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Abstract

The invention of magnetic resonance imaging (MRI) has advanced the diag-

nosis of diseases dramatically as it is capable of producing high-quality images

of soft tissues non-invasively and safely. However, the high volume of MRI

images also means heavy workloads for physicians, which results in slow di-

agnosis and even misdiagnosis. As a consequence, computer-aided detection

(CAD) systems, which can process the input images by computer and gener-

ate diagnosis results for radiologists to improve the diagnostic efficiency and

accuracy, are in high demand. Some CAD systems for brain disorders, such as

brain tumors, Alzheimer’s disease, and multiple sclerosis, have already been

proposed and actively researched. But there is no CAD system for screening

epileptogenic lesions even though there is a large population of epilepsy pa-

tients worldwide. In this thesis, several automated detection techniques that

can aid build a CAD system for epileptogenic lesions are developed.

The contributions of this thesis are threefold. First, an automated de-

tection technique for cavernous malformation based on MRI image analysis

is proposed. The technique is a coarse to fine framework. After obtaining

the candidate cavernous malformation regions using skull stripping and tem-

plate matching, image features including texture, the histogram of oriented

gradients, and local binary patterns of each candidate are extracted and then

classified using support vector machines to exclude false detections. Second,

an automated detection technique for mesial temporal sclerosis (MTS) is pro-

posed. After the segmentation and 3D reconstruction of the hippocampus,
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the hippocampal volume, shape, and cerebrospinal fluid features are calcu-

lated. Two support vector machines are then used to detect and lateralize

MTS. Third, an automated detection technique for focal cortical dysplasia is

proposed using MRI images and deep learning. After bias field correction,

intensity normalization, and registration with a brain atlas, cortical patches

are extracted and fed to a deep convolutional neural network with five con-

volutional layers, a max pooling layer, and two fully-connected layers. Image

patches with focal cortical dysplasia are detected after classification and post-

processing.

The proposed techniques are evaluated thoroughly using both a publicly

available MRI dataset and images obtained from the University of Alberta

Hospital. Experimental results indicate that the proposed techniques could

provide superior performance compared with existing methods in the litera-

ture, thus showing potential in assisting neuroradiologists in the detection of

epileptogenic lesions using brain MRI analysis.
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Chapter 1

Introduction

Medical imaging techniques (X-ray, ultrasound, MRI, etc.) are playing essen-

tial roles in the diagnosis of patients at the hospital. Radiologists and clinicians

usually have to inspect and analyse a large number of images obtained using

these imaging techniques in a short time. To lessen the burden of doctors and

assist them in the interpretation of medical images, some automaged detec-

tion methods for various diseases (breast cancer, lung cancer, coronary artery

disease, etc.) have already been proposed. The objective of this thesis is to

develop a comprehensive computer-aided detection (CAD) system for epilep-

togenic lesions including cavernous malformation, mesial temporal sclerosis,

and focal cortical dysplasia, based on brain MRI image analysis. In this chap-

ter, a brief background on epilepsy along with its diagnosis based on MRI

are first introduced. The research motivations and problems to solve are then

presented. After that, the major contributions of this thesis are presented

followed by the organization of a review of this thesis.

1.1 Epilepsy

Epilepsy is a brain disease characterized by unprovoked seizures or epileptic

features such as abnormal electroencephalogram (EEG) patterns and brain

lesions found in MRI images [45]. It is the fourth commonest neurological
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problem after migraines, stroke and Alzheimer’s disease [41]. It affects about

1% of the population worldwide [21] distributed across all ages and is more

often seen in children and elderly people.

Epilepsy presents symptoms that may vary greatly, from full body convul-

sions to barely noticeable staring into space. Epileptic seizures are typically

classified into two large groups [24]: generalized seizures and partial seizures,

depending on whether both hemispheres or one hemisphere is involved at the

onset of the seizures. A generalized seizure is typically easier to recognize, e.g.,

sudden falling from standing position, loss of bladder or bowel control, loss of

consciousness and body shaking. Partial seizures, also known as focal seizures,

have a more restricted and confined presentation, and the manifestations are

dependent on the region of the brain that is convolved.

