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Abstract Testing is an integral part of the software development lifecycle, ap-
proached with varying degrees of rigor by different process models. Agile process
models recommend Test Driven Development (TDD) as a key practice for reducing
costs and improving code quality. The objective of this work is to perform a cost-
benefit analysis of this practice. To that end, we have conducted a comparative
analysis of GitHub repositories that adopts TDD to a lesser or greater extent, in
order to determine how TDD affects software development productivity and soft-
ware quality. We classified GitHub repositories archived in 2015 in terms of how
rigorously they practiced TDD, thus creating a TDD spectrum. We then matched
and compared various subsets of these repositories on this TDD spectrum with
control sets of equal size. The control sets were samples from all github repositories
that matched certain characteristics, and that contained at least one test file. We
compared how the TDD sets differed from the control sets on the following charac-
teristics: number of test files, average commit velocity, number of bug-referencing
commits, number of issues recorded, usage of continuous integration, number of
pull requests, and distribution of commits per author. We found that Java TDD
projects were relatively rare. In addition, there were very few significant differ-
ences in any of the metrics we used to compare TDD-like and non-TDD projects;
therefore, our results do not reveal any observable benefits from using TDD.
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1 Introduction

Test Driven Development (TDD) is a practice advocated by agile software de-
velopment methodologies, in which tests are written in advance of source-code
development. These tests, intended to initially fail in the absence of any substan-
tial implementation, effectively constitute a specification of the functionality and
behavior of the software code, which can be tested as it is being developed (Beck,
2003). The provision of immediate, specific, and local feedback is believed to have
a positive effect on code quality and on the rate at which code can be developed.

The TDD development practice requires that every test of functionality be
written before the source code that implements that functionality (as an iterative
process), but this degree of rigor may not be applied consistently, even by test-
conscious developers (Beller et al, 2015a). Since different projects incorporate TDD
to different degrees, its effects are also likely to vary. This paper presents a study
that (1) explores the way TDD is actually practiced and (2) distinguishes how
TDD-like (our variants of TDD; see Section 2.3.1) projects typically differ from
non-TDD projects. More specifically, we study the prevalence and influence of
TDD and TDD-like methodologies on software development processes in Java
repositories hosted on GitHub in 2015. Further, we explore if there are detectable
differences, in terms of five research questions (seen below), between repositories
that practice TDD and those that do not. We later describe the approach and
motivation for each question in Section 3.1.

RQ1: Does the adoption of TDD improve commit velocity?

RQ2: Does the adoption of TDD reduce the number of bug-fixing commits?

RQ3: Does the adoption of TDD affect the number of issues reported for the
project?

RQ4: Is continuous integration more prevalent in TDD development?

RQ5: Does the adoption of TDD affect developer collaboration?

To understand the degree to which GitHub projects adopt TDD, we used
the capabilities of Boa (Dyer et al, 2013) – a domain-specific language (DSL)
and infrastructure that allows researcher to answer mining software repositories
(MSR) questions at scale and efficiently. Boa contains an archived subset of GitHub
(September 2015), allowing Boa to query massive amounts of data from real world
software projects. In our work, we use Boa to investigate every Java reposito-
ries that existed on GitHub in 2015 (256,572 repositories in total), an otherwise
daunting task. Within the Boa DSL, domain-specific types1 contain the informa-
tion of the various structures that are found in repositories, such as the repository

1 Domain-specific types http://boa.cs.iastate.edu/docs/dsl-types.php
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itself, its revisions and its files. Researchers can then iterate through these domain-
specific types and aggregate or collect results from them. For example, in this work
we iterate through each projects files ASTRoot (a container for the files abstract
syntax tree) in order to inspect the contents of files and determine if they include
import statements for testing frameworks. These domain-specific types also allow
us to inspect which Java classes have been defined in different files, as well as which
Java classes have been instantiated in those files. Ultimately this means that we
can use Boa to look at the abstract syntax trees (ASTs) of source and test code
to determine if they follow a testing process.

In principle, TDD requires developers to follow a comprehensive set of prac-
tices. In practice, however, software projects do not always follow the prescribed
practices to the letter. This is why our work considers two relaxations of TDD.
First, we allow test files to be committed within some time ∆ (1 hour, 1 day, or 1
week) after committing the source files, relaxing the requirement that test files be
written before the code that they test. Second, we allow for some source-code files
(10%, 20%, 30% ...) to not have corresponding tests. This resulted in 40 different
TDD-like variants, each with a different combination of time and code coverage
relaxations.

To generate a baseline for each of the 40 different TDD-like variants against
which to compare TDD practices, we assembled repositories sets that were rep-
resentative of software repositories that incorporate testing. The key requirement
for this task was to develop a method for assembling these “control repository
sets” so that they were comparable to the TDD-like repositories. To create a con-
trol set for a given TDD-like repository set, we first used K-means clustering to
group the TDD-like repositories by three different size criteria (thus represent-
ing each repository as a 3-dimensional vector). Of the K clusters produced, we
discarded the K − 1 clusters composed of the smallest repositories in terms of
commits, authors and LLOC. For the remaining TDD cluster (the TDD-like set to
be analyzed), we created the corresponding control set by pairing each TDD-like
repository in the cluster with another equally-sized repository. This other repos-
itory was sampled from the larger set of repositories that contained at least one
test file but did not contain any of the repositories from the TDD-like repository
set for which we were creating a control set. Clustering was important in our study
as it allowed us to control for the fact that many GitHub repositories have very
few commits (Kalliamvakou et al, 2014).

Finally, as we are exploring many different questions, we will be performing
a large number of statistical tests. We will therefore use the Holm-Bonferroni
method (Holm, 1979) to reduce the chance of false positives, with an initial critical
value for tests will be α = 0.05.

Section 2 reviews related work. Sections 3, 4 and 5 explain our methodology
for this study, report on our findings, and reflect on the threats to the study’s
validity. Finally, Section 6 concludes with a summary of our work and the lessons
we learned from it.

2 Related Work and Background

In 1999, the practice of TDD in was introduced by Beck et al. in “Extreme Pro-
gramming Explained” (Beck and Andres, 2004). Beck later described test driven
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development in more detail in “Test-driven development: by example” Beck (2003).
Since then, many researchers have worked to elucidate how TDD affects software
development (Jeffries and Melnik, 2007). This section summarizes the most re-
cent works that are relevant to our research questions. Section 2.3 summarizes
works that focus on detecting and quantifying TDD effects, or are related to how
we identify TDD; Section 2.4, on works that look at continuous integration and
provide context for our clustering approach; and Section 2.5, on background on
correcting for multiple comparisons.

