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Abstract 

In this research, computational intelligence techniques were used to predict the forces 

distribution across the wheels of a bulldozer, when levelling overburden on a dump site. 

This is accomplished by modeling the volume of overburden the bulldozer is pushing and 

summing the moments around the front and rear wheel force. Determining the forces at 

the wheels of the bulldozer will allow us to design a system that will reduce equipment 

downtime due to uneven wearing of the wheels. 

Neurofuzzy systems were chosen to model relations between measured quantities and 

overburden. This type of models ensures easiness of learning, as well as high 

transparency. Structures of neurofuzzy systems were determined using a genetic 

programming based system. The experiments were conducted for two data sets collected 

in winter and early spring. IF-THEN rules were extracted from both models. The rules 

indicated several fuzzy terms as important, with the most important being the rimpull 

force. 
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Chapter 1 

Introduction 

The mining industry relies heavily on its fleets of tracks, shovels, and support equipment 

to meet its mining operational objectives. Maintenance and downtime reduction of the 

equipment is especially important for the mining operation. The fact that this equipment 

is in operation 24/7 means that the scale of these problems, their distinctiveness and 

impact on everyday business of mines are of paramount importance. Any improvements 

of effectiveness of operations of the equipment make a notable impact on the mining 

productivity and the plant-wide profits. For these reasons, there is a genuine and evident 

need in the surface mining industry to develop a better understanding of different factors 

impacting work and life span of the earth moving equipment. 

1.1 Industry Background 

Bulldozers and motor graders are one of the principal machinery used in the surface 

mining. They perform numerous operations such as pushing, pulling or ripping and 

maintain of road by motor graders. Bulldozers components are constantly exposed to 

extensive and long lasting forces that cause their substantial wear. In order to keep 

bulldozers fully functional, there is a need for a constant monitoring of conditions of the 

components and their frequent replacement. It is then essential to understand how forces 

are distributed among different components and how they affect different parts of the 

components. Such understanding would help identify components with the highest 

exposure to forces, and help determine the best method to ensure a uniform distribution 

of forces. 
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1.2 Motivation 

A distribution of mechanical forces is constantly changing during operations of a 

bulldozer. These changes are associated with continuous changes in bulldozer's load, 

working conditions, operator habits. 

There are many factors influencing this distribution, therefore it seems that the best 

approach to gain some knowledge about forces is a comprehensive measurement process 

leading to collection of data representing a number of different parameters associated 

with operating conditions of bulldozer. 

In such circumstances, the first step in an estimation process of force distribution is 

analysis of the collected data. There are several interesting and practical questions one 

could pose that really motivate a thorough analysis of the data. For instance, one could be 

interested in learning about some major relationships and groups of data that could be 

distinguished in the dataset. What do they represent in terms of the working conditions of 

the equipment? How are they interrelated? Do they offer any meaningful insight into the 

underlying phenomenon that generated the data themselves? Do they offer any significant 

insight into the nature of the processes and eventually help draw some conclusions about 

the reliability of the equipment and improve their working conditions? All of those are 

relevant questions for which a comprehensive data analysis could offer some useful 

answers. 

1.3 Problem description 

In order to predict the force distribution across the wheels of the bulldozer, we sum the 

moments of all forces acting on the bulldozer. Once the moments are summed up, we can 

calculate the forces at locations Ff and Fr (front force, and rear force), Figure l. 
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Figure 1: Forces acting on the bulldozer wheels 

Because the observed wear is much higher at the front then the back wheel, the force 

distribution is modelled using a trapezoidal distribution, Figure 2. 

Figure 2: Force distribution between the front and rear wheel of the bulldozer 

In order to calculate Ff and Fr, we need to find the torque generated by the overburden 

being pushed in front of the blade. This torque is equal to the force the overburden is 

exerting on the blade multiplied by its height. For different volumes of overburden the 

bulldozer is pushing, corresponding height of the overburden are determined, this is 

summarized in table 1. 
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Table 1: % of Blade volume versus height of overburden 

Blade Volume (%) 

100 

90 

82 

78 

74 

70 

65 

58 

50 

43 

34 

17 

13 

Height of overburden 

0.968 

0.919 

0.881 

0.886 

0.889 

0.894 

0.899 

0.909 

0.922 

0.937 

0.871 

0.711 

0.693 

By determining the volume of overburden the bulldozer is pushing, we can determine the 

height, and we can calculate the force distribution across the wheels of the bulldozer. The 

emphasis of this research is to create a model that not only allows us to predict the 

volume of overburden the bulldozer is pushing as a percentage of blade volume, but also 

to determine the factors that influence the volume of overburden being pushed by the 

bulldozer. 

Creating a model that will allow us to predict the volume of material pushed by the 

bulldozer, allows us to construct a system that can equalize the force distribution across 

the wheels making them wear a lot less and at equal time intervals reducing maintenance 

costs, and improving operations, and downtime. 
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1.4 Contributions 

At the beginning we should emphasise the fact that this kind of research is very 

innovative, and we could not find any indication of similar research activities. 

Consequently, there is no literature dealing with this subject matter. 

The contributions of the thesis are following: 

collection of on-site measurements of heavy earth-moving equipment, performed during 

different times during a year - in particular in January and March; this task has been done 

with a tremendous of help of a dedicated individual from an oil sand company; 

processing of the measurement data sets; this task has been preformed in order to ensure 

consistency of data points; the validation of data has been accomplished also with a help 

of the individual from the oil send company; 

development of neuro-fuzzy models of the measurement data; this task has been 

preformed using an evolutionary-based optimization system for model construction. 

Overall, the research activities have resulted in construction of a system for predicting the 

volume of material pushed by the bulldozer. Analysis of the constructed model (system) 

allows for exploring the factors that influence relationships between the volume and 

measures quantities. 

1.5 Thesis outline 

This thesis is divided into 7 chapters. The first chapter is an introduction, and problem 

description. Chapter 2 introduces the methods used in this research, and gives a brief 

introduction to each of them. Chapter 3 describes the prediction system proposed in and 

deals with the method used in our model, and its learning mechanism, chapter 4 describes 

the data used in our research, chapter 5 describes details regarding the structure of the 

system. Chapter 6 deals with the results and models obtained from experiments, describes 

the knowledge gained from the system. Chapter 7 contains the conclusion, and future 

recommendations. 
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Chapter 2 

Background 

The field of Computational Intelligence and Artificial Intelligence in general is concerned 

with mimicking the information processing capabilities of the human brain, in order to 

solve a variety of engineering problems. The human brain operates on two basic levels, 

the physical level, which involves the processing nodes, called neurons, and the logical 

level, which involves the decision making process, and dealing with uncertainty, as well 

as incomplete information. 

The physical level of the human brain involves small processing units called neurons. 

Each neuron consists of the dendrites, which receive inputs from the neurons, the soma or 

cell body, which supports the functionality of the neuron, and processes the incoming 

signals, the axon, which transports the resulting signal, and synapse, which contains the 

neurotransmitters that propagate the signal to the next neuron. 

There are approximately 100 billion neurons in the human brain, each of which is 

connected on average to thousands of other neurons. The response time of a single 

neuron is about 1 millisecond, orders of magnitude less than today's powerful processors, 

which have processing times in the nanoseconds. However, what the brain lacks in speed 

is made up for in parallel processing capability, instead of one processor working, we 

have hundreds of thousands or even millions of neurons working together to achieve a 

common task. 

The logical level of the brain is the brains ability to deal with incomplete or uncertain 

information, and arrive at the correct conclusion or course of action to take, and process 
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language. Making use of this logical processing capability of the brain allows us to 

construct systems that can process and understand natural language, and process 

information in the presence of uncertainty and incompleteness. 

2.1 Neural networks 

Neural networks were first introduced by McCulloch and Pitts in 1943, they have 

introduced a simple and basic construction of an artificial neuron, called the "McCulloch 

Pitts neuron" Figure 3. This early model of the biological neuron, have demonstrated 

abilities to solve the logical binary operations. 

Figure 3: The McCulloch Pitts neuron 

The inputs to the neuron xi,x2,...,xn are multiplied by their corresponding 

weights wA,w2,...,wn, which represent the synaptic strength between biological neurons. 

