
Accelerating FPGA Design Space Exploration
Using Circuit Similarity-Based Placement

Xiaoyu Shi1, Dahua Zeng1, Yu Hu2, Guohui Lin1, Osmar R. Zaiane1

1. Computing Science Department, University of Alberta
2. Electrical and Computer Engineering Department, University of Alberta

ABSTRACT
This paper describes a novel and fast placement algorithm for field
programmable gate array (FPGA) design space exploration. The
proposed algorithm generates the placement based on the topolog-
ical similarity between two configurations (netlists) in the design
space. Thus, it utilizes the sharing of reusable information dur-
ing the design space exploration and avoids the time-consuming
placement computation like versatile place and route (VPR). Tested
on logic-level and algorithm-level design space exploration cases,
our similarity-based placement accurately depicts the “shape” of a
design space and pinpoints the designs which are of most interest
to IC designers. Moreover, a turbo version of circuit similarity-
based placement performs an average of 30x (up to 100x) faster
than VPR’s while still achieving comparable placement results.

1. INTRODUCTION
An FPGA design offers a variety of customizations by vary-

ing design parameters. Those parameters include decisions at the
algorithm level (e.g., simple instruction multiple data (SIMD) or
pipeline) or at the architecture level (e.g., cache and bus structures);
options at high-level synthesis (e.g., scheduling and resource bind-
ing tradeoff); combinations of various logic synthesis and opti-
mization (e.g., Berkeley ABC toolset [1]). Efficiency of a design
space exploration tool is of paramount importance for designers to
quickly identify a small set of favorable design parameter combi-
nations (i.e., configurations) for a multi-objective design. How-
ever, FPGA application designers still heavily rely on the general
computer-aided design (CAD) tools (e.g., Altera Quartus or Xil-
inx ISE) to generate every single configuration due to the lack of
efficient FPGA design space exploration tools.

Previous work on accelerating design space exploration can be di-
vided into two categories, (1) methods that minimize the number of
configurations to be evaluated [6], (2) methods that generate design
evaluation by modeling [9] [4] [12]. The runtime for generating
(i.e., synthesizing) one configuration is crucial for the efficiency of
both methodologies. In this paper, we accelerate placement, one
of the most time-consuming phases in FPGA synthesis, to increase
the efficiency of generating each configuration in the design space.

A unique property of design space exploration problem is the
existence of similarities between netlists of different configura-
tions. Such similarities include both local similarity and global
similarity. The local similarity is due to the use of common prim-
itives (e.g., digital signal processing (DSP) modules or macros)
in different configurations. The global similarity exists because
the characteristics of the application are shared by all configura-
tions that implement it. This property is illustrated by an example
of an algorithm-level design space exploration problem with two
implementation algorithms (i.e., RAG-n [3] and Hcub [20]) of a

<<2

4x

<<3

8x

<<2

4x

-

7x

+

5x

+

11x<<2

28x

+

161x+

29x

<<8

41216x<<9

14848x

<<4

176x

<<5

160x

<<8

1792x

+

183x

<<8

46848x

X

Y1 Y2 Y4 Y3

<<6

64x

<<3

8x

-

7x

+

71x<<4

112x

+

29x

<<8

1792x
<<3

232x

<<8

41216x

+

183x

<<2

28x

<<9

14848x

-

161x

<<8

46848x

X

Y4 Y2 Y3 Y1

(a) RAG-n (b) Hcub

Figure 1: Constant multiplier blocks generated by
CMU SPIRAL (integer constants: 58, 183, 161, 7;
bit width is 8)

constant multiplier block. The algorithm-level schematics of these
two implementations (generated by CMU SPIRAL [2]) are shown
in Figure 1. They both implement the following constant multiplier
block:

Y1 = 58 ·X,Y2 = 183 ·X,Y3 = 161 ·X,Y4 = 7 ·X (1)

where X is the input and Y1, · · · , Y4 are outputs, and the precision
(bit width) is 8 bits. Although there is a significant difference
between the structures of these two configurations at the first glance,
they both use adders, subtractors and shifters as building blocks
(primitives), which lead to a local similarity. When these algorithm
level designs are mapped to FPGAs, such local similarity results
in similarities of local clusters that contain look-up tables (LUTs)
or DSPs used to implement these primitives. In addition, both
configurations generate the constant multiplication for equation (1),
which results in global similarity. Specifically, the I/O (X and Ys)
of both configurations are identical; there are identical internal
structures (e.g., subgraph 28x → 29x → 14848x is shared by
both implementations) as highlighted in Figure 1 using different
colors; both configurations are sparse directed acyclic graph (DAG)
structures, and they are topologically similar.

Our approach takes advantage of such properties of the design

space exploration problem to accelerate the process of generating
placements for all configurations in the design space. In a nut-
shell, our similarity-aware placement starts with the computation
of a reference placement for a particular configuration using an
existing FPGA placer (e.g., VPR). Once this reference placement
is generated, the placements for the rest of configurations in the
design space are generated very efficiently based on this reference
placement by exploiting the similarity property. Figure 2 shows
the CAD flow of the design space exploration with similarity-aware
placement.

Generate Next

Configuration

Reference Config?

Find Circuit

Similarity

Reference

Config

Generate Initial

Placement

Placement

Yes

No

Similarity

Matching
VPR Place

Reference

Placement

Refine

Placement

Design

Parameters

Configuration

More Config? Exit

Yes

No

Figure 2: CAD flow for the design space exploration
using circuit similarity-based placement

The kernel of the proposed placement is the circuit similarity
algorithm, which performs a fast and automatic detection of the
similarity (both local and global) between a new configuration and
the reference configuration. The similarity is detected based on the
topological structures between these two netlists and corresponding
node matchings are obtained. Based on the detected circuit similar-
ity, we then generate an initial placement for the new configuration.
A placement refinement is finally applied to the initial placement
results.

