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Abstract

Recent advancements in reinforcement learning have made the field interesting

to academia and industry alike. Many of these advancements depend on deep

learning as a means to approximate a value function or a policy. This depen-

dency usually relies on high performance hardware (e.g., a graphics processing

unit, GPU) and applications of deep learning are often limited to domains

where a substantial amount of time is allowed for a prediction to be made

or an action to be chosen. Although these criteria cover many important use

cases, the growing popularity of the “Internet of Things,” wearable electron-

ics, and the advancement of myoelectric prosthetic limbs presents a rapidly

growing real-time domain of resource bounded systems that are not properly

suited for deep learning yet could still benefit from the application of rein-

forcement learning. Furthermore, many of these systems are limited by the

physical space they must occupy. This restricts the size of the hardware and

thereby the computational and memory resources that can be used. Despite

these restrictions, demand for prompt actions from receptive systems continues

to grow.

To address these problems, I first highlight the difficulties one is faced with

when implementing reinforcement learning on a system which is deployed in

an asynchronous environment and introduce a new metric of performance by

measuring the time it takes for a system to react to an observed state of

an asynchronous environment. Secondly, I develop a class of algorithms that

addresses these issues by reordering the algorithmic components to minimize
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reaction time. Thirdly, to minimize both the time and memory necessary to

compute function approximation, I introduce a novel linear function approxi-

mation method, selective Kanerva coding (SKC), that allows a reinforcement

learning agent to perform behaviors reactively in real-time while using less

memory and computation time than the standard linear approach of tile cod-

ing. I also show that SKC is less sensitive to the curse of dimensionality than

tile coding making SKC a significant step towards accurately representing high

dimensional data on resource bounded systems. Moreover, I show that SKC

can make the inclusion of more sensory modalities more feasible, which can

increase prediction accuracy when those modes of sensation are relevant to the

prediction. Finally, I present an exploration of the meta-parameters of SKC

and evaluate the performance of two different variations of SKC against the

original formulation.

These findings are imperative to the current state of the field of reinforce-

ment learning as they form a challenging perspective that is contrary to the

current direction of the field’s focus on deep learning. I form this argument

by emphasizing the impracticality of deep learning in domains of resource

bounded systems deployed in real-time environments, establishing the limi-

tations on available computation and memory of these systems, and address

these issues by proposing new insights, algorithms, and representations.
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Chapter 1

Introduction

On-device learning for untethered systems is rapidly becoming a necessity

for many applications of machine learning. Along with the complexities of

machine learning, deployments of untethered systems bring along their own

abundance of problems (Kober, Bagnell, and Peters 2013). The amount of on-

board computation, memory, battery power, and the physical size and shape

of the system are often restrictions imposed by the physical design and in-

stallation of the hardware. These challenges are not necessarily overcome by

an increased budget for high-end components. For example, systems used in

medical rehabilitation such as prosthetic devices are restricted to wearable

sizes and must last long periods of time on a single battery. Even further

restrictions are present in implanted devices like pacemakers or implantable

cardioverter defibrillators, which must be small and last years on a single bat-

tery to minimize surgical procedures to replace the system. These physical

restrictions, in turn, limit what on-board hardware can be installed. Despite

the limitations, demand for intelligent devices grows as the benefit of intel-

ligent devices becomes more apparent (Castellini et al. 2014; Kortuem et al.

2010; Scheme and Englehart 2011a; Google TensorFlow Lite1; Apple Core

ML2; SONY NNABLA3).

In addition to the demand of intelligent systems, low latency in response

time is also a common request. Humans today often get frustrated when their

1Google TensorFlow Lite - tensorflow.org/mobile/tflite/
2Apple Core ML - developer.apple.com/machine-learning/
3SONY NNABLA - nnabla.org/
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mobile phones take seconds to perform a computation that once would have

taken years (Ceaparu et al. 2004; Ramsay, Barbesi, and Preece 1998). A

system that can react swiftly to new data is important to quell impatience but

also is necessary to take advantage of the information and respond accordingly,

such as selling when current stock prices are high or braking to avoid a newly

detected pedestrian.

One method of decreasing the reaction time as well as the battery con-

sumption on a resource-bounded system is to offload the computation to a

more powerful remote system which can return results back to the resource-

bounded system over a network. For many applications, this method is power-

ful in that it conserves time and battery life and is most beneficial when large

amounts of computation are needed with relatively small amounts of commu-

nication (Chen et al. 2004). However, when the amount of communication

becomes excessive, the toll on latency and battery life outweighs any benefit

(Kumar, Liu, et al. 2013; Kumar and Lu 2010). For systems with multiple

high-rate sensors, such as upper-limb prosthetic devices or self-driving cars

where reactiveness and reliability are priorities, offloading computation in this

manner is not a viable option (Dawson et al. 2014; Johannes et al. 2011).

1.1 Addressing Computation Challenges of Re-

inforcement Learning on Resource Bounded

Systems

This thesis explores how reinforcement learning can be applied on resource

bounded systems. Specifically, we study how reinforcement learning with lin-

ear function approximation can be deployed on resource bounded systems and

what limitations one should be aware of when doing so.

Linear function approximation is appealing on resource bounded systems

because, along with theoretical convergence guarantees, linear function ap-

proximation can be applied on-line. This is crucial when considering optimal

control policies and value functions in which estimates must be available after

each interaction with the world (Sutton, Szepesvári, et al. 2012). Otherwise,
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if learning updates were instead performed in mini-batches, the extra compu-

tation on the learning step would postpone actions and increase the reaction

time of the system.

Although there has been no comprehensive study of reinforcement learn-

ing with linear approximation on resource bounded systems, other studies

have addressed the issues that come with applying reinforcement learning to

robotic domains, which also arise in resource bounded systems. Like other re-

inforcement learning applications, robotic systems often suffer from the curse

of dimensionality, as they require increasing amounts of data and computation

to cover the state-action space. This curse is confounded in robotic systems

by the fact that collecting data on a robot is time consuming and expensive.

Moreover, robotic systems themselves are often expensive and because they

must interact with the physical world, safe exploration becomes key to avoid

damage caused by the system (Hester, Quinlan, and Stone 2010; Kober, Bag-

nell, and Peters 2013).

Others have focused on maximizing the representative power of linear rep-

resentations by gradually modifying a linear function approximation to have

higher accuracy (Cheng and Meleis 2008; Curran et al. 2016; Li et al. 2017; Lin

and Wright 2010; Ratitch, Mahadevan, and Precup 2004; Ratitch and Precup

2004; Whiteson, Taylor, and Stone 2007; Wu and Meleis 2009). However, these

works often do not consider state spaces with more than four dimensions and

never assess the time it takes to compute these representations on resource

bounded systems as the tasks are performed in simulation.

More recent work shows promising results by approximating Gaussian Ra-

dial Basis Functions with Finite Support Basis Functions. A Gaussian Radial

Basis Function (GRBF) is a function that computes the distance from an

input point, x, to some fixed point called the ’center’, c, using the formula

φ(r) = e−(εr)
2
, where r = ‖‖x − c‖‖ and ε ∈ IR. Typically, multiple GRBFs

are combined in a weighted sum. Learning methods can be applied to these

weights so that the result of the weighted sum of GRBFs approximates some

target function. As function approximation using GRBFs requires the com-

putation of multiple exponential functions, recent work has proposed using
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approximations of exponential functions, called Finite Support Basis Func-

tions, can reduce the computation time on resource bounded systems while

not sacrificing performance (Lobos-Tsunekawa, Leottau, and Ruiz-del-Solar

2017).

1.2 Our Contributions

This thesis seeks to answer the following question: Can we develop a repre-

sentation that allows a reinforcement learning agent to perform behaviors re-

actively in real-time with limited computational resources and training times?

One of the main objectives of this thesis is to highlight the difficulties one is

faced with when implementing reinforcement learning on a real-time system.

In chapter 3, we define an asynchronous environment to better model

the control problem an agent faces when deployed in real-time domains. We

then present a class of reactive algorithms to deal with these asyn-

chronous environments by minimizing the reaction time of the algorithm

while ensuring the same theoretical guarantees of previous control algorithms.

In Chapter 4, we introduce a novel linear representation, selective

Kanerva coding, which requires fewer features, and less time than the

popular linear representation method, tile coding, while having better pre-

diction performance.

In Chapter 5, we show that although adding multiple modalities increases

the dimensionality of the state space, it can be worth it for the increase in

accuracy. We also show that by using selective Kanerva coding on a

multimodal domain, we can make adding multiple modality sensors

more tractable on resource bounded systems.

Chapter 6 addresses possible issues as well as future areas of study

and includes an exploration of the meta parameters and variations of

selective Kanerva coding which can help to decrease the necessary memory.

Lastly, Chapter 7 reaffirms the arguments made in the previous chapters,

makes final remarks and offers a conclusive summary of this work.
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Chapter 2

Background Material

2.1 Limited Computation on

Untethered Systems

2.1.1 Internet of Things

The Internet of Things (IoT) connects electronic devices in much the same

way that the Internet connects people around the globe. The main goal of

connecting electronic devices in this way is so that they may communicate

their own information to other devices so that the devices can work more

synergistically (Lee, Crespi, et al. 2013; Xia et al. 2012). For example, a motion

detector set up in a home as part of a security system could be connected to

the lights in the house and turn them off when the occupants are not in the

room thus saving energy. Another example could be a person’s mobile phone

sending a message to the house’s furnace to heat up the home before the person

arrives home from work. Use cases like these are common in modern life and

become possible as more devices are connected to the IoT (Kortuem et al. 2010;

Wortmann and Flüchter 2015; Yang 2014). It is often the case that appliances,

such as the furnace in the previous example, are connected to the IoT through

small cheap micro-controllers such as an Arduino or micro-computers similar

to the Raspberry Pi or the Beagle Bone (Badamasi 2014; Coley 2013; Kopetz

2011; Richardson and Wallace 2012). Despite their lack of computation ability,

these small devices are used to read sensors, receive messages, and carry out

simple tasks thus providing the underlying mechanisms for the IoT.
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2.1.2 Wearable Electronics

An interesting side product of the Internet of Things is wearable electronics,

the idea that electronics can be worn to read and display information about

the person wearing them or the environment around the person. An obvi-

ous example of wearable electronics are smart phones but growing interest in

recording one’s physical activity has motivated the development of wearable

devices that measure data such as daily steps, heart rate, quality of sleep, steps

climbed, and other personal metrics involved in fitness (Tao 2005). Other ex-

amples are becoming more common as well, including self-heated jackets, light

up shoes, smart glasses, and smart ID tags. Unlike most other applications of

the IoT, wearable electronics have to be in close proximity to a person moving

around in the world. This means that they must be safe, durable, flexible,

and portable. The challenge posed by wearable electronics led to innovations

in the different materials and fibers to be used to make flexible wiring (Jost

et al. 2013; Kou et al. 2014; Zeng et al. 2014), heaters (Hong et al. 2015),

sensors (Lee, Kwon, et al. 2015), and even methods to self-power electronics

using human body heat (Leonov and Vullers 2009).

2.1.3 Myoelectric Prosthetic Limbs

A myoelectric prosthetic arm is a battery-powered robotic arm attached to

a person. Typically the actuating joints are controlled via electromyographic

(EMG) signals, the electrical potential of active muscles. These signals are

recorded by placing non-invasive electrodes on the user’s skin over target mus-

cle sites (see Figure 2.1). The recorded signals from each EMG channel are

then filtered, amplified, and processed so that they can be used as control

signals (Scheme and Englehart 2011b).

A common complaint with mobile electronics is limited battery power and

myoelectric prosthetic arms are no exception (Pilarski and Hebert 2017). Al-

though some mobile electronics have space for a larger battery, myoelectric

prosthetic arms do not have this affordance so readily. Typically very little

room for extra battery power is available within the housing of the arm and
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often the available space is a complex shape. These restrictions challenge elec-

trical engineers to design physically malleable batteries with unique geometries

such that the volume within the arm can be optimally utilized.

Although myoelectric arms have become powerful devices, the gross mis-

match between the functions available and the control signals offered by the

person creates a very challenging problem. While applications of pattern

recognition have had varying degrees of success to deal with this problem,

the necessity for more intelligent prosthetic arms becomes more evident as

the functionality of prosthetic arms continues to grow (Cook and Polgar 2015;

Dawson et al. 2014; Johannes et al. 2011; Pilarski, Sutton, and Mathewson

2015; Scheme and Englehart 2011b). Although there are promising results

of artificially intelligent arms working together with the person to overcome

this challenge, the results have yet to be evaluated on the limited computa-

tion available on battery-powered prosthetic arms (Edwards 2016; Sherstan,

Modayil, and Pilarski 2015).

Figure 2.1: A labeled high-level depiction of a prosthetic arm.

7



Figure 2.2: A side view of the Bento Arm with a chopsticks gripper.

2.2 Custom Hardware

2.2.1 The Bento Arm

The studies in Chapters 3 and 4 used an inexpensive robotic arm known as

the Bento Arm (Dawson et al. 2014). This arm was designed to be worn

as a myoelectric training device and research platform for machine learning

techniques. The arm is comprised of five actuators from the Dynamixel line

(Robotis, Inc.), one for each of the following functions: shoulder rotation,

elbow flexion, wrist rotation and extension, and for the gripper (see Figure 2.2).

For the experiment in Chapter 3, the gripper on the arm was replaced with

8



a custom hammer attachment to more effectively break eggs. Each actuator

provided sensor readings of encoder position, angular velocity, temperature,

and load which were read at a rate of 30Hz using a USB2Dynamixel converter

provided by Robotis, Inc.

2.2.2 Humanoid, Anthropometric, Naturally Dexterous,
Intelligent (HANDi) Hand

Figure 2.3: A picture of the HANDi Hand opened with the palm-plate open
revealing the closing mechanisms for the fingers and the webcam embedded in
the palm.

