY_SENDED_TO(*1) predicate returns all counties which send animals to auction 

places.  And again, the parameter “.*1” can be passed to filter the result for a specific 

auction place. Please, notice that all parameters have to be of a specific RDF class as 

predicates use the parameters to filter the results.  For the case of the last two predicates 

parameters should be auction instances. The last predicate: 

COUNTY_RECEIVED_FROM_COUNTY(*1) is the most complex one. It returns all 

counties that received animals from other counties through any auction places.  The first 

parameter is a county instance that is used to filter sender counties. The second and the 

third parameters are related to temporal aspects of data and are used to define an 

approximate time of interest when a movement happened. The third parameter 

determines a moment in time, while the second indicates a number of time granules 

before that moment. The temporal predicate approx_at_instant_before() is used here, 

Section 4.3.5. It is used to filter the results and find the movements between counties that 

happened approximately in a specific period of time.  
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Queries prepared by the user are passed to the LORI Mapping Engine (Section 4.2.5) 

where all high level predicates are replaced by their definitions included in the Rule 

Mappings.  

An example of the high level query that uses a number of high level predicates is 

shown below: 

COUNTY_HAS_DISEASE(TRAUMA), approx_at_instant('2012-02-15',0) -> 

StoreResult(ResultTrauma) 

The result is a list of counties that reported TRAUMA approximately on February 2nd of 

2012. The list is saved under the name ResultTrauma, and can be used for merging or 

further processing.  Below, there is the result of running this query against the agriculture 

RDF dataset. The results include execution times that are treated as performance 

measures: 

++++++++++ Start loading rdf data ++++++++++ 

 

++++++++++++++++++++ End loading rdf data (6430 ms) ++++++ 

 

++++++++++ Start reasoning ++++++++++ 

 

++++++++++++++++++++ End reasoning (245 ms) ++++++++++++++ 

 

++++++++++ Start preparing infModel +++++++++++++++++ 

ResultTruma(1): KNEEHILL (TRAUMA ) ( 1.0 ) 

ResultTruma(2): NEWELL (TRAUMA ) ( 0.5 ) 

ResultTruma(3): BIRCH HILLS (TRAUMA ) ( 0.5 ) 

ResultTruma(4): PONOKA (TRAUMA ) ( 1.0 ) 

ResultTruma(5): TABER (TRAUMA ) ( 1.0 ) 

ResultTruma(6): LACOMBE (TRAUMA ) ( 1.0 ) 

ResultTruma(7): PONOKA (TRAUMA ) ( 1.0 ) 

ResultTruma(8): LEDUC (TRAUMA ) ( 1.0 ) 

ResultTruma(9): PONOKA (TRAUMA ) ( 0.5 ) 

+++++++++++++ End preparing infModel (247 ms) +++++++ 

As it can be observed, there are nine reported “TRAUMA” disease cases that 

occurred approximately on February 2nd, 2012 in different counties. The numbers inside 

the brackets show the degree of closeness of the reported disease date to February 2nd, 

2012. We can filter these results based on the degrees of closeness. This can be 
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accomplished using the following query that selects only cases with the closeness degree 

above 0.6: 

COUNTY_HAS_DISEASE(TRAUMA), approx_at_instant('2012-02-15',0.6) -> 

StoreResult(ResultTruma) 

The results are: 

++++++++++ Start preparing infModel ++++++++++++++++++ 

---> "ResultTruma"(1): KNEEHILL (TRAUMA ) ( 1.0 ) 

---> "ResultTruma"(2): PONOKA (TRAUMA ) ( 1.0 ) 

---> "ResultTruma"(3): TABER (TRAUMA ) ( 1.0 ) 

---> "ResultTruma"(4): LACOMBE (TRAUMA ) ( 1.0 ) 

---> "ResultTruma"(5): PONOKA (TRAUMA ) ( 1.0 ) 

---> "ResultTruma"(6): LEDUC (TRAUMA ) ( 1.0 ) 

++++++++++ End preparing infModel (296 ms) +++++++++++ 

The result shows reported animal disease cases that occurred “closer” (time-wise) to 

the requested date. Another query – below – is an example of an application of 

aggregation operation on the results. The query and its result are:  

COUNTY_HAS_DISEASE(TRAUMA), approx_at_instant('2012-02-15',0.6) -> 

StoreResult(ResultTruma, MOST) 

 

++++++++++ Start preparing infModel ++++++++++++++++++++ 

---> "ResultTruma"(1): PONOKA (TRAUMA ) ( 0.5 ) ( 3.0 ) 