Epilepsy may have significant impacts on people’s life. It is reported [91]

that the rate of sudden unexpected death in epilepsy is two times higher than

that in the general population. A large number of epilepsy patients suffer

from physical injuries including cuts, bruises, burns, head trauma, broken

bones, and others. People with epilepsy are more likely to manifest signs of

mood disorders (such as depression and suicidal thoughts) than people with-

out epilepsy. Low quality of sleep is another common problem in people with

epilepsy. Therefore, a person’s ability to live and work normally is compro-

mised because of epilepsy.

There are several treatments available to control epileptic seizures. Anti-

seizure medications are one of the most effective treatments for people with

epilepsy. Approximately, 70% of patients become seizure-free by taking med-

ications regularly [39]. Surgery, by removing a small portion of brain tissue

that is responsible for epilepsy, is an alternative treatment for people whose

seizures can not be controlled by medications. The success rate of surgery has

improved significantly after the advent of EEG and MRI, which can locate the
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epileptogenic lesions accurately. Furthermore, vagus nerve stimulation (VNS)

is another treatment to refractory seizures by sending electrical pulse regu-

larly to the brain using a stimuli device. Although the above treatments are

effective for most cases, the causes for epilepsy are still not well known to physi-

cians. Some possible causes include genetic defects, brain tumors, cavernous

malformation, hippocampal sclerosis, and brain infections.

Epilepsy is diagnosed based on a thorough clinical history and neurological

assessment. These patients are often investigated using tests such as EEG,

MRI, and other functional imaging. EEG signals, which are collected by elec-

trodes with one end attached to the patient’s scalp and the other end connected

to an EEG machine, can show the patterns of brain electrical activity. Doctors

can examine these brain waves or EEG signals to determine whether they are

epileptogenic or not. Neuroimaging, such as computed tomography (CT) or

MRI, is another test for investigating epilepsy by taking pictures of the brain

so that structural abnormalities of the brain can be easily seen by doctors.

MRI is usually preferred as it is able to generate high-quality images of the

brain.

1.2 MRI-Based Diagnosis

The development of imaging techniques in medicine, especially the improve-

ment of MRI, has dramatically changed the process for epilepsy diagnosis and

treatment [21]. Brain MRI has become an essential tool for the investigation

of epilepsy since it is able to generate high-resolution images with high soft tis-

sue contrast, which makes it possible to accurately locate subtle epileptogenic

lesions in the brain before surgical treatment of epilepsy. A general introduc-

tion to MRI is given below followed by its application in imaging epileptogenic

lesions.

MRI is widely used for neuroimaging because of its superior imaging abili-
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ties. Fig. 1.1 [114] (a) shows an MRI scanner, which primarily consists of the

main magnet, radio frequency (RF) coil and gradient coils. The main mag-

net creates a strong homogeneous magnetic field B0 that aligns the protons

(within hydrogen atoms) along the direction of the field. The RF coil then

burst short electromagnetic waves that knock the protons off their position.

When the RF electromagnetic wave is stopped, the perturbed protons will re-

turn to their initial position. During this relaxation process, radio signals are

emitted, which are detected by receivers. By using the gradient coil, spatial

location information is also incorporated in the received signals. Finally, a

picture is created based on the signals. Fig. 1.1 (b) shows the direction of the

main magnetic field B0, the perturbed proton magnetic moment M with its

longitudinal component Mz and transverse component Mxy, and the direction

of the RF pulse. The difference in proton density between soft tissue and

hard tissue makes it possible to distinguish them in MRI images. By taking

advantage of the intrinsic factors of MR relaxations, such as longitudinal re-

laxation (T1) and the transverse relaxation (T2), different soft tissue contrast

can be obtained by MRI. Fig. 1.2 shows examples of T1-weighted (T1W) and

T2-weighted (T2W) brain MRI images in different views. It is observed that

gray matter appears dark and white matter appears bright in T1W images,

while gray matter is bright and white matter is dark in T2W images.

As MRI can generate high contrast images of soft tissue structures, it is

very suitable for imaging and capturing subtle lesions in the brain. As a

consequence, MRI is becoming one of the most frequently used investigation

tools in the diagnosis of epilepsy. Some of the epileptogenic lesions that can be

captured by MRI are cavernous malformation (CM), focal cortical dysplasia

(FCD), mesial temporal sclerosis (MTS), arteriovenous malformation (AVM),

heterotopias, amygdala atrophy, congenital malformations and other genetic

disorders.
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(a)             (b) 

Figure 1.1: Magnetic resonance imaging. (a) MRI scanner cutaway [1], (b) a
perturbed proton in magnetic field.