The net input to the neuron is the sum of the product of the inputs and their 

corresponding weights minus a bias or threshold term. 

neuron, = T " wix,-6 

This input then undergoes a transformation using a stepwise transfer function 

f (neuron m) to produce the final output, if the final output exceeds the bias or 

threshold 0, the neuron fires. The transfer function used in the McCulloch Pitts neuron is 

a binary output function 

fl if neuronm a 0 
f(neuronin) = J , where 6 is the bias or threshold of the neuron 

0 if neuron, <9 



The McCulloch Pitts neuron had disadvantages, which have limited its application to 

binary tasks: 

1) No mechanism for learning the weights, and threshold of the neuron 
2) The output of the neuron is binary, not suited for regression tasks 

In 1949 Donald Hebb proposed a mechanism of learning in his book "The Organization 

of Behavior". The method became known as Hebbian learning: 

"When an axon of cell A is near enough to excite cell B and repeatedly or persistently 

takes part in firing it, some growth process or metabolic change takes place in one or both 

cells such that A's efficiency, as one of the cells firing B, is increased"[l] 

In 1958, Rosenblatt introduced the perceptron, in which he integrated all the previous 

work of McCulloch, Pitts and Hebb. He developed a model of the neuron that is capable 

of learning from sample of input output data points, by adjusting the weights of the 

connections between neurons. 

The learning rule is called the "perceptron learning rule". Given an input output pair of 

training points (x,, y}), all weights are initialized to random values, usually in the range [-

0.5, 0.5] and compute the output of the neuron/,. If the desired value yi equals the 

neuron output/,, then there is no need to change weights, otherwise the weights are 

adjusted according to: 

wmw = woid + *7 * (.V/ ~ li) * x,• > where r\ is the learning rate 

The learning rate rj is a constant between 0 and 1 that determines how fast the perceptron 

learns the new weights. Setting this value too high, will cause the weights to oscillate, 

and setting it too low, the network will take long to learn. This learning process is 

repeated until the weights of the network do not change any more, and the network is said 

to have converged. 

The transfer functions the perceptron uses can be any of a number of functions, some of 

the transfer functions are shown in Figure 4. 
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Sigmoidal Activation function 

1 

Linear activation function 

> 

i i 

Figure 4: Examples of transfer functions 

Later, in 1969 Minsky and Papert showed that there are some limitations of perceptrons, 

It is not able to solve for example, the XOR problem, and that a network of perceptrons 

arranged in layers are better capable of solving these problems, this network is called 

multilayer perceptron. 

2.1.1 Types of Neural Networks 

Neural networks fall under different types, according to their structure or learning 

mechanism. Multilayer perceptrons are one kind of neural network in which the inputs 

are propagated forward through the layers also called (Feed forward neural network), this 

is by far the most popular type of neural networks, Figure 5. This type of network is most 

suitable for classification and regression problems. 

w 
rt1 v2 \ J w1 

x2G; \ ^ / Q ° 2 \ --c— 

X3,-) , ., v ( 3.Q3 ,- —-f ! 

x 4 < ^ l_—.—r j o4 

—output 1 

-^-output 2 

Figure 5: Multilayer perceptron 



Radial basis functions are another type of neural networks that have the same structure as 

the multilayer perceptron. However, the neurons in the hidden layer consist of basis 

functions instead of the sigmoid activation functions, and the maximum number of 

hidden layer neurons equals the number of inputs. The output of the neural network is the 

weighted sum of the basis function outputs, and there are no weights in the input layer. 

This particular type of neural network is highly suitable for function approximation and 

regression problems. 

Another type of neural networks is the recurrent neural network. This type of network is 

capable of remembering its previous state, because there is a feedback from layers or 

neurons. There are two kinds of feedback, global and local feed backs. In global 

feedbacks, a neuron in the next layer feeds a neuron in the previous layer, or a neuron in 

the same layer with its output, and in local feedback, a neuron feeds its own with its 

output. Recurrent networks are most suitable for storing and retrieving information, the 

Hopfield network, Figure 6, is a global feedback type recurrent neural network, which 

mimics the memory centers in our brain. 

Figure 6: The Hopfield network 
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Another type of neural networks is the Kohonen self organizing maps (SOM). In this 

kind of network, the inputs are fully connected to the output neurons, and each input 

vector is compared with the weight from the input vector to the output neuron, the output 

neuron which is closest to the input vector is the winner, weights are updated, and 

process repeated until the termination criteria is met. Figure 7 shows a Kohonen self 

organizing map. Kohonen self organizing map is most suitable for pattern recognition 

and clustering problems. 

Figure 7: Kohonen self organizing map 

2.1.2 Learning Techniques 

The strength of neural networks arises from their ability to learn, and adapt to new inputs. 

This is achieved by adjusting the weights of connections between the neurons, or the 

synaptic strengths. Different neural networks require different learning mechanisms, 

however the common theme is adjusting the weights is how neural networks in general 

learn. The exception to this rule is the Hopfield network. 

There are three kinds of learning methods: 

1) Supervised learning 
2) Unsupervised learning 
3) Reinforcement learning 

11 



Each of these learning methods is used to train different structures. In supervised learning 

techniques, an input, output pairs of training points are provided. The inputs are 

propagated through the network and learning takes place because the network compares 

its output with the desired output, and adjusts its weights accordingly. This type of 

learning is used to train the multilayer perceptron, and radial basis function network. 

Training the multilayer perceptron requires us to find a way of propagating the weight 

changes in the output layer to the hidden and input layers. This is done by the back-

propagation algorithm, which was invented by Werbos in 1974 and re-invented again by 

Rumelhart and McClelland in 1986. The algorithm uses gradient decent minimization to 

find the weights which will result in the lowest error. 

Gradient decent is given by: 

dE(w„) 
Aw = -r]VE(w ) = -t] 

dWy 

We change the weights of the network, in the opposite direction of the gradient, so as to 

minimize the error. The total error given after applying the inputs to the neural network is 

£ = 2^,2^,(0-°/)' 

where 

n is the number of training patterns 

m is the number of outputs 

tj is the desired output of the neural network 

Oj is the actual output of the neural network 

E is the total error 

Two modes of learning are possible with neural networks, online and batch training. In 

online training, the weights are updated every input pattern, and in batch training, the 

weights are updated every complete run of the patterns through the network, which is 

12 



called epoch. The difference in both is a drop of the summation over all patterns. Since 

the output of the neuron is a function of its net inputs, 

netj-ywyx, 

Oj = finetj) 

Using online training, the error as a function of the neuron input becomes, 

Calculating the gradient of the error 

——— = 2 x - x \ (tj-/{net ) ) x / (net.)x(-* ) 

dWy 2 z -"" 1 

a = X M (t,-Oj)xf {net,)x(-*,) 

For the sigmoidal transfer function, / (net t) = o. x (1 - o ) , and dropping the summation sign, 

dE(wa) 

dwy 
= (tj -O^XOjXQ-O^xi-X,) 

The term 6 = (tf. - oy) x o ; x (1 - oy) is called the error signal, and x, is the ith input to the 

j t h neuron. 

The change in weight for the output layer becomes, 

dE(w,l) 
Aw„ = -77 — = -77 x 6, x (-x,) = 77 x 6, x x. 

Since we don't have a desired output to compare the output of the hidden neurons to, we 

back propagate the output layer error into the hidden nodes, the error signal for the 

hidden neurons becomes 6h = oh x (1 - oh) x \''" (whJ8f), the weights of the hidden 

neurons are then updated using Aww = 77 x 6h x yk, were yk is the input to the hidden node. 

13 



The initial weights of the Hopfield network on the other hand are set 

using wy = V" ] "y^.^XiXj , there is no feedback between the neuron and itself, 

consequently the weight between the neuron and itself is zero. With the introduction of 

an unknown state, the network will converge to the closest remembered pattern. Hopfield 

defined the energy of a state to be e = w,-*,.*., the remembered patterns will have the 

lowest energy, and an unknown pattern will converge to the lowest energy directly, or 

through a number of state transitions. The state of the network is updated either 

synchronously (update the output of one neuron each time step) or asynchronously 

(update all the outputs of all neurons each time step). 

The radial basis function requires first, determining the cluster centers and spread of each 

of the basis functions, and training the output weights of the network. Training the output 

weights is done using gradient decent. However, finding the center and spread of the 

basis functions, can be done using unsupervised learning techniques. 

In unsupervised learning, the network is provided only with the inputs, and it's up to the 

network and the learning algorithm to be able to find structures within the data. There is 

no guidance as to what the outcome should be. The Kohonen self organizing map is an 

example of unsupervised learning method. The weights of the connections are initialized, 

and each input pattern is compared to all weight vectors. The closest one to the input 

pattern is the winner, and then the weights are updated via 

w,+] = wt + ht x [x, - w, ], where 

w,+] is the updated weight vector 

w, is the previous weight vector 

h, is a neighbourhood function 

x, is the input vector 

In reinforcement training, the network is only presented with feedback on whether the 

network is doing well or not, there is no training data that the network can compare its 

outputs to, only feedback on the actions of the network, for example, touching the fire is 

bad "you burn your finger and feel pain", the result is "don't touch fire". 