---> "ResultTruma"(2): BIRCH HILLS (TRAUMA ) ( 0.5 ) ( 1.0 ) 

---> "ResultTruma"(3): LACOMBE (TRAUMA ) ( 1.0 ) ( 1.0 ) 

---> "ResultTruma"(4): TABER (TRAUMA ) ( 1.0 ) ( 1.0 ) 

---> "ResultTruma"(5): NEWELL (TRAUMA ) ( 0.5 ) ( 1.0 ) 

---> "ResultTruma"(6): LEDUC (TRAUMA ) ( 1.0 ) ( 1.0 ) 

---> "ResultTruma"(7): KNEEHILL (TRAUMA ) ( 1.0 ) ( 1.0 ) 

++++++++++++++ End preparing infModel (232 ms) +++++++++ 

The aggregation is done based on counties with “TRAUMA” disease cases. For 

example there are three cases of “TRAUMA” reported in “PONOKA” which are close to 

February 2nd of 2012.  

The list of queries shown below is an example of a “data query session” that has a 

single objective of finding an event of spreading a specific disease from one county to 

another due to animal movement: 
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rule1: COUNTY_HAS_DISEASE(TRAUMA), approx_at_instant('2012-02-04',0) -> 

StoreResult(Result1) 

rule2: COUNTY_SENDED_TO(LETHBRIDGE), approx_at_instant('2012-02-06',0) -> 

StoreResult(Result2) 

rule3: COUNTY_RECEIVED_FROM(LETHBRIDGE), approx_at_instant('2012-02-11',0.5) -> 

StoreResult(Result3) 

rule4: COUNTY_HAS_DISEASE(TRAUMA), approx_at_instant('2012-02-14',0) -> 

StoreResult(Result4) 

rule5: MergeResults(Result1,Result2) -> StoreResult(Result5) 

rule6: MergeResults(Result3,Result4) -> StoreResult(Result6) 

rule7: MergeResults(Result5,Result6) -> StoreResult(Result7) 

 

Let us analyze the queries. The first one finds counties that had reported “TRAUMA” 

approximately around February 4th of 2012. The second one finds counties that send 

animals to “LETHBRIDGE” auction place approximately around February 6th of 2012. The 

third rule finds counties that received animals from “LETHBRIDGE” auction place 

approximately around February 11th of 2012. The fourth rule finds counties that reported 

cases of “TRAUMA” disease approximately around February 14th of 2012. In order to 

determine the final result we merge the results obtained from individual queries. The first 

and second results are merged together to returns counties that reported “TRAUMA” and 

sent animals to “LETHBRIDGE” after that. The merge between the third and fourth results 

returns counties that received animals from “LETHBRIDGE” and had reported 

“TRAUMA” after that. After that, the last two results are merged together to return the 

final result, i.e., all counties that reported “TRAUMA” in a given time interval and 

received animals from other counties that reported cases of the same disease. So, this 

implies possibility of spreading “TRAUMA” among counties. These queries can be run 

without parameters to return all possible situations with different diseases and all auction 

places. The result of such a query is shown below: 

++++++++++ Start preparing infModel ++++++++++++++++++++ 

 

---> "Result5"(1): TABER (LETHBRIDGE / TRAUMA ) ( 0.5 ) 
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---> "Result6"(1): RED DEER (TRAUMA / LETHBRIDGE ) ( 1.0 ) 

---> "Result7"(1): TABER (LETHBRIDGE / RED DEER ) ( 0.5 ) 

---> "Result7"(2): TABER (TRAUMA / RED DEER ) ( 0.5 ) 

 

++++++++++ End preparing infModel (116030 ms) ++++++++++ 

The result implies that there is a possible spread of a disease from the “TABER” county 

to the “RED DEER” county through the “LETHBRIDGE” auction place approximately 

between February 6th  and February 15th  of 2012. 

5.2.2. Performance Evaluation  

To evaluate performance of LORI and show its advantages, we design and execute a 

number of experiments. The idea has been to compare the results of several queries on 

the same RDF dataset with and without the developed predicates. 

To the best of our knowledge, there is no system or tool capable of handling temporal 

RDF data with any aspects of fuzziness. Therefore, we use a standard SPARQL query 

language. The comparison is performed according to the following procedure: we build 

queries using LORI predicates and then try to build and run equivalent – if possible – 

queries in SPARQL. The results obtained in both cases are compared. Such evaluation 

allows us to claim that our approach is able to handle a wide range of queries related to 

temporal and imprecise information. In the experiments, we use a SPARQL tool called 

Twinkle. It is a simple Java GUI interface providing an access to a SPARQL query 

engine.  

