
University of Alberta

Application of Computational Intelligence Techniques to Stress Prediction on
Earthmoving Equipment

by

Samer Sanduga

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of

Master of Science

in

Software Engineering and Intelligent Systems

Electrical and Computer Engineering

Edmonton, Alberta

Fall 2008

1*1 Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A0N4
Canada

Your file Votre reference
ISBN: 978-0-494-47405-1
Our file Notre reference
ISBN: 978-0-494-47405-1

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par Plntemet, prefer,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Canada

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

In this research, computational intelligence techniques were used to predict the forces

distribution across the wheels of a bulldozer, when levelling overburden on a dump site.

This is accomplished by modeling the volume of overburden the bulldozer is pushing and

summing the moments around the front and rear wheel force. Determining the forces at

the wheels of the bulldozer will allow us to design a system that will reduce equipment

downtime due to uneven wearing of the wheels.

Neurofuzzy systems were chosen to model relations between measured quantities and

overburden. This type of models ensures easiness of learning, as well as high

transparency. Structures of neurofuzzy systems were determined using a genetic

programming based system. The experiments were conducted for two data sets collected

in winter and early spring. IF-THEN rules were extracted from both models. The rules

indicated several fuzzy terms as important, with the most important being the rimpull

force.

Table of Contents

Introduction 1
1.1 Industry Background 1
1.2 Motivation 2
1.3 Problem description 2
1.4 Contributions 5
1.5 Thesis outline 5

Background 6
2.1 Neural networks 7

2.1.1 Types of Neural Networks 9
2.1.2 Learning Techniques 11

2.2 Fuzzy Systems 15
2.2.1 Basic concepts 16
2.2.2 Fuzzy if then rules 17

2.3 Neurofuzzy Systems 19
2.3.1 Architectures 19
2.3.2 Learning techniques 22

2.4 Evolutionary computation 23
2.4.1 Concepts - Genetic Algorithm 24
2.4.2 Genetic Programming 27

Neurofuzzy Prediction System 30
3.1 Concept 30
3.2 Architecture 30
3.3 Construction 33
3.4 Training 34
3.5 Overfitting Avoiding Technique 35

Measurement data 36
4.1 Measurement process 36
4.2 Data description 37

4.2.1 January dataset 38
4.2.2 March dataset 38

4.3 Data cleaning 39
Evolutionary based methods for system construction 41

5.1 Genetic programming for system construction 41
5.1.1 Chromosome representation 42
5.1.2 Selection mechanism 44
5.1.3 Structure evaluation 44
5.1.4 Genetic programming operators 45
5.1.5 Genetic programming parameters 49
5.1.6 Fitness functions 49

Results and Discussions 52
6.1 Results 53

6.1.1 January dataset 53
6.1.2 March dataset 58

6.1.3 Comparison of Results 65
Conclusion and Recommendations 66

List of Figures

Figure 1: Forces acting on the bulldozer wheels 3
Figure 2: Force distribution between the front and rear wheel of the bulldozer 3
Figure 3: The McCulloch Pitts neuron 7
Figure 4: Examples of transfer functions 9
Figure 5: Multilayer perceptron 9
Figure 6: The Hopfield network 10
Figure 7: Kohonen self organizing map 11
Figure 8: Crisp set 15
Figure 9: Fuzzy sets 16
Figure 10: Cooperative neurofuzzy network 19
Figure 11: Concurrent neurofuzzy networks 20
Figure 12: Fuzzy AND, ORneuron 20
Figure 13: Genetic algorithm flow diagram 25
Figure 14: A program and its tree representation 27
Figure 15: Crossover operation in GP 28
Figure 16: Mutation in GP 29
Figure 17: Simplified hybrid neurofuzzy network 31
Figure 18: Hybrid neurofuzzy system 32
Figure 19: Dozer's schema with sensors and forces indicated 37
Figure 20: Structure of neurofuzzy network 43
Figure 21: Neurofuzzy structure evaluation in genetic programming 45
Figure 22: Chromosome crossover 46
Figure 23: Chromosome mutation 48
Figure 24: The structure of January dataset 55
Figure 25: The structure of March dataset 61

List of Tables

Table 1: % of Blade volume versus height of overburden 4
Table 2: January dataset statistics 38
Table 3: Volume distribution for January dataset 38
Table 4: March dataset statistics 39
Table 5: Volume distribution for March dataset 39
Table 6: Attributes (features) of analyzed data and their brief description 40
Table 7: Intervals and their corresponding ranges 51
Table 8: January dataset cross validation results (Before defuzzification) 53
Table 9: Fuzzy terms used by the best program in the 10 fold cross validation run 53
Table 10: Defuzzified results of best program in the 3 fold cross validation run 54
Table 11: Test sets results (without defuzzification) 54
Table 12: March dataset cross validation results (Before defuzzification) 58
Table 13: Fuzzy terms used by the best program in the 10 fold cross validation run 59
Table 14: Defuzzified results of best program in the 3 fold cross validation run 59
Table 15: Test sets results (without defuzzification) 60

Chapter 1

Introduction

The mining industry relies heavily on its fleets of tracks, shovels, and support equipment

to meet its mining operational objectives. Maintenance and downtime reduction of the

equipment is especially important for the mining operation. The fact that this equipment

is in operation 24/7 means that the scale of these problems, their distinctiveness and

impact on everyday business of mines are of paramount importance. Any improvements

of effectiveness of operations of the equipment make a notable impact on the mining

productivity and the plant-wide profits. For these reasons, there is a genuine and evident

need in the surface mining industry to develop a better understanding of different factors

impacting work and life span of the earth moving equipment.

1.1 Industry Background

Bulldozers and motor graders are one of the principal machinery used in the surface

mining. They perform numerous operations such as pushing, pulling or ripping and

maintain of road by motor graders. Bulldozers components are constantly exposed to

extensive and long lasting forces that cause their substantial wear. In order to keep

bulldozers fully functional, there is a need for a constant monitoring of conditions of the

components and their frequent replacement. It is then essential to understand how forces

are distributed among different components and how they affect different parts of the

components. Such understanding would help identify components with the highest

exposure to forces, and help determine the best method to ensure a uniform distribution

of forces.

1

1.2 Motivation

A distribution of mechanical forces is constantly changing during operations of a

bulldozer. These changes are associated with continuous changes in bulldozer's load,

working conditions, operator habits.

There are many factors influencing this distribution, therefore it seems that the best

approach to gain some knowledge about forces is a comprehensive measurement process

leading to collection of data representing a number of different parameters associated

with operating conditions of bulldozer.

In such circumstances, the first step in an estimation process of force distribution is

analysis of the collected data. There are several interesting and practical questions one

could pose that really motivate a thorough analysis of the data. For instance, one could be

interested in learning about some major relationships and groups of data that could be

distinguished in the dataset. What do they represent in terms of the working conditions of

the equipment? How are they interrelated? Do they offer any meaningful insight into the

underlying phenomenon that generated the data themselves? Do they offer any significant

insight into the nature of the processes and eventually help draw some conclusions about

the reliability of the equipment and improve their working conditions? All of those are

relevant questions for which a comprehensive data analysis could offer some useful

answers.

1.3 Problem description

In order to predict the force distribution across the wheels of the bulldozer, we sum the

moments of all forces acting on the bulldozer. Once the moments are summed up, we can

calculate the forces at locations Ff and Fr (front force, and rear force), Figure l.

2

\ - i _ F,

Figure 1: Forces acting on the bulldozer wheels

Because the observed wear is much higher at the front then the back wheel, the force

distribution is modelled using a trapezoidal distribution, Figure 2.

Figure 2: Force distribution between the front and rear wheel of the bulldozer

In order to calculate Ff and Fr, we need to find the torque generated by the overburden

being pushed in front of the blade. This torque is equal to the force the overburden is

exerting on the blade multiplied by its height. For different volumes of overburden the

bulldozer is pushing, corresponding height of the overburden are determined, this is

summarized in table 1.

3

Table 1: % of Blade volume versus height of overburden

Blade Volume (%)

100

90

82

78

74

70

65

58

50

43

34

17

13

Height of overburden

0.968

0.919

0.881

0.886

0.889

0.894

0.899

0.909

0.922

0.937

0.871

0.711

0.693

By determining the volume of overburden the bulldozer is pushing, we can determine the

height, and we can calculate the force distribution across the wheels of the bulldozer. The

emphasis of this research is to create a model that not only allows us to predict the

volume of overburden the bulldozer is pushing as a percentage of blade volume, but also

to determine the factors that influence the volume of overburden being pushed by the

bulldozer.

Creating a model that will allow us to predict the volume of material pushed by the

bulldozer, allows us to construct a system that can equalize the force distribution across

the wheels making them wear a lot less and at equal time intervals reducing maintenance

costs, and improving operations, and downtime.

4

1.4 Contributions

At the beginning we should emphasise the fact that this kind of research is very

innovative, and we could not find any indication of similar research activities.

Consequently, there is no literature dealing with this subject matter.

The contributions of the thesis are following:

collection of on-site measurements of heavy earth-moving equipment, performed during

different times during a year - in particular in January and March; this task has been done

with a tremendous of help of a dedicated individual from an oil sand company;

processing of the measurement data sets; this task has been preformed in order to ensure

consistency of data points; the validation of data has been accomplished also with a help

of the individual from the oil send company;

development of neuro-fuzzy models of the measurement data; this task has been

preformed using an evolutionary-based optimization system for model construction.

