
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films 

the text directly from the original or copy submitted. Thus, some thesis and 

dissertation copies are in typewriter face, while others may be from any type of 

computer printer.

The quality of this reproduction is dependent upon the quality of the 

copy submitted. Broken or indistinct print, colored or poor quality illustrations 

and photographs, print bleedthrough, substandard margins, and improper 

alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript 

and there are missing pages, these will be noted. Also, if unauthorized 

copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by 

sectioning the original, beginning at the upper left-hand corner and continuing 

from left to right in equal sections with small overlaps.

ProQuest Information and Learning 
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA 

800-521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



University of A lberta

L E A R N IN G  A N D  C L A S S IF Y IN G  U N D E R  H A R D  B U D G E T S

by

Aloak Kapoor

A thesis subm itted to the Faculty of G raduate Studies and R esearch in partial fulfillment o f the 
requirem ents for the degree o f M as te r o f Science.

Departm ent o f  Computing Science

Edmonton, A lberta 
Fall 2005

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1 * 1
Library and 
Archives Canada

Published Heritage 
Branch

395 Wellington Street 
Ottawa On K1A ON4 
Canada

Bibliothdque et 
Archives Canada

Direction du 
Patrimoine de Edition

395, rue Wellington 
Ottawa ON K1A 0N4 
Canada

0-494-09203-3

Your file Votre reference 
ISBN:
Our file Notre reference 
ISBN:

NOTICE:
The author has granted a non­
exclusive license allowing Library 
and Archives Canada to reproduce, 
publish, archive, preserve, conserve, 
communicate to the public by 
telecommunication or on the Internet, 
loan, distribute and sell theses 
worldwide, for commercial or non­
commercial purposes, in microform, 
paper, electronic and/or any other 
formats.

AVIS:
L'auteur a accorde une licence non exclusive 
permettant a la Bibliotheque et Archives 
Canada de reproduire, publier, archiver, 
sauvegarder, conserver, transmettre au public 
par telecommunication ou par I'lnternet, preter, 
distribuer et vendre des theses partout dans 
le monde, a des fins commerciales ou autres, 
sur support microforme, papier, electronique 
et/ou autres formats.

The author retains copyright 
ownership and moral rights in 
this thesis. Neither the thesis 
nor substantial extracts from it 
may be printed or otherwise 
reproduced without the author's 
permission.

L'auteur conserve la propriete du droit d'auteur 
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de 
celle-ci ne doivent etre imprimes ou autrement 
reproduits sans son autorisation.

In compliance with the Canadian 
Privacy Act some supporting 
forms may have been removed 
from this thesis.

Conformement a la loi canadienne 
sur la protection de la vie privee, 
quelques formulaires secondaires 
ont ete enleves de cette these.

While these forms may be included 
in the document page count, 
their removal does not represent 
any loss of content from the 
thesis.

Canada

Bien que ces formulaires 
aient inclus dans la pagination, 
il n'y aura aucun contenu manquant.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



U niversity  o f A lb e rta  

L ib ra ry  R elease F o rm

N am e o f  A u tho r: Aloak Kapoor

T itle  o f  T hesis: Learning and Classifying under Hard Budgets 

D egree: M aster o f  Science 

Y ear th is D egree G ran ted : 2005

Perm ission is hereby granted to the University o f A lberta L ibrary to reproduce single copies o f this 
thesis and to lend or sell such copies for private, scholarly o r scientific research purposes only.

T he author reserves all other publication and other rights in  association with the copyright in the 
thesis, and except as herein before provided, neither the thesis nor any substantial portion thereof 
m ay be printed or otherwise reproduced in any m aterial form  whatever without the author’s prior 
w ritten perm ission.

D ate:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Abstract

W hen learning a classifier for a  function Y  =  f ( X ) ,  the features, X ,  often have an associated cost. 

Since resources for feature acquisition are usually finite, learners and classifiers must be able to act 

intelligently under hard budgets. In this thesis, the goal is a learner that spends its fixed learning 

budget acquiring features o f  labelled training instances so as to produce the most accurate “ac­

tive classifier” that spends at m ost b e  per instance. To produce this fixed budget classifier, the fixed 

budget learner m ust sequentially decide which feature values to collect to learn the relevant infor­

mation about the distribution. We explore several approaches the learner can take, ranging from  

R einforcem ent Learning techniques, to the obvious “round robin” strategy that spends equally on all 

features. We show  em pirically tha t round robin is problem atic (especially for small 6*,), and provide 

alternate learning strategies that achieve superior perform ance on a variety o f  datasets.
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Chapter 1 

Introduction

In classification learning, the goal is to learn a classifier for an unknown function Y  =  / ( X )  such 

that the classifier can predict the class label, Y,  when given the features, X . In many practical 

applications, the features are initially  unknown to both the learner and the classifier, and must be 

acquired at a cost. In these cases, an active classifier, that can actively purchase the values of 

unknown features before m aking a  classification, should be produced by the learner. Unfortunately, 

resources are seldom infinite; real-w orld tasks typically have finite budgets for both the learner and 

the classifier that lim it the total value o f  features that can be collected. Thus, when feature costs 

exist, the m achine learning researcher is faced with the following budgeted learning problem:

Given a poo l o f  training instances with known class labels but unknown fea ture  values, decide 

how  to spend the fix ed  learning budget bi, purchasing fea tures o f  training instances so  as to produce 

the m ost accurate active classifier that can spend at m ost b e  per instance.

We refer to this problem  as “budgeted learning a bounded active classifier” . In this thesis, we 

investigate the aforem entioned problem  in detail. We concentrate on developing strategies for the 

learner that sequentially select w hich feature to purchase given the rem aining bl  budget and the 

results o f the previous purchases. D eveloping an effective spending strategy can be challenging 

because the true utility o f  the learner’s purchases is not known until the 6 t, budget is exhausted and 

the final bounded active classifier is learned and applied. A lthough the topic o f budgeted learning is 

not entirely new [17, 18], our w ork  is unique because it places bounds on both the learner and the 

classifier and thus incorporates costs a t training and testing time. By contrast, the previous budgeted 

learning research considers only costs at training time, and allows the classifier to see all feature 

values for free. The dual budget fram ew ork we consider in this thesis is a better model of many 

real-world problems.

We begin our investigation in the next chapter, in which we take a simplified version o f our 

problem  and allow the learner to use Reinforcem ent Learning (RL) techniques to learn a purchasing 

policy. We dem onstrate em pirically  that despite extensive training, the RL methods that we employ 

are inferior to simple, heuristic policies. In C hapter 3, we explore the full problem  o f budgeted 

learning a bounded active classifier. We provide empirical evidence that the obvious round robin

1
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spending policy (purchasing every feature o f  every instance until the fag budget is exhausted) is 

problematic, particularly w hen the budget is sm all relative to the number o f features. We describe 

alternate learning strategies, and show  that they significantly outperform round robin on a variety 

o f real-world datasets. Finally, C hapter 4  provides a survey o f  related literature, while Chapter 5 

sum marizes contributions and discusses future work. We note that versions of Chapter 2, 3, and 4 

have been published [15, 14].1

'A C M  and co -au tho r R usse ll G re in e r k in d ly  g ran t perm ission  to reuse m aterial in f151. T he use o f  m aterial in [14] is 
granted  w ith  kind  perm ission  o f  S p rin g e r S c ience  and B usiness M edia and  co -au tho r R ussell G reiner.

2
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Chapter 2

Simplified Budgeted Learning: 
Active Model Selection

2.1 Introduction and Motivation

To gain insight into the budgeted learning issue, we consider a sim pler problem known as active 

m odel selection .' Loosely speaking, active model selection involves finding the best object among 

a set o f  n , given a finite budget o f  probes w ith which to freely explore and test the objects, where 

a probe o f an object returns a sam ple value drawn from that object’s distribution. After the budget 

is exhausted, a single object m ust be selected, and a one-tim e rew ard is received that represents the 

expected value o f the chosen object. This formulation allows for pure exploration o f  the objects 

with the budget, and delays all reward until the final tim e step. N otice that this problem corresponds 

to the training phase of budgeted learning, in which features o f labelled training instances can be 

purchased in any way, with a single one-tim e reward (i.e., the classification accuracy) being received 

once the budget is exhausted and the final learned classifier is applied. In both the active model 

selection problem and the budgeted learning problem, the goal is to decide how to spend a finite 

num ber o f  probes in order to get the information required to make the best decision when the budget 

is exhausted.

In addition to the above relationship, previous research [17] has show n that algorithms which 

perform  well on active model selection are also effective on a variant o f our budgeted learning 

problem. As a result, we use active model selection as a low -dim ensional testbed to prototype the 

perform ance o f strategies for budgeted learning.

In the rem ainder o f this chapter, we give the formal description o f  active model selection, and 

show that the problem can be viewed as a M arkov Decision Process (M DP). The M DP framework 

allows us to describe the (intractable) optim al algorithm, and derive som e new results about the 

problem. The main contribution o f the chapter is to investigate the perform ance of standard algo­

rithm s from Reinforcement Learning on active model selection. We perform  a variety o f tests using

'W e  also  refer to active m odel se lec tio n  as the “co in s p rob lem " fo r reasons that w ill becom e c lea r during  the form al 
p roblem  sta tem ent in Section  2.2.

3
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Reinforcement Learning techniques, and show that better perform ance is achieved with less com ­

putational effort using simpler, existing policies. In closing, we discuss other approaches to active 

model selection that appear prom ising, but are also inferior to the existing heuristic policies.

2.2 Formal Description

The input to the active model selection problem is:

•  A set o f n  independent Bernoulli random variables { C i , . . .  ,C „ }  with unknown success prob­

abilities. For simplicity o f exposition, we can think o f  these C* as a set o f  coins, where the 

unknown success probability is the probability o f  the coin turning up heads when flipped.

•  A set o f n  prior distributions (i.e., density functions), indicating the uncertainty over the true 

head probability o f each o f  the n  coins. That is, the head probability  o f each coin C,; is 

itself treated as a random variable Z ;, and a  prior density function f i { Z i )  is provided as a 

distribution over the possible head probabilities o f coin C j.

•  A set o f n  (known) costs { S (C i) , . . .  , 5 (C „ )}  for flipping the coins, where S {C i)  €  3?+ .

•  A  finite (known) budget b >  0  that can be spent flipping the coins.

Given these inputs, the active model selection problem  proceeds as follows. Any coin Ci can be 

flipped at any time, as long as the rem aining budget, denoted by b', satisfies b' >  S (C i) .  We use the 

outcom e o f each coin flip to update the density function for the flipped coin. For example, if coin Ci 

is flipped and turns up heads, then its density function is updated to f i { Z i \C i  — heads);  o f  course, a 

sim ilar update occurs for a tails outcom e. (We describe the exact form at o f  the density function and 

the updates in our simplifying assum ptions below.) Coin flips and density updates continue until the 

budget is exhausted (6' =  0). We can view the sequence o f flips and updates as a learning period, in 

which we improve our inform ation about the true head probabilities o f  the coins. Once the budget 

is exhausted, the learning period is over, and a  single coin m ust be chosen —  this coin C* (and only 

this coin) will be used in all future flips, for which we will receive rewards for head outcomes. O f 

course, even when b1 =  0 , we will still not know  the true head probability for this (or any) coin, and 

so will not know whether coin C* actually has a better head probability than the other coins. The 

best we can do given the observed coin flip outcomes o, is to choose the coin that minimizes our 

future regret o f selecting it. To do this, we define a new random  variable Z max to be the maximum 

head probability over all o f the coins: Z max =  m a x i(Z i ) ,  and now the Bayesian regret o f  choosing 

coin Ci given coin flip outcom es o  is:

r  n
R egrel(C i) =  l (Z max — Z i ) J ^ f j { Z j \o) d Z  (2.1)

^  i= i

with permission of the copyright owner. Further reproduction prohibited without permission.



Notice that we minim ize regret by choosing the coin whose m ean (posterior) head probability is 

largest [19]. Let this maximum mean coin be C * (o) =  a rg m a x c , E [ Z t |o]. Thus, when the budget 

is exhausted and coin flip outcom es o  have been observed, C"  (o ) should  be selected.

Before introducing the overall (regret-related) objective function w e wish to m inim ize, we must 

first introduce the notion o f  a policy. A policy n  for active model selection specifies which coin to 

flip at each time step. Formally, a  policy is a mapping 7r : ( b', f \  ( Z \ ) ,  . . . , / „ ( £ „ ) )  —> [1, n] that 

specifies the index o f the coin to flip, given the current state defined by the rem aining budget and 

the posterior distributions over the coins. Since the result o f  every coin flip is stochastic, a policy for 

flipping the coins can result in several different “outcom e” slates in which the budget is exhausted. 

Thus, a policy i t  for active model selection is scored based on its expected regret:

E R (tt) =  ] T  P (o )  R eg rc l(C *(o )) (2.2)
o € tm ie o m e s(7 r)

where the sum  is over the various “outcomes” o f the policy when the budget b' has been exhausted. 

The objective o f active model selection is to find the optimal policy t t *  that minim izes Equation 2.2.