14 



2.2 Fuzzy Systems 

In everyday life, we use terms like tall, short, big, small, etc, to describe different things. 

These terms are not precisely defined, and often values can belong to two or more 

different sets. In classical sets, an item either belongs to a set or does not Figure 8, there 

is no tolerance for imprecision or vagueness. 

u.*=1 

Set A SetB 

threshold 

Figure 8: Crisp set 

A famous paradox that illustrates the deficiencies of classical sets in real life is the 

"sorites paradox", which states the following two premises: 

1,000,000 grains of sand is a heap of sand. (Premise 1) 

A heap of sand minus one grain is still a heap. (Premise 2) [2] 

If we were to continually repeat the second premise, at some point, a heap will consist of 

a single sand grain, which we know is incorrect. 

This paradox can be applied to all linguistic terms, which shows that uncertainty and 

vagueness are part of our everyday life. In 1965, Lotfi Zadeh, introduced the concept of 

fuzzy logic, which allows objects to belong partially to a number of sets. With the 

introduction of fuzzy logic, we are able to model real world events more realistically. 
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2.2.7 Basic concepts 

Fuzzy logic assigns a membership value ,u(x)to each element in each set, so that an 

element could belong to two ore more sets in the same time to different degrees, Figure 9. 

1.0 

0.65-
jLfc 

035 
0 

0 

Membership of speed In each fuzzy set 
(Slow.Medium.and Fast) 

\ 

Stow Medium , Fast 
\ 

\ 
\ x = 4 5 m P h 150 mph 

Figure 9: Fuzzy sets 

In Figure 9, a speed of 45 mph has membership in the slow set of 0.65, the medium set of 

0.35, and to the fast set to of 0. The membership is not a probability it is only a degree of 

belonging to a specific set. The membership functions in Figure 7, which describe the 

degree each of the inputs belongs to the fuzzy set is trapezoidal in nature. 

Each of the fuzzy sets in Figure 7 can be written as: 

pA(x])/x] +/J.A(X2)/X2 +... + fiA(xn)/xn, where 

x, is the crisp values for which the memberhip function is defined 

\xA (x,) is the membership of x, in fuzzy set A 

The universe in which the xt' s are defined is called the universe of discourse. 

The number of membership functions, and membership function shapes are dependant 

upon the problem to be solved. There are a variety of membership functions, trapezoidal, 

triangular, and Gaussian membership functions. 

Operations on fuzzy sets include union, intersection, and complement. The intersection of 

two fuzzy sets, A and B is defined as 

A fl B = m\n{fAA (x), fxB (x)) 

The union of two fuzzy sets A and B is defined as 
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A U B = max(^A (x), pLR (x)) 

And the complement of a fuzzy set A is defined as 

PA = 1 - M * ) 

A more general form of the union and intersection operators is the T and S norms. 

The T-norm is mapping T: [o,l]x [0,l]-* [o,l], which satisfies the following: 

Commutativity :T{a,b) = T(b,a) 

Monotonicity : T(a, b) <s T(c, d) if a <, c and b^d 

Associativity :T(a,T(b,c)) = T{T{a,b),c) 

T(a,\) = a 

The S-norm is mapping S: [0,l]x [0,l]-^ [0,l], which satisfies the following: 

Commutativity :S(a,b) = S(b,a) 

Monotonicity : S(a,b) <, S(c,d) if a ss c and b <, d 

Associativity : S(a, S(b, c)) = S(S(a, b), c) 

S(a,0) = a 

2.2.2 Fuzzy if then rules 

Fuzzy if then rules are of the form: 

If (antecedent) Then (consequent) 

The antecedent is formed by the conjunction or disjunction of the fuzzy terms. An 

example of a fuzzy rule is: 

If "the temperature is hot or humidity is high" Then "fan speed is high" 

Fuzzy rules require an inference mechanism to be able to be useful. For the conjunction 

or disjunction of the antecedents, we use the T or S norm, which corresponds to the 

intersection or union of the fuzzy sets. The value of conjunction or disjunction of all these 

fuzzy terms, will give us the degree of satisfaction of the consequent, which refers to the 

degree to which the consequent is true. 
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Now, we need to propagate the degree to which the consequent is satisfied to the 

consequents fuzzy set, which is called implication. There are a variety of implications 

available, some of which are: 

Larson implication 

Mamdani implication 

PA-~B (*> y) = m i n [ / ^ 0)> VB (y)] 

Zadeh implication 

PA^B (X> y) - max[min[^ (x), [iB (y)],\ - \iA (x)] 

When multiple rules exist, we need to aggregate the output of each rule. The aggregation 

operator is usually the maximum. After we aggregate the rules, we have the final output 

membership, which can be defuzzified to produce a crisp output. There exist many 

defuzzification methods, some of which are: 

Center of Area, Center of gravity defuzzification 

jr=max 

V xx ^(x) 
COG = ^ ^ 

2,f*(x) 
Mean of maxima defuzzification 

x 
maxwr 1 

MOM = miau" , where 
n 

n is the number of values for which \xx is maximum 

Fuzzy mean defuzzification 

2"-. a> 
n is the number of fuzzy output sets 
c, is a characteristic value of the output fuzzy sets, COG or MOM 

This crisp output will be the output of the fuzzy system. 

PM = -£*!-! , where 
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2.3 Neurofuzzy Systems 

Neurofuzzy systems combined the benefits of both fuzzy systems, and neural networks. 

Neural networks have the ability to learn and generalize, while fuzzy systems are good at 

accounting for uncertainty, and comprehensibility, since you can see and the relationship 

between variables. Neurofuzzy systems combine the benefits of both to create a system 

that is capable of both learning, tolerance of uncertainty, and transparency. 

2.3.1 Architectures 

Neurofuzzy systems are of three types [9]: 

1) Cooperative neurofuzzy network, Figure 10. 
2) Concurrent neurofuzzy network, Figure 11. 
3) Hybrid neurofuzzy networks 

In cooperative neurofuzzy networks, the neural network adapts the fuzzy system. This 

included training the weights for the fuzzy rules, or tuning the membership functions of 

the fuzzy system. After training the weights, or tuning the membership functions of the 

fuzzy system, the neural network is disconnected, and the fuzzy system operates without 

the need for the neural network. 

L«t8 t 

Fuz2y rules 
Fuzzy sets 

Neural 
Network 

• 
• 1 Fuzzy £ 

System 

;ets 

Output ^ 

Figure 10: Cooperative neurofuzzy network 
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In concurrent neurofuzzy systems, a neural network and the fuzzy system are connected 

so that the output of one is fed into the other. The neural network does not actually 

modify the fuzzy system; however, it modifies the input or output of the fuzzy system as 

a pre-processing or post-processing step. 

• * 

•# 
K 

M 

" • * 
<b> 

Fuzzy 
System 

Neural 
Network 

1 Output k 

^ ^ 

1 Output k 

Figure 11: Concurrent neurofuzzy networks 

Hybrid neurofuzzy system, incorporate the principles of fuzzy logic, into neural 

networks. The neural network is modified so that the neurons are fuzzy neurons [6], and 

the inputs are fuzzy inputs. The fuzzy neurons are the AND, OR fuzzy neurons Figure 12. 

*1 

x2 

Xn 

Xl 

x2 

Xn 

AND fuzzy neuron 

w . , x \ ^ 

TT(x,SWi)j 

"Wn 

OR fuzzy neuron 
w i \ „ _ 

1 SCXiTWj) | 

, A J 
' "W n 

output 

output 

Figure 12: Fuzzy AND, OR neuron. 

T and S norms are used instead of the sigmoidal activation function. 
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AND = T(S(x],w]),S(x2,w2),...,S(xn,wn)) 

OR = S(T(x],wi),T(x2,w2),....,T(xn,wn)) 

In hybrid neurofuzzy systems, the input layer consists of fuzzification of the raw inputs, 

followed by the rules layer, and the output layer. There are three inference system types 

used in fuzzy and neurofuzzy systems. 

1) Mamdani based inference system 
2) Sugeno-Takagi based inference system 
3) Tsukamoto fuzzy inference system 

In the Mamdani based inference system, the inputs to the fuzzy system are fuzzified and 

then send to the corresponding rules. The outputs of the rules are then sent to their 

respective consequents, combined, and the output is defuzzified. 