We have defined 3 different cases. Each of them is related to a different scenario 

linked to a query built using LORI-based predicates. Then we tried to mimic the same 

query in SPARQL and run it using Twinkle. Finally, we compare the results obtained 

with and without LORI predicates. In some cases, it is easy to create queries in SPARQL 

that are equivalent to queries in LORI. But in other cases, it is not even possible to mimic 

LORI as SPARQL cannot handle temporal aspects in a fuzzy manner. 
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First Case: 

In the first case, we build queries without considering temporal or fuzzy aspects of 

data. The goal of this case is to show that LORI can also be used as a simple querying 

tool. Following shows the query that we ran in LORI: 

COUNTY_HAS_DISEASE() -> StoreResult(Result1) 

ShowResult(Result1) 

 

This query gives just a list of all counties that reported any animal disease. This is the 

simplest query we can make. The result obtained using the LORI query includes 1669 

counties: 

++++++++++ Start preparing infModel ++++++++++ 

---> "Result1"(1): WETASKIWIN (TRAUMA )( 1.0 ) 

---> "Result1"(2): LETHBRIDGE (TRAUMA )( 1.0 ) 

---> "Result1"(3): ROCKY VIEW (TRAUMA )( 1.0 ) 

---> "Result1"(4): LEDUC (TRAUMA )( 1.0 ) 

---> "Result1"(5): SADDLE HILLS (TRAUMA )( 1.0 ) 

    … 

    … 

    … 

---> "Result1"(1665): DRUMHELLER (PROLAPSED RECTUM)( 1.0 ) 

---> "Result1"(1666): LEDUC (CYSTIC OVARIAN DISEASE)( 1.0 ) 

---> "Result1"(1667): CLEARWATER (BRD COMPLEX)( 1.0 ) 

---> "Result1"(1668): NEWELL (HEMMORHAGE/TRAUMA)( 1.0 ) 

---> "Result1"(1669): CLEARWATER (BVD)( 1.0 ) 

 

++++++++++++++++++++ End preparing infModel (2381 ms) ++++++++++ 

 

++++++++++++++++++++ Result Count: 1669 ++++++++++ 

 

As the query does not contain any temporal clause, the fuzzy membership values are all 

“1.0” which can be considered as an example of the crisp result. 

The equivalent SPARQL query, shown below, is run using Twinkle. The results are 

compared with the one obtained with the LORI query. 

PREFIX base: <http://www.fuzzytemporal.cs/vps#> 

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> 
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SELECT * WHERE 

{ 

  ?MainSubject rdfs:VPS_county ?interconnectNode . 

  ?interconnectNode rdfs:VPS_Disease ?object 

} 

 

Also for the SPARQL query the results include 1669 triples, which are identical to the 

triples obtained using the LORI query. Some of the triples are:  

MainSubject Object 
http://www.fuzzytemporal.cs/vps#WETASKIWIN http://www.fuzzytemporal.cs/vps#TRAUMA 

http://www.fuzzytemporal.cs/vps#LETHBRIDGE http://www.fuzzytemporal.cs/vps# TRAUMA 

http://www.fuzzytemporal.cs/vps#ROCKY VIEW http://www.fuzzytemporal.cs/vps# TRAUMA 

http://www.fuzzytemporal.cs/vps#LEDUC http://www.fuzzytemporal.cs/vps# TRAUMA 

http://www.fuzzytemporal.cs/vps#SADDLE HILLS http://www.fuzzytemporal.cs/vps# TRAUMA 

. 

. 

. 

. 

. 

. 

http://www.fuzzytemporal.cs/vps#DRUMHELLER http://www.fuzzytemporal.cs/vps#PROLAPSED 

RECTUM 

http://www.fuzzytemporal.cs/vps#LEDUC http://www.fuzzytemporal.cs/vps#CYSTIC OVARIAN 

DISEASE 

http://www.fuzzytemporal.cs/vps#CLEARWATER http://www.fuzzytemporal.cs/vps#BRD COMPLEX 

http://www.fuzzytemporal.cs/vps#NEWELL http://www.fuzzytemporal.cs/vps#HEMMORHAGE/TRAU

MA 

http://www.fuzzytemporal.cs/vps#CLEARWATER http://www.fuzzytemporal.cs/vps#BVD 

 

 

Second Case: 

In this case we have added, compared to the query from the previous case, a temporal 

clause. Furthermore, we have filtered the results for a specific animal disease. The goal of 

this example is to show that LORI can deal with temporal data in a fuzzy manner. The 

following shows the query we have run in LORI: 

