INFORMATION TO USERS

This manuscript has been reproduced from the microfiim master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of

computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper

alignment can adversely affect reproduction.

in the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and continuing
from left to right in equal sections with small overlaps.

‘ ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, Mi 48106-1346 USA
800-521-0600

®

UMI

Reproduced with permission of the copyright owner. Further reproduction prohibited without permiésion.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Alberta

LEARNING AND CI.ASSIFYING UNDER HARD BUDGETS
by

Aloak Kapoor ©

A thesxs submitted to the Faculty of Graduate Studies and Research in parual fulﬁllment of the
requxrements for the degree of Master of Sclence - i

‘Department of Compuliti_g'Science

" Edmonton, Alberta
Fall 2005 I::

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T

Library and
Archives Canada

Published Heritage Direction du

Branch

395 Wellington Street
Ottawa ON K1A ON4

Canada Canada

NOTICE:

The author has granted a non-
exclusive license alloWing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,

Jloan, distribute and sell theses

worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Bibliothéque et
Archives Canada

" et/ou autres formats.

0-494-09203-3

Patrimoine de I'édition

395, rue Wellington
Ottawa ON K1A'ON4

Your file Votre référence
ISBN:
Our file Notre reterence
ISBN:

AVIS: ‘
L'auteur a accordé une licence.non exclusive
permettant a la Bibliotheque et Archives

- Canada de reproduire, publier, archiver,

sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des théses partout dans

le monde, & des fins commerciales ou autres,
sur support microforme, papier, électronique

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protege cette thése.
Ni la thése.ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed

from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

‘ Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thése.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Alberta

. Library Release Form

Name of Author: Aloak“Kapoor ‘
Title of Thesis: Learning‘and Classifying under Hard Budgets
Degree: Master of Science ‘

Year this Degree Granted: 2005

" Permission is hereby grahted to the University of Alberta Library to reproduce single copies of this
thesis and to lend or sell such copies for private, scholarly or scientific research purposes only.

The author reserves all other publication and other rights in association with the copyright inthe
thesis, and except as herein before provided, neither the thesis nor any substantial portion thereof
may be printed or otherwise reproduced in any material form whatever without the author’s prior
written permission. ‘ ‘ :

Date:

Reproduced with permission of the copyright owner. Further reproduction prohibited without pern"rli’ssi(’)n.‘

Abstrapt ‘

When learning a classifier for a function Y = F(X), the featufcs, X, often have an associated cost.
Since resources for feature acquisiitionbare usually finite, learners and classifiers must be able to i:z:xct
.’-:inlelligently under hard budgets. In this thesis, the goal is a learner that spends its fixed leamix.'lg
Budget by, acquiring features of labelled training inslancés so as to produce the most accurate “ac-
tive classifier” that spcndé at most b per instance. To produce this fixed budget classifier, the fixed
budget learner must sequentially decide which feature valdes to collect to learn the relevaﬁt infor-
mation about the distribution. We explore several approaches the learner éan take, ranging from
Reinforcement Learning techniques, to the obvious “round robin” strategy thaf spends equally on all
featufes. We show empirically that roﬁnd robin is problematic (cspeciaily for small by,), and provide

© alternate learning strategies that achieve superior performance on a variety of datasets.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

AcknoWledgements

I would like to thank my supervisor, Russell Greiner, for his constant support, gu‘idancc, and scctﬁ-
ingly endless supply of good ideas. I am a beller‘pcrson for having worked with Russ the last yeaf.
As well, ‘this thesis could not have been written without the generous financial support provided
by NSERC and iCORE throughout my graduate career. Finally, 1 wish to thank‘ the three most

outstanding people I know: 'my mother, father, and sister.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permi‘ssion..

Table of Contents |

1 Introduction

‘2 Active Model Selection

2.1
2.2 Formal Description i v v v v v iiv e v i S TR E i
- 221 Simplifying Assumptionso o P A LR
2.2.2 AnExample Policy A St
. 2.2.3. Mapping to Budgeted Learningo oo v Bl oo

2.3. The Markov Decision Process Formulation 0 L. .. e
2.3.1 © Value Functions A R S
232 SimpleResults,0 0Ly R AL PN

2.4 Existing Algorithms, F S T
2.4.1 The Optimal Policy P P S AN
24.2 RoundRobin(RR) [P
243 BiasedRobin(BR) e e e e e e C e e e
2.4.4 Single Coin Lookahead (SCL)ot v v v f e e e

2.5 Reinforcement Learning Background
251 Overview . .. L u o e e e e
252 LearningversusPlanning o L0 .
2.5.3 Learning the Optimal Value Function Usmg Temporal Differences :
2.54 The Need for Function Approximation. L. .. :

- 2.5.5 Tile Coding: a Linear Function Approxtmator

2.6 Adapting RL for Active Model Se]ecnon Lo

2.7 Empirical Results 0 o e e e S

2.8, Unsuccessful Approaches oo v vttt ii i v e

. 2.8.1 * Supervised Learning of a Classifier
282 "Search. . . . o e e e e Y e '
1283 Optimal Two Coin{(OTC) R
29 Summary e e e e e e e
3 Budgeted Learning a Bounded Active Classifier :

3.0 Introduction e e PR TP
3.1.1 AMotivating Example T P
3.1.2 Objectiveand Outline0 . .0 .~ e e i

3.2 Background: Bounded Active Classifiers e e
3.2.1 Definition of an Active Classifier.,\ T

© 322 Bounding Active Classifiers i v e e :

3.3 Formal Description 000, TR PP SR
3.3.1 Simplifying Assumptions e e e e e e
332 ComplexityResults S T L

34 The MDP Formulation'v ..
3.4.1 The Optimal Learning Pollcy. S P P R A

3.5 " Heuristic Learning Policies e e e T S
3.5.1 RoundRobin(RR) P S S T .
3,52 BiasedRobin(BR) e PR TIN e
3.5.3 Single Feature Lookahead (SFL)o . . o0 oo o
3.54 Randomized SFL(RSFL) e e i e

36 LossFunctions Me e e s e e e PPN

3,7 Experimental Results, oo oo e e e v e e

3.8 Summary T P e e e

Introduction and Mouvatlon Ll v e

Rep"roduced with permission of the copyright owner. Further reproduction prohibited without permission.

o

— OO\ OO0~ ~1C B LW

4 Related Literature - :
4.1 Introduction o e o
. 42 Budgeted Learning a Bounded Active Clasmﬁer .‘ O R IR AP
4.3 Active Model Selection oo u v e e e Voo

5 Conclusions . ‘ ‘ L
5.1 Contributions . ., e e e S . S

. Bibliography

: A Proofs] ;

« A Proposition1-00 Lo oo e d b e e b e e e
A2 Proposition2 h oo e e T T T T
A3 Proposition3 N N e e A T e
A4 Propositiond e e e et e s S T SO A F S Y
AS ProposilionS N AP e e e e e e e e

"B Features for RL Function Approxlmatlon :
B.1 Feature Groups e e e e e e e e
B.2 Alternate Featureso . v i oo O A N TN :

5.2 Research Directions . < . ..o v v v e S T

Reproduced with permission of the copyright owner. Further reprodu'ction prohibited without‘ pérmission.

List of Tables

i NERY

W oW NN
M —

. Free parameters in e-greedy, tile coding TD(z\) R N T RS 15

' Feature sets used for approximating the value function'. .o .0 v . 16
. Expected regret of various policies e e L. 16
Resources used by each policy onn=10,b=20o oo 18
Reduction in computation time using Proposition'5 el s 28
Other features tested for RL function approximation S e e 49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

- List of Figures

. An example of apolicy forb=2,n = 2 and umform priors oo
* A problematic state for the SCL. pollcy R D et
An example of tile coding in twodimensionso Lo
Various values of lambda — SCL still superiortoRLo o0 b
Various amounts of training — simple policies still superior to RL

NHWN -

An example of an active classifier when the features and class label are binary .
Identical costs and some irrelevant features — RSFL and BR outperform RR
Identical costs, no irrelevant features — RR still suboptimal

BN —

e G e
=

Different feature costs — RSFL and BR dominate RR 0. ... :

Active learning versus budgé_led learning e e e

Reproduced with permission of the copyright owner. Further reproduction prohibited without permiésion.

Chapter 1
Introduction

In classification learning, the goal is to learn a classifier for an unknown function: ¥ = f(X) such
lﬁat the classifier can predict the class label, Y, when given the features, X. In many practical
applications, the fcatures are inilié]ly unknown to both the learner and the classifier, and must be
acquired at a cost. In these cases, an active classifier, that can actively purchase the values of
unknown features before making a classification, should be produced by the learner. Unfortunately,
resources are seldom infinite; real-world tasks typically have finite budgets for both the learner and
the classifier that limit the total value of features that can be collected. Thus, when feature costs
_ exist, the machine learning researcher is faced with the following budgeted learning problem:

Given a pool of training instances with known class labels but unkﬁown feature values, decide
how to spend the fixed learning budget by, purchasing fedtures of training instances so as to produce
the most accurate active classifier that can spend at most b per instance.

We refer to this problem as “budgeted learning a bounded active classifier”. In this thesis, we
investigate the aforementioned problem in detail. We conéenlrate on developing strategies for the
learner that sequentially select which feature to purchase given the remaining b budget and the
results of the previous purchases. Developing an effective spending strategy can be challenging
because the true utility of the learner’s purchases is not known until the by, budget is exhausted and
+ the final bounded active classifier is learned and applied. Although the topic of budgeted learning is
not entirely new [17, 18], our work is Lmique because it places bounds on both the learner and the

classifier and thus incorporates costs at training and testing time. ‘By contrast, the previous budgetéd
learning research considers only costs at training time, and allows the classifier to see all feature
values for free. The dual budget framework we consider in this thesis is a better model of many
real-world problems.

We begin our investigation in the next chapter; in which we take a simplified version of our
problem and allow the learner to use Reinforcement Learning (RL) lcchnique.'s to learn a purchasing
policy. We demonstrate empirically that despite extensive training, the RL methods that we employ
are inferior to simple, heuristic policies. In Chapter 3, we explore the full problem of budgeted

 learning a bounded active classifier. We provide empirical evidence that the obvious round robin

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

qpendmg policy (purchasmg every feature of every instance untll the by, -budget is exhausled) is’
problematic, p‘mlcularly when the budget is small relative to the number of features. We describe
alternate learning strategies, and show that they significantly outperform round robin on a variety
of real world datasets. Finally, Chapter 4 provxdes a survey of related literature, while Chapter 5

summarizes contributions and discusses future work. We note that versions of Chapter 2, 3, and 4

- have been published [15, 14].!

ACM and co-author Russell Greiner. kindly grant permission (o reuse material in [15] The use of malenul in [14]i is
granted with Kind permission of Springer Science and Business Media and co- aulhor Russell Grcmcr

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Simplified Budgeted Learning:
Active Model Selection

2.1 Introduction and Motivation

- To gain insight into the budgeted lcmﬁing issue, we consider a simpler problem known as active
‘model selection.' Loosely speaking, active model selection involves finding the best object among
h set of n, given‘ a finite budget of probes with which to freely explore and test the objects, where
a probe of an object returns a sample value drawn from that object’s distribution. After the budget
is exhausted, a single object must be selected, and a one-time reward is received that represents the
expected value of the chosen object. This formulation allows for pure exploration of the objects
with the budget, and delays all reward until the final time step. Notice that this problem corresponds
to the training phase of budgeted learning, in which features of labelled training instances can be
. purchased in any way, with a single one-time reward (i.e., the classification accuracy) being received
once the budget is exhausted and the final learned cla‘s_siﬁcr is-applied. In both the active model
selection problem and the budgeted learning problem, the goal is to decide how to spend a finite
number of probes in order to get the information required to make the best decision when the budget
is exhausted. |
* In addition to the above relationship, previous research [17] has shown that algorithms which -

perform well on active model selection are also effective on a variant of our budgeted learning
problem. As a result, we use active model selection as a low-dimensional testbed to prototype the
performance of strategies for budgeted learning.

In the remainder of this chapter, we give the formal description of active model selection, and
show that the problem can be viewed as a Markov Decision Process (MDP). The MDP framework
allows us to describe the (intractable) optimal algorithm, and derive some new results about lhe

problem. The main contribution of the chapter is to investigate the performance of standard algo-

rithms from Reinforcement Learning on active model selection, We perform a variety of tests using

'We ulso refer o active model selection as the “coins problem” for reasons that will become clear during the formal -
problem statement in Section 2.2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permiséion.

Reinforcement Learning techniques, and show that better performance. is achicved with less com-
" putational effort using simpler, existing policies. In closing, we discuss-other approaches to active

‘model selection that appcar promising, but are also inferior to the existing heuristic policies.

2.2 Formal Description

The input to the active model selection problem is:

e A set of n independent Bernoulli random variables {C},. . ., Cy, } with unknown success prob-
abilities. For simplicity of exposition, we can think of these C; as a set of coins, where the

unknown success probability is the probability of the coin turning up heads when ‘ﬂipped.»

e A sct of n prior distributions (i.c., density functions), indicating the uncertainty over the true
head probability of each of the n coins. That is, the head probability of each coin C; is
itself treated as a random variable -Z;, and a prior density function f;(Z;) is provided as a

distribution over the possible head probabilities of coin C;.
‘e Asetofn (known) costs {S(C)), ..., S(C,)} for flipping the coins, where S(C;) € R*.
e A finite (known) budget b > 0 that can be spent flipping the coins.