As mentioned earlier, since regret can be minimized by choosing the coin w ith the highest ex­

pected head probability, an alternate (equivalent) way to score a policy it is to calculate the expectedi 

maximum expected2 head probability (EMEHP) o f the chosen coin:

E M E H P(tt) =  Y L  p (° )  m a x ^ ^ o ) }  . (2.3)
o€oulcomes(ir)

N ote that both “expected” are required as the first expectation i is over possible outcom es o f the 

policy, while the second ex p ec ta tio n  is over the head probability distribution o f  the chosen coin. 

U nder this EM EHP score, the objective of active model selection is to find the optim al policy t t *  

that maximizes Equation 2.3. S ince maximizing head probability is more intuitive than minimizing 

Bayesian regret, maxim izing Equation 2.3 is usually an easier objective to rem em ber for active 

model selection.

T he two objective functions, Equations 2.2 and 2.3, consider the probability o f  reaching an 

outcom e state in which the budget has been exhausted. Each outcom e state corresponds to seeing 

som e non-negative num ber o f heads and tails on the coins in the set. A benefit o f using the Bayesian 

formulation is that the probability o f  reaching any state is well defined. Specifically, the probability 

o f  reaching a state can be com puted using the prior density functions over the coins and die posterior 

densities that result after each coin flip outcome. For example, if  we let f i (Z i \p h ,g t )  denote the 

posterior density over coin C i’s head probability after observing p  heads and q tails on C,-, then the 

probability o f seeing the outcom e where coin C, turns up heads tw ice followed by a tail on coin C j 

is:

E ( Z i \A ( Z i ) )  x  ■■E(Zi \ f i ( Z i \ l h )) x  [1 -  E ( Z j \ f j ( Z j ) ) \  (2.4)

Thus, at any point in time, we use the expected head probability o f  a coin as a point estimate 

o f  the current probability of that coin turning up heads when flipped. Calculating transitions in

5
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this way, we can compute the probability o f reaching any state using strictly the density functions

2.2.1 Simplifying Assumptions

Coin C i's  head probability is represented as a random variable Z ,  S  [0,1]. We assum e that Z{ 

is a  Bela random variable with density function f i ( Z i )  =  W ( a ,  0 )  ( Z i ) a ~ 1( 1 -  Z i) 0~ x (here 

IF  (a ,  0 )  is a normalizing constant and a  and 0  are two positive hyperparam eters that define the Beta 

distribution). For a B eta(o, 0 )  distribution, the mean is p  — w hile the variance is a 2 =  £+0+1 • 

Loosely speaking, when a  (/3) is much larger than 0  (a ) , it m eans that a coin is likely to have a 

high (low) head probability. On the other hand, when both a  and 0  are 1, the distribution over head 

probabilities is uniform. As we have an independent Beta distribution for each coin, we use a,- and 

0 i to denote the specific hyperparam elers for coin C';.

One attractive property o f the Beta distribution is that it is com putationally simple to calculate 

posterior densities. I f  coin C i’s initial head probability distribution is B e ta ( a , ,  0 i) ,  then after ob­

serving p  heads and q tails on coin C ;, its posterior density is ju s t f i ( Z i \p /n qi) =  B e ta (a i  + p ,0 i  + 

q ). Thus, the Beta hyperparam eters can be viewed as sim ple frequency counts for a random variable 

w ith two possible outcomes.

A lthough the formal description allows for any coin costs, w e w ill assum e that the costs are 

uniform: 5 (C ,)  =  1 V i, and that the budget b is a positive integer. Finally, as w e are studying 

active model selection because o f its relationship to budgeted learning, we are typically interested in 

values o f 6 that are not much greater than n  (typically b =  n x  k, w ith k  a sm all positive integer), as 

most budgeted learning algorithm s will act reasonable when b is much larger than n . In fact, in the 

case where b is very large relative to n , even a simple policy (e.g. purchasing every feature o f every 

instance) will yield a training set that can produce an accurate classifier, and so these scenarios are 

not o f great interest from a budgeted learning point o f  view.

2.2.2 An Example Policy

Figure 2.1 shows an example o f  a policy for a two coin problem w ith identical B e ta ( l ,l)  priors, a 

budget o f two, and uniform coin costs S (C i)  =  1. Each transition in  the policy is labelled with 

its probability o f occurrence, and the Beta densities over the coins are updated after each transition. 

Here left branches correspond to head outcom es and right branches correspond to tail outcomes. 

Notice that the policy is contingent, as the coin that is flipped on the second time step depends on 

the outcome of coin C i ’s initial flip. The policy in Figure 2.1 has four outcom e states corresponding 

to the leaves of the tree, and has an EM EHP o f -j^, which can be verified using Equation 2.3.

6
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( 1 , 1), ( 1 ,1)

1/21/2

2/3 1 /3 1/21/2

C h o o s e  C,

(3,1),(1,1) 

C h o o s e  C , C h o o s e  C,

( 1,2 ),(2 ,1) 

C h o o s e  C ,

Figure 2.1: An example o f  a policy for b =  2, n  =  2, and uniform priors

2.2.3 Mapping to Budgeted Learning

As mentioned in Section 2.1, active model selection is highly related to budgeted learning because 

it mimics the pure exploration phase (i.e., purchasing features o f labelled training data), followed 

by the one-tim e reward phase (i.e., the classification accuracy of the final learned classifier). In 

addition to diis relationship, we can also show that optim al active m odel selection is equivalent to 

optimal budgeted learning of a bounded active classifier, with some assumptions. Specifically, given 

a binary class Y and n  binary features { R i } i - \ . .n for a  classification task, assume P (R i =  i l l 7 =  

0 ) =  0 Vi, let all features have unit cost, and assum e the bounded active classifier can collect 

only one feature (i.e., be  =  1). Then the best feature to use for the bounded active classifier is: 

a rg m ax fi; P (R i =  1|Y  =  1). Set coin Ci to be feature R u  Z i to be P (R i  =  1 |Y  =  1), and let 

flipping coin Ci be equivalent to purchasing feature R i  on a random  Y  =  1 instance. Then a policy 

t t *  that maximizes the expected head probability o f  the chosen coin (Equation 2.3) also maximizes 

the expected accuracy of the chosen bounded active classifier.

2.3 The Markov Decision Process Formulation

Active model selection can be form ulated as a finite M arkov D ecision Process [25] consisting of 

a set o f states S ,  a set o f actions A , a reward function R , and a transition function T .  Specif­

ically, we identify a state s e  S  o f the M D P by the rem aining budget b', and by the collection 

o f  Beta hyperparameters over the coins. That is, a state is a 2 n + l  elem ent vector o f the form: 

(b a i , / 3 i ,  . . . ,  a „ ,p n )- The com plete set o f reachable states corresponds to all the possible pos­

terior Beta distributions that can occur over the n  coins by spending som e portion rn o f the original 

budget b, with m  <  b. Since no m ore actions can be taken once the budget is exhausted, the terminal 

states are those in which b' =  0. In general we denote the starting state by sq, and denote the state 

encountered on the tth time step by Sj.

The set o f actions in the M D P corresponds to the n  different coins that can be flipped, where

7
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action a a, €  A  denotes flipping coin C j. The reward function R ( s ,a , s ')  specifies the reward of 

taking action a  from state s  and reaching state s '.  For the coins problem, the reward received when 

reaching any non-terminal stale (i.e. where the rem aining budgei is positive) is zero, w hile the 

reward at a terminal state is the maxim um  expected head probability over the coins .2 We use ri to 

denote the im mediate reward received on the ilh time step .3

In many M DPs, the reward at future time steps is valued less than immediate reward, and so a 

discount factor 7  <  1 is used to m ultiply future rewards to reduce their value. In the coins problem, 

future rewards are no less valued than im m ediate rewards (in fact the only reward that matters is 

the one received on the last tim e step), and so we have 7  =  1 in our MDP formulation. Finally, 

the transition function T ( s ,a , s ' )  specifies the probability o f reaching state s ' after taking action 

a from state s. Due to our B ayesian formulation, T ( s ,a , s ' )  is conveniently given by the Beta 

distributions over the coins. For exam ple, T ( B e ta ( 4 ,2), q c , , E e ta ( 5 ,2)) is just the probability o f 

coin Ci turning up heads: P ( C t- =  heads) =  E (Z { )  =  4 /6 . As the transition function specifies 

probabilities, w e often use P { s , a, s') in place of T (s ,  a, s').

2.3.1 Value Functions

An advantage o f the M D P form ulation is that the true long-term  value of states can be quantified 

using a value function . Specifically, a  value function V *  : S  —> 5? for a policy it measures the total 

expected reward accum ulated from  any state S( when following 7r:

v ' ( S i ) =  e (  f ;
\ t = 0

With the value function notation, w e know that a state s  is preferable to a state s' if we can achieve 

greater expected reward from s  w hen following an optimal policy: V n ‘ (s) >  V n ' (s'). Given this 

relationship, we often use the value function notation to com pare values of different states.

2.3.2 Simple Results

Using the value function notation o f  the previous section, we can derive the following intuitive 

properties concerning active m odel selection. Both results can be obtained using induction on the 

budget (and proofs can be found in A ppendix A). These results are helpful because they can be used 

to establish an upper or lower bound on the optimal value of a state s  using the optimal value o f a 

related state s '.  In addition, these results can be used as starting points for deriving more complex 

properties o f the coins problem  (e.g., Proposition 2 can be extended to relate states that have fewer 

than n — 1 matching coins).

-T h is  cho ice  o f  rew ard function  assu m es  w e  a re  using  the E M E H P  o b jec tive  as in E qua tion  2.3. We cou ld  a lso  use the 
expected  regre t ob jec tive  in E quation  2 .2 , and  th is w ould  change o u r rew ard  function  to give R cgrc t(C * ( o ) )  at the  term inal 
states, S ince  it is  easier to  th ink  o f  m ax im iz in g  ra th e r  than  m in im iz ing  rew ards, o u r  E M E H P -based  rew ard function  is usually  
m ore in tu itive than the reg re t version .

■’W ith the understand ing  tha t r,- =  0  fo r  any  tim e s tep  i  tha t is past a term inal state , since such a  sta te  can  n eve r be 
reached.

8
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P roposition  1 A head is always better than a tail. Assum e all coins have unit cost, let s  be any 

non-term inal state, and  assum e som e coin Ci is flipped  in s. l f s +lli denotes the next state in which 

a head outcome is observed, cind ,v+ t‘ denotes the next state in which a ta il outcome is observed, 

then V n ’ ( s +,li) >  V,7 r* ( .s + l i ) .

Proposition 2 T he more heads the better. Given any state  s: (b1, a i . f l i , . . .  o n , f ln ),

consider another state s : (b1, n i , / ? ] . . . .  a ,  +  1 , /3,:,. . .  a n ■ (3n ) which is identical to s except that 

one additional head has been observed on coin C i-T hen , V *  (s) > V *  (s ) .

2.4 Existing Algorithms

2.4.1 The Optimal Policy

Since the coins problem is an MDP, several techniques can be used to solve for the optimal policy 

exactly [28]. For exam ple, a bottom -up dynamic program can use the Bellm an optimality equation 

to learn V n' , the expected value o f  each state under an optimal policy:

V ”' (s) =  m ax  V "  P (s , a, s')[-R (s, a , « ') +  7 ^  (s ')] (2.6)
s '

Beginning at the next-to-end states in which 6' =  1 and perform ing a  backw ard sweep toward the 

initial state where b‘ =  b, the optim al value function V " '  can be com pletely determined. With 

the known transition and reward functions, the optimal policy tt* then follows immediately via 

greedy one-step lookahead. Unfortunately, the state space o f  active model selection grows exponen­

tially  w ith b and n , making it intractable to compute the optimal policy using exact methods such 

as dynamic program m ing. A natural alternative is to perform approxim ate dynamic programming 

via Reinforcement Learning, w hich we consider in detail in Section 2.6. A lthough Reinforcement 

Learning has not been applied to the coins problem previously, [18] has considered some simple 

heuristic policies which we review  next.

2.4.2 Round Robin (RR)

T he most intuitive spending policy is to allocate flips evenly over the coins, proceeding in a round- 

robin fashion. W hen b =  n  x  k  for an integer k, and all coins have unit cost, RR will flip each o f  the 

n  coins k  times. Despite its fair distribution of flips, the ratio o f RR ’s expected regret to the optimal 

policy’s expected regret can be made arbitrarily large [19]. Fortunately, more effective policies than 

RR are known.

2.4.3 Biased Robin (BR)

T he BR algorithm repeatedly flips a coin C , until a tail outcom e occurs. O nce a tail is observed, 

BR moves to the next coin, C, + i, and repeats the process, (O f course when the last coin C n turns 

up tails, BR moves back to the first coin C \.)  This sim ple algorithm is well known in statistics as

9
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<b=3, (5 ,1 ), (4 ,1 ), (2 ,1 ) , (2 ,1 ))

C, C,C,C. 2 321

Figure 2.2: The optim al policy for the state (b =  3, (5 ,1 ) , (4 ,1 ), (2 ,1 ) , (2 ,1 ))  under unit coin 
costs. N otice that the optim al policy involves interactions between three o f  the four coins (e.g., coin 
C i  should be flipped after C \ turns up tails, and coin C 3 should be flipped after C 2 turns up tails). 
S ince the SCL score for C \  does not consider how flipping C 2 or C'3 could help C \, it underestimates 
the value o f flipping C \,  and SCL takes a suboptim al action from this state.