The experiments in Chapter 5 and 6 made use of an inexpensive sensorized

hand known as the Humanoid, Anthropometric, Naturally Dexterous, Intelli-

gent (HANDi) Hand, developed at the University of Alberta (Brenneis, Daw-

son, and Pilarski 2017)1, which has one force sensitive resistor (FSR) embed-

ded into each fingertip (see Figure 2.3). The HANDi Hand is also capable

of position sensing by use of MuRata SV series rotary potentiometers (Mu-

Rata Manufacturing Co. Ltd., Kyoto, JP) at 9 of the joints. These measured

1HANDi Hand Repository - github.com/blincdev/HANDi-Hand
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joints include all of the joints of the first digit (the thumb), the proximal and

intermediate joints of digits 2 and 3, and the proximal joints of digits 4 and

5. A USB webcam embedded in the palm of the hand records visual data

from the perspective of the hand. The hand is controlled using an Arduino

Mega (Arduino LLC, Italy), which sends position signals to the servos of the

hand and collects sensory signals from the sensors in the hand. The FSRs and

potentiometers send analog signals ranging from 0 to 5 V to the Arduino; the

Arduino’s analog-to-digital converter (ADC) converts this range to an integer

in the range 0 - 1023. The USB webcam bypasses the Arduino and records

directly to a computer, with an image size of 480 x 640 RGB at a rate of 15

Hz.

2.2.3 Gesture Layout Observation Via Impedance (GLOVi)
Glove

Figure 2.4: A labeled picture of an experimenter wearing the GLOVi Glove.

Also used in the experiment in Chapter 5 and 6 was a Gesture Layout Ob-

servation Via Impedance (GLOVi) Glove, an inexpensive data capture glove,

again developed at the University of Alberta. This glove uses the same type

of rotary potentiometers as the HANDi Hand to measure the flexion of each

finger of the wearer of the glove, as shown in Figure 2.4. This is accomplished

by means of a string tied to the tip of each finger, which rotates a spring-
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loaded spool attached to the back of the glove, which in turn rotates the

potentiometer. The potentiometer signals, after individually passing through

an anti-aliasing filter with a cutoff frequency of 48 Hz, are fed directly to an

Arduino Uno. These signals also range from 0 to 5 V, and are converted to an

integer in the range 0 - 1023 using the Arduino’s ADC. The potentiometers

on the back of the glove are set up in such a manner so as to independently

measure thumb flexion and rotation. In this way, six signals describe the level

of flexion/extension of each of the fingers of the hand; finger ad/abduction is

not measured. A more detailed description of the design and capabilities of

the GLOVi Glove accompanies the open-source release of the design2.

2.3 Reinforcement Learning

Reinforcement learning (RL) is a learning method that uses interaction with

an environment to learn rewarding control policies. Often referred to as an

agent, a system utilizing RL learns to achieve a goal through interaction with

its environment. In the RL learning problem explained in Sutton and Barto,

1998 the agent interacts with its environment at each timestep t by taking

an action At and the environment in turn yields a new situation referred to

as the state St+1 as well as a special scalar value called the reward rt+1. The

agent’s goal is to maximize the sum of the future discounted rewards it receives

known as the discounted return Gt by a discount factor γ ∈ [0, 1). In many

domains, the agent’s actions have long term consequences thus, although the

environment yields a reward on every timestep, a change in the reward as

a consequence of an agent’s action could be temporally delayed. This delay

makes it difficult for an agent to discern what past action or series of actions

caused this change. This temporal dependency is what makes RL different

from other learning methods in that time matters.

Gt = rt+1 + γrt+2 + γ2rt+3 + ... =
∞∑
i=0

γi ∗ rt+i+1

2GLOVi Glove Repository - github.com/blincdev/GLOVi-Glove

11



Although the agent cannot know the return ahead of time, it can be es-

timated by a value function. The value of a state estimates the return an

agent can expect over the future, beginning in that state. These values can

be learned through interaction with the environment and then used to take

actions which lead to higher valued states. Further, one can learn the value

of taking an action in a state, referred to as a Q-value. Q-learning is a popu-

lar algorithm that can learn these Q-values to give a good estimation of the

value of an action in a state (Watkins 1989). Q-values are used to determine

how an agent chooses its actions, referred to as a policy. For instance, tak-

ing the actions with the maximum Q-value is referred to as a greedy policy

as it is exploiting the agent’s previous experience to try and maximize the

agent’s expected future return. This exploitation means that some states and

actions will not be seen by the agent if their estimated Q-values are low even

if they would actually lead to higher returns. Thus, it is important to balance

exploration and exploitation in an agent’s policy.

Figure 2.5: The interaction a reinforcement learning agent has with its envi-
ronment adapted from Sutton and Barto, 1998.
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2.3.1 True Online Temporal-Difference Learning

A central part of RL is the temporal-difference learning method known as

TD(λ)3. With its low computational cost and good performance, it is fre-

quently used when learning temporally extended predictions in the RL setting.

However, TD(λ) is known to not maintain an exact equivalence with ideal

mathematical outcomes for learned predictions—termed the forward view.

Recently, Van Seijen et al. 2016 proposed two small changes to the update

rule of TD(λ), allowing true online temporal-difference learning methods to

be constructed that do have algorithmic equivalence with the forward view.

These true online methods have been used to approximate value functions of

sensorimotor interactions with superior performance over regular TD(λ) and

SARSA(λ) (Van Seijen et al. 2016). Algorithm 1 shows the true online algo-

rithm as implemented in Chapter 3.

Algorithm 1 True Online TD(λ)

Initialize θ arbitrarily
loop {over episodes}

Initialize e = 0
Initialize S
v̂S ← θᵀφ(S′)
Repeat (for each step of episode):

generate reward R and next state S′ for S
v̂S′ ← θᵀφ(S′)
δ ← R+ γv̂S′ − v̂S
e← γλe+ α[1− γλeᵀφ(S)]φ(S)
θ ← θ + δe+ α[v̂S − θᵀφ(S)]φ(S)
v̂S ← v̂S′

S ← S′

until S is terminal
end loop

2.3.2 General Value Functions

A value function in reinforcement learning is a mapping from the state at time

t, St, of an agent to a prediction of an input signal given a target policy π and a

3λ refers to the eligibility trace, a way of assigning credit for good and bad outcomes to
states seen in the past (Sutton and Barto 1998).
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termination function, γ(St) (Sutton and Barto 1998; White 2015). Although

value functions are commonly used in control problems to find the optimal

policy by predicting the future return of a state given the current policy, they

have also been used to construct more general knowledge from sensorimotor

interaction such as bump sensors on mobile robots (Sutton, Modayil, et al.

2011) or servo encoder sensors on robotic arms (Edwards 2016; Travnik and

Pilarski 2017). These general value functions (GVFs) provide the semantics

to ask questions about data experienced by a system (Sutton, Modayil, et

al. 2011; White 2015). When a GVF is asking a question about the current

behavior of an agent, it is referred to as an on-policy GVF. If the termination

function γ is set to a constant value between 0 and 1, it represents making

a prediction about the expected discounted return over a certain timescale.

One can approximate this timescale by estimating the number of timesteps

within the timescale as given by the equation timesteps = 1
1−γ . Thus with a

constant γ = 0.9, an on-policy GVF will make a prediction about the expected

discounted return over approximately the next 10 timesteps. Similarly, with

γ = 0.999 the prediction concerns the expected return over approximately the

next 1000 timesteps.

2.3.3 Continuous-Time and Real-Time Reinforcement
Learning

As described in the previous subsections, RL is classically defined as an agent

in state St, taking an action, At, observing reward and state, rt+1 and St+1,

respectively, and performing a learning update. The t + 1 subscript, that

denotes a timestep jump, refers to the iteration of the learning loop. In sta-

tionary problems, such as checkers, the duration of the timestep is not a factor

in learning nor part of the problem and is readily ignored. In other problems,

like the cart-pole task, the timestep must be carefully chosen to have the de-

sired outcome (see Sutton & Barto, 1998, p. 59 for a brief description). Large

timesteps may not give the agent a proper view of the world unless special fea-

tures are chosen to represent changes in the world’s state over time. Choosing

timesteps to be smaller may also impact learning. For example, in domains
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with continuous states and actions, it is often the case that performing one

non-optimal action in a long sequence of optimal actions will have little effect

on the total reward. In such cases, if using Q-learning, the Q-values between

actions in the same state will be relatively close. If the Q-function is stored

with a function approximation method with some error, the Q-values will tend

to be sensitive to that error. This sensitivity may cause a non-optimal action

to have a learned Q-value that is higher than the optimal action leading to

a non-optimal policy. As the length of a timestep approaches 0, the penalty

for taking one wrong action in a sequence decreases and the approximated

Q-function becomes more sensitive to noise or function approximation error

yielding a highly erroneous policy (Baird and Klopf 1993).

Beyond the issues associated with problem domains where a constant timestep

length can be chosen, there are problem domains that have timesteps with

random lengths. Rather than the typical time series that classic RL problems

have, problem domains like traffic control, customer behaviour, and traces of

events in computer systems have event-driven time series. In these domains, it

is difficult to settle on a static timestep in which to apply RL. Unlike in clas-

sic RL problems, where the agent observes one state within one timestep, in

event-driven time series problems there is some probability that more than one

observation of state occurs within one timestep. Although there are several

solutions to this problem, including combining observations, ignoring some,

or assigning observations to “empty” timesteps, none of them are convinc-

ingly justified. It is obvious that a reduction of timestep length reduces the

probability of co-occurrence of observations. However, small timesteps can-

not represent long delays appropriately because if the length of time between

observations varies greatly, it leads to long chains of silence which tend to

deteriorate model quality.

It is important to note that even though learning algorithms on digital

computers cannot be in continuous time, the policies they produce are in

continuous time if they are within a continuous time system such as a robot.

For example, if an agent deployed on a robot initiates the action of forward,

the robot will begin moving forward and will continue to do so until the agent’s
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next timestep where the agent can initiate another action. If the robot instead

moved a preset distance on each forward action and stopped before the agent’s

next action took place, the pause in movement is inherent to forward action

and thus a result of the agent’s policy. In either case, an agent is constantly

interacting with the world through its most recently calculated policy. It is

therefore importunate that RL systems have short timesteps when deployed

in fast dynamic systems, and even more so when reaction time is prioritized.

The longer the duration of a timestep, the rarer the opportunity an agent has

to change its behaviour.

2.3.4 Data Traces

A common problem in reinforcement learning is state conflation, when an agent

cannot determine the difference between two different states. This tends to

happen if the agent has no information about how long a signal has had its

current value. For example, given a repeating binary signal which is 1 for 500

steps and 0 for 1500 steps (a total period of 2000 steps) the agent would not

be able to predict the signal changes unless it had information about how long

the signal had been in its current state. A common solution to this type of

problem is to include a summarization of the history of the signal, known as

a trace, in the agent’s representation (Edwards 2016; Edwards, Hebert, and

Pilarski 2016; Edwards, Kearney, et al. 2013; Pilarski, Dawson, Degris, Carey,

and Sutton 2012; Pilarski, Dawson, Degris, Fahimi, et al. 2011). Given a signal

Si and a decay parameter λdecay ∈ (0, 1), the value of the trace T at time t

is Tt+1 = Tt ∗ λdecay + Sit+1. The closer the value of λdecay is to 1, the longer

the history will be, with the length of the history in timesteps given by the

formula timesteps = 1
1−λdecay

as seen in Figure 2.6. It is common to normalize

the value of the trace before using it in a representation (NormalizedTt+1 =

Tt+1(1− λdecay)).
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Figure 2.6: An example of traces for a signal (black) using 3 different values
of a decay parameter, λdecay.

2.4 Sparse Distributed Memory

Sparse Distributed Memory (SDM) is a mathematical model of human long-

term memory (Kanerva 1988). It models how the distances between con-

cepts in a human mind are similar to the distances between points of a high-

dimensional space where high-dimensional is at least in the hundreds. In

the original formulation presented by Pentti Kanerva, a high-dimensional bi-

nary space could be represented with a set of fixed randomly placed points

in the same space known as prototypes (Kanerva 1988). Each prototype can

be thought of as a memory element where its address is its position in the

space, and its value is data that can be read from and written to. The main

parameter of the representation is a radius. A prototype is said to be activated

by a given address if the hamming distance between the prototype’s position

and the specified address is smaller than the radius.

In order to write to SDM, given an address and a value, each prototype

that is activated by the specified address is updated to an average of its ex-

isting value and the specified value (see Figure 4.2). Reading from SDM is

performed using the same radius method where the read value is then the

average of the values from all activated prototypes. This read value is then a

close approximation of data written previously to addresses near the specified

address.
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Chapter 3

Reaction Time is Important
1

3.1 Overview

Reinforcement learning (RL) algorithms for solving optimal control problems

are comprised of four distinct components: acting, observing, choosing an ac-

tion, and learning. This ordering of components forms a protocol which is used

in a variety of applications. Many of these applications can be described as

synchronous environments where the state of the environment remains in the

same state until the agent acts at which point the environment immediately re-

turns its new state. In these synchronous environments, such as Backgammon

(Tesauro 1995) or classic control problems, it is not necessary to know the com-

putation time to perform any of the protocol’s components. For this reason,

most reinforcement learning software libraries, such as RL-Glue, BURLAP 2

or OpenAI gym 3, have functions which accept the agent’s action, and return

the new state and reward immediately (Tanner and White 2009). These func-

tions remain convenient for simulated environments where the dynamics of

the environment can be computed easily (Sutton and Barto 1998). However,

unlike synchronous environments, asynchronous environments do not wait for

an agent to select an action before they change state. The computation of RL

protocol components (acting, observing, choosing an action, learning) takes

1A version of Chapter 3 has been submitted for publication as Jaden B. Travnik, Kory W.
Mathewson, Richard S. Sutton, and Patrick M. Pilarski, “Reactive Reinforcement Learning
in Asynchronous Environments”, for Frontiers in Robotics and AI.

2http://burlap.cs.brown.edu/
3https://gym.openai.com/
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time and an asynchronous environment will continually change state during

this time (Caarls and Schuitema 2016; Degris and Modayil 2012; Hester, Quin-

lan, and Stone 2010). This can negatively affect the performance of the agent.

If the agent’s reaction time is too long, its chosen action may become inappro-

priate in the now changed environment. Alternatively, the environment may

have moved into an undesirable terminal state.

In this Chapter, we explore a very simple alternative arrangement of the

reinforcement learning protocol components. We first investigate a way to re-

order SARSA control algorithms so that they are able to react to the most

recent observation before learning about the previous timestep; we then dis-

cuss convergence guarantees of these reordered approaches when viewed in dis-

crete time (following (Singh et al. 2000)). Then, we examine an asynchronous

continuous-time robot task where the reaction times of agents affect the overall

task performance—in this case, breaking or not breaking an egg with a fast-

moving robotic arm. Finally, we present a discussion on the implementation

of reactive algorithms and their application in related settings.