To verify the effectiveness of the proposed similarity-aware
placement for accelerating design space exploration, we have per-
formed experiments in two design space exploration problems, at
the logic-level and algorithm-level, respectively. In both cases, ex-
perimental results show that our circuit similarity-based placement
captures the characteristics of the design space with accurately esti-

mated wire length and critical delay, and pinpoints the best designs.
Moreover, our approach achieves averaged 30x speedup compared
to VPR’s placement.

The remainder of this paper is organized as follows. Section 2
illustrates the overall circuit similarity-based placement CAD flow
for design space exploration with an example. Section 3 provides
preliminaries for this paper. Section 4 describes the circuit similarity
algorithm. Section 5 experimentally demonstrates logic-level and
algorithm-level design space exploration. The paper is concluded
in Section 6.

2. MOTIVATING EXAMPLE
In this section, we illustrate the proposed similarly-aware place-

ment for a logic-level design space exploration problem. The design
parameters explored in this example are the logic synthesis options
in Berkeley ABC tool set [1]. The purpose of the design explo-
ration is to identify the impact of different combinations of logic
optimizations on the wire length and timing. MCNC benchmark
[21] “des” is used as the application to be implemented. Suppose
the reference configuration is synthesized by the following ABC
script:

b; rs; rs -K 6; b; rsz; rsz -K 6; b; rsz -K 5; b

where each command is a logic optimization in ABC, e.g., “b”
means balance the and-inverter graph and “rs” means the logic
rewriting using Boolean substitution. The placement of the refer-
ence configuration is generated by VPR and the layout is shown in
Figure 3(a) with nets toggled in VPR GUI. Next we generate a new
configuration, which is synthesized by the following ABC script:

st; rw -l; b -l; rw -l; rf -l; fraig; rw -l; b -l; rw -l; rf -l

The similarity of the netlists for the reference and the new configura-
tion is obtained by a circuit similarity algorithm (detailed in Section
4). Based on this similarity, the layout of the initial placement is
shown in Figure 3(b), which is obtained based on the placement
of the reference configuration. As circled in the figures, the initial
placement using circuit similarity captures the main characteristics
of the topological similarity between the reference and the new
configurations, and thus results in a well optimized initial layout.
Given this initial placement, a low-temperature annealing process
is used to refine the placement and final placement result is shown
in Figure 3(c). For comparison, Figure 3(d) shows the layout of
the random initial placement produced by VPR. Obviously, the ini-
tial placement generated by circuit similarity has significantly less
wire length compared to the random placement. This shows that
the circuit similarity algorithm successfully finds the internal cor-
responding topologies of both netlists, and therefore makes a good
decision on the relative position of clustered logic blocks (CLBs)
to be placed. It is also interesting to compare the highlighted
topologies of the layouts of the final placement between the new
configuration and the reference configuration (Figure 3(c) and Fig-
ure 3(a)). Although different logic optimizations are applied, the
resulting layout shares a similar layout. The final placement pro-
duced by VPR is also shown in Figure 3(e) for comparison. Table
1 shows the numerical comparisons of these layouts, where delay
cost quantifies the delay of a route from a net source to any of its
sinks. The placement generated by our similarity-aware algorithm
results in comparable wire length, better critical path delay and less
placement time compared with the placement generated by VPR.

3. PRELIMINARIES

(a) placement of (b) initial placement (c) final placement (d) initial placement (e) final placement
reference config of circuit similarity of circuit similarity of VPR of VPR

Figure 3: Placement results for circuit “des”. (reference configuration has 1245 CLBs and 1501 nets, the
new configuration has 1215 CLBs and 1471 nets)

Table 1: Status of layouts of Figure 3
Layout Wire Delay cost Critical delay Runtime (s)
CS-init 306 5.93E-05 - -

VPR-init 1087 1.40E-04 - -
CS-final 237 5.08E-05 8.28E-08 13.38

VPR-final 221 4.98E-05 1.01E-07 28.42

3.1 Design Space Exploration
For multi-objective optimization, a pareto-optimal point repre-

sents a design point or a configuration for which no other configu-
ration is better in the objective function space. A common goal of
design space exploration in multi-objective optimization is to find
pareto-points, which benefit designers seeking to make appropriate
design tradeoffs for given constraints. Pareto-point exploration is
time-consuming due to the exponential increase of the number of
configurations w.r.t. the tuneable parameters and the long runtime
required by the current FPGA CAD tools. For example, current
configurable soft cores (e.g., Xilinx Microblaze cores) can have
thousands of configurations [16] and the runtime for evaluating one
configuration of Microblaze by Xilinx platform studio is about 15
minutes [6]. Obviously, a straightforward evaluation of all config-
urations for pareto-points is infeasible.

Besides pareto-points, which only characterize a set of “good
configurations" in the design space, people may also be interested
in finding the “shape" of the entire design space, which includes both
“good configurations" and “bad configurations". The knowledge of
“bad configurations" is helpful for algorithm developers to diagnose
the design and for CAD tool designers to analyze the tool flow. For
instance, the combination of two logic optimizations may result in
a worse design than applying them individually. A full profiling of
the design space will reveal such phenomenon and help CAD tool
designers improve the tool.