“Play the W inner” [23] and has been previously studied as a sampling m ethod for clinical trials [13]. 

Its perform ance on the coins problem  has been very strong in the case o f identical starting priors. 

D espite its com petitive perform ance, BR is a suboptim al policy. In fact, we can show that the 

num ber o f states from  which BR takes a suboptim al action can be made arbitrarily large :4

P ro p o sitio n  3 G iven any positive integer g >  1, there exists a problem with  n = (g + 2 ) B eta( 1 ,1 ) 

coins, and budget b = (2 n + 3 ) such that the BR policy takes a suboptim al action from  at least g states,

2.4.4 Single Coin Lookahead (SCL)

The SCL algorithm  com putes the EM EHP (Equation 2.3) o f the policy that devotes all rem aining

flips in the budget to a single coin Ci. The coin that yields the policy w ith highest EM EHP is

flipped once, and then SCL repeats the previous calculation with its reduced budget (and updated

density functions) to choose the next coin to flip. Like BR, SCL has strong performance, but is

still suboptim al. In particular, SCL suffers in situations w here multiple coins m ust interact heavily

to produce the optim al policy. This occurs because SC L computes a score for coin C i w ithout

considering how the rem aining n  — 1 coins could interact with Cj to im prove its policy. To make

this concrete, F igure 2.2 provides an exam ple o f  a state where SCL takes a suboptim al action because

it does not consider interactions among its coins. These deficiencies in the sim ple strategies offered

by RR, BR and SCL motivate the need for a more robust policy that we consider next.

“•A lthough  such  a  re su lt m ay help  in p rov ing  the non-approx irnab ilily  o f  BR , it does not show  non-app rox im ab ility  by 
itse lf. T h e  reason  is tha t the  nu m b er o f  subop tim al ac tions  is m ade arb itrarily  large, but the  p robab ility  o f  reach ing  s ta tes  in 
w h ich  these  ac tions o cc u r  is not considered .

10
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2.5 Reinforcement Learning Background

The M D P formulation o f  the coins problem  brings with it the possibility o f using Reinforcem ent 

Learning techniques to develop effective spending policies. This section provides a brief introduc­

tion to RL, with a focus on the RL techniques that we employ later in this chapter when attem pting 

to learn low-regret policies. We direct the interested reader to [28] for more details on any o f  the 

techniques discussed here.

2.5.1 Overview

Reinforcem ent Learning is a collection o f  techniques for learning (optim al) behaviour in sequential 

decision problem s. In RL, an agent interacts directly with its environment and receives signals o f 

reward as it takes actions. T he goal is to develop a policy for taking actions that maxim izes expected 

reward. The key characteristic that distinguishes RL from other learning m ethods (e.g. supervised, 

sem i-supervised) is that the agent learns on its own by taking actions and directly observing the 

resulting rewards that are produced by the environment. With no explicit teacher o r labelled training 

examples required, R einforcem ent Learning is bounded mainly by the am ount o f environm ental 

interaction available to the agent.

2.5.2 Learning versus Planning

A com m on distinction m ade in RL is betw een learning  methods and planning  methods. Planning 

m ethods require a known environm ent m odel (i.e. known transition and reward functions) and 

operate on sim ulated experience from  this model. On the other hand, learning methods do not know 

the true environm ent model. Instead, they learn front “real” experience that they observe w hile 

acting in real-tim e in their environm ents. (Since the transition probabilities and the rew ards are 

known in the active m odel selection task, w e are faced with an RL planning problem .) A n advantage 

o f  the planning problem  is that experience is inexpensive to generate. U sing only the model, large 

am ounts o f training episodes can be generated for the RL agent to test actions in. Furthermore, since 

the optim al policy can be defined in term s o f  the optimal value function:

7r*(s) =  a r g m a x ^ P (s ,a ,s ') [ i? (s ,a , s') +  ryV1' (s')] (2.7)
a .s '

the RL agent only needs to leant the optim al value function —  with the known environm ent dy­

nam ics ( P ( s , a , s ' )  and R ( s ,a , s ') ) , it can then calculate the optimal policy using greedy one-step 

lookahead.

2.5.3 Learning the Optimal Value Function Using Temporal Differences

There are many m ethods for learning the optimal value function, including value iteration, M onte 

Carlo methods, and tem poral difference learning [28], We focus on  temporal difference  learning

11 ■
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[27] in this thesis. Temporal difference learning is applicable to m ulti-step prediction problems in 

which the target value to be learned is observed gradually, as partial values com prising the target 

becom e available over time (just as rewards gradually accum ulate in an MDP). The basis o f temporal 

difference learning in an M D P is to shift the existing value estim ate for a state s  toward the newly 

observed values that occur over tim e. For example, suppose we take action a  from  state s it reach 

state s ;+ j and produce an im m ediate reward n + j.  In this case, a particular tem poral difference 

learner, known as TD(0), uses the learning rule:

^ ( a O - W + ^ r i + i + T ^ + i J - V ^ i ) )  (2 -8 )

to adjust its estimate of V (s*), w ith ct a param eter controlling the learning rate. The TD(0) rule ad­

justs its estim ate toward the one-step return, observed one step after leaving state s t . By contrast, the 

general temporal difference algorithm , known as TD(A), considers all //-step returns (for j  e  [1, oo)) 

that are observed j -steps after leaving state Sf. To incorporate all ./-step returns in a simple, on-line 

fashion, TD(A) augments the one-step return in Equation 2.8 w ith an eligibility trace. Specifically, 

TD(A) maintains a positive, real-valued eligibility trace gs for each state .s that indicates how re­

cently s  was visited. (Intuitively, at the beginning o f an episode, all eligibility traces are initialized 

to zero). By maintaining this eligibility trace, TD(A) retains a record o f  which states have been vis­

ited previously and are therefore eligible to receive some credit for the current one-step return. Thus, 

after taking action a. from state s* and observing next state Sj+ j and reward r i+ 1 , TD(A) performs 

the follow ing learning sequence for all states s e S :

9s *- 9s + 1 if s = Si 

V ( s )  -  V ( s )  +  a ( r i+1 +  7 ^ i + i )  -

9s <”  A7 .7.,

H ere A €  [0,1] is a real-valued param eter that controls how the various .7-step backups are averaged 

together. Notice that when A =  0, all w eight is assigned to the one-step backup, and the TD(A) 

equations reduce to the sim pler TD (0) learning rule. On the other hand, setting A to an intermediate 

value such as 0.7 will assign som e w eight to each of the observed y-step returns, so that at the end 

o f an episode, the value estim ate fo r an observed state will have been adjusted toward a weighted 

sum  o f  all j-s tep  returns observed after that state.

To learn the value function fo r a policy 7r, an RL agent can use tem poral difference learning 

while it experiences episodes o f  the M DR For example, an RL agent can take actions according to 

7r ,  and update its value function using a temporal difference learning rule after each state transition. 

This process of updates continues over m ultiple episodes o f the MDP, gradually  im proving the value 

function estim ate for 7r.

U nder appropriate technical assum ptions [28], the TD(0) rule (and the general TD(A) algorithm) 

will converge to V 7' for any policy it given that an RL agent chooses its actions according to 7r. In
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particular, to learn the value function for 7r, the TD  learning updates should be distributed according 

to the stales that would be encountered while following ir. As slated previously, w e are interested 

in learning the value function for the optim al policy it*. Since this policy is unknow n, an RL agent 

cannot act with it directly to generate the appropriate distribution of TD  updates. However, it can 

still learn the optimal value function by acting according to a policy that is greedy in the limit o f  

infinite exploration (GLIE) [25], A GL1E policy performs every action from every state an infinite 

amount o f times but reduces to a greedy policy in the limit. Since all actions are explored from 

every state, when a G LIE policy gets greedy in the limit, it is guaranteed to be an optim al policy 

7r*. Thus, an RL agent following a GLIE policy and using TD(A) is guaranteed to leant the optimal 

value function V in the limit. Fortunately, a temporal difference learner w ith a G LIE-type policy 

can converge to V in a finite num ber o f  episodes in practice (see [28] for exam ples).

2.5.4 The Need for Function Approximation

The TD rules discussed so far assum e that the value function is tabular, perm itting exact representa­

tion o f the value of every stale in the state space. W hen state spaces are extrem ely large, however,

it is im practical com putationally to assume the RL agent can properly explore all states, and store a

full tabular value function in memory. The standard solution is to utilize a function approxim ator to 

represent the value function, thereby allowing for an update to the value o f  state s  to affect the value 

o f  other sim ilar states. W ith a w ell-constructed function approximator, a value function over a large 

state space may be learned by visiting only a fraction o f the total num ber o f states in the space. The 

tabular temporal difference rules (from the previous section) can be re-derived to specify an update 

to a param eterized function rather than to a single tabular value. For instance, consider the popular 

linear function approximator:

V ( s ) = e - d s (2.12)

where 6 is a vector o f  (learnable) param eters, and ds is a vector o f features for sta te  s. For this linear 

function approximator, the TD(O) learning rule is

6 <- 0 - \-a [ r i+i + 7 V (s i+ i)  -  V (s i)]d Sj . (2.13)

On the other hand, the general TD(A) algorithm maintains a vector o f  eligibility traces g  (one trace 

for each learnable param eter), and its learning sequence for the linear function approxim ator is:

( 7 * - h f j  +  d Si 

0 < - 0 + a [r i + 1 +  7 F ( s i+ i ) -  V («,•)]»

Just as in the tabular case, these TD learning rules are applied after each transition from  the current 

state s i  to the next state Sj+ i . We next describe a specific linear function approxim ator that is often 

used in RL.

13.
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Figure 2.3: An exam ple o f tile coding over a two dim ensional feature space. The feature space is 
outlined in bold, and two different tilings cover the space, w ith the position o f each tiling offset by 
a small amount.

2.5.5 Tile Coding: a Linear Function Approximator

In tile coding, a group o f tilings (i.e., grids) are laid over a feature space, with each tiling consisting 

o f  a set o f  h  cells. The tilings are identical in size, but each tiling’s position is offset by a small 

amount, so that each tiling covers the feature space in a different w ay (see Figure 2.3). Each cell 

h i  contains a real-valued (learnable) param eter 0,-. The value o f  a state s  is formed by a linear 

combination over all the cells:

V( a)  =  (2.16)
i

where the coefficient d Si for cell i  is 1 if  state s  is located in the cell, and 0 otherwise. Since the 

feature vector ds for state s  consists entirely o f  ones and zeros, the value o f s  is ju s t the sum o f the 

cell-values 0 , for all cells i w hich contain s.

The cell-values are m odified by learning rules (such as Equation 2.13) as the RL agent acts in its 

environment. Moreover, since states that are nearby in feature space w ill occupy som e of the same 

cells, these learning rules will adjust the value function estim ate for several related states at once. 

As we expect states which are nearby in feature space to have sim ilar value function estimates, this 

generalization can greatly speed up learning in large state spaces.

An advantage o f  tile coding is that there is great degree o f flexibility in controlling how general­

ization occurs. For example, generalization can be controlled by the set o f  features used to represent 

the states, the number o f different tilings laid over the space, as w ell as the shape and size o f  the in­

dividual cells. One can even choose to use several different feature sets for tile coding, and thus have 

a separate tile coding for each feature set. This requires laying a separate group o f  tilings over each 

one o f these feature spaces. In this case, the value o f a state is form ed by sum ming all cell-values 

that contain the state, across all the different tile codings.
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Table 2.1: Free param eters in e-greedy, tile coding TD(A)

Param eter Description

a
e

step-size for learning 
exploration probability

A

7
Q-schcd
e-sched

weighting o f  n-step returns

schedule to decrease a. 
schedule to decrease e

discount factor

ci,
tile-shape

num -tiiings

features in function approximation
dim ensions o f  each tile

density o f  tiles

2.6 Adapting RL for Active Model Selection

To apply RL to the coins problem , we attem pt to learn the optimal value function with several sep­

arate RL agents. Each agent uses a unique set o f  features for  function approximation (described in 

detail below), and gains the necessary experience by acting in a large num ber of simulated episodes 

generated from the known environm ent model. Each agent uses tile coding as its function approx­

imation method, and em ploys a TD(A) learner using an epsilon-greedy (GLIE-type) policy. Com­

bining TD(A) w ith a linear function approxim ator (such as tile coding) is attractive because upper 

bounds have been established on the m ean squared error o f  the learned value function, under ap­

propriate assum ptions [29], As noted in the RL background sections, the number o f free variables 

that m ust be m anually set for a  TD(A) tile coding agent is extensive. Table 2.1 contains a complete 

listing o f these free variables. W hen designing our RL agents, we explored a wide range o f values 

for the variables, including various choices for the probability o f exploration (e), the w eight o f n-step 

backups (A), and the features (d s).