: Given these inputs, the active model selection problem proceeds as follows. Any coin C; can be
- flipped at any time, as long as the remaining budget, denoted by ¥’, satisfies b’ > S(C;). We use the
outcome of each coin flip to update the density function for the flipped coin. For example, if coin C;
is flipped and turns up heads, then its density function is updated to f;(Z;|C; = heads); of course, a
similar update occurs for a tails outcome. (We describe the exact format of the density function and
the updates in our simplifying assumptions below.) Coin flips and density updates continue ﬁntil the
budget is exhausted (b’ = 0). We can view the sequence of flips and updates as a learning period, in
which we improve our information about the true head probabilities of the coins. Once the budget
is exhausted, the learning period is over, and a single coin must be chosen — this coin C* (and only
this coin) will be used in all future flips, for which we will receive rewards for head outcomes. Of
course, even when b’ = 0, we will still not know the true head probability for this (or any) coin, and
so will not know whether coin C* actually has a better head probability than the other coins. The
best we can do given the observed coin flip outcomes o, is to choose the coin that minimizes our
future regret of selecting it. To do this, we define a new random variable Z,,mz to be the maximum
head probability over all of the coins: Z,q, = mazi(Z;), and now the Bayesian regret of choosing

coin C; given coin flip outcomes o is:

J=1

Regrel(CL) = -/Z;(Zma:l: - Zt)HfJ(ZJIO) dZ | (2‘])

Reproduced with permission of the copyright owner. Further reproduction prohibited without perfnission.

. Nolice‘ that we minimize regrét by choosing the coin whose nican (posterior) head probability. is
‘largest [19]. Let this maximum mean coin be C*(0) = arg max¢, E{Z;|o]. Thus, when the budget
is exhausted and coin flip cutcomes o have been observed, C* (o) should be sclected.

Before introdﬁcing the overall (regret-related) objective function we wish to minimize, we must
first introduce the notion of a policy. A policy 7 for active model sclection specifies which coin to
flip at each time step. Formally, a policy is a mapping 7: (V', f1(Z1), ..., fu(Zu)) — [1,7] that
specifies the index of the coin to flip, given the current state defined by the remaining budget and
the posterior distributions over the coins. Since the result of every coin flip is stochastic, a poliéy for
flipping the coins can result in several different “outcome” states in which the budgel is exhausted.
'fhus, a policy for active model sclection is scored based on its expected regret:

ER(r) = . P(o)Regrel(C"(0)) (2.2)

‘ o€oulcomes(m)
where the sum is over the various “outcomes” of the policy when the budget b’ has been exhausted.
Tﬁc objective of active model selection is to find the optimal policy * that minimizes Equation 2.2.

‘As mentioned earlier, since regret can be minimized by choosing the coin with the highest ex-
pected head probability, an alternate (equivalent) way to score a policy 7 is to calculate the expected;
maximum expecteds head probability (EMEHP) of the chosen coin:

EMEHP(7) = Z P(o) max {E(Z]o)} . 2.3)
o€outcomes(r) ,

.'_Note that both “expected” are required as the first expectation; is over possible outcomes of the
policy, while the second expectations is over the head probability distribution of the chosen coin,
Under this EMEHP score, the objective of active model selection is to find the optimal policy 7*
that maximizes Equation 2.3. Since maximizing head probability is more intuitive than minimizing
Bayesian regret, maximizing Equation 2.3 is usually an casier objective to remember for active
model selection.

The two objective functions, Equations 2.2 and 2.3, consider the probability of reaching an
outcome state in which the budget has been exhausted. Each outcome state corresponds to seeing

- some non-negative number of heads and tails on the coins in the set. A benefit of using the Bayesian
formulation is that the probability of reaching any state is well defined. Specifically, the probability
of reaching a state can be computed using the prior density functions over the coins and the posterior
densities that result after each coin flip outcome. For example, if we let f;(Z;|pn,q:) denote the
posterior density over coin C;’s head probability after observing p heads and q tails on Cj, then the
probability of seeirig the outcome where coin C; turns up heads twice followed by a tail on coin C;
is:)

E(Zi|f(Z:)) x E(Zilfi(Zi|1h) x (1 - B(Z;|[3(Z;))] | (2.4)
" Thus, at any point in time, we use the expected head probability of a coin as a point estimate

of the current probability of that coin btuming up heads when flipped. . Calculating transitions.'_in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

this way, we can compute the probability of reaching any state using strictly the density functions

{fl(Zl), ver)fn(Zn)}'
2.2.1 Simplifying Assumptions

: Coin C’s head probability is represented as a random variable Z; € [0,1]. We assume that Z;
Cisa Beta random variable with density function f(Z;) = W(a, 8) (Z:)*~1(1 — Z;)P-1 (ngc

% (o, B) is a normalizing constant and o and 3 are two ppsitive hyperparameters that define the Beta
distribution). For a Beta(c, 3) distribution, the mean is p = a—i—a while the variance is 02 = %E:E—j‘ll
Loosely speaking, when @ (8) is much larger than 8 (), it means that a coin is likely to have a
high (low) head probability. On the other hand, when both v and 8 are 1, the distribution over head
probabilities is uniform. As we have an independent Beta distribution for each coin, we use a; and
B; to denote the specific hyperparameters for coin Cj.

One attractive property of the Beta distribution is that it is computationally simple to caléulale
posterior densities. If coin C;’s initial head probability distribution is Beta(a;, f3;), then after ob-
serving p heads and g tails on coin C;, its posterior density is just f;(Z;|pn, q) = Beta(oy +p,ﬂ_i +

* q). Thus, the Beta hyperparameters can be viewed as simple frequency counts for a random variable
with two possible outcomes. :
~ Although the formal description allows for any coin costs, we will assume that the costs are
“uniform: S(C;) = 1 Vi, and that the budget b is a positive integer. Fiﬁally, as we are studying
active model selection because of its relationship to budgeted learning, we are typically interested in
values of b that are not much greater than n (typically b = n x k, with k& a small positive integer), as
most budgeted learning algorithms will act reasonable when b is much larger than n. In fact, in the
case where b is very large relative to n, even a simple policy (e.g. purchasing every feature of every
instance) will yield a training set that can produce an accurate classifier, and so these scenarios are

not of great interest from a budgeted learning point of view.

2.2.2 An Example Policy

Figure 2.1 shows an example of a policy for a two coin problem with identical Beta(1,1) priors, a
budget of two, and uniform coin costs S(C;) = 1. Each transition in the policy is labelled with
its probability of occurrence, and the Beta densities over the coins are updated after each transition.
Here left branches correspond to head outcomes and right branches correspond to tail outcomes.
Notice that the policy is contingent, as the coin that is flipped on the second time step depend_s on
the outcome of coin Cy's initial flip. The policy in Figure 2.1 has four outcome states corresponding

" to the leaves of the tree, and has an EMEHP of T72" which can be verified using Equation 2.3.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

, |

- e
% 1/2
1
N;

e [o (1.2,001)

23 12 e

3, 1)(1:1) (2,2).01,1) (1.2),(2,1) (1,2),(1,2)
Choose C' Choose c, Choose C2 Choose 02

Figure 2. 1: An example of a policy for b = 2, n =‘2, and uniform priors

2.2.3 Mapping to Budgeted Learning

As mentioned in Section 2.1, active model selection is highly related to budgeted learning because
it mimics ihe pure cxploration phase (i.e., purchasing features of lébelled training data). followed
by the one-time reward phase (i.e., the classification accuracy of the final learned classifier). In
addition to this relationship, we can also show that optimal active model selection is equivalent to
optimal budgeted learning of a bounded active classificr, with some assumptions. Specifically, given
a binary class Y and n binary features {R;}i=1.., for a classificalion task, assume P(R; = 1|Y =
.0) = 0 Vi, let all features have unit cost, and assume the bounded active classifier can collect
only one feature (i.e., bc = 1). Then the best feature to use for the bounded active classifier is:
arg maxp, P(R{ = 1Y = 1). Set coin C; to be feature R;, Z; to be P(R; = 1}Y = 1), and let
flipping coin C; be equivalent to purchasing feature R; on a random Y = 1 instance. Then a policy
7* that maximizes the expected head probability of the chbsen coin (Equation 2.3) also maximizes

the expected accuracy of the chosen bounded active classifier.

2.3 The Markov Decision Process Formulation

~ Active model! selection can be formulated as a finite Markov Decision Process [25] consisting of

.'.a set of states S, a set of actions A, a reward function R, and a transition function T'. Specif-
ically, we identify a state s € S of the MDP by the remaining budget ', and by the collection
of Beta hyperparameters over the coins. That is, a statevis a 2n + 1 element vector of the form:
', a1, B, ..., an, By). The complete set of reachable states corresponds to all the possible pos-
terior Beta distributions that can occur over the n coins by spending some portion 7 of the original
budget b, with m < b. Since no more actions can be taken once the budget is exhausted, the terminal
states are those in which ¥’ = 0. In general we denote the starting state by sg, and denote the state
encountered on the ith time step by s;.

The set of actions in the MDP corresponds to the n different coins that can be flipped, where

Reproduced with permission of the copyright owner. Further reproduction prohibited without perr’hission.

::action Qe € A"denotes‘ﬁipping coin C;. The reward fuhclion R(s,a,s’) specifies the reward of
taking action a fi‘om state s and reaching state s'. For the coins problem, the reward received when
reaching any non-terminal state (i.e. where the remaining budget is poéilivc) is zero, while the
reward at a terminal state is the maximum expected head probability over the coins.? We use r; to -
denote the immediate reward received on the ith time step.*

In many MDPs, the reward at future time steps is valued. less than immediate reward, and so a
discount factor v < 1 is used to multiply future rewards to reduce their value. In the coins problem,
future rewards are no less valued than immediate rewards (in fact the only reward that matters is
the oné received on the last time step), and so we have v = 1 in our MDP formulation. Finally,
the transition function 7'(s, a, s') specifies the probability of reaching state s’ after taking action
a from state s. ‘Due to our Bayesian formulation, T'(s,a,s’) is conveniently given by the Beta
distributions over the coins. For example, T'(Beta(4, 2), ac;,, Beta(5,2)) is just the probability of
coin C; turning up heads: P(C; = heads) = E(Z;) = 4/6. As the transition function specifies

probabilities, we often use P(s, a, s) in place of T(s,a,s').

2.3.1 Value Functions

An advantage of the MDP formulation is that the true long-term value of states can be quantified
. using a value function. Specifically, a value function V7 : S — R for a:policy m measures the total

-expected reward accumulated from any state s, when following :

Vi(s))=E Z(’YiTi+t+1|7f, s)) . “ (2.5)

i=0
With the value function notation, we know that a state s is preferable to a state s’ if we can achieve
greater expected reward from s when following an optimal policy: V™ (s) > V™" (s'). Given this

relationship, we often use the value function notation to compare values of different states.

2.3.2 Simple Results

~ Using the value function notation of the previous section, we can derive the following intuitive
.-propcrlics concerning active model selection. Both results can be obtained using induction on the
budget (and prodfs can be found in Appendix A). These results are helpfui because they can be used
to establish an upper or lower bound on the optimal value of a state s using the optimal value of a
related state s’. In addition, these results can be used as starting points for deriving more complex
properties of the coins problem (e.g., Proposition 2 can be extended to relate states that have fewer

than n — 1 matching coins).

“This choice of reward function assumes we arc using the EMEHP objective as in Equation 2.3. We could also use the
expected regret objective in Equation 2.2, and this would change our reward function to give Regret(C* (o)) at the terminal
~ states, Since it is easier to think of maximizing rather than minimizing rewards, our EMEHP-based reward function is usually
 more intuitive than the regret version.

i AWith the understanding that r; = O for any time step i that i is pzm a terminal state, since such a statc.can never be
: reached.

Reproduced with permission of the copyright owner. Further reproduction prohibited without pefmission.

Reproduced

e

with

Proposition 1 A head is always better than a tail. - Assume all coins have unit cost, let s be any
non=terminal state, and assume some coin C; is flipped in s. If st" denotes the next state in which

a head outcome is observed, and st denotes. the next state in which a tail outcome. is observed,

then V™' (sth) > V7 (sHh) |

- Proposition 2 The morc heads the better. Given any state s; (V, ar,Bi,... i, Biy+ an,y Bu),

consider another state § : (U, ay,By....a; + 1,84, ... an, Bn) which is identical to s except that
:) : ‘ : P

one additional head has been observed on coin Ci. Then, V™ (3) > V"'(s) .

2.4 Existing Algorithms
2.4.1 The Optimal Policy .'

Since the coins problem is an MDP, several techniques can be used to solve for the optimal policy
exactly [28]. For example, a bottom-up dynamic program can use the Bellman‘optimality equation

to learn V™', the expected value of each state under an ‘optima] policy:
V™ (s) = max E P(s,a,5)[R(s,a,s") + V™ (s")] © o (2.6)
a .
sl

Beginning at the next-to-end states in which ' = 1 and performing a backward sweep toward the
initial state where ¥’ = b, the optimal value function V*' can be completely determined. With
the known transition and reward functions, the optimal policy 7* then follows immediately via
greedy one-step lookahead. Unfortunately, the state space of active model selection grows exponen-
tially with b and n, making it intractable to compute the optimal policy using exact methods such

as dynamic programming. A natural alternative is to perform approximate dynamic programming

- via Reinforcement Learning, which we consider in detail in Section 2.6. Although Reinforcement

‘Learning has not been applied to the coins problem préviously, [18] has considered some simple

heuristic policies which we review next.

2.4.2 Round Robin (RR)

The most intuitive spending policy is to allocate flips evenly over the coins, proceeding in a round-
robin fashion. When b = n x k for an integer k, and all coins have unit cost, RR will flip each of the
n coins k times. Despite its fair distribution of flips, the ratio of RR’s expected regret to the optimal

policy’s expected regret can be made arbitrarily large [19]. Fortunately, more effective policies than

: RR are known.

'2.4.3 Biased Robin (BR)

The BR algorithm repeatedly flips a coin C; until a tail outcome occurs.. Once a tail is observed,
BR moves to the next coin, Cj4, and repeats the process, (Of course when the last coin C;, turns

up tails, BR moves back to the first coin Cy.) This simple algorithm is well known in statistics as

9

permission of the copyright owner. Further reproduction prohibited without perr’hission.