COUNTY_HAS_DISEASE(TRAUMA), approx_at_instant('2012-02-15',0) -> 

StoreResult(Resul2) 

 

 

The obtained results contain all counties that reported “TRAUMA” disease cases 

approximately on February 15nd, 2012. Also, the results give us an indication about 
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closeness of occurring these disease cases to the desired date included in the query. The 

LORI’s results are shown below. They include 10 triples: 

++++++++++ Start preparing infModel ++++++++++ 

---> "Result2"(1): PONOKA (TRAUMA)( 0.5 ) 

---> "Result2"(2): TABER (TRAUMA)( 1.0 ) 

---> "Result2"(3): PONOKA (TRAUMA)( 1.0 ) 

---> "Result2"(4): LEDUC (TRAUMA)( 1.0 ) 

---> "Result2"(5): LACOMBE (TRAUMA)( 1.0 ) 

---> "Result2"(6): NEWELL (TRAUMA)( 0.5 ) 

---> "Result2"(7): BIRCH HILLS (TRAUMA)( 0.5 ) 

---> "Result2"(8): RED DEER (TRAUMA)( 1.0 ) 

---> "Result2"(9): PONOKA (TRAUMA)( 1.0 ) 

---> "Result2"(10): KNEEHILL (TRAUMA)( 1.0 ) 

 

++++++++++++++++++++ End preparing infModel (257 ms) ++++++++++ 

 

++++++++++++++++++++ Result Count: 10 ++++++++++ 

 

As we can see, some of the triples are closer to the desired date – their fuzzy 

membership values are “1.0”, while some of them have the value “0.5” which means they 

are a bit further from the date of interest. In this case, we use a trapezoidal membership 

function with parameters: a = -4, b = -2, c = +2 and d = +4 which are: “a” is lower bound, 

“b” is min flat part, “c” is max flat part and “d” is upper bound, Fig. 40. Please notice that 

for this example we use a time granularity of “day”. For example, when we query for 

approximately February 15nd, 2012 values for membership function parameters are: a= 

February 11nd, b= February 13nd, c= February 17nd, and d= February 19nd, 2012. 
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Figure 40 - Trapezoidal membership function with shaded fuzzy part 

In this case of a SPARQL query, we have tried to mimic the LORI query but 

SPARQL does not have abilities to handle fuzzy temporal queries. In order to accomplish 

that, we have filtered the results for the cases between February 11nd and February 19nd, 

2012 as LORI considers this period of time when it has looked at the data via a 

trapezoidal membership function. The SPARQL query is: 

SELECT * WHERE 

{ 

 ?MainSubject rdfs:VPS_county ?interconnectNode . 

 ?interconnectNode rdfs:VPS_Disease <http://www.fuzzytemporal.cs/vps#TRAUMA> . 

 ?interconnectNode rdfs:hasDatetime ?datetime . 

FILTER (?datetime > '2012-02-11') . 

FILTER (?datetime < '2012-02-19') 

 } 

 

As the result we have obtained 10 RDF triples that is the exact number of triples as 

for the query from the first case without a temporal component.  

MainSubject Datetime 

http://www.fuzzytemporal.cs/vps# LEDUC 2012-02-13 

http://www.fuzzytemporal.cs/vps# LACOMBE 2012-02-17 

http://www.fuzzytemporal.cs/vps# RED DEER 2012-02-14 

http://www.fuzzytemporal.cs/vps# NEWELL 2012-02-18 

http://www.fuzzytemporal.cs/vps# TABER 2012-02-15 

http://www.fuzzytemporal.cs/vps# PONOKA 2012-02-17 

http://www.fuzzytemporal.cs/vps# KNEEHILL 2012-02-17 

http://www.fuzzytemporal.cs/vps# BIRCH HILLS 2012-02-12 

http://www.fuzzytemporal.cs/vps# PONOKA 2012-02-13 

http://www.fuzzytemporal.cs/vps# PONOKA 2012-02-18 
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 The results of LORI and Twinkle are exactly the same in terms of numbers of 

triples. The difference is that the SPARQL query is not able to handle temporal fuzzy 

concepts and all results are treated in the same way – all equally important. LORI, on the 

other hand, provides values representing degrees of closeness of triples to the desire 

dates. The results that “fit” the shaded part of Fig. 40 satisfy the query requirement to a 

degree. For example, for the disease reported in the “NEWELL” county that occurred on 

February 18nd, 2012 LORI determines its importance as lower than for the disease 

reported in the “LEDUC” county.  If we change search criteria in the SPARQL query to 

accommodate a narrower time window, the obtained results will include a lower number 

of responses. This could involve a loss of important results. Below, we show a new 

SPARQL query with new boundaries, together with the results: 

SELECT * WHERE 

{ 

 ?MainSubject rdfs:VPS_county ?interconnectNode . 