In the Sugeno-Takagi based inference system, the output from each fuzzy rule takes the 

form 

If x is A and y is B Then C = f(x, y), where 

f(x,y) = px + qy + r 

For a first order system, the parametersp,q,r are learned parameters. In a Sugeno-Takagi 

neurofuzzy system, the outputs from each rule are normalized in a normalization layer to 

determine the firing strength of each rule, given by 

a". = ———, where 

a{ is the normalized firing strength of the rule 

a, is the firing strength of the rule 

The output of the fuzzy system is then taken to be 

z = 2"-i5'^ ̂ '^ where 

n is the number of rules 

In the Tsukamoto fuzzy inference system, the consequents membership functions are 

monotonic, and the resulting system output is the weighted average of the rules. 
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2.3.2 Learning techniques 

In both the concurrent and cooperative neurofuzzy system, the learning techniques 

applicable to neural network training are used, which mainly is the backpropagation 

learning algorithm. For the hybrid neurofuzzy system, the backpropagation learning 

technique also applies, however it requires some modification, since we have fuzzy 

neurons instead of our normal neurons. 

Aw,y =-r]VE(wij) = -r]-
dWy 

For the output layer, we have the OR neuron, and using online learning, 

E-Uitj-Oj)2 

11 is the desired output of the neural network 

ot is the actual output of the neural network 

E is the total error 

dE 1 „ , v doj• , v d o , = - x 2 x ( r -o )x—± = (t - o )x—^~ 
dw, 2 J J dw, J J dwt 

The output of the OR neuron is given by: 

n 

°i = S(w'Txi)> w n e r e 

/ - i 

S is the S - norm 

T is the T - norm 

Using the product T-norm, and probabilistic sum S-norm, we can write the output of the 

OR neuron as: 

n 

0,-1-U (l-x,w,) 

The derivative of the output with respect to the weight becomes, 

do. 
(1 - xt wl), which can be written as 
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do, " 
-J—x.xQ-Siwp,)) 
dw, ,_, 

The error signal of the output is 

Sf-itj-oJxil-SiWjTxj)) 

i - = ( / ; - 0 / )x ( l - J S ' (>v /x J ) )xx , 
dw, JmX 

To backpropagate the error, we need to calculate the derivate of the AND, with respect to 

the input weights. The output of the AND neuron is given by: 

k 

°h = r O m
S 0 , where 

S is the S - norm 

T is the T - norm 

The output of the AND neuron can be written as: 

m+Wm-Xm
WJ 

The derivative of the output with respect to the weight becomes, 

k 

(1 - xm) x FT (x, +w, -XfWf), which can be written as 

do * 
—!L- = (\-xm)x(rf (w,Sx,)), the error signal for the input layer is 
dwm /., 

8h=<}-xm)x(T(wlSxl))xwhJ.x(tl-oi)x(\-S(wJTx/) 
' - 1 7=1 

2.4 Evolutionary computation 

In 1859, Charles Darwin published his book titled "Origin of Species", in which he 

introduced his theory of evolution. Darwin argued that species evolve through a process 

called natural selection, where the fittest individuals in the population survive. The fittest 

23 



individuals are the ones which are better adapted to live in their environment. 

Occasionally mutations occur in the population, and if the mutation leads to a better 

suited individual, then that individual thrives. Reproduction also might generate better 

suited individuals, over time the population would be highly suited to its environment. 

In 1975, Holland introduced genetic algorithms, which are based on Darwin's theory of 

evolution. Holland used the concepts of natural selection, mutation, and reproduction to 

find solutions to optimization problems. 

2.4.1 Concepts - Genetic Algorithm 

Genetic algorithms attempt to mimic the natural process of evolution to solving 

optimization and search problems. Initially optimization space of the problem is 

identified, a population of possible solutions are generated, and encoded (called 

chromosomes), and their fitness evaluated using a fitness function, which measures how 

good the individuals in the population are. The selection process is carried out to select 

the best individuals in the population. There are multiple selection mechanisms, some of 

which is the roulette wheel selection, and rank selection. 

Some of the individuals in this population randomly undergo mutation and reproduction 

(also called crossover), generating new individuals or offspring, the individuals that don't 

are copied to the next generation. The population size is kept constant through out the 

whole process. After the process is done, we have a new population of individuals, with 

higher overall fitness. This process is repeated for a number of generations until the 

stopping criterion is met. Figure 13 is a flow diagram of a genetic algorithm. 
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Figure 13: Genetic algorithm flow diagram 

Genetic algorithms require choosing an encoding scheme, to encode the individuals in the 

population, determining and setting some parameters, and the determination of the fitness 

function, which dictates the solution space that is to be searched. 

25 



Genetic algorithms typically encode the solutions in binary format. Gray coding or other 

encoding scheme can be used. 

The mutation operator allows for the exploration of different areas in the solution space, 

setting the rate of mutation dictates the amount of individuals in the population that will 

undergo mutation. If this percent is too high, the individuals within the population will 

mutate very frequently, and a good solution could be lost, on the other hand, if the rate of 

mutation is too low, we are not exploring the solution space enough. There is no 

particular rule that we can use to set the mutation rate, so it's a matter of experimentation. 

The reproduction operator allows us to explore the region around a particular individual 

in the population, it is a local search. The crossover rate, dictates the amount of 

individuals that will undergo crossover. If this rate is too high, the genetic algorithm will 

not be able to explore other regions in the solution space, and if this rate is too low, the 

genetic algorithm will not have a chance to explain the region surrounding the individuals 

in the population. There is no rule for selecting the crossover rate. 

The number of generations determines the evolution time, the larger, the better, since the 

genetic algorithm will explore more of the solution space. Population size determines the 

number of individuals in our population, the larger the size, the better, since we have 

more points to explore in the solution space. 

The fitness function is the heuristic that guides the evolution process. Selecting the 

correct fitness function for the genetic algorithm is essential to obtaining good results. If 

the fitness function is not representative of the problem to be optimized, then an optimal 

solution may not be found. 

Genetic algorithms are not guaranteed to find the best solution. Also there is the 

possibility that the genetic algorithm might get stuck at a local maxima, this problem is 
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more apparent with functions that are multimodal, where the fitness function contains a 

lots of peaks. 

2.4.2 Genetic Programming 

Genetic programming was pioneered by John Koza for optimization of complex 

problems. Genetic programming uses, and works by the same concepts and procedures as 

genetic algorithms, however, in genetic programming the solutions space is not 

composed of chromosomes, but of programs or solutions represented by a tree structure, 

Figure 14. 

Figure 14: A program and its tree representation 

To prepare the GP for solving a problem, we first must define the following: 

1) Function set 
2) Terminal set 
3) fitness function 
4) mutation rate 
5) crossover rate 
6) number of generations 
7) populations size 

The function set is the operations that the solution should be composed of, like +,-

,/,*,sqrt,..,etc, and the terminal set is the operands, or the variables and constants that the 
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solution should include. Defining the parameters and the fitness function is the same as 

that of the genetic algorithm. 

The steps that the GP follows are identical to that of the genetic algorithm. Crossover in 

GP is carried over by cutting two branches of two individuals and exchanging them, 

Figure 15. 

parentl 

0"' V) 
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ff "*B 
©' <3) (I) <|) 

parent2 

X X 

child2 

& y^ 
(x) (3) Q Vxj 

0 © 

Figure 15: Crossover operation in GP 

Mutation in GP involves cutting down a branch of the tree, and replacing the branch with 

a newly generated one, Figure 16. 
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Figure 16: Mutation in GP 

Care must be taken, when doing crossover and mutation, as we require the mutated 

individual or children to be a valid solution. GP is subject to the same problems that 

might affect the genetic algorithm, including being stuck on local maxima. 

There are three methods for creating the tree programs: 

1) full method 
2) grow method 
3) ramped half and half 

In the full method, the individuals in the population are created down to the maximum 

depth, D of the tree. In the grow method, the individuals are created anywhere up to the 

maximum depth D of the tree, this method allow for greater variation in the population, 

then the full method. The ramped half and half method is a combination of both, were 

half of the population is created using the full method, and the other half is created using 

the grow method, this method provides for the greatest variation in the population. 
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Chapter 3 

Neurofuzzy Prediction System 

3.1 Concept 

The technique we have chosen to tackle our problem is using a hybrid neurofuzzy system 

for prediction, for three main reasons: 

The system is capable of learning and generalizing from training data 

The system is capable of handling uncertainty 

the system is transparent, we can see and understand the relationship between variables 

Neural networks are adaptive systems that learn from the inputs, and when properly 

trained, they generalize well from data. The fact that our research data contain 

uncertainties in the values of the volume measured means that we require a system that is 

capable of incorporating this uncertainty as well as being transparent, so we can 

determine the relationships between all the variables. A hybrid system that combines the 

previously mentioned benefits of neural networks with fuzzy systems is a good choice for 

a modeling the forces acting on the bulldozer. 