(b=3, (5,1}, (41) @1 (21))

/ \ /

c C, C, G

1

-~ Figure 2.2: The optimal policy for the state (b = 3, (5,1), (4,1), (2,1), (2,1)) under unit coin

. costs. Notice that the optimal policy involves interactions between three of the four coins (e.g., coin
‘Cy should be flipped after C turns up tails, and coin Cj should be flipped after Cy turns up tails).
Since the SCL score for C; does not consider how flipping C» or C3 could help C}, it underestimates
the value of flipping Cy, and SCL takes a suboptimal action from this state.

“Play the Winner” [23] and has been previously studied as a sampling method for clinical trials [13}.
Its performance on the coins problem has been very strong in the case of identical starting priors.
Despite its competitive performance, BR is a suboptimal policy. In fact, we can show that the

number of states from which BR takes a suboptimal action can be made arbitrarily large:*

Proposition 3 Given any positive integer g >. 1, there exists a problem with n=(g+2) Beta(1,1)

coins, and budget b=(2n-+3) such that the BR policy takes a suboptimal action from at least g states.

2.4.4 Single Coin Lookahead (SCL)

The SCL algorithm computes the EMEHP (Equation 2.3) of the holicy that devotes all remaining
flips in the budget to a single coin C;. The coin that yields the policy W_ith highest EMEHP is
flipped once, and then SCL repeats the previous calculation with its reduced budget (and updated
density functions) to choose the next coin to flip. Like BR; SCL has strong performance, but is
still suboptimal. In particular, SCL suffers in situations where multiple coins must interact heavily
- to produce the optimal policy, This occurs because SCL computes a score for coin C; without
considéring how the remaining n — 1 coins could interact with C; to improve its policy. To make
this concrete, Figure 2.2 provides an example of a state where SCL takes a suboptimal action because
it does not consider interactions among its coins. These deficiencies in the simple strategies offered

by RR, BR and SCL motivate the need for a more robust policy that we consider next.

4 Although such a result may help in proving the non-approximability of BR, it does not show non-approximability by
itself, The reason is that the number of suboptimal actions is made arbitrarily large, but the probability of reaching states in
which these actions occur is not considered.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.5 Reinforcement Learning Background

The MDP formulation of the coins problem brings with it the possibility of using Reinforcement
Learning techniques to develop cffective spending policies. This section provides a bricef introduc-
tion to RL, with a focus on the RL techniques that we employ later in this chapter when attempting

" to learn low-regret policies. We direct the interested reader to [28] for more details on any of the

“techniques discussed here.

2.5.1 Overview

Reinforcement Learning is a collection of techniques for learning (optimal) behaviour in sequential
decision problems. In RL, an ageﬁt interacts directly with its environment and receives signals of
reward as it takes actions. The goal is to develop a policy for taking actions that maximizes expected
reward. The key characteristic that distinguishes RL from other learning methods (e.g. supervised,
semi-supervised) is that the agent learns on its own by taking actions and directly observing the
resulting rewards that are produced by the environment. With no explicit teacher or labelled training
.'vexamp]es required, Reinforcement Learning is bounded mainly by the amount of environmental

interaction available to the agent.

2.5.2 Learning versus Planning

A common distinction made in RL is between learning methods and planning methods. Planning
methods require a known environment model (i.e. known transition and reward functions) and
operate on simulated experience from this model. On the other hand, lecarning methods do not know
the true environment model. Instead, they learn from “real” experience that they observe while
- acting in real-time in their environments. (Since the transition probabilities and the rewards are
 known in the active model selection task, we are faced with an RL planning problem.) An advantage
of the planning problem is that expcriehce is inexpensive to generate. Using oniy the model, large
amounts of training episodes can be generated for the RL agent to test actions in. Furthermore, since

the optimal policy can be defined in terms of the optimal value function:
n*(s) = argmax » P(s,a,5')[R(s,a,s") + vV (s')] @
. a o : .

the RL agent only needs to learn the optimal value function — with the known environment dy-
namics (P(s,a,s') and R(s,e, s")), it can then calculate the optimal policy using greedy one-step

~ lookahead.

'2.5.3 = Learning the Optimal Value Function Using Temporal Differences

There are many methods for learning the optimal value function, including value iteration, Monte

Carlo methods, and temporal difference learning [28]. We focus on lempora) difference learning

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

~ {27] in this thesis. Temporal difference learning is applicable to multi-step prediction problems in
- which the target value to be learned is observed gradually, as partial values comprising the tzfrgel
become available over time (just as rewards gradually accumulate in an MDP). The basis of temporal
difference learning in an MDP is to shift the existing value estimate for a state s toward the newly
observed values that occur over time. For example, suppose we take action a from state s;, reach
state s;4; and produce an immediate reward r;,;. In this case, a particular temporal difference

lcarner, known as TD(0), uses the learning rule:
V(i) & V(s:) + a(rig1 +vV(si1) — V(si)) ‘ (2.8)

to adjust its estimate of V(s;), with ¢ a parameter controlling the learning rate. The TD(0) rule ad-
* justs its estimate toward the one-step return, observed one step after leaving state s;. By contrast, the
. general temporal difference algorithm, known as TD()), considers all j-step returns (for j € [1, 00))
that are observed j-steps after leaving state s;. To incorporate all j-step returns in a simple, on-line
fashion, TD(\) augments the one-step return in Equation 2.8 with an eligibility trace. Specifically,
TD(A) mainlains‘-_a positive, real-valued eligibility trace g for each state s that indicates how re-
cently s was visited. (Intuitively, at the beginning of an episode, all eligibility traces are initialized
to zero). By maintaining this eligibility trace, TD(]) retains a record of which states have been vis-
ited previously and are therefore eligible to receive some credit for the current one-step return. Thus,
after taking action a from state s; and observing next state s;4+1 and reward 41, TD(\) performs

- the following learning sequence for all states s € S:

gs—gs+1 if s=s (2.9)

V(s) — V(s) +a(rirr + 7V (siv1) = V(si))gs (210

gs < AVgs (2.11)

Here) € [0, 1] is a real-valued parameter that controls how the various j-step backups are averaged
together. Notice that when A = 0, all weight is assigned to the one-step backup, and the TD())
- equations reduce to the simpler TD(0) learning rule. On the other hand, setting A to an intermediate
value such as 0.7 will assign some wéight to each of the observed j-step returns, so that at the end
of an episode, the value estimate for an observed state will have been adjusted toward a weighted
sum of all j-step returns observed after that state. ‘
~ To learn the value function for a policy 7, an RL agent can use temporal difference learning
While it experiences episodes of the MDP. For example, an RL agent can take actions according to
m, and update its value function using a temporal difference learning rule after each state transition.
This process of updates continues over multiple episodes of the MDP, gradually improving the value
function estimate for .

Under appropriate technical assumptions [28], the TD(0) rule (and the general TD(A) algorithm)

will converge to V™ for any policy m given that an RL agent chooses its actions according to . In

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without pérmission.

particular, to learn the vaiue function for 7, the TD learning updates should be distributed according
to the states that would be encountered while following 7. As stated previously, we are interested
in‘learning the value function for the optimal policy 7*. Since this policy is unknown, an RL agent
cannot act with it directly to generate the appropriate distribution of TD updates. However, it can
still learn the optimal value function by acting according to a policy that is greedy in the limit of
infinite exploration (GLIE) [25]. A GLIE policy performs every action from every state an in‘ﬁnitc
amount of times but reduces to a greedy policy in the limit. Since all actions are explored from
every state, when a GLIE policy gets greedy in the limit, it is guaranteed to be an optimal poiicy
7*. Thus, an RL agent following a GLIE policy and using TD()) is guaranteed to learn the optimal
value function V7" in the limit. Fortunately, a temporal difference learner with a GLIE-type policy

can converge to V=" in a finite number of episodes in practice (see [28] for examples).

2.5.4 The Need for Function Approximation

The TD rules discussed so far assume that the value function is tabular, permitting exact representa-
tion-of the value of every state in the state spacc. When state spaces are extremely large, however,
it is impractical computationally to assume the RL agent can properly explore all states, and store a
full tabular value function in memory. The standard solution is to utilize a function approximator to
represent the value function, thereby allowing for an update to the value of state s to affect the value
of other similar states. With a well-constructed function approximator, a value function over a large
state space may be learned by visiting only a fraction of the total number of states in the space. The
tabular temporal difference rules (from the previous section) can be re-derived to specify an update
to a parameterized function rather than to a single tabular value. For instance, consider the popular
linear function approximator:

' ‘ V(s)=6-d, ’ (2.12)
~ where §'is a vector of (learnable) parameters, and dy is a vector of features for state s. For this lihear

function approximator, the TD(0) learning rule is
0 — G+ afrigr + vV (si41) — V(si)lds, (2.13)

On the other hand, the general TD()) algorithm maintains a vector of eligibility traces § (one trace

" for each learnable parameter), and its learning sequence for the linear function approximator is:

G Mg +d, (2.14)
0 — 0+ afrigs + 7V (si41) - V()7 (2.15)

- Just as in the tabular case, these TD learning rules are applied after each transition from the current

state s; 1o the next state ;1. We next describe a specific linear function approximator that is often

‘:_used inRL.

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced

§

Figure 2.3: An example of tile coding over a two dimensional feature space. The feature space is
outlined in bold, and two different tilings cover the space, with the position of each tiling offset by
a small amiount. '

2.5.5 Tile Coding: a Linear Function Approximator

In tile coding, a group of tilings (i.e., grids) are laid over a feature space, with each tiling consi'sting

of a set of h cells. The tilings are identical in size, but each tiling’s position is offset by a small

~amount, so that each tiling covers the feature space in a different way (see Figure 2.3). Each cell

“h; contains a real-valued (learnable) parameter §;. The value of a state s is formed by a linear

combination over all the cells:

V(s) = Z 0:ds, | ' (2.16)

where the coefficient d;, for cell 7 is 1 if state s is located in the cell, and 0 otherwise. Since the
feature vector d for state s consists entirely. of ones and zeros, the value of s is just the sum of the

cell-values 0; for all cells 7 which contain s.

The cell-values are modified by learning rules (such as Equation 2.13) as the RL agent acts in its

* environment. Moreover, since states that are nearby in feature space will occupy some of the same
- cells, these learning rules will adjust the value function estimate for several related states at once.

‘As we expect states which are nearby in feature space to have similar value function estimates, this

gencralization can greatly speed up learning in large state spaces.

An advantage of tile coding is that there is great degree of flexibility in controlling how general-
ization occurs. For example, generalization-can be controlled by the set of features used to represent
the states, the number of different tilings laid over the space, as well as the shape and size of the in-
dividual cells. One can even choose to use several different feature sets for tile coding, and thus have

a separate lile coding for each feature set. This requires laying a separate group of tilings over each

. one of these feature spaces. In this case, the value of a state is formed by summing all cell-values

. that contain the state, across all the different tile codings.

14

with permission of the copyright owner. Further reproduction prohibited without permission.

Table 2.1: Free parameters in e—greédy, tile coding TD(A)

Parameter Description
«a step-size for learning
L€ exploration probability
CA weighting of n-step returns
¥ discount factor
a~-sched - schedule to decrease o
e-sched schedule to decrease ¢
d, features in function approximation
tile-shape dimensions of each tile
num-~tilings density of tiles

2.6 Adapting RL for Active Model Selection

To apply RL to the coins problem, we attempt to learn the optimal value funclion‘wi‘th several sep-
arate RL agents. Each agent uses a unique set of features for function approximation (described in
detail below), and gains the necessary experience by acting in a large number of simulated cpisbdes
generated from the known environment model. Each agent uses tile coding as its function approx-
imation method, and employs a TD()\) learner using an epsilon-greedy (GLIE-type) policy. Com-
bining TD(A) with a linear function approximator (such as tile coding) is attractive because upper
bounds have been established on the mean squared error of the learned value function, under ap-
propriate assumptions [29]. As noted in the RL background sections, the number of free variables
that must be manually set for a TD()) tile coding agent is extensive. Table 2.1 contains a complete
listing of these free variables. When designing our RL agents, we explored a wide range of values
for the variables, including various choices for the probability of exploration (¢), the weight of n-step
backups (), and the features (d;). _

To collect features for function approximation, we gathered the obvious candidates (e.g. the Bcla
hyperparameters, the remaining budget, the means and standard deviations of the coins), along with
‘some more subtle attributes (e.g. confidence intervals, budget based confidence intervals, modified
lookaheads, variation among the coins, security of the best looking coin). We found these features
to be relevant because they affected the optimal coin decision when we studied the optimal policy
for small versions of the coins problem. Although we tested numerous combinations of features, we *
focus on five feature sets that are representative of the general trends observed. For each one of the
five sets, Table 2.2 gives the names of the different feature groups that are included in the set. (The
interested reader should refer to Appendix B.1 to see exactly which features are included in each
feature group:) For our experiments of the next section, we trained five different TD(A) tile coding

. agents; where each agent used one of the five feature sets for its function approximation.

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without perr’hission.

~ Table 2.2: Feature sets used for approximating the value function

Set Number Feature Groups Included In Set

] Budget, Beta hyperparameters

2 Budget, Means and Standard Deviations

3 Budget, Confidence Interval Stats

4 Budget, Mean Stats, Confidence Interval Stats

5 Budget, Lookahead Stats, Confidence Interval Stats

Table 2.3: Expected regret of various policies

Policy (n=5,b=15) (n=8,b=16) (n=10,b=20)

BR 0.05669 0.07544 0.07210
SCL 0.05413 0.07342 0.07211
‘RL(setl) 0.05747 0.07830 * 0.07473
RL(set2) 0.05791 0.07896 0.07390
RL(set3) 0.05555 0.07528 0.07385
RL(set4) 0.05545 0.07464 0.07248

RL(set5) 0.05537 0.07507 0.07280

2.7 Empirical Results

To test the effectiveness of our RL agents on active model selection, we conducted experiments

on three problems of increasing difﬁculty, where each initial coin prior was a uniférm Beté(l, 1).

Qur five RL agents were given 1.8 million training episodes for the two smaller prdblems. and 2.8

million for the larger problem. The expected regret (Equation 2.2) was calculated for BR, SCL, and

the pdlicies learned using our RL agents. For this first set of experiments, we used TD(0) agents.
* The results are shown in Table 2.3.