3.2 Graph Similarity
Given two graphs or networks, there are multiple ways to de-

fine their similarity. The isomorphism method identifies a bijection
between the nodes of two graphs which preserves (directed) adja-
cency [13]. The edit distance method determines the minimum cost
transformation from one graph to another by giving a cost function
on edit operations (e.g. addition/deletion of nodes and edges) [5].
The common subgraph method identifies the “largest” isomorphic
subgraphs of two graphs [10]. These methods all consider global
topological information. However, the time complexity of these
methods is NP-hard. Statistical methods provide linear time com-
plexity by assessing aggregate measures of graph structure (e.g.

degree distribution, diameter, betweenness measures) but lack of
global topological information[14]. Therefore, in order to take
consideration of both time complexity and global topological infor-
mation, our circuit similarity algorithm employs iterative methods,
which are based on the theory that two graph elements (e.g., edges
or nodes) are similar if their neighborhoods are similar [19].

Different algorithms, including similarity flooding [15], simRank
[7], and the coupled node-edge algorithm [22], have been proposed
to compute graph similarity based on the iterative definition. For
our algorithm, we use an iterative graph similarity algorithm for
molecular graphs [11], which takes advantage of the graph sparsity,
one of the properties of a circuit graph. Before presenting this
algorithm, Table 2 describes all frequently used variables.

Table 2: Summary of variables in iterative similarity
algorithm

Variable Description

X
(n)
i,j Similarity score between node i in graph G(V)

and node j in graph G′(V ′) in iteration n
vi A node in graph G
v′j A node in graph G′

t The number of iterations
n(v) The set of all adjacent nodes of node v
π An injective map from n(vi) to n(v′j), if |n(vi)| <

|n(v′j)|
An injective map from n(v′j) to n(vi), if |n(vi)| ≥
|n(v′j)|

α A weight constant within interval (0,1)
ε A terminating threshold for iterations
M An upper bound for number of iterations

kv : V → V ′ A predefined inter-similarity between two nodes
ke : E → E′ A predefined inter-similarity between two edges,

where (vi, v) is an edge in graph G and (v′j , π(v))

is an edge in graph G′

in(v) The set of all adjacent nodes that have an edge
entering node v

out(v) The set of all adjacent nodes that have an edge
leaving node v

The iterative similarity algorithm is summarized in Algorithm
1. In each iteration, the algorithm computes the similarity score,
X

(t)
i,j , between each node pair (vi, v

′
j) in two graphs, where vi ∈ G

and v′j ∈ G′. The similarity score of a node pair is a real value
between 0 and 1. The higher the similarity score of a node pair
is, the more likely these two nodes are matched together. This
score is updated based on the values of their adjacent node pairs
obtained in the previous iteration and the predefined inter-similarity

between two nodes/edges. The predefined similarity is used to
capture non-topological connections between two graphs. The al-
gorithm terminates when the difference between the total similarity
scores in two consecutive iterations is smaller than ε, or the number
of iterations reaches an upper bound M .

Algorithm 1 Similarity of G and G′

Initialize X
(0)
i,j

while |
∑
X(t) −

∑
X(t−1)| > ε and t < M do

if |n(vi)| < |n(v′j)| then

X
(t)
i,j = (1− α)kv(vi, v

′
j)

+ αmax
π

1

|n(v
′
j)|

∑
v∈n(vi)

X
(t−1)
v,π(v)

ke((vi, v), (v
′
j , π(v)))

else

X
(t)
i,j = (1− α)kv(vi, v

′
j)

+ αmax
π

1

|n(vi)|
∑

v
′∈n(v′j)

X
(t−1)

π(v
′
),v

′ ke((vi, π(v
′
)), (v

′
j , v

′
))

4. CIRCUIT SIMILARITY

4.1 Circuit Similarity Detection
Algorithm 1 is designed for undirected molecular graphs [11]

where the computational complexity is too expensive to handle
real circuits. In this subsection, we first adapt Algorithm 1 to
consider a directed circuit graph and then present two techniques to
significantly improve both time and space efficiency of the circuit
similarity detection.

One unique constraint for circuit similarity detection is that the
matching of the corresponding primary inputs (PIs) and primary
outputs (POs) of the two circuits must be guaranteed. Therefore,
the similarity score for a pair of corresponding PI/PO nodes is set
to be constant 1 and is not updated during the iteration. As a result,
such a predefined PI/PO matching effectively provides extra hints
for the iterative similarity detection process and generates better
matching between the two circuits. Intuitively, for those node pairs
close to PI/PO nodes, higher scores will be obtained because of
the propagation of the constant similarity score set in PI/PO node
pairs. Note that other hints such as internal registers and naming
matching information obtained in logic synthesis can also be used
as predefined matching to enhance both the quality and speed of the
circuit similarity detection.

For those internal nodes without predefined similarity, we replace
kv with X(t)

i,j , and ke with 1. Instead of updating similarity scores
based on all the neighbors, we can perform the update for edges that
leave the nodes and edges that enter the nodes, separately. More
specifically, given the two graphs, we initialize the similarity scores
of all pairs of nodes to be 1. In each iteration, for |in(vi)| <
|in(v

′
j)| and |out(vi)| < |out(v

′
j)|, the update of similarity score

X
(t)
i,j is modified as follows

X
(t)
i,j = (1− α)X

(t−1)
i,j + α

1

|out(vi)|+ |in(vi)|

[max
π

(
∑

v
′∈out(v′j)

X
(t−1)

π(v
′
),v

′) + max
π

(
∑

v
′∈in(v′j)

X
(t−1)

π(v
′
),v

′)]

In our experiment, we find α = 0.75 gives the best matching
quality. After obtaining a similarity matrix that describes a complete
bipartite graph, where the weight associated with each edge denotes
the similarity score of two nodes, we can then compute a maximum
matching in this bipartite graph to obtain a node matching between
the two graphs. The min-cost network flow [17] is used to compute
the maximum matching in our experiment.