3.2 Architecture 

Figure 17 is a simplified diagram of a hybrid neurofuzzy system, the inputs are fuzzified 

using their membership functions, and the fuzzified inputs are send to neurofuzzy 

network, the network produces the fuzzy outputs which are defuzzified to crisp values. 
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Figure 17: Simplified hybrid neurofuzzy network 

The system consists of the following layers: 

1) The input layer 
2) The fuzzification layer 
3) The rules layer 
4) The output layer 

Figure 18 is a diagram of the hybrid neurofuzzy system. The inputs to the neurofuzzy 

system are fuzzified, and the fuzzified inputs are send to their corresponding rules, there 

T norms are calculated. The output from the rules layer is send to the corresponding 

consequents membership function, and aggregated to produce the final degree of 

satisfaction of the consequents output fuzzy set. 

31 



< m o 
0^% ****% ****% 

O 

^ 

^K) O ( ) 
if) > '̂ 

.*• 

W DC 
> f 1 

/ / 
/ / 

/ / s 

'/ OC 

I \ X / 
X X 

V 
X/\ / 
/ X 

/ / \ 

N 

0 X, \ \ 

x \ \ 
\ X \ '"^ssQl 

" ' ! < • , 
/ 

/ \ 

I \ 
X\ 

/ 
/ 

X 
/ 

/ 

• ' " > . _ 

y 

v / 

A 
\ J 

\ 

O Q Q" 0 0 O O Q P Q C 
iiiiwlff \ 1 / wmmmmm 

/ 

X 

o 
CM 

X 
CO 

X 

\ 

The system is based on the Mamdani inference; we produce the degree of satisfaction of 

the consequents fuzzy sets, which we then use the fuzzy mean defuzzification described 

in chapter 2 to calculate the final crisp output. 
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3.3 Construction 

In the input layer, the inputs are presented to the system, and each input is fuzzified using 

Gaussian membership functions of the form 

The mean and standard deviation of the Gaussian membership functions are determined 

using 

x\ (max.-min.) , 
u, = min,+ > • xi, where 

n («-i) 

n is the number of membership functions 

0 4 5 x ( m a x , - m i n , ) -1.0xlog(0.45) 

The means of the membership functions are determined so that we have equal intervals 

between the means of the membership functions, and the standard deviation is the same 

for all membership function. 

After the fuzzification stage, the selected fuzzy inputs are fed into the rules layer, which 

consist of the AND neurons. The T-norm is the product of the inputs T(x,y) = xy. The S-

norm is the probabilistic sumS'(x,>') = x + y-xy. These T and S norms were chosen 

because we need to have differentiable functions, so that we can use the backpropagation 

learning algorithm. 

The outputs from the rules are then fed into the output layer, which consist of the OR 

neurons. Each output from each neuron is fed into its corresponding output neuron, and 

all the outputs are combined together to yield a degree of satisfaction of the consequents 
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fuzzy set. The neurofuzzy system is trained using the backprogation learning algorithm as 

described in chapter 2. 

The initial weights of the inputs are 0 for the inputs to the AND neuron, and 1 for non 

inputs to that AND, For the OR neuron, the weights get reversed, so that the weights 

become 0 for non inputs to the OR, and 1 for inputs. This is required because of the 

properties of T and S norms. When these weights get trained using the backpropagation, 

only the weights that correspond to the actual inputs are modified. 

Because of the rule explosion, we have determined that the best membership functions 

are 3 for both inputs and outputs, if we were to use a bigger value of the membership 

functions, the amount of potential rules will be very high, since we have 8 inputs to the 

network, this will also give us a reasonable view of the data, without having too much 

terms, and making interpretation difficult, and too few terms which are not sufficient to 

describe the data with good detail. 

Determining the inputs to each rules, and the corresponding output are a knowledge that 

have to be determined a priori, or via validation runs, to pick the structure which yields 

the best results. Because of the rule explosion, in which the number of rules grows 

exponentially with the number of inputs to each rule, we decided to use genetic 

programming to search for the best neurofuzzy structure to use. 

3.4 Training 

After the best neurofuzzy structure is determined, we train the network using the 

backpropagation algorithm, since we have differentiable T and S norms. Training the 

nuerofuzzy system will involve only adjusting the weights for the actual inputs to each 

neuron. This way we won't have situations in which we have multiple fuzzy variables are 

inputs to the same rule. 
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3.5 Overfitting Avoiding Technique 

In training the neurofuzzy system, the training error and the testing error versus the 

training time decreases until we reach a stable minimal training error, however after a 

specific training time, the testing error will start to increase, which indicates that we are 

fitting the model to the training data, so we find the point after which the testing error 

starts to increase, and this will be training time that will give the best generalization error. 

Reducing the maximum number of hidden layer nodes also reduces overfitting. 

Neurofuzzy systems in general are less susceptible to over-fitting than neural networks. 

However the potential for over-fitting is there, and so we must find the best training time. 
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Chapter 4 

Measurement data 

4.1 Measurement process 

A specialized Board Monitoring System (BMS) is installed on a bulldozer. A unit for 

data collecting, processing and storing is a central component of the BMS. The unit 

receives measurements from all sensors, performs some simple pre-processing before 

saving them. The location of the most important sensors together with all forces of 

interest is presented in Figure 19. 

The sensors of the BMS are installed at different locations. The collected data are multi

dimensional. The measured attributes are: 

1) Estimated amount of bulldozer load 
2) Engine speed 
3) Forward gear indicating a forward movement 
4) Reverse gear indicating a reverse movement 
5) Torque converter output 
6) Track speed 
7) Horizontal tension on the left and right sides of the dozer 
8) Track pressures on the left and right sides of the dozer 
9) Track tension on the left and right sides of the dozer 
10) Torque 
11) Tractive forces 
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Figure 19: Dozer's schema with sensors and forces indicated 

The bulldozer sensors are described below: 

Engine speed sensor 

Torque converter speed sensor 

Track speed forward v>0 and reverse v<0 

Horizontal tension of track (see item 6 below) 

Pressure sensor (internal pressure from coil spring) 

Track tension generated from applied torque 

Torque (from engine, torque converter, transmission, differential and final drive) 

Tractive forces, known as draw bar pool (DBP) 

On-Board Data Collector system central unit of Board Monitoring System 

Blade. 

4.2 Data description 

The measurement process took place during winter, and spring operating conditions. The 

bulldozer was performing levelling of overburden on a dumpsite. 
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4.2.1 January dataset 

The data for January dataset contains 2485 data points. Table 2 shows data statistics, 

Table 3 shows the frequency distribution of the volume. 

Table 2: January dataset statistics 

Mean 

Standard deviation 

Skewness 

67.90 

25.54 

-0.65 

Table 3: Volume distribution for January dataset 

Bin 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

Frequency 

78 

73 

92 

149 

233 

263 

339 

246 

409 

603 

Cumulative % 

3.14% 

6.08% 

9.78% 

15.77% 

25.15% 

35.73% 

49.38% 

59.28% 

75.73% 

100.00% 

4.2.2 March dataset 

The March dataset data contains 1079 data points. Table 4 shows data statistics, table 5 

shows the frequency distribution of the volume. 
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Table 4: March dataset statistics 

Mean 

Standard deviation 

Skewness 

78.36 

21.71 

-1.17 

Table 5: Volume distribution for March dataset 

Bin 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

Frequency 

7 

11 

32 

33 

71 

62 

86 

146 

201 

430 

Cumulative % 

0.65% 

1.67% 

4.63% 

7.69% 

14.27% 

20.02% 

27.99% 

41.52% 

60.15% 

100.00% 

4.3 Data cleaning 

During pre-processing some of the attributes have been removed and modified. Two 

attributes: Forward Gear and Reverse Gear have been removed. Other six attributes 

representing pressures and tensions on both sides of the dozer have been merged. The 

merge process has been performed in pairs: left track tension and right track tension, left 

track pressure and right track pressure, as well as left horizontal tension and right 

horizontal tension have been averaged. As the result, nine attributes are used in the 

analysis. The names of these attributes with their brief description are presented in table 

6. 
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Table 6: Attributes (features) of analyzed data and their brief description 

Parameter 

Blade Volume 

Engine Speed 

TC Out Speed 

Track Speed 

Horizontal 

Tension 

Track 

Pressure 

Track Tension 

Torque 

Forces 

Unit 

% ofthe 

bulldozer's blade 

Rpm 

Rpm 

km/h 

kPa 

kPa 

kPa 

Nm 

kN 

Description 

estimated amount of load pushed in front of the 

bulldozer in per cent of the fully loaded bulldozer's 

blade 

revolution of engine 

torque converter output 

relative velocity of track 

horizontal track tension - component of track 

tension 

internal pressure create tensions 

track tension create from applied torque and 

resistance of the dozer 

torque generate from power train 

tractive forces 

Besides merging some attributes, and removing others, pre-processing of the data 

consisted of the removal of all data points with the value of blade volume equal to zero. 
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Chapter 5 

Evolutionary based methods for 
system construction 

Genetic algorithms and genetic programming can be used to search for the best possible 

structure of the neural or neurofuzzy network, like the number of hidden neurons for a 

neural network, or number of inputs, rules, and connections between the inputs and rules, 

and rules and outputs. Genetic algorithms can be used also for training weights of the 

neural network or the neurofuzzy system. Determing the structure of the system means 

knowing the rules that govern the behaviour of the system, and understanding the 

relationships between them, and the output. The genetic programming method used in 

this research is the grow method, where the length of the tree varies up to a maximum 

depth of D which is equal to the total number of AND's n the neurofuzzy model. 