The results indicate that for all problems considered, either BR or SCL produced the smallest
expected regret. In fact, no RL policy is able to beat either of the heuristic policies in the case of
ten coins and a budget of twenty, and no RL policy is able 'to beat SCL on any of the problems. We
have observed that on even larger problems (e.g. ten coins and a budget of thirty), BR beats SCL
and RL policies easily. The results of the experiments reveal that despite the extensive number of
states observed during traini‘ng, the RL policies are not generalizing well enough between states to
beat the simpler policies. ‘ _

: In our next set of experiments, we tested the effect of varying A for the TD()) learner. Figure 2.4
. shows the results of varying A when using the fifth set of features for function approximation on the
n = 8, b = 16 problem. For all values of A considered, the policies learned by RL do only slightly
better than BR and are inferior fo SCL. The difference between the varigus TD(A) learners is not

dramatic, but the expected regret is lowest with an intermediate value of A = 0.5.

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without pér’missiovn.

Ekpected Regret Comparisbn (n=8,b=16)

0076
0.0755,
g
‘ 0.075
]
o
g -
(i , ; | —e—RL(set 5)
T 00745 ‘ ‘ ‘ “|..0--'BR .
i1 " ‘ —— SCL
@
5 .
00741 ; : .
00735} ° oy : ‘ =
0.073 L : - L
0 0.25 . 050 0.75 10

Lambda

Figure 2.4: Various values of lambda — SCL still superior to RL

A possible explanation for the lower performance of RL is that not enough training episodes
are. being éxperienced. Additional‘ training should permit an RL agent to increase its exploration
of the state space, and yield a better policy. To test the effect of increased training, we conducted
experiments on the n = 10,b = 20 problem in which we varied the number of training episodes
from two and a half million up to an even more generous four and a half million. Learning took place
with a'TD(0.5) learner, using one of the strongest RL feature sets we tested, set number five. The
downward sloping trend of Figure 2.5 suggests that increased training does improve the resulting
policy; however, even after four million episodes, the expected regret of the RL policy is still larger
~ than BR’s or SCL's. | |

For further comparison, we consider the training time and memory required by BR, SCL, and
the RL policy after four and a half million training episodes. The memory considered is only the
policy specific s,torége (i.e., above and beyond the basic elements such as the Beta hyperparameters
and the budget, that are generally required by all policies). Examining Table 2.4, we see that even
using almost 800 MB of main memory, RL does not gain a significant advantage over the virtually
memoryless BR and SCL routines.

As these experiments show, the performance, speed, and low memory requirements make the
simper BR and SCL policies preferable to the use of Reinforcement Learning. Although it should be
possiblc‘for an RL agent to do better than these heuristic policies; the experimental results indicate
that (at least) more cleverly designed features or. a better type of function approximator will be

required to achieve this.

Reproduced with permission of the copyright owner. Further reproductiovn‘ prohibited without permiséion.

Expected Regret Comparisoh (n=10,b=20)

~e— RL(set5)
. :) o BR
0.0727 ; | ~~— SCL

£ 0.0728

¢
0.0726

0.07_25

0.0724 _ : : .

Expected Regret

0.0723}- ; ‘ . i

0.0722} ' : ‘ i

0.0721¢ O T [IR [BRI

0"0722.5 L8 35 . ‘ 4 4.5
Number of RL Training Episodes (in millions) ‘

Figure" 2.5: Various amounts of training — simple policies still superior to RL

Table 2.4: Resources used by each policy on n=10, b=20

Policy Training time (mins) Memory Used (MB)

BR 0 -_ 0

- SCL 0 : 0

RL(set 5) 630 . 760

Perhaps the blearest ‘argument against using RL for active model selection (and hence general
Budgcted learning) is the opportunity cost of conducting the necessary training. That is, éllhough
experience is easy to generate, the time and memory used to train RL agents could be equally well
spént running a bottom-up dynamic program (as in Section 2.4.1) that solves for the optimal value

: 6f states. The dynamic program could compute the optimal policy from some select set of states in
the same amount of time it takes a Reinforcement Learning agent to complete training. In effect, the
optimal actions from this select set of states could be easily combined with the BR or SCL policiés to
lower their regret even further, and make it yet ‘morc difficult for RL methods to compete with these

“ heuristic policies on active model selection. Overall, in the absence of better features for function
‘approximation, these results suggest that the more tractable heuristic policies should be used instead
of RL when considering the higher-dimensional and even more complicated problem of budgeted

learning.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.8 Unsuccessful Approaches

We have experimented with several other algorithms for active model selection which have not
performed particularly well. We collect these negative results in this scction, and briefly describe
the algorithms and their shortcomings so that future rescarch on active model selection can’avoid

these approaches and focus on more promising techniques.

2.8.1 Supervised Learning of a Classifier

It is possible to apply standard supervised learning techniques to learn a classifier for active model
-selection. Here the classifier implements a policy for active model selection by taking the Beta hy-
perparameters and the remaining budget as input, and rcturning the index of the best coin to flip as
output. We used a dynamic program to generate the training data required for learning. Unfortu-
nately, the dynamic program can only generate labelled data when the budget and number of coins
is small, making it difficult to learn a classifier that can be applied to the more interesting (large)
problems. In our experiments, we used training data to learn axis-parallel and oblique decision trees
{10] and found that even on small problems, the learned classifiers had higher expected regret than

~ simple policies such as BR.

-2.8.2 Search

‘Blind search algorithms such as depth-first search can clearly find the optimal solution to the coins
problem, albeit with time compléxity on the order of (2n)b. Nevertheleés, we tested a depth-first
search in the obvious way: truncating the lookahead depth to a reasonable level, and backing up‘
heuristic estimates of V™" (s) for all states s at the search horizon. The implementation was used
in an on-line manner (similar to standard two player game tree search [25]) where a new search
was conducted to the horizon level afler each action was taken and the resulting next state observed.
The search experiments confirmed that one does not require full lookahead to achieve reasonable
performance. In fact, on the small and medium size problems tested, a lookahead of b/? steps was
. fairly competitive with SCL. Of course, when the number of coins grows large, lookaheads become
.'incrcasing]y expensive and cannot be done to any effective depth, limiting the use of blind search

for active model selection.

2.8.3 Optimal Two Coin (OTC)

In addition to search, we experimented with the optimal two coin algorithm. The OTC algorithm
breaks up a large problem into several smaller, abstract problems that it can solve optimally. It then
uses the solution to these abstract problems to choose an action for the original problem. Specifically,
given n coins and a budget of b, OTC considers several abstract problems, each of which retain the

" budget b, but have only two coins from the original set of n. As there are g possible paix€ of

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

coins, OTC computes an optimal policy for 721) abstract problems. It then sclects the abstract
problem Aj.s; whose optimal policy 7y, has the highest EMEHP, and it takes the first action of

policy T, After observing the outcome of the action, the Beta distributions and the budget are
n

updated, and.a new set of 9 abstract problems are solved to determine the next action to take.
To make the algorithm efficient, all possible two coin problems that can be encountered in the
original n coin, budget b problem are solved optimally off-line (prior to running OTC) by a dynamic
program. With only two coins involved, the dynamic program is quite fast and can typically compute
the solutions to all abstract problems in a few seconds. Unfortunately, performance of OTC falls be-
hind BR, particularly on problems with a large number of coins. When 7 is large, the optimal policy
often involves interactions between many of the coins, and OTC is unable to consider interactions

of more than 2 coins. Although using abstraction for active ‘model selection may hold promise, our

experiments with OTC show that a more clever type of abstraction will be required to be effective.

2.9 Summary

- In this chapter, we explored the problem of active model selection. From a machine learning stand-
: point, active model selection is interesting because it is a simpler version of budgeted]eafning. The
tight relationship between active model selection and budgeted learning has been described in pre-
vious research [17, 18], and also highlighted in this chapter. A particularly interesting property is
that both problems have finite, episodic MDP formulations. As a result, Reinforcement Learning (a
collection of techniques for developing intelligent behaviour in MDPs) appéars to hold promise for
solving budgeted learning. This chapter takes a first step toward testing this hypothesis, by exten-
sively training several RL agents using different features for function approximation on the active
model selection task. Our experiments demonstrate that simple heuristic policies are able to achieve
- lower expected regret with far Jess computation than the learned RL policies. Our results provide
~ empirical evidence to the machine learning researcher that in the absence of more sophisticated func-
tion approximation (i.e., without better features or a better type of function approximator), applying
RL techniques to the higher dimensional and more complex problem of budgeted learning will prove
ineffective. Moreover, the experimental results reinforce the effectiveness of simple, heuristic poli-
cies for budgeted learning. We thus concentrate on heuristic approaches in the next chapter, when

we consider budgeted learning a bounded active classifier.

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Budgeted Learning a Boundéd
Active Classifier

3.1 Introduction
3.1 A Mofivating Example

Consider a doctor using a classifier to diagnose patient disease. The featu}cs of the classifier will
typically bé the results of medical tests such as X-rays, MRIs, or blood work on the patient, Due to
the costs associated with running these tests, it is unrealistic to assume that the classifier will know
the value of all features during classification. Instead, the doctor may be giveﬁ a budget of $100 to
- treat each patient, and the classifier can actively spend this $100 to collect some features on which
 to base its classification. Since this classifier actively collects features and operates under a hard
budget, we refer to it as a “bounded active classifier” (BAC) [9].

Leammg this $100 BAC will be an expensive proposition, because a complete training instance
requxreq running all medical tests on a patient with a known disease. Here, the hosplta] may have
only $10000 to allocate to learn the best $100 classifier. - That is, only $10000 are available to
collect the features for labelled training instances. Faced with these dual budget constraints on the
learner and the classifier, how should the machine learning researcher spend the $10000 collecting

features of labelled training instances so as to learn the most accurate $100 BAC?

 3.1.2° Objective and Outline

The previous example demonstrates the real-world problem of budgeted learning a bounded active
classifier. This chapter considers the problem in detail, More precisely, we study classification tasks
in which feature values are initially unknown to the learner and classifier, and can be acquired at a
cost. The learner is given a pool of labelled but otherwise unknown training examples, and it must
decide how to spend its fixed learning budget by, acquiring features of training instances so as to
produce the most accurate active c]lassxﬁer that spends at most b¢: per instance.

Before mveSUgaung our pxoblem, we provide some background material on active classmels in

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 3.2. Following this review, we present the formal problem description for budgeted feaming
a bounded active classificr, as well as some complexity results, We also place our problem in the
MDP framework, which allows us to describe the (intractable) optimal algorithm and to improve its
running time (Section 3.4). The main contribution of the chapter is the description and empirical
~ comparison of several tractable purchasing algorithms that the lecarner can employ. Sections 3.5
" and 3.6 describe the details of these purchasing a]gon‘lh_ms. Our experimental results (Section 3.7)
.'dcmonslratc that when the learning budget is small, the obvious “round robin™ algorithm (purchasing
every feature of every instance until the by, budget is cxhausted) is problematic. As well, we show
that our alternate learning strategies are able to outperform round robin on a variety of real-world

datasets.

3.2 Background: Bounded Active Classifiers
3.2.1 Definition of an Active Classifier

. An uctive classifier (AC) is a classifier that can actively purchase the value of unknown features be-
fore making its classification decision. Given some partially specified instance (e.g. {(z1, ?, 7, z4)),
an active classifier can either output a class label y, or it can choose to gather more information by
requesting the value of an unspecified feature (e.g. X2 or X3). In general, the active classifier can
recur indefinitely, continually purchasing unknown features for its current instance (as long as it can
afford to pay for these features). Let us assume that we have a binary classification task in which
there are r total features { X; };=1..» and two classes (Y= + and Y= —), with the domain of feature
X denoted by dom(X;), and with an unknown feature value denoted by “?”. Then, formally, an

active classifier is a function:
AC : {dom(X1)U{?} x dom(X2)U{?} x...xdom(X;)U{?}} = {+,—,1,...7} (3.1)

where an integer output ¢ indicates the request for the unknown feature X;, and an output of
+ or — indicates a (final) classification decision. Contrast an AC with the traditional passive classi-
fier (PC) that cannot request additional information. Since a PC can only output a class label based:
on the given feature values, it is poorly suited to tasks where features are initially unknown but can
be acquired for a cost. To represent an AC, we can use a decision tree as in Figure 3.1. Notice that
each interior node of the tree corresponds to a purchase of some feature, while a terminal (leaf) node
corresponds to the AC's classification decision. As an example, if a test instance descends down
 the leftmost branch of the AC in Figure 3.1, then the AC must pay Cost(X2) + Cost(X7) for the

features it acquires before returning Y = +.

3.2.2 Bounding Active Classifiers

Many real-world tasks place a hard budget on the value of fcatures that can be collected at classifi-

cation time (e.g., a.doctor who must diagnose patients using at most $100 worth of tests). In these

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(-] [

Figure 3.1: An example of an active classifier when the features and class label are bir‘ivary

cases, a bowzded active classifier (BAC) is required. A BAC with bound b¢ is an active classifier ‘
that spends at most bc for any test instance.

To score.a BAC B, we consider its expected misclassification error over the distribution of

labelled instances:

QB) =) P(xy) L(B(x)y) 3.2)

x,y
‘where L(i,) denotes the misclassification error of classifying an instarice as 1 when its true class
is 7. Let All(bc) denote the set of all bounded active classifiers that spend at most b per instance.
We will typically be interested in the optimal bounded active classifier from All(bc), which is the
one that minimizes the expected misclassification error: “ ‘

BAC* = argmin Q(B) . " (3.3)
. BeAll(be) .

In fact, when we present our formal problem description for budgeted learning a bounded active
classifier in Section 3.3, the ultimate goal is to produce this BAC™. Previous research [9) has shown
. that it is possible to PAC-learn this BAC* by using a'straightforward dynamic program that has

'-:sujﬁciently accurate estimates of the following distributions:
P(Y =y|X =x") 3.4)
P(Xl = mi|X = x') : g - (3.5)

where x* is any partially speciﬁed'-fealure vector with at most be dollars worth of feature values
specified. As we describe formally in the next section, our problem involves learning BAC* when
we have only a limited learning budget with which to estimate the two aforementioned sets of

distributions.