 ?interconnectNode rdfs:VPS_Disease <http://www.fuzzytemporal.cs/vps#TRAUMA> . 

 ?interconnectNode rdfs:hasDatetime ?datetime . 

FILTER (?datetime > '2012-02-13') . 

FILTER (?datetime < '2012-02-17') 

 } 

 

MainSubject Datetime 

http://www.fuzzytemporal.cs/vps# RED DEER 2012-02-14 

http://www.fuzzytemporal.cs/vps# TABER 2012-02-15 

 

 

Third Case: 

In this case, we build a complex query in LORI that involves multiple rules related to 

temporal aspects of data. The query looks as follow: 

Rule1: COUNTY_HAS_DISEASE(TRAUMA), approx_at_instant('2012-02-04',0) -> 

StoreResult(testResult1) 

 

Rule2: COUNTY_SENDED_TO(LETHBRIDGE), approx_at_instant('2012-02-06',0) -> 

StoreResult(testResult2) 
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Rule3: COUNTY_RECEIVED_FROM(LETHBRIDGE), approx_at_instant('2012-02-11',0) -> 

StoreResult(testResult3) 

 

Rule4: COUNTY_HAS_DISEASE(TRAUMA), approx_at_instant('2012-02-14',0) -> 

StoreResult(testResult4) 

 

Rule5: MergeResults(testResult1,testResult2) -> StoreResult(testResult5) 

 

Rule6:  MergeResults(testResult3,testResult4) -> StoreResult(testResult6) 

 

Rule7:  MergeOutterResults(testResult5,testResult6) -> StoreResult(testResult7) 

 

Rule8: ShowResultDistinct(testResult7) 

 

The obtained results are:  

 

++++++++++ Start preparing infModel ++++++++++++++++++++ 

 

---> "Result7"(1): TABER (LETHBRIDGE / RED DEER ) ( 0.5 ) 

---> "Result7"(2): TABER (TRAUMA / RED DEER ) ( 0.5 ) 

 

++++++++++ End preparing infModel (107579 ms) ++++++++++ 

++++++++++++++++++++ Result Count: 2 ++++++++++ 

 

 

They show the spread of disease from the county “TABER” to the county “RED DEER”. 

In this case, we have two choices for writing a SPARQL query to mimic the above LORI 

query.  

The first option is to create two sets of queries, execute each of them separately and 

merge the results manually. The first set of SPARQL queries would provide results 

similar to the results obtained from rules 1 and 2 of the LORI query (above), and the 

second set includes SPARQL queries related to LORI’s rules 3 and 4. The second option 

is to run both sets of queries at the same time. The first option is faster but merging of 

results is difficult. The second option gives us the final results but it is slow. Also, we 

need to further alter the SPARQL query via adding a keyword “Distinct”. This would 

remove any redundant results; otherwise the result has lot of unneeded RDF triples. The 

large SPARQL query representing the second option above is: 
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SELECT DISTINCT ? MainSubject  ? MainSubject2 WHERE 

{ 

 ?MainSubject rdfs:VPS_county ?interconnectNode . 

 ?interconnectNode rdfs:VPS_Disease <http://www.fuzzytemporal.cs/vps#TRAUMA> . 

 ?interconnectNode rdfs:hasDatetime ?datetime . 

 FILTER (?datetime > '2012-01-31') . 

 FILTER (?datetime < '2012-02-08') . 

 

 ?MainSubject rdfs:Manifest_sender ?interconnectNode2 . 

 ?interconnectNode2 rdfs:Manifest_receiver <http://www.fuzzytemporal.cs/vps#LETHBRIDGE> 

. 

 ?interconnectNode2 rdfs:hasDatetime ?datetime2 . 

 FILTER (?datetime2 > '2012-02-02') . 

 FILTER (?datetime2 < '2012-02-10') . 

  

 ?MainSubject2 rdfs:Permit_receiver ?interconnectNode3 . 

 ?interconnectNode3 rdfs:Permit_sender <http://www.fuzzytemporal.cs/vps#LETHBRIDGE> . 

 ?interconnectNode3 rdfs:hasDatetime ?datetime3 . 

 FILTER (?datetime3 > '2012-02-07') . 