5.1 Genetic programming for system construction 

The structure of the hybrid neurofuzzy system is determined using genetic programming, 

this includes: 

1) Number of rules (AND neurons) 
2) Number of inputs to each AND gates 
3) The fuzzy inputs to each rule 
4) The connection between the rules and the outputs 

The function set is the T and S norms, and the terminal set consists of the fuzzy terms, 

and rule outputs. 
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The individuals in the population are created with varying number of AND's, so as to 

give the genetic programming system the ability to explore the best number of rules that 

can describe the system. 

The number of inputs to each rule are generated randomly, since we have 8 variables in 

our research, and we require only 1 fuzzy term from each variable to be included in a 

rule, this is required so that we avoid situations in which we have a rule as 

"If torque is high and torque is low then volume is high" 

Since the system will pick some of the fuzzy terms available, the ones most important to 

the problem at hand, genetic programming is considered to be performing feature 

selection on the attributes, since it picks the most relevant ones, and discard the non 

important ones. 

The connection between the rules and outputs is varied as well, as an example, if we 

have 3 output membership functions, then the first rule might be randomly chosen 

connected to output membership 1, or 2 and 3. The fact that the rule antecedent is 

connected to two different consequents does not mean that we have an inconsistency in 

our rules, this is because the connections have associated weights, so that the antecedent 

might have a weight of 0.6 towards output membership 2, but 0.1 towards output 

membership 3, so that the rule is contributing to different degrees towards each of the 

consequents. After the neurofuzzy structure is determined, the connection weights are 

trained using the backpropagation algorithm in chapter 2. The results are a set of rules 

that characterize the behaviour of the system using the most relevant variables. 

5.1.1 Chromosome representation 

Each chromosome in our population is represented by a linked list, in which each rule is 

represented by a structure that contains the outputs, the connections, and a pointer to 

another structure that contains the fuzzy inputs, and a pointer to the next rule, Figure 20. 
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Figure 20: Structure of neurofuzzy network 

The mainnode structure stores each of the rules of the system. The child counter 

contains the number of inputs to the rule. The total counter contains the total number of 

rules and their inputs. The no_of_outputs is the number of outputs the rule is connected 

to. The child is the pointer to the node structure which contains the fuzzy inputs. The 

fitness contains the fitness value for the neurofuzzy system, and the pointer next points to 

the next rule. 

The node structure is where the children or fuzzy inputs to the neurofuzzy system are 

stored. The string array is where the actual fuzzy input is stored, string[0] contains the 

variable, and string[l] contains the membership function of the variable. If the coeff 

variable is set to 1, then we take the complement of the fuzzy term. The next pointer 

points to the next input to the rule. 
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5.12 Selection mechanism 

Roulette wheel selection is the method by which we select individuals to undergo 

mutation or crossover. In this selection method, we generate a fitness value, and we 

compare it to the cumulative fitness of each individual, if the fitness value is lower than 

the cumulative fitness, then we select the individual. The individuals with a higher fitness 

value have a higher probability of being selected. 

This method can represented using a wheel, we divide the wheel into slices, where the 

size of each slice corresponds to fitness of each individual, individuals who have a higher 

fitness get a large slice, and so the probability once we spin the wheel on landing on that 

slice is high. 

5.1.3 Structure evaluation 

The chromosomes in our population are evaluated using the stack. There are two stacks 

available, one for values, and one for operators. The chromosome value is calculated by 

first pushing and '+' operator which corresponds to the S-norm onto the operator stack, 

(number of inputs to that output membership - 1) times. So if we have 4 inputs to yl, then 

the '+' operator is pushed 3 times on the operator stack. 

The program then iterates through the rules, and for each input to the rule, the program 

pushes the '*' operator, which represents the T-norm onto the operator stack (number of 

inputs to that rule - 1) times, so that if we have 3 inputs to Rl, then the '*' operator gets 

pushed 2 times. The program then iterates over all inputs to the rule, and pushes their 

values onto the value stack. When there are 2 consecutive values in the stack, the 

program then, evaluates their T-norm, and pushes the result onto the stack again. The 

stack constantly shrinks as each rule is evaluated, and then outputs of all the rules are 

combined using the S-norms to calculate the value of the output membership. The 

program then iterates over the other outputs, repeating the process, Figure 21. 
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* - T-rtorm operation 
+ - S-norm operation 

Figure 21: Neurofuzzy structure evaluation in genetic programming 

When the chromosome is evaluated, the stack then will be at location 0. 

5.1.4 Genetic programming operators 

S. 1.4.1 Crossover 

Crossover is performed by selecting parent 1 and parent 2 using roulette wheel selection, 

and selecting the points of crossover for both parents. The points of crossover can either 

be a rule, which is indicated by selecting a main node, or a fuzzy term in one of the rules. 

The crossover point is determined randomly based on: 

.r, , , maximum number of rules 
if (random value generated < 

maximum number of rules + maximum number of inputs to each rule 

then select a random rule as the crossover point, else select random input to random rule as 

crossover point 

) , 

In the above rule for selecting the crossover point, if the number of rules allowed exceeds 

the number of inputs, the probability of mutating a rule is high, and the probability of 

selecting and inputs is low. In order to give equal probability to select and input, the same 
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as a rule, we need the number of allowed rules to be equal or close to the number of 

inputs. 

Once the crossover points for both parents are determined, the crossover process is 

performed by combining the tree for parent 1 from the root to the crossover point with the 

branch from parent 2 crossover point to the end of the tree as in Figure 22. The crossover 

process produces only one child. 

parent 1 parent 2 
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Figure 22: Chromosome crossover 
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The crossover function has to check to make sure that the maximum number of rules has 

not been exceeded, and if it has, the crossover process is repeated, selecting different 

crossover points, until we have a crossover, where the maximum number of rules has not 

been exceeded. 

If the crossover point is a fuzzy term, then crossover is performed in the same way as for 

rules, except that we have to check to make sure that the maximum number of inputs to 

each rule has not been exceeded, and we have to make sure that each term appears only 

once in the rule inputs, regardless of its membership function, if any of these conditions 

are not satisfied, then we repeat the process selecting different crossover points. After the 

crossover is performed, then we check outputs from each rule, and if one of the outputs is 

not connected to any rules, we select a random rule, and increment its number of outputs 

by one, and we create a connection to that output. 

5.1.4.2 Mutation 

Mutation is done by first selecting a chromosome to mutate based on the mutation 

probability, and then selecting a mutation point, which could be either a rule, or an input 

to one of the rules in the structure. 

The selection mechanism for a mutation point is the same as that for crossover, however, 

with one additional condition. If the child counter is equal to zero, then we select the 

main node for mutation. This allows us to initially generate the population using the 

mutation function, since the child counter is zero for newly initialized nodes. 

If a rule has been selected for mutation, a new tree is generated and replaced with the sub 

tree at the mutation point. The mutation function checks if the maximum number of rules 

have been exceeded, and if it had, then mutation is repeated by selecting a different 

mutation point, and generating a new tree. 
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If the mutation point is an input for a rule, then, new inputs are generated, in which no 

variable is repeated twice, and replaced with the child tree of the mutation point, Figure 

23. 
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Figure 23: Chromosome mutation 
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5.1.5 Genetic programming parameters 

Genetic programming parameters play a very important role in how much of the solution 

is space is explored, and how fast the genetic programming algorithm finds a solution. 

There are no specific guidelines as to the correct values of these parameters, and 

therefore they must be found my trail or error, or set based on the problem. 