23

Reproduced with permission of the copyright owner. Further reproduction prohibitéd without' permiésion..

33 FdrmalDescriptiOn

The “budgeted bounded-active-classifier learner”, BBACL, is given the (non-négative) cost C(X;) €
R of acquiring each individual feature X; of any single specified instance! and the loss matrix
L = [¢; ;] whose (i, 7) element specifies the penalty for returning the class y; when the true class is
‘43 by convention we assume ;s = 0 and ¢; ; > 0 for ¢ # j. BBACL also knows the total amount
ihe learner can spend by, € R+, and how much the resulting active classifier can spend per instance
bc e Rt.
At any time, the BBACL can see the current m. x (r + 1) “tableau”, whose rows each correspond
to an instance i € {1,...,m} and whose first » columns each correspond to a feature, and whose
7 + st column is the class label. Initially, only the class label is specified; the other m x 7 entries
are ﬁll unknown. In general, we will let xﬁj Y refer to the initially unknown value of the ith feature
of the jth instance. At any point, BBACL can perform the 7:2]) “probe” to determine the value
of :z:Sj), at cost C(X;). This also reduces BBACL’s remaining budget from by, to by — C(X;).
- Once this budget reaches zero, BBACL stops collecting information and returns a bounded active
classifier which corresponds to a decision tree of bounded depth [6]. Our goal is to produce BACY,

the bounded active classifier that has minimal expected misclassification error and spends at most

be collecting features per instance (see Equation 3.3).

3.3.1 Simplifying Assumptions

Recall from Section 3.2.2 that in order to PAC-learn BAC® we require accurate estimates of distribu-
tions 3.4 and 3.5. In order to tractably estimate these distributions under our finite learning budget,
we will make some simplifying assumptions. Firstly, the obvious frequentist approach of maintain-
{ing simple frequencies for probabilities is problematic, because many conditioning events will not
occur given the sparsity of data, Instead, we will take a Bayesian stance by assuming that there
is a prior distribution over labelled instances before seeing any data. In addition to this Bayesian
approach, we will make the Naive Bayes assumption, which means P(z,(j)) is independent of zg)
(for k # i) as we know the value of the class Y = y;.?

Hence, if instance j is labelled with class +, and feature X; has domain size | X;| = w, we

will model the distribution of the w multinomial parameters for = as a Dirichlet distribution [11]:

Dir(ag';)+, ceuy af,f?+), with Dirichlet parameters agfi > 0. (Although technically it is the w multi-
_ nomial parameters that are Dirichlet distributed, we will still write mgj)~ Dir(a&f’+, . ,ag? 4o

: simplify notation.) These Dirichlet paramelers 0221- are unrelated to the ones for negatively labelled

‘instances ag.f)_ and also unrelated to the Dirichlet parameter values for other features X}, for h # 4.2

'We assume that these costs arc independent of each other, both within and across instances. Morcover, if any test costs
C(X;) = 0, we can simply gather that information for each instance and then consider the resulting reduced problem where
C(X;) > 0forall remaining X;s.

2Note that Naive Bayes models often produce goad classificrs even for datasets that violate this assumption.

3Thus, we maintain a single Dirichlet distribution for cach { feature, class-value), pair.

24

Reproduced with permission of the copyright owner. Further reproduction prohibited withoﬁt permiséion.

~ Initially, we will assume that each such distribution is uniform Dir(1,...,1). If we later sec a sam-
ple T\wi(h 29‘ Y = + instances with X; = 4+ and 14 Y = 4 instances with X; = ~, the poslérior
* distribution for _.7:?') foranew Y = <4 instance would be Dir(1+29, 1414). The mean probability
for X; = + here would be P(X; = +|T) = 30/(30 + 15) = 2/3. |
In general, if a variable X s prior distribution is X ~ Dir(@y, ...,y), then
‘ L :
2k

If we then observe a sample T that includes a; instances of X = i, then X 'S posterior distribution

P(X=i) = (3.6)

remains a Dirichlet, with new parameters

X|T ~ Dir(a; +ap,...,0p+ay) . 3.7

In the formal description given ecarlier in this section, a learning probe of the form :n,(.j) speciﬁcs
‘the feature to probe (X;) and the specific instance in the tableau (instance j) on which to perform
the probe. However, because of our Naive Bayes assumption, we can treat all instances with the
same class label identically. Thus, rather than querying specific instances, we only consider learning
probes of the form (7,y) that request the ith feature of a randomly- chosen instance in the tableau
whose class label is y.* (By convention, this process selects the value of an (7, y) feature value that

has not been seen before.) Finally, for our work we will assume a constant misclassification cost

£i; = 1fori+# jand €;; = 0.

332 Complexity Results

Unfortunately, the problem of budgeted learning a bounded active classifier is NP-hard in general.
In fact, the reduction follows from the active model seléc'tion task we studied in Chapter 2. More
precisely;, Madani et al. [19] proves the following (active model selection) task is NP-hard: given a
set of coins with known prior distributions and a fixed total number of flips, decide when to flip which
coin to decide which coin has the highest head probability. Our framework inherits this negative NP-
hardness result. (Identify each coin C; with a binary feature X, where the head probability of coin
C; éorrcsponds to the probability the class is true given X; is true, P(Y = +|Xi = +); we also
let P(Y = +|X; = =) = 0forall féatures.) In addition, [9] shows that computing the best active
classifier is NP-hard in general, even if we know the entire distribution. Our framework inherits that

negative result as well.

34 The MDP Formulation

Budgeled learning a bounded active classifier is a sequential decision making problem: the learner

sequentially specifies which feature-class pair to purchase from the tableau, and receives a one-time

“In other words, to make a purchase the learner only has to select a feature and a class - not a specific instance in the
tableau. ' .

25

Reproduced with permission of the copyright owner. Further reproduction prohibited wifhout perm.issibn.

‘reward (the expected misclassification error of the learned BAC) once the learning budget has been
exhausted and tHr_: final learned BAC is applied. The task can be completely described as a finite,
cpisodic Markov Decision Process with a (finite) set of slafcs g € S, a (finite) set of actionsa. € A, a
reward function R(s), and a transition function T'(s, a, s"). In fact, the mapping is very similar to the
one described in Chapter 2. Each state of the problem s € S is identified by the remaining learing
budget (denoted by b’,), and by the posterior Dirichlet distributions over all the feature-class pairs.
~ This representation of a state encapsulates all the information that has been learned so far about the
- various feature-class pairs. We idcntify the initial state sg as the one with full remaining learning
_budget (b, = b), and with the Dirichlets set to the (given) prior distributions. On the other hand,
“the terniinal states are those in which the remaining learning budget is insufficient to make any more
i)urchases (b, < C(X;) Vi), and has thus resulted in a final set of posterior Dirichlet distributions,
Asin Chdpter 2, we use s; to denote the state encountercd on the ith time step.

The space of possible actions corresponds to every distinct feature-class pair that the learner can
purchase from the tableau. For the reward function, we use R(s) to denote the immediate reward
received in state 5.3 12(s) is zero whenever s is a non-terminal state (i.e. no intermediate reward).
On the other hand, if s is a terminal state, the reward received is the expected misclassification error
of the best BAC that can be learned from the posterior Dirichlet distributions in s:

R(s) = Bcr“lxlllll(]h)ZP x,y|s) L(B(x),y) iff s isaterminal state - (3.8)

Since all.reward is delayed until the final time step, our problem has a discount factor of 4 = 1. In
_terms of notation, we will use r; to denote the immediate reward accrued on the ith time step.
Finally, the transition function T'(s, a, s’) specifies the probability of a particular feature pur-
chase taking on a particular value. These transition probabilities are given by the current Dirich- -
Jet distributions over the feature-class pairs. For instance, suppose we purchase feature X; on
an instance where ¥ = 4, and oﬁr current Dirichlet distribution for that feature-class pair is
X;|+. ~ Dir(1,4,3). Then the probability of transitioning to the next state which has X;|+ ~
- Dir(1,5,3) is the probability of X; taking on its second value (x3,) given a positive class label:
P(X;=z;,[Y = +) =4/(1 + 4 + 3) = 1/2. With S, A, R, and T specified, we have a complete
.MDP formulation for budgeted learning a bounded active classifier. The MDP formulation allows us
to use the notation of policies and value functions. In our case, a policy w : S — A specifies which
action ziw learner should take (i.e., which feature-class pair the learner should purchase) given the
current state. As well, the value function V™ (s;) specifies the expected reward accrued from state

sy when following policy 7. In this chapter, we define the value function for a policy 7 as:

S{_) = <Z(’)‘ I‘,,.H!'II' St) . (39)

i=0

_ 5This reward notation is slightly different than the one used in Chapter 2; we make lhls slight_ notation change in this
chapter strictly to simplify the prool of some upcommg rcsulls

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without perfnission.

Notice that this definition is trivially different from the definition in Chapter 2 (Equation 2.5), be-
cause here we include the immediate reward received in state s, as part of V7(s.). This slightly

different value function definition simplifies the proof of some upcoming results without changing

our problem in any way.

- 3.4.1 The Optimal Leaming Policy

~ As our problem is a finite Markov Decision Process, there exists a deterministic optimal policy
for spending the learning budget [28].. The optimal learning policy is the one that minimizes
the expéctedl expecteds misclassification error of the final bdundcd active classifier. The first
expectation; is over the set of possible Dirichlet distributions produced by the learner’s purchases,
and the second expectations is over the possible labelled instances (x,y) that can occur given the

resulting Di‘richletsv.' Mathematically, the optimal learning policy 7* is defined as:
* = arg min Z P(i) ZP(x, y|i) L(BAC! (x),y) (3.10)

T i€Outcomes(n) X,y
* where each “outcome” corresponds to a terminal state in which ‘our.]caming budget has been fully
exhausted and has resulted in posterior Dirichlet distributions over the feature-class pairs. (Notice
that the optimal BAC for each outcome state is contingent upon the probabilities that have been
learned, and thus we write BAC to denote the optimal BAC with respect to the probabilities learned
in outcome 7.) ‘

This optimal learning policy 7* can be computed via a bottom-up dynamic program. To see
this, note that we can compute the optimal value function (V™" (s)) for all possible outcome states
s where the learning budget has been exhausted, and then use these to compute the value for all
possible “predecessor” states where there is only $1 left in the learning budget, and then continue
this backward sweep toward the initial state s9. Unfortunately, the number of outcome states (and

hence the computational complexity of the naive dynamic program) has a prohibitive lower bound:

Proposition 4 Let | X;| denote the domain size of feature X;, |Y| denote the number of classes,

t = |Y| Y, |X;| — 1, and each feature has unit cost. Then the bottom-up dynamic program must
b ' ‘
bp 4t bratyt 1
compute the value of ((L) (Bett) \/Z) outcome states.

We improved this naive dynamic program by reducing the number of states whose value must be
solved for. Below we show an interesting way to achieve this reduction by exploiting the equivalence

of two “permuted” states under the conditional independence assumption.

Definition 1 A proper permutation for a feature X; with w domain values is a bijective function
“f o [Lw] = [L,w] that applies the same reordering of the w parameters for every Dirichlet

distribution on X;.
Example 1 Let

(XY =0) ~ Dir(4,2,7), (X;]Y =1) ~ Dir(3,8,5)

27"

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

* Table 3.1: Reduction in computation time using Proposition 5
‘b bg Features DomainSize Naive Improved

"2 4 6 4 . 161 sec 65 sec
3 2 4 3 888 sec 432 sec
4 3 4 3 8280 sec 3360 sec

" Thena proper permutation for feature X is:
(X:|Y =0) ~ Dir(7,2,4), (Xi|Y =1) ~ Dir(5,8,3).

Proposition 5 Assume the Naive Bayes assumption holds, and consider any two states s, and s,
that have equal values of by, and are such that the Dirichlets of state sq can be made equal to the
Dirichlets of state sy, by specifyving a set of v proper permutations, one for each feature X;. Under

these conditions, V™ (s,) = V™ (s3), and m*(3q) = 7*(sp).

This proposition allows us to improve the naive dynamic program by reusing the computed value
~ of astate s, for properly permuted versions of s,. The real-time improvement using Proposilibn 5
" is shown in Table 3.1. In the last case (b, = 4, bg = 3), the naive dynamic program ran out
of memory after more than two hours, while our improved version finished properly in under an
hour. Unfortunately such improvements are not sufficient to remove the exponential complexity of
the dynamic program (recall that this task is NP-complete); therefore, we consider more tractable,

suboptimal approaches in the next section.

3.5 Heuristic Learning Policies

This section summarizes a number of heuristic “budgeted bounded-active-classifier learners”. We
- focus'on only the data collection part of the algorithms; after collectihg $6, worth of feature val-
. ues, each of the algorithms then passes its learned (posterior) Dirichlet distributions to a dynamic
program that produces the BAC* in Equation 3.3. Our decision to focus on heuristic purchasing algo-
rithms is partially motivated by the results of Chapter 2, in which we observed that simple heuristics
were able to outperform more complex methods such as RL, and blind search on the related problem
of active model selection. We note that many of the algorithms that follow are extensions or variants

of heuristics used in other budgeted learning scenarios [17, 18].

3.5.1 Round Robin (RR)

This obvious-algorithm simply purchases complete instances until its budget by, is exhausted. It
‘ draws‘ examples randomly, and so expects to have collected data about members of each class y
in proportion to P(Y = y). If there are r unit-cost features, we expect to know everything about
roughly by /r instances. Notice RR implicitly assumes all features are equally valuable in learning

the targel concept.