3.1.1 Related Background

The focus of most contemporary RL research is on action selection, repre-

sentation of state, and the learning update itself; the performance impact of

reaction time is considered less frequently, but is no less important of a con-

cern (Barto, Bradtke, and Singh 1995). Several groups have discussed the

importance of minimizing reaction time (Caarls and Schuitema 2016; Degris

and Modayil 2012; Hester, Quinlan, and Stone 2010). Hester et al. noted that

existing model-based reinforcement learning methods may take too much time

between successive actions and presented a parallel architecture that outper-

formed traditional methods (Hester, Quinlan, and Stone 2010). Caarls and

Schuitema extended this parallel architecture to the online learning of a sys-

tem’s dynamics (Caarls and Schuitema 2016). Their learned model allowed

for the generation of simulated experience which could be combined with real

experience in batch updates. While parallelization methods may improve per-

formance, they are computationally demanding. We propose an alternative
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approach when system resources are constrained.

3.2 Temporal Delays in Asynchronous Envi-

ronments

Temporal-difference (TD) control algorithms like SARSA and Q-Learning were

introduced with synchronous discrete-time environments in mind; these envi-

ronments are characterized by remaining stationary during the planning and

learning of the agent (Sutton and Barto 1998; Watkins and Dayan 1992). In

synchronous environments, the time to perform the individual components of

the SARSA algorithm protocol has no impact on task performance. Specifi-

cally, the time it takes to react to a new game state in chess without imposed

time limits has no influence over the end of the game. In asynchronous envi-

ronments, however, the time it takes for the agent to react to new observations

can drastically influence its performance on the task. Such as, in the formula-

tion of a cart-pole, the agent applied its actions left and right at discrete time

intervals (Barto, Sutton, and Anderson 1983). These time intervals were set

small enough so that the pole would not fall further than the agent would be

able to recover.

As a concrete example, imagine an asynchronous environment called Hallway-

World with a left turn leading to the terminal state, as shown in Fig. 3.1. The

agent starts an episode near the bottom of a hallway and has two actions:

move left and move up which move the agent in a direction and continue to

move the agent in that direction with constant velocity until interrupted with

the other action, hitting a wall, or arriving in the terminal state. If the agent

hits a wall it receives a reward of -1 and comes to a stop. When the agent

reaches the terminal state it will receive a negative reward directly propor-

tional to the duration of the episode. In this way, the agent is motivated to

get to the terminal state as quickly as possible without touching the walls.

The only observation that the agent can make is to determine if there is a wall

on its left.

The optimal policy in Hallway-World is for the agent to move upward
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Figure 3.1: The Hallway-World task with the agent (the blue circle) starting
near the bottom of the hallway. The gray square denotes the terminal state.
The arrows denote the 2 actions which move the agent leftwards or upwards
and continue moving the agent in that direction until interrupted.

and observe the wall continually until an opening in the wall is observed then

immediately move leftwards towards the terminal state. SARSA (Alg. 2) is

unable to learn this optimal policy because it is restricted by the delay between

observing the opening in the wall and moving towards the terminal state. Even

in the best case scenario, that is, if the SARSA agent observed the opening in

the wall just as it appeared, it would not be able to act on this observation

until it had spent time learning about the previous action and observation.

Assuming that each component of the algorithm (acting, observing, choosing

an action, and learning) takes some constant amount of time tc, if a SARSA

agent observes an opening in the wall, it must choose to move left and learn

about the previous state-actions before taking the action, this would add 2tc

onto episode time, thereby affecting the total reward and task performance.

Thus, overall performance in Hallway-World decreases with the time the agent

spends selecting an action and learning, irrespective of how these components

are performed.

3.3 Reactive SARSA

To minimize the time between observing a state and acting upon it, we propose

a modification to conventional TD-control algorithms: take actions immedi-

ately after choosing them given the most recent observation. Reactive SARSA
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is one example of this modification (Alg. 3); in each iteration of the learning

loop, the agent observes a reward and new state, chooses an action from a

policy based on the new state, immediately takes that action, then performs

the learning update based on the previous action.

Algorithm 2 SARSA: An on-policy TD control algorithm

Initialize Q(s, a) arbitrarily, for all s ∈ S, a ∈ A(s)
Repeat (for each episode):

Initialize S
Choose A from S using policy derived from Q (e.g., ε-greedy)
Repeat (for each step of episode):

Take action A
Observe R, S ′

Choose A′ from S ′ using policy derived from Q (e.g., ε-greedy)
Q(S,A) ← Q(S,A) + α[R + γQ(S ′, A′) - Q(S,A)]
S ← S ′, A ← A′

Algorithm 3 Reactive SARSA: A reactionary on-policy TD algorithm

Initialize Q(s, a) arbitrarily, for all s ∈ S, a ∈ A(s)
Repeat (for each episode):

Initialize S
Choose A from S using policy derived from Q (e.g., ε-greedy)
Take action A
Repeat (for each step of episode):

Observe R, S ′

Choose A′ from S ′ using policy derived from Q (e.g., ε-greedy)
Take action A′

Q(S,A) ← Q(S,A) + α[R + γQ(S ′, A′) - Q(S,A)]
S ← S ′, A ← A′

The slight reordering of RL algorithm protocol components does not affect

convergence in discrete time. Here, we provide a basic theoretical sketch that

in discrete-time synchronous tasks, Reactive SARSA learns the same optimal

policy as SARSA, in the same manner. This equivalence is trivially evident

by observing that in both algorithms the first 2 actions are selected using

the initial policy. In each subsequent step t, actions are chosen using the

policy learned on the last step, and the policy updates happen with identical

experiences, as is illustrated in Fig. 2.
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Figure 3.2: Timestep comparison of (A) standard and (B) reactive reinforce-
ment learning algorithms. The function L refers to a learning function which
updates the policy π. The learning function L is not limited to the SARSA
learning update and encompasses any learning update such as Q-learning.

If we redefine Hallway-World as a synchronous environment where the

agent moves a constant distance for each action instead of continually moving,

the same policies and performance would be expected between both algorithms

and this is what we found in practice. The difference between reactive and

non-reactive algorithms is the order of the RL components (acting, observing,

choosing an action, and learning).

3.4 Experiments

To explore the differences between the SARSA and Reactive SARSA learn-

ing algorithms in asynchronous environments, we designed a reaction-time-

dependent task similar to Hallway-World as described above and illustrated

in Figure 3.1. The task was performed using one joint of a robotic arm (see

Figure 3.3). We conducted two experiments with the same episodic stopping

task. The arm started at one extreme of the joint rotation range and was then

rotated quickly towards the other end of its range. The agent must stop the

rotation as soon as possible following an indication to stop that is observed by

a state change from “Normal” to “Emergency”.

The agent had two actions: stop and move. If the agent chose to stop

while in the “Normal” state, the agent would receive a reward of -1, remain in

the “Normal” state, and the arm would continue rotating. If the agent chose
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Figure 3.3: Experimental setup, showing the robot arm in motion for the first
experiment (left) and the robot arm poised to impact an egg during the second
experiment (right).

to move while in the “Normal” state, the agent would receive a reward of 0,

remain in the “Normal” state, and continue rotating. Once the “Emergency”

state had been observed, the reward for either action would be a negative

reward proportional to the amount of time (in µs) spent in the “Emergency”

state. When the agent chose to stop in the “Emergency” state, it transitioned

to the terminal state, thereby ending the episode. This reward definition was

chosen as a convenient means of valuing reaction time; the distance traveled

during the reaction time is a valid alternative.

If complete information about the stopping task was available, optimal

performance could be obtained through direct engineering of a control sys-

tem designed to stop the arm as soon as the state changes. However, the

agent did not know which state was the “Emergency” state and used its ex-

perience to learn what to do in any given state. By excluding the complex

state information of many real-world robotic tasks and using a simple stopping

task, we elucidate the effects of reaction time on overall performance, and the

differences between conventional and reactive TD-control algorithms can be

investigated.
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3.4.1 Experiment 1

To explore the effect of the reactive algorithms on reaction time and task

performance, the Bento Arm was programmed to move at a constant velocity

along a simple trajectory (see Figure 3.3, left) (Dawson et al. 2014). The

experiment involved 30 trials, each of which was comprised of 20 episodes

with the agent starting in a “Normal” state and switching to the “Emergency”

state after some uniform random amount of time. The standard and Reactive

SARSA agents were compared with greedy policies, γ = 0.9, λ = 0.9, and α

= 0.1.

In any learning system, there may be time delays in the learning step. One

example comes from the idea of predictive knowledge representations. Here

knowledge is represented and learned as a collection of predictions about an

agent’s observed experience. Such knowledge may be updated and computed

during each cycle. One approach to building this knowledge is the Horde

architecture; Horde introduces the idea of demons (also referred to as gen-

eral value functions), which learn predictions about the environment and can

build on each other to achieve a scalable method of knowledge learning (Sut-

ton, Modayil, et al. 2011). A Horde architecture with 2576 demons (predicting

the position, velocity, temperature, load and other measures) was experimen-

tally validated on the robotic arm. On the experimental setting tested, this

setup resulted in an average computation time of one demon’s prediction to

be ∼3.33µs. The more predictions one wants to make, the longer the du-

ration of learning, thus the reaction time increases. Specifically, the time

delays of 50ms, 100ms, 250ms, and 500ms on the experimental hardware are

equivalent to Horde architectures of approximately 15000, 45000, 75000, and

150000 demons, respectively. It is clear that more predictions increase the

reaction-time, thus adding time delays in the following experiments appropri-

ately simulates the addition of more predictions. To simulate the performance

of these additional predictions and modulate in a controlled fashion the effect

of longer learning steps, time delays were added to the learning update step.

Figure 3.4 shows how the the duration of learning influenced the task per-
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Figure 3.4: Key result: a comparison of summed reward over the last 10
episodes of 30 trials across 5 different learning delay length lengths during
robot arm motion. Reactive SARSA had a significantly reduced reaction time
when compared to the standard SARSA algorithm for all delay lengths.

formance. The figure shows the average cumulative episodic return for the last

10 episodes, once both agents had learned policies. As the delay increased,

both algorithms suffered performance decreases, but the standard SARSA al-

gorithm performed worse with larger variability. While Reactive SARSA was

affected by increasing time delays, the impact was less severe. Specifically, the

median reaction time of Reactive SARSA was approximately half of the added

learning delay. This effect is most likely because the transition from “Normal”

to the “Emergency” state occurred at a uniformly random selected time. Since

the majority of the duration of a timestep was comprised of learning, the ran-

dom timing lead the state change to occur, on average, halfway through the

learning step. This also accounts for the increasing reaction time in the stan-

dard SARSA implementation, as the agent must wait a full additional timestep

before reacting to the “Emergency” state.
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3.4.2 Experiment 2

The second experiment considered a human-robot interaction task which de-

manded cooperation between a human and a robotic arm to not crush an egg

(see Figure 3.3, right). The robot arm was positioned above a target, which

in this task was an egg, and would move at a constant velocity toward the

target. The human was told to press a button to stop the arm before crushing

the egg, and to try to stop it as close to the egg as possible without touching

it. The learning task for the RL agent was to learn to stop as soon as the par-

ticipant pressed a button. For the first 10 episodes of a trial, the participant

trained using a hard-wired stopping algorithm which automatically stopped

the arm when the participant pressed a button. We refer to this algorithm as

the control condition. For the remaining 40 episodes of the trial, agents that

had previously learned using the SARSA and Reactive SARSA algorithms

were used. Each algorithm was used for 20 episodes, and the algorithm used

was randomly chosen on each episode. The state changed from “Normal” to

“Emergency” when the participant pressed a button. All three algorithmic

conditions: 1) control, 2) SARSA, and 3) Reactive SARSA, included a con-

stant 50ms delay to simulate a longer learning step (e.g., the time it would

take to update the predictions for 15000 demons). The algorithm used on a

trial was hidden from the participant. Four individuals participated in the ex-

periment, providing a total of 80 episodes of each algorithm. All participants

provided informed consent as per the University’s Ethics Review Board and

could voluntarily end the experiment at any time if they wished.

Figure 3.5 shows the total of all failed stops (“broken eggs”) for each al-

gorithmic condition as summed across all four participants. Reactive SARSA

had fewer failed stops than the standard SARSA agent which performed sig-

nificantly worse with more than four times as many failed stops.

In addition to comparing the number of failed stops, and thus crushed

eggs, of each algorithmic condition, the time between the state change from the

button push of the participant and the reaction time of the agent was recorded

and is presented in Figure 3.6. The effects of longer learning on reaction time
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Figure 3.5: The total number of failed stops for each algorithm during the
robot’s acceleration toward a breakable object (Experiment 2), summed over
all four participants. For all subjects, Reactive SARSA had far fewer failed
stops than the standard SARSA.

are evident in this figure, as the standard SARSA agent’s stop action is trailing

behind the button press by approximately the length of the learning update

and delay; this is contrasted by the tight overlap of the stimulus and action

for the Reactive SARSA agent.

3.5 Discussion

Our results indicate that rearranging the fundamental components of exist-

ing TD-control algorithms (act, observe, choose action, learn) has a beneficial

effect on performance in asynchronous environments where task performance

is reaction-time dependent. A reactive agent can perform better in these en-

vironments as it can act immediately following observations. This effect be-

comes especially prominent as the duration of learning operations increases.

Although the current experimental design added a simulated delay to the

learning update step, our results indicate that as the time between observing

and acting grows, performance in these environments deteriorates, regardless

28



Figure 3.6: Boxplot comparison of the distributions of events over all episodes
between Reactive SARSA and the standard SARSA algorithm. Zero on the
x-axis is the moment the arm begins moving. The overlap of the button press
and reactive agent’s action indicates that the reactive agent has negligible
delay in its reaction to the participant’s input (seen in the overlap between
light red and dark red, top). The standard agent’s ability to act is delayed by
the length of learning (visible gap between light blue and dark blue, bottom).

of the source of these delays. As standard online RL algorithms perform

learning and state representation construction between observing and acting,

additional computation time is necessary (e.g., tile-coding (Sutton and Barto

1998), deep neural networks (Silver et al. 2016), etc.). In asynchronous envi-

ronments, as these steps become longer, the order of algorithmic components

(acting, observing, choosing an action, and learning) becomes more critical.

As we have shown in Figure 3.4, performance in asynchronous environments

that favor short reaction-times has an inverse relationship to the total length

of time between observations and acting.