Overall, the research activities have resulted in construction of a system for predicting the

volume of material pushed by the bulldozer. Analysis of the constructed model (system)

allows for exploring the factors that influence relationships between the volume and

measures quantities.

1.5 Thesis outline

This thesis is divided into 7 chapters. The first chapter is an introduction, and problem

description. Chapter 2 introduces the methods used in this research, and gives a brief

introduction to each of them. Chapter 3 describes the prediction system proposed in and

deals with the method used in our model, and its learning mechanism, chapter 4 describes

the data used in our research, chapter 5 describes details regarding the structure of the

system. Chapter 6 deals with the results and models obtained from experiments, describes

the knowledge gained from the system. Chapter 7 contains the conclusion, and future

recommendations.

5

Chapter 2

Background

The field of Computational Intelligence and Artificial Intelligence in general is concerned

with mimicking the information processing capabilities of the human brain, in order to

solve a variety of engineering problems. The human brain operates on two basic levels,

the physical level, which involves the processing nodes, called neurons, and the logical

level, which involves the decision making process, and dealing with uncertainty, as well

as incomplete information.

The physical level of the human brain involves small processing units called neurons.

Each neuron consists of the dendrites, which receive inputs from the neurons, the soma or

cell body, which supports the functionality of the neuron, and processes the incoming

signals, the axon, which transports the resulting signal, and synapse, which contains the

neurotransmitters that propagate the signal to the next neuron.

There are approximately 100 billion neurons in the human brain, each of which is

connected on average to thousands of other neurons. The response time of a single

neuron is about 1 millisecond, orders of magnitude less than today's powerful processors,

which have processing times in the nanoseconds. However, what the brain lacks in speed

is made up for in parallel processing capability, instead of one processor working, we

have hundreds of thousands or even millions of neurons working together to achieve a

common task.

The logical level of the brain is the brains ability to deal with incomplete or uncertain

information, and arrive at the correct conclusion or course of action to take, and process

6

language. Making use of this logical processing capability of the brain allows us to

construct systems that can process and understand natural language, and process

information in the presence of uncertainty and incompleteness.

2.1 Neural networks

Neural networks were first introduced by McCulloch and Pitts in 1943, they have

introduced a simple and basic construction of an artificial neuron, called the "McCulloch

Pitts neuron" Figure 3. This early model of the biological neuron, have demonstrated

abilities to solve the logical binary operations.

Figure 3: The McCulloch Pitts neuron

The inputs to the neuron xi,x2,...,xn are multiplied by their corresponding

weights wA,w2,...,wn, which represent the synaptic strength between biological neurons.

The net input to the neuron is the sum of the product of the inputs and their

corresponding weights minus a bias or threshold term.

neuron, = T " wix,-6

This input then undergoes a transformation using a stepwise transfer function

f (neuron m) to produce the final output, if the final output exceeds the bias or

threshold 0, the neuron fires. The transfer function used in the McCulloch Pitts neuron is

a binary output function

fl if neuronm a 0
f(neuronin) = J , where 6 is the bias or threshold of the neuron

0 if neuron, <9

The McCulloch Pitts neuron had disadvantages, which have limited its application to

binary tasks:

1) No mechanism for learning the weights, and threshold of the neuron
2) The output of the neuron is binary, not suited for regression tasks

In 1949 Donald Hebb proposed a mechanism of learning in his book "The Organization

of Behavior". The method became known as Hebbian learning:

"When an axon of cell A is near enough to excite cell B and repeatedly or persistently

takes part in firing it, some growth process or metabolic change takes place in one or both

cells such that A's efficiency, as one of the cells firing B, is increased"[l]

In 1958, Rosenblatt introduced the perceptron, in which he integrated all the previous

work of McCulloch, Pitts and Hebb. He developed a model of the neuron that is capable

of learning from sample of input output data points, by adjusting the weights of the

connections between neurons.

The learning rule is called the "perceptron learning rule". Given an input output pair of

training points (x,, y}), all weights are initialized to random values, usually in the range [-

0.5, 0.5] and compute the output of the neuron/,. If the desired value yi equals the

neuron output/,, then there is no need to change weights, otherwise the weights are

adjusted according to:

wmw = woid + *7 * (.V/ ~ li) * x,• > where r\ is the learning rate

The learning rate rj is a constant between 0 and 1 that determines how fast the perceptron

learns the new weights. Setting this value too high, will cause the weights to oscillate,

and setting it too low, the network will take long to learn. This learning process is

repeated until the weights of the network do not change any more, and the network is said

to have converged.

The transfer functions the perceptron uses can be any of a number of functions, some of

the transfer functions are shown in Figure 4.

8

Sigmoidal Activation function

1

Linear activation function

>

i i

Figure 4: Examples of transfer functions

Later, in 1969 Minsky and Papert showed that there are some limitations of perceptrons,

It is not able to solve for example, the XOR problem, and that a network of perceptrons

arranged in layers are better capable of solving these problems, this network is called

multilayer perceptron.

2.1.1 Types of Neural Networks

Neural networks fall under different types, according to their structure or learning

mechanism. Multilayer perceptrons are one kind of neural network in which the inputs

are propagated forward through the layers also called (Feed forward neural network), this

is by far the most popular type of neural networks, Figure 5. This type of network is most

suitable for classification and regression problems.

w
rt1 v2 \ J w1

x2G; \ ^ / Q ° 2 \ --c—

X3,-) , ., v (3.Q3 ,- —-f !

x 4 < ^ l_—.—r j o4

—output 1

-^-output 2

Figure 5: Multilayer perceptron

Radial basis functions are another type of neural networks that have the same structure as

the multilayer perceptron. However, the neurons in the hidden layer consist of basis

functions instead of the sigmoid activation functions, and the maximum number of

hidden layer neurons equals the number of inputs. The output of the neural network is the

weighted sum of the basis function outputs, and there are no weights in the input layer.

This particular type of neural network is highly suitable for function approximation and

regression problems.

Another type of neural networks is the recurrent neural network. This type of network is

capable of remembering its previous state, because there is a feedback from layers or

neurons. There are two kinds of feedback, global and local feed backs. In global

feedbacks, a neuron in the next layer feeds a neuron in the previous layer, or a neuron in

the same layer with its output, and in local feedback, a neuron feeds its own with its

output. Recurrent networks are most suitable for storing and retrieving information, the

Hopfield network, Figure 6, is a global feedback type recurrent neural network, which

mimics the memory centers in our brain.

Figure 6: The Hopfield network

10

Another type of neural networks is the Kohonen self organizing maps (SOM). In this

kind of network, the inputs are fully connected to the output neurons, and each input

vector is compared with the weight from the input vector to the output neuron, the output

neuron which is closest to the input vector is the winner, weights are updated, and

process repeated until the termination criteria is met. Figure 7 shows a Kohonen self

organizing map. Kohonen self organizing map is most suitable for pattern recognition

and clustering problems.

Figure 7: Kohonen self organizing map

2.1.2 Learning Techniques

The strength of neural networks arises from their ability to learn, and adapt to new inputs.

This is achieved by adjusting the weights of connections between the neurons, or the

synaptic strengths. Different neural networks require different learning mechanisms,

however the common theme is adjusting the weights is how neural networks in general

learn. The exception to this rule is the Hopfield network.

There are three kinds of learning methods:

1) Supervised learning
2) Unsupervised learning
3) Reinforcement learning

11

Each of these learning methods is used to train different structures. In supervised learning

techniques, an input, output pairs of training points are provided. The inputs are

propagated through the network and learning takes place because the network compares

its output with the desired output, and adjusts its weights accordingly. This type of

learning is used to train the multilayer perceptron, and radial basis function network.

Training the multilayer perceptron requires us to find a way of propagating the weight

changes in the output layer to the hidden and input layers. This is done by the back-

propagation algorithm, which was invented by Werbos in 1974 and re-invented again by

Rumelhart and McClelland in 1986. The algorithm uses gradient decent minimization to

find the weights which will result in the lowest error.

Gradient decent is given by:

dE(w„)
Aw = -r]VE(w) = -t]

dWy

We change the weights of the network, in the opposite direction of the gradient, so as to

minimize the error. The total error given after applying the inputs to the neural network is

£ = 2^,2^,(0-°/)'

where

n is the number of training patterns

m is the number of outputs

tj is the desired output of the neural network

Oj is the actual output of the neural network

E is the total error

Two modes of learning are possible with neural networks, online and batch training. In

online training, the weights are updated every input pattern, and in batch training, the

weights are updated every complete run of the patterns through the network, which is

12

called epoch. The difference in both is a drop of the summation over all patterns. Since

the output of the neuron is a function of its net inputs,

netj-ywyx,

Oj = finetj)

Using online training, the error as a function of the neuron input becomes,

Calculating the gradient of the error

——— = 2 x - x \ (tj-/{net)) x / (net.)x(-*)

dWy 2 z -"" 1

a = X M (t,-Oj)xf {net,)x(-*,)

For the sigmoidal transfer function, / (net t) = o. x (1 - o) , and dropping the summation sign,

dE(wa)

dwy
= (tj -O^XOjXQ-O^xi-X,)

The term 6 = (tf. - oy) x o ; x (1 - oy) is called the error signal, and x, is the ith input to the

j t h neuron.