4.2 Performance Enhancement
In practice, it is infeasible to compute the similarity scores of

all |V | · |V ′| node pairs for large circuits. In this subsection, we
present two pruning techniques for DAGs to reduce the number of
pairs that need to be updated so that we can reduce both the runtime
and storage requirement.
Support Constraint. Two internal nodes are less likely to be
matched if they share few predefined matchings in their supports.
A support of a node is the set of nodes with predefined matchings
in the transitive fanin or fanout cone of this node. Formally, for two
nodes v ∈ G and v′ ∈ G′, the support constraint requires

min(
XSP (v),SP (v′)

|SP (v)| ,
XSP (v),SP (v′)

|SP (v′)|) ≥ β

where XSP (v),SP (v′) denotes the support similarity of v and v′,
which is the sum of similarity scores of all v → v′ node pairs in
their supports, SP (v) is the support node set of v and β ∈ (0, 1]
is a constant. Likely, two nodes with higher supports tend to be
matched together. If the support constraint of the two nodes is not
satisfied, we do not update their similarity score in the iteration. For
example, if β = 1, i.e., we only keep the pairs of nodes that have
exactly the same supporting PIs and POs.
Level Constraint. If only combinatorial resynthesis is involved,
we can convert a circuit into a DAG by removing all registers
and adding the register inputs (outputs) as POs (PIs). Given a
DAG, a topological sort and reverse topological sort can label each
internal node vwith two values, i.e., level(v) and rlevel(v), where
level(v) (rlevel(v)) denotes the length of the longest path from PIs
(node v) to node v (POs). Two nodes with significantly different
(level, rlevel) values are less likely to be matched. Formally, for
two nodes v ∈ G and v′ ∈ G′, the level constraint requires

|level(v)− level(v′)| ≤ Bl, |rlevel(v)− rlevel(v′)| ≤ Br

whereBl andBr are two nonnegative constant integers. For exam-
ple, if Bl and Br are both set to be zero, we only keep the pairs of
nodes that are on the exact same level.

1

10

100

1000

10000

100000

1000000

10000000

100000000

Bl=Br=1 Bl=Br=0 !"#$!% no_pruning

n
u

m
b

e
r

o
f

re
m

a
in

in
g

 n
o

d
e

 p
a

ir
s

Circuits

Figure 4: Effectiveness of the present pruning tech-
niques

We have tested the above two pruning techniques on the MCNC

benchmarks. For each circuit, we run two logic synthesis algo-
rithms (one with ABC command “if -k 4” and the other with “if
-k 4; imfs”) and generate two logic-level netlists. Figure 4 com-
pares the total number of node pairs that updated in the iterative
algorithm with the following five schemes: (a) without pruning
(“no pruning”), (b) using a weak level constraint-based pruning
(“Bl=Br=1”), (c) using a strong level constraint-based pruning
(“Bl=Br=0”), (d) using a weak support constraint-based pruning
(“β=0.5”), and (e) using a strong support constraint-based pruning
(“β=1”). As shown in Figure 4, our pruning techniques reduce the
number of node pairs by three to four orders of magnitude compared
with the total number of node pairs. More specifically, the strong
level constraint-based pruning (“Bl=Br=0”) and the strong support
constraint-based pruning (“β=1”) can prune around 90% and 99%
node pairs, respectively. As a result of the sparsity of the similarity
matrix, the maximum matching algorithm is significantly faster. In
Section 5, we will show that these pruning techniques do not sig-
nificantly degrade the quality of the similarity detection and node
matching when we apply the circuit similarity-based placement on
design space exploration.

4.3 Circuit Similarity-based Placement
As shown in Figure 2, circuit similarity is used to speed up

placement which allows faster design space exploration. More
specifically, given a networkGwhere each node denotes a LUT and
each edge denotes an interconnection between LUTs, the placement
of network G can be obtained by performing a highly-optimized
placement (e.g., VPR [18]). For another network, G′, which is
generated by other design parameters, its placement is generated
by first computing the similarity between networks G and G′, and
finding the correspondence of nodes in these two networks. Based
on such node correspondence, the initial placement of network
G′ can be determined using the placement of network G, e.g., if
node V ′ in network G′ corresponds to node V in network G, V ′

is assigned the same coordinates as node V . Further refinement
(e.g., low-temperature simulated annealing) is applied to the initial
placement of G′ to gain better results.

5. DESIGN SPACE EXPLORATION

5.1 Logic-Level Design Space Exploration

5.1.1 Experimental CAD Flow
The objective of this design space exploration is to identify the

influence of logic-level optimization to a post-layout design. Fol-
lowing Figure 2, the design parameters are logic synthesis and
optimization commands in Berkeley ABC [1]. Although there are
many possible combinations and execution sequences of those com-
mands, in our experiment, we use 19 synthesis scripts provided in
abc.rc from the ABC package, i.e., there are 19 configurations in
this design space exploration case. In the rest of this section, we
follow the same names of each script used in ABC as the index,
e.g., the two scripts shown in Section 2 are named “resyn3” and
“rwsat2", respectively. Interested readers may refer to the “abc.rc”
file provided with the ABC download for details.