 FILTER (?datetime3 < '2012-02-15')  

 

 ?MainSubject2 rdfs:VPS_county ?interconnectNode4 . 

 ?interconnectNode4 rdfs:VPS_Disease <http://www.fuzzytemporal.cs/vps#TRAUMA> . 

 ?interconnectNode4 rdfs:hasDatetime ?datetime4 . 

 FILTER (?datetime4 > '2012-02-10') . 

 FILTER (?datetime4 < '2012-02-18') 

 } 

 

The result of the above SPARQL query is depicted below, and it is exactly the same as 

LORI result. 

MainSubject MainSubject2 

http://www.fuzzytemporal.cs/vps# TABER http://www.fuzzytemporal.cs/vps# RED DEER 

 

Again the difference is that the SPARQL query is not able to handle temporal fuzzy 

data. The LORI result indicates that the degrees of closeness for all reported animal 

disease cases and movements are “0.5” or more. So, if we just change the date boundaries 

in SPARQL query, see the query below, an empty dataset is returned. It is because 

SPARQL query looks at data in “a crisp manner”. 

SELECT DISTINCT ? MainSubject  ? MainSubject2 WHERE 

{ 

 ?MainSubject rdfs:VPS_county ?interconnectNode . 

 ?interconnectNode rdfs:VPS_Disease <http://www.fuzzytemporal.cs/vps#TRAUMA> . 
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 ?interconnectNode rdfs:hasDatetime ?datetime . 

 FILTER (?datetime > '2012-02-02') . 

 FILTER (?datetime < '2012-02-06') . 

 

 ?MainSubject rdfs:Manifest_sender ?interconnectNode2 . 

 ?interconnectNode2 rdfs:Manifest_receiver <http://www.fuzzytemporal.cs/vps#LETHBRIDGE> 

. 

 ?interconnectNode2 rdfs:hasDatetime ?datetime2 . 

 FILTER (?datetime2 > '2012-02-04') . 

 FILTER (?datetime2 < '2012-02-8') . 

  

 ?MainSubject2 rdfs:Permit_receiver ?interconnectNode3 . 

 ?interconnectNode3 rdfs:Permit_sender <http://www.fuzzytemporal.cs/vps#LETHBRIDGE> . 

 ?interconnectNode3 rdfs:hasDatetime ?datetime3 . 

 FILTER (?datetime3 > '2012-02-09') . 

 FILTER (?datetime3 < '2012-02-13')  

 

 ?MainSubject2 rdfs:VPS_county ?interconnectNode4 . 

 ?interconnectNode4 rdfs:VPS_Disease <http://www.fuzzytemporal.cs/vps#TRAUMA> . 

 ?interconnectNode4 rdfs:hasDatetime ?datetime4 . 

 FILTER (?datetime4 > '2012-02-12') . 

 FILTER (?datetime4 < '2012-02-16') 

 } 

 

 

5.3. LORI Performance 

One of important aspects of LORI’s implementation has been its performance. This 

is especially important in the context of large volume data sets. Many development 

concerns – also related to a selection of RDF format for N-ary relations (Section 4.1.1) – 

has been driven by a need to ensure a good inference performance of LORI. The idea of 

“relation nodes” ensures that RDF binary relations are the only way of representing any 

type of information using RDF data. Another source of possible performance degradation 

is utilization of fuzzy temporal predicates. For each high-level rule/query that contains 

one of fuzzy temporal predicates, Jena inference system calls a function associated with 

the predicate that executes this predicate and evaluates its result. That affects the 

performance of running rules/queries on RDF data. However, there is no choice but to 

accept this overhead in order to gain the ability to build RDF queries with fuzzy terms, 

and to work with temporal data in a complex RDF structure.   
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We have conducted a performance experiment on the agriculture RDF data in order 

to identifying that overhead. In this experiment we have run regular LORI queries ten 

times, and have logged all elapsed times required to obtain the results. In the next step, 

we have removed all LORI predicates and replaced them with regular RDF triples, have 

run such queries also ten times and saved all elapsed times. Obviously some LORI 

predicates like fuzzy temporal predicates cannot be replaced with anything from RDF 

reasoner rules; so we have missed some functionality in these situations.  