To collect features for function approxim ation, we gathered the obvious candidates (e.g. the Beta 

hyperparameters, the rem aining budget, the m eans and standard deviations o f the coins), along with 

some more subtle attributes (e.g. confidence intervals, budget based confidence intervals, modified 

lookaheads, variation among the coins, security o f the best looking coin). We found these features 

to be relevant because they affected the optimal coin decision when w e studied the optimal policy 

for small versions of the coins problem . Although we tested numerous combinations o f features, we 

focus on five feature sets that are representative o f the general trends observed. For each one o f the 

five sets, Table 2.2 gives the nam es o f the different fea ture groups that are included in the set. (The 

interested reader should refer to A ppendix B .l to see exactly which features  are included in each 

feature group.) For our experim ents o f the next section, w e trained five different TD(A) tile coding 

agents^ where each agent used one o f  the five feature sets for its function approximation.
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Table 2.2: Feature sets used for approxim ating the value function 

Set N um ber_______  Feature G roups Included In Set

1 Budget, Beta hyperparam eters
2 Budget, M eans and Standard Deviations
3 Budget, C onfidence Interval Stats
4 Budget, M ean Stats, C onfidence Interval Stats
5 Budget, Lookahead Stats, Confidence Interval Stats

Table 2.3: Expected regret o f  various policies 

Policy (n=5, b=15) (n=8 , b=16) (n=10, b=20)

BR 0.05669 0.07544 0.07210
SCL 0.05413 0.07342 0.07211

R L (se tl) 0.05747 0.07830 0.07473
RL(set2) 0.05791 0.07896 0.07390
RL(set3) 0.05555 0.07528 0.07385
RL(set4) 0.05545 0.07464 0.07248
RL(set5) 0.05537 0.07507 0.07280

2.7 Empirical Results

To test the effectiveness o f  ou r RL agents on active m odel selection, we conducted experiments 

on three problems of increasing difficulty, where each initial coin p rior was a uniform  B e ta (l, 1). 

O ur five RL agents were given 1.8  m illion training episodes for the tw o sm aller problem s, and 2.8 

million for the larger problem. T he expected regret (Equation 2.2) was calculated for BR, SCL, and 

the policies learned using our RL agents. For this first se t o f experiments, we used TD(0) agents. 

T he results are shown in Table 2.3.

The results indicate that for all problem s considered, either BR o r SCL produced the smallest 

expected regret. In fact, no R L policy is able to beat either o f  the heuristic policies in the case o f 

ten coins and a budget o f twenty, and no RL policy is able to beat SC L on any o f the problems. We 

have observed that on even larger problem s (e.g. ten coins and a budget o f thirty), BR beats SCL 

and RL policies easily. The results o f  the experim ents reveal that despite the extensive num ber o f 

states observed during training, the RL policies are not generalizing well enough between states to 

beat the simpler policies.

In our next set o f experim ents, we tested the effect o f  varying A for the TD(A) learner. Figure 2.4 

shows the results o f varying A when using the fifth set o f  features for function approximation on the 

n  =  8 , b =  16 problem. For all values o f  A considered, the policies learned by R L do only slightly 

better than BR and are inferior to SCL. The difference betw een the various TD(A) learners is not 

dram atic, but the expected regret is low est with an interm ediate value o f  A =  0,5.
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Expected Regret Comparison (n=8,b=16)
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Figure 2.4: Various values o f  lam bda —  SCL still superior to RL

A  possible explanation for the lower perform ance o f RL is that not enough training episodes 

are being experienced. Additional training should perm it an RL agent to increase its exploration 

o f  the state space, and yield a better policy. To test the effect o f increased training, w e conducted 

experim ents on the n  =  1 0 ,6  =  2 0  problem in which we varied the num ber o f  training episodes 

from  two and a h a lf million up to an even more generous four and a ha lf million. Learning took place 

w ith a TD(0.5) learner, using one o f  the strongest RL feature sets we tested, set num ber five. The 

dow nward sloping trend o f Figure 2.5 suggests that increased training does improve the resulting 

policy; however, even after four million episodes, the expected regret o f  the RL policy is still larger 

than B R ’s or SCL’s.

For further comparison, we consider the training time and memory required by BR, SCL, and 

the R L  policy after four and a h a lf million training episodes. The mem ory considered is only the 

policy specific storage (i.e., above and beyond the basic elements such as the Beta hyperparam eters 

and the budget, that are generally required by all policies). Examining Table 2.4, we see that even 

using alm ost 800 M B o f main memory, RL does not gain a significant advantage over the virtually 

mem oryless BR and SCL routines.

A s these experiments show, the perform ance, speed, and low mem ory requirem ents m ake the 

sim per BR  and SCL policies preferable to the use o f Reinforcement Learning. A lthough it should be 

possible for an RL agent to do better than these heuristic policies, the experimental results indicate 

that (at least) more cleverly designed features or a better type of function approxim ator will be 

required to achieve this.
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Expected Regret Comparison (n=10,b=20)
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Figure 2.5: Various am ounts o f training —  simple policies still superior to RL

Table 2.4: Resources used by each policy on n=10, b=20 

Policy Training time (mins) Memory Used (MB)

BR 0 0
SCL 0 0

RL(set 5) 630 760

Perhaps the clearest argument against using RL for active model selection (and hence general 

budgeted learning) is the opportunity cost o f  conducting the necessary training. T hat is, although 

experience is easy to generate, the time and memory used to train RL agents could be equally well 

spent running a bottom-up dynamic program  (as in Section 2.4.1) that solves for the optim al value 

o f  states. The dynamic program could compute the optimal policy from som e select set o f  states in 

the sam e am ount o f time it takes a Reinforcem ent Learning agent to com plete training. In effect, the 

optim al actions from this select set o f states could be easily combined with the B R  or SCL policies to 

low er their regret even further, and m ake it yet more difficult for RL methods to com pete with these 

heuristic policies on active model selection. Overall, in the absence o f  better features for function 

approxim ation, these results suggest that the more tractable heuristic policies should be used instead 

o f  RL when considering the higher-dim ensional and even more complicated problem  o f budgeted 

learning.
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2.8 Unsuccessful Approaches

We have experimented with several other algorithm s for active model selection which have not 

performed particularly well. Wc collect these negative results in this section, and briefly describe 

the algorithms and their shortcomings so that future research on active model selection can avoid 

these approaches and focus on more prom ising techniques.

2.8.1 Supervised Learning of a Classifier

It is possible to apply standard supervised learning techniques to learn a classifier for active model 

selection. Here the classifier im plem ents a policy for active model selection by taking the Beta hy­

perparam eters and the remaining budget as input, and returning the index of the best coin to (lip as 

output. We used a dynamic program to generate the training data required for learning. Unfortu­

nately, the dynamic program can only generate labelled data when the budget and num ber o f  coins 

is sm all, making it difficult to learn a classifier that can be applied to the more interesting (large) 

problem s. In our experiments, we used training data to learn axis-parallel and oblique decision trees 

f 10] and found that even on small problems, the learned classifiers had higher expected regret than 

sim ple policies such as BR.

2.8.2 Search

Blind search algorithms such as depth-first search can clearly find the optimal solution to the coins 

problem , albeit with time complexity on the order o f  (2n ) b. Nevertheless, we tested a depth-first 

search in the obvious way: truncating the lookahead depth to a reasonable level, and backing up 

heuristic estim ates o f  V n' (s) for all states s  at the search horizon. The im plem entation was used 

in an on-line m anner (similar to standard two player game tree search [25]) where a new search 

was conducted to the horizon level after each action was taken and the resulting next state observed. 

The search experiments confirmed that one does not require full lookahead to achieve reasonable 

perform ance. In fact, on the sm all and m edium  size problem s tested, a lookahead o f 6 /2  steps was 

fairly competitive with SCL. O f course, when the num ber o f  coins grows large, lookaheads become 

increasingly expensive and cannot be done to any effective depth, limiting the use o f blind search 

for active model selection.

2.8.3 Optimal Two Coin (OTC)

In addition to search, we experimented with die optimal two coin algorithm. The OTC algorithm 

breaks up a large problem into several smaller, abstract problem s that it can solve optimally. It then 

uses the solution to these abstract problems to choose an action for the original problem. Specifically, 

given n  coins and a budget o f 6, OTC considers several abstract problems, each o f  which retain the 

budget 6, but have only two coins from the original set o f  n . As there are ^  ^  possible pairs o f
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coins, OTC computes an optim al policy for y  ^ j  abstract problems. It then selects the abstract 

problem Abest whose optimal policy 7rJi has the highest EMEHP, and it takes the first action of 

policy M . A fter observing the outcom e o f the action, the Beta distributions and the budget are 

updated, and a new set o f ^ 2 )  abstract problems are solved to determ ine the next action to take.

To make the algorithm  efficient, all possible two coin problems that can be encountered in the 

original n  coin, budget b problem  are solved optimally off-line (prior to running OTC) by a dynamic 

program. W ith only two coins involved, the dynamic program is quite fast and can typically compute 

the solutions to all abstract problem s in a few seconds. Unfortunately, perform ance o f OTC falls be­

hind BR, particularly on problems with a large number o f coins. W hen n  is large, the optimal policy 

often involves interactions between many of the coins, and OTC is unable to consider interactions 

o f  more than 2 coins. A lthough using abstraction for active model selection may hold prom ise, our 

experiments with OTC show that a  more clever type o f abstraction will be required to be effective.

2.9 Summary

In this chapter, we explored the problem  of active model selection. From a m achine learning stand­

point, active model selection is interesting because it is a sim pler version o f  budgeted learning. The 

tight relationship between active model selection and budgeted learning has been described in pre­

vious research [17, 18], and also highlighted in this chapter. A particularly interesting property is 

that both problem s have finite, episodic MDP formulations. As a result, Reinforcem ent Learning (a 

collection o f techniques for developing intelligent behaviour in M DPs) appears to hold prom ise for 

solving budgeted learning. This chapter takes a first step toward testing this hypothesis, by exten­

sively training several RL agents using different features for function approxim ation on the active 

model selection task. O ur experim ents demonstrate that sim ple heuristic policies are able to achieve 

low er expected regret with far less computation than the learned RL policies. O ur results provide 

empirical evidence to the m achine learning researcher that in the absence o f more sophisticated func­

tion approximation (i.e., w ithout better features or a better type o f  function approxim ator), applying 

R L techniques to the higher dim ensional and more complex problem  o f budgeted learning w ill prove 

ineffective. Moreover, the experim ental results reinforce the effectiveness o f  simple, heuristic poli­

cies for budgeted learning. We thus concentrate on heuristic approaches in the next chapter, when 

we consider budgeted learning a bounded active classifier.
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Chapter 3

Budgeted Learning a Bounded 
Active Classifier

3.1 Introduction

3.1.1 A Motivating Example

Consider a doctor using a classifier to diagnose patient disease. The features o f  the classifier will 

typically be the results o f m edical tests such as X-rays, MRIs, or blood work on the patient. Due to 

the costs associated with running these tests, it is unrealistic to assum e that the classifier will know 

the value o f all features during classification. Instead, the doctor may be given a budget o f $100 to 

treat each patient, and the classifier can actively spend this $ 1 0 0  to collect som e features on which 

to base its classification. Since this classifier actively collects features and operates under a hard 

budget, we refer to it as a “bounded active classifier” (BAC) [9].

Learning this $100 BAC w ill be an expensive proposition, because a com plete training instance 

requires running all medical tests on a patient w ith a known disease. Here, the hospital may have 

only $10000  to allocate to learn the best $100 classifier. That is, only $100 0 0  are available to 

collect the features for labelled training instances. Faced with these dual budget constraints on the 

learner and the classifier, how should the m achine learning researcher spend the $ 1 0 0 0 0  collecting 

features o f  labelled training instances so as to learn the most accurate $ 100 BAC?

3.1.2 Objective and Outline

The previous example dem onstrates the real-world problem o f  budgeted learning a bounded active 

classifier. This chapter considers the problem  in detail. M ore precisely, we study classification tasks 

in which feature values are initially unknown to the learner and classifier, and can be acquired at a 

cost. The learner is given a pool o f  labelled but otherwise unknown training examples, and it must 

decide how to spend its fixed learning budget b[, acquiring features o f  training instances so as to 

produce the most accurate active classifier that spends at most be  per instance.

Before investigating our problem, we provide some background m aterial on active classifiers in
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Section 3.2. Following this review, we present the formal problem  description for budgeted learning 

a bounded active classifier, as well as som e complexity results. We also place our problem in the 

MDP framework, which allows us to describe the (intractable) optim al algorithm  and to improve its 

running time (Section 3.4). The main contribution o f the chapter is the description and empirical 

com parison o f several tractable purchasing algorithms that the learner can employ. Sections 3.5 

and 3.6 describe the details o f  these purchasing algorithms. O ur experim ental results (Section 3.7) 

dem onstrate that when the learning budget is small, the obvious “ round robin” algorithm (purchasing 

every feature of every instance until the b i  budget is exhausted) is problem atic. As well, we show 

that our alternate learning strategies are able to outperform round robin on a variety o f real-world 

datasets.