The experimental CAD flow is shown in Figure 5. Starting from
19 ABC logic synthesis scripts, we have the resulting synthesized
netlists stored in BLIF file format. Next, a technology mapping
(using ABC command “if -k 4”) is performed on the netlists to
map them into a 4-LUT-based network. Afterwards, the technol-
ogy mapped netlists are packed into CLBs using T-VPack [18] with
“no cluster” option, where each CLB contains one LUT and one
flip-flop. After this point, we compare two CAD flows: (a) circuit

similarity-based flow and (b) VPR from-scratch flow, as shown in
Figure 5. Flow (a) first selects the largest configuration (i.e., the
one with largest number of CLBs) as the reference. Then the ref-
erence configuration is placed using VPR and produces a reference
placement (“.p” file). The reference configuration and its placement
are then used to guide the initial placement of the new configuration
by finding the similarity between the new configuration and the ref-
erence configuration. A low-temperature annealing process using
VPR (initial temperature is set to 0.1) is performed to further refine
the placement results. Flow (b) simply uses VPR to re-place every
single configuration from scratch.

T-VPack:

(no_cluster)

Mapped Netlist

Packed Netlist

Technology Mapping

(if -k 4)

Ref Config?

Circuit Similarity
Ref

Config

Initial Placement

Generation

Placement

Yes

No

Similarity

Matching VPR Place

Ref Placement

(.p)

VPR Place

Flow bFlow a

Low

Temperature SA

19 ABC Logic

Synthesis Scripts

Execute Next Script

Synthesized

Netlist

More Config? Exit

No

Yes

Figure 5: CAD flows used in the experiments for
design space exploration

5.1.2 Experimental Settings
As stated in Section 4, based on different pruning settings, we

develop two versions of circuit similarity. A high-quality version,
CS, uses β = 0.5, Bl = Br = 1 and inner num = 11. A turbo
version, CS-t, uses β = 1, Bl = Br = 0 and inner num = 0.1.
Both CS and CS-t are evaluated in our experiments.

Our proposed circuit similarity algorithm is implemented in C
and evaluated on the 20 applications from the MCNC benchmark.
We collect the results on a Linux server with an 8-core 2.66GHz
CPU and 32GB memory averaged over five runs. The CS2 package

1A factor in VPR which controls the number of moves at
each temperature.

[8] is used to solve the min-cost network flow for the maximum
matching problem in the circuit similarity algorithm.

5.1.3 Experimental Results
Table 3 shows the minimal and maximal CLB number and level

for the design space of each application. The number of CLBs and
levels vary widely in different configurations.

Table 3: Characteristics of the logic-level design
space for 20 MCNC applications over 19 configu-
rations

block# Level
Circuit CI# CO# min max min max

alu4 14 8 652 710 7 10
apex2 38 3 773 926 8 11
apex4 9 19 754 805 7 10
bigkey 452 421 924 1263 3 4
clma 94 115 3731 4221 12 17
des 256 245 1157 1245 6 10

diffeq 332 308 648 712 12 15
dsip 452 421 1106 1554 3 4

elliptic 196 196 375 441 8 11
ex1010 10 10 851 1100 6 10
ex5p 8 63 460 519 6 11
frisc 905 1002 2173 2788 19 26

misex3 14 14 545 680 6 9
pdc 16 40 1836 2159 8 14
s298 17 20 36 43 3 4

s38417 1490 1568 3063 3252 9 10
s38584 1297 1564 3568 3715 8 11

seq 41 35 891 982 6 9
spla 16 46 1718 2074 8 14

tseng 435 507 744 938 12 14

Quality of the initial placement. Table 4 shows the initial
placement quality of CS and CS-t compared to VPR’s initial results.
Due to limited space, we show one representative circuit, “dsip” as
an example. The results for the other circuits are similar. The
“Configuration” column in Table 4 lists the 19 ABC scripts’ names.
Two essential measures in initial placement stage are compared,
the bounding box cost (“initial bb cost” column) and the delay cost
(“initial delay cost” column). The initial placement results gener-
ated by CS and CS-t are significantly better than VPR’s random
initial placement results. CS improves the bb cost and delay cost by
76% and 48% compared to VPR, respectively. This demonstrates
that circuit similarity algorithm indeed discovers the intrinsic struc-
tural connections among different configurations, and thus provides
a quality placement for the design space exploration.

Quality of the final placement. A low-temperature anneal-
ing is applied to the initial placement results generated by our circuit
similarity-based placement. Table 5 compares the final placement
results of circuit “dsip” for 19 designs. We evaluate the final wire
length and the critical delay. For wire length, CS and CS-t produce
the results close to VPR’s final results with 32% and 53% over-
head, respectively. For critical delay, CS and CS-t achieve better
results than VPR, reducing it by 18% and 20%, respectively. This
shows the effectiveness of circuit similarity-based placement that
generates an optimized initial placement which in turn leads to an
optimized final placement. The comparison between CS and CS-t
in Table 5 proves the effectiveness of the proposed pruning tech-
niques as well (in Section 4). CS-t, geared with aggressive pruning
and significantly lower annealing effort, still produces placement
with comparable or even better quality than VPR.