Figure 1.2: Brain MRI images. (a)(b)(c) are T1W images in sagittal, coronal,
and axial view, respectively. (d)(e)(f) are T2W images in sagittal, coronal
and axial view, respectively. Note that (c) is labeled with cerebrospinal fluid,
white matter, gray matter, scalp, and skull.

Cavernous malformation (CM) or cavernoma is the vascular abnormality

that may cause seizures, headache or vision problems. It affects a large number

(about 0.5% [38]) of the general population all over the world. MRI is becom-

ing the standard test for diagnosing cavernomas because of the high soft tissue

contrast in images [21]. Fig. 1.3 shows three examples of cavernoma in T2W

MRI image. In T2W images, compartments filled with water (e.g. CSF) ap-

pear bright and tissues with high-fat content (e.g. white matter) appear dark.
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As cavernous malformations are clusters of abnormal thin-walled blood ves-

sels with surrounding hemosiderin (which is caused by bleeding), they appear

bright in the center with dark surroundings in T2W images.

     

(a)            (b)             (c) 

     

(d)           (e)             (f) 
 

 

H 
H 

H 

V 
V

 

V 

Figure 1.3: Three examples of cavernous malformation in T2W axial plane
images. (a)(b)(c) are upper, middle, and lower level brain slices with caver-
nomas (in square boxes). (d)(e)(f) are the enlarged cavernoma regions. H:
hemosiderin, V: vessels.

Mesial temporal sclerosis (MTS), also referred to as hippocampal sclerosis,

is the brain lesion closely associated with temporal lobe epilepsy. It is caused

by hippocampal neuronal loss accompanied by gliosis and atrophy [52], which

could be captured by MRI clearly. The two primary MRI findings of MTS

are hippocampal volume loss (caused by atrophy) and high intensity (related

to gliosis). Fig. 1.4 shows the volume loss and high intensity of the right-side

hippocampus in T2W and its fluid-attenuated inversion recovery (FLAIR)

images.

Focal cortical dysplasia (FCD) is the malformation of the cortical develop-

ment, which may be caused by reasons of cortical architecture or cytological

abnormalities [85]. It is one of the most common causes of epilepsy in chil-

6



     

(a)                   (b) 

 Figure 1.4: Mesial temporal sclerosis. (a) T2W image, (b) the corresponding
FLAIR image.

dren [3]. MRI is the imaging methodology usually used in identifying FCD as

it can provide images with high contrast and high resolution. Fig. 1.5 [125]

shows two examples of FCD in T1W MRI images. A clinician typically checks

MRI images for the following features to diagnosis FCD: blurred gray-white

matter boundary, increased/decreased cortical thickness, and high intensity in

T2/FLAIR sequence.

   

Figure 1.5: Focal cortical dysplasia in T1W images.

1.3 Problem Statements and Motivation

MRI has become a standard investigative tool for diagnosing epilepsy as it

generates high-contrast and high-resolution brain images. Traditionally, neu-
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rologists and radiologists visually inspect brain MRI images for the detection of

epileptogenic lesions. However, inspecting MRI images for brain lesions can be

a labor-intensive and subjective task even for a very experienced specialist due

to the large volume of images, the subtlety of epileptogenic lesions, the com-

plexity of brain anatomic structure and partial volume effect [45]. Therefore,

it is beneficial to develop an CAD system that can detect subtle epileptogenic

lesions quickly and automatically to facilitate a prompt diagnosis.

The purpose of this thesis is to develop robust and accurate CAD algo-

rithms for the epileptogenic lesions, including CM, MTS, and FCD, based

on brain MRI image analysis. Fig. 1.6 shows the overall framework of the

proposed system. Before the detection of epileptogenic lesions, image pre-

processing is usually performed on the input brain MRI image. Typically, it

includes skull stripping to remove the non-brain structures from image, brain

segmentation to obtain the gray matter, white matter and CSF tissue, brain

registration to align the image with a standard brain atlas, and 3D reconstruc-

tion to generate the surface models of cortical and sub-cortical structures. The

detection of epileptogenic lesions is then performed based on the image features

and classification models. In this work, the automatic detection algorithms for

CM, FCD, and MTS have been developed. The detection results of these le-

sions are finally obtained to assist doctors in the diagnosis of epilepsy. The

proposed system is expected to improve the efficiency of epilepsy diagnosis and

provide supportive or complementary information to physicians.