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

-3.5.2 Biased Robin (BR)

A more sclective approach than round robin is to purchasé a single feature and test whether or not its
observed value has increased some meusure of quality. The biased robin algorithm is more selective.
than RR, continually purchasing feature X; as long as it improves quality, and otherwise moving -
to feature X;4, (and of course Iodping back to X, after X,). There are scveral choices for how
to measure quality or loss; see Section 3.6. Of course, BR must also specify a class y from which
0 purchase its desired feature, and it does this by drawing from the class distribution P(Y = y)
on each purchasc. As further motivation for this algorithm, [17] found it to be one of the best
approaches for budgeted learning of a passive Naive Bayes classifier, albeit with a different loss

.' function. This method also corresponds to the “Play the Winner” approach discussed in [23].

3.5.3 Single Feature Lookahead (SFL)

One would always like to avoid wasting purchases on poor featurés, especially when faced with a
limited learning budget. This motivates a prediction-based approacl;, which uses a loss function
to estimate the expected loss incurred after making a sequence of purchases of a single, specified
feature.

SFL uses this prediction based approach, and controls the level of myopia or “greediness” in-
volved by providing an additional parameter, d = the lookahead depth. With a lookahead depth
of d, SFL calculates the expected loss of spending its next $d sequentially purchasing feature i of
instances of class j. That is, if s denotes our current set of Dirichlets and s’ denotes any of the
Dirichlet sets obtained after spending min{$d, $b7) purchasing feature X; of Y = j instances, then

the expected loss for (4, 7) is:

SFL(i,j) = Y P(s'|s) Loss(s') . : (3.11)

SFL determines the feature-class pair (7, j) with lowest expected loss, then purchases the value

of this best (i, §) feature for one instance, and updates the Dirichlets based on the observed outcome

. of that purchase (and reduces the available remaining budget). It then recurs, using Equation 3.11
'-_to compute the score for all feature-class pairs in this new situation — with its updated Dirichlets
and a smaller budget. This process repeats until the learning budget is exhausted. The lookahecad
depth d can be set based on the computational resources available. If only the next one purchase is
considered, then this reduces to the 1-step greedy algorithm. We note that SFL was originally used

in {17, 18] (but with a different loss function).

3.5.4 Randomized SFL (RSFL)

Our experiments show that the SFL algorithm often spends the majority of its probes purchasing a
- single discriminative feature-class pair and neglects to explore other potentially good features, This

_property can be problematic, particularly when a dataset contains several discriminative features

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

‘ that can jointly yield a more accurate BAC than any single feature by itself. The randomized single
‘feature lookahead algorithm (RSFL) alleviates this problem by ‘increasing cxploration among the
best looking feature-class pairs. The RSFL algorithm is very similar to SFL, as it too calculates the
expected loss in Equation 3.11 for each feature-class pair. However, rather than deterministically
purchasing the pair with the best SFL score, RSFL considers the best K feature-class pairs and for

cach feature-class pair (¢,7) in this set, it chooses to purchase feature ¢ of c]ziss 7 with probability:
exp —Sngi,j)

- (3.12)
~SEFL(3,

-~ Here, 7 is a temperature controlling exploration versus exploitation. Although we set 7 to one
throughout this chapter, we include it in Equation 3.12 ﬁ_) show the relationship to the Gibbs distri-
"bution [28]. After experimenting with various values for the number of feature-class pairs, K, we
found that I = (number of classes) x b, secemed to perform well, particularly when the learning

budget was not much greater than the number of features.
3.6 Loss Functions
As mentioned earlier, several of our élgon’thnis rely on a loss function:
Loss : {Dirichlet distributions over feature-class pairs} — R 1 (3.13)

that attempts to measure the quality of a given probability distribution. After experimenting with
several different choices of loss functions, we found Conditional Entropy Loss and Depth 1 BAC

Loss to be effective.b ,
. SFL, RSFL, and the greedy algorithm all use

min > P(X; =) min(1 - P(Y = y|X; = z)) (3.14)

which calculates the expected misclassification error of the best Depth 1 BAC. Since biased robin
needs'to detect small changes in a distribution, it tends to perform better with the more sensitive

- conditional entropy calculation, which measures the uncertainty of the class label Y given the value

‘of a feature X;:

=Y P(Xi=2)) P(Y =y|X; =z)logy P(Y = y|X; =z) . (3.15)
L v .

The biased robin aigorilhm uses Equation 3.15 before and after the purchase of feature X; to deter-

mine whether the purchase improved the ability of X; to predict the class Y.

%The obvious loss function is just to use Equation 3.3 to compute the expected error of the optimal BAC. However,
~ since loss functions can be called several times 1o decide on a single purchase, the computational expense ol computing
- Equation 3.3 is prohibitive, :

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

. Glass Breast Cancer
0.5 . :
—=RA et mibeimic o wic4inim #mems| = AR
s it 03 - : bt
A5 - o SFL (depth25) o SFL (depth25)
- & RSFL (depth25) || .03 -a- REFL (depth25)
204 -~+~.Greedy g ~s- Gready :
w -0 All Data ulgog -a- AliData
R e
£0.35) S
a9 STV SRy - .
gl LN e L % 02
s So1s5
Bo.2s o &
- s
5 02 o At g 5 0.1 .
. A - -
0.15 { oost AR A A A
P BRTTITIY - TRy - RTITATIY TETSTORN FOUDUIRY, TOIppoosr. PSSP’ PRSI P L TETTUY - TRV JOORRN" SUPRPPRRT SURPPIY - PUIINY - SRR DI - P
Ol 620 30 40 50 60 70 & 8. 0 10 20 a0 50 60 70 80 90 100
Learning Budget Learning Budget

Figure 3.2: Identical costs and some irrelevant features — RSFL. and BR outperform RR

3.7 Experimental Results

To compare the aigorithms, we tested their performance on several datasets from the UCI Machine
Learning Repository {12]. We used supervised entropy discretization [8] to discretize datasets with
continuous values. Each dataset was then randomly partitioned into five folds. The algorithms were
run five times, and on each run a single fold was set aside for testing, while the remaining four
were available for purchasing. For each algorithm, we used the average value of these five runs as
the algorithm’s misclassification error on the whole dataset. We repeated this process 50 times to
reduce the variance and get a measure of the average misclassification error. Thus, each point in the
graphs that follow represents 50 repetitions of five-fold cross validation.

In the first set of experiments, all features have unit cost and the datasets contain some irrelevant
features. We set the classifier’s budget to b, = 3, as this is large enough to allow several features to
be used, but small enough to keep computations tractable. All Dirichlets parameters are uniformly
' initialized to 1. For reference, each graph also includes a gold standard “All Data™ algorithm, which
is allowed to see the entire dataset, and thus represents the best that one can do using the Naive
Bayes assumption on the data.

» Figure 3.2 shows the performance of the algorithms on the Glass Identification dataset: a bi-
nary class problem with nine features whose domain sizes vary between one and three. The four
features that have a domain size of one represent irrelevant information that any learning algorithm
(especially one under a constraining budget) should avoid. Both RSFL and BR learn better than the
obvious RR algorithm for all learning budgets considered. In fact, we found the optimal bg' = 3
BAC produced by the “All Data” algorithm involves four different features, and these four features
. are precisely the ones that RSFL and BR purchase heavily during learning. This is in contrast to the
‘ “RR purchasing behaviour that spends equally on all features, despite their unequal predictive poWer.
'_Fillally; SFL and greedy spend their entire budget on only one or two features during learning, which

accounts for their low accuracy BACs.

)|

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Iris ; : ’ ‘ Vote

0.45, r - T T - 0.4
‘ . [—nn — AR .
o4 - BR : : . e gR g
i -0 SFL (depth25 0.351} <% e guwne0] 0. SFL (depth2s):
50.35 ~& RSFL(depth25) || S® & RSFL (Ke2'bo),
2 -~s~ Greedy g 03 "\ ' -~¢= Greedy
a ol -a- Al Data w ~ o All Data
8 : So0.28 . —o- RSFL (K=6'bc)
2 2
§0.2§ A . é 02
Boaok v N\ TR a
8 12 S N N et a
20.15
Lo.15 £
S o1 5 o
0.054 0 corr o o 0.054 'vn a Q@ O - e Qe Qe D 4
5o 15 20 25 30 95 40 020 4086 80 100 120 140 160
Learning Budget Learning Budget
Figure 3.3: Identical costs, no irrelevant features — RR still suboptimal
Heart Disease (Cleve) - : Pima
oS 0.42———— .
; —— RR ' ' ~—RR
0.45 o gs’- (depth25) 0.4 ‘ o S?L (&epthzs)
N \ ~a- RSFL depth2s) [| ~a. RSFL (depih26)
g \ +-e- Greedy had [--s- Greedy
W04 -4 AllData [T ~a__All Data
o 0. 2 Arbala__
2 S e e N e
sgoas Boas o
I @
K] 032
2 oa} 2
g o N N
©0.25} <028
0.26
0. G @rrses et Be s G Do 02t @ 8 @ g g e e Qs @ e
0 50 100 150 200 250 300 350 400 450 500 “% 15 30 45 60 75 90 105.120 135 150

Learning Budget Learning Budget

Figure 3.4: Different feature costs — RSFL and BR dominate RR

The Breast Cancer dataset containé’ ten features, only one of which is irrelevant to the concépt.
. This dataset is particularly interesting because nearly all its features are good predictors, but three
vvfeatures have markedly lower conditional entropy than lﬁc rest: To produce the lowest error BAC,
the learning algorithms must discover the superiority of these three features. We find RSFL does
exactly this, spending 20%, 21%, and 32% of its budget respectively on the three strong features. In
comparison, RR spénds 10% of its budget on every feature which makes it huch more difficult for '
it to separate the top features from the rest. BR also performs better than RR for all learning budgets
considered.
, The next set of experiments, shown in Figure 3.3, considers datasets without any irrelevant
features. The Iris dataset has only four features and is a three class problem. Given that all four
 features are relevant, and that bg = 3 in this experiment, the optimal BAC requests every feature at
:some point in its tree. With only. four features to considér, RSFL is able to test them all effectively
and produce better BACs than RR for all budgets considered. BR is also competitive with RR, except

at some of the very low budgets where BR’s exploration model prevents it from ever investigating

some of the features.

Reproduced with permission of the copyright owner. Further reproduction prohibited without bérmission.

Figure 3.3 (right) shows another binary class problem, the Vote dataset, that contains 16 features.
Many of these features have similar (high) predictive power, and one featurc in particular is ncarly
perl‘eqlly correlated with the class labél. Once again we see that both RSFL and BR beat RR when
the learning budget is small. RSFL asymptotes after about 50 purchases — it spends its budget
finding a few strong features quickly and outputs a fairly low error BAC. As expected, at larger
budgets‘ RR collects enough information on every feature to find better candidates for its BAC than
RSFL can. In particular, RR identifies the superiority of the “near perfect” feature more consistently

*than RSFL does at larger learning budgets. The graph shows that one can improve the performance
of RSFL by increasing the number of top feature-class pairs, I{, that RSFL considers on this dataset
(thereby reducing the chance of RSFL skipping over the near perfect feature). We also observe that
BR’s exploration model is particularly well suited to this task because it is able to collect information
on every feature at larger budgets, which is important on a datasct such as Vote with a large number

~ of predictive features.

Our final set of experinients involved datasets where the features differed in cost. Both the Heart
IiDisease dataset and the Pima Indians dataset have known cost data [12], which we scaled (so thht
costs were between $1.00 and $10.00) and then used in our tests. The scaled Heart Diseasc costs
range from $1! to $7, and our tests are run with b, = $7. This dataset represents the worst case for
RR, because the irrelevant features happen to be the most expensive ones. In fact, RSFL achieves
the same error rate after $100 that RR takes $500 to reach. In the Pima datasel, feature costs are
between $1 and $5, and we set b, = $5. The two irrelevant features have cost $1, and the singlé best

feature is $4. Once again, BR and RSFL dominate RR for all budgets considered.

3.8 Summary

Many standard learning algorithms implicitly assume the features arc always available for free, to
both the learner at “training time” and later the classifier, at “performance time”. This chapter ex-
tends those systems by explicitly considering these costs (at both training and performance time),
when the learner and classifier have hard budgets that limit the total value of features that can be col-
lected. In this chapter, we introduce the formal framework for budgeted learning a bounded active
classifier, and present some complexity results for the problem. We also propose a more efficient
way to implement the optimal algorithm, which we prove works effectively. Moreover, this chap-
ter motivates and defines a variety of tractable learning strategies and shows they work effectively
“on various types of data — both with identical and wiﬂm different feature costs. In particular, we
demonstrated that our proposed strategies can often do much better than the obvious algorithm -

“round robin” — especially when training data is limited.

33

Reproduced with permission of the copyright owner. Further reproductioh prohibited without befmission.

Chapter 4

Related Literature |

4.1 Introduction

~ This chapter reviews some of the relevant literature from the fields of machine learning and sequen-
tial decision making. We divide the review into two parts. The first section highlights the work
' related to our main problem studied in Chapler 3, while the second section focuses on work related

to the active model selection task investigated in Chapter 2.

4.2 Budgeted Learning a Bounded Active Classifier

There are a number of different senses of “costs™ in the context of learning [31].- Our research
considers two of these: the costs paid by the learner to acquire the relevant information at training
time to produce an effective classifier, and also the costs paid by the classiﬁer, at performance
- time, to acquire relevant information about the current instance. We impose hard constraints on the
~ expenses paid by the learner, and on the total cost of tests that can be performed per instance by the
classifier. '

Many existing (sub)fields, such as active learning [5] and experimental design [3] (as well aé,
earlier results such as [17]) focus on only the first of these costs —~ e.g., bounding how much the:
leérncr can spend to produce an accurate passive classifier. In addition, many of these systems
request the class label for an otherwise completely specified instance. Thus they require only a
single quantity per instance. Our problem is the complement of this: class labels are known but
feature information must be purchased (see Figure 4.1). Unlike most of the other models, this
means our work may need to consider the correlations amongst the many unknown properties of an

- instance.