Design space shape characterization. We compare the

Table 4: Initial placement quality comparison of cir-
cuit “dsip” for 19 designs

initial bb cost initial delay cost
Configuration CS CS-t VPR CS CS-t VPR
resyn 363 934 1817 1.02E-04 1.49E-04 2.22E-04
resyn2 363 934 1819 1.02E-04 1.49E-04 2.19E-04
resyn2a 453 453 2184 1.69E-04 1.69E-04 3.11E-04
resyn3 443 494 2189 1.64E-04 1.70E-04 3.07E-04
compress 448 448 2203 1.66E-04 1.66E-04 3.31E-04
compress2 363 936 1785 1.03E-04 1.52E-04 2.21E-04
choice 1943 1978 2020 2.72E-04 2.74E-04 2.72E-04
choice2 1940 1977 1990 2.72E-04 2.74E-04 2.75E-04
rwsat 371 930 1804 1.03E-04 1.53E-04 2.26E-04
rwsat2 448 578 2184 1.64E-04 1.75E-04 3.30E-04
shake 424 518 2151 1.44E-04 1.51E-04 2.93E-04
share 365 936 1778 1.02E-04 1.50E-04 2.19E-04
src rw 458 793 2185 1.48E-04 1.70E-04 2.96E-04
src rs 452 458 2159 1.46E-04 1.48E-04 2.96E-04
src rws 544 841 2172 1.53E-04 1.72E-04 2.93E-04
resyn2rs 365 937 1770 1.03E-04 1.52E-04 2.23E-04
compress2rs 363 936 1809 1.03E-04 1.53E-04 2.22E-04
resyn2rsdc 427 719 2156 1.65E-04 1.83E-04 3.10E-04
compress2rsdc 373 933 1772 1.04E-04 1.53E-04 2.24E-04
geomean 483 802 1989 1.39E-04 1.69E-04 2.65E-04
ratio 24% 40% 1 52% 64% 1

minimal, median and maximal wire length and critical delay pro-
duced by CS and CS-t to VPR. Figure 6 shows the minimal critical
delay curves of all 19 designs for 20 circuits using CS, CS-t and
VPR. The almost identical curves prove that both CS and CS-t can
precisely pinpoint the minimal critical delay design. Due to lim-
ited space, we are unable to show the curves of the median and
maximum. Nevertheless, the curves of both CS and CS-t follow
close to VPR’s. Moreover, the shape of most configurations is ac-
curately matched as well. As an example, Figure 7 shows the wire
length curve for circuit “dsip”. Note that “choice" and “choice2"
include a repetitive call of ABC synthesis command “fraig store",
which stores the current network as one “synthesis snapshot" for
later technology mapping. Such a choice-based logic optimization
may significantly change the topology of the netlist. In the future,
we will investigate improvements to this problem. Although CS-t
produces longer wire length than VPR, Figure 7 shows that CS-t
closely captures the relative wire length of each configuration which
is essentially useful in the design space exploration.

0.00E+00

5.00E-08

1.00E-07

1.50E-07

2.00E-07

2.50E-07

3.00E-07

3.50E-07

4.00E-07

4.50E-07

E
st

im
a

te
d

 c
ri

ti
ca

l
d

e
la

y

Circuits

vpr-min cs-min cs-t-min

Figure 6: Minimal estimated critical delay design
space shape of 20 circuits on 19 designs

Runtime Comparison. Table 6 compares the total runtime2

2Note that the ‘*’ marked time is measured when timeout

Table 5: Final placement quality comparison of cir-
cuit “dsip” for 19 designs

Wire length Critical delay
Configuration CS CS-t VPR CS CS-t VPR
resyn 353 432 267 1.23E-07 1.18E-07 1.63E-07
resyn2 353 432 278 1.26E-07 1.17E-07 1.51E-07
resyn2a 465 523 432 1.25E-07 1.25E-07 1.34E-07
resyn3 464 516 424 1.25E-07 1.22E-07 1.28E-07
compress 465 519 400 1.25E-07 1.19E-07 1.63E-07
compress2 354 434 231 1.19E-07 1.18E-07 1.81E-07
choice 722 735 369 1.30E-07 1.30E-07 1.27E-07
choice2 721 732 346 1.30E-07 1.30E-07 1.54E-07
rwsat 351 433 281 1.21E-07 1.15E-07 1.40E-07
rwsat2 468 518 426 1.26E-07 1.22E-07 1.48E-07
shake 440 507 370 1.20E-07 1.21E-07 1.77E-07
share 352 431 236 1.22E-07 1.18E-07 1.64E-07
src rw 451 512 388 1.24E-07 1.25E-07 1.72E-07
src rs 445 502 394 1.21E-07 1.22E-07 1.24E-07
src rws 441 514 411 1.25E-07 1.22E-07 1.65E-07
resyn2rs 352 429 225 1.18E-07 1.16E-07 1.63E-07
compress2rs 352 435 242 1.24E-07 1.19E-07 1.73E-07
resyn2rsdc 462 516 412 1.23E-07 1.24E-07 1.21E-07
compress2rsdc 352 423 216 1.22E-07 1.16E-07 1.53E-07
geomean 429 496 324 1.24E-07 1.21E-07 1.52E-07
ratio 132% 153% 1 82% 80% 1

0

100

200

300

400

500

600

700

800

W
ir

e
 l
e

n
g

th

Configs

vpr cs cs-t

Figure 7: Final wire length design space shape com-
parison of VPR, CS and CS-t on circuit “dsip”

of placing 19 designs of each MCNC application using CS, CS-t
and VPR. Column “Ref” shows the time to place the reference con-
figuration. Column “CS” and “CS-t” shows the time to generate the
placement for the rest of 18 configurations. Without considering the
time for placing the reference configuration, CS achieves averaged
3x speedup while CS-t achieves averaged 30x speedup with up to
100x compared to from-scratch VPR placement. Since the com-
putation of the reference placement is a one-time cost for a design
space exploration problem of one application, the time used for the
reference placement should be amortized and becomes negligible
as the number of configurations increases.