2.1 Mining Git and Github

Git (Bird et al, 2009; Kalliamvakou et al, 2014) is a distributed version control sys-
tem that enables asynchronous collaboration. It superseded other centralized ver-
sion control systems such as CVS or Subversion in popularity but created distinct
challenges and problems in its move to a distributed structure. Bird et al (2009)
describe the dangers of mining Git repositories in the context of mining software
repositories research. They note that repositories can be rewritten, commits can be
intentionally removed or collapsed into super commits via re-basing. Furthermore,
repositories typically contain only successful commits, whereas failed branches can
be removed or simply not shared. Much development can occur in remote loca-
tions with only a small amount of the effort finally pushed and merged to the main
branch of a project. A git commit history should be considered potentially lossy
and it could be pruned or parts of it re-based together. Merges can also be silently
committed.

Kalliamvakou et al. (Kalliamvakou et al, 2014) in their work the “Promises
and Perils of mining GitHub” describe many challenges that empirical software
engineering researchers will face with mining software projects, their artifacts and
history, from GitHub. Specific perils they highlighted when studying Github repos-
itories included duplicate projects with little or no changes, student assignments,
partial projects, mirrors of other projects. Other perils include the granularity of
projects versus repositories. Project perils were that many projects were personal
projects, had few commits, or were inactive. Construct validity threatening per-
ils were that successful pull requests are not consistently identified and that the
repositories on Github do not capture all of the software development activities,
including the writing of code due to rebasing.

2.2 Testing in practice

In 2007, Hindle et al. described a taxonomy for classifying revisions based on the
types of files being changed in a revision (Hindle et al, 2007). The classes of this
taxonomy include source revisions, test revisions, build revisions, and documenta-
tion revisions (STBD). While Hindle et al. did not directly address TDD in their
work, we consider this taxonomy to be relevant to our study on TDD because it
identifies source code revisions and test revisions that, we feel, are the revision
classes most relevant to TDD, and are the two classes of revisions that our work
primarily studies.
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Another work that does not directly address TDD, but has implications on
our study, was done in 2014 by Athanasiou et al.. These authors found that there
is a positive correlation between factors such as test code quality, throughput,
and productivity (Athanasiou et al, 2014). This is relevant to our work because
it shows that an emphasis placed on testing can result in software development
benefits. This work motivates the belief that a TDD approach, where testing is
emphasized, should lead to benefits in software development.

2.3 TDD practice

Zaidman et al (2008) studied two different open-source repositories to determine if
approaches such as TDD are detectable. They developed a method of associating
source code with test code by relying on a naming convention where the word
“Test” is added as a postfix to a test file corresponding to a similarly named
source file. They also referenced the use of JUnit imports as a method of test file
identification. Our study similarly considered the use of import statements, as well
as this naming convention for associating test files to source files when detecting
TDD. We differ by performing case-insensitive matching of the word “test” to a
file name, instead of just considering “Test” as a postfix.

Beller et al (2015a) studied the prevalence of TDD practices among several
developers by having them install a tool that monitored their practices in their
integrated development environment (IDE). They found that TDD is rarely prac-
ticed by software developers. In their subsequent work, Beller et al (2015b) found
that, in a group of 40 students, 50% spent very little time testing their code. This
suggests that an analysis of GitHub repositories may yield only small numbers of
test files in repositories.

Fucci et al (2016b) sought to identify whether TDD affected the number of
tests written, the external quality of code (meeting functional requirements) or
the productivity of developers when producing software. They explicitly measured
developers who were asked to follow TDD. Building upon and replicating their
previous work in multiple geographic locations, they observed that there was no
statistical difference between TDD and a test-last development approach (TLD).
Fucci et al (2016a) decomposed TDD into four different dimensions: granular-
ity, uniformity, refactoring, and sequencing (where sequencing corresponds to the
familiar test-first aspect of TDD). Their work showed that granularity and unifor-
mity had the most influence on external quality and developer productivity, and
that the order in which tests and source code were developed had a negligible in-
fluence. Similar to Fucci et al (2016a), we also consider sequencing as an indicator
of TDD. However, our work diverges from theirs by studying sequencing when
combined with class coverage and by considering a spectrum of adherence to these
properties. Class coverage in this work refers to how often classes are reachable
from test code.

The results of Fucci et al (2016b) suggest that if you look at TDD primarily as
a test first methodology (as we do), differences will not be seen between TDD and
other sound testing approaches that are not test first (such as TLD). However,
because we compare TDD to repositories in general, we might see differences sim-
ply because the testing rigor of other repositories in general might be lower than
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that of TDD repositories. Our work complements Fucci et al. (2016a; 2016b) by
studying the evidence of TDD in Github repositories.

2.3.1 Definition of Test Driven Development

Test driven development (TDD) in this paper will be the intent of following a
process of combining test-first-development, refactoring, design, and specification.
“Test first behavior” means writing tests before writing code. The intent is often
to specify and to verify code once it is written. TDD also can involve refactoring,
which might be done to enable writing of tests or to enable passing tests. This
means that some code might be written first if it is already transitively called in
a test case. Test driven development attempts to employ test-first and refactoring
into a development loop whereby code is specified as tests and then verified by
tests. That is, classes written should generally be covered by tests first rather than
later.

One construct validity issue that this study faces is that our record of change,
the git version control histories of Java projects, is not perfect and files can be
added, modified, and committed at different times, or in different orders than
recorded. Ordering of commits is not necessarily the ordering of development (Bird
et al, 2009; Kalliamvakou et al, 2014). In a git history, test first could look like
testing at the same time, or even testing later depending on how the git commits
were formed.

TDD-like refers to behaviours depicted in version control histories that are
emblematic of TDD but perhaps not perfectly, so it is unclear if they are truly
and purely TDD. So while someone may be intentionally trying to follow TDD
practices, they might adhere to TDD only partially, and their commit history might
show this in different ways depending on their commit behaviours. In particular,
TDD-like behaviours must include testing, but coverage can be lower and lag time
between source and test commits can be permitted, where lag time (time ∆) is
the amount of time that passes, after the source file is committed, before the test
file is committed2. TDD-like behaviour could be the result of TDD behaviour but
inconsistent commit behaviour, or the partial application of TDD to the project,
perhaps by a subset of developers. We consider TDD-like because we do not have
a perfect record of the true change history of a project. Furthermore to ensure
that potentially corrupted sequences are not leading the research astray, we use
class coverage to ensure that tests actually call the classes that are committed to
the repository. A project following TDD should cover classes with test code before
they are actually written.

2.4 Continuous Integration (CI)

In 2016, Santos and Hindle studied the relationship between build failure in GitHub
repositories and the “unusualness” of the commit messages that they found in

2 Here, we consider four time ∆ categories (0 minutes, 1 hour, 1 day, 1 week). Repositories
are assigned to the category with the shortest time ∆ that is greater than all the time ∆s
found in that repository – hence if the largest ∆ for any code in a repository is 5 minute, this
entire repository would be in the “1 hour” category, and if the longest was 3 days, it would be
in “1 week”.
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those repositories. To explore this, they looked specifically at repositories using
Travis-CI, a tool for continuous integration that is widely used in the open-source
community3 (Santos and Hindle, 2016). Our work will determine how popular
Travis-CI is among practitioners of TDD and TDD-like software development.