The change in weight for the output layer becomes,

dE(w,l)
Aw„ = -77 — = -77 x 6, x (-x,) = 77 x 6, x x.

Since we don't have a desired output to compare the output of the hidden neurons to, we

back propagate the output layer error into the hidden nodes, the error signal for the

hidden neurons becomes 6h = oh x (1 - oh) x \''" (whJ8f), the weights of the hidden

neurons are then updated using Aww = 77 x 6h x yk, were yk is the input to the hidden node.

13

The initial weights of the Hopfield network on the other hand are set

using wy = V"] "y^.^XiXj , there is no feedback between the neuron and itself,

consequently the weight between the neuron and itself is zero. With the introduction of

an unknown state, the network will converge to the closest remembered pattern. Hopfield

defined the energy of a state to be e = w,-*,.*., the remembered patterns will have the

lowest energy, and an unknown pattern will converge to the lowest energy directly, or

through a number of state transitions. The state of the network is updated either

synchronously (update the output of one neuron each time step) or asynchronously

(update all the outputs of all neurons each time step).

The radial basis function requires first, determining the cluster centers and spread of each

of the basis functions, and training the output weights of the network. Training the output

weights is done using gradient decent. However, finding the center and spread of the

basis functions, can be done using unsupervised learning techniques.

In unsupervised learning, the network is provided only with the inputs, and it's up to the

network and the learning algorithm to be able to find structures within the data. There is

no guidance as to what the outcome should be. The Kohonen self organizing map is an

example of unsupervised learning method. The weights of the connections are initialized,

and each input pattern is compared to all weight vectors. The closest one to the input

pattern is the winner, and then the weights are updated via

w,+] = wt + ht x [x, - w,], where

w,+] is the updated weight vector

w, is the previous weight vector

h, is a neighbourhood function

x, is the input vector

In reinforcement training, the network is only presented with feedback on whether the

network is doing well or not, there is no training data that the network can compare its

outputs to, only feedback on the actions of the network, for example, touching the fire is

bad "you burn your finger and feel pain", the result is "don't touch fire".

14

2.2 Fuzzy Systems

In everyday life, we use terms like tall, short, big, small, etc, to describe different things.

These terms are not precisely defined, and often values can belong to two or more

different sets. In classical sets, an item either belongs to a set or does not Figure 8, there

is no tolerance for imprecision or vagueness.

u.*=1

Set A SetB

threshold

Figure 8: Crisp set

A famous paradox that illustrates the deficiencies of classical sets in real life is the

"sorites paradox", which states the following two premises:

1,000,000 grains of sand is a heap of sand. (Premise 1)

A heap of sand minus one grain is still a heap. (Premise 2) [2]

If we were to continually repeat the second premise, at some point, a heap will consist of

a single sand grain, which we know is incorrect.

This paradox can be applied to all linguistic terms, which shows that uncertainty and

vagueness are part of our everyday life. In 1965, Lotfi Zadeh, introduced the concept of

fuzzy logic, which allows objects to belong partially to a number of sets. With the

introduction of fuzzy logic, we are able to model real world events more realistically.

15

2.2.7 Basic concepts

Fuzzy logic assigns a membership value ,u(x)to each element in each set, so that an

element could belong to two ore more sets in the same time to different degrees, Figure 9.

1.0

0.65-
jLfc

035
0

0

Membership of speed In each fuzzy set
(Slow.Medium.and Fast)

\

Stow Medium , Fast
\

\
\ x = 4 5 m P h 150 mph

Figure 9: Fuzzy sets

In Figure 9, a speed of 45 mph has membership in the slow set of 0.65, the medium set of

0.35, and to the fast set to of 0. The membership is not a probability it is only a degree of

belonging to a specific set. The membership functions in Figure 7, which describe the

degree each of the inputs belongs to the fuzzy set is trapezoidal in nature.

Each of the fuzzy sets in Figure 7 can be written as:

pA(x])/x] +/J.A(X2)/X2 +... + fiA(xn)/xn, where

x, is the crisp values for which the memberhip function is defined

\xA (x,) is the membership of x, in fuzzy set A

The universe in which the xt' s are defined is called the universe of discourse.

The number of membership functions, and membership function shapes are dependant

upon the problem to be solved. There are a variety of membership functions, trapezoidal,

triangular, and Gaussian membership functions.

Operations on fuzzy sets include union, intersection, and complement. The intersection of

two fuzzy sets, A and B is defined as

A fl B = m\n{fAA (x), fxB (x))

The union of two fuzzy sets A and B is defined as

16

A U B = max(^A (x), pLR (x))

And the complement of a fuzzy set A is defined as

PA = 1 - M *)

A more general form of the union and intersection operators is the T and S norms.

The T-norm is mapping T: [o,l]x [0,l]-* [o,l], which satisfies the following:

Commutativity :T{a,b) = T(b,a)

Monotonicity : T(a, b) <s T(c, d) if a <, c and b^d

Associativity :T(a,T(b,c)) = T{T{a,b),c)

T(a,\) = a

The S-norm is mapping S: [0,l]x [0,l]-^ [0,l], which satisfies the following:

Commutativity :S(a,b) = S(b,a)

Monotonicity : S(a,b) <, S(c,d) if a ss c and b <, d

Associativity : S(a, S(b, c)) = S(S(a, b), c)

S(a,0) = a

2.2.2 Fuzzy if then rules

Fuzzy if then rules are of the form:

If (antecedent) Then (consequent)

The antecedent is formed by the conjunction or disjunction of the fuzzy terms. An

example of a fuzzy rule is:

If "the temperature is hot or humidity is high" Then "fan speed is high"

Fuzzy rules require an inference mechanism to be able to be useful. For the conjunction

or disjunction of the antecedents, we use the T or S norm, which corresponds to the

intersection or union of the fuzzy sets. The value of conjunction or disjunction of all these

fuzzy terms, will give us the degree of satisfaction of the consequent, which refers to the

degree to which the consequent is true.

17

Now, we need to propagate the degree to which the consequent is satisfied to the

consequents fuzzy set, which is called implication. There are a variety of implications

available, some of which are:

Larson implication

Mamdani implication

PA-~B (*> y) = m i n [/ ^ 0)> VB (y)]

Zadeh implication

PA^B (X> y) - max[min[^ (x), [iB (y)],\ - \iA (x)]

When multiple rules exist, we need to aggregate the output of each rule. The aggregation

operator is usually the maximum. After we aggregate the rules, we have the final output

membership, which can be defuzzified to produce a crisp output. There exist many

defuzzification methods, some of which are:

Center of Area, Center of gravity defuzzification

jr=max

V xx ^(x)
COG = ^ ^

2,f*(x)
Mean of maxima defuzzification

x
maxwr 1

MOM = miau" , where
n

n is the number of values for which \xx is maximum

Fuzzy mean defuzzification

2"-. a>
n is the number of fuzzy output sets
c, is a characteristic value of the output fuzzy sets, COG or MOM

This crisp output will be the output of the fuzzy system.

PM = -£*!-! , where

18

2.3 Neurofuzzy Systems

Neurofuzzy systems combined the benefits of both fuzzy systems, and neural networks.

Neural networks have the ability to learn and generalize, while fuzzy systems are good at

accounting for uncertainty, and comprehensibility, since you can see and the relationship

between variables. Neurofuzzy systems combine the benefits of both to create a system

that is capable of both learning, tolerance of uncertainty, and transparency.

2.3.1 Architectures

Neurofuzzy systems are of three types [9]:

1) Cooperative neurofuzzy network, Figure 10.
2) Concurrent neurofuzzy network, Figure 11.
3) Hybrid neurofuzzy networks

In cooperative neurofuzzy networks, the neural network adapts the fuzzy system. This

included training the weights for the fuzzy rules, or tuning the membership functions of

the fuzzy system. After training the weights, or tuning the membership functions of the

fuzzy system, the neural network is disconnected, and the fuzzy system operates without

the need for the neural network.

L«t8 t

Fuz2y rules
Fuzzy sets

Neural
Network

•
• 1 Fuzzy £

System

;ets

Output ^

Figure 10: Cooperative neurofuzzy network

19

In concurrent neurofuzzy systems, a neural network and the fuzzy system are connected

so that the output of one is fed into the other. The neural network does not actually

modify the fuzzy system; however, it modifies the input or output of the fuzzy system as

a pre-processing or post-processing step.

• *

•#
K

M

" • *

Fuzzy
System

Neural
Network

1 Output k

^ ^

1 Output k

Figure 11: Concurrent neurofuzzy networks

Hybrid neurofuzzy system, incorporate the principles of fuzzy logic, into neural

networks. The neural network is modified so that the neurons are fuzzy neurons [6], and

the inputs are fuzzy inputs. The fuzzy neurons are the AND, OR fuzzy neurons Figure 12.

*1

x2

Xn

Xl

x2

Xn

AND fuzzy neuron

w . , x \ ^

TT(x,SWi)j

"Wn

OR fuzzy neuron
w i \ „ _

1 SCXiTWj) |

, A J
' "W n

output

output

Figure 12: Fuzzy AND, OR neuron.