One alternate means of addressing delay-induced performance concerns

may be to create a dedicated thread for each of the RL algorithm components

(Caarls and Schuitema 2016). We believe this is a promising area for continued

research. However, as multi-threading is difficult on single-core machines such

as micro-controllers, reactive algorithms as suggested in this work may have
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great utility when applied to embedded learning systems or smaller single-

thread computers. While the order of algorithmic components might seem at

first like a minor implementation detail, it may prove critical when applied

to these systems. Reactive SARSA, and similar reactive algorithms, do not

require multiple threads. Even in the case of multi-threaded systems, it may

still prove fruitful to re-order the fundamental components of RL learning

for improved performance. For example, if a state requires minimal reaction

time, one may forgo a learning update and queue it for a later time when

fast reactions are not required. We believe allowing an RL agent to learn an

optimal ordering of its learning protocol or to interrupt learning components

for more pressing computations are interesting subjects of future work.

3.6 Conclusions

RL algorithms are built on four main components: acting, observing, choos-

ing an action, and learning. The execution of any of these components takes

time, and while this may not affect synchronous discrete-time environments,

it is a critical consideration for asynchronous environments, especially when

task performance is tied to the reaction time of the agent. If learning is done

correctly, an agent should never have to wait to take an action after receiving

up-to-date observations. In this chapter we present a novel reordering of the

conventional RL algorithm which allows for faster reaction times. We present

a simple proof for the algorithmic equivalence in synchronous discrete-time

and show improved performance in an asynchronous continuous-time stopping

task which is directly linked to agent reaction time. These results indicate that

1) reaction time is an important consideration in asynchronous environments,

2) the choice of when in a loop the RL agent should act affects an agent’s reac-

tion time, 3) reordering of the components of the algorithm will not affect an

agent’s performance in synchronous discrete-time environments, 4) reactive al-

gorithms reduce the reaction time, and thus improve performance, potentially

also decreasing the time it takes for an agent to learn an optimal policy. This

work, therefore, has wide potential application in real-world settings where
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decision making systems must swiftly respond to new stimuli.

31



Chapter 4

Dealing with Increasing
Dimensionality

1

4.1 Overview

To respond appropriately to the intentions and needs of their human users,

prosthetic limbs and other assistive rehabilitation technologies rely on their

sensors. In the specific case of clinically prescribed upper-limb prosthetic de-

vices, the electromechanical sensor information available to a device’s control

system is typically limited to mechanical toggles or a small number of myo-

electric (EMG) signals recorded from the tissue of the user’s residual limb

(Castellini et al. 2014; Pilarski and Hebert 2017). These sensors provide

enough information to design a prosthetic solution wherein a patient may

be able to directly control one or two prosthetic actuators (Parker, Englehart,

and Hudgins 2006). The use of machine learning approaches such as pattern

recognition allow available sensors to be further leveraged to increase the num-

ber of functions controllable by a user (Scheme and Englehart 2011a). There

is now convincing evidence that machine learning control approaches such

as pattern recognition can enable patients with amputations to sequentially

1A version of Chapter 4 has been published and presented as Jaden B. Travnik and
Patrick M. Pilarski, “Representing High-Dimensional Data to Intelligent Prostheses and
Other Wearable Assistive Robots: A First Comparison of Tile Coding and Selective Kan-
erva Coding”, for the Proc. of the 2017 IEEE International Conference on Rehabilitation
Robotics (ICORR). London, United Kingdom, 2017 where it was presented as a poster. An
extended abstract of this paper was also presented as a poster and a 60 second spot-light
talk at the Multidisciplinary Conference on Reinforcement Learning and Decision Making
(RLDM), Ann Arbor, Michigan, June 11-14, 2017.
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Figure 4.1: The upper-limb research prosthesis used in this study (the Bento
Arm (Dawson et al. 2014)). The Bento Arm generates a continuous stream of
position, velocity, load, voltage, and temperature sensor signals for each of its
five actuators during its ongoing operation.

control a device with a robotic elbow, wrist, and hand with multiple discrete

grasp patterns—far more degrees of control than were previously possible with

conventional control solutions (Castellini et al. 2014; Scheme and Englehart

2011a). This increase in function can be attributed both to an increase in the

number of sensors deployed within a prosthetic socket, and the efficient use and

synthesis of the information provided by these sensors. The combination of

sensorimotor signals into a useful summary of a system’s state, termed a state

representation, has become increasingly important to the performance of pros-

thetic devices, especially those that leverage pattern recognition, regression,

or real-time machine learning (Castellini et al. 2014).

As sensors have played a critical role in increasing the capabilities of clini-

cally deployed prostheses, pre-clinical research prostheses have also continued

to evolve in terms of their sensorimotor space to try and meet the function,

form, and feedback needs of users with amputations (c.f., Antfolk et al. 2013;

Atkins, Heard, and Donovan 1996; Castellini et al. 2014; Pilarski and Hebert

2017). As one representative example, Fougner et al. have shown that the

addition of sensors to help resolve residual limb position (e.g., accelerometers

or inertial measurement units) can dramatically increase the performance of

myoelectric pattern recognition as a subject with an amputation moves their
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limb through a range of common positions (Fougner et al. 2011). Further,

even without the addition of new sensors to a prosthetic socket, the modern

actuators and sensors within multi-joint prosthetic limbs can now generate a

wealth of data of different frequencies, ranges, and modalities. If used care-

fully, these signals present a valuable window into the intent of a human user

and their prosthesis’ interactions with a changing, daily-life environment.

4.1.1 Towards Computationally Efficient Representations

A prosthesis must be able to approximate and react to its sensor inputs within

a short window of time in order to remain effective (Farrell and Weir 2007).

If a representation can be formed for a control system in an efficient way,

even in the face of high-dimensional sensor data, it can readily be computed,

stored, and used in real time on the computationally limited hardware embed-

ded within wearable prosthetic devices.

Previous work by our group has explored in detail the use of real-time

machine learning methods for prosthetic control—we have to date performed

a wide range of prosthetic prediction and control studies wherein subjects

with and without amputations used different techniques from the field of re-

inforcement learning (RL) to operate a robotic arm (Edwards 2016; Edwards,

Dawson, et al. 2016; Edwards, Hebert, and Pilarski 2016; Pilarski, Dawson,

Degris, Carey, Chan, et al. 2013; Pilarski, Dawson, Degris, Fahimi, et al.

2011; Pilarski, Dick, and Sutton 2013; Sherstan, Modayil, and Pilarski 2015).

In all of these studies we exclusively relied on the linear representation method

known as tile-coding (Sutton and Barto 1998) to provide our RL prediction

and control systems with a view into the available space of prosthesis- and

user-derived sensorimotor signals. These linear representations were chosen

because they are highly efficient in both computation and data usage for a

fixed (small) number of input signals. However, as prosthetic devices improve

and the number of sensors available to the system increases, it remains un-

clear how standard linear representations like tile-coding are affected, and if

more scalable representations exist which would be more aptly suited for use

in prosthetic limbs and other wearable assistive rehabilitation technologies.
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Finding a good representation of input signals in complex, high-dimensional,

and continuous environments is a difficult problem faced not just in the adap-

tive control of prosthetic limbs, but in a wide range of domains where designers

seek to deploy machine learning for real-world control tasks; notable exam-

ples range from speech recognition to self-driving vehicles. However, unlike

enterprise-scale applications with access to vast computational resources, the

prosthetic setting requires that all computation be limited to run on small,

power efficient processors that can be installed in a self-contained way within

the chassis of a prosthetic device. The representation of high-dimensional

continuous state information therefore needs to be done in a computation-

ally efficient fashion. Furthermore, and specific to robotic applications, it

is often impossible to exactly represent the state of a system to a control

process; some approximation of the continuous state of the system must be

used. One method of approximating continuous signals and reducing high di-

mensional data is principal component analysis (PCA) which compresses high

dimensional data to a much smaller set of salient features. However, recent

studies have found that the relevant variables PCA produces are not usable

by a machine learner that requires representations of the interactions between

sensorimotor data to perform well (Legenstein, Wilbert, and Wiskott 2010).

In this chapter, we therefore contribute a first study on the effects of in-

creasing the dimensionality of prosthetic sensory data in terms of computation

time and prediction accuracy for linear tile-coding representations (the domi-

nant linear function approximation approach used in RL), and propose a novel

approach, Selective Kanerva Coding. Modified from Kanerva Coding, Selective

Kanerva Coding promises to scale accurately and efficiently as the number of

sensory dimensions increases on an assistive device (Kanerva 1988; Ratitch

and Precup 2004).

4.2 Representation using Linear Methods

Approximating a value function using linear methods is considered a standard

approach because of the ease of computing the gradient of the value function
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Figure 4.2: A depiction of Sparse Distributed Memory (SDM) prototypes being
activated within a fixed radius of a specified address in the state space.

Figure 4.3: 2D and 3D views of three overlapping tilings covering a 2D state
space with three tiles per dimension. The number of features for this example
is 27, where only three features are activated as given by the grey dot and line
inside their tiles.

with respect to the learned parameters or weights (e.g., the weight vector θ in

Alg. 1) (Sutton and Barto 1998). This leads to a particularly simple form of

the gradient-descent update with the guarantee that any convergence to a lo-

cal optimum is a convergence to a global optimum. On top of their theoretical

results, linear methods can excel in terms of computation and data efficiency

but this depends critically on how the dimensions of states are represented in

terms of the representation’s feature vector, φ. For instance, in continuous en-

vironments, it is natural for a single feature, φ(i), to represent a selected range

of continuous values such as “joint A’s angle is between 150 and 180 degrees.”

For complex tasks using linear methods, it is necessary to use features that

represent combinations of state dimensions because linear methods, by their

nature, are unable to represent interactions between their features.
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4.2.1 Tile Coding

Tile coding (TC) is a linear representation that is often chosen in RL for its

efficiency in online learning. Typically, tile coding splits up a d-dimensional

state space into m overlapping partitions called tilings where each tiling is

split into a set of nd tiles, n tiles along each dimension. Each tiling has an

offset from each other (see Figure 4.3), which leads to a better generalization

(Sutton and Barto 1998). Each tile represents a binary (0 or 1) feature that

is activated when the state lies within the tile. Finer granularity can then be

achieved by increasing the number of tiles and decreasing the size of a tile in

each tiling. Unfortunately, this granularity has a trade-off with generalization

because states are less likely to activate the same tile.

A binary feature vector φ, of length mnd, can then be constructed by

concatenating all nd features for all m tilings. Since only m features are

activated, tile coding has an advantage when choosing a constant step-size

parameter, α, as the number of active features is independent of the state.

For example, a reasonable step-size parameter might be α = 0.1m.

In order to capture the interaction between dimensions, tilings must span

the state space so that each tile represents a small d-dimensional hyper-cube.

The number of features grow exponentially with the number of dimensions.

For the small number of dimensions found in common control tasks, tile coding

provides an easily implementable representation with clear benefits. However,

as the dimension of the task grows, so does the memory cost.

A common method of reducing the memory requirements is hashing, a

pseudo-random compression of a large tiling into a reduced set of tiles of a

given memory size, however, hashing still has some drawbacks. It is not clear

how to choose a good memory size and some hand-tuning must be admin-

istered in practice. Additionally, the hashing function is a pseudo-random

process which may have collisions leading to one feature being activated by

two or more distinctly different sensory observations. Collisions may be ac-

cidentally beneficial if the collisions occur between sensory observations that
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have similarities2 and extend the generalization capabilities of the represen-

tation. However, the odds are usually in favor of a collision having negative

affects. These tile collisions become more common as the memory size shrinks

relative to the total number of tiles. Although it is possible to use chaining3

to make “safe” hashing implementations of tile coding that take preventative

measures when a collision is detected, these checks take additional time and

require still more time to handle a collision when one has occurred.

4.2.2 Kanerva Coding

Kanerva coding is the application of sparse distributed memory as a represen-

tation in reinforcement learning (Algorithm 4). Unlike tile coding, the number

of features in Kanerva coding does not grow with the number of dimensions.

This can lead to dramatic savings in necessary memory resources. Although

a common issue when using Kanerva coding in RL is choosing an appropriate

number of prototypes and activation radius, in contrast to other approxima-

tors, e.g., neural networks, the structural parameters of Kanerva coding can

be easily changed without retraining the learned model. In fact, several re-

searchers have shown improved performance by moving the prototypes around

the representation space or by growing the representation using experience

from the learner (Cheng and Meleis 2008; Ratitch and Precup 2004). These

methods are effective but add extra memory and computational complexity to

keep and examine different prototype statistics. Other work has shown that

Kanerva coding may successfully be applied to continuous domains (Ratitch,

Mahadevan, and Precup 2004). However, the computational cost of high-

dimensional continuous states has not yet been explored. This is especially

important in settings with limited computation and where the representation

must be computed within a small amount of time.

2This is known as Locally Sensitive Hashing.
3A hashtable with chaining stores an array at each hash index which stores all of the

collisions for the index.
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Algorithm 4 Kanerva Coding

Initialize all K prototypes in P randomly
Choose an activation radius r and distance function d (e.g., Euclidean dis-
tance)
Given state S

For i = 0 to K-1
φi ← 0
If d(Pi, S) < r
φi ← 1

return φ

4.2.3 Selective Kanerva Coding

We propose a method of finding nearby prototypes with minimal computation.

The idea is to remove the activation radius and simply find the c closest pro-

totypes to the state of the system using Hoare’s quickselect which can be used

to find the c shortest distances in an array of distances (Hoare 1961). One way

of choosing a good c is to choose a small ratio, η such that c = bKηc. Not only

does this method, which we refer to here as Selective Kanerva Coding (SKC),

still have the same O(K) complexity as computing how many prototypes are

within an activation radius, but it shares with tile coding the guarantee of the

same number of activated features along with the associated benefits like select-

ing learning step sizes. Utilized alongside True Online TD(λ), SKC promises

to be an efficient, reliable representation for computing GVFs.

A simple extension of selective Kanerva coding would be returning real-

valued features. In this setting, after applying quickselect to find the closest

c prototypes, the value of the closest prototypes’ features would be based on

the prototypes’ proximity to the state relative to the other close prototypes

while still ensuring that the total activation of the features remains equal to c.

Further investigation into this real valued selective Kanerva coding is needed,

as it has great potential utility for assistive technologies.
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Algorithm 5 Selective Kanerva Coding

Uses quickselect(D, c) which finds the c smallest indicies in array D of length
K in O(K) complexity
Initialize all K prototypes in P randomly
Choose an η such that c = bKηc << K and distance function d (e.g.,
Euclidean distance)
Given state S

Initialize D = 0
For i = 0 to K − 1
φi ← 0
Di ← d(Pi, S)

I ← quickselect(D, c)
For i = 0 to c− 1
index← Ii
φindex ← 1

return φ

4.3 Experiment

A robotic arm designed to be worn as a research prosthesis (the Bento Arm of

Dawson et al., (Dawson et al. 2014), Figure 4.1) was used to generate data for

a prediction problem in order to compare the time and prediction performance

of selective Kanerva coding and tile coding. This robot arm has shoulder and

elbow joints, wrist rotation and flexion, as well as a gripper for a total of 5

degrees of freedom. Each joint contained sensors for position, velocity, load,

and temperature which leads to 20 real valued sensor signals from all of the

servos (as shown using different coloured traces in Figure 4.1).