1.4 Major Contributions of the Thesis

The major contributions of this thesis are listed below:

Contribution I: A computer-aided detection technique is proposed for cav-

ernous malformation using support vector machines and multiple texture fea-

tures of MR images [152, 154, 155] (presented in Chapter 3). To the best of
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Figure 1.6: The framework of the proposed CAD system for epileptogenic
lesions.

the author’s knowledge, this is the first technique proposed specifically for the

detection of cavernous malformation.

Contribution II: A computer-aided detection technique is proposed for

mesial temporal sclerosis based on the hippocampus and cerebrospinal fluid

features in 3D MR images [149, 151, 153] (presented in Chapter 4). In this

technique, the hippocampal shape is modeled using the principal component

analysis and the mesh model of the hippocampus. The cerebrospinal fluid

feature is proposed for the detection of mesial temporal sclerosis and showed

its effectiveness in experiments.

Contribution III: An automated detection technique is proposed for focal

cortical dysplasia using a deep convolutional neural network [150] (presented

in Chapter 5). In this technique, an automated patch extraction method is

proposed based on the brain gray matter probability map and the Radon
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transform. An CNN architecture is proposed to classify image patches, and it

demonstrated superior performance over the classifiers using manually-crafted

features.

1.5 Organization of the Thesis

The rest of this report is organized as follows: Chapter 2 presents a broad liter-

ature review on image processing techniques that are widely used in brain MRI

image analysis. Chapter 3 presents the proposed technique for the automated

detection of cavernous malformation based on machine learning. Chapter 4

presents the proposed technique for the detection of mesial temporal sclero-

sis based on 3D features and classification. Chapter 5 presents the proposed

technique for the detection of focal cortical dysplasia using deep learning. The

main conclusions and proposed future work are presented in Chapter 6, which

is followed by the bibliography.
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Chapter 2

Literature Review

The purpose of a CAD system is to process the input images and output

useful information (e.g., location, volume or shape of suspected lesions) for

diagnosis, which may serve as a “second opinion” to assist an expert radiologist

in interpreting medical images so that the efficiency and accuracy of diagnosis

could be improved [8]. Fig. 2.1 shows the general framework of a typical CAD

system. It includes four major steps: preprocessing, feature extraction, and

classification. In this chapter, a brief overview of some common computer-

aided image analysis techniques for MRI images is presented. Section 2.1

reviews the preprocessing techniques for MRI images. Section 2.2 and section

2.3 present, respectively, the image segmentation techniques and typical image

features for medical image analysis. In section 2.4, some popular classification

models are reviewed. Existing CAD systems based on MRI image analysis are

briefly reviewed in 2.5, followed by a summary in section 2.6.

2.1 Preprocessing

The accuracy of digital images is usually compromised by noise, intensity vari-

ation, and inhomogeneity. To solve these problems, the images are typically

preprocessed by one or a combination of the following algorithms: smoothing,

inhomogeneity correction, and intensity standardization. Brain MRI images
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Figure 2.1: General framework of a CAD system.

also vary in size, shape, and orientation at acquisition. Therefore, registration

with a standard brain atlas is often necessary in preprocessing.

2.1.1 Smoothing

Smoothing is a technique to reduce noise in an image typically by applying

low pass filters to the image. Four most commonly used filters are the mean

filter, median filter, Gaussian filter, and anisotropic filter. Anitha et al. [6]

used mean filter to smooth brain MRI image in preprocessing stage. Beheshti

et al. [16] used an 8-mm full-width-half-maximum Gaussian kernel to smooth

the gray matter. Zijdenbos et al. [171] used anisotropic diffusion to reduce

noise in MRI.

2.1.2 Inhomogeneity Correction

Due to the non-uniformity of the magnetic field and RF coil in MRI, intensity

inhomogeneity is a common issue in MRI images, even though it is hardly

noticeable by human eyes [147]. Fig. 2.2 shows an example of intensity in-

homogeneity [147] in a brain MRI image and we can see the low-frequency

spatial intensity variation is removed in the corrected image of Fig. 2.2. Meier

et al. [110] already used the inhomogeneity correction techniques to remove
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Figure 2.2: Intensity inhomogeneity in brain MRI image. Note that the top
parts of the brain area have lower intensities compared to the bottom parts as
shown in the inhomogeneity field.

the intensity biased field in the CAD system for the brain tumor.