T and S norms are used instead of the sigmoidal activation function.

20

AND = T(S(x],w]),S(x2,w2),...,S(xn,wn))

OR = S(T(x],wi),T(x2,w2),....,T(xn,wn))

In hybrid neurofuzzy systems, the input layer consists of fuzzification of the raw inputs,

followed by the rules layer, and the output layer. There are three inference system types

used in fuzzy and neurofuzzy systems.

1) Mamdani based inference system
2) Sugeno-Takagi based inference system
3) Tsukamoto fuzzy inference system

In the Mamdani based inference system, the inputs to the fuzzy system are fuzzified and

then send to the corresponding rules. The outputs of the rules are then sent to their

respective consequents, combined, and the output is defuzzified.

In the Sugeno-Takagi based inference system, the output from each fuzzy rule takes the

form

If x is A and y is B Then C = f(x, y), where

f(x,y) = px + qy + r

For a first order system, the parametersp,q,r are learned parameters. In a Sugeno-Takagi

neurofuzzy system, the outputs from each rule are normalized in a normalization layer to

determine the firing strength of each rule, given by

a". = ———, where

a{ is the normalized firing strength of the rule

a, is the firing strength of the rule

The output of the fuzzy system is then taken to be

z = 2"-i5'^ ̂ '^ where

n is the number of rules

In the Tsukamoto fuzzy inference system, the consequents membership functions are

monotonic, and the resulting system output is the weighted average of the rules.

21

2.3.2 Learning techniques

In both the concurrent and cooperative neurofuzzy system, the learning techniques

applicable to neural network training are used, which mainly is the backpropagation

learning algorithm. For the hybrid neurofuzzy system, the backpropagation learning

technique also applies, however it requires some modification, since we have fuzzy

neurons instead of our normal neurons.

Aw,y =-r]VE(wij) = -r]-
dWy

For the output layer, we have the OR neuron, and using online learning,

E-Uitj-Oj)2

11 is the desired output of the neural network

ot is the actual output of the neural network

E is the total error

dE 1 „ , v doj• , v d o , = - x 2 x (r -o)x—± = (t - o)x—^~
dw, 2 J J dw, J J dwt

The output of the OR neuron is given by:

n

°i = S(w'Txi)> w n e r e

/ - i

S is the S - norm

T is the T - norm

Using the product T-norm, and probabilistic sum S-norm, we can write the output of the

OR neuron as:

n

0,-1-U (l-x,w,)

The derivative of the output with respect to the weight becomes,

do.
(1 - xt wl), which can be written as

22

do, "
-J—x.xQ-Siwp,))
dw, ,_,

The error signal of the output is

Sf-itj-oJxil-SiWjTxj))

i - = (/ ; - 0 /)x (l - J S ' (>v /x J))xx ,
dw, JmX

To backpropagate the error, we need to calculate the derivate of the AND, with respect to

the input weights. The output of the AND neuron is given by:

k

°h = r O m
S 0 , where

S is the S - norm

T is the T - norm

The output of the AND neuron can be written as:

m+Wm-Xm
WJ

The derivative of the output with respect to the weight becomes,

k

(1 - xm) x FT (x, +w, -XfWf), which can be written as

do *
—!L- = (\-xm)x(rf (w,Sx,)), the error signal for the input layer is
dwm /.,

8h=<}-xm)x(T(wlSxl))xwhJ.x(tl-oi)x(\-S(wJTx/)
' - 1 7=1

2.4 Evolutionary computation

In 1859, Charles Darwin published his book titled "Origin of Species", in which he

introduced his theory of evolution. Darwin argued that species evolve through a process

called natural selection, where the fittest individuals in the population survive. The fittest

23

individuals are the ones which are better adapted to live in their environment.

Occasionally mutations occur in the population, and if the mutation leads to a better

suited individual, then that individual thrives. Reproduction also might generate better

suited individuals, over time the population would be highly suited to its environment.

In 1975, Holland introduced genetic algorithms, which are based on Darwin's theory of

evolution. Holland used the concepts of natural selection, mutation, and reproduction to

find solutions to optimization problems.

2.4.1 Concepts - Genetic Algorithm

Genetic algorithms attempt to mimic the natural process of evolution to solving

optimization and search problems. Initially optimization space of the problem is

identified, a population of possible solutions are generated, and encoded (called

chromosomes), and their fitness evaluated using a fitness function, which measures how

good the individuals in the population are. The selection process is carried out to select

the best individuals in the population. There are multiple selection mechanisms, some of

which is the roulette wheel selection, and rank selection.

Some of the individuals in this population randomly undergo mutation and reproduction

(also called crossover), generating new individuals or offspring, the individuals that don't

are copied to the next generation. The population size is kept constant through out the

whole process. After the process is done, we have a new population of individuals, with

higher overall fitness. This process is repeated for a number of generations until the

stopping criterion is met. Figure 13 is a flow diagram of a genetic algorithm.

24

r—^
(%3>X3 f t)

Initialize population

T

Test population fitness

Apply genetic operators
(crossover, mutation)

Stopping
Criteria

met Selection

(End j

Figure 13: Genetic algorithm flow diagram

Genetic algorithms require choosing an encoding scheme, to encode the individuals in the

population, determining and setting some parameters, and the determination of the fitness

function, which dictates the solution space that is to be searched.

25

Genetic algorithms typically encode the solutions in binary format. Gray coding or other

encoding scheme can be used.

The mutation operator allows for the exploration of different areas in the solution space,

setting the rate of mutation dictates the amount of individuals in the population that will

undergo mutation. If this percent is too high, the individuals within the population will

mutate very frequently, and a good solution could be lost, on the other hand, if the rate of

mutation is too low, we are not exploring the solution space enough. There is no

particular rule that we can use to set the mutation rate, so it's a matter of experimentation.

The reproduction operator allows us to explore the region around a particular individual

in the population, it is a local search. The crossover rate, dictates the amount of

individuals that will undergo crossover. If this rate is too high, the genetic algorithm will

not be able to explore other regions in the solution space, and if this rate is too low, the

genetic algorithm will not have a chance to explain the region surrounding the individuals

in the population. There is no rule for selecting the crossover rate.

The number of generations determines the evolution time, the larger, the better, since the

genetic algorithm will explore more of the solution space. Population size determines the

number of individuals in our population, the larger the size, the better, since we have

more points to explore in the solution space.

The fitness function is the heuristic that guides the evolution process. Selecting the

correct fitness function for the genetic algorithm is essential to obtaining good results. If

the fitness function is not representative of the problem to be optimized, then an optimal

solution may not be found.

Genetic algorithms are not guaranteed to find the best solution. Also there is the

possibility that the genetic algorithm might get stuck at a local maxima, this problem is

26

more apparent with functions that are multimodal, where the fitness function contains a

lots of peaks.

2.4.2 Genetic Programming

Genetic programming was pioneered by John Koza for optimization of complex

problems. Genetic programming uses, and works by the same concepts and procedures as

genetic algorithms, however, in genetic programming the solutions space is not

composed of chromosomes, but of programs or solutions represented by a tree structure,

Figure 14.

Figure 14: A program and its tree representation

To prepare the GP for solving a problem, we first must define the following:

1) Function set
2) Terminal set
3) fitness function
4) mutation rate
5) crossover rate
6) number of generations
7) populations size

The function set is the operations that the solution should be composed of, like +,-

,/,*,sqrt,..,etc, and the terminal set is the operands, or the variables and constants that the

27

solution should include. Defining the parameters and the fitness function is the same as

that of the genetic algorithm.

The steps that the GP follows are identical to that of the genetic algorithm. Crossover in

GP is carried over by cutting two branches of two individuals and exchanging them,

Figure 15.

parentl

0"' V)

child 1

ff "*B
©' <3) (I) <|)

parent2

X X

child2

& y^
(x) (3) Q Vxj

0 ©

Figure 15: Crossover operation in GP

Mutation in GP involves cutting down a branch of the tree, and replacing the branch with

a newly generated one, Figure 16.

28

(D

Cf

individual

/ \ / x

7D (I) ®

mutate individual

\

Figure 16: Mutation in GP

Care must be taken, when doing crossover and mutation, as we require the mutated

individual or children to be a valid solution. GP is subject to the same problems that

might affect the genetic algorithm, including being stuck on local maxima.

There are three methods for creating the tree programs:

1) full method
2) grow method
3) ramped half and half

In the full method, the individuals in the population are created down to the maximum

depth, D of the tree. In the grow method, the individuals are created anywhere up to the

maximum depth D of the tree, this method allow for greater variation in the population,

then the full method. The ramped half and half method is a combination of both, were

half of the population is created using the full method, and the other half is created using

the grow method, this method provides for the greatest variation in the population.

29

Chapter 3

Neurofuzzy Prediction System

3.1 Concept

The technique we have chosen to tackle our problem is using a hybrid neurofuzzy system

for prediction, for three main reasons:

The system is capable of learning and generalizing from training data

The system is capable of handling uncertainty

the system is transparent, we can see and understand the relationship between variables

Neural networks are adaptive systems that learn from the inputs, and when properly

trained, they generalize well from data. The fact that our research data contain

uncertainties in the values of the volume measured means that we require a system that is

capable of incorporating this uncertainty as well as being transparent, so we can

determine the relationships between all the variables. A hybrid system that combines the

previously mentioned benefits of neural networks with fuzzy systems is a good choice for

a modeling the forces acting on the bulldozer.