The first experiments have been conducted with the query about the animal disease 

“TRAUMA” reported approximately on February 15nd, 2012. Following is the query with 

LORI predicates: 

(?MainSubject rdfs:VPS_county ?interconnectNode), 

(?interconnectNode rdfs:VPS_Disease http://www.fuzzytemporal.cs/vps#TRAUMA),  

approx_at_instant(?interconnectNode, '2012-02-15', ?tMain), greaterThan(?tMain, 0.0)  

-> 

StoreResult('result1',?MainSubject,null,?tMain,?http://www.fuzzytemporal.cs/vps#TRAUM

A) 

 

A similar query without LORI predicates is: 

?MainSubject rdfs:VPS_county ?interconnectNode), 

(?interconnectNode rdfs:VPS_Disease http://www.fuzzytemporal.cs/vps#TRAUMA),  

-> (?MainSubject rdfs:hasNode http://www.fuzzytemporal.cs/vps#TRAUMA) 

 

Here, we have removed temporal predicates, and also have made changes regarding 

a way the results are stored: instead of storing them under a name, we have just created a 

new relation between the main subject, which is a county, and a specific disease. The 

result of running these queries on the agriculture RDF dataset is shown in Table 5: 

  

http://www.fuzzytemporal.cs/vps#TRAUMA
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Table 5 - Result of performance in case one 

Iteration Query With LORI 

Predicates (ms) 

Query Without LORI 

Predicates (ms) 

1 211 129 

2 214 131 

3 219 136 

4 216 144 

5 216 128 

6 214 139 

7 203 172 

8 218 167 

9 203 153 

10 203 163 

Average (ms) 211 146 

STDEV (ms) 6.4 16.4 

 

Based on these results, we conclude that the overhead introduced by LORI 

predicates is about 64 milliseconds or 44 per cent. Because the query is simple and LORI 

temporal predicates are given explicit times, so it looks that the overhead is a bit 

extensive.  Therefore, more experiments have been designed and conducted. 

The second set of experiments has included the query about animal movements 

from counties to counties through the auction place “LETHBRIDGE”, when a movement 

to the auction place happened approximately on February 2nd, 2012, while a movement 

from the auction place happened approximately 4 days after moving to the auction place. 

The query with LORI predicates is: 

(?MainSubject rdfs:Permit_receiver ?interconnectNode),  

(?interconnectNode rdfs:Permit_sender http://www.fuzzytemporal.cs/vps#LETHBRIDGE),  

(?interconnectNode rdfs:hasDatetime ?permitDatetime),  

(http://www.fuzzytemporal.cs/vps#DUCHESS rdfs:Manifest_sender ?interconnectNode1),  
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(?interconnectNode1 rdfs:Manifest_receiver http://www.fuzzytemporal.cs/vps#LETHBRIDGE),  

approx_at_instant_before(?interconnectNode1,4,DAYS,?permitDatetime,?tManifest),  

greaterThan(?tManifest, 0.0),  

approx_at_instant(?interconnectNode, '2012-02-12',?tMain), 

greaterThan(?tMain, 0.0)  

-> StoreResult('Result1',?MainSubject,null,?tMain,http://www.fuzzytemporal.cs/vps#DUCHESS) 

 

And the query without LORI predicates is as follows: 

(?MainSubject rdfs:Permit_receiver ?interconnectNode), 

(?interconnectNode rdfs:Permit_sender http://www.fuzzytemporal.cs/vps#LETHBRIDGE),  

(?interconnectNode rdfs:hasDatetime ?permitDatetime),  

(http://www.fuzzytemporal.cs/vps#DUCHESS rdfs:Manifest_sender ?interconnectNode1),  

(?interconnectNode1 rdfs:Manifest_receiver http://www.fuzzytemporal.cs/vps#LETHBRIDGE)  

-> (?MainSubject rdfs:hasNode http://www.fuzzytemporal.cs/vps#TRAUMA) 

 

 Here, we have removed all LORI predicates and instead of storing the result 

under a specific name we have just created a new relation between the main subject that 

is a county and a specific disease. The result of running these queries on the agriculture 

dataset is shown in Table 6. 

  

http://www.fuzzytemporal.cs/vps#LETHBRIDGE
http://www.fuzzytemporal.cs/vps#LETHBRIDGE
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Table 6 - Result of performance in case two 

Iteration Query With LORI 

Predicates (ms) 

Query Without LORI 

Predicates (ms) 

1 643,139 646,968 

2 661,186 642,655 

3 619,545 623,589 

4 635,628 639,042 

5 611,328 615,988 

6 619,949 618,844 

7 644,192 624,026 

8 642,846 638,345 

9 637,463 620,858 

10 639,082 634,255 

Average (ms) 635,436 630,457 

STDEV (ms) 14,700.6 11,038.5 

 

In this case, the overhead of using LORI predicates is about 4,979 milliseconds or 

0.78 percent.  The fact that it is less than 1 percent makes it very reasonable to ignore it. 