3.2 Background: Bounded Active Classifiers

3.2.1 Definition of an Active Classifier

A n active classifier (AC) is a  classifier that can actively purchase the value o f unknown features be­

fore making its classification decision. Given som e partially specified instance (e.g. (ati, ?, ?, X4 )), 

an active classifier can either output a class label y, o r it can choose to gather more information by 

requesting the value of an unspecified feature (e.g. X 2 o r X 3 ). In general, the active classifier can 

recur indefinitely, continually purchasing unknown features for its current instance (as long as it can 

afford to pay for these features). L et us assum e that w e have a binary classification task in which 

there are r total features {AT,}i=i..r  and two classes (Y =  +  and Y =  —), with the domain of feature 

X i  denoted by d o m (X i) ,  and with an unknown feature value denoted by “ ? ”. Then, formally, an 

active classifier is a function:

AC : { d o m (X i)  U {?} x  d o m ( X 2 )U { ? }  x  . . .  x  d o m (X r ) U { ? } } —> { + , —, 1 , . . .  r }  (3.1)

where an integer output i  indicates the request for the unknown feature X i ,  and an output o f 

+  or -  indicates a (final) classification decision. Contrast an AC with the traditional passive classi­

fier (PC) that cannot request additional information. Since a PC can only output a class label based 

on the given feature values, it is poorly suited to tasks where features are initially unknown but can 

be acquired for a cost. To represent an AC, we can use a decision tree as in Figure 3.1. Notice that 

each interior node o f the tree corresponds to a purchase of some feature, while a terminal (leaf) node 

corresponds to the A C’s classification decision. As an exam ple, if a test instance descends down 

the leftm ost branch of the AC in Figure 3.1, then the AC must pay C o s t ( X 2) +  C o s t( X 7) for the 

features it acquires before returning Y  — + .

3.2.2 Bounding Active Classifiers

Many real-world tasks place a hard budget on the value o f  features that can be collected at classifi­

cation time (e.g., a doctor who m ust diagnose patients using at most $100 worth o f tests). In these
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Y =+

Y =  -

Y =

Y = +

Figure 3.1: An exam ple o f  an active classifier when the features and class label are binary

cases, a bounded  active classifier (BAC) is required. A BAC with bound be  is an active classifier

that spends at most be  for any test instance.

To score a BAC B,  we consider its expected misclassification error over the distribution of 

labelled instances:

Q { B )  =  £ P ( x , W)L (2 ? (x ) iy ) (3.2)
X ,? /

where L ( i , j ) denotes the m isclassification error o f classifying an instance as i when its true class 

is j .  Let A ll (b c ) denote the set o f  all bounded active classifiers that spend at m ost b e  per instance.

We will typically be interested in the optimal bounded active classifier from A ll(b c ) ,  w hich is the

one that m inim izes the expected m isclassification error:

BAC* =  a rg m in  Q{B)  . (3.3)
BCAU(bc)

In fact, when we present our form al problem description for budgeted learning a bounded active 

classifier in Section 3.3, the ultim ate goal is to produce this BAC*. Previous research [9] has shown 

that it is possible to PAC-learn this BAC* by using a straightforw ard dynamic program  that has 

sufficiently accurate estim ates o f  the following distributions:

P ( Y  =  2/ |X  =  x*) (3.4)

P ( X i  = .Tj|X = x*) (3.5)

where x* is any partially specified feature vector with at most be  dollars worth o f  feature values 

specified. As we describe form ally in the next section, our problem  involves learning BAC* when 

we have only a limited learning budget witli which to estim ate the two aforem entioned sets o f 

distributions.
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3.3 Formal Description

T he "budgeted bounded-active-classifier learner”, BB A C l, is given the (non-negative) cost C (X t ) e  

o f acquiring each individual feature X , o f  any single specified instance1 and the loss matrix 

L  =  [ t i j \  whose ( i , j )  e lem ent specifies the penalty for returning the class tji when the true class is 

tjj \ by convention we assum e =  0 and Cj j  >  0 for i  j .  b B A C l also knows the total amount 

the learner can spend hr, 6  3t+ , and how much the resulting active classifier can spend per instance 

bc  e f t ' - .

A t any time, the b B A C l can see the current m  x  ( r  + 1 )  “tableau”, w hose rows each correspond 

to an instance i  g  {1 , . . . ,  m }  and whose first r  colum ns each correspond to a feature, and whose

r  +  1st column is the class label. Initially, only the class label is specified; the other m  x  r  entries
( i  Vare all unknown. In general, w e w ill let x \  refer to the initially unknown value o f  the ith  feature 

o f the j t h  instance. A t any point, b B A C l can perform the “probe” to determ ine the value 

o f  x\2\  at cost C(Xi ) .  This also reduces b B A C l’s remaining budget from bj, to fa, — C(Xi ) .  

Once this budget reaches zero, bB A C L stops collecting information and returns a bounded active 

classifier which corresponds to a decision tree o f bounded depth [6 ]. O ur goal is to produce BAC*, 

the bounded active classifier that has minimal expected misclassification error and spends at most 

h e  collecting features per instance (see Equation 3.3).

3.3.1 Simplifying Assumptions

Recall from Section 3.2.2 that in order to PAC-learn BAC* we require accurate estim ates o f  distribu­

tions 3.4 and 3.5. In order to tractably estim ate these distributions under our finite learning budget, 

we will make som e sim plifying assum ptions. Firstly, the obvious frequentist approach o f maintain­

ing simple frequencies for probabilities is problem atic, because m any conditioning events will not 

occur given the sparsity o f  data. Instead, we will take a Bayesian stance by assum ing that there 

is a prior distribution over labelled instances before seeing any data. In addition to this Bayesian 

approach, we will m ake the N aive Bayes assumption, which m eans P ( x ^ )  is independent o f 

(for k  y4 i) as we know the value o f  the class Y  =  y j .2

Hence, if  instance j  is labelled with class + , and feature X i  has dom ain size |A<| =  w , we 

will model the distribution o f the w  multinomial param eters for x ^  as a D irichlet distribution [11]: 

D ir( Q'[̂ + , . . . ,  a ^ + ), w ith D irichlet param eters > 0. (A lthough technically it is the w m ulti­

nomial parameters that are D irichlet distributed, we will still write x ^  ~  D ir( . . . ,  a ^ + ) to 

simplify notation.) These D irichlet param eters o (̂  are unrelated to the ones for negatively labelled 

instances and also unrelated to the Dirichlet param eter values for other features X /t, for h. £  i?

, 1 W c assum e that these costs  a rc  in d e p en d en t o f  each  o ther, both  w ith in  and  ac ro ss  instances. M oreover, if  any  test costs 
C ( X , ) =  0 , w e can  sim ply  g a th e r th a t in fo rm ation  for each  in stance  and then co n s id e r the  resu lting  reduced  p rob lem  w here 
C ( X{ )  > 0  fo r all rem ain ing  X ,s .

2N o tc  that N aive B ayes m odels o ften  p ro d u ce  good c lassifiers  even for da tase ts  tha t v io la te  this assum ption .
3T hus, wc m aintain a s ing le  D irich le t d is tribu tion  fo r each  ( featu re, c la s s -v a lu e ) pair.
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Initially, wc will assum e that each such distribution is uniform Dir( 1 , . . . ,  1 ) .  If  we later see a sam ­

ple T  with 29 Y  =  -I- instances with X i =  +  and 14 Y  =  4- instances with X i  =  the posterior 

distribution for for a new Y  =  +  instance would be D ir( 1 +  29, 1 +  1 4 ). The mean probability 

for X i  =  +  here would be P ( X i  =  + |T )  =  3 0 /(3 0  +  15) =  2 /3 .

In general, if a variable A'*s prior distribution is X  ~  Dir( a i , . . . ,  a w ), then

P ( X  =  i) =  (3.6)

If we then observe a sample T  that includes a; instances o f X  =  i, then AT’s posterior distribution 

rem ains a Dirichlet, with new parameters

Ar|T ~  Dir (a i+ax, . . . , au, + a,„) . (3.7)

In the formal description given earlier in this section, a learning probe o f  the form specifies 

the feature to probe (X,;) and the specific instance in the tableau (instance j) on which to perform 

the probe. However, because o f our Naive Bayes assumption, we can treat all instances with the 

same class label identically. Thus, rather than querying specific instances, w e only consider learning 

probes o f the form (i, y )  that request the ith feature o f a randomly chosen instance in the tableau 

whose class label is y .A (By convention, this process selects the value o f  an (i, y )  feature value that 

has not been seen before.) Finally, for our w ork w e will assume a constant m isclassification cost 

£ij =  1 for i  7  ̂ j  and ta  = 0 .

3,3.2 Complexity Results

Unfortunately, the problem of budgeted learning a bounded active classifier is N P-hard in general. 

In fact, the reduction follows from the active m odel selection task w e studied in C hapter 2. M ore 

precisely, M adani et al. [19] proves the following (active model selection) task is NP-hard: given a 

set of coins with known prior distributions and a fixed total num ber o f  flips, decide when to flip which 

coin to decide which coin has the highest head probability. Our framework inherits this negative NP- 

hardness result. (Identify each coin Ci with a binary feature X i,  w here the head probability o f  coin 

Ci corresponds to the probability the class is true given X i  is true, P ( Y  =  + |X ,  =  + ) ;  we also 

let P ( Y  =  + \X i — —)= < ]  for all features.) In addition, [9] shows that com puting the best active 

classifier is NP-hard in general, even if  we know the entire distribution. O ur framework inherits that 

negative result as well.

3.4 The MDP Formulation

Budgeted learning a bounded active classifier is a sequential decision m aking problem: the learner 

sequentially specifies which feature-class pair to purchase from the tableau, and receives a one-tim e

**In other words, to make a purchase the learner only has to select a feature and a class -  not a specific instance in the 
tableau.
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reward (the expected m isclassification error o f the learned BAC) once the learning budget has been 

exhausted and the final learned BAC is applied. The task can be com pletely described as a finite, 

episodic M arkov Decision Process with a (finite) set o f  states s  £  S ,  a (finite) set o f actions a £ A , a 

reward function R (s ) ,  and a transition function T ( s ,  a , s ') . In fact, the mapping is very sim ilar to the 

one described in C hapter 2. Each slate o f  the problem s  £  S  is identified by the rem aining learning 

budget (denoted by b'L), and by the posterior Dirichlet distributions over all the feature-class pairs. 

This representation o f a state encapsulates all the inform ation that has been learned so far about the 

various feature-class pairs. We identify the initial state So as the one with full rem aining learning 

budget'(6 /, =  ^l)> and with the D irichlels set to the (given) p rio r distributions. On the other hand, 

the terminal states are those in which the rem aining learning budget is insufficient to m ake any more 

purchases (b'L < C ( X l ) Vi), and has thus resulted in a final set o f posterior D irichlet distributions. 

As in Chapter 2, we use to denote the state encountered on the ith tim e step.

The space of possible actions corresponds to every distinct feature-class pair that the learner can 

purchase from the tableau. For the reward function, w e use R (s )  to denote the im m ediate reward 

received in state s .5 R (s )  is zero whenever s  is a non-term inal state (i.e. no interm ediate reward). 

On the other hand, if  s  is a terminal state, the reward received is the expected misclassification error 

o f  the best BAC that can be learned from the posterior D irichlet distributions in s:

Since all reward is delayed until the final time step, our problem  has a discount factor o f 7  =  1. In 

terms o f notation, we will use r ,  to denote the im m ediate rew ard accrued on the ith  tim e step. 

Finally, the transition function T (s ,  a, s ')  specifies the probability o f a particular feature pur-

let distributions over the feature-class pairs. For instance, suppose we purchase feature X i  on 

an instance where Y  =  + , and our current D irichlet distribution for that feature-class pair is 

2 f j |+  ~  D ir ( l , 4 ,3 ) . Then the probability o f  transitioning to the next state which has X < |+  ~  

D ir( l, 5 ,3 ) is the probability o f  X i  taking on its second value (x,-2) given a positive class label: 

P ( X i  =  Xi2\Y  =  + )  =  4 /(1  +  4 -I- 3) =  1 /2 . With S , A , R , and T  specified, we have a complete 

M D P formulation for budgeted learning a bounded active classifier. T he M D P formulation allows us 

to use the notation o f policies and value functions. In our case, a  policy 7r : S  —► A  specifies which 

action the learner should take (i.e., which feature-class pair the learner should purchase) given the 

current state. As well, the value function specifies the expected reward accrued from state

s t when following policy 7r. In this chapter, we define the value function for a policy 7r as:

5T |iis  rew ard nota tion  is s ligh tly  d iffe ren t than the one  u sed  in C hap te r 2; w e  m ake this s lig h t nota tion  ch an g e  in this 
ch ap te r stric tly  to sim plify  the p ro o f o f  so m e upcom ing  resu lts.

s  is a  terminal statem m
B e A l l ( b c )

chase taking on a particular value. These transition probabilities are given by the current Dirich-

(3.9)
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N otice that this definition is trivially different from the definition in C hapter 2 (Equation 2.5), be­

cause here wc include the im m ediate reward received in state s t as part o f V * (s t) .  This slightly 

different value function definition simplifies the proof o f som e upcom ing results without changing 

our problem  in any way.

3.4.1 The Optimal Learning Policy

As our problem is a finite M arkov Decision Process, there exists a determ inistic optim al policy 

for spending the learning budget [28], The optimal learning policy is the one that minimizes 

the expectedi expected2 m isclassification error o f the final bounded active classifier. The first 

expectationi is over the set o f possible Dirichlet distributions produced by the learner’s purchases, 

and the second expectation2 is over the possible labelled instances (x ,iy) that can occur given  the 

resulting Dirichlets. M athem atically, the optimal learning policy it* is defined as:

7r* =  a rg m in  E P ( i ) ^ 2 P ( x , y \ i ) L ( B A C * ( X ) ,y )  (3.10)
n  i € O u t c o m e s ( 7 r )  x , y

where each “outcom e” corresponds to a terminal slate in which our learning budget has been fully 

exhausted and has resulted in posterior Dirichlet distributions over the feature-class pairs. (Notice 

that the optim al BAC for each outcom e state is contingent upon the probabilities that have been 

learned, and thus we write B A C ,* to denote the optimal BAC with respect to the probabilities learned 

in outcom e i .)