There are numerous other machine learning resuits that focus on reducing the sample complexity
for learning. Some of these include decision theoretic subsampling [21], on-line stopping rules [26],
progressive sampling [22], and active featurc value acquisition [20]. We note that these techniques
differ from our approach because ‘we place a firm prior budget on the learner’s ability to acquire

information, while these approaches typically allow the learner to purchase until some external

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Active Learning ‘ Budgeted Learning

X, Xo Xg o XY X Xy Xgo XY
110 - 1]72 ‘ 70?7 2 o2 |
0 1. 0 1 ? ?7 0?7 ? 0
1 0 0O 0 ? ? ? 7 ? 1
1 0 1 1 ? ‘ ?.? ? ? 1

Class labels unknown ' ' Feature values unknown
but can be purchased but can be purchased

Figure 4.1: Active learning versus budgeted learning

Stopping criteria.(for instance, accuracy) is satisfied.

Weiss and Provost [33] recently explored a problem related to one that we encounter in our
overall frimework: how to represent the class distribution when only a firm budget of n training
examples can be uséd. For example, if our budget allows for ten training examples, should we select
five from class one and five from class two, or draw our examples according to the true (underlying)
class distribution? The results in [33] indicate that drawing from the true class distribution is the
best choice for maximizing classifier accuracy when no additional experimentation can be done.

- On the other hand, when computational resources arc available, Weiss and Provost suggest using a
_progressive sampling algorithm to choose the best class distribution. As discussed in Section 3.5,
some of our algorithms (RR and BR) follow the results in [33] by drawing from the true class
distribution when selecting which class to probe. We do not, however, utilize progressive sampling
due to the computational expense, and the relatively small improvement reported in {33] over using
the true class distribution. . b’ ' |

Instead of considering the costs paid at learning time, some research has concentrated strictly on
minimizing the costs paid by the classifier at performance time. In this vein, both [30] and [9] at-
tempt to produce a decision tree that minimizes expected total cost. However, neither work assumes

" an a priori resource bound on the learner, thereby allowing for unconstrained amounts of traiﬁing

- data with which to build these classifiers. Agaiﬁ. our work makes the more realistic assumption that

if data costs money at performance time, it very likely costs money at learning time as well.

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without pérmission.

4 3 Active Model Selectlon

Acuve model se]ecuon was originally introduced in []8], although several similar problems have
been previously studied. The well-known multi-armed bandit problem [23] is concerned with finding
the best object within a set, but rewards are typically accrued throughout, without distinguishing
training from testihg phases. By contrast, active model selection gives no reward until the final
coin is selected, and thus more accurately represents the pure training phase of budgeted learning,
Stratches from the adversarial bandit formulation [2] could also be adopted for our problcm, but
the adversarial assumption is unnecessanly strong for our case, and thus less defensive algonthms
" can usually perform better on active model selection. A more recent bandit-variant, the max k-
arm bandit [4], shares our notion of maximizing a single reward over a fixed number of sequenﬁal
vdecisions. However, [4] allows the single reward to occur on any time step, as opposed to strictly at
the terminal states.

Duff [7] studied the Bayesian MDP formulation in active model selection as a Bayes Adaptive
Markov Decision Process (BAMDP). That éludy also considers various RL methods to approximate
an optimal policy for BAMDPs, and chooses some of the same types of featurés for function approx-
imation that we consider in Chapter 2. Morcover, the experimental results concur with our findings,
as [7] also reports a gap between the reward of the learned RL policies and the optimal policy. Be-

sides RL, another potential strategy for active model selection is on-line sparse lookahead [32, 16].
* Unfortunately, given the size of the state space, we have found that any tractable (truncated) looka-
head (as in [16]) usually yields a higher regret than the simple BR and SCL policies. It would be
interesting to experiment with the recent ideas from [32] to see if a selectively grown lookahead tree

could compete with the current heuristic policies.

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Conclusions

5.1 Contributions

This thesis examines classification learning when features have an acquisition cost, and the learner
and classifier have only finite budgets to spend acquiring features of training and testing instances,
respectively. .

Chapter 3 explores this practical problem in detail, and provides the formal problem description.
Other contributions from the chapter include a description of the optimal spending policy for the
learner, as well as a method to effectively reduce the running time of the optimal algorithm. We also
extend prior complexity results to our problem to establish it as NP-hard. Our main contributions
are to propose several heuristic spending policies for the learner, and to test them empirically. The
primary result of this dissertation is two fold. First, our experiments show that the obvious round
robin ‘purchasing policy that spends equally on all features is suboptimal — particularly when the
' learning budget is small relative to the number of features. Second, we observe empirically that our
.'._altemative purchasing algorithms (i.e. biased robin, randomized single feature lookahead) are able

to outperform round robin on many datasets, both with identical and with different feature costs.
- We also make a contribution to general budgeted learning by addressing an open question in the
budgeted ‘learning literature: can Reinforcement Learning techniques be used to learn an effective
spending policy fbr the learner? Chapter 2 takes a first step toward ansWeﬁng this question by
working with a simplified budgeted learning problem: active model selection. We extensively train
multiple RL agents on active model selection, with cach agent using a different combination of
features for function approximation. - Our experiments demonstrate that simple heuristic policies
- achieve lower expected regret on active model selection than the policies learned using the standard
::RL techniques and features we selected. These resulis suggest that (at least) better features for
'function approximation will be required if RL techniques are to be successfully applied to the higher

dimensional and more complex problem of budgeted learhing a bounded active classifier.

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permi's’sion.

‘5.2 Research Directions

This dissgrtutioh has raised several interesting questions for future study; Beginning with the Re-
inforcement Learning investigation in Chapter 2, the most obvious open question is: what feature
space should be used to represent the value function? A limitation of some of the features we used
is that they do not incorporate the synergies that exist between coins {for instance, how the value of
coin C} increases if coin Cy and Cj are also present in the current set of coins). A feature set that is
able to approximately encode these dependencies may yield more promising results. Another area
of future work is to use RL techniques to effectively learn the BR and SCL heuristic policies.! With
- some of the featurcs we considered (in Appendix B), it is theoretically possible for an RL agent to
represent the BR and SCL heuristics; however, we need more than just representation power in order
to tractably learn BR or SCL. Specifically, the feature sbace must generalize well so that a TD(A)
agent only has to visit a reasonable number of states in order to learn a complete value function
for the heuristic algorithms. Finding a feature set that can cxpress the heuristics while permitting
fast generalization would make RL competitive with BR and SCL (and thus more applicable to the
full budgeted learning problem). Finally, given the low regret behaviour of BR and SCL, it would
be interesting to prove or disprove the approximability characteristics of these heuristic algorithms
under the common case of identical starting priors (this has remained an open problem since first
" posed by [19]).

~ We turn next to the full problem of budgeted learning a bounded active classifier. Although
-some of our proposed algorithms perform well on this problem, they might still be improved using
some simple techniques. In the case of RSFL, for example, it may be better to dynamically choose
the number K of top feature-class pairs to randomly select from (rather than fixing this threshold a
priori). Alternatively, we might consider randomly selecting from all feature-class pairs, but with
a decreasing temperature parameter 7, as in [4]. Another research direction is to experiment with
algorithms that go beyond the “Naive Bayes” assumption, and thus allow the learner to pérfoml
more powerful probes (e.g. requesting feature X; on an instance where X; = + and Y = -).
Related to this, we could consider maintaining additional probability estimates such as P(X;|Y, X;)
to incorporate dependencies among the features. »

In our work, we have implicitly assumed that it is always worthwhile for the classifier to spend
more on features (up to the budget bc) if we can reduce our misclassification error. However, in
many practical tasks, the cost of a misclassification error may be less than the cost of acquiring a
feature. In these cases, it makes more sense to build a bounded active classifier that minimizes the
expected total cost per instance? as opposed to the expected misclassification error. Our framework

can be extended to this case by making some modifications to the dynamic program we use to build

"The motivation is that by learning the value function for these heuristics, an RL agent could then employ an exploratory
action selection policy (during planning) to try and improve upon them.
2Where the total cost per instance is defined as: total cost = (misclassification cost) + (cost of features purchased)

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BAC* (see [9)). |
: . The cost strﬁcture we assume in this work can be quiig: different from the complex (linked) cost
structure that can exist in practice. For example, a linked cost structure n"ljght charge $10.00 for a
blood test X;; by itself, but charge only $2.00 for the blood test if it is purchased in combination with
a bone scan X;;. For these complicited cost structures, algorithms will have to consider the value of
information of a feature under mu]liplé scenarios (e. g when purchased by it.é’clf, when purchased at
a discount after acquiring linked feaiure X, etc.). Finally, the most important direction for :f_uture
research is to build upon the empirical results herein to develop algbrithms with strong theoretical

guarantees on learning performance.

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without pefrhiséion.

‘Bibliography

(1 Gcorgc E. Andrews. The theory of partitions. In Encyclopedia of Mathematics and its Appli-
cations. Addison-Wesley, 1976.

[2] Peter Auer, Nicold Cesa-Bianchi, Yoav Freund, and Robert E. Schaplrc Gambling in a ngged
casino: the adversarial multi-armed bandit problem. In Proceedings of the 36th Annual Sym-
posium on Foundations of Computer Science, 1995.

[3] Kathryn Chaloner and Isabella Verdinelli. Bayesian experimental design: a review. Statistical
Science, 1995.

[4]1 Vincent A. Cicirello and Stephen F, Smith. The max k-armed bandit: a new model of explo-
ration applied to search heuristic selection, In The Tiventieth National Conference on Artificial
Intelligence (AAAI), 2005.

: [5] David A. Cohn, Zoubin Ghahramani, and Michael 1. Jordan. Active learning with. statistical
models. In Advances in Neural Information Processing Systems 7 (NIPS), 1995.

[6] D. Dobkin, D. Gunopoulos, and S. Kasif. Computing optimal shallow decision trees. In
International Workshop on Mathematics in Artificial Intelligence, 1996.

[7} Michael Duff. Optimal learning: computational procedures for Bayes-adaptive Markov Deci-
sion Processes. PhD thesis, University of Massachusetts Amherst, 2002.

[8] U. Fayyad and K. Irani. Multi-interval discretization of continuous-valued attributes for classi-
fication learning. In Proceedings of the Thirteenth International Joint Conference on Artificial
Intelligence (IJCAI), 1993.

[9] Russell Greiner, Adam J. Grove, and Dan Roth. Learning cost sensitive active classifiers.
Artificial Intelligence, 2002,

- [10] David G. Heath, Simon Kasif, and Steven Salzberg. Induction of oblique decision trees. In
Proceedings of the Thirteenth International Joint Conference on Artificial Intelligence (LICAI),
1993.

(11] David Heckerman. A tutorial on learning in bayesian networks. In Learning in Graphical
Models. The MIT Press, 1999.

{12} S. Hettich, C.L. Blake, and C.J. Merz. UCI repository of machine learning databases, 1998.

[13] David Hoel and Milton Sobel. Comparisons of sequential procedures for selecting the best
binomial population. In Sixth Berkeley Symposiun on Mathematical Statistics and Probability,
1971.

(14] - Aloak Kapoor and Russell Greiner. Learning and classifying under hard budgets. In The
Sixteenth European Conference on Machine Learning (ECML), 2005. :

[15) Aloak Kapoor and Russell Greiner. Reinforcement learning for active model selection. In
International Workshop on Utility-Based Data Mining (KDD), 2005.

[16] Michael Kearns, Yishay Mansour, and Andrew Y. Ng. A sparse sampling algorithm for near-
optimal planning in large markov decision processes. Machine Learning, 2002.

[17] Daniel J. Lizotte, Omid Madani, and Russell Greiner. Budgeted learning of naive-bayes clas-
sifiers. In Proceedings of the Nineteenth Annual Conference on Uncertainty in Artificial Intel-
ligence (UAI), 2003, .

40

Reproduced with permission of the copyright owner. Further reproduction prohibi{ed without pefmission.

[18] Omid Madani, Daniel J. Lizotte, and Russell Greiner. Active model selection. In Proceedings
of the Twentieth Annual Conference on Uncertainty in Artificial Intelligence (UAI), 2004.

[19] Omid Madani, Danicl J. Lizotte, and Russell Greiner. Active model selection. Technical report,
University of Alberta, 2004.

[20] Prem Melville, Maytal Saar-Tsechansky, Foster Provost, and Raymond Mooney. Active
feature-value acquisition for classifier induction. In The Fourth IEEE International Confer-
ence on Data Mining (ICDM), 2004,

{21] Ron Musick, Jason Catlett, and Stuart Russell. Decision theoretic subsampling for induction
on large databases. In Proceedings of the Tenth International Conference on Machine Learning
(ICML), 1993.

[22] Foster Provost, David Jensen, and Tim Oates. Efficient progressive sampling. In Proceedings
of the fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mmmg
(KDD), 1999.

[23] Herbert Robbins. Some aspects of the sequential de51gn of experiments. Bulletin of the Amer-
ican Mathematical Society, 1952.

\ [24] Sheldon Ross. A First Course in Probability. Prentice Hall, 1997.

[25] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach Prentice Hall,
‘ 2002.

[26] Dale Schuurmans and Russell Greiner. Sequential pac learning. In Proceedings of the Eighth
Annual Conference on Computational Learning Theory (COLT), 1995.

[27] Richard S. Sutton. Learning to predict by the method of temporal differences. Machine Learn-
ing, 1988

[28] RJchard S. Sutton and Andrew G. Barto. Reinforcement Learning. The MIT Press, 1998.

[29] John N. Tsitsiklis and Benjamin Van Roy. An analysis of temporal-difference learning with
function approximation. IEEE Transactions on Automatic Control, 1997.

[30] Peter Turney. Cost-sensitive classification: empi'rical evaluation of a hybrid genetic decision
tree induction algorithm. Journal of Artificial Intelligence Research, 1995.

[31] Peter Turney. Types of cost in inductive concept learning. In Workshop on cost sensitive
learning (ICML), 2000.