This means that utilization of LORI predicates in complex queries does not influence the 

performance of LORI. 
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6. Conclusions and Future Work 

 

 

The introduction of the Semantic Web has brought a data representation format – 

Resource Description Framework (RDF) – suitable for expressing relations between 

individual pieces of information. RDF is a fundamental format of data representation 

used in Lined Open Data. It is also applied for representing “enhanced” taxonomy – 

ontology. RDF is an encouraging step towards creating a foundation for methods and 

approaches providing a different, more intelligent and human-oriented way of processing, 

analyzing and utilization of data and information.  

There is a growing demand for representing more sophisticated data involving 

multiple features, relations, and temporal aspects. Quite often, such data contain time 

related information expressed in an approximate manner. This is particularly evident in 

the case of data provided by humans – these data contain vague terms describing variety 

of facts. 

6.1. Contributions 

This thesis presents a fuzzy-based methodology suitable for building a system that 

provides the user with the ability to exploit temporal data. This exploitation happens 

without an extensive knowledge of details related to the structure of queried data, and can 

be performed using imprecise expressions built with quantitative and time-based terms. 

The concepts required for developing a system for interacting with RDF temporal data 

are presented.  

The two chapters of the thesis – Chapter 3: Fuzzy Temporal Data in Ontology 

Environment and Chapter 4: LORI Linguistically-Oriented RDF Interface – describe the 

main contributions of the thesis. They address the above-mentioned issues with OWL and 

RDF as the data representation formats. Overall, a detailed list of contributions includes:  
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- designing and implementation of ontologies capable of representing temporal as 

well as fuzzy information;  

- developing temporal predicates as built-in functions of Jena’s that can be utilized as 

atoms during a process of constructing ontology-based IF-THEN rules in SWRL 

(Semantic Web Rule Language);  

- designing an architecture of LORI based on an idea of two interfaces: 1) low-level 

one called ReasonerInterface which provides necessary rules and predicates to deal 

with temporal and complex data, built on Jena’s RDF/RDFS reasoner; and 2) 

UserInterface composed of high-level predicates and built by data expert based on 

ReasonerInterface; 

- developing temporal predicates as built-in functions of Jena’s RDF/RDFS reasoner; 

these predicates utilize fuzzy terms to express imprecise declarations of time; 

- proposing and developing a data structure for storing query results, with the ability 

to create sequences of queries, as well as to store, process and merge individual 

results; 

- identifying a flexible approach for mapping high-level queries to low-level ones; the 

proposed idea is based on a special mapping file that allows for dynamic changes 

and modifications of mapping rules. 

The mentioned contributions are the initial steps towards building a comprehensive 

methodology suitable for storing and utilizing RDF data with temporal information and N-

ary relations.  

Although the research has reached its aims, there are still some limitations of the 

proposed approach.  

- In LORI, we proposed an RDF blank node for adding more information about a 

property linking two concepts. This RDF blank node is required for hiding all 

complex RDF data structures and predicates. When the processed data does not 

use blank nodes, users have to have some basic knowledge about used RDF 

schema and temporal properties. At the same time, the users have to know names 
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of temporal properties to use them for constructing queries with temporal 

predicates.  

- LORI has the capability of using different fuzzy membership functions for fuzzy 

temporal predicates. Currently, these membership functions are configurable at the 

level of LORI source code. An interface for defining and setting parameters’ 

values of different fuzzy membership functions is needed. Expert users could use 

it for customization purposes. 

- The performance of LORI when complex fuzzy membership functions are used 

degrades substantially when compared with the performance when simple 

functions are used. For example, Gaussian fuzzy membership functions have high 

complexity, and their application requires improvements of the LORI’s 

implementation.  

 

6.2. Future Work 

The presented methodology for handling fuzzy temporal data represented using 

OWL (ontology) and RDF data representation formats can be treated a starting point for 

more advanced and focused research tasks. Some of possible new research activities 

include: 

- designing and developing a friendly interface for experts to build high-level 

predicates, and to prepare files with mapping rules; 

- extending selection of fuzzy predicates suitable for dealing with multiple types of 

information attached to different data nodes;  

- developing and implementing fuzzy rule-based reasoning engines based on 

Mamdani and Takag-Sugeno models;   

- designing and developing predicates that work directly on RDF data and take 

advantage of its graph-based format; for example, predicates with functions for 

estimating similarity between entities, or predicates with graph analysis functions 
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for finding connections between entities mapped into a problem of a finding a 

short path in graphs; 

- adding an interface for graphical-based visualization and analysis of RDF data 

before and after execution of predicates. 
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