5.1.5.1 Population size 

The population size controls the number of individuals in our population. It is kept 

constant through the evolution process. There is no guideline as to what the population 

size should be, however, if the population size is small; it will take longer for genetic 

programming to find a good solution, especially if the search space is large. For problems 

were we have a large search space, the population size should be large, in the hundreds or 

thousands. 

5.1.5.2 Number of generations 

The number of generations determines the evolution time of genetic programming, the 

longer the evolution time, the more of the solution space will be searched, and the more 

the chance we will find a good optimal solution. This value for large search spaces should 

be in the thousands of generations. 

5.1.6 Fitness functions 

The fitness functions in genetic algorithm, and genetic programming dictates the solution 

space to be search, and optimized. In genetic algorithms and genetic programming, we 

can change the fitness function easily to be more representative of the data, for example, 

we can use a fitness function that take the statistical distribution of the data into account. 

In our project, we have used the functions described in this section. 

5.1.6.1 Sum squared error fitness function 

The first type of membership that we have tried is the sum squared error function, defined 

by 
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SS£"S2°'»"X» ) ,where 

k is the number of membership functions 

n is the number of data points 

ytj is the desired membership output 

Xy is the actual membership output 

This fitness function however, does not consider the distribution of the data into account. 

This fitness function is suitable for normal, or near normally distributed data. 

5.1.6.2 Max Error function 

Another fitness function is the maximum error over all output memberships. 

total error = max(e0, e,,..., e„) 

where e, is the maximum error for membership i over all training points 

n is the number of output membership functions 

This fitness function attempts to balance out the error across all membership functions. 

5.1.6.3 Max error combination based function 

In the maximum error combination fitness function, we determine the maximum error for 

each output membership function, and combined them to yield the error of the model. We 

combine the maximum errors using their product. 

n 

total error = TT max e,, 

where ei is the maximum error for membership i over all training points 

n is the number of output membership functions 

In combining the errors from all membership functions, we try to minimize the error 

across all outputs. 
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5.1.6.4 Interval based error function 

In the interval based error function, we divide the area under the membership function 

into intervals, and calculate the error and number of data points that lie in each interval. 

The intervals are shown in Table 7. 

Table 7: Intervals and their corresponding ranges 

Interval 

A 

B 

C 

D 

E 

Range of actual 

membership value 

>= 0.75 

>= 0.5 and < 0.75 

>= 0.25 and < 0.5 

>= 0.05 and < 0.25 

>= 0 and < 0.05 

The number of intervals we used for each membership function is 5. This will allow us to 

concentrate on the intervals that contain low number of data points. The error in each 

interval is normalized by the number of data points in there interval, the total error is 

calculated by: 

'L QTYOY 

total error = Y (1 + Aw,) * '-, Where n is the number of points in interval / 

Aw, is initialized to 0 for all intervals, and then updated every 20 generations. Aw, is 

updated by sorting the error for all intervals from largest to smallest, the largest error 

having a rank of 0 and the lowest having a rank of 4, and then updating the weights for 

each interval in proportion to the error ranking 

Aw, = 
_ (5 - Rank) + 

error, 
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Chapter 6 

Results and Discussions 

The system was run for both the January dataset and March dataset. In order to determine 

the best fitness function to use for our final model, for both the January dataset and 

March dataset, we have used 10 fold cross validation for improved accuracy results. The 

results have been averaged for each fitness function for both the January and March 

datasets. The systems were run with the following parameters: 

1) Generation size is 1000 
2) Population size is 100 
3) Probability of crossover is 0.8 
4) Probability of mutation is 0.2 
5) Number of input and output membership functions is 3 

The number of memberships was chosen to be 3 memberships because it limits the search 
space, and because it produces the lowest absolute average error. 

The reason for using high crossover and mutation rates is because of the low number of 

population, and so to create as much variation in the population as possible, we increase 

both mutation and crossover rates. 

For each of January dataset and March dataset, the fitness functions were compared, and 

the one with the lowest absolute average error is selected as the most appropriate fitness 

function for the data, the data is then run 3 fold cross validation with 66% of the data for 

training, and 33% for testing, and the following parameters: 

1) Generation size is 2000 
2) Population size is 500 
3) Probability of crossover is 0.4 
4) Probability of mutation is 0.05 
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6.7 Results 

6.1.1 January dataset 

The data is fuzzified using the equations in section 3.3, and fed into the system. The 

results from 10 fold cross validation for January dataset is shown in table 8. 

Table 8: January dataset cross validation results (Before defuzzification) 

Fitness 

SSE 

Max error function-product 

Max error function 

Interval based error 

Sum squared error 

1.8450 

4.6672 

21.8643 

2.6217 

Mean sum squared error 

0.0074 

0.0187 

0.0878 

0.0105 

From table 8, we can see that the lowest error is achieved with the sum squared error 

function, second to that is the interval based error, and lastly the max error function. 

The best system from the 10 fold cross validation results for the SSE fitness function for 

January dataset data contains the following 12 fuzzy terms, table 9. 

Table 9: Fuzzy terms used by the best program in the 10 fold cross validation run 

Fuzzy Variable 

E2 

E3 

SI 

S3 

HI 

H2 

T2 

Ql 

Q2 

Q3 

Explanation 

Engine speed is medium 

Engine speed is high 

Track speed is low 

Track speed is high 

Horizontal track tension is low 

Horizontal track tension is medium 

Track tension is medium 

Torque is low 

Torque is medium 

Torque is high 

53 



Fl 

F2 

F3 

Forces are low 

Forces are medium 

Forces are high 

6.1.1.1 Prediction System for "January dataset" Data 

The system was run again with 3 fold cross validation, the best program out of the 3 fold 

cross validation produced the results in table 10. 

Table 10: Defuzzified results of best program in the 3 fold cross validation run 

Absolute average error 

2.9595 

Standard deviation 

2.0510 

The January system was run using the test data from the March dataset, and the results 

are summarized in table 11. 

Table 11: Test sets results (without defuzzification) 

January 
March 

Training 

0.00516 

Testing 

0.00533 
0.01145 

Figure 24 shows the structure of the neurofuzzy system. 
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Symbols for inputs 

e - speed engine 
o - TC out speed 
s - track speed 
h - nor track 
p-tracKP 
t - track? 
q-torque 
f-forces 
v - TOiume 

e 

o 

s 

i-norm"proaucr 

Membership functions for inputs 

"1* Membership function low 
"T Membership function medium 
*3* Membership function high 

q 

f 

% 

S-r»mi "Probabilistic sum" 

•) Volume 

Membership functions for output 

*0" Membership function low 
"V Membership function medium 
"2" Membership function high 



6.1.1.2 Knowledge gained from January dataset system 

The structure of the neuro-fuzzy systems allows for extraction of IF-THEN rules that 

represent the relations between input parameters (Table 11) and the volume of 

bulldozer's overburden. The rules are presented below. Please note that each rule of the 

form 

IF 
{(VARIABLE) is low/medium/high)o and (VARIABLE2 is low/medium/high)o.6 }o.9 

OR 
{(VARIABLE4 is low/medium/high)a,-i }o.6 

THEN 
VOLUME is low/medium/high 

Should be read in the following way: 

The contribution of a single antecedent (between {} brackets) to the statement 
"VOLUME is low/medium/high" is 0.9, and the contributions of the statements 
(VARIABLE 1 is low/medium/high) and (VARIABLE2 is low/medium/high) to this 
antecedent are 0.0 and 0.6 respectively1. 
while the contribution of the second antecedent to the statement "VOLUME is 
low/medium/highi" is 0.6, while the contribution to this antecedent coming from the 
(VARIABLE4 is low/medium/high) is 0.3. 

The system leads to the set of the following rules: 

VOLUME is low: 

IF 
{ 
(HORIZONTAL TRACK TENSION is low)0.9s and (TORQUE is low)Q,94 and (FORCES 
are low)o 

h 
VOLUME is medium: 

IF 
{ 
HORIZONTAL TRACK TENSION is medium)0 and ( TORQUE is medium)0 and ( 
FORCES are low)0 
}o.29 

1 In the "and" part of the fuzzy IF-THEN rule, the smaller value of a weight means higher 
contribution, while the higher value of a weight means lower contribution - this is due to 
t-norm. 
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OR 

IF 
{ 
(FORCESare medium)o and (TORQUE is low)o33 

}i 

OR 

IF 
{ 
(FORCES are medium)0 and ( TORQUE is medium)0 

}o.96 

VOLUME is hi2h: 

IF 
{ 
(FORCES are high)0 

}i 

OR 

IF 
{ 
(ENGINE SPEED is medium)^ and (FORCES are high)0 

}o.79 

Applying a threshold of 0.5, so that if the weight of any input to a rule is lower than 0.5, 

then we completely include the input, or if the input to the OR is bigger than 0.5 we can 

include the input to the OR, otherwise we discard, the rules reduce to: 

VOLUME is low: 

IF 
{ 
(FORCES are low)o 

}> 

VOLUME is medium: 

IF 
{ 
(FORCES are medium)0 and (TORQUE is low)o 

}i 
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OR 

IF 
{ 
(FORCESare medium)o and ( TORQUE is medium)o 

}i 

VOLUME is hi2h: 

IF 
{ 
(FORCES are high) o 
h 

OR 

IF 
{ 
(ENGINE SPEED is medium)0 and (FORCES are high)0 

}i 

The rimpull force is a very important factor, since it is always fully included in the rules, 

and the fact that it appears alone and directly related to the volume. 