The arm was controlled in a sorting exercise where three different objects

were picked up from the same location, carried, and then dropped at different

locations assigned by their weight. A single trial consisted of the arm beginning

at one end of its shoulder rotation, closing its gripper around an object, lifting

its elbow while rotating its shoulder towards the drop off location at which

point the elbow would descend, the gripper would release the object, and then

the arm would return to the initial position. 30 trials were performed for

each of the three objects, giving a total of 90 trials. Data from all servos was

collected during each of these trials. Since each trial began and ended in the
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same location, the order in which each trial was presented could be and was

randomly shuffled. Five long streams of continuous sensor information were

created using this method, each containing over 16 minutes of sensor readings.

The goal of the prediction task was then to predict what the expected cu-

mulative sum of the shoulder angle sensor would be over the next 10 timesteps

(∼0.3 seconds into the future). Predictions were made through the use of an

on-policy general value function learned via true online temporal-difference

learning (Algorithm 1). In order to predict 10 timesteps into the future,

γ = 0.9 was used in specifying the GVF. Learning rate and the eligibility

trace parameters were empirically set to α = 0.001 and λ = 0.99, respectively.

To examine the effect of the number of sensor dimensions on prediction

performance and computation time, three different sensor combinations were

used—representations were constructed with 2, 8, and 12 sensory input signals.

In the 2-dimensional setting, only the elbow angle and load were given as part

of the representation, whereas in the 8-dimensional setting, the angle, load,

temperature, and velocity of both the elbow and the wrist rotator were given.

Finally, the angle, load, temperature, and velocity of the elbow, the wrist

rotator, and the wrist flexor were given in the 12-dimensional task.

Exactly 248 different combinations of tiles and tilings were used to generate

a wide range of tile coding configurations and thus a wide range of features

for each dimensional setting, ranging from 128 to 331776 features. One ex-

isting method of offsetting each tiling is to deterministically shift each tiling

using a deterministic knight’s-move pattern4. Although this knight’s pattern

is deterministic, by using the five different long streams of data generated by

shuffling the trials, a representative distribution of online learning performance

was calculated.

For selective Kanerva coding, the number of prototypes ranged from 1000

to 20000 where each prototype was a point in the 2, 8, or 12 dimensional space.

Euclidean distance was used to measure how close each prototype was to the

4Similar to that in chess, the knight’s pattern used here shifted by an increasing amount
for each new tiling, as per Miller and Glanz 1996. Each tiling produced by a shift is then
included in the representation.
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observed state after the state was normalized using the ranges of the sensors.

A constant ratio η = 0.025 of features (rounded down) were active at any

time. For example, in the 1000 prototype case, the features of the 25 closest

prototypes to the observed state were activated. In the 8000 prototype case,

the features of the closest 200 prototypes to the observed state were activated.

To ensure that the performance was not dependent on the random distribution

of the prototypes, five different seeds were used to randomly distribute the

prototypes.

Thus each of the 248 configurations of tile coding and all five seeds of

selective Kanerva coding were used for the 2, 8, and 12 dimensional settings

using all five of the long streams of robot generated data. For each run, the

prediction performance and the computation time per timestep was recorded.

To reveal the relation between the number of features that could be calculated

and the calculation time per timestep, the number of features that could be

calculated within 100 ms was also recorded.

4.4 Results

Figure 4.4 compares the variation in both prediction error and computation

time for tile coding and SKC as their number of features increases, up to a

maximum computation time per step cut-off of 100ms (selected in this study

as the upper limit for real-time prosthesis control, c.f., Farrell and Weir 2007).

After removing outliers from the tile coding data which had error orders of

magnitude worse than the trend seen in Figure 4.45, the data indicates that

both tile coding and SKC have improved performance as the number of features

5This was due to configurations of tile coding that had very few features.

Table 4.1: The maximum number of features that can be calculated within
100 ms on a single-core 2.5 GHz processor.

Tile Coding Selective Kanerva Coding
Dimensions Mean Std Mean Std

2 247439 302 19333 236
8 244496 534 12960 198

12 245724 620 10883 165
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Figure 4.4: Key result: comparison of prediction error and computation time
for tile coding and SKC as their number of features increases, including (top)
the mean absolute prediction error on the last 10% of the combined data for
SKC and tile coding on 2, 8, and 12 dimensions; and (bottom) the mean
computation time of the combined data for SKC and tile coding on 2, 8, and
12 dimensions. The maximum features computable in a 100ms timestep is
shown in both plots by blue lines and the points I, II, II, and IV for SKC12,
SKC8, SKC2, and TC2/8/12, respectively

increases up until an optimum point after which the error increased or the

representation took too long to compute. The maximum number of features

calculated within 100 ms for the 12, 8, and 2 dimensional settings for SKC

are represented as points I, II, and III, respectively. The maximum number

of features that can be calculated within 100 ms using tile coding had little

variation on the log scale presented in Fig. 4.4, and is represented by a single

point IV. The exact numbers these labeled points represent is shown in Table

4.1.
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The 100 ms processing limit had the effect that the 8 and 12 dimensional

settings of tile coding did not improve the prediction error beyond what the

2 dimensional setting was able to achieve, despite the possibility of improved

prediction performance if more computation was allowed. TC was quite unlike

SKC, which not only had similar performance trends across different numbers

of dimensions but utilized the additional dimensions of the state space to

improve performance using the same number of prototypes and thus features.

The best performance in terms of error across all conditions was found to be

SKC at 8000 prototypes, with 12D SKC at 8000 features demonstrating the

overall best performance on the entire experiment. After 8000 features, large

numbers of additional features proved to be detrimental to SKC’s performance

which resulted in the error having a convex form with a minimum at 8000.

Additionally, the timestep duration increased for both tile coding and SKC

as the number of features increased. Not only was tile coding significantly

more time efficient than SKC, but because there were tile coding configura-

tions with the same number of features across different numbers of dimensions

and each tile coding feature is calculated at the same speed, these different

configurations had the same computation time per timestep and thus visually

overlapped as seen in Figure 4.4 (bottom). As Euclidean distance was used

to compute the distance between prototypes in SKC, the computation time

per timestep increased with additional dimensions. As more dimensions were

added, this extra computation decreased the number of features that could be

calculated within 100 ms, as seen in Table 4.1.

Although SKC required significantly more time to calculate activated fea-

tures, the extra time taken proved to have a stronger influence on prediction

accuracy up until the optimal.

4.5 Discussion

Our results indicate that SKC is a representation that should be explored

further within the context of prosthetic control, assistive or rehabilitation

robotics, and other domains where high-dimensional continuous signals must
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be efficiently represented in real-time to an adaptive or non-adaptive control

process.

The five different random distributions of prototypes created for SKC did

not lead to significant inter-distribution variations in performance (i.e., SKC

had a consistently small standard error across prototypes distributions). This

is an improvement over standard Kanerva coding, where the distribution of

prototypes is known to play a significant role in the performance of the predic-

tor. By only activating the features whose prototypes are the closest relative

to other prototypes instead of within a radius, SKC invokes a limit on the

distance between the furthest activated prototype and the state by the nature

of distances in higher dimensional spaces. As the number of dimensions of a

state space grows, the distances between random points in the space grows.

In standard Kanerva coding, this growth along with the distribution of proto-

types themselves increases the difficulty of appropriately setting the activation

radius as it must grow as well. SKC, on the other hand, uses a notion similar

to K-Nearest-Neighbors and locates the closest prototypes given that the ma-

jority of the prototypes (assuming η < 0.5) are further away. Following from

the increasing distances between these prototypes, the set of features activated

by SKC is appropriately flexible to changes in scale and dimension.

The error with respect to the number of features in SKC follows a convex

curve which indicates that there is an optimal number of prototypes, given

an η. This decrease in performance as excessive prototypes are added to the

representation requires further investigation. It is most likely caused by the

limited number of training examples but may also be caused by over-fitting.

Following from previous work where the addition and deletion of prototypes

has been explored, one could extend the present work by applying gradient

descent methods to learn the optimal number of prototypes K, activation ratio

η, and effective distribution of prototypes (e.g., via gradient derivations similar

to those of Sutton, Maei, et al. 2009). This would be an important result, as it

could lead to a representation with fewer prototypes, and thus features, that

still accurately represents a high dimensional state space. With fewer features,

the representation can be constructed faster and the extra time can be devoted
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to making more predictions or to engaging more computation-heavy methods

such as planning.

As the computation time increases with additional dimensions and features,

there must exist an upper bound of how many dimensions and features can

be represented on a single-core processor within a specified amount of time.

The results indicate that SKC might be a representation that could provide

accurate predictions until this upper bound is reached. Although this study

explored the effect of higher dimensions while constraining computation time

within 100ms, further studies are needed to consider the utility of different

methods given variable time constraints and even higher dimensions.

Finally, it is natural to expect that to achieve the best performance on a

prosthetic prediction or control task, the optimal number of or distribution of

features in a SKC (or other) representation may be specific to each individual.

That is, the best representation for a given prosthesis-user partnership may

depend on the unique characteristics of an individual user’s signals, behaviours,

and the capabilities and operation of their prosthetic device. The best way to

interpret signals for use in a machine learning or conventional control system

may also change with time as the user’s interactions with a device shift through

experience and training. Exploring adaptive extensions to SKC and comparing

them with other representation learning approaches to determine their viability

on resource-constrained prosthetic control systems is therefore an important

topic for future study.

4.6 Conclusions

As the number of sensors available on prosthetic devices grows with their ca-

pabilities, an appropriate synthesis of sensorimotor signals into a useful repre-

sentation becomes vital to the performance of these devices’ machine learning

control systems. If such a representation can remain computationally effi-

cient, it can readily be used on the computationally limited systems residing

within wearable prosthetic technology. The study in this chapter explored how

increasing the number of input signals affected performance and per step com-
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putation time of a true-online reinforcement learning system using both tile

coding and a new, modified version of Kanerva coding that we term selective

Kanerva coding.

The presented results reaffirm previous findings about tile coding’s increas-

ing computational requirements on high dimensional data. Our results fur-

ther show that selective Kanerva coding can be readily applied to upper-limb

robotic prediction tasks. We note that selective Kanerva coding takes more

time to compute a representation than tile coding, but also show that not only

are there significant gains in prediction performance with additional features

but that there is an optimal number of prototypes for a fixed activation ratio, η

and limited training data. These findings suggest that selective Kanerva cod-

ing merits further study, and as such, this work contributes a significant step

towards accurately representing the high-dimensional data of assistive tech-

nologies to a machine learning control system such as a reinforcement learning

agent.

47



Chapter 5

Selective Kanerva Coding in a
Multimodal Domain

1

5.1 Overview

Intelligent robotic limbs represent the fusion of advanced robotics and machine

intelligence, and are beginning to make their way out of the pages of science

fiction into real-world applications. Previous work shows that intelligent arms

have become useful for many tasks such as Amazon’s Picking Challenge (Her-

nandez et al. 2016) which requires an arm to pick up and place several objects

in the shortest amount of time. Another application where intelligent robotic

arms are becoming increasingly useful is as prosthetic devices where the robotic

arm cooperates with a human user to allow synergistic movements (Sherstan,

Modayil, and Pilarski 2015; Pilarski, Edwards, and Chan 2015; Pilarski, Sut-

ton, and Mathewson 2015; DeGol et al. 2016).

As robotic limbs interact more and more with their environment, the am-

bition to build accurate knowledge of a complex and changing world becomes

increasingly necessary. To address this problem, architectures have been pro-

posed which show improved results on the 3-dimensional Labyrinth task by

having multiple predictions of subtasks (Jaderberg et al. 2016), while other

architectures show the expressive power of multiple predictions as knowledge

(Sutton, Modayil, et al. 2011; Littman and Sutton 2002).

1A version of Chapter 5 has been submitted for publication as Jaden B. Travnik, Dylan
J. A. Brenneis, Michael R. Dawson, and Patrick M. Pilarski, “Grasping Predictions with
Multimodal Sensors”, for Frontiers in Neurorobotics.
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Vision systems combined with distance or inertial measurement sensors

have previously been used to provide grasp prediction in powered hand pros-

theses (Došen et al. 2010; Ghazaei et al. 2017; Markovic et al. 2015) and

robotic arms (Lenz, Lee, and Saxena 2015). The methods employed to make

the grasp predictions include heuristics (Došen et al. 2010; Markovic et al.

2015) and deep learning (Ghazaei et al. 2017; Lenz, Lee, and Saxena 2015)

where the sensors are placed near the back of the grasping hand (Došen et al.

2010; Ghazaei et al. 2017) or affixed to the head of the robot or user (Lenz, Lee,

and Saxena 2015; Markovic et al. 2015). Using multimodal sensors with surface

electromyography (sEMG) has also been identified as a promising approach for

improving the control of myoelectric prostheses when mapping muscle contrac-

tions to joint movements on the prosthesis (Jiang et al. 2012). Several studies

have found that combining inertial measurement data (accelerometer, mag-

netometer, and gyro) with sEMG can improve classifier accuracy when using

pattern recognition classifiers such as linear discriminant analysis (Krasoulis

et al. 2017; Kyranou et al. 2016; Markovic et al. 2015; Radmand, Scheme,

and Englehart 2014). The main contributing signals were reported to be ac-

celerometer, magnetometer, and sEMG while the gyro data was found to not

contribute significantly (Markovic et al. 2015). Scheme et al. found that ac-

celerometer data could sometimes degrade classification when trying to solve

the limb position problem (Radmand, Scheme, and Englehart 2014). Their

proposed solution was to train the classifier while moving the prosthesis dy-

namically through a range of static movements in which case the training time

is reduced and performance is improved by using both the accelerometry and

sEMG data instead of the sEMG alone.