3.2 Architecture

Figure 17 is a simplified diagram of a hybrid neurofuzzy system, the inputs are fuzzified

using their membership functions, and the fuzzified inputs are send to neurofuzzy

network, the network produces the fuzzy outputs which are defuzzified to crisp values.

30

Crisp inputs

Fuzzy Domain

Fuzzification
Nuerofuzzy

Network
Defuzzification Crisp output

Figure 17: Simplified hybrid neurofuzzy network

The system consists of the following layers:

1) The input layer
2) The fuzzification layer
3) The rules layer
4) The output layer

Figure 18 is a diagram of the hybrid neurofuzzy system. The inputs to the neurofuzzy

system are fuzzified, and the fuzzified inputs are send to their corresponding rules, there

T norms are calculated. The output from the rules layer is send to the corresponding

consequents membership function, and aggregated to produce the final degree of

satisfaction of the consequents output fuzzy set.

31

< m o
0^% ****% ****%

O

^

^K) O ()
if) > '̂

.*•

W DC
> f 1

/ /
/ /

/ / s

'/ OC

I \ X /
X X

V
X/\ /
/ X

/ / \

N

0 X, \ \

x \ \
\ X \ '"^ssQl

" ' ! < • ,
/

/ \

I \
X\

/
/

X
/

/

• ' " > . _

y

v /

A
\ J

\

O Q Q" 0 0 O O Q P Q C
iiiiwlff \ 1 / wmmmmm

/

X

o
CM

X
CO

X

\

The system is based on the Mamdani inference; we produce the degree of satisfaction of

the consequents fuzzy sets, which we then use the fuzzy mean defuzzification described

in chapter 2 to calculate the final crisp output.

32

3.3 Construction

In the input layer, the inputs are presented to the system, and each input is fuzzified using

Gaussian membership functions of the form

The mean and standard deviation of the Gaussian membership functions are determined

using

x\ (max.-min.) ,
u, = min,+ > • xi, where

n («-i)

n is the number of membership functions

0 4 5 x (m a x , - m i n ,) -1.0xlog(0.45)

The means of the membership functions are determined so that we have equal intervals

between the means of the membership functions, and the standard deviation is the same

for all membership function.

After the fuzzification stage, the selected fuzzy inputs are fed into the rules layer, which

consist of the AND neurons. The T-norm is the product of the inputs T(x,y) = xy. The S-

norm is the probabilistic sumS'(x,>') = x + y-xy. These T and S norms were chosen

because we need to have differentiable functions, so that we can use the backpropagation

learning algorithm.

The outputs from the rules are then fed into the output layer, which consist of the OR

neurons. Each output from each neuron is fed into its corresponding output neuron, and

all the outputs are combined together to yield a degree of satisfaction of the consequents

33

fuzzy set. The neurofuzzy system is trained using the backprogation learning algorithm as

described in chapter 2.

The initial weights of the inputs are 0 for the inputs to the AND neuron, and 1 for non

inputs to that AND, For the OR neuron, the weights get reversed, so that the weights

become 0 for non inputs to the OR, and 1 for inputs. This is required because of the

properties of T and S norms. When these weights get trained using the backpropagation,

only the weights that correspond to the actual inputs are modified.

Because of the rule explosion, we have determined that the best membership functions

are 3 for both inputs and outputs, if we were to use a bigger value of the membership

functions, the amount of potential rules will be very high, since we have 8 inputs to the

network, this will also give us a reasonable view of the data, without having too much

terms, and making interpretation difficult, and too few terms which are not sufficient to

describe the data with good detail.

Determining the inputs to each rules, and the corresponding output are a knowledge that

have to be determined a priori, or via validation runs, to pick the structure which yields

the best results. Because of the rule explosion, in which the number of rules grows

exponentially with the number of inputs to each rule, we decided to use genetic

programming to search for the best neurofuzzy structure to use.

3.4 Training

After the best neurofuzzy structure is determined, we train the network using the

backpropagation algorithm, since we have differentiable T and S norms. Training the

nuerofuzzy system will involve only adjusting the weights for the actual inputs to each

neuron. This way we won't have situations in which we have multiple fuzzy variables are

inputs to the same rule.

34

3.5 Overfitting Avoiding Technique

In training the neurofuzzy system, the training error and the testing error versus the

training time decreases until we reach a stable minimal training error, however after a

specific training time, the testing error will start to increase, which indicates that we are

fitting the model to the training data, so we find the point after which the testing error

starts to increase, and this will be training time that will give the best generalization error.

Reducing the maximum number of hidden layer nodes also reduces overfitting.

Neurofuzzy systems in general are less susceptible to over-fitting than neural networks.

However the potential for over-fitting is there, and so we must find the best training time.

35

Chapter 4

Measurement data

4.1 Measurement process

A specialized Board Monitoring System (BMS) is installed on a bulldozer. A unit for

data collecting, processing and storing is a central component of the BMS. The unit

receives measurements from all sensors, performs some simple pre-processing before

saving them. The location of the most important sensors together with all forces of

interest is presented in Figure 19.

The sensors of the BMS are installed at different locations. The collected data are multi­

dimensional. The measured attributes are:

1) Estimated amount of bulldozer load
2) Engine speed
3) Forward gear indicating a forward movement
4) Reverse gear indicating a reverse movement
5) Torque converter output
6) Track speed
7) Horizontal tension on the left and right sides of the dozer
8) Track pressures on the left and right sides of the dozer
9) Track tension on the left and right sides of the dozer
10) Torque
11) Tractive forces

36

Figure 19: Dozer's schema with sensors and forces indicated

The bulldozer sensors are described below:

Engine speed sensor

Torque converter speed sensor

Track speed forward v>0 and reverse v<0

Horizontal tension of track (see item 6 below)

Pressure sensor (internal pressure from coil spring)

Track tension generated from applied torque

Torque (from engine, torque converter, transmission, differential and final drive)

Tractive forces, known as draw bar pool (DBP)

On-Board Data Collector system central unit of Board Monitoring System

Blade.

4.2 Data description

The measurement process took place during winter, and spring operating conditions. The

bulldozer was performing levelling of overburden on a dumpsite.

37

4.2.1 January dataset

The data for January dataset contains 2485 data points. Table 2 shows data statistics,

Table 3 shows the frequency distribution of the volume.

Table 2: January dataset statistics

Mean

Standard deviation

Skewness

67.90

25.54

-0.65

Table 3: Volume distribution for January dataset

Bin

10

20

30

40

50

60

70

80

90

100

Frequency

78

73

92

149

233

263

339

246

409

603

Cumulative %

3.14%

6.08%

9.78%

15.77%

25.15%

35.73%

49.38%

59.28%

75.73%

100.00%

4.2.2 March dataset

The March dataset data contains 1079 data points. Table 4 shows data statistics, table 5

shows the frequency distribution of the volume.

38

Table 4: March dataset statistics

Mean

Standard deviation

Skewness

78.36

21.71

-1.17

Table 5: Volume distribution for March dataset

Bin

10

20

30

40

50

60

70

80

90

100

Frequency

7

11

32

33

71

62

86

146

201

430

Cumulative %

0.65%

1.67%

4.63%

7.69%

14.27%

20.02%

27.99%

41.52%

60.15%

100.00%

4.3 Data cleaning

During pre-processing some of the attributes have been removed and modified. Two

attributes: Forward Gear and Reverse Gear have been removed. Other six attributes

representing pressures and tensions on both sides of the dozer have been merged. The

merge process has been performed in pairs: left track tension and right track tension, left

track pressure and right track pressure, as well as left horizontal tension and right

horizontal tension have been averaged. As the result, nine attributes are used in the

analysis. The names of these attributes with their brief description are presented in table

6.

39

Table 6: Attributes (features) of analyzed data and their brief description

Parameter

Blade Volume

Engine Speed

TC Out Speed

Track Speed

Horizontal

Tension

Track

Pressure

Track Tension

Torque

Forces

Unit

% ofthe

bulldozer's blade

Rpm

Rpm

km/h

kPa

kPa

kPa

Nm

kN

Description

estimated amount of load pushed in front of the

bulldozer in per cent of the fully loaded bulldozer's

blade

revolution of engine

torque converter output

relative velocity of track

horizontal track tension - component of track

tension

internal pressure create tensions

track tension create from applied torque and

resistance of the dozer

torque generate from power train

tractive forces

Besides merging some attributes, and removing others, pre-processing of the data

consisted of the removal of all data points with the value of blade volume equal to zero.

40

Chapter 5

Evolutionary based methods for
system construction

Genetic algorithms and genetic programming can be used to search for the best possible

structure of the neural or neurofuzzy network, like the number of hidden neurons for a

neural network, or number of inputs, rules, and connections between the inputs and rules,

and rules and outputs. Genetic algorithms can be used also for training weights of the

neural network or the neurofuzzy system. Determing the structure of the system means

knowing the rules that govern the behaviour of the system, and understanding the

relationships between them, and the output. The genetic programming method used in

this research is the grow method, where the length of the tree varies up to a maximum

depth of D which is equal to the total number of AND's n the neurofuzzy model.