6.7.2 March dataset 

The results from 10 fold cross validation for March dataset is shown in table 12. 

Table 12: March dataset cross validation results (Before defuzzification) 

Fitness 

SSE 

Max error function -product 

Max error function 

Interval based error 

Sum squared error 

1.1514 

7.3587 

7.0308 

0.8611 

Mean sum squared error 

0.0107 

0.0681 

0.0651 

0.0079 
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From Table 12 we can see that the lowest error is achieved with the interval based error 

function, second to that is the sum squared error function, and lastly the max error 

function -product. 

The best system from the 10 fold cross validation results for the interval based fitness 

function for March dataset data contains the following 11 fuzzy terms, table 13. 

Table 13: Fuzzy terms used by the best program in the 10 fold cross validation run 

Fuzzy Variable 

SI 

S2 

S3 

HI 

T3 

Ql 

Fl 

F2 

F3 

Explanation 

Track speed is low 

Track speed is medium 

Track speed is high 

Horizontal track tension is low 

Track tension high 

Torque is low 

Forces are low 

Forces are medium 

Forces are high 

6.1.2.1 Prediction System for "March dataset" Data 

The system was run again with 3 fold cross validation, the best program the best program 

out of the 3 fold cross validation produced the results in table 14. 

Table 14: Defuzzified results of best program in the 3 fold cross validation run 

Absolute average error 

2.2955 

Standard deviation 

1.7760 

The prediction system was run using the test set of the January dataset, and the results are 

summarized in table 15. 
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Table 15: Test sets results (without defuzzification) 

March 

January 

Training 
0.00822 

Testing 

0.00803 
0.00798 

Figure 25 shows the structure of the neurofuzzy system. 
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T-norm -product" 
Symbols for inputs 

e - speed engine 
o - TC out speed 
s - track speed 
h - tor track 
p - trackP 
t-tracKT 
q - torque 
f - forces 
v - volume 

e 

0 

s 

Membership functions for inputs. 

"1* Membership function low 
"2* Membership function medium 
"3" Membership function high 

P 

t 

f 

S-norm "Probabilistic sum" 

Volume 

Membership functions for output: 

"0" Membership function low 
"1" Membership function medium 
"2* Membership function high 



6.1.2.2 Knowledge gained from March dataset system 

The following rules have been extracted from the system constructed for the March 

dataset: 

VOLUME is low: 

IF 
{ 
(FORCES are low)0 

h 

OR 

IF 
{ 
(TRACK SPEED is low)0 and (TORQUE is mediumjo and (TRACK TENSION is low)0 

and (ENGINE SPEED is mediumjo and (TORQUE CONVERTER SPEED is mediumjognd 
(FORCES are low)o 
}i 

VOLUME is medium: 

IF 
{ 
(FORCES are mediumjo 

} 0,8837 

OR 

IF 
{ 
(ENGINE SPEED is highjo and (TRACK TENSION is mediumjo and (TRACK SPEED is 

highjo 
}i 

OR 

IF 
{ 
(TRACK SPEED is highjo and (TORQUE CONVERTER SPEED is mediumjo and 

(FORCES are low) o 

h 
OR 
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IF 
{ 
(ENGINE SPEED is high)Q and (TRACK TENSION is medium)0 and (TRACK 
PRESSURE is high)0 and (TORQUE is medium)0 and (FORCES are low)Q and 
(HORIZONTAL TRACK TENSION is low)0 

} 

VOLUMEis hish: 

IF 
{ 
(FORCES are high)o 

}> 

OR 

IF 

{ 
(FORCES are high)0 and (ENGINE SPEED is medium)0.292 
}o.837 

OR 

IF 
{ 
(ENGINE SPEED is high)0 and (TRACK TENSION is medium)0 and (TRACK 
PRESSURE is high)o and (TORQUE is medium) Q and (FORCES are low)o and 
(HORIZONTAL TRACK TENSION is low)0 

} 

After applying the threshold of 0.5: 

VOLUME is low: 

IF 
{ 
(FORCES are low)o 

}i 

OR 
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IF 
{ 
(TRACK SPEED is low)0 and (TORQUE is medium)0 and (TRACK TENSION is low)0 

and (ENGINE SPEED is medium)0 and (TORQUE CONVERTER SPEED is medium)0gnd 
(FORCES are low)o 

h 

VOLUME is medium: 

IF 
{ 
(FORCES are medium)o 

}0.8837 

OR 

IF 
{ 
(ENGINE SPEED is high)0 and (TRACK TENSION is medium)0 and (TRACK SPEED is 

high)0 

h 

OR 

IF 
{ 
(TRACKSPEED is high)0 and (TORQUE CONVERTER SPEED is medium)0 and 

(FORCES are low) o 
h 
OR 

IF 

{ 
(ENGINE SPEED is high)0 and (TRACK TENSION is medium)0 and (TRACK 
PRESSURE is high)0 and (TORQUE is medium)0 and (FORCES are low)0 and 
(HORIZONTAL TRACK TENSION is low)0 

} 

VOLUME is hish: 

IF 
{ 
(FORCES are high)o 

h 
OR 
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IF 
{ 
(FORCES are high)o and (ENGINE SPEED is medium)o 

h 

OR 

IF 
{ 
(ENGINE SPEED is high)0 and (TRACK TENSION is medium)0 and (TRACK 
PRESSURE is highjo and (TORQUE is medium)o and (FORCES are low)o and 
(HORIZONTAL TRACK TENSION is law)o 
} 

The system did not exclude any rules or variables, however, the rimpull force is still an 

important factor, since it appears in almost all rule inputs with a high weight, and appears 

alone with direct relation to the volume. 

6.1.3 Comparison of Results 

The results from both January dataset and March dataset show that the rimpull force is an 

important factor that influences the volume of the bulldozer, some other factors which are 

common to both January dataset and March dataset like: 

1) Engine speed 
2) Torque 

The results from using the March test set in the January system, and the January test set 

in the March system indicate that the March system can also be used for the January data, 

but not the opposite. 
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Chapter 7 

Conclusion and Recommendations 

The research conducted in the framework of this thesis is quite innovative. The issue of 

predicting the volume of material pushed in the front of a bulldozer has not been 

addressed so far. The procedures for processing and modeling of data proposed and 

validated in the thesis can be treated as a prototype of methodology that can be applied to 

processing and modeling of any data collected during operations of heavy earth-moving 

vehicles. 

In particular, the contributions of the thesis are as follows: 

collection of on-site measurements of heavy earth-moving equipment, performed during 

January and March; 

processing - cleaning and initial analysis - of the measurement data sets; this task has 

been preformed in order to ensure consistency of data points; validation of data has been 

done; 

development of neuro-fuzzy models of the measurement data using an evolutionary-

based optimization system. 

Overall, the research activities have resulted in construction of systems for predicting the 

volume of material pushed by the bulldozer. Analysis of two best models developed for 

both - January data and March datasets has lead to the conclusion that the rimpull force is 

the major factor in predicting the volume of material. Most of measured quantities 

constitute inputs to both systems. However, the rules extracted from the systems are 
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different. This means that relationships between measured quantities and the volume are 

different for different measurement conditions (times when measurements were done). 

The presented results are a part of studies dedicated to construction of a system capable 

of predicting force distributions during on-site operations of heavy earth moving 

machinery. To predict distribution of forces - in particular forces reacting on wheels -

the volume of material pushed in the front of bulldozer has to be know. 

In order to gain confidence in the proposed approaches suitable for data analysis and 

modeling an additional set of experiments should be conducted. They should target more 

variety of measurements - different weather conditions and different tasks performed by 

vehicles, and more detailed analysis of extracted rules. All this should lead to 

construction of a more comprehensive force distribution prediction system. More 

experiments with modifications of the proposed evolutionary-based optimization process 

- more tuning towards nature of the measured data - should be conducted. 
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