Vasilescu et al (2015) studied the usage of continuous integration, focusing on
Travis-CI, in 223 “large and active python, ruby, and Java repositories on GitHub.
They found that 92.3% of these repositories were configured to use Travis-CI, but
of those configured repositories, only about half actually had recorded Travis-CI
builds. We also study the usage of Travis-CI for automated continuous integration
in GitHub repositories, but ask a distinct question: how prevalent is Travis-CI
in repositories utilizing TDD, as compared to other repositories in general. This
methodological choice of using Travis-CI to represent continuous integration is
supported by Vasilescu et al (2015)’s statement that Travis-CI is “arguably the
most popular CI service on GitHub”.

2.5 Determining the Clustering Parameter K

To assess the quality of clusters generated from any clustering method such as K-
means, we use a visualization technique known as the silhouette plot (Rousseeuw,
1987), which uses

s(i) =
b(i)− a(i)

max{ a(i), b(i) } (1)

where s(i) is the silhouette of the ith data point, a(i) is the average dissimilarity
(based on a given distance metric) between the ith data point and the other
members of its cluster, and b(i) is the minimum average dissimilarity between the
ith data point and the other clusters that exist in the partitioned space. We can use
this equation to obtain the average silhouette width from all the silhouette values
for each cluster to determine the quality of the clusters individually. Alternatively,
we can find the average silhouette width across all clusters to determine the quality
of a particular k partition of the data space using K-means clustering, for example.
We use silhouette for clustering tuning parameters when clustering repositories to
determine the k number of clusters.

2.6 Correcting For Multiple Comparisons

Throughout our study we perform multiple statistical tests, which can increase
the overall chance of Type 1 Errors (false discoveries) (Aickin and Gensler, 1996).
One approach, the Bonferroni Procedure (Aickin and Gensler, 1996) is designed
to address this family wise error rate (FWER) issue (Hochberg, 1988) by dividing
the significance threshold by the total number of tests performed.

As an alternative, the Holm-Bonferroni Procedure offers FWER correction that
is uniformly more powerful, in a statsitical sense, while still insuring the family
wise error at significance level α. This is done by comparing p-values to an adjusted
significance level α

n−i+1 , where n is the number of tests performed and i is the ith

index in the sorted list of p-values when the inequality Pi ≤ α
n−i+1 holds, where

Pi is the p-value for the first rejected hypothesis (Aickin and Gensler, 1996).

3 https://travis-ci.org/
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3 The Study Method

In this section, we describe our research questions as well as our approach for
analyzing GitHub repositories to assess the potential impacts of using TDD. Sec-
tion 3.1 describes our research questions and their motivations; Section 3.2 de-
scribes the data used; Section 3.3 describes our criterion for determining if a
repository practices TDD; Section 3.4 describes our filter for non-trivial TDD
repositories; Section 3.5 describes our procedure for creating control sets for sta-
tistical comparison; Section 3.7 describes how we ensure the quality of our analysis;
and Section 3.8 addresses how we correct for statistical error.

3.1 Our Research Questions

RQ1: Does the adoption of TDD improve commit velocity?
Why: Some practitioners of TDD argue that TDD, once a three step cycle (Writ-
ing a failing test, Making the test pass, Refactor), is now practiced as a four step
cycle (including a committing step). It is argued that the commit step has arisen
from the growing popularity of version control systems (DevIQ, 2017; Lakeview
Labs, 2017). In the work of Fucci et al (2016a) it is noted that uniform, short
grained cycles are likely the aspect of TDD that improve external quality and pro-
ductivity. Together, we use these two ideas as motivation for measuring commit
velocity. We wish to see if the TDD repositories available through GitHub have
faster commits (faster cycles), which would then imply greater productivity.
Approach: We extract the timestamps associated with all the commits collected
and then look at the average of the timestamp differences (∆s) between commits
in each repository.

RQ2: Does the adoption of TDD reduce the number of bug-fixing commits?
Why: Developers have asserted that one of the benefits of TDD is that it reduces
the number of bugs introduced into software (Winter, 2016). We use this to mo-
tivate an investigation into the number of bug fixing commits present in software
repositories. If fewer bugs have been introduced into the software, then perhaps
there will be fewer bugs that need to be fixed.
Approach: The following regular expression 4 is used to identify bug-fixing com-
mits in the repositories:

/.*((solv(ed|es|e|ing))|(fix(s|es|ing|ed)?)

|((error|bug|issue)(s)?)).*/i

We consider this count to be an approximation of the number of bugs that had
existed and been addressed in that repository.

RQ3: Does the adoption of TDD affect the number of issues reported for the
project?
Why: In a similar way to RQ2, we motivate this research question from the asser-
tion that TDD reduces the number of bugs during software development (Elliott,

4 modified from Boa examples found at http://boa.cs.iastate.edu/



Analyzing The Effects of Test Driven Development In GitHub 9

2016), even up to 40% - 80% of bugs (Jeffries and Melnik, 2007). If TDD leads to
fewer bugs then perhaps there will be fewer bugs reported.
Approach: We count the number of issues (obtained through the GitHub Appli-
cation Program Interface) associated with each repository from the two sets and
quantify any observed differences between them.

RQ4: Is continuous integration more prevalent in TDD development?
Why: TDD and continuous integration (CI) have been a topic of discussion for
other vendors, including Microsoft (Budhabhatti, 2008; Weiss, 2017; Travis-CI,
2017), who seek to sell test and integration tools as well. The Travis-CI web-
site (Travis-CI, 2017) claims that Travis-CI helps to “foster test-driven develop-
ment”. Therefore, we would expect to see a correlation between TDD users and
the use of Travis CI.
Approach: We use a part of a publicly available Boa script5 to determine if a
Travis-CI travis.yml file was present in a repository. While we focus specifically
on Travis-CI, we use this as an approximation for counting the number of reposi-
tories that were using continuous integration.

RQ5: Does the adoption of TDD affect developer collaboration?
Why: TDD is a process that asks a lot from the developers. Such a process
could aide collaboration in terms of verification and communication of require-
ments (Brack, 2016), but it could hinder collaboration in terms of a high bar to
meet in order to share code with TDD project. Furthermore in later literature
TDD is suggested to help developers and customers discuss hard requirements via
acceptance tests (Pugh, 2010).
Approach: Here, we use the GitHub API to extract the pull requests associated
with each of the repositories. Following this, we examine the number of pull re-
quests present for each repository and considered this as an indirect measure of
the level of collaboration that occurred in that repository. TDD could ease col-
laboration by making it clear that a contribution needs to include tests before it
is considered. Alternatively, TDD could harm collaboration as its requirement to
include tests makes it harder to contribute a TDD driven project. We also explored
the proportion of developer contributions in each repository, to see whether these
contributions are shared evenly or are skewed (Vasa et al, 2009).

3.2 The Data Set

We used the Boa infrastructure (Dyer et al, 2013) to obtain 256, 572 Java reposi-
tories from a copy of GitHub, archived September 2015. From each of these repos-
itories, we obtained the repository URL, its commit logs, its commit timestamps,
and its revisions. For each revision, we collected the names of the Java files cre-
ated in it. Further, we used GitHub’s application programming interface (API) to
obtain the repository issues and pull requests.