This optim al learning policy 7r* can be com puted via a bottom -up dynam ic program . To see 

this, note that we can com pute the optim al value function (V * ' (s ))  for all possible outcom e states 

s  w here the learning budget has been exhausted, and then use these to com pute the value for all 

possible “predecessor” states w here there is only $1 left in the learning budget, and then continue 

this backw ard sw eep toward the initial state s q . U nfortunately, the num ber o f outcom e states (and 

hence the com putational com plexity o f the naive dynam ic program ) lias a prohibitive low er bound:

P roposition  4 L et |X ;| denote the dom ain size o f  fea tu re  Xi ,  \Y \ denote the num ber o f  classes, 

t  — | y |  |X ;| — 1, and each fea tu re  has unit cost. Then the bottom -up dynam ic program must

com pute the value o f  Q. outcom e states.

We im proved this nai've dynam ic program  by reducing the num ber o f  states whose value must be 

solved for. Below we show an interesting way to achieve this reduction by exploiting the equivalence 

o f  two “perm uted" states under the conditional independence assumption.

D efin ition  1 A  proper perm utation fo r  a feature X i  with w  domain values is a bijective function  

f  : [1, u>] —> [1, that applies the sam e reordering o f  the w  param eters fo r  every Dirichlet 

distribution on Xi.

E xam ple  1 Let

{ X i \ Y  =  0) ~ £ > /r (4 ,2 ,7 ) ,  ( X i \ Y  =  1) ~  D ir(3, 8 ,5 )
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Tabic 3.1: Reduction in com putation time using Proposition 5

bL be Features Dom ain Size Na'ive Improved

2 4 6 4 161 sec 65 sec
3 2 4 3 8 8 8  sec 432 sec
4 3 4 3 8280 sec 3360 sec

Then a proper p e rm u ta tion /o r fea tu re  X { is:

{ X i \ Y  =  0) ~  D/V(7, 2 ,4 ), ( X j |y  =  1) ~  D/V(5,8 ,3 ).

P roposition  S A ssum e the N aive B ayes assumption holds, and consider any two states s„ and S), 

that have equal values o fb /j  and are such that the D irichlets o f  state s a can be made equal to the 

Dirichlets o f  state Sb by specifying a se t o f  r  proper permutations, one fo r  each fea ture X i. Under 

these conditions, V *  (sa ) =  V"*’ (si,), and ir*(sa) — Tt*(sb)-

This proposition allows us to im prove the naive dynamic program by reusing the computed value 

o f a state s a for properly perm uted versions o f  sa . The real-time im provem ent using Proposition 5 

is shown in Table 3.1. In the last case =  4, b e  =  3), the nai'vc dynamic program ran out 

o f mem ory after more than two hours, while our improved version finished properly in under an 

hour. U nfortunately such im provem ents are not sufficient to remove the exponential complexity of 

the dynamic program  (recall that this task is NP-complete); therefore, wc consider more tractable, 

suboptim al approaches in the next section.

3.5 Heuristic Learning Policies

This section sum m arizes a num ber o f  heuristic “budgeted bounded-active-classifier learners” . We 

focus on only the data collection part o f  the algorithms; after collecting worth o f feature val­

ues, each o f the algorithm s then passes its learned (posterior) Dirichlet distributions to a dynamic 

program  that produces the BAC* in Equation 3.3. O ur decision to focus on heuristic purchasing algo­

rithm s is partially m otivated by the results o f  Chapter 2, in which we observed that simple heuristics 

w ere able to outperform more com plex methods such as RL, and blind search on the related problem 

o f  active model selection. We note that many o f the algorithms that follow are extensions or variants 

o f  heuristics used in o ther budgeted learning scenarios [17, 18].

3.5.1 Round Robin (RR)

This obvious algorithm  sim ply purchases complete instances until its budget 6 ^ is exhausted. It 

draws examples randomly, and so expects to have collected data about mem bers o f each class y 

in proportion to P ( Y  = y).  If  there are r  unit-cost features, we expect to know everything about 

roughly b i / r  instances. N otice RR im plicitly assumes all features are equally valuable in learning 

the target concept.
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3.5.2 Biased Robin (BR)

A m ore Selective approach than round robin is to purchase a single feature and test whether or not its

observed value has increased som e m easure o f quality. The biased robin algorithm is more selective 

than RR, continually purchasing feature X as long as it improves quality, and otherwise moving 

to feature X i+i (and o f  course looping back to X \  after X r ). There are several choices for how 

to m easure quality o r loss; see Section 3.6. O f course, BR must also specify a class y  front which

on each purchase. As further motivation for this algorithm, [17] found it to be one o f  the best 

approaches for budgeted learning o f  a passive Naive Bayes classifier, albeit with a different loss 

function. This method also corresponds to the “Play the Winner” approach discussed in [23].

3.5.3 Single Feature Lookahead (SFL)

O ne would always like to avoid w asting purchases on poor features, especially when faced with a 

lim ited learning budget. This motivates a prediction-based approach, w hich uses a loss function 

to estim ate the expected loss incurred after making a sequence of purchases o f a single, specified 

feature.

SFL uses this prediction based approach, and controls the level o f  m yopia or “greediness” in­

volved by providing an additional param eter, d — the lookahead depth. W ith a lookahead depth 

o f  d, SFL calculates the expected loss o f spending its next $d sequentially purchasing feature i  o f 

instances o f  class j .  That is, if  s  denotes our current set o f D irichlets and s ' denotes any o f  the 

D irichlet sets obtained after spending m in($d , $b'L) purchasing feature X i  o f  Y  =  j  instances, then 

the expected loss for ( i , j )  is:

o f  this best ( i , j )  feature for one instance, and updates the Dirichlets based on the observed outcome 

o f  that purchase (and reduces the available rem aining budget). It then recurs, using Equation 3.11 

to com pute the score fo r all feature-class pairs in this new situation —  with its updated Dirichlets 

and a sm aller budget. This process repeats until the learning budget is exhausted. The lookahead 

depth d  can be set based on the com putational resources available. If only the next one purchase is 

considered, then this reduces to the 1-step greedy algorithm. We note that SFL was originally used 

in [17, 18] (but with a different loss function).

single discrim inative feature-class pair and neglects to explore other potentially good features. This 

property can be problematic, particularly when a dataset contains several discriminative features

to purchase its desired feature, and it does this by drawing from the class distribution P ( Y  =  y)

SFL  determines the feature-class pair ( i , j )  with lowest expected loss, then purchases the value

3.5.4 Randomized SFL (RSFL)

O ur experim ents show that the SFL  algorithm often spends the majority o f  its probes purchasing a
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that can jo in tly  yield a more accurate BAC than any single feature by itself. The random ized single 

feature lookahead algorithm (RSFL) alleviates this problem  by increasing exploration am ong the 

best looking feature-class pairs. The RSFL algorithm is very sim ilar to SFL, as it too calculates the 

expected loss in Equation 3.11 for each feature-class pair. However, rather than determ inistically 

purchasing the pair with the best SFL score, RSFL considers the best K  feature-class pairs and for 

each feature-class pair ( i , j )  in this set, it chooses to purchase feature i  o f class j  with probability:

e x p d s ^ & i l  
1 (3.12)

E ( , . e x p ^ M

H ere, r  is a tem perature controlling exploration versus exploitation. Although we set r  to one 

throughout this chapter, we include it in Equation 3.12 to show the relationship to the G ibbs d istri­

bution [28], A fter experim enting with various values for the num ber o f  feature-class pairs, K ,  we 

found that K  =  (num ber of classes) x  bc seemed to perform  well, particularly when the learning 

budget was not much greater than the number o f features.

3.6 Loss Functions

A s m entioned earlier, several o f our algorithms rely on a loss function

L o ss  : {Dirichlet distributions over feature-class pairs) —> !R (3.13)

that attem pts to m easure the quality o f  a given probability distribution. A fter experim enting with 

several different choices o f  loss functions, we found Conditional Entropy Loss and Depth 1 BAC 

Loss to be effective .6

SFL, RSFL, and the greedy algorithm  all use

m in V ' '  P{X{  =  x )  m in ( l — P ( Y  =  y \X i  =  x ) )  (3.14)
i  z '  V

X

w hich calculates the expected misclassification error o f the best Depth 1 BAC. Since biased robin 

needs to detect small changes in a distribution, it tends to perform better w ith the more sensitive 

conditional entropy calculation, which measures the uncertainty o f  the class label Y  given the value 

o f  a feature AT,-:

-  ] T  P ( X i  =  x )  £  P ( Y  =  y \Xi  =  x )  log2 P ( Y  =  y \X i  =  x )  . (3.15)
x  y

The biased robin algorithm  uses Equation 3.15 before and after the purchase o f feature X i  to deter­

m ine w hether the purchase im proved the ability o f Xi  to predict the class Y.

f,T h e  o b v ious  loss function  is ju s t to use E quation 3.3 to com pu te  the  expected  e rro r o f  the op tim al BAC. H ow ever, 
s in ce  loss functions  can  be ca lled  severa l tim es to dec ide  on a  sing le  purchase , the com putational expense o f  com pu ting  
E qua tion  3 .3  is  proh ib itive .
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Figure 3.2: Identical costs and some irrelevant features —  RSFL and BR outperform  RR

3.7 Experimental Results

To compare the algorithms, w e tested their performance on several datasets from the UCI M achine 

Learning Repository [12]. We used supervised entropy discretization [8 ] to discretize datasets with 

continuous values. Each dataset w as then randomly partitioned into five folds. The algorithms were 

run five times, and on each run a single fold was set aside for testing, w hile the rem aining four 

w ere available for purchasing. For each algorithm, we used the average value o f these five runs as 

the algorithm ’s m isclassification error on the whole dataset. We repeated this process 50 tim es to 

reduce the variance and get a m easure o f  the average misclassification error. Thus, each point in the 

graphs that follow represents 50 repetitions o f five-fold cross validation.

In the first set o f experim ents, all features have unit cost and the datasets contain som e irrelevant 

features. We set the classifier’s budget to bc =  3, as this is large enough to allow several features to 

be used, but small enough to keep computations tractable. All D irichlets param eters are uniformly 

initialized to 1. For reference, each graph also includes a gold standard “All D ata” algorithm, which 

is allowed to see the entire dataset, and thus represents the best that one can do using the Naive 

Bayes assumption on the data.

Figure 3.2 shows the perform ance of the algorithms on the Glass Identification dataset: a  bi­

nary class problem with nine features whose domain sizes vary between one and three. The four 

features that have a  domain size o f  one represent irrelevant inform ation that any learning algorithm 

(especially one under a constraining budget) should avoid. Both RSFL and BR learn better than the 

obvious RR algorithm for all learning budgets considered. In fact, w e found the optimal b e  =  3 

BAC produced by the “All D ata” algorithm involves four different features, and these four features 

are precisely the ones that RSFL and BR purchase heavily during learning. This is in contrast to the 

RR purchasing behaviour that spends equally on all features, despite their unequal predictive power. 

Finally, SFL and greedy spend their entire budget on only one or two features during learning, which 

accounts for their low accuracy BACs.
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Figure 3.4: D ifferent feature costs —  RSFL and BR dom inate RR

The Breast Cancer dataset contains ten features, only one o f which is irrelevant to the concept. 

This dataset is particularly interesting because nearly all its features arc good predictors, but three 

features have markedly lower conditional entropy than the rest, To produce the lowest error BAC, 

the learning algorithms m ust discover the superiority o f these three features. We find RSFL does 

exactly this, spending 20% , 21%, and 32% o f its budget respectively on the three strong features. In 

comparison, RR spends 10% o f its budget on every feature which makes it much more difficult for 

it to separate the top features from the rest. BR also perform s better than RR fo r all learning budgets 

considered.

The next set o f  experiments, shown in Figure 3.3, considers datasets w ithout any irrelevant 

features. The Iris dataset has only four features and is a three class problem. Given that all four 

features are relevant, and that b e  =  3 in this experim ent, the optimal BAC requests every feature at 

som e point in its tree. With only four features to consider, RSFL is able to test them all effectively 

and produce better BACs than RR for all budgets considered. BR is also com petitive witli RR, except 

at some o f the very low budgets where B R ’s exploration model prevents it from ever investigating 

som e o f the features.
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Figure 3.3 (right) shows another binary class problem, the Vote dataset, that contains 16 features. 

M any o f  these features have sim ilar (high) predictive power, and one feature in particular is nearly 

perfectly correlated with the class label. O nce again we see that both RSFL and BR beat RR when 

the learning budget is sm all. RSFL asym ptotes after about 50 purchases —  it spends its budget 

finding a few strong features quickly and outputs a fairly low error BAC. As expected, at larger 

budgets RR collects enough inform ation on every feature to find better candidates for its BAC than 

RSFL can. In particular, RR identifies the superiority o f the “near perfect” feature more consistently 

■ than RSFL does at larger learning budgets. The graph shows that one can improve the performance 

o f  RSFL by increasing the num ber o f top feature-class pairs, K ,  that R SFL considers on this dataset 

(thereby reducing the chance o f  RSFL skipping over the near perfect feature). Wc also observe that 

B R ’s exploration model is particularly well suited to this task because it is able to collect information 

on every feature at larger budgets, which is im portant on a dataset such as Vote with a large number 

o f predictive features.