It can be argued that making multiple accurate predictions requires mul-

tiple types of sensors, because the type of sensory information presented to a

learning agent drastically affects the accuracy of the predictions it is able to

make with the data. Take for example, a robotic arm tasked with predicting

whether it will contact a red object. A robotic arm capable of sensing color

would be expected to make more accurate predictions at this task than an arm

without this sensory information. A challenge then lies in determining which
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modes of sensory information will be the most important to a learner for any

particular task: a process, referred to as feature selection, used in many ma-

chine learning applications (Guyon and Elisseeff 2003). The more relevant the

subset of inputs are to the prediction to be made, the higher the prediction

accuracy. In the arm example, if sensors relaying color information were avail-

able, they would be most relevant to predictions involving color. In this way,

the type of sensors used on a robotic arm dictate what predictions can be made

accurately irrespective of the representation used. If specific types of sensors

are required to make accurate predictions which pertain to specific types of

sensory information, it is a natural extension to see that multiple modes of

sensors will be required to make predictions which pertain to multiple sensory

modalities.

In this chapter we examine the effects of using different sets of multi-modal

sensory inputs in a prediction task using real-time data on a robotic hand. We

first document the custom robotic hand and data glove used for data collection

in the experiment. We then introduce the design of experiment and provide

a description of the data collected. Then, we detail the implementation of

the representation and learning algorithms used, along with the 3 modality

settings for comparison. After discussing the results, we present insight on

the effects of using multi-modal data sensors in predictions of robotic arm

data. Finally, we conclude that intelligent robotic arms of the future require

multi-modal sensors.

5.2 Experiments

5.2.1 Data Collection

Four shapes differing in color and shape were 3D printed and a mapping be-

tween shape and hand gestures was chosen so that there was no association

between any color and finger nor any shape and finger. As follows, we hy-

pothesized that the most accurate prediction would have to have information

about both modalities.

The HANDi Hand was set up such that the camera faced a solid black
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Figure 5.1: The table associating GLOVi Glove hand gestures to shapes. There
are 4 shapes in all: green and orange cylinders, and green and orange steps.
If the shape is the Orange Step, then the experimenter wearing the GLOVi
Glove, puts their ring and pinky fingers down.

background, next to a pipet stand used to present objects to the hand in a

repeatable orientation (see Figures 5.2 and 5.3). The objects varied in shape

and color to include a green cylinder, an orange cylinder, a green stepped

cylinder, and an orange stepped cylinder. These colors were chosen as it

was expected that averaged RGB values collected by a camera would show

noticeable differences between the colors. Similarly, the shapes were chosen

as such because it was expected that the HANDi Hand would naturally grasp

them differently, resulting in a noticeable difference in finger position. Each

trial began with a recorded button press, followed by the introduction of the

shape to the hand’s grasping area. Three seconds following the button press,

the hand closed around the object in a column grasp, and held the object for

three seconds. During this grasp phase, the experimenter wearing the data

glove would perform a hand gesture particular to the object being held by

the HANDi Hand, as outlined in Figure 5.1. The presentation of these hand

gestures never deviated from the presentations in the table. Natural small

deviations in movement of the experimenter’s hand (i.e. small inconsistencies

in finger position or timing) were allowed, as they are representative of typical

human interactions. Upon release of the grasp, the object was removed from

the grasping area of the hand, and the experimenter returned the GLOVi

Glove to a neutral position with all fingers extended. Three seconds following

the release of the object marked the end of each trial, making each trial a total
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Figure 5.2: A side view of the ex-
periment setup showing how the
shapes were oriented in the HANDi
Hand’s grasping area.

Figure 5.3: A top view of the
experiment setup showing how
the shapes were rotated into the
HANDi Hand’s grasping area.

Figure 5.4: A picture showing
the HANDi Hand (left) holding
a green cylinder and the experi-
menter wearing the GLOVi Glove
(right) performing the appropriate
hand gesture as indicated by the ta-
ble in Figure 5.1.

Figure 5.5: The camera’s 480 x
640 RGB view of the green cylinder
(top) against the black background
with the Thumb of the HANDi
Hand (left) in view.

of nine seconds long.

For each object, the number of trials recorded is as follows: green cylin-

der: n = 31; orange stepped cylinder: n = 33; green stepped cylinder: n =

33; orange cylinder: n = 34. Position and force data from the HANDi Hand

was collected using an Arduino Mega at a rate of approximately 70 Hz; po-

tentiometer data from the GLOVi Glove was collected on an Arduino Uno at

a rate of approximately 750 Hz; camera data was collected via USB to the
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computer at a rate of 15 Hz with an image size of 480x640 RGB. A timestamp

was also recorded for each reading so that the data could be synchronized

offline. As the highest data collection frequency was from the GLOVi Glove,

the data from the camera and HANDi Hand was upsampled using the most

recent timestamp. This resulted in a total of over 850,000 data points for all

sensors. As each trial started and ended in relatively the same position with

the GLOVi Glove and the HANDi Hand opened and an empty camera view,

the order of the trials was randomly shuffled such that the trials of four shapes

were randomly distributed into a long stream of sensory data. The sensory

values were then normalized between 0 and 1 using the sensor’s minimum and

maximum over the entire data stream.

Figure 5.6: A sample of the data stream created by concatenating the different
trials. The top 4 rows show different groups normalized sensor values from the
HANDi Hand. The 4th row shows the subset of signals used in the “All”
input setting. The 5th row shows normalized values of the Middle, Ring,
and Pinky Potentiometers of the GLOVi Glove. The colored sections indicate
which shape is being presented. Small jumps can be seen in the signals when
trials meet. An exception is the Thumb Flex Distal Potentiometer which had
large variations in its value as the thumb of the HANDi Hand drifted over the
course of the experiment.

When the HANDi Hand closed around a step shape, the index and ring

fingers closed further than they would have if the shape had been a cylinder.
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This can be seen from Figure 5.6 in the 4th row. Further, the potentiometers

of all other joints on the HANDi Hand either did not move (e.g., Thumb Ro-

tation), had movement but were indiscernible across the different shapes (e.g.,

Middle Intermediate), or had a noticeable drift during the experiment which

produced large jumps in value after the trials were concatenated together.

As these large jumps were indicative of what shape was to be presented, the

Thumb Flex Distal Potentiometer was not considered as an input signal for

the experiment. Additionally, only the force sensitive resistor in the thumb

of the HANDi Hand was activated and although it activated with different

profiles between all shapes it was determined that this difference was a result

of the drift in the HANDi Hand thumb flex joint which occurred during data

collection so it was also not included as an input to the predictions. Likewise,

since adding a non-relevant sensor would hamper the accuracy of a prediction

and would make a prediction harder to interpret (Guyon and Elisseeff 2003;

James et al. 2013), such signals were also not used as inputs to the predictions.

In this way, a manual feature selection ensured that the potentiometer of

the intermediate joint of the index finger and the proximal potentiometer of

the ring finger from the HANDi Hand together contained enough information

to discern between cylindrical shapes and stepped shapes. In a similar manner,

the averages of the red and green channels from the camera, unlike the average

of the blue channel, contained enough information to discern between the green

and orange shapes. In this way, a representative subset of 4 sensors was isolated

as it provided the information necessary to discern each shape and thus predict

each finger for the GLOVi Glove. For each of the 4 sensor values, a trace with

λdecay = 0.999 was calculated and normalized as well. Three different input

space settings were constructed using this subset of sensors and associated

traces. A “Color Only” setting was created using the averages of the red and

green channels from the camera and their normalized traces thus making a

4 dimensional input space. A “Position Only” setting was created using the

potentiometers of the HANDi Hand fingers from the subset along with their

normalized traces making another 4 dimensional input space. Finally, an “All”

input space was constructed by using all 4 sensory signals from the subset and
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their associated normalized traces making an 8 dimensional input space.

Each of the 3 different input space settings was represented using selective

Kanerva coding with 8000 features and an η = .025 with input dimensions

respective to the input space setting (Travnik 2017). Three on-policy general

value functions, one for each of the moving finger’s potentiometers on the

GLOVi Glove (middle, ring, and pinky finger), were implemented with learning

parameters γ = 0.999 and λ = 0.9 and the learning target of their respective

GLOVi Glove potentiometer. Each of these general value functions was used

to learn a prediction of their potentiometer with a step size of α = 0.01 for 80%

of the data then was tested on the last 20% of the data using a step size which

did not modify the learned weights (α = 0). For each of the 177419 timesteps

of the testing phase, the true return of the potentiometer was calculated with

γ = .999 and the squared error between the prediction and true return was

recorded.

5.3 Results

After collecting the data, the predictions of each of the three general value

functions on the last 20% of data, where there was no learning (α = 0), were

plotted along side the potentiometer signal and its true return. The predic-

tions, potentiometer values, and the true return, for one trial of the Green

Cylinder are plotted in Figure 5.7. As the Green Cylinder shape required the

experimenter wearing the GLOVi Glove to put down their middle, ring, and

pinky fingers, the values for the potentiometers of middle, ring, and pinky

have a distinct square pulse as the potentiometer turned with the spooling

mechanism, and the associated true return has a curve indicative of this pulse.

The accuracy of the predictions (blue) for these square pulses on this trial

vary across the different input space settings (columns), with the “All” setting

having a better approximation of the true return than the other 2 settings.

The “Position Only” predictions of the ring, and pinky fingers have a large

offset before the onset of the experimenter’s finger movements but were able

to have a fairly close approximation of the drop off of the return during the
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step function. The “Color Only” predictions did not have a large offset but

were not able to accurately predict any of the potentiometer values. The “All’

input setting was able to have both the lower initial offset similar to the “Color

Only” input setting and an accurate approximation of the of the return during

the rest of the trial.

Figure 5.7: A plot of the predictions for one of the Green Cylinder trials in the
testing phase. For each of the three generate value functions, the prediction of
the potentiometer for each of the input space settings (blue) is plotted against
the value of the potentiometer sensor (orange) and the sensor’s true return
(green). Following the hand gestures from 5.1, the experimenter wearing the
GLOVi Glove put down their middle, ring, and pinky fingers for the Green
Cylinder shape as can be seen from the sensor (orange) lines.

To compare the rest of the trials, the distributions of the root squared error

between the true return and the predictions after learning were compared for

each prediction and input setting (see Figure 5.8). Accross all input settings,

the distribution of error for the middle finger has lower variance than those of

the ring finger and pinky. The distributions in error for the “All” input space

setting have a smaller variance and a lower mean and median for the middle

and pinky potentiometers compared to the other two input space settings. The

median for the ring finger in the “All” input setting is almost identical with
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the median for the ring finger in the “Position Only” input setting but the

variance for the “All” input setting on the ring finger is slightly smaller.

Figure 5.8: A side-by-side boxplot of the distributions of the root squared
error between the true return and the predictions of the general value functions
during the testing phase. Each distribution is comprised of 177419 data points.
Outliers outside of 2 standard deviations are removed for clarity.

Although a two-tailed two-sample t-test proved statistical difference (p-

value ≈ 0) between the distributions of error of the “All” input space setting

and the other two input space settings, a Cohen’s D test was performed to

find the effective difference between the distributions of error (Cohen 1977;

Lin, Lucas Jr, and Shmueli 2013). A small to medium effective difference was

observed between the “All” input space setting and the other 2 settings for
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all of the fingers with the exception of the ring finger on the “Position Only”

setting.

Figure 5.9: The results of a Cohen’s D test between the distributions of error
of the different input settings for each prediction.

5.4 Discussion

As can be seen in Figure 5.7, the predictions more closely approximate the

true return when the data from all sensory modalities is given to the learner.

This same result is supported by the analysis of error distributions given in

the boxplots of Figure 5.8. Perhaps the most interesting feature of Figure

5.7 is the bottom central plot; that of the pinky finger prediction as made

using only the color data. For this particular prediction one might expect

reasonably good accuracy, since if the learner knows that the color of the

object is green, regardless of the shape, the pinky finger of the GLOVi Glove

should be predicted to move down, giving the square pulse. The prediction
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that is made here does not fully reflect the true return unless the data from

the HANDi Hand fingers is also included, as seen in the “All” column. Thus,

it appears that even when it is expected that a particular subset of sensors

might be enough to give a reasonable prediction, additional data from different

sensory modalities can be used to increase prediction accuracy.

The results of a Cohen’s D test show that the middle, ring, and pinky

predictions made in the “All” input setting not only have a small to medium

effective difference between the distributions of error of the “Color Only” and

“Position Only” input spaces (see Figure 5.9), but with the addition of sen-

sors with different modalities, the root mean squared error of the predictions

decreased along with the median for most of the predictions. Additionally, the

variances of the distributions of error for the middle, ring, and pinky predic-

tions were narrower than those of the other two input settings (see Figure 5.8).

The higher error seen in the “Color Only” input setting predictions is evident

given the large offsets between the predictions and the baseline positions of

the potentiometer sensors.

The performance seen in the “Position Only” input setting predictions suf-

fered in part due to the lack of information about the incoming object which

was available in the “Color Only” input setting. As the “Position Only” input

setting did not provide enough information to tell the difference between the

green and orange objects, each prediction made using that input setting was

instead offset based on the frequency of the associated finger moving2. The

“All” input setting did not have this drawback and had an accurate approxi-

mation of the return during the entirety of the trial.

In the “Color Only” input setting, the ring and pinky predictions tended to

increase just before the hand gesture in the GLOVi Glove was made. This was

surprising, as this jump occurred just as the HANDi Hand closed. Analyzing

the data after the fact, the jump in prediction occurs because the HANDi

Hand thumb is in the frame of the camera, so when the HANDi Hand closed

around a shape, the averages of the colors also changed. In fact, for the Step

2The Pinky was moved in 75% of the trials, the Ring in 50% of the trials, and the Middle
in only 25% of the trials.
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shapes, the thumb rotated into the groove of the step and further out of the

frame of the camera than it did for the cylindrical shapes. This made a small

but noticeable difference in the average of the colors such that the predictions

in the “Color Only” input setting could discern when the hand was closed.

5.5 Conclusions

Using a custom robotic hand and inexpensive data capture glove, comparisons

were made between the prediction accuracies of different learning scenarios

with particular subsets of sensory modalities. The results from this study show

that the inclusion of relevant multimodal sensors to an input space of a machine

learner can increase the prediction accuracy over the prediction accuracy of

machine learners that only include sensors of a single sensory modality. In

cases where it might be expected that reasonably accurate predictions could be

made using a single sensory modality, the introduction of alternate modalities

still increased the prediction accuracy. This finding seems to suggest that

machine learning systems that have access to a variety of different types of

sensory information might be able to generate more accurate predictions than

those with more limited sensory inputs. Indeed, this makes intuitive sense: we

as human beings integrate information from a wide variety of sensory inputs

to make predictions about the world we interact with, and when deprived of

our senses (for example, by being blindfolded), we tend to have more trouble.