5.1 Genetic programming for system construction

The structure of the hybrid neurofuzzy system is determined using genetic programming,

this includes:

1) Number of rules (AND neurons)
2) Number of inputs to each AND gates
3) The fuzzy inputs to each rule
4) The connection between the rules and the outputs

The function set is the T and S norms, and the terminal set consists of the fuzzy terms,

and rule outputs.

41

The individuals in the population are created with varying number of AND's, so as to

give the genetic programming system the ability to explore the best number of rules that

can describe the system.

The number of inputs to each rule are generated randomly, since we have 8 variables in

our research, and we require only 1 fuzzy term from each variable to be included in a

rule, this is required so that we avoid situations in which we have a rule as

"If torque is high and torque is low then volume is high"

Since the system will pick some of the fuzzy terms available, the ones most important to

the problem at hand, genetic programming is considered to be performing feature

selection on the attributes, since it picks the most relevant ones, and discard the non

important ones.

The connection between the rules and outputs is varied as well, as an example, if we

have 3 output membership functions, then the first rule might be randomly chosen

connected to output membership 1, or 2 and 3. The fact that the rule antecedent is

connected to two different consequents does not mean that we have an inconsistency in

our rules, this is because the connections have associated weights, so that the antecedent

might have a weight of 0.6 towards output membership 2, but 0.1 towards output

membership 3, so that the rule is contributing to different degrees towards each of the

consequents. After the neurofuzzy structure is determined, the connection weights are

trained using the backpropagation algorithm in chapter 2. The results are a set of rules

that characterize the behaviour of the system using the most relevant variables.

5.1.1 Chromosome representation

Each chromosome in our population is represented by a linked list, in which each rule is

represented by a structure that contains the outputs, the connections, and a pointer to

another structure that contains the fuzzy inputs, and a pointer to the next rule, Figure 20.

42

{

ch.ar

int

node

!;

struct

int.
int

int

node

flag;

string£MSX_SINGLE_STRING!
coe ff;

'next;

main

doable

doubi
«tauto.l

ist

iat

int
node

main

>;

struct

struct

void (

rjode

taaia

isain

node

H a g ;

chi!d_counter;
total counter;

fitness;

worst;
worst_tot;

hits;

no_of_outputs;

otttputs f Q0TFUT_NO_HF]
•child;

•next;

code "population

node *new population
•pfxtness)(int child);

t POPULATIONS IZE] ;

fPOPTOATIOS_SIZ£] ;

Figure 20: Structure of neurofuzzy network

The mainnode structure stores each of the rules of the system. The child counter

contains the number of inputs to the rule. The total counter contains the total number of

rules and their inputs. The no_of_outputs is the number of outputs the rule is connected

to. The child is the pointer to the node structure which contains the fuzzy inputs. The

fitness contains the fitness value for the neurofuzzy system, and the pointer next points to

the next rule.

The node structure is where the children or fuzzy inputs to the neurofuzzy system are

stored. The string array is where the actual fuzzy input is stored, string[0] contains the

variable, and string[l] contains the membership function of the variable. If the coeff

variable is set to 1, then we take the complement of the fuzzy term. The next pointer

points to the next input to the rule.

43

5.12 Selection mechanism

Roulette wheel selection is the method by which we select individuals to undergo

mutation or crossover. In this selection method, we generate a fitness value, and we

compare it to the cumulative fitness of each individual, if the fitness value is lower than

the cumulative fitness, then we select the individual. The individuals with a higher fitness

value have a higher probability of being selected.

This method can represented using a wheel, we divide the wheel into slices, where the

size of each slice corresponds to fitness of each individual, individuals who have a higher

fitness get a large slice, and so the probability once we spin the wheel on landing on that

slice is high.

5.1.3 Structure evaluation

The chromosomes in our population are evaluated using the stack. There are two stacks

available, one for values, and one for operators. The chromosome value is calculated by

first pushing and '+' operator which corresponds to the S-norm onto the operator stack,

(number of inputs to that output membership - 1) times. So if we have 4 inputs to yl, then

the '+' operator is pushed 3 times on the operator stack.

The program then iterates through the rules, and for each input to the rule, the program

pushes the '*' operator, which represents the T-norm onto the operator stack (number of

inputs to that rule - 1) times, so that if we have 3 inputs to Rl, then the '*' operator gets

pushed 2 times. The program then iterates over all inputs to the rule, and pushes their

values onto the value stack. When there are 2 consecutive values in the stack, the

program then, evaluates their T-norm, and pushes the result onto the stack again. The

stack constantly shrinks as each rule is evaluated, and then outputs of all the rules are

combined using the S-norms to calculate the value of the output membership. The

program then iterates over the other outputs, repeating the process, Figure 21.

44

* - T-rtorm operation
+ - S-norm operation

Figure 21: Neurofuzzy structure evaluation in genetic programming

When the chromosome is evaluated, the stack then will be at location 0.

5.1.4 Genetic programming operators

S. 1.4.1 Crossover

Crossover is performed by selecting parent 1 and parent 2 using roulette wheel selection,

and selecting the points of crossover for both parents. The points of crossover can either

be a rule, which is indicated by selecting a main node, or a fuzzy term in one of the rules.

The crossover point is determined randomly based on:

.r, , , maximum number of rules
if (random value generated <

maximum number of rules + maximum number of inputs to each rule

then select a random rule as the crossover point, else select random input to random rule as

crossover point

) ,

In the above rule for selecting the crossover point, if the number of rules allowed exceeds

the number of inputs, the probability of mutating a rule is high, and the probability of

selecting and inputs is low. In order to give equal probability to select and input, the same

45

as a rule, we need the number of allowed rules to be equal or close to the number of

inputs.

Once the crossover points for both parents are determined, the crossover process is

performed by combining the tree for parent 1 from the root to the crossover point with the

branch from parent 2 crossover point to the end of the tree as in Figure 22. The crossover

process produces only one child.

parent 1 parent 2

0B$w#fo_QF_0tnrRrr5j - Oiap*i{KO OF_0WrPUTS|

/
mfowtt

• OB*w«{w_oF_wiwrn>j

- oupj«ps'o_OF_oinpinsi

(€1
C - Input or Child

Chid

gapai
mm.

*(NOJOF_0UTOJ'W}

"liP

^
' CtepwpOJ>FJ?UTPU"I$]

Figure 22: Chromosome crossover

46

The crossover function has to check to make sure that the maximum number of rules has

not been exceeded, and if it has, the crossover process is repeated, selecting different

crossover points, until we have a crossover, where the maximum number of rules has not

been exceeded.

If the crossover point is a fuzzy term, then crossover is performed in the same way as for

rules, except that we have to check to make sure that the maximum number of inputs to

each rule has not been exceeded, and we have to make sure that each term appears only

once in the rule inputs, regardless of its membership function, if any of these conditions

are not satisfied, then we repeat the process selecting different crossover points. After the

crossover is performed, then we check outputs from each rule, and if one of the outputs is

not connected to any rules, we select a random rule, and increment its number of outputs

by one, and we create a connection to that output.

5.1.4.2 Mutation

Mutation is done by first selecting a chromosome to mutate based on the mutation

probability, and then selecting a mutation point, which could be either a rule, or an input

to one of the rules in the structure.

The selection mechanism for a mutation point is the same as that for crossover, however,

with one additional condition. If the child counter is equal to zero, then we select the

main node for mutation. This allows us to initially generate the population using the

mutation function, since the child counter is zero for newly initialized nodes.

If a rule has been selected for mutation, a new tree is generated and replaced with the sub

tree at the mutation point. The mutation function checks if the maximum number of rules

have been exceeded, and if it had, then mutation is repeated by selecting a different

mutation point, and generating a new tree.

47

If the mutation point is an input for a rule, then, new inputs are generated, in which no

variable is repeated twice, and replaced with the child tree of the mutation point, Figure

23.

Individual Randomly generated subtree

i_cr_ocTHmj

O«(W^WJ3fJ0WWTSJ

•—<8>

Mutated Itid vidsat

jra_cr_csTWTS!

\̂ ^^

- 0»(p<*^*0J*_OUTPCTS3

C - Input ©rCtmld

Figure 23: Chromosome mutation

48

5.1.5 Genetic programming parameters

Genetic programming parameters play a very important role in how much of the solution

is space is explored, and how fast the genetic programming algorithm finds a solution.

There are no specific guidelines as to the correct values of these parameters, and

therefore they must be found my trail or error, or set based on the problem.

5.1.5.1 Population size

The population size controls the number of individuals in our population. It is kept

constant through the evolution process. There is no guideline as to what the population

size should be, however, if the population size is small; it will take longer for genetic

programming to find a good solution, especially if the search space is large. For problems

were we have a large search space, the population size should be large, in the hundreds or

thousands.

5.1.5.2 Number of generations

The number of generations determines the evolution time of genetic programming, the

longer the evolution time, the more of the solution space will be searched, and the more

the chance we will find a good optimal solution. This value for large search spaces should

be in the thousands of generations.