2.1.3 Intensity Standardization

It has been observed that pixel intensities of a brain MRI of a patient vary

over different scans even if the same scanner is used [104]. To make the CAD

technique robust to intensity variation, several algorithms have been proposed

for intensity standardization by manipulating the image histogram, such as

histogram matching [115], histogram estimation with Gaussian mixtures [63]

and joint histograms registration [78]. Zhuge et al. [170] suggested that brain

MRI image segmentation can be simplified by using intensity standardization

in the preprocessing stage.

2.1.4 Registration

The purpose of registration is to find the optimal transformation t′ that is

able align the input image into the same coordinate system with the reference

image. In general, it can be calculated using the following equation:

t′ = arg max
t

µ(I(x), R(t(x))) (2.1)

where I is the input image, R is the reference image, µ is similarity mea-

surement (such as mean square error and mutual information), and t(x) is
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transformation (linear or nonlinear) to the coordinate x. On the one hand,

registration can be applied to images of different modalities (ultrasound, CT,

MRI, etc.) for the same subject. For example, Wein et al. [160] proposed

a fully automatic registration technique using the affine transformation that

aligns CT and ultrasound images to provide better localization for liver or

kidney surgery. On the other hand, registration of the same modality between

different subjects is also commonly used in medical CAD systems. Ashburner

et al. [11] proposed a brain tissue segmentation method based on image reg-

istration with a standard probability atlas of the brain.

2.2 Segmentation

In computer-aided diagnosis systems, segmentation of regions of interest (ROI)

is a typical step before any subsequent quantitative analysis, such as feature

extraction and classification for lesion identification. This section reviews some

basic techniques in segmentation that are widely used in skull stripping, brain

tissue segmentation, and candidate region detection.

2.2.1 Thresholding

Thresholding is a simple yet powerful image segmentation method, and it

uses the intensity image histogram to find thresholds that separate image into

objects. Shan et al. proposed to use Otsu’s thresholding method [117] for

background and foreground separation followed by morphological operations

in the skull stripping algorithm.

2.2.2 Clustering

Clustering, which is an unsupervised segmentation method, is a process of

grouping pixels into different clusters, where the pixel intensity values in the

same group (a cluster) are more similar to each other than those in other
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groups. Anitha et al. [6] used the k-means clustering technique [28] to segment

the brain to different clusters before feature extraction. Li et al. proposed to

use mean-shift clustering technique [108] for corpus callosum segmentation in

brain MRI images.

2.2.3 Active Contour Models

A widely used approach for object segmentation is based on active contour

models (ACMs) or snakes. The basic idea of these algorithms is to evolve

a continuous curve in a 2-D plane to delineate structures in an image. The

evolution of the ACMs is subject to constraints from the given image by seeking

to minimize an energy function based on gradient or intensity information.

One widely used model is based on gradient vector flow (GVF) [164], which is

calculated as follows:

E =

∫ 1

0

Eint(x(s)) + Eext(x(s))ds (2.2)

where x(s) = [x(s), y(s)], s ∈ (0, 1) is the contour. Eint is the internal energy

calculated as follows:

Eint(x(s)) =
1

2
[α|x′(s)|2 + β|x′′(s)|2] (2.3)

where x′(s) and x′′(s) are the first and second derivatives of x(s), respectively,

and α and β are weighting parameters. Eext is the external energy of the

contour calculated as follows:

Eext =

∫ ∫
µ(u2x + u2y + v2x + v2y) + | 5 f ||v −5f |2dxdy (2.4)

where v(x, y) = (u(x, y), v(x, y)) is the gradient vector flow, f is the gradient

of smoothed image as the edge map, {ux, uy, vx, vy} are partial derivatives with

respect to x and y. Yoon et al. [166] proposed another active contour model

using Gaussian gradient force as the external force.
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2.2.4 Atlas-Based Segmentation

Atlas-based segmentation approaches are becoming more and more popular

in segmenting brain tissues and brain structures. These approaches typi-

cally align the input image with a standard atlas that includes the anatomy,

morphology, and soft tissue information of the regions of interest. The seg-

mentation can be achieved by either direct extraction of the target region or

iteratively refinement within a probabilistic framework. Aljabar et al . [4] pro-

posed to use multiple brain atlases in the segmentation of brain subcortical

structures. Heckemann et al . [62] proposed an automatic brain segmentation

technique based on the registration with 29 atlases and decision fusion. The

most popular brain atlas is MNI152 [48] created by the International Consor-

tium for Brain Mapping (ICBM) using a high-resolution MRI image data set.