The future of artificial intelligence systems will depend on the generation of

accurate predictions in order to build up expansive knowledge of the complex

world that an agent acts in. The findings of this study suggest that these

accurate predictions rely on diversity in the sensory input space, hinting that

future robotic applications will benefit by the inclusion of multimodal sensory

inputs. In the specific case of machine learning as applied to prosthetic limbs,

this means that robotic arms should be made to include many different kinds

of sensors.
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Chapter 6

Discussion and Exploration of
Selective Kanerva Coding

The experiments in Chapters 4 and 5 show how selective Kanerva coding

(SKC) can be used as an effective linear function approximator with large state

dimensions and across different sensor modalities. In this chapter we explore

the sensitivity of SKC’s meta-parameter η on prediction accuracy, evaluate

possible variations of SKC, and discuss future research opportunities.

The following experiments reuse the HANDi Hand and GLOVi Glove data

from Chapter 5. Specifically, they use the same subset of 4 signals from the

HANDi Hand data: the potentiometer of the intermediate joint of the index

finger, the proximal potentiometer of the ring finger, the averages of the red

and green channels from the camera. Each following experiment also uses the

ring finger from the GLOVi Glove as the target signal to be predicted by on-

policy GVFs. The learning parameters of α = 0.01, γ = 0.999, and λ = 0.9

were also kept the same as well as a data trace of λdecay = 0.999.

6.1 Sensitivity Analysis of η

To analyze the sensitivity of SKC’s prediction accuracy to changes in η, an

encompassing sweep across varying numbers of prototypes and varying values

of η was performed. To account for variations in the spacial distribution of

prototypes, 40 iterations, each with a different random seed were used. Using

the same strategy as in Chapter 5, GVFs were implemented and trained for
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80% of the data and then had their predictions compared against the true

return for the last 20%. The mean squared error between the prediction and

the true return for each GVF was calculated and recorded. The resulting

profiles for the prototype set size and the η value used can be seen in Figure

6.1.

Figure 6.1: The sensitivity in error for different values of η of varying sizes of
prototype sets. The profiles for the smaller prototype set sizes are staggered
as an η < 1

K
, where K is the prototype set size, results in 0 active prototypes

so they can not be evaluated at these values. The smaller prototype sets (e.g.,
250 to 4000) show an increase in variability for small ηs.

The plot in Figure 6.1 captures a few important qualities about SKC.

Firstly, it reaffirms that additional prototypes can decrease the prediction

error with diminishing returns, at least until a point as shown in Chapter

4. Secondly, it shows that the variation in different prototype distributions

affects the variability of prediction error more strongly for small prototype

distributions. This variability is easily attributed to the larger variability in

the average distance between prototypes as when smaller prototype sets are

randomly initialized (see Figure 6.2). Finally, together with the results from

Chapter 4 Figure 4.4, Figure 6.1 shows that for a given GVF which requires a

prediction within a limited amount of time, if a GVF can be predicted using

selective Kanerva coding, there exists a global minimum selective Kanerva
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coding representation with a specific prototype set size and η which gives

the least prediction error while remaining within the limited time constraint.

For instance, although the setting with 12,000 prototypes performed the best

out of all of the other settings, it also took longer to compute one step of the

learning algorithm than 0.0013 seconds, the maximum amount of time allowed

for the algorithm to stay up to speed with the GLOVi Glove signals which were

read at a rate of 750 Hz. Although reducing the rate of sensor readings would

allow for more time to compute more prototypes, the diminishing returns of

additional prototypes show that it is not worth the effort.

Figure 6.2: The distribution of the distance between a random point in [0, 1]n

space, for n ∈ {1, 2, 4, 8}, to the nearest prototype as the size of the proto-
type set increases. 50 random seeds were used to initialize each prototype set
for each dimension setting. 200 random points were then generated and the
distance between them and the closest prototype was recorded.

6.2 Multiple Feature Sets

Implementations of tile coding often employ a simple technique to increase the

granularity of their representations. The idea is to have multiple overlapping

tilings which may even have different resolutions. It is reasonable to ask if
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this technique can translate to SKC and if it would improve performance.

Specifically, we would like to have improved prediction performance without

extra memory or computation requirements, namely no additional features or

prototypes. In this section we describe two possible scenarios of how one could

implement multiple overlapping prototype sets and evaluate their performance

against vanilla SKC.

6.2.1 Multiple Prototype Sets

A very simple change to SKC is to have multiple overlapping prototype sets as

seen in Figure 6.3. Essentially, one generates two or more sets of prototypes

across the same state space and uses each independently to create a feature

vector. Then all of the feature vectors are concatenated together to form a

longer feature vector whose length is equal to the total number of prototypes.

This final feature vector is given to to the learning agent.

Red Subset
Blue Subset
Green Subset
State

Figure 6.3: A high-level example of 3 overlapping prototype subsets using
η = .5. The lines between the state (black) and the prototypes (red, green,
and blue) indicate that the feature associated with the prototype is activated.

For example, the SKC with 8000 prototypes from section 6.1 could be

broken up into multiple smaller SKCs; 2 subsets of 4000, 4 subsets of 2000,

or even 16 subsets of 500. The subsets do not have to be all the same size,

however, so a subset of 1500 together with a subset of 6500 is reasonable.

Although the total number of prototypes or features does not change, and the

64



computational complexity for each subset remains the same as the original

SKC algorithm given the same total number of prototypes, the total time to

complete training, and thus the length of a single timestep, varies with the size

of a subset and number of subsets as seen in Figure 6.4. Together with the

error plots in Figure 6.5, this suggests although a representation comprised of

a few small subsets (e.g., 4 sets of 2000 prototypes) has worse performance

than a single set of 8000, it can be computed in roughly half of the time.

250500
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3000
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5000

6000
8000

Size of Single Set

200

400
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800
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1600

250x32
500x16

1000x8
2000x4

2667x3
4000x2

8000
Size of Multiple Subsets

Time to
Complete
Training

(seconds)

Multiple Subsets
Single Set

Figure 6.4: A time comparison between single prototype set representations
(lower x-axis, green), and multiple prototype subset representations (upper x-
axis, blue) using η = 0.05. Similar to the curves in Figure 4.4, the green curve
indicates that the time to compute a single set representation increases with
its size. The bowl shape in blue indicates that although the time to compute
the one subset representation grows with its size, the total time to compute
all of the subsets depends on the number and size of the subsets.
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Figure 6.5: The error sensitivity profiles of different prototype subsets across
different values of η. The smaller a prototype subset (e.g., 1500), the more
variability in prediction accuracy for small ηs.

The results in Figure 6.5 compare examples of multiple prototype sets,

as listed above, on the same prediction problem of predicting the ring finger

signal of the GLOVi Glove. These results do not indicate any advantage to

using multiple prototype sets although they do verify that the fewer prototypes

that are in a subset, the more sensitive the predictions are to the variability

in distance as described by Figure 6.2.

66



6.2.2 Multiple η Values

An alternative to having multiple prototype subsets is to instead have one set

of prototypes and have multiple different values of η as seen in Figure 6.6. In

this variation, features for each ηi are calculated and concatenated together.

In this variation, every prototype is represented by N features where N is the

total number of ηs used. If a prototype happens to be the closest to the input,

then all N of its features will be on as it will satisfy the activations of every

η. Each of these features will then be used with a different weight during the

weight update step.

Small η
Medium η
Large η
State
Prototype

Figure 6.6: A high-level example of 3 ηs on the same prototype set. The differ-
ent lines (red, green, and blue) between the state (black) and the prototypes
(white) indicate that a feature associated with the prototype and that η is
activated.

This variation may be faster than the either of “normal” or the multi-

prototype set settings, given a feature vector length. There are two reasons.

First, since there are fewer prototypes to store in memory, there are few dis-

tances to calculate. Second, by starting with the largest η in the set, the

resulting partition can be used as the starting set for the second largest η as

every prototype not in this partition is too far away to be considered by the

smaller η. For example, in one experimental run with 4000 prototypes, we

computed the partitions for η = 0.1, 0.05, in order.

By reducing the number of prototypes necessary in memory, there is more

room for extra weights to be learned. For instance, comparing once again to
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the same baseline of 8000 prototypes and one η, one could imagine having

a set of 4000 prototypes with two ηs, meaning that there are half as many

prototypes in memory but the same number of weights (8000) in either case.

Towards the extreme, one could also imagine a set of 500 prototypes and 16

different ηs, using 1/16th of the prototypes to calculate 8000 features and

learn 8000 weights. Comparing these different settings against the best of

the original SKC formulation gives the results presented in Figure 6.7. There

seems to be little difference between the 4000 prototype settings other than

a small decrease in variability when using more ηs. A much more noticeable

change is evident when using 500 prototypes. By using 16 η values ranging

between 0.0025 to 0.075, the error drops substantially although not as good

as the performance seen in the original SKC setting with 8000 prototypes and

η = 0.0025.

Figure 6.7: A comparison of the error for the best η for normal 500, 4000, and
8000 prototype sets against the error for 4000 prototypes with two ηs and 500
prototypes with 16 ηs ranging between 0.0025 to 0.075.
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6.3 Future Research Areas

6.3.1 Optimal Algorithm Ordering

In Chapter 3, we proposed the class of Reactive learning algorithms as which

aim to minimize the time it takes to respond to new stimulus. Reactive-SARSA

fits within this class of algorithms by the simple reordering of the components

of the classic algorithm from: observe, act, learn. A future research area going

beyond this hard-coded reordering is to allow an agent the freedom to decide

when it should learn, act, or observe.

As a thought experiment, imagine an oracle-agent that has perfectly mod-

eled its environment, knowing the outcome of every possible action. If this

environment is asynchronous and provides more positive rewards for complet-

ing a task as quickly as possible, then in order for this oracle-agent to maximize

its reward, it should eliminate all unnecessary computation routines, as they

delay the agent. Since it has perfectly modeled its environment, learning does

not improve its model. Moreover, if by predicting the state using its perfect

model, the agent can achieve a perfect state prediction without observing,

observation is also an unnecessary computation. Thus the oracle-agent can

eliminate learning and observing and simply act. Experts, such as video-game

speed runners or musicians, are sometimes able to perform their talents with-

out actually observing the consequences of their actions. This is because they

know their environment and task so well that they can simply act. By viewing

the order of algorithmic components of learning algorithms as modifiable, an

agent may be able to find an optimal ordering of its learning protocol or to in-

terrupt long-lasting computations (e.g., analyzing an image) for more pressing

computations (e.g., avoiding a pedestrian).

6.3.2 Future Work with Selective Kanerva Coding

Chapters 4 and 5 and the explorations in the previous sections of this chapter

have shown that selective Kanerva coding (SKC) can readily be used for linear

function approximation. Like tile coding, it asserts that a constant number

of features are activated at any time which allows the same freedom when
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selecting a step size that tile coding provides. The variations of SKC pre-

sented in the preceding sections highlight that SKC as a starting framework

is highly malleable and can easily be transformed into alternative function

approximators which may have their own properties such as reducing memory

requirements.

With such a malleable starting point, there are many branches of future

work. One tempting direction is to apply the strategies presented by Ratitch,

Mahadevan, and Precup 2004. Their collection of case studies shows some

methods to redistribute the prototypes of classic Kanerva coding such that

they can have a finer granularity over important areas. Combining these tech-

niques with SKC should minimize the sensitivity of SKC to its prototype

distributions although at the cost of more computation time.
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Chapter 7

Conclusion

The overall goal of my research has been exploring how reinforcement learn-

ing can be effectively applied on resource bounded systems. Specifically, I

explored how reinforcement learning with linear function approximation be

deployed on responsive resource bounded systems and what limitations one

should be aware of when doing so. Understanding the additional limitations

present when deploying a reinforcement learning agent on a resource bounded

system provides insight into what an agent is capable of and can lead to much

more scalable architectures when not constrained computationally. I defined

an asynchronous environment to better model the difficulties faced with RL in

real-time domains and introduced a linear function approximation algorithm

that provides an effective alternative to previous linear function approxima-

tion methods. While my long-term goals include freeing an artificial agent to

choose how best to organize its own data and cognitive functions, this the-

sis primarily focused on how one could begin to approach these problems on

limited hardware. Current methods of reinforcement learning do not evaluate

the time it takes to react to a new situation. Minimizing the reaction time of

RL algorithms is an important problem as RL agents become more common

in the modern world. Although rarely, if at all, considered, this problem is

not unique to the robotic domains explored in the previous chapters but can

be found in many resource bounded systems including smart phones, the IoT,

and self-driving cars. It is obvious that fast reaction time is good, provided the

chosen action is appropriate. From this, one might theorize, as I do throughout
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this thesis, that control over one’s cognitive components would be a beneficial

tool to intelligent agents.

This thesis looked at several different aspects of reinforcement learning on

resource bounded systems. Chapter 3 introduced an asynchronous environ-

ment to better model the control problem an agent faces when deployed in a

real-time domain. Chapter 3 also proposed a class of reactive algorithms to

deal with the issues caused by asynchronous environments by minimizing reac-

tion time and presented empirical results justifying the claims. These results

would benefit from deeper investigation on how the arrangement of learning

components can be learned by the agent. Chapter 4, which is arguably the

most important contribution of this thesis, introduced selective Kanerva cod-

ing as a novel approach to linear function approximation. The method was

evaluated on a prediction task using data from a robotic arm performing a

sorting task. This successfully demonstrated that selective Kanerva coding

showed improved prediction accuracy on the prediction task while reducing

the number of features necessary to complete the task compared to tile cod-

ing. Together these results show that SKC is an effective approach to linear

function approximation. Chapter 5 extended these results by exploring how

SKC performs with different modalities in the state space. Typically the ad-

dition of sensors and different modalities brings a curse of dimensionality to

linear function approximation techniques. Taken together with the findings

in Chapter 4, these results indicate that SKC is less susceptible to this curse,

allowing for more modalities to be presented to a learning agent, affording

more accurate predictions. Chapter 6 explored the sensitivity of the meta pa-

rameters of SKC, presented two variations, and provided direction for future

research areas.