5.1.6 Fitness functions

The fitness functions in genetic algorithm, and genetic programming dictates the solution

space to be search, and optimized. In genetic algorithms and genetic programming, we

can change the fitness function easily to be more representative of the data, for example,

we can use a fitness function that take the statistical distribution of the data into account.

In our project, we have used the functions described in this section.

5.1.6.1 Sum squared error fitness function

The first type of membership that we have tried is the sum squared error function, defined

by

49

SS£"S2°'»"X») ,where

k is the number of membership functions

n is the number of data points

ytj is the desired membership output

Xy is the actual membership output

This fitness function however, does not consider the distribution of the data into account.

This fitness function is suitable for normal, or near normally distributed data.

5.1.6.2 Max Error function

Another fitness function is the maximum error over all output memberships.

total error = max(e0, e,,..., e„)

where e, is the maximum error for membership i over all training points

n is the number of output membership functions

This fitness function attempts to balance out the error across all membership functions.

5.1.6.3 Max error combination based function

In the maximum error combination fitness function, we determine the maximum error for

each output membership function, and combined them to yield the error of the model. We

combine the maximum errors using their product.

n

total error = TT max e,,

where ei is the maximum error for membership i over all training points

n is the number of output membership functions

In combining the errors from all membership functions, we try to minimize the error

across all outputs.

50

5.1.6.4 Interval based error function

In the interval based error function, we divide the area under the membership function

into intervals, and calculate the error and number of data points that lie in each interval.

The intervals are shown in Table 7.

Table 7: Intervals and their corresponding ranges

Interval

A

B

C

D

E

Range of actual

membership value

>= 0.75

>= 0.5 and < 0.75

>= 0.25 and < 0.5

>= 0.05 and < 0.25

>= 0 and < 0.05

The number of intervals we used for each membership function is 5. This will allow us to

concentrate on the intervals that contain low number of data points. The error in each

interval is normalized by the number of data points in there interval, the total error is

calculated by:

'L QTYOY

total error = Y (1 + Aw,) * '-, Where n is the number of points in interval /

Aw, is initialized to 0 for all intervals, and then updated every 20 generations. Aw, is

updated by sorting the error for all intervals from largest to smallest, the largest error

having a rank of 0 and the lowest having a rank of 4, and then updating the weights for

each interval in proportion to the error ranking

Aw, =
_ (5 - Rank) +

error,

51

Chapter 6

Results and Discussions

The system was run for both the January dataset and March dataset. In order to determine

the best fitness function to use for our final model, for both the January dataset and

March dataset, we have used 10 fold cross validation for improved accuracy results. The

results have been averaged for each fitness function for both the January and March

datasets. The systems were run with the following parameters:

1) Generation size is 1000
2) Population size is 100
3) Probability of crossover is 0.8
4) Probability of mutation is 0.2
5) Number of input and output membership functions is 3

The number of memberships was chosen to be 3 memberships because it limits the search
space, and because it produces the lowest absolute average error.

The reason for using high crossover and mutation rates is because of the low number of

population, and so to create as much variation in the population as possible, we increase

both mutation and crossover rates.

For each of January dataset and March dataset, the fitness functions were compared, and

the one with the lowest absolute average error is selected as the most appropriate fitness

function for the data, the data is then run 3 fold cross validation with 66% of the data for

training, and 33% for testing, and the following parameters:

1) Generation size is 2000
2) Population size is 500
3) Probability of crossover is 0.4
4) Probability of mutation is 0.05

52

6.7 Results

6.1.1 January dataset

The data is fuzzified using the equations in section 3.3, and fed into the system. The

results from 10 fold cross validation for January dataset is shown in table 8.

Table 8: January dataset cross validation results (Before defuzzification)

Fitness

SSE

Max error function-product

Max error function

Interval based error

Sum squared error

1.8450

4.6672

21.8643

2.6217

Mean sum squared error

0.0074

0.0187

0.0878

0.0105

From table 8, we can see that the lowest error is achieved with the sum squared error

function, second to that is the interval based error, and lastly the max error function.

The best system from the 10 fold cross validation results for the SSE fitness function for

January dataset data contains the following 12 fuzzy terms, table 9.

Table 9: Fuzzy terms used by the best program in the 10 fold cross validation run

Fuzzy Variable

E2

E3

SI

S3

HI

H2

T2

Ql

Q2

Q3

Explanation

Engine speed is medium

Engine speed is high

Track speed is low

Track speed is high

Horizontal track tension is low

Horizontal track tension is medium

Track tension is medium

Torque is low

Torque is medium

Torque is high

53

Fl

F2

F3

Forces are low

Forces are medium

Forces are high

6.1.1.1 Prediction System for "January dataset" Data

The system was run again with 3 fold cross validation, the best program out of the 3 fold

cross validation produced the results in table 10.

Table 10: Defuzzified results of best program in the 3 fold cross validation run

Absolute average error

2.9595

Standard deviation

2.0510

The January system was run using the test data from the March dataset, and the results

are summarized in table 11.

Table 11: Test sets results (without defuzzification)

January
March

Training

0.00516

Testing

0.00533
0.01145

Figure 24 shows the structure of the neurofuzzy system.

54

Symbols for inputs

e - speed engine
o - TC out speed
s - track speed
h - nor track
p-tracKP
t - track?
q-torque
f-forces
v - TOiume

e

o

s

i-norm"proaucr

Membership functions for inputs

"1* Membership function low
"T Membership function medium
3 Membership function high

q

f

%

S-r»mi "Probabilistic sum"

•) Volume

Membership functions for output

*0" Membership function low
"V Membership function medium
"2" Membership function high

6.1.1.2 Knowledge gained from January dataset system

The structure of the neuro-fuzzy systems allows for extraction of IF-THEN rules that

represent the relations between input parameters (Table 11) and the volume of

bulldozer's overburden. The rules are presented below. Please note that each rule of the

form

IF
{(VARIABLE) is low/medium/high)o and (VARIABLE2 is low/medium/high)o.6 }o.9

OR
{(VARIABLE4 is low/medium/high)a,-i }o.6

THEN
VOLUME is low/medium/high

Should be read in the following way:

The contribution of a single antecedent (between {} brackets) to the statement
"VOLUME is low/medium/high" is 0.9, and the contributions of the statements
(VARIABLE 1 is low/medium/high) and (VARIABLE2 is low/medium/high) to this
antecedent are 0.0 and 0.6 respectively1.
while the contribution of the second antecedent to the statement "VOLUME is
low/medium/highi" is 0.6, while the contribution to this antecedent coming from the
(VARIABLE4 is low/medium/high) is 0.3.

The system leads to the set of the following rules:

VOLUME is low:

IF
{
(HORIZONTAL TRACK TENSION is low)0.9s and (TORQUE is low)Q,94 and (FORCES
are low)o

h
VOLUME is medium:

IF
{
HORIZONTAL TRACK TENSION is medium)0 and (TORQUE is medium)0 and (
FORCES are low)0
}o.29

1 In the "and" part of the fuzzy IF-THEN rule, the smaller value of a weight means higher
contribution, while the higher value of a weight means lower contribution - this is due to
t-norm.

56

OR

IF
{
(FORCESare medium)o and (TORQUE is low)o33

}i

OR

IF
{
(FORCES are medium)0 and (TORQUE is medium)0

}o.96

VOLUME is hi2h:

IF
{
(FORCES are high)0

}i

OR

IF
{
(ENGINE SPEED is medium)^ and (FORCES are high)0

}o.79

Applying a threshold of 0.5, so that if the weight of any input to a rule is lower than 0.5,

then we completely include the input, or if the input to the OR is bigger than 0.5 we can

include the input to the OR, otherwise we discard, the rules reduce to:

VOLUME is low:

IF
{
(FORCES are low)o

}>

VOLUME is medium:

IF
{
(FORCES are medium)0 and (TORQUE is low)o

}i

57

OR

IF
{
(FORCESare medium)o and (TORQUE is medium)o

}i

VOLUME is hi2h:

IF
{
(FORCES are high) o
h

OR

IF
{
(ENGINE SPEED is medium)0 and (FORCES are high)0

}i

The rimpull force is a very important factor, since it is always fully included in the rules,

and the fact that it appears alone and directly related to the volume.

6.7.2 March dataset

The results from 10 fold cross validation for March dataset is shown in table 12.

Table 12: March dataset cross validation results (Before defuzzification)

Fitness

SSE

Max error function -product

Max error function

Interval based error

Sum squared error

1.1514

7.3587

7.0308

0.8611

Mean sum squared error

0.0107

0.0681

0.0651

0.0079

58

From Table 12 we can see that the lowest error is achieved with the interval based error

function, second to that is the sum squared error function, and lastly the max error

function -product.

The best system from the 10 fold cross validation results for the interval based fitness

function for March dataset data contains the following 11 fuzzy terms, table 13.

Table 13: Fuzzy terms used by the best program in the 10 fold cross validation run

Fuzzy Variable

SI

S2

S3

HI

T3

Ql

Fl

F2

F3

Explanation

Track speed is low

Track speed is medium

Track speed is high

Horizontal track tension is low

Track tension high

Torque is low

Forces are low

Forces are medium

Forces are high

6.1.2.1 Prediction System for "March dataset" Data

The system was run again with 3 fold cross validation, the best program the best program

out of the 3 fold cross validation produced the results in table 14.