Of these 256, 572 Java repositories, 41, 301 (16.1%) contain test files. Table 1
provides the complete distribution of TDD repositories, whose columns represent
different levels of class coverage (to be defined later), and whose rows represent

5 http://boa.cs.iastate.edu/boa/?q=boa/job/public/30188
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the maximum elapsed time permitted between the creation of source code files
and test files. Here we use the term “TDD” loosely because we report the num-
ber of repositories found at different levels of stringency; this usage allows us to
distinguish these sets of repositories from their corresponding control sets.

Table 1 Distribution of Repos for Different Time ∆s and Class Coverage Relaxations. Each
cluster is labeled so that it can be referenced later. For example, ‘9d’ (bottom right) is the
cluster corresponding to the 10th coverage interval (here “> 90%”) and the 4th time ∆ (here,
“Week”).

≤ 10% 11 − 20% 21 − 30% 31 − 40% 41 − 50%
None 2623 (0a) 2729 (1a) 1937 (2a) 1955 (3a) 2129 (4a)
Hour 2710 (0b) 2828 (1b) 2021 (2b) 2041 (3b) 2223 (4b)
Day 2962 (0c) 3145 (1c) 2262 (2c) 2298 (3c) 2454 (4c)
Week 3424 (0d) 3658 (1d) 2675 (2d) 2664 (3d) 2802 (4d)

51 − 60% 61 − 70% 71 − 80% 81 − 80% > 90%
None 698 (5a) 859 (6a) 649 (7a) 233 (8a) 1991 (9a)
Hour 744 (5b) 904 (6b) 676 (7b) 245 (8b) 2054 (9b)
Day 830 (5c) 1003 (6c) 768 (7c) 274 (8c) 2136 (9c)
Week 1006 (5d) 1149 (6d) 870 (7d) 320 (8d) 2230 (9d)

While Table 1 shows the entire distribution of repositories identified as TDD,
we only actually analyze a subset of the repositories in each category (reported in
Table 2) to ensure that analyzed repositories have sufficient numbers of commits,
authors, and logical lines of code. For example, this analysis only includes reposi-
tories that have at least one commit. Finally, note that the TDD sets are disjoint
from their control sets.

3.3 Recognizing Repositories That Practice TDD

For this study, we consider the following three characteristics of software projects
as evidence of TDD adoption: (a) the inclusion of test files, (b) the development of
tests before the development of the source code that these tests exercise, and (c) the
high coverage of the overall source code by tests. While these features characterize
repositories that truly practice TDD, we realize that those attempting to practice
TDD may not do it perfectly, thus we also study repositories that exhibit TDD
with varying degrees of success.

The rationale behind these criteria is that Kent Becks book “Test driven de-
velopment by example” (Beck, 2003) he describes TDD as two bullet points:

1. “Dont write a line of new code unless you first have a failing automated test”
2. “Eliminate duplication”

Focusing on the first point, we reason that it implies two things. The first is that
you need to write a failing test before you write the code it tests, and secondly,
that all code to be written must have had test code written first. Hence our test
first and coverage characteristics. Our final characteristic (including tests) is the
result of the focus of our study, comparing the TDD testing framework to other
testing frameworks in general. Comparing TDD to repositories that do no test
defeats this purpose.
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a) Finding repositories with test files
To determine how many repositories included test files, we used the abstract

syntax trees (available through Boa) to obtain all import statements in each Java
file for each repository. This included import statements that matched the following
regular expression where JUnit6, TestNG7 and Android test8 are frameworks and
tools for implementing test cases.

‘ ˆ ( org \ . j u n i t \ . \ ∗ ) |
( org \ . j u n i t \ . Test ) |
( j u n i t \ . framework \ . \ ∗ ) |
( j u n i t \ . framework \ . Test ) |
( j u n i t \ . framework \ . TestCase ) |
( org \ . t e s tng \ . ∗ ) |
( android \ . t e s t \ .∗ ) $ ‘

(2)

Once a file was found to contain one of these imports, we considered the reposi-
tory as containing test files, and thus meeting the first criterion for being considered
as following TDD.

The regular expression that we apply is simply used to extract the relevant
imports obtained from the ASTs. Had we not used these imports and the regular
expression, we would have had to assess whether the Java class created in the
source file extended one of the testing frameworks. If it did, it would still have
needed to import the testing framework, and so this approach would be considered
a subset of our approach.

b) Evaluating if test files are written first
This process involved the following four steps and excludes repositories that

contained no files with test imports.

Step 1. For each of the repositories, we partitioned the Java files into two sets: The
first set included files identified as test files, because their filename matched reg-
ular expression (3) and their imports matched regular expression (2). The second
set contained the remaining Java files.

/ .∗ t e s t . ∗ \ . java / i (3)

Step 2. For each file in each set, we identified its creation time as the timestamp
of the revision in which it was created.

Step 3. For each of the test files we found matching, or similarly named files, under
the assumption that Java programmers typically name their test files according
to their source-code files. For example, “someFile.java” might have a correspond-
ing test file called “TestSomeFile.java” or “someFileTest.java”. If we found no
matching file, we searched for files with similar file names, using on the Python
Standard Library object difflib.SequenceMatcher() for string comparison. We

6 http://junit.org/junit4/
7 http://testng.org/doc/index.html
8 http://developer.android.com/tools/testing/index.html
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set a similarity threshold of 0.8, where 0 is completely dissimilar and 1 is exactly
the same. This threshold was chosen because it could match, for example, words
like “search” with “searching”. Here the file “searchTest.java” would be similar to
“searching.java”. Finally, if no matching or similar files were found for a test file,
that test file was ignored in this step.

Step 4. Having identified pairs of test and corresponding source-code file, we then
ensured that the timestamp associated with the test file was either older or the
same as the source file(s). This ensured that the test file was either committed
before or at the same time as the source file(s).

We also considered repositories where we permitted a grace period (hour, day
or week) for the creation of the test file after the source file. Here, only Step 4
differs in the above procedure. For example, in the case of a ‘one day grace period’,
we required that tests are written within at most one day of the source code, for
all files in a repository – i.e., ((timestamptest−timestampsource) ≤ (60× 60× 24)
seconds).

c) Evaluating test class coverage

For this facet of TDD, we again used JUnit, Android test and TestNG imports
as identifying test files and consider “class coverage”, where all the classes defined
in source files are referenced in at least one test file. We specifically consider class
level coverage for several reasons. First, classes are immediately compilable and
we do not have the uncertainty as to whether or not methods are reachable or
mutable. Further, method level coverage has the added complexity of dealing with
automatically generated getters and setters. Finally, we also view package level
coverage as being too coarse grained because only a single test is required to cover
an entire package. Note that we do not explicitly look at inner classes because we
view them as handlers within the class. To determine class coverage, we used the
ASTs provided in the Boa framework. Each Java file in a repository is associated
with an ASTRoot AST Type, a container class that holds the AST (Dyer et al,
2013). After obtaining this object, Boa allows navigation through the namespace of
the source file (the Java package) so that the declarations made in the namespace
can be observed. In our case, when looking through source files we only recorded
class declarations in the namespaces provided by the ASTRoot. To deal with test
files, we examined and recorded all the types that were referenced in the test file.
This includes types that were explicitly referenced in the initial declaration of a
variable as well as any type changes that occur when a variable is reassigned.
For example, if a variable of type “MyInterface” is declared and later assigned
an instance of a class “ImplementsMyInterfaceClass”, our procedure would detect
the use of this class.