During the writing of this thesis, the field of reinforcement learning was

heavily impacted by significant advancements using deep learning, specifically

deep convolutional neural networks (Silver et al. 2016). These and previous

findings revolutionized and motivated many industries and much of artificial

intelligence research to focus on deep learning and its applications. Contrary

to this direction, I focused on domains of resource bounded systems deployed
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in real-time environments. The nature of the available computation and mem-

ory of these systems often establish deep learning as not a viable option for

function approximation. Further, the environments tend to reward fast reac-

tion times which may not be feasible when applying deep learning on limited

hardware. It is from this perspective that I set out to write this thesis. First, I

introduced a new perspective on algorithm performance, namely that the time

it takes to react to a new state of an asynchronous environment can impact the

performance of a reinforcement learning agent. Secondly, I focused the rest of

the thesis, chapters 4, 5, and part of 6, on novel linear function approxima-

tion in regards to prediction learning and showed improved prediction accuracy

over common methods. Besides the importance of these contributions detailed

in the previous chapters, the findings of this thesis provide a perspective that

challenges the current state of the field of reinforcement learning.
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Guyon, Isabelle and André Elisseeff (2003). “An introduction to variable and
feature selection.” In: Journal of machine learning research 3.Mar, pp. 1157–
1182. 50, 54

Hernandez, Carlos, Mukunda Bharatheesha, Wilson Ko, Hans Gaiser, Jethro
Tan, Kanter van Deurzen, Maarten de Vries, Bas Van Mil, Jeff van Egmond,
Ruben Burger, Mihai Morariu, Jihong Ju, Xander Gerrmann, Ronald En-
sing, Jan Van Frankenhuyzen, and Martijn Wisse (2016). “Team Delf’s
Robot Winner of the Amazon Picking Challenge 2016.” In: arXiv:1610.05514[cs.RO].

48

Hester, Todd, Michael Quinlan, and Peter Stone (2010). “Generalized model
learning for reinforcement learning on a humanoid robot.” In: Robotics
and Automation (ICRA), 2010 IEEE International Conference on. IEEE,
pp. 2369–2374. 3, 19

Hoare, Charles A. R. (1961). “Algorithm 65: Find.” In: Communications of
the ACM 4.7, pp. 321–322. 39

Hong, Sukjoon, Habeom Lee, Jinhwan Lee, Jinhyeong Kwon, Seungyong Han,
Young D. Suh, Hyunmin Cho, Jaeho Shin, Junyeob Yeo, and Seung Hwan
Ko (2015). “Highly stretchable and transparent metal nanowire heater for
wearable electronics applications.” In: Advanced materials 27.32, pp. 4744–
4751. 6

76

http://dx.doi.org/10.1109/TNSRE.2011.2163529
http://dx.doi.org/10.1109/TNSRE.2011.2163529


Jaderberg, Max, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul,
Joel Z. Leibo, David Silver, and Koray Kavukcuoglu (2016). “Reinforce-
ment learning with unsupervised auxiliary tasks.” In: arXiv preprint arXiv:1611.05397.

48

James, Gareth, Daniela Witten, Trevor Hastie, and Robert Tibshirani (2013).
An introduction to statistical learning. Vol. 112. Springer. 54

Jiang, Ning, Strahinja Dosen, Klaus-Robert Muller, and Dario Farina (2012).
“Myoelectric control of artificial limbs—is there a need to change focus?[In
the spotlight].” In: IEEE Signal Processing Magazine 29.5, pp. 152–150. 49

Johannes, Matthew S., John D. Bigelow, James M. Burck, Stuart D. Harsh-
barger, Matthew V. Kozlowski, and Thomas Van Doren (2011). “An overview
of the developmental process for the modular prosthetic limb.” In: Johns
Hopkins APL Technical Digest 30.3. JHU/APL, pp. 207–216. 2, 7

Jost, Kristy, Daniel Stenger, Carlos R. Perez, John K. McDonough, Keryn
Lian, Yury Gogotsi, and Genevieve Dion (2013). “Knitted and screen printed
carbon-fiber supercapacitors for applications in wearable electronics.” In:
Energy & Environmental Science 6.9, pp. 2698–2705. 6

Kanerva, Pentti (1988). Sparse distributed memory. Cambridge: MIT Press. 17, 35

Kober, Jens, J. Andrew Bagnell, and Jan Peters (2013). “Reinforcement learn-
ing in robotics: A survey.” In: The International Journal of Robotics Re-
search 32.11, pp. 1238–1274. 1, 3

Kopetz, Hermann (2011). “Internet of things.” In: Real-time systems. Springer,
pp. 307–323. 5

Kortuem, Gerd, Fahim Kawsar, Vasughi Sundramoorthy, and Daniel Fitton
(2010). “Smart objects as building blocks for the internet of things.” In:
IEEE Internet Computing 14.1, pp. 44–51. 1, 5

Kou, Liang, Tieqi Huang, Bingna Zheng, Yi Han, Xiaoli Zhao, Karthikeyan
Gopalsamy, Haiyan Sun, and Chao Gao (2014). “Coaxial wet-spun yarn
supercapacitors for high-energy density and safe wearable electronics.” In:
Nature communications 5. 6

Krasoulis, Agamemnon, Iris Kyranou, Mustapha Suphi Erden, Kianoush Nazar-
pour, and Sethu Vijayakumar (2017). “Improved prosthetic hand control
with concurrent use of myoelectric and inertial measurements.” In: Journal
of neuroengineering and rehabilitation 14.1, p. 71. 49

Kumar, Karthik, Jibang Liu, Yung-Hsiang Lu, and Bharat Bhargava (2013).
“A survey of computation offloading for mobile systems.” In: Mobile Net-
works and Applications 18.1, pp. 129–140. 2

Kumar, Karthik and Yung-Hsiang Lu (2010). “Cloud computing for mobile
users: Can offloading computation save energy?” In: Computer 43.4, pp. 51–
56. 2

Kyranou, Iris, Agamemnon Krasoulis, Mustafa Suphi Erden, Kianoush Nazar-
pour, and Sethu Vijayakumar (2016). “Real-time classification of multi-
modal sensory data for prosthetic hand control.” In: Biomedical Robotics
and Biomechatronics (BioRob), 2016 6th IEEE International Conference
on. IEEE, pp. 536–541. 49

77



Lee, Gyu Myoung, Noel Crespi, Jun Kyun Choi, and Matthieu Boussard
(2013). “Internet of things.” In: Evolution of Telecommunication Services.
Springer, pp. 257–282. 5

Lee, Jaehong, Hyukho Kwon, Jungmok Seo, Sera Shin, Ja Hoon Koo, Changhyun
Pang, Seungbae Son, Jae Hyung Kim, Yong Hoon Jang, Dae Eun Kim,
and Taeyoon Lee (2015). “Conductive Fiber-Based Ultrasensitive Textile
Pressure Sensor for Wearable Electronics.” In: Advanced materials 27.15,
pp. 2433–2439. 6

Legenstein, Robert, Niko Wilbert, and Laurenz Wiskott (2010). “Reinforce-
ment learning on slow features of high-dimensional input streams.” In:
PLoS Comput Biol 6.8, e1000894. 35

Lenz, Ian, Honglak Lee, and Ashutosh Saxena (2015). “Deep learning for de-
tecting robotic grasps.” In: The International Journal of Robotics Research
34.4-5, pp. 705–724. 49

Leonov, Vladimir and Ruud J. M. Vullers (2009). “Wearable electronics self-
powered by using human body heat: The state of the art and the per-
spective.” In: Journal of Renewable and Sustainable Energy 1.6, p. 062701.

6

Li, Wei, Fan Zhou, Waleed Meleis, and Kaushik Chowdhury (2017). “Dynamic
Generalization Kanerva Coding in Reinforcement Learning for TCP Con-
gestion Control Design.” In: Proceedings of the 16th Conference on Au-
tonomous Agents and MultiAgent Systems. International Foundation for
Autonomous Agents and Multiagent Systems, pp. 1598–1600. 3

Lin, Mingfeng, Henry C. Lucas Jr, and Galit Shmueli (2013). “Research com-
mentary—too big to fail: large samples and the p-value problem.” In: In-
formation Systems Research 24.4, pp. 906–917. 57

Lin, Stephen and Robert Wright (2010). “Evolutionary Tile Coding: An Auto-
mated State Abstraction Algorithm for Reinforcement Learning.” In: Ab-
straction, reformulation, and approximation. 3

Littman, Michael L. and Richard S. Sutton (2002). “Predictive representations
of state.” In: Advances in neural information processing systems, pp. 1555–
1561. 48

Lobos-Tsunekawa, Kenzo, David L. Leottau, and Javier Ruiz-del-Solar (2017).
“Toward Real-Time Decentralized Reinforcement Learning using Finite
Support Basis Functions.” In: arXiv preprint arXiv:1706.06695. 4

Markovic, Marko, Strahinja Dosen, Dejan Popovic, Bernhard Graimann, and
Dario Farina (2015). “Sensor fusion and computer vision for context-aware
control of a multi degree-of-freedom prosthesis.” In: Journal of neural en-
gineering 12.6, p. 066022. 49

Miller, Thomas W. and Filson H. Glanz (1996). “UNH CMAC version 2.1:
The University of New Hampshire implementation of the Cerebellar Model
Arithmetic Computer - CMAC.” Robotics Laboratory Technical Report,
University of New Hampshire, Durham, New Hampshire. 41

Parker, Philip A., Kevin B. Englehart, and Bernard Hudgins (2006). “Myoelec-
tric signal processing for control of powered limb prostheses.” In: Journal

78



of Electromyography and Kinesiology 16.6, pp. 541–548. doi: 10.1016/j.
jelekin.2006.08.006. 32

Pilarski, Patrick M., Michael R. Dawson, Thomas Degris, Jason P. Carey,
K. Ming Chan, Jacqueline S. Hebert, and Richard S. Sutton (2013). “Adap-
tive artificial limbs: A real-time approach to prediction and anticipation.”
In: IEEE Robotics and Automation Magazine 20.1, pp. 53–64. doi: 10.
1109/MRA.2012.2229948. 34

Pilarski, Patrick M., Michael R. Dawson, Thomas Degris, Jason P. Carey,
and Richard S. Sutton (2012). “Dynamic switching and real-time machine
learning for improved human control of assistive biomedical robots.” In:
Biomedical Robotics and Biomechatronics (BioRob), 2012 4th IEEE RAS
& EMBS International Conference on. IEEE, pp. 296–302. 16

Pilarski, Patrick M., Michael R. Dawson, Thomas Degris, Farbod Fahimi,
Jason P. Carey, and Richard S. Sutton (2011). “Online human training
of a myoelectric prosthesis controller via actor-critic reinforcement learn-
ing.” In: Proceedings of theIEEE International Conference on Rehabilita-
tion Robotics (ICORR). Zurich, Switzerland, pp. 134–140. 16, 34

Pilarski, Patrick M., Ann L. Edwards, and K. Ming Chan (2015). “Novel Con-
trol Strategies for Arm Prostheses: A Partnership between Man and Ma-
chine.” In: The Japanese Journal of Rehabilitation Medicine 52.2, pp. 91–
95. 48

Pilarski, Patrick M. and Jacqueline S. Hebert (2017). Upper and lower limb
robotic prostheses Robotic Assistive Technologies: Principles and Practice,
Eds. P. Encarnação and A. M. Cook. Boca Raton, FL: CRC Press ISBN:
978-1-4987-4572-7, pp. 99–144. 6, 32, 33

Pilarski, Patrick M., Richard S. Sutton, and Kory W. Mathewson (2015).
“Prosthetic Devices as Goal-Seeking Agents.” In: 2nd Workshop on Present
and Future of Non-Invasive Peripheral-Nervous-System Machine Interfaces,
Singapore. 7, 48

Pilarski, Pilarski M., Travis B. Dick, and Richard S. Sutton (2013). “Real-
time prediction learning for the simultaneous actuation of multiple pros-
thetic joints.” In: Proceedings of the 13th IEEE International Conference
on Rehabilitation Robotics (ICORR). Seattle, USA, pp. 1–8. 34

Radmand, Ashkan, Erik Scheme, and Kevin Englehart (2014). “On the suit-
ability of integrating accelerometry data with electromyography signals for
resolving the effect of changes in limb position during dynamic limb move-
ment.” In: JPO: Journal of Prosthetics and Orthotics 26.4, pp. 185–193.

49

Ramsay, Judith, Alessandro Barbesi, and Jenny Preece (1998). “A psycho-
logical investigation of long retrieval times on the World Wide Web.” In:
Interacting with computers 10.1, pp. 77–86. 2

Ratitch, Bohdana, Swaminathan Mahadevan, and Doina Precup (2004). “Sparse
distributed memories in reinforcement learning: Case studies.” In: Proc. of
the Workshop on Learning and Planning in Markov Processes-Advances
and Challenges, pp. 85–90. 3, 38, 70

79

http://dx.doi.org/10.1016/j.jelekin.2006.08.006
http://dx.doi.org/10.1016/j.jelekin.2006.08.006
http://dx.doi.org/10.1109/MRA.2012.2229948
http://dx.doi.org/10.1109/MRA.2012.2229948


Ratitch, Bohdana and Doina Precup (2004). “Sparse distributed memories for
on-line value-based reinforcement learning.” In: European Conference on
Machine Learning. Ed. by Springer Berlin Heidelberg, pp. 347–358. 3, 35, 38

Richardson, Matt and Shawn Wallace (2012). Getting started with raspberry
PI. ” O’Reilly Media, Inc.” 5

Scheme, Erik and Englehart Englehart (2011a). “Electromyogram pattern
recognition for control of powered upper-limb prostheses: State of the art
and challenges for clinical use.” In: Journal of Rehabilitation Research and
Development 48.6, pp. 643–660. 1, 32, 33

Scheme, Erik and Kevin Englehart (2011b). “Electromyogram pattern recog-
nition for control of powered upper-limb prostheses: State of the art and
challenges for clinical use.” In: Journal of rehabilitation research and de-
velopment 48.6, p. 643. 6, 7

Sherstan, Craig, Joseph Modayil, and Patrick M. Pilarski (2015). “A collabora-
tive approach to the simultaneous multi-joint control of a prosthetic Arm.”
In: Proceedings of the 14th IEEE/RAS-EMBS International Conference on
Rehabilitation Robotics (ICORR). Singapore, pp. 13–18. 7, 34, 48

Silver, David, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre,
George Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda
Panneershelvam, Marc Lanctot, Dominik G. Dieleman, John Nham, Nal
Kalchbrenner, Ilya Suskever, Timothy Lillicrap, Madeleine Leach, Koray
Kavukcuoglo, Thore Graepel, and Demis Hassabis (2016). “Mastering the
game of Go with deep neural networks and tree search.” In: Nature 529.7587,
pp. 484–489. 29, 72

Singh, Satinder, Tommi Jaakkola, Michael L. Littman, and Csaba Szepesvári
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