In practice, one can take advantage of the significant speedup
of CS-t and use it to perform quick design space exploration. For
instance, the total time of exploring the whole design space of 20
MCNC applications with 19 designs is more than 8 hours using
VPR. In contrast, it only takes 37 minutes (including the time for
the reference placement) using our CS-t. More significant speedup
is expected when larger design space is explored.

is invoked. If CS takes longer than the placement time of
the reference configuration, a timeout is invoked and it stops
the program from running.

Table 6: Comparison of total runtime (s) for logic-
level design space exploration. The ‘*’ marked time
is measured with a timeout

Circuit CS CS-t VPR Ref
alu4 113.99 (2x) 6.13 (31x) 188.62 10.37

apex2 122.85 (2x) 7.7 (35x) 267.46 17.03
apex4 187.18* (1x) 8.77 (28x) 246.03 14.89
bigkey 630.69 (1x) 26.71 (27x) 720.96 37.85
clma 1782.7* (1x) 101.42 (25x) 2532.65 143.91
des 183.37 (3x) 20.32 (27x) 549.24 29.38

diffeq 56.09 (7x) 9.13 (42x) 387.89 19.78
dsip 626.48* (1x) 55.92 (14x) 776.66 47.12

elliptic 47.06 (4x) 4.37 (40x) 173.6 9.88
ex1010 229.28* (1x) 72.73 (5x) 336.51 18.54
ex5p 95.55* (1x) 4.18 (33x) 136.49 7.87
frisc 373.98 (8x) 75.43 (42x) 3178.44 176.56

misex3 122.87 (1x) 4.68 (36x) 170.32 11.44
pdc 747.53* (1x) 43.8 (22x) 975.6 55.11
s298 0.94 (5x) 0.32 (14x) 4.45 0.27

s38417 564.45 (15x) 82.99 (100x) 8318.7 445.85
s38584 541.19 (15x) 84.73 (96x) 8155.16 443.59

seq 218.33 (2x) 9 (37x) 337.44 18.52
spla 745.35* (1x) 39.71 (23x) 923.75 53.36

tseng 86.72 (7x) 13.71 (43x) 587.89 33.35
geomean 186.97 (3x) 16.64 (30x) 497.81 28.33

total 7476.6 (4x) 671.75 (43x) 28967.86 1594.67

5.2 Algorithm-Level Design Space Explo-
ration

5.2.1 Experimental CAD Flow and Settings
We now demonstrate the effectiveness of the proposed place-

ment at the algorithm-level design space exploration. The design
is a constant multiplier, where a multiplier block implements a par-
allel multiplication of a variable with a fixed set of constants, i.e.
c1, c2, . . . cn. The design parameter in this exploration is the frac-
tional bits, which controls the precision of the constants, from 7 to
25, resulting in a design space containing 18 configurations3. Given
a fractional bit setting, we use CMU SPIRAL multiplier block gen-
erator to generate the register transfer level (RTL) design of each
configuration based on the Hcub algorithm [20]. The following
constants (accurate to two decimal places) are used for all config-
urations: 0.23, 0.71, 0.63, 0.03, -0.19, 0.03, 0.03, -0.01. Once
we obtain the RTL design, we use Altera Quartus to perform RTL
elaboration and generate a BLIF file from a verilog (.v) file. Other
experimental settings are the same as described in Section 5.1.2.
Table 7 presents the number of CLBs and level for algorithm-level
design space. Since those configurations vary in algorithm level,
the topological structure and circuit size differ considerably com-
pared to logic-level variations. Therefore, it is more challenging to
find the similarities between these design configurations.

5.2.2 Experimental Results
Figure 8(a) shows the wire length-critical path delay space pro-

duced by CS and VPR-based placement for the 18 configurations.
The label besides each point indicates the corresponding config-
uration. For example, “B7” means this point corresponds to the
configuration using Bits = 7. Figure 8(b) shows the same design
space using CS. From these two figures, we can clearly see that CS
and VPR find the same pareto-points, i.e., optimal configurations
of this design space, such as B7, B8 and B9. In addition, the
overall shapes of the two design spaces match well. This proves

3Bits = 16 is abandoned since ABC crashed when synthe-
sized it. So there are 18 configurations in total.

Table 7: Characteristics of the algorithm-level de-
sign space of 18 configurations using CMU SPIRAL

Bits CLB# Level Bits CLB# Level
7 501 35 17 2222 57
8 697 38 18 2356 52
9 814 37 19 2339 60
10 920 41 20 2577 56
11 1115 42 21 2398 54
12 938 43 22 2625 55
13 1085 41 23 2832 55
14 1293 48 24 3289 56
15 1352 48 25 3234 62

that our circuit similarity not only works well at low level logic
synthesis, but also at high level algorithm level. Moreover, in terms
of runtime, CS and CS-t achieve 7x and 30x speedup compared to
VPR, respectively.