All MRI scans are first non-uniform intensity corrected and intensity normal-

ized. These scans are then co-registered in the MNI stereotaxic space. Finally,

they are average voxel-by-voxel and the brain atlas is created.

2.3 Feature Extraction

In this section, we review four frequently used image features in brain MRI

image analysis. They are: (1) first-order textures, (2) histogram of oriented

gradients (HOG), (3) local binary pattern (LBP), and (4) discrete wavelet

transform (DWT) coefficients. First-order textures provide information about

the intensity distribution, and HOG describes the edge orientation, while LBP

provides the pixel correlations in a small neighboring region. The DWT is

related to the frequency and time resolution properties of an image.
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2.3.1 First-order Textures

In medical image processing, textural features are important in tissue classi-

fication and lesion detection as the appearance of different tissues or lesions

present differently in images. The texture features include mean, standard

deviation, contrast, smoothness, etc. (as listed in Table 2.1), and they are

calculated based on the intensity histogram of an ROI.

Table 2.1: First-order texture features.

Name Expression

Mean m =
L−1∑
i=0

zip (zi)

Standard deviation σ =

√
1

N−1(
L−1∑
i=0

(zi2h (zi))−Nm2)

Smoothness s = 1− 1
(1+σ2)

Third moment µ3 =
L−1∑
i=0

(zi −m)3p (zi)

Uniformity u =
L−1∑
i=0

p2 (zi)

Entropy e = −
L−1∑
i=0

p (zi) log2p (zi)

where R is an image region with N pixels, zi is a pixel intensity, h (z) is
the histogram of z, p (z) is probability density function of z, and L is the
number of the intensity levels.

2.3.2 Histogram of Oriented Gradient

The histogram of oriented gradient (HOG) feature describes the appearance

of an object using the distribution of local intensity gradients and edge direc-

tion. The HOG feature vector of an image window is calculated as follows.

First, the horizontal component gh and the vertical component gv of the gra-

dient at a pixel are obtained by applying the filter kernels: [−1, 0, 1] and

[−1, 0, 1]T , respectively. The orientation of the gradient is then calculated by

θ = arctan gv
gh

. The orientation θ is quantized into one of the nine values:

θ̂ = 2(k−1)π
9

, 1 < k < 9. After that, the orientation histogram H of the image
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window is calculated from θ̂ weighted by the gradient magnitude. Finally, the

HOG feature of the image window is obtained by normalizing H using the

following equation:

Ĥ =
H

‖H‖
(2.5)

where ‖.‖ is the L2 norm. Note that the HOG feature is a vector with 9

elements.

2.3.3 Local Binary Pattern

The local binary pattern (LBP) has been used successfully in computer vision

[158]. The LBP feature of an image window is extracted by the following

three steps. First, to calculate the LBP value of a pixel, the pixel value is

compared with the eight neighboring pixels, and corresponding eight binary

numbers are generated (as shown in Fig. 2.3). The LBP value of the pixel is

the decimal equivalent of the concatenated 8-bit binary numbers. Second, the

histogram of the LBP values for all pixels in the candidate region is calculated

(the histogram size is 1 × 256). Finally, the uniform pattern [146] (by choosing

the lowest decimal values of all rotationally symmetric LBP patterns) can be

used to reduce the size of the feature vector to 1×59.

Figure 2.3: LBP value for the center pixel.

2.3.4 The Discrete Wavelet Transform

The discrete wavelet transform (DWT) is a technique to separate data into dif-

ferent scales and it captures both frequency and location information. Fourier
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series analysis chooses sinusoids as the basis function whereas wavelet analy-

sis is based on orthonormal basis functions. Sinusoids are useful in analyzing

periodic and time-invariant phenomena, while wavelets are well suited for the

analysis of transient, time-varying signals because its energy concentrated in

time. Furthermore, in the spatial domain, DWT analysis also gives the best

performance in detecting discontinuities or abrupt changes in signals. Anitha

et al. [6] proposed to use discrete wavelet transform (DWT) coefficients as

feature vectors for tumor classification.