Finally combining the knowledge of types used in test files with classes declared
in source files, we defined the class coverage percentage of a repository to be the
percentage of classes defined in source files that were referenced in at least one
test file in the most recent version of the repository.
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3.4 Identifying Substantial Repositories

In “The Promises and Perils of Github”(Kalliamvakou et al, 2014),the authors note
that there are issues with researchers working on GitHub data. In particular they
highlight the fact that many GitHub repositories are simply personal projects, and
that many repositories are inactive. In order to avoid using these repositories we
came up with a set of three distinguishing criteria: logical lines of code (LLOC),
number of authors, and number of commits. These criteria allow us to cluster
repositories, thereby keeping the significant software projects and avoiding forks,
student projects, personal projects, and other sources of noise on GitHub. Note,
we use significant to denote repositories with the greatest quantities of LLOC,
commits, and authors.

We motivate the first two criteria from “The Promises and Perils of GitHub”,
which advocates to look at the number of commits in a repository when determin-
ing if it is active, and to determine if a project is a personal project by looking
at the number of committers (authors). Finally LLOC is included in an effort
to further increase the likelihood that the repositories that we are analyzing are
not inactive. Together, we use these criteria to filter out repositories that would
otherwise skew our results.

To identify the subset of the TDD repositories for each group in Table 1 that
were significant software projects, we applied K-Means clustering, where each
repository is described in terms of the criteria mentioned above, to partition the
repositories into different groups. One issue with using K-Means clustering is its
requirement of specifying the number of clusters K initially. Here, we considered a
range of K values from 2 to 10, and used the silhouette width for each clustering to
determine which K value provided the best amount of intra-cluster compactness
and inter-cluster separation. During clustering we restricted the maximum value
to K to be 10. This was done because when larger values of K were permitted
(e.g. K = 11), clusters were generated that had fewer than 30 samples. This was
undesirable for conducting statistical tests due to a lack of power.

Finally, because the distributions of commits, authors and lines of code are
highly right-skewed, we used their natural logarithm to prevent larger repositories
from being fragmented into small isolated clusters.

Figure 1 shows an example Silhouette plot that illustrates how K is selected
when clustering. Here, as an example, we select K = 2 and K = 9 for two arbitrary
TDD clusters.

3.5 Control Set Construction

Once we obtained TDD repositories of non-trivial size, we next need to produce
control sets of repositories of comparable size, against which to compare the TDD
repositories. Again, recall the “peril of GitHub” (Kalliamvakou et al, 2014), that
many repositories are underdeveloped and inactive. Therefore, if we do not control
for size then this size may be a confounding factor in our study, because we may
be comparing larger active repositories against smaller inactive ones. To make a
fair comparison between the TDD repository clusters and a control set represent-
ing repositories in general, we attempt to sample the control set to match the
distribution of the size features of the TDD set.
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Fig. 1 Example of Mean Silhouette Width for selecting K. For a given curve (e.g. TDD1)
representing a set of repositories, the value of K which results in the largest mean silhouette
value is the K which best approximates the true number of clusters in the data. These are
indicated by circles in the figure.

To create a control set for any particular TDD repository set, we first created a
base pool of repositories by taking the set difference between the 41,301 repositories
containing test files and that particular set of TDD repositories. Note, this was
done because we intend to compare TDD-like development practices against other
testing practices in general. Therefore, comparing with repositories that show no
evidence of testing is beyond the scope of this study. From this base pool, we then
sampled a set of equal cardinality by iterating over our TDD set and sampling a
repository minimizing Euclidean distance (L2 norm)

d(x,y) = ‖x − y‖2 (4)

in each iteration (breaking ties randomly). Note that x and y in Eqn 4 refer to
vectors that describe repositories in terms of their size features.

In Table 2 we provide details describing the distributions of our TDD sets (pro-
duced from clustering) and their corresponding control sets. Here, the percentiles
show how closely the control set distributions match the TDD distributions for
each cluster pair.

3.6 Visualizing our Results as Heat Maps

In our work, we present our results as heat maps (such as Fig 7), where each
square is a statistical test comparing one of the aforementioned clusters to its
corresponding control set. Here, the “Time Window” axis corresponds to a partic-
ular grace period, and “Coverage” axis corresponds to percentage of class coverage
(both concepts introduced in Section 3.3). This means that squares represent a
comparison between repositories with some Coverage/Time Window combination
(e.g. 10-20% coverage and a grace period of 1 day), and the control repositories
paired with them. In each square, we use black to means the centre of the con-
trol set was significantly larger than the TDD set, grey if there is no statistical
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Table 2 TDD Repository Clusters and Controls. The “Cluster” label refers to the parameters
described in Table 1, where the corresponding labels can be found. To explain the other column
headers (i.e., top row): The A, C and L represent the numbers of authors, commits and logical
lines of code respectively; the subscript 25, 50 and 75 refer to the 25th, 50th and 75th percentiles
of each A, C, L distribution. Size refers to the number of repositories in a cluster. The pair of
entries (TDD, Control) of each [r, c] cell shows column c’s characteristic of the largest post-
clustering TDD set associated with Cluster r, with its corresponding control set. Collectively,
the similarity between these pairs of values illustrates the lack of disparity between TDD and
control sets.