Our final set o f experim ents involved datasets where the features differed in cost. Both the Heart 

Disease dataset and the Pim a Indians dataset have known cost data [12], which we scaled (so that 

costs were between $1.00 and $10.00) and then used in our tests. T he scaled Heart Disease costs 

range from $1 to $7, and our tests are run w ith bc =  $7. This dataset represents the worst case for 

RR, because the irrelevant features happen to be the most expensive ones. In fact, RSFL achieves 

the sam e error rate after $100 that RR takes $500 to reach. In the Pim a dataset, feature costs are 

between $1 and $5, and we set bc =  $5. The two irrelevant features have cost $1, and the single best 

feature is $4. Once again, BR and RSFL dom inate RR for all budgets considered.

3.8 Summary

Many standard learning algorithm s im plicitly assum e the features are always available for free, to 

both the learner at “training tim e” and later the classifier, at “perform ance tim e” . This chapter ex­

tends those systems by explicitly considering these costs (at both training and performance time), 

when the learner and classifier have hard budgets that lim it the total value o f features that can be col­

lected. In this chapter, we introduce the form al framework for budgeted learning a bounded active 

classifier, and present som e com plexity results for the problem. We also propose a more efficient 

way to im plem ent the optimal algorithm , which we prove works effectively. Moreover, this chap­

ter motivates and defines a variety o f tractable learning strategies and shows they work effectively 

on various types of data —  both w ith identical and with different feature costs. In particular, we 

demonstrated that our proposed strategies can often do much better than the obvious algorithm -  

“round robin” -  especially when training data is limited.
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Chapter 4

Related Literature

4.1 Introduction

This chapter reviews som e o f the relevant literature from the fields o f m achine learning and sequen­

tial decision making. We divide the review into two parts. The first section highlights the work 

related to our m ain problem studied in Chapter 3, while the second section focuses on work related 

to  the active model selection task investigated in Chapter 2.

4.2 Budgeted Learning a Bounded Active Classifier

There are a num ber o f  different senses o f  “costs” in the context o f  learning [31]. O ur research 

considers two o f these: the costs paid by the learner to acquire the relevant information at training 

tim e to produce an effective classifier, and also the costs paid by the classifier, at performance 

tim e, to acquire relevant inform ation about the current instance. We im pose hard constraints on the 

expenses paid by the learner, and on the total cost o f tests that can be perform ed per instance by the 

classifier.

M any existing (sub)fields, such as active learning [5] and experim ental design [3] (as well as 

earlier results such as [17]) focus on only the first o f these costs -  e.g., bounding how much the 

learner can spend to produce an accurate passive classifier. In addition, many of these systems 

request the class label for an otherw ise completely specified instance. Thus they require only a 

single quantity per instance. O ur problem is the complement o f this: class labels are known but 

feature inform ation must be purchased (see Figure 4.1). Unlike m ost o f the other models, this 

m eans our w ork may need to consider the correlations amongst the many unknown properties o f an 

instance.

There are numerous other machine learning results that focus on reducing the sample complexity 

for learning. Some o f these include decision theoretic subsampling [21], on-line stopping rules [26], 

progressive sam pling [22], and active feature value acquisition [20]. We note that these techniques 

differ from our approach because we place a firm prior budget on the learner’s ability to acquire 

information, while these approaches typically allow the learner to purchase until some external
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Figure 4.1: Active learning versus budgeted learning

stopping criteria (for instance, accuracy) is satisfied.

Weiss and Provost [33] recently explored a problem related to one that w e encounter in our 

overall framework: how to represent the class distribution when only a firm budget o f  n  training 

exam ples can be used. For example, if our budget allows for ten training examples, should w e select 

five from class one and five from class two, or draw our examples according to the true (underlying) 

class distribution? The results in [33] indicate that drawing from the true class distribution is the 

best choice for maximizing classifier accuracy when no additional experim entation can be done. 

On the other hand, when com putational resources are available, Weiss and Provost suggest using a 

progressive sam pling algorithm to choose the best class distribution. As discussed in Section 3.5, 

som e o f  our algorithms (RR and BR) follow the results in [33] by drawing from  the true class 

distribution when selecting which class to probe. We do not, however, utilize progressive sampling 

due to the com putational expense, and the relatively small im provement reported in [33] over using 

the true class distribution.

Instead o f  considering the costs paid at learning time, some research has concentrated strictly on 

m inim izing the costs paid by the classifier at perform ance time. In this vein, both [30] and [9] at­

tem pt to produce a decision tree that minimizes expected total cost. However, neither work assumes 

an a priori resource bound on the learner, thereby allowing for unconstrained am ounts o f training 

data with which to build these classifiers. Again, our work makes the m ore realistic assumption that 

if  data costs money at perform ance time, it very likely costs money at learning time as well.
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4.3 Active Model Selection

Active model selection was originally introduced in [18], although several sim ilar problem s have 

been previously studied. The well-known multi-arm ed bandit problem [23] is concerned with finding 

the best object within a set, but rewards are typically accrued throughout, w ithout distinguishing 

training from  testing phases. By contrast, active model selection gives no reward until the final 

coin is selected, and thus more accurately represents the pure training phase of budgeted learning. 

Strategies from the adversarial bandit formulation [2] could also bc adopted for our problem, but 

the adversarial assum ption is unnecessarily strong for our case, and thus less defensive algorithms 

can usually perform  better on active model selection. A more recent bandit-variant, the m ax k- 

arm bandit [4], shares our notion o f maximizing a single  reward over a fixed num ber o f  sequential 

decisions. However, [4] allows the single reward to occur on any time step, as opposed to strictly at 

the term inal states.

D uff [7] studied the Bayesian M D P formulation in active model selection as a Bayes Adaptive 

Markov Decision Process (BAMDP). That study also considers various RL methods to approximate 

an optim al policy for BAM DPs, and chooses som e o f the same types o f features for function approx­

imation that w e consider in Chapter 2. Moreover, the experimental results concur w ith our findings, 

as [7] also reports a gap between the reward o f the learned RL policies and the optim al policy. B e­

sides RL, another potential strategy for active model selection is on-line sparse lookahead [32 ,16], 

Unfortunately, given the size o f  the state space, we have found that any tractable (truncated) looka­

head (as in [16]) usually yields a higher regret than the simple BR and SCL policies. It would be 

interesting to experim ent with the recent ideas from  [32] to see if a selectively grown lookahead tree 

could com pete w ith the current heuristic policies.
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Chapter 5

Conclusions

5.1 Contributions

This thesis exam ines classification learning when features have an acquisition cost, and the learner 

and classifier have only finite budgets to spend acquiring features o f training and testing instances, 

respectively.

Chapter 3 explores this practical problem in detail, and provides the formal problem  description. 

O ther contributions from the chapter include a description o f the optim al spending policy for the 

learner, as well as a method to effectively reduce the running time o f the optimal algorithm. We also 

extend prior com plexity results to our problem to establish it as N P-hard. O ur main contributions 

are to propose several heuristic spending policies for the learner, and to test them empirically. The 

primary result o f  this dissertation is two fold. First, our experiments show that the obvious round 

robin purchasing policy that spends equally on all features is suboptim al —  particularly when the 

learning budget is sm all relative to the number o f features. Second, w e observe em pirically that our 

alternative purchasing algorithm s (i.e. biased robin, random ized single feature lookahead) are able 

to outperform  round robin on many datasets, both w ith identical and w ith different feature costs.

We also m ake a contribution to general budgeted learning by addressing an open question in the 

budgeted learning literature: can Reinforcem ent Learning techniques be used to learn an effective 

spending policy for the learner? Chapter 2 takes a first step toward answering this question by 

working with a simplified budgeted learning problem: active model selection. We extensively train 

m ultiple RL agents on active model selection, with each agent using a different com bination of 

features for function approximation. Our experiments demonstrate that simple heuristic policies 

achieve low er expected regret on active model selection than the policies learned using the standard 

RL techniques and features we selected. These results suggest that (at least) better features for 

function approxim ation will be required if RL techniques are to be successfully applied to the higher 

dim ensional and more complex problem of budgeted learning a  bounded active classifier.
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5.2 Research Directions

T his dissertation has raised several interesting questions for future study. Beginning w ith the R e­

inforcem ent Learning investigation in Chapter 2, the most obvious open question is: w hat feature 

space should be used to represent the value function? A limitation o f som e o f the features we used 

is that they do not incorporate the synergies that exist between coins (for instance, how  the value of 

coin Ci  increases if  coin C2 and C 3 are also present in the current set o f  coins). A  feature set that is 

able to approximately encode these dependencies may yield more prom ising results. A nother area 

o f  future work is to use RL techniques to effectively learn the BR and SCL heuristic policies . 1 With 

som e o f the features we considered (in Appendix B), it is theoretically possible for an RL agent to 

represent the BR and SCL heuristics; however, we need more than just representation pow er in order 

to tractably learn BR or SCL. Specifically, the feature space must generalize well so that a TD(A) 

agent only has to visit a reasonable num ber o f states in order to learn a com plete value function 

for the heuristic algorithms. Finding a feature set that can express the heuristics w hile perm itting 

fast generalization would m ake RL competitive with BR and SCL (and thus m ore applicable to the 

full budgeted learning problem). Finally, given the low regret behaviour o f  BR and SCL, it would 

be interesting to prove or disprove the approximability characteristics o f  these heuristic algorithms 

under the com m on case o f  identical starting priors (this has rem ained an open problem  since first 

posed by [19]).

W e turn next to the full problem  o f budgeted learning a bounded active classifier. A lthough 

som e o f our proposed algorithms perform well on this problem , they m ight still be im proved using 

som e sim ple techniques. In the case o f RSFL, for example, it m ay be better to dynam ically  choose 

the num ber K  o f top feature-class pairs to randomly select from (rather than fixing this threshold a 

priori). Alternatively, we might consider randomly selecting from all feature-class pairs, but with 

a decreasing tem perature param eter r ,  as in [4]. A nother research direction is to experim ent with 

algorithm s that go beyond the “N aive Bayes” assum ption, and thus allow the learner to perform 

m ore powerful probes (e.g. requesting feature on an instance w here X j  =  +  and Y  =  —). 

Related to this, w e could consider maintaining additional probability estim ates such as P ( X t \ Y ,  X j )  

to incorporate dependencies am ong the features.

In our work, w e have im plicitly assumed that it is always worthwhile for the classifier to spend 

more on features (up to the budget b e )  if we can reduce our misclassification error. However, in 

many practical tasks, the cost of a  misclassification error m ay be less than the cost o f  acquiring a 

feature. In these cases, it makes more sense to build a bounded active classifier that m inim izes the 

expected total cost per instance2 as opposed to the expected misclassification error. O ur framework 

can be extended to this case by m aking some modifications to the dynamic program  we use to build

'T h e  m otivation  is that by learn ing  the value function lo r  these heuristics, an R L  ag e n t cou ld  then em p loy  an exp lo ra to ry  
ac tion  se lec tion  po licy  (during  p lan n in g ) to  try and im prove upon them .

2W hcrc the total co st p e r  instance is defined  as: total cost =  (m isc lassifica tion  cost) +  (cost o f  fea tu res  p u rchased )
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B A C *  (see [9]).

The cost structure w c assum e in this work can be quite different from the com plex (linked) cost 

structure that can exist in practice. For example, a linked cost structure m ight charge $10.00 for a 

blood test X i  by itself, but charge only $ 2 .0 0  for the blood test if it is purchased in com bination with 

a bone scan X j .  For these com plicated cost structures, algorithm s will have to consider the value o f  

information o f a feature under multiple scenarios (e.g. when purchased by itself, when purchased at 

a discount after acquiring linked feature X j ,  etc.). Finally, the most im portant direction for future 

research is to build upon the em pirical results herein to develop algorithm s w ith strong theoretical 

guarantees on learning performance.
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Appendix A

Proofs

Preface to Propositions 1 and 2

To sim plify the proofs o f Proposition 1 and 2, we prove them under the following value function 

definition:

Note that this definition differs trivially from  the one given in Chapter 2, because we include the 

reward received for reaching state s t as part of V 7r (s lJ .  This small change in “accounting” simplifies 

the proofs o f Proposition 1 and 2 without changing their effective meaning. Nevertheless, after 

observing the way we prove the results here, it is easy to see that both propositions also hold under 

the alternate value function definition o f Chapter 2.

Since the latter m ax  is term by term greater than or equal to the form er m ax , it follows that 

V * ' ( s+ hi) >  V',r’ (s+ ti) for the base case, V — 0 .

For the inductive step, assum e the result holds for b' < ( j  -  1), and let b' — j .  We will use

(A .l)

A .l Proposition 1

L et s+h{ =  (b1, a i , / 3 i , . . . a i  +  l , /3 i t . . . a n , 0 n ) 

and s +ti — (b1, a \ , 0 \ , . . .  a i t 0 i +  a n , 0 n )

We prove the result by induction on the rem aining budget b'. For the base case, let b' =  0.