2.4 Classification

After feature extraction, a candidate region can be classified into lesion or

non-lesion using machine learning models. In this section, four widely used

models are reviewed.

2.4.1 K-Nearest Neighbors

The k-nearest neighbors (KNN) is a simple classification model. To determine

the class of a new instance, the classes of k nearest neighbors are obtained

and the major class is assigned to the new instance. Sometimes the neighbors

are weighted by the inverse of their distance for better classification. The best

choice of K is obtained at the smallest validation error. KNN has already been

successfully used in brain tumor classification [6][103] and brain abnormality

segmentation [88].

2.4.2 Logistic Regression

The logistic regression (LR) is a simple but popular binary classification model.

It converts the continuous value of a linear function of inputs to a probability

value between 0 and 1 using the logistic function, as shown in the following
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equation.

P (y = 1|x) = hθ(x)
1

1 + exp(−θTx)
(2.6)

where x is the feature vector, y is the observation and θ are the parameters

that can be obtained by minimizing the following cost function J(θ).

J(θ) = −
∑
i

(y(i)log(hθ(x
(i))) + (1− y(i))log(1− hθ(x(i))) (2.7)

where y(i) is the binary label ( 0 or 1) for the ith instances. It can be solved

using the optimization algorithms such as gradient descent. Wang et al. [157]

proposed a MS detection technique using logistic regression classifier based on

DWT features.

2.4.3 Support Vector Machines

Support vector machines (SVMs) are supervised learning models popularly

used in binary classification problems. In a training stage, a maximum margin

hyperplane is determined, which means the distance from the hyperplane to

the nearest data points of each class is maximized so that the generalization

error of classification or prediction is minimized. The SVM is obtained by

solving the following optimization problem:

minw,b
1

2
‖ w ‖2

s.t. (wTxi + b)yi ≤ 1, i = 1, ...,m

(2.8)

where w is the normal vector to the hyperplane, m is the size of training

set, xi is the feature vector of the ith block and yi is its label. After solving

this quadratic programming problem, the separating hyperplane is obtained as

wTx+b = 0. For data that is not linearly separable, SVMs can take advantage

of kernel trick k(xi,xj) = ϕ(xi) ·ϕ(xj) to transfer data to be linearly separable

in higher dimension.

In the testing phase, given a feature vector x corresponding to an image
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block, the image block is classified as class 1 if wTx + b > 0, otherwise the

image block is classified as class 2.

2.4.4 Artificial Neural Networks

Inspired by biological neural systems, the artificial neural networks (ANNs)

are comprised of artificial neurons (nodes) and interconnections with weights.

The architecture of an ANN includes an input layer, multiple hidden layers,

and an output layer, and each layer contains many nodes. Fig. 2.4 shows an

example of ANN, and it is a three-layer feed-forward network. To determine

the interconnection weights, backpropagation is the most popularly used su-

pervised learning algorithm in ANNs. Yamashita et al. [165] proposed to use

Figure 2.4: A three-layer ANN.

an ANN classifier for detecting ischemic lesions in MRI images. The ANN with

15 inputs, 8 hidden layers and 1 output was trained using the standard back-

propagation algorithm. Anitha et al. [6] used ANN for brain tumor detection

in MRI images.
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2.4.5 Deep Learning

In recent years, deep learning techniques and especially convolutional neural

networks (CNN) have shown great potentials in image classification problems

since they could learn optimal features automatically [99]. Unlike ANN with

fully connected layers, CNNs use convolutional and pooling layers to keep the

number of parameters trainable and also make the network deeper. Anthi-

mopoulos et al . [7] proposed a lung pattern classification technique for inter-

stitial lung disease based on a deep CNN architecture of 5 convolutional layers

with 2×2 kernels, a leaky rectifier linear unit (LReLU), and average pooling.

Pereira et al . [121] proposed a brain tumor segmentation technique based on

a CNN architecture with 4-6 convolutional layers, 3×3 kernels, and LReLU.