Cluster Size A25 A50 A75 C25 C50 C25

0a 511 (3, 2) (5, 3) (8, 7) (55, 48) (108, 101) (256, 237)
0b 537 (3, 2) (5, 3) (8, 6) (56, 50) (109, 104) (247, 236)
0c 626 (3, 2) (5, 4) (8, 6) (58, 52) (108, 104) (237, 229)
0d 860 (3, 2) (4, 3) (7, 6) (53, 48) (99, 92) (209, 208)
1a 938 (2, 1) (2, 2) (3, 3) (16, 15) (27, 27) (49, 50)
1b 994 (2, 1) (2, 2) (3, 3) (16, 15) (28, 28) (52, 52)
1c 1153 (2, 2) (2, 2) (4, 3) (18, 17) (31, 30) (57, 57)
1d 1387 (2, 2) (3, 2) (4, 3) (20, 19) (37, 37) (68, 67)
2a 676 (2, 1) (2, 2) (3, 3) (13, 12) (23, 23) (41, 42)
2b 724 (2, 1) (2, 2) (3, 3) (13, 13) (23, 23) (42, 44)
2c 870 (2, 1) (2, 2) (3, 3) (15, 15) (25, 25) (46, 46)
2d 1059 (2, 1) (2, 2) (3, 3) (18, 18) (31, 31) (55, 54)
3a 289 (2, 1) (3, 2) (4, 3) (17, 17) (26, 25) (44, 44)
3b 729 (2, 1) (2, 2) (3, 3) (8, 8) (15, 15) (30, 29)
3c 772 (2, 1) (2, 2) (3, 3) (10, 9) (18, 18) (37, 37)
3d 945 (2, 1) (2, 2) (3, 3) (13, 13) (25, 25) (46, 46)
4a 718 (2, 2) (2, 2) (3, 2) (6, 6) (11, 11) (26, 25)
4b 890 (1, 1) (2, 2) (3, 2) (9, 9) (14, 14) (24, 24)
4c 1016 (1, 1) (2, 2) (3, 2) (10, 10) (15, 15) (27, 27)
4d 1192 (1, 1) (2, 2) (3, 3) (12, 12) (18, 19) (34, 35)
5a 258 (2, 1) (2, 2) (3, 2) (9, 9) (16, 16) (29, 28)
5b 281 (2, 1) (2, 2) (3, 3) (10, 10) (18, 17) (30, 30)
5c 332 (2, 1) (2, 2) (3, 3) (11, 11) (20, 20) (33, 33)
5d 353 (2, 2) (2, 2) (3, 3) (12, 12) (21, 21) (49, 45)
6a 333 (2, 1) (2, 2) (3, 2) (8, 8) (14, 15) (24, 25)
6b 366 (2, 1) (2, 2) (3, 2) (8, 8) (14, 15) (25, 26)
6c 385 (2, 1) (2, 2) (3, 3) (10, 10) (18, 18) (29, 30)
6d 517 (1, 1) (2, 2) (3, 3) (12, 12) (19, 19) (31, 32)
7a 190 (2, 1) (2, 2) (3, 2) (7, 8) (16, 16) (28, 29)
7b 189 (2, 2) (2, 2) (3, 3) (7, 8) (15, 16) (32, 32)
7c 127 (2, 1) (3, 2) (4, 3) (16, 17) (24, 24) (41, 41)
7d 322 (2, 2) (2, 2) (3, 2) (6, 6) (12, 13) (24, 25)
8a 100 (1, 1) (2, 2) (3, 2) (11, 11) (15, 15) (24, 24)
8b 117 (1, 1) (2, 2) (3, 2) (9, 9) (15, 15) (22, 23)
8c 135 (1, 1) (2, 2) (2, 2) (10, 10) (15, 15) (24, 24)
8d 43 (3, 2) (4, 3) (5, 3) (14, 15) (22, 22) (46, 46)
9a 751 (1, 1) (2, 2) (2, 2) (6, 6) (9, 9) (16, 16)
9b 792 (1, 1) (2, 2) (2, 2) (6, 6) (9, 9) (16, 16)
9c 851 (1, 1) (2, 2) (2, 2) (6, 6) (9, 9) (17, 16)
9d 873 (1, 1) (1, 1) (2, 2) (7, 7) (10, 10) (18, 18)
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Cluster Size L25 L50 L75

0a 511 (1341, 1342) (3360, 3363) (11179, 11200)
0b 537 (1332, 1334) (3285, 3285) (10778, 10815)
0c 626 (1280, 1289) (2907, 2918) (9122, 9138)
0d 860 (1100, 1105) (2318, 2309) (7365, 7358)
1a 938 (322, 322) (711, 710) (1675, 1674)
1b 994 (322, 322) (703, 703) (1666, 1667)
1c 1153 (308, 310) (681, 682) (1593, 1592)
1d 1387 (353, 353) (763, 764) (1675, 1674)
2a 676 (247, 248) (580, 581) (1364, 1365)
2b 724 (234, 234) (558, 556) (1338, 1340)
2c 870 (249, 249) (579, 580) (1325, 1324)
2d 1059 (301, 301) (680, 681) (1418, 1418)
3a 289 (262, 263) (637, 637) (1507, 1505)
3b 729 (140, 140) (347, 346) (924, 923)
3c 772 (158, 158) (384, 384) (963, 964)
3d 945 (208, 209) (459, 460) (1038, 1039)
4a 718 (106, 105) (276, 276) (712, 711)
4b 890 (117, 117) (272, 272) (702, 702)
4c 1016 (126, 126) (288, 288) (708, 709)
4d 1192 (160, 160) (369, 369) (818, 817)
5a 258 (216, 217) (432, 432) (1037, 1037)
5b 281 (221, 222) (432, 432) (1095, 1095)
5c 332 (227, 227) (427, 428) (1032, 1032)
5d 353 (252, 252) (535, 536) (1342, 1336)
6a 333 (116, 116) (293, 294) (721, 719)
6b 366 (117, 118) (309, 309) (722, 719)
6c 385 (135, 135) (361, 361) (799, 800)
6d 517 (171, 170) (389, 388) (842, 842)
7a 190 (120, 120) (292, 291) (591, 590)
7b 189 (120, 120) (291, 290) (555, 554)
7c 127 (192, 192) (355, 355) (636, 635)
7d 322 (122, 122) (273, 273) (544, 544)
8a 100 (187, 187) (329, 329) (690, 691)
8b 117 (173, 173) (315, 315) (684, 683)
8c 135 (174, 174) (283, 283) (536, 537)
8d 43 (184, 183) (421, 419) (1032, 1035)
9a 751 (33, 33) (82, 82) (177, 177)
9b 792 (33, 33) (81, 82) (177, 177)
9c 851 (36, 36) (84, 84) (180, 180)
9d 873 (48, 48) (104, 104) (205, 205)

difference between the control and TDD repositories, and light grey if that the
TDD set’s center was significantly larger than the control set. (See the colour bar
legend shown on the right hand side of the figure.) Recall we use Holm-Bonferroni
correction for all the comparisons made in this work; see discussion above. Because
of the large number of non-significant results in this work (leaing to our result-
ing conclusions), we used this measure to make sure that an overly conservative
multiple correction technique was not a large factor in our findings.
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3.7 Sanity checks

To quantify that test files were named as expected, we looked at the co-occurrence
of this naming convention and used of a testing framework. We found that of 41302
repositories that contained test files (files with JUnit, TestNG or Android Test
import statements), 40368 repositories also contained test files that matched our
test file name regular expression and included one of these imports. Furthermore,
31747 of these repositories contained at least one occurrence of a test file name
exactly matching a source file name once the case insensitive suffix or prefix test
was removed from the test name.

The authors also wanted to quantify how well the bug fixing commit finding
regular expression worked. To do this, the regular expression was applied to all
the commit logs in the GitHub data to obtain a set of 530410 commit logs that
matched the regular expression. From these, 100 commit logs were randomly sam-
pled and then manually inspected to see if they referred to a bug fix or if they
were erroneously collected by the regular expression. It was found that 79 of the
commits were correctly identified as bug fixes and 21 were not. Example commit
logs are shown in Table 3.7.