[32] Tao Wang, Daniel Lizotte, Michael Bowling, and Dale Schuurmans. Bayesian sparse sampling
for on-line reward optimization.. In Proceedings of the Twenty-Second International Confer-
ence on Machine Learning (ICML), 2005,

[33] Gary M. Weiss and Foster Provost. Learning when training data are costly: the effect of class
distribution on tree induction. Journal of Artificial Intelligence Research, 2003.

4]

Reproduced with permission of the copyright owner. Further reproduction prbhibitéd without permiséion.

Appendix A

Proofs

Preface to Propositions 1 and 2

To simplify the proofs of Proposition 1 and 2, we prove them under the following value function
definition: ' ’

Vi(si)=E (Z(’YiTH-t‘W, St)) . (A1)

=0
Note that this definition differs trivially from the one given in Chapter 2, because we include the
* reward received for reaching state s, as part of V7 (s,). This small change in “accounting” simplifies
: the proofs of Proposition 1 and 2 without changing thei_r effective meaning. Nevertheless, after
":observing the way we prove the results here, it is easy to see that both propositions also hold under

ihe alternate value function definition of Chapter 2.

A.1 Proposition 1

‘Let S+h‘ =(b’, al,ﬁl,...ai+1,ﬁi,...a,,,,3n)
and st = (V, a1, Br,...0,Bi+1,...an, Bn)

We prove the result by induction on the remaining budgét I/, For the base case, let ¥ = 0.

S oy a
. Now V7™ (sth =max(ot) e L L L)
: (‘) ar+ b o + 06 +1 ‘ an+0Bn/:
and V7 (sth) = max (il et n)

ar+P’ e+ B+l an+ B

" Since the latter max is term by term greater than or equal to the former max, it follows that

VT (sth) > V7 (sH4) for the base case, b = 0.
 For the inductive step, assume the result holds for ' < (j — 1), and let b = j. We will use

42

Reproduced with permission of the copyright owner. Further reproduction prohibitéd without perf’nission!

_ s*ti+hi (o denote the state resulting from st after coin Cy is flipped, turns up heads, and reduces

- the budget to b = j — 1. We prove the inductive step by considering two mutually exclusive cascs.

Case]: The optimal action to take from (s**) is to flip some coin Cy, # C;.

VT (sth) = SV (st o B YT (sHekte) (dofinition VT (s1H))

T ay+Bk
L A sty 4 m%:V" “(sth+) (inductive hypothesis)
< Vv (sth) (definition V™ (s14))

:-: Case 2 The Optlm'il action to take from (s74) is to ﬂlp coin C;.

VT (sth) = BV (st bR 4 By (sthette) (def. V™ (sF4))

aT BT BT
s m‘g—_ﬁV" (sthithi) + ;;‘,_%;f.ﬁvﬂ (stte+t) . (inductive hyp.)
aS u‘TﬁZTT.IV" (sthithe) 4 ;;_rﬁ,_,_—lv" (s7h +4) . (inductive hyp)
V' (sth) ‘ _(def. v (5“"

A

Thus, the result holds for all possible cases, completing the inductive step.

A.2 Proposition 2

* The result is proved via induction on the remaining budget b’. For the base case, let ' = 0.

* — oy Qn
Now V™ (s)= max (aﬁi‘lﬁx VU et T an'i-ﬁn)

T8y — ay aj+1 ay
and V7 (3) = max(01+ﬁ1""ai+ﬂi+1"'(Xn+ﬂn)

Since the latter max is term by term greater than or equal to the former max, the base case holds.
For the inductive step, assume the result holds for ' < (j — 1) and let &’ = j. We will use s*"* to
denote the state resulting from s after coin Cy, is flipped, turns up heads, and reduces the budget to

U =3 — 1. We prove the inductive step by considering two mutually exclusive cases.

~Case]: The optimal action from s is to flip some coin Cr # Ci.

V™(s) = ukm e AR Ched IR +m B V™ (s*tk) (Definition of V™" (5))
Y (5H) (Inducligl_e hypothesis)

:'. < oy V1r (q"'h") +

T m.+ﬁk

<VT() (Definition of V™" (3))

Case 2: The optimal action from s is to flip coin C;.

V() = ;—;‘T,—V" (s+h‘) ;'%';ﬂ—‘V"'(s*“) (Definition of V™ (s))
43

Reproduced with permission of the copyright owner. Further reproduction prohibited without pérmission.

a7t (gthy 4 —-’L—V”»‘f(é”‘) * (Inductive hypothcsis)

< Lot wyt-Bi
N | ., . ; ;) ¢ add. L el
< aﬁ'—;?‘ﬁV" (8t + ZT%%WV" (8%4) (Proposition 1)
< V™ (8) (Definition of V™ (3))

Tﬁus, the result holds for both p’ossiblc cases, completing the inductive step.

A.3 Proposition 3

We use a non-terminal state to obtain the result. Consider a state, Q, in which b = 1, therc exists
two Beta(3, 2) coins, and (n — 2) Beta(2, 2) coins. It is easy to verify (using Equation 2.3) that the
optimal action in Q is strictly to flip a Beta(3, 2) coin. To prove the proposition, we show that BR
‘encounters at least g different variants of Q in which it chooses to flip a Beta(2, 2) coin.

Let there be n = g -+ 2 coins, and a budget of b = 2n + 3. Notice the budget is such that state Q
is guaranteed to occur under BR’s strategy. In fact, Q occurs multiple times because there are (g
distinct ways to place the two Beta(3, 2) coins. We also note that since the number of tails on all n
coins is_equal, we are guaranteed that BR bwill be currently flipping the first coin in the set. Thus,
BR will make a suboptimal dccision'whenever it reaches state Q with the first coin being one of the

n—1 A
Beta(2, 2)s. Observe that there are 9 distinct versions of state Q in which the first coin is a

Beta(2, 2). Now the proposition follows from the fact that: (n ; 1) = ("—1)2("_2) = g g+21)’JP =g
“forallg > 1.

A.4 Proposition 4

We use two lemmas to aid in the proof. The first is a standard result from the theory of partitions [1]: .

Lemma 1 There are (Z: 11) ways to express an integer n > 1 as the sum of exactly b positive

integers.

while the second lemma can be derived from the first [24]:

Lemma 2 There are E;’.___l (? : ;) (;’) - (n :EI 1) ways to express an integer n > 1 as

 the sum of b nonnegative integers. '
Letd = |Y| 3, | X;|. Working from the bottom-up, the dynamic program (dp) must begin by calcu-
lating the value of all possible terminal states. Using our Naive Bayes assumption and the unit cost
of features, each unique terminal state corresponds to a complete al]ocatioﬁ of the learning budget'
by, over the d Dirichlet parametcrs.‘, Thus, the number of distinct terminal states (that the dynamic
program has to solve) is equal to the number of ways to express the learning budget by, as the sum
of d nonnegative integers. Using Lemma 2, the dp computes the value of

(b +d~1)!

A -1)! (A2)

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

" states at the bottom level; using Stirling’s formula on each factorial, we get
: ‘ 4 g

(b +d=1) S
‘ (bd-1)t
(b=t)Pe (bugkd=1)41 /ol 7 d — 1)
by, d-1 >
V2mbe /: 2m(d = 1)(1 + 1—11,,-,:)(1 + “11(«}—1))
' : ~i\b —1\d—-1
(e (e

| | : 2vVarVi—1
(5" () e 0)

~ and the result follows using ¢t = (d — 1).

A.5 Proposition 5
To prove Proposition 5, the following lemma is required.

Lemma 3 Let t/:eb Naive Bayes assumption hold, and consider any set D of Dirichlets over the
feature-class pairs and a bounded active classifier BACp (with bound bg) constructed from D,
Given any set of Dirichlets D' where D' can be made equal to D by specifying exactly one proper
permhlation Jor each feature, there exists a bounded active classifier BACp: (also with bound bc)

- constructed from D' sich that the expected error of BACp is equal to the expected error of BACp:.

-We prove this lemma first, before moving on to Proposition 5. Let P(.) p denote a probability under
D, and P(.)p denote a probability under D’. Let b be a branch of BACp, which, without loss of
generality, specifies some feature values (X; = =i, X; = x;), and has classification label Y = y,

Then the éxpected_accuracy of branch b is

‘ P(Xi=$i,Xj =:vj,Y=y)D ':
P(Xi = z:|Y =y)pP(X; = 2;]Y =y)pP(Y =y) =
P(X; = zi|Y = y)p P(X; = z5|Y =), P(Y =)

. where z} is the image of z; under the proper perfr_:utation for X;. Thus we have converted a
“branch b of BACp into a new branch I, where the expected accuracy of b’ under D’ is the same as
the expected accuracy of b under D. We can repeat this conversion for each branch of BACp to get
a set of new branches which, when summed together, have the same expected accuracy as BACp,
Of course, since lhe expected misclassification error is 1—(expected accuracy), the new branches
have the same expected misclassification error as BACp as well.
All that remains to be shown is that the set of new branches forms a valid BAC with bound bg.
To see this, note that we can apply our transformation by doing a preorder traversal of BACp, where
at each non-leaf node specifying fealhre X, we reorder its subtrees using the proper permutation

" for feature Xy. A reordering of subtrees cannot invalidate the BAC, nor can it increase the bound

45

Reproduced with permission of the copyright owner. Further reproduction prohibitéd without 'pe.rm\ission.

be. Once the entire tree has been lraversed we are guarantéed to have applied our transformatlon to
each feature of each branch, ensuring that each branch has been fully converted. The convcncd tree

is the desired BAC .
- This completes the proof of the lemma. Now we can prove the original proposition.

:Let us adopt the notation that Dy, denotes the Dirichlets of state sq. Further, let Dy, + (ijd)
denote the Dirichlets of state s, after observing Xi = donaY = jinstance. Finally, let f; denote
the proper permutation for feature Xj;, and dom(X;) denote the domain of feature X;.

The proof follows from induction on by,. In the base case, b = 0. Since no learning budget
remains in.state s, or sp, there is'no action to take, and hence trivially state s, and s, have the
same (null) optimal action.- When b, = 0 the value of state s, under an optimal policy is Simply
the expected misclassification error of the BAC* constructed from state s,’s Dirichlets. By Lemma
3, state s, must have a corresponding BAC with exactly the same expected misclassification error.

- Furthermore, the value of slate s, under an optimal policy cannot be any less, for if it were, then
Lemma 3 implies that state s, must have a corresponding BAC with lower expected error, which
is a contradiction to the definition of BAC*. Thus states s, and s, have identical values under the
optimal policy for the base case.

For the inductive step, assume the result holds for iy, = n — 1, and let states s, and sp havé
br = n. Now conéider taking any initial action from state s,, and then following an optimal policy.
Let V™ (sq|X:,Y = j) denote the value of purchasing feature X; on a random Y. = j instance

from state s4, and then following an optimal policy. We have:

VT (sl XY =) =
Cacdom(xyy P(Xi = dlY = §)p, V™ (Ds, + (i7d),br =n—1) =
S iedom(xyy P(Xi = (@Y = 5)p,, V™ (Ds, + (ijd), by =n~1) =
Zdedom(x y P(Xi = fi(@)Y = j)p,, V™ (Ds, + (ij fi(d)), bL =n-1)=
V" (s X3, Y =)

where the second to last equality follows by an application of the inductive hypolhesis, since. Dg, +
(4jd) can be made equal to Ds,, -+ (27 fi(d)) by using the r proper permutations, one for each feature. .
Thus, we have just shown that the value of an action in state s, is equal to the value of the same
action from state sy, when the action is followed by an optimal policy. This implies that the value of
the two states under an optimal policy is equal, and that the two states have identical optimal actions.

This completes the inductive step.

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without pefmission.

Appendix B

Featurés for RL Function
Approximation

'B.1 Feature Groups

The following list describes the features that were used to approximate the value fuhction for our

RL agents in Chapter 2.
Budget
. remginihg budget (')
Beta Hypeiparameters
e qa; Yi=1l.mn
e B Vi=1l.n
" Means and St;\ndard Deviati'oné
M Vz =1l.n
oo Vi= 1..n"
’ Mean Stats
o max; jli
® min; j;
.« S
Lookahead St:;;ts

Cagkb
® MaXi G5

g ajtb’ ?1
Z(at b)
[] - Y

n

.47

Reproduced with permission of the copyright owner. Further reproduction prohi\bited Without\’permission.

- Confidence Interval Stats
o max; (i + 1.96@) (95% interval) -

® . max; ([t,i+1.280i) (80%inlcrval) '

max; (ui + 0.670%) (50% intdrval)

max; (u; + 0.1260;) (fO% interval)
>i(pi + 1.960;)

e Z,(uz + 0.1260;)

e mak; (ui + b x 07)

. Zi(/l; + V' x 03)

B.2 Alternate Featurés

This section describes several other features that we experimented with when trying to appro}(imate

the value function for our RL agents. Similar to the results of Chapler 2, these alternate feature were

unable to consistently beat the‘simplevheuris{ic policies.

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without perrhission.

' Table B.1: Other features tested for RL function approximation ‘ “ , : :

" Feature Comments .
:maxi g :
min; oy
2 00
standard dev. of greedy coin:
. standard dev. of max mean coin . ‘
max SCL score on any coin helps simulate SCL.
max # of flips on any.coin helps simulate RR
min # of flips on any coin ‘helps simulate RR
max # of heads on any coin ;
min # of heads’on any coin
.max # of tails on any coin helps simulate BR
min # of tails on any coin

max |s; — pi]
min |j; — pyl
max |o; — ;]

min |o; — o}
max |o; — o)
min |a; — ajf
max |8; — ﬂJI‘
min Iﬁt - |
max; gy ﬂ.
min; 5

max # of identical coins
max; [; X max; o;’
PRI

b
max, Zx—«?-%—-kb—’ X max; 0;
o
E: ai-+0i+b X Zl gi

. - min # of tan]s for the max mean coin to lose its max mean spot
" min # of heads for a non-max mean coin to become max mean coin

* helps simulate BR

49

Reproduced with permission of the copyright owner. Further reproduction pr.ohib.ited without permiééion.