B7

B8

B9

B10

B12

B14

B15

B17

B18

B19

B21

B22

B23

B25

1.5E-07

0.0000002

2.5E-07

0.0000003

3.5E-07

0.0000004

0 50 100 150 200 250 300 350 400 450 500

E
st

im
a

te
d

 c
ri

ti
ca

l
d

e
la

y

Wire length

(a) Wire length-delay space of VPR for 18 configurations

B7

B8
B9

B10

B12

B14

B15

B17

B18

B19

B21

B22

B23

B25

1.75E-07

2.25E-07

2.75E-07

3.25E-07

3.75E-07

4.25E-07

0 100 200 300 400 500 600

E
st

im
a

te
d

 c
ri

ti
ca

l
d

e
la

y

Wire length

(b) Wire length-delay space of CS for 18 configurations

Figure 8: Comparison of wire length-delay space of
VPR and CS

6. CONCLUSIONS AND FUTURE WORK
In this work, we have presented our proposed circuit similarity-

based placement for accelerating FPGA design space exploration.
The characteristics of each design can be automatically captured by
finding the similarity between each configuration and a reference
configuration. The experimental results prove that our circuit simi-
larity works well at both logic level and algorithm level. The shape
of the design space can be precisely depicted and design curves
can be well matched. Moreover, our CS-t achieves averaged 30x
speedup compared to VPR placement. From the perspective of both
design space estimation quality and runtime, our circuit similarity

has been demonstrated to be a good tool for efficient FPGA design
space exploration.

For future work, we will combine our circuit similarity with the
existing pareto-point generation methodology [6]. In addition, we
will try to apply our circuit similarity to other applications, e.g.,
FPGA architecture design and FPGA verifications.

7. REFERENCES
[1] ABC: A System for Sequential Synthesis and Verification.

http://www.eecs.berkeley.edu/~alanmi/abc/.

[2] SPIRAL: Software/Hardware Generation for DSP Algorithms.
http://spiral.ece.cmu.edu/mcm/gen.html.

[3] A. G. Dempster and M. D. Macleod . Use of minimum-adder
multiplier blocks in FIR digital filters. IEEE Transactions in
Circuits and Systems-II: Analog and Digital Signal
Processing, 42:569–577, 1995.

[4] A.M. Smith, J. Das, S.J.E. Wilton. Wirelength Modeling for
Homogeneous and Heterogeneous FPGA Architectural
Development. ACM International Symposium on FPGAs,
2009.

[5] H. Bunke. Error Correcting Graph Matching: On the Influence
of the Underlying Cost Function. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 21:917–922, 1999.

[6] D. Sheldon and F. Vahid. Making Good Points:
Application-Specific Pareto-Point Generation for Design Space
Exploration using Statistical Methods. ACM International
Symposium on FPGAs, 2009.

[7] G. Jeh and J. Widom. A Measure of Structural-context
Similarity. Proceedings of the Eighth International Conference
on Knowledge Discovery and Data Mining, 2002.

[8] A. V. Goldberg. An Efficient Implementation of a Scaling
Minimum-Cost Flow Algorithm. Journal of Algorithms,
22:1–29, 1997.

[9] J. Das, S.J.E. Wilton, W. Luk, P.H.W. Leong. Modeling
Post-Techmapping and Post-Clustering FPGA Circuit Depth.
International Conference on Field-Programmable Logic, 2009.

[10] M. L. Fernandez and G. Valiente. A Graph Distance Metric
Combining Maximum Common Subgraph and Minimum
Common Supergraph. Pattern Recognition Letters,
22:735–758, 2001.

[11] M. Rupp, E. Proschak and G. Schneider. Kernel Approach to
Molecular Similarity Based on Iterative Graph Similarity.
Journal of Chemical Information and Modeling, 2007.

[12] M. Xu and F. Kurdahi. Area and Timing Estimation for
Lookup Table Based FPGAs. European Design and Test
Conference, 1996.

[13] M. Pelillo. Matching Free Trees, Maximal Cliques and
Monotone Game Dynamics. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 24:1535–1541, 2002.

[14] R. Albert and A. L. Barabasi. Statistical Mechanics of Complex
Networks. Reviews of Modern Physics, 74:47–97, 2002.

[15] S. Melnik, H. Garcia-Molina and A. Rahm. Similarity Flooding:
A Versatile Graph Matching Algorithm and its Application to
Schema Matching. Proceedings of the 18th International
Conference on Data Engineering, 2002.

[16] T. Givargis and F. Vahid. Platune: A Tuning Framework for
System-on-a-Chip Platforms. IEEE Transactions on Computer
Aided Design, 21:1317–1327, 2002.

[17] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein.
Introduction to Algorithms. MIT Press, Cambridge, MA, USA,
2001.

[18] V. Betz and J. Rose. VPR: A New Packing, Placement and
Routing Tool for FPGA Research. International Workshop on
Field Programmable Logic and Applications, 1997.

[19] V. Blondel, A. Gajardo, M. Heymans, P. Senellart and P. Van
Dooren. A Measure of Similarity between Graph Vertices:
Applications to Synonym Extraction and Web Searching.
Society for Industrial and Applied Mathematics Review,
46(4):647–666, 2004.

[20] Y. Voronenko and M. Pschel . Multiplierless Multiple Constant
Multiplication. ACM Transactions on Algorithms, 2007.

[21] S. Yang. Logic Synthesis and Optimization Benchmarks User
Guide, Version 3.0, 1991.

[22] L. Zager. Graph Similarity and Matching. PhD thesis, MIT,
2005.

http://www.eecs.berkeley.edu/~alanmi/abc/
http://spiral.ece.cmu.edu/mcm/gen.html

	Introduction
	Motivating Example
	Preliminaries
	Design Space Exploration
	Graph Similarity

	Circuit similarity
	Circuit Similarity Detection
	Performance Enhancement
	Circuit Similarity-based Placement

	Design Space Exploration
	Logic-Level Design Space Exploration
	Experimental CAD Flow
	Experimental Settings
	Experimental Results

	Algorithm-Level Design Space Exploration
	Experimental CAD Flow and Settings
	Experimental Results

	Conclusions and Future Work
	REFERENCES -9pt