Also important to note is that the bug fixing commit finding regular expression
is a modified version of the one provided as a built in function (isfixingrevision)
Boa. This Boa function was originally presented by Dyer as a method for finding
revisions that were likely to be bug fixing revisions (Dyer, 2013).

Table 3 Examples of Manually Labeled Commits. Each log message is either labeled with
YES or NO as to whether it represents a bug fixing commit.

BFC? Log Message
RESOLVED - bug 235243: [patch]

YES Generalize the UI legend dialog for reuse by clients.
https://bugs.eclipse.org/bugs/show_bug.cgi?id=235243

YES Fix issue for passed arguments by references to method/function

Revert "minor error change"
NO This reverts commit 06e1ac494c64ae039cd254f8b1ea45ee5a4435bb.

Adding LMDebug, a simple sketch for debugging two beams
NO LMDebug relies very little on classes, and is easy to follow precedurally.

At this time, LMDebug works mostly fine.

To ensure that control repositories included test files, we used the Wilcoxon
rank sum test with Holm-Bonferroni correction to visualize any differences between
TDD and control groups, over different time windows and coverage for TDD.
Figure 2 shows that there are no differences for any of the TDD variants – i.e.,
that all statistical tests show that there is no significant difference between the
number of control repositories that contain test files and the number of TDD
repositories containing test files. This is exactly as the authors expected because
all repositories in the control set were sampled from the distribution of repositories
containing at least one test file.

To test whether our clustering approach created control sets whose sizes match
our TDD sets, we performed statistical (wilcoxon) tests to determine if any signif-
icant difference could be found between their respective lines of code, number of
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Fig. 2 Wilcoxon Tests for Including Test Files

Fig. 3 Wilcoxon Tests for Total Numbers of Commits

authors or number of commits for each of the TDD variants. The results of these
tests show that there are no differences for logical lines of code (LLOC) for any of
the groups (Figure 5) but that two clusters showed differences in the number of
authors and commits when compared to their controls (Figures 3 and 4). This is
likely the result of not having repositories in our sampling set that could match all
three dimensions for each TDD repository. The implication of these sanity checks
is that the results obtained for these two clusters, in particular, may be biased by
the size discrepancies between the clusters and their corresponding controls.

Finally, note that Figure 6 shows differences between the total number of test
files in TDD repositories and their controls. While we require that all control
repositories had to have at least one test file, the number of test files was allowed
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Fig. 4 Wilcoxon Tests for Total Numbers of Authors

Fig. 5 Wilcoxon Tests for LLOC

to vary, giving us a representative sample of general GitHub repositories that have
done some testing of their code (See Table 4 for mean and median group values).
In the general case, the TDD repositories had more test files comparatively, with
the exception of TDD repositories with extremely low class coverage.

3.8 Family-Wise Error Rate Correction

When answering each question, we used the Holm-Bonferroni Procedure to deal
with the family-wise error rate (FWER), as this is uniformly more powerful than
the obvious Bonferroni procedure. This is important as previous work suggests
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Fig. 6 Wilcoxon Tests for Total Numbers of Test Files

Table 4 Mean and Median Test File Numbers for Different Time ∆s and Class Coverage
Relaxations. Similarly to Table 1, each column shows a different class coverage percentage and
each row corresponds to a different Time ∆ where z, h, d and w map to Time ∆s of 0 minutes,
1 hour, 1 day and 1 week, respectively. Further subscript “med” indicates the median number
of test files while subscript “µ” is the mean. In each pair, the first value is for the control
repository set and the second is for the TDD repository set.

≤ 10% 11 − 20% 21 − 30% 31 − 40% 41 − 50%
zmed 8.0, 3.0 3.0, 4.0 3.0, 6.0 3.0, 5.0 3.0, 4.0
zµ 30.5, 8.3 6.5, 7.6 12.0, 19.6 7.4, 13.2 6.1, 11.3
hmed 8.0, 3.0 3.0, 4.0 3.0, 7.0 3.0, 5.0 3.0, 4.0
hµ 30.6, 8.5 6.5, 7.6 12.1, 20.7 7.3, 12.9 6.1, 12.1
dmed 8.0, 3.0 3.0, 4.0 3.0, 6.0 3.0, 5.0 3.0, 4.0
dµ 29.6, 8.2 6.3, 7.9 11.8, 20.1 8.0, 12.8 5.9, 12.1
wmed 6.0, 3.0 3.0, 4.0 4.0, 5.0 4.0, 5.0 3.0, 5.0
wµ 25.7, 8.2 6.1, 7.6 9.2, 12.9 7.9, 13.0 5.9, 11.9

51 − 60% 61 − 70% 71 − 80% 81 − 80% > 90%
zmed 7.5, 155.5 3.0, 7.0 3.0, 6.0 3.0, 6.0 2.0, 2.0
zµ 70.5, 187.1 8.5, 25.9 6.7, 9.9 4.1, 9.3 2.6, 3.0
hmed 13.0, 44.0 3.0, 7.0 3.0, 6.0 3.0, 6.0 2.0, 2.0
hµ 54.1, 140.6 8.4, 25.2 6.4, 10.1 4.0, 9.6 2.6, 3.0
dmed 18.0, 286.0 3.0, 7.0 3.0, 7.0 2.0, 6.0 2.0, 2.0
dµ 77.4, 206.1 9.6, 24.2 6.1, 9.5 3.8, 9.0 2.6, 3.1
wmed 4.0, 9.0 3.0, 9.0 2.0, 5.5 3.0, 7.0 2.0, 2.0
wµ 13.3, 34.6 12.5, 41.9 5.8, 8.1 4.2, 10.4 2.7, 3.3

that using a test-first approach may have no impact on measures of code quality
and developer productivity (Fucci et al, 2016b,a); motivating us to use a measure
that increases our confidence that a lack of statistical difference is not the result
of an overly conservative FWER correction procedure. For the Holm-Bonferroni
Procedure, we had n = 400 statistical tests at a significance of α = 0.05, which
resulted in the rejection of null hypothesis when the p-value was less than 0.03.
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Fig. 7 Wilcoxon Tests for Average Commit Velocity

4 Findings and Analysis/Discussion

4.1 Repository Counts

Of the 256,572 Java repositories available in our GitHub data set, we found 41,302
(16.1%) repositories with test files. As reported above, Table 1 provides a compre-
hensive listing of the number of repositories found for each of our different TDD
variants. We found only 1,991 repositories whose test files are created strictly be-
fore the associated source files (no grace period) and where class coverage is over
90%. This means that only a very small proportion (0.8%) of Java repositories in
GitHub truly practice TDD.

4.2 Results for RQ1

Figure 7 shows that there are no statistical differences between the average commit
velocities in the TDD repositories and the control repositories, in most cases. The
only exceptions occur when we allow a time ∆ of one week. Here, the controls
have a higher commit velocity, which suggests that they are committing code at
a slower rate than their TDD counterparts. While this does not occur for all class
coverage clusters, it suggests that, in some cases, delayed testing increases the rate
at which software can be developed.