Table 14: Defuzzified results of best program in the 3 fold cross validation run

Absolute average error

2.2955

Standard deviation

1.7760

The prediction system was run using the test set of the January dataset, and the results are

summarized in table 15.

59

Table 15: Test sets results (without defuzzification)

March

January

Training
0.00822

Testing

0.00803
0.00798

Figure 25 shows the structure of the neurofuzzy system.

60

T-norm -product"
Symbols for inputs

e - speed engine
o - TC out speed
s - track speed
h - tor track
p - trackP
t-tracKT
q - torque
f - forces
v - volume

e

0

s

Membership functions for inputs.

"1* Membership function low
"2* Membership function medium
"3" Membership function high

P

t

f

S-norm "Probabilistic sum"

Volume

Membership functions for output:

"0" Membership function low
"1" Membership function medium
"2* Membership function high

6.1.2.2 Knowledge gained from March dataset system

The following rules have been extracted from the system constructed for the March

dataset:

VOLUME is low:

IF
{
(FORCES are low)0

h

OR

IF
{
(TRACK SPEED is low)0 and (TORQUE is mediumjo and (TRACK TENSION is low)0

and (ENGINE SPEED is mediumjo and (TORQUE CONVERTER SPEED is mediumjognd
(FORCES are low)o
}i

VOLUME is medium:

IF
{
(FORCES are mediumjo

} 0,8837

OR

IF
{
(ENGINE SPEED is highjo and (TRACK TENSION is mediumjo and (TRACK SPEED is

highjo
}i

OR

IF
{
(TRACK SPEED is highjo and (TORQUE CONVERTER SPEED is mediumjo and

(FORCES are low) o

h
OR

62

IF
{
(ENGINE SPEED is high)Q and (TRACK TENSION is medium)0 and (TRACK
PRESSURE is high)0 and (TORQUE is medium)0 and (FORCES are low)Q and
(HORIZONTAL TRACK TENSION is low)0

}

VOLUMEis hish:

IF
{
(FORCES are high)o

}>

OR

IF

{
(FORCES are high)0 and (ENGINE SPEED is medium)0.292
}o.837

OR

IF
{
(ENGINE SPEED is high)0 and (TRACK TENSION is medium)0 and (TRACK
PRESSURE is high)o and (TORQUE is medium) Q and (FORCES are low)o and
(HORIZONTAL TRACK TENSION is low)0

}

After applying the threshold of 0.5:

VOLUME is low:

IF
{
(FORCES are low)o

}i

OR

63

IF
{
(TRACK SPEED is low)0 and (TORQUE is medium)0 and (TRACK TENSION is low)0

and (ENGINE SPEED is medium)0 and (TORQUE CONVERTER SPEED is medium)0gnd
(FORCES are low)o

h

VOLUME is medium:

IF
{
(FORCES are medium)o

}0.8837

OR

IF
{
(ENGINE SPEED is high)0 and (TRACK TENSION is medium)0 and (TRACK SPEED is

high)0

h

OR

IF
{
(TRACKSPEED is high)0 and (TORQUE CONVERTER SPEED is medium)0 and

(FORCES are low) o
h
OR

IF

{
(ENGINE SPEED is high)0 and (TRACK TENSION is medium)0 and (TRACK
PRESSURE is high)0 and (TORQUE is medium)0 and (FORCES are low)0 and
(HORIZONTAL TRACK TENSION is low)0

}

VOLUME is hish:

IF
{
(FORCES are high)o

h
OR

64

IF
{
(FORCES are high)o and (ENGINE SPEED is medium)o

h

OR

IF
{
(ENGINE SPEED is high)0 and (TRACK TENSION is medium)0 and (TRACK
PRESSURE is highjo and (TORQUE is medium)o and (FORCES are low)o and
(HORIZONTAL TRACK TENSION is law)o
}

The system did not exclude any rules or variables, however, the rimpull force is still an

important factor, since it appears in almost all rule inputs with a high weight, and appears

alone with direct relation to the volume.

6.1.3 Comparison of Results

The results from both January dataset and March dataset show that the rimpull force is an

important factor that influences the volume of the bulldozer, some other factors which are

common to both January dataset and March dataset like:

1) Engine speed
2) Torque

The results from using the March test set in the January system, and the January test set

in the March system indicate that the March system can also be used for the January data,

but not the opposite.

65

Chapter 7

Conclusion and Recommendations

The research conducted in the framework of this thesis is quite innovative. The issue of

predicting the volume of material pushed in the front of a bulldozer has not been

addressed so far. The procedures for processing and modeling of data proposed and

validated in the thesis can be treated as a prototype of methodology that can be applied to

processing and modeling of any data collected during operations of heavy earth-moving

vehicles.

In particular, the contributions of the thesis are as follows:

collection of on-site measurements of heavy earth-moving equipment, performed during

January and March;

processing - cleaning and initial analysis - of the measurement data sets; this task has

been preformed in order to ensure consistency of data points; validation of data has been

done;

development of neuro-fuzzy models of the measurement data using an evolutionary-

based optimization system.

Overall, the research activities have resulted in construction of systems for predicting the

volume of material pushed by the bulldozer. Analysis of two best models developed for

both - January data and March datasets has lead to the conclusion that the rimpull force is

the major factor in predicting the volume of material. Most of measured quantities

constitute inputs to both systems. However, the rules extracted from the systems are

66

different. This means that relationships between measured quantities and the volume are

different for different measurement conditions (times when measurements were done).

The presented results are a part of studies dedicated to construction of a system capable

of predicting force distributions during on-site operations of heavy earth moving

machinery. To predict distribution of forces - in particular forces reacting on wheels -

the volume of material pushed in the front of bulldozer has to be know.

In order to gain confidence in the proposed approaches suitable for data analysis and

modeling an additional set of experiments should be conducted. They should target more

variety of measurements - different weather conditions and different tasks performed by

vehicles, and more detailed analysis of extracted rules. All this should lead to

construction of a more comprehensive force distribution prediction system. More

experiments with modifications of the proposed evolutionary-based optimization process

- more tuning towards nature of the measured data - should be conducted.

67

References

[I] Brown, M., An Introduction to Fuzzy and Neurofuzzy Systems, 1996.

[2] Hirota, K., Pedrycz, W., OR/AND Neuron in Modeling Fuzzy Set Connective, IEEE

Transactions on Fuzzy Systems, Vol. 2, No. 2, May 1994, pages: 151-161.

[3] Hirota, K., Pedrycz, W., Fuzzy Computing for Data Mining, Proceedings of the IEEE, Vol.

87, No. 9, Sep 1999, pages: 1575-1600.

[4] Iskarous, M., Kawamura, K., Intelligent Control Using a Neuro-Fuzzy Network,

Proceedings of the International Conference on Intelligent Robots and Systems, Vol. 3,

1995,pages 3350-

[5] ISO/SAE 6155 - Earth-moving machinery - Basic types - Vocabulary.

[6] ISO/SAE 9246 - Earth-moving machinery - Crawler and wheel tractor dozer blades -

Volumetric ratings.

[7] Koza, J. Z., Genetic Programming as a means for programming computers by natural

selection, Springer, 1994.

[8] Kumar, R,, and Kumar, U., Service Delivery Strategy: Trends in Mining Industries,

International Journal on Surface Mining, Reclamation and Environment, Vol. 18, 2004,

pages 299-307.

[9] Nadjeh, N., de Macedo Maurelle, L., Fuzzy Systems Engineering, Springer-Verlag, New

York, 2005.

[10] Paraszczk, J., Planeta, S., and Szymanski, J., Performance and Efficiency Measures for

Mining Equipment, Proc. of the 9' Inter. Symposium on Mine Planning and Equipment

Selection, Athens/Greece, November 6-9, 2000, pages 667-672.

[II] Pedrycz, W., Gomide, F., Fuzzy Systems Engineering: Toward Human-Centric Computing,

Wiley-IEEE Press, 2007.

[12] Pedrycz, W., Reformat, M., Li, K., OR/AND Neurons and the Development of

Interpretable Logic Models, IEEE Transactions on Neural Networks, Vol. 17, 2006,

pages 636-658.

[13] Scoble, M.J., Peck, J., and Hendricks, C , A Study of Surface Mine Equipment Monitoring,

International Journal of Surface Mining and Reclamation, 1991, Vol. 5, pages 111-116.

68

[14] Zelenin, A.N., Balovnev, V.I., and Kerov, LP., Machines for Moving the Earth, Oxonian

Press, New Delhi, 1985.

[15] http://en.wikipedia.org/wiki/Donald_01ding_Hebb

[16] http://en.wikipedia.org/wiki/Paradox_of_the_heap

[17] http://www.swarthmore.edu/NatSci/echeevel/Ref/HH/index.htm

[18] http://en.wikipedia.org/wiki/Triangular_norm

[19] http://en.wikipedia.org/wiki/Triangular_norm

69

http://en.wikipedia.org/wiki/Donald_01ding_Hebb
http://en.wikipedia.org/wiki/Paradox_of_the_heap
http://www.swarthmore.edu/NatSci/echeevel/Ref/HH/index.htm
http://en.wikipedia.org/wiki/Triangular_norm
http://en.wikipedia.org/wiki/Triangular_norm