Now V *  (s + li) =  m ax

and V * (s+ ,li) =  m ax
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s +ti +hk t0  denote the state resulting from s +t‘ after coin Ck  is flipped, turns up heads, and reduces 

the budget to b' =  j  — 1. We prove the inductive step by considering two mutually exclusive cases.

Case I:  The optimal action to take from ( s + li) is to flip som e coin Ck =/= Ci.

V * ' ( s + lt) = - J Z k - .V n ‘ {s+ li+llk) +  (s+ li+ lk) (definition ^ ‘ (s+ 'O )

— 'if+ fh  /̂7F‘ (s+hi +hk) +  ~dk+pk /̂7r‘ ( s +,li +tfc) (inductive hypothesis)

<  Vr,r*(s+,l<) (definition K* (s+/“ ))

Case 2: The optimal action to take from (s+ t | ) is to flip coin C,-.

^ > + ti) =  ( «+*■» . )  +  _ a ± L Tl / ’r*(S+ “ +‘‘ ) ( d c f / V * V . ‘‘ ))

<  ^ f t T T V r,r’ (s+ t i+ 'l i ) +  a t+pJ+i V ”" (s+ii +t<) (inductive hyp.)

^  a!+fii\ i V n ' ( s+Hi+hi) +  a i+ft-+TV,7r' ( A,+/ll+ti) (inductive hyp.)

<  K’r*(a+h«) (def. f / ’r‘ («+,li))

Thus, the result holds for all possible cases, com pleting the inductive step.

A.2 Proposition 2

The result is proved via induction on the rem aining budget br. For the base case, let b1 =  0. 

Now V n ’ { a )=  m ax  • 5 ^  • • • 5 ^ )

and .V ''(J ) .=  .

Since the latter max is term by term greater than or equal to the form er max, the base case holds. 

For the inductive step, assum e the result holds for b' <  (j  — 1) and let b' =  j .  We will use s +hk to 

denote the state resulting from s  after coin Ck  is flipped, turns up heads, and reduces the budget to 

b' — j  — 1. We prove the inductive step by considering two m utually exclusive cases.

Case 1: The optimal action from s  is to flip som e coin Ck  ^  C i.

V * ' ( s ) =  z 3 T k V n' ( s +h*) +  (Definition of VV° (s))

<  - ^ + 0^ V n ' ( S+I>k) +  S ^ r ' / ’r * ( J + t f c )  ( I n d u c t iv e  h y p o th e s i s )

<  V " * ^ )  (Definition of V n (s))

Case 2: The optimal action from s  is to flip coin Ci.

V " '{ s )  =  « /+ fl~ /̂ ’r’ (s+ /‘' ) +  uf+Wi /̂7r‘ (lS+t')  (Definition of V ” (s))
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<  57+ft ^ ’r*(5+h‘) +  (Inductive hypothesis)

<  ( s+ '“ ) +  7^+ k+ T V n ' ( s +l<) (Proposition!)

< V * ’ (s ) '. (Definition of V n (s'))

Thus, the result holds for both possible cases, completing the inductive step.

A.3 Proposition 3

We use a non-terminal state to obtain the result. Consider a state, Q, in  which b1 =  1, there exists 

two B e la (3 ,2) coins, and (n  — 2) B eta (2 ,2) coins. It is easy to verify (using Equation 2.3) that the 

optimal action in Q is strictly to flip a B e ta (3 ,2) coin. To prove the proposition, we show that BR 

encounters at least g  different variants o f  Q in which it chooses to flip a  B e ta (2 ,2) coin.

Let there be n  =  g +  2 coins, and a budget o f 6 =  2n  +  3. N otice the budget is such that state Q 

is guaranteed to occur under B R ’s strategy. In fact, Q occurs m ultiple tim es because there are ^ ^  ^  

distinct ways to place the two B e ta (3 .2) coins. We also note that since the num ber o f  tails on all n  

coins is equal, we are guaranteed that BR will be currently flipping the first coin in the set. Thus, 

BR will m ake a suboptimal decision whenever it reaches state Q  w ith the first coin being one o f  the 

B eta(2 ,2 )s. O bserve that there are ( ^ 2  ^  distinct versions o f  state Q in which the first coin is a

B e ta (2 ,2). N ow the proposition follows from  the fact that: ( ^ 2  ^ )  =  (n - 1Mn ~ 2) =  i 2± il£  >  g 

for all g >  1 .

A.4 Proposition 4

We use two lem m as to aid in the proof. The first is a standard result from  the theory o f  partitions [1]:

L em m a 1 There are ^  ^ J  ^  ways to express an integer n  >  1 as the sum  o f  exactly b positive  

integers.

while the second lemma can be derived from  the first [24]:

L em m a 2 There are ^  _  J ) G )  =  ^  vvnys to express an integer n  >  1 as

the sum o f  b nonnegative integers.

Let d. =  \Y \ ]T)j l-X’tl- Working from the bottom-up, the dynamic program  (dp) m ust begin by calcu­

lating the value o f all possible terminal states. Using our Naive Bayes assum ption and the unit cost 

o f features, each unique terminal state corresponds to a com plete allocation o f the learning budget 

b[, over the d, D irichlet param eters. Thus, the number of distinct term inal states (that the dynamic 

program  has to solve) is equal to the num ber o f  ways to express the learning budget bi, as the sum 

o f d  nonnegative integers. Using Lem m a 2, the dp computes the value of

(bL +  d  -  1 )!
(bL ) \ ( d -  1 )! 
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states at the bottom  level; using S tirling’s form ula on each factorial, we get

(bL t- d -  1)!
(6t ) !(rf- l )!

( H r 1 ) 1”'  ( ^ ) d" 1 V M b L  +  d -  1) ^

- 1)(1 +  u k ) ( 1 +  n r i ^ )

^br+d-l^ L  ^,+d-iyt- 1

2 \/2 7 T ^ /d ^ i  " G

and the result follows using f =  (d  — 1 ).

A.5 Proposition 5

To prove Proposition 5, the follow ing lem m a is required.

L em m a 3 Let the Naive Bayes assum ption hold, and consider any set D  o f  D irichlets over the 

feature-c lass pairs and  a bounded active classifier B A C d  (w ith bound b e ) constructed from  D. 

Given any set o f  Dirichlets D ' where D ' can be made equal to  D  by specifying exactly one proper 

perm utation fo r  each feature, there exists a  bounded active classifier B A C d1 (also with bound be)  

constructed fro m  D ' such that the expected error o f  B A C d  <s equal to the expected error o f  B A C d>.

We prove this lem m a first, before m oving on to Proposition 5. L et P ( . ) d  denote a probability under 

D,  and P ( . ) D' denote a probability under D'.  Let 6 be a branch o f B A C d > which, w ithout loss of 

generality, specifies som e feature values (X i  =  Xi, X j  =  x j ) ,  and has classification label Y  — y, 

Then the expected accuracy o f  branch b is

P ( X i  =  Xi, X j  =  X j , Y  =  y)  d =

P ( X i =  x i \ Y = y ) DP ( X j = x j \Y  =  y ) DP ( Y  = y) =

P ( X { =  x 'i\Y  =  y ) D' P ( X j  =  x 'i\Y  =  V)D' P ( Y  =  y)

where x- is the im age o f x,- under the p roper perm utation for X i .  Thus we have converted a 

branch b o f  B A C d into a new branch b', w here the expected accuracy o f b' under D ' is the same as 

the expected accuracy o f  b under D .  We can repeat this conversion for each branch o f  B A C d to get 

a set o f new branches which, w hen sum m ed together, have the sam e expected accuracy as B A C d . 

O f course, since the expected m isclassification error is 1—(expected accuracy), the new branches 

have the sam e expected m isclassification error as B A C d  as well.

All that rem ains to be shown is that the set o f  new branches forms a valid BAC with bound be- 

To see this, note that we can apply our transform ation by doing a preorder traversal o f B A C d , where 

at each non-leaf node specifying feature X k ,  we reorder its subtrees using the proper permutation 

for feature X k . A reordering o f subtrees cannot invalidate the BAC, nor can it increase the bound
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b e . O nce the entire tree has been traversed, w e are guaranteed to have applied our transformation to 

each feature o f  each branch, ensuring that each branch has been fully converted. The converted tree 

is the desired B A C D'

T his  com pletes the proof o f the lemma. Now we can prove the original proposition.

Let us adopt the notation that D S(i denotes the D irichlets o f  state s a :  Further, let D Sa +  (i j d ) 

denote the D irichlets o f state s a after observing X i  — d o n a  Y  =  j  instance. Finally, let / j  denote 

the proper perm utation for feature X i,  and d o m (X i)  denote the domain o f feature X i.

T he proof follows from induction on I I .  In the base case, I>l  =  0. Since no learning budget 

rem ains in state s„ or si,, there is no action to take, and hence trivially state sa and s;, have the 

sam e (null) optim al action. W hen =  0 the value o f state s„ under an optimal policy is simply 

the expected misclassification error o f the B A C *  constructed from state s „ ’s Dirichlets. By Lemma 

3, state Sf, m ust have a corresponding BAC with exactly the same expected misclassification error. 

Furtherm ore, the value o f  stale so under an optimal policy cannot be any less, for if it were, then 

Lem m a 3 im plies that state ,s„ m ust have a corresponding BAC with lower expected error, which 

is a contradiction to the definition o f  BAC*. Thus states s a and So have identical values under the 

optim al policy for the base case.

For the inductive step, assum e the result holds for b i  =  n — 1, and let states sa and Sb have 

b i  =  n . Now consider taking any  initial action from  state s a, and then following an optim al policy. 

L et V n '  (sa |A ), Y  =  j )  denote the value o f  purchasing feature X ( on a random Y  =  j  instance 

from  state s a , and then following an optim al policy. We have:

( sa \X i t Y  =  j )  =

=  d \ y  =  j ) D. a V ”' ( D Sa +  ( i jd ) ,b L =  n -  1) =

Eaetom W  p (x < =  M W  =  3)o.b V*' (£>.„ +  (ijd), h  =  n - l )  =

Z a e do , , w P ( X i  =  M d ) \ Y = 3 ) D .bV « ’ (D sli +  ( i j f i ( d ) ) , b L = n - l )  =

V ”'( s b \ X i ,Y  =  j )

w here the second to last equality follows by an application o f the inductive hypothesis, since D Sa +  

( i j d)  can be m ade equal to D Sb +  (i j f i  (d)) by using the r  proper perm utations, one for each feature. 

Thus, we have ju s t shown that the value o f  an action in state sa is equal to the value o f  the same 

action from  state S&, when the action is followed by an optim al policy. This implies that the value of 

the two states under an optimal policy is equal, and that the two states have identical optimal actions. 

This com pletes the inductive step.

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Appendix B

Features for RL Function 
Approximation

B .l Feature Groups

The following list describes the features that were used to approxim ate the value function for 

RL agents in Chapter 2.

Budget

•  rem aining budget ( //)

Beta H yperparam eters

•  cvj Vi =  l..n

•  Pi Vi =  l..n  

M eans and S tandard  Deviations

• Hi Vi =  1 ..n

• <Ji Vi =  l..n

M ean S tats

•  m ax, m

•  mini im 

' * S i  I1'

Lookahead Stats

•  m ax - o f+A TF

S i  

*■----
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Confidence Interval Stats

•  max* (in  -f 1,'JGcr,) (95%  interval)

•  maXf (/j.i +  1.28(7*) (80%  interval)

•  max,- (fii +  0.67cr*) (50%  interval)

•  max* (ni  +  0.126cri ) ( 1 0 % interval)

• E  i(Pi +

•  E i ( w  +  0 .126ct<)

•  m aXi (fii +  b ' x  cri)

• E i(fH +  V  x  <n)

B.2 Alternate Features

This section describes several o ther features that we experimented with w hen trying to  approxim ate 

the value function for our RL agents. Sim ilar to the results o f Chapter 2, these alternate feature were 

unable to consistently beat the sim ple heuristic policies.
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Table B .l: O ther features tested for RL function approximation

Feature Comments

max; <7j 
min£ cTi

Li
standard dev. o f greedy coin 

standard dev. o f m ax mean coin 
max SC L score on any coin 
max #  o f  flips on any coin 
min #  o f flips on any coin 

max #  o f  heads on any coin 
min #  o f heads on any coin 
m ax #  o f  tails on any coin 
min #  o f  tails on any coin 

max |/i; - p j \  
m in |/ij — f i j\ 
m ax | cri — <jj | 
m in | cr,• —<jj | 
max Ictj — a ,-1
mm af ■Qj
max 10 i -  (3j\ 
min \ 0 i - ( 3 j \

inaxf ^

Pimmj
max # o f  identical coins 

m ax ; Hi x  m ax; ct;

L i Mi X Ei
max aH-b' x max,- cr,-

helps sim ulate SCL 
helps sim ulate RR 
helps sim ulate RR

helps sim ulate BR 
helps sim ulate BR

1 cti+pi+W
L i  Q i+ft+b' x  L i  a i 

min # o f tails for the m ax m ean coin to lose its max mean spot 
min # o f heads for a non-m ax mean coin to become max mean coin
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