4.3 Results for RQ2

Figure 8 shows that there are generally no statistically significant differences for
the total number of bug-fixing commits for the majority of the TDD variants. This
indicates that TDD generally seems to have no effect on the number of commits
that reference bugs, and, by proxy, it also seems to indicate that TDD does not
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Fig. 8 Wilcoxon Tests for the Total Number of Bug Fixing Commits

impact the number of software bugs introduced during the development process.
The one statistically significant difference is for the cluster with the lowest class
coverage and largest time ∆. For this case it was very surprising to see that the
controls had more commits referencing bug fixes, however, this is likely the result
of being unable to generate an appropriate control set for this particular cluster.
In particular, Figure 3 shows that the controls generated for this cluster have
significantly more commits, so it is reasonable to expect that with more commits
you would see more commits containing bug fixes.

4.4 Results for RQ3

Figure 9 explores the number of issues associated with the Java repositories; here
again, we see no statistical differences for any of the TDD variants. This criterion
is also being used as a measure of software quality and shows that TDD reposito-
ries seem to have no more issues filed against them than the general repositories
represented in the control set.

4.5 Results for RQ4

As shown in Figure 10, most clusters do not show significantly increased adoption
of TravisCI. While this demonstrates that practicing TDD does not generally lead
to the adoption of continuous integration, we can see that clusters with extremely
high class coverage do tend to use TravisCI more than general repositories. This
result confirms our intuition that projects that adopt rigorous testing, also tend
to use continuous integration to further ensure code quality.
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Fig. 9 Wilcoxon Tests for the Number of Issues

Fig. 10 Wilcoxon Tests for the Inclusion of Travis CI

4.6 Results for RQ5

Finally, Figure 11 shows that TDD does not generally lead to any significant dif-
ference in the number of pull requests made to Java repositories. While this is the
apparent general trend in the data, there are three clusters that show a significant
increase in the number of pull requests for TDD repositories. It is unclear why these
three clusters should specifically show this result, but this constitute evidence that
TDD practices may increase developer collaboration in certain situations. Perhaps
Pull requests are not providing the entire story. Thus we compared the distribu-
tions of developer contribution per repository. Figure 12 depicts the results of
comparing Gini coefficients between control repositories and TDD repositories.
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Fig. 11 Wilcoxon Tests for Numbers of Pull Requests

Fig. 12 Wilcoxon Tests for Gini Coefficients

The Gini coefficient is a measure of inequity in terms of proportion of contribu-
tion (Vasa et al, 2009), so we wanted to know are TDD repositories more equitable
per author in terms of number of commits per author than the control repositories.
The vast majority of TDD repositories are not statistically significantly different
from control repositories in terms of Gini coefficients, but there are significant dif-
ferences in the low (0.1) test coverage distributions where TDD repositories show
more skewed or inequitable contributions than control repositories. We conclude
that there is a lack of clear evidence if TDD practices are a deterrent or detriment
to pull-request based collaboration and to the skew of contribution of commits per
author.
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5 Threats to Validity

In this work, internal validity is threatened by our choice to use file names as
our basis of TDD identification. In particular, this approach does not consider file
contents, which might be problematic as not all developers use the source/test
file naming convention we assumed. For example, they may instead name files by
their use case. Also, it may be the case that repositories truly employing TDD were
omitted from our count due to low test-to-source-file ratio. Another threat to in-
ternal validity was our use of hand-crafted regular expressions for the identification
of bugs fixing commits. This may have resulted in an over- or an under-estimation
of the true number of bugs. A final threat to internal validity is that the data used
for this study was a byproduct of software development and was not collected
specifically to study TDD.

Construct validity is threatened in this work by not considering dynamic code
such as Java reflections, where the behaviour of a class changes at run time9.
Therefore we may be erroneously excluding repositories that are practicing TDD.
Another threat to construct validity is that we assume repositories follow a par-
ticular TDD variant consistently. For example, this means that repositories that
start with high class coverage but then drop in coverage are simply binned into the
lower class coverage grouping. Our study relies on opertional data, that is artifacts
and information left behind by developers while developing software. Developers
did not make these records for us to study, these records and artifacts were created
to make software. Because of this we do not have a clean and controlled study, we
are are trying to attribute behaviour in the wilds of Github to known processes,
and thus we cannot make controlled experiments, we can only rely on control sub-
sets. Construct validity is further threatened by our choice to only consider file
creation times, as this does not account for the order in which the contents of files
are completed. This means we might not know if TDD is truly being practiced –
i.e., if all the test code in a test file is written before the source code that it tests.
Finally, construct validity is threatened by our choice to measure test files by their
imports of JUnit, TestNG and Android test frameworks. This may not capture all
testing activities as developers may test with other frameworks or without the use
of a framework. Our choice to look at import statements may also threaten con-
struct validity because software developers could conceivably use java annotations
and decorator patterns to produce test classes that do not explicitly use the Java
import syntax.

External validity is threatened by our choice to only work with Java files. This
was done out of convenience but means that this work may not generalize to other
programming languages. Another threat to external validity was our decision to
measure the occurrence of continuous integration by only looking Travis-CI and the
presence of a travis.yml file. It is possible that repositories practicing continuous
integration were ignored in this study for not using Travis-CI. A final threat to
external validity was our choice to not exclude all small or personal projects from
the study. While we have studied a set of repositories that are representative of
GitHub, this work may not necessarily generalize to enterprise level software.

9 http://www.javatpoint.com/java-reflection



26 Neil C. Borle et al.

6 Conclusions and Future Work

In this work we studied Java repositories on GitHub and compared those practicing
Test Driven Development to those that did not. While our results are interesting,
this study cannot claim that any of these results are the direct effect of imple-
menting TDD-like or TDD practices as there may be confounding factors in the
data.

In our study we found that 16.1% (41,302) of Java repositories on GitHub
have test files and that only 0.8% (1,991) repositories strictly practiced TDD in
September 2015. This corroborates evidence by Beller et al. (2015a) that TDD is
not commonly practiced.

We found that that there was no statistically significant support for any of
the research questions posed in this work: practicing TDD does not seem to af-
fect commit velocity, number of bug fixing commits, numbers of issues, usage
of TravisCI nor numbers of pull requests. This lack of evidence for the benefits
claimed by TDD advocates suggests that TDD may not be worth the overhead
when choosing a testing process.

Having studied the differences between repositories practicing TDD versus
those that do not, future work needs to be done to more rigorously determine
if these are the direct results of implementing a TDD methodology and to deter-
mine if any confounding factors have influenced these results. Extensions of this
work will involve studying the order in which methods within classes are developed
and tested, as well as investigating how source and test files correlate over time
between TDD repositories and repositories using other development methodolo-
gies. Furthermore future work needs to determine the economic cost versus the
empirical benefit of TDD, as currently we cannot empirically state any significant
difference in the qualities that we measured.
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