Some well-known deep learning architectures for image classification are

AlexNet [97], VGG [136], GoogLeNet [142], and ResNet [61]. AlexNet uses

rectified linear units (ReLU) as nonlinear activations, a dropout technique to

avoid overfitting, and GPU to reduce training time. Instead of using large-size

filters in convolutional layers, VGG networks use much smaller 3 × 3 filters

to reduce the number of parameters. GoogLeNet further reduces the compu-

tational burden of deep networks while obtaining good performance by using

the inception architecture, especially the introduction of 1 × 1 convolutional

blocks. ResNet feeds the output of two successive convolutional layers and the

input to the next layer, and bypassing two layers improves the performance of

deep learning.

2.4.6 Performance Evaluation Metrics

The purpose of the evaluation is to assess the performance and robustness of

a CAD system. Usually, a training database is used to obtain the optimal

model parameters and a testing database is used for performance evaluation.

As the medical image databases are typically small, a popular evaluation test
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is k-fold cross-validation, in which the training data is randomly separated

into k dataset. Of the k dataset, k-1 dataset is used as training data and the

remaining one dataset is used for testing. The kind of test is repeated by k

times. If k is equal to the number of cases (patients), the k-fold cross-validation

is known as leave-one-out cross-validation.

To quantitative evaluate the performance of a binary classification system,

statistical measures, such as sensitivity, specificity, accuracy and precision, are

commonly used. They are calculated as follows:

Sensitivity =
NTP

NTP +NFN

× 100% (2.9)

Specificity =
NTN

NTN +NFP

× 100% (2.10)

Accuracy =
NTP +NTN

NTP +NFP +NFN +NTN

× 100% (2.11)

Precision =
NTP

NTP +NFP

× 100% (2.12)

whereNTP , NTN , NFN , andNFP are the count of true positives, true negatives,

false negatives and false positives, respectively. Sensitivity is also known as

recall, or true positive rate. Sometimes, precision and recall are used together

as a single combined measurement for the system, known as the F-measure.

It is calculated as follows:

f = 2 ∗ Precision ∗Recall
Precision+Recall

(2.13)

The receiver operating characteristic (ROC) curve is a plot that illustrates

the performances of a classifier. It is obtained by plotting the true positive

rate (Sensitivity) against the false positive rate (1 − Specificity) at various

threshold points. The ROC curve also provides a tool to find the optimal

classification models.

To measure the performance of a segmentation technique, Dice coefficient

is often used as the similarity measurement. If A corresponds to the auto-

matically segmented region and B is the ground truth, the Dice coefficient is
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calculated as follows:

d(A,B) =
2|A ∩ B|
|A|+ |B|

(2.14)

where |A| and |B| are the areas of image region A and B, respectively, and

|A ∩ B| is the mutual area.

2.5 CAD Systems

Table 2.2: Related CAD systems based on brain MRI image analysis. BT:
brain tumor, AD: Alzheimer’s disease, MS: multiple sclerosis, Dis.: disease,
Cla.:classifier, Acc.: accuracy reported.

Reference Dis. Images Features Cla. Acc.

Bauer et al.,
2011 [14]

BT
T1, T1C,
T2,
FLAIR

Intensity and
texture

SVM

Saha et al.,
2012 [131]

BT T1C, T2 92%

Meier et al.,
2014 [110]

BT
T1, T1C,
T2,
FLAIR

Appearance
and context

Decision
Forest

84%

Anitha et al.,
2016 [6]

BT T2 DWT
ANN,
KNN

92%

Kloppel et al.,
2008 [92]

AD T1 GM intensity SVM 96%

Beheshti et al.,
2016 [16]

AD T1 Intensity SVM 92%

Zhang et al.,
2016 [168]

AD T1
Morphologi-
cal

SVM 84%

Zijdenbos et
al., 2002 [171]

MS
T1, T2,
PD

Modality and
tissue priors

ANN 81%

Khayati et al.,
2008 [89]

MS FLAIR Intensity
Thresh-
olding

83%

Wang et al.,
2016 [157]

MS T2 DWT LR 98%

Bauer et al. [14] proposed a fully automatic voxel-wise classification tech-

nique for brain tumor segmentation using a support vector machine (SVM)
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combined with hierarchical conditional random field (CRF) regularization.

The intensity and first-order texture features from different modalities are

used for training the classifier and making classification.

Saha et al. [131] proposed a fast brain tumor segmentation system using

the dissimilarity measurement (Bhattacharya coefficient) of two brain hemi-

spheres to locate candidate tumor bounding boxes in each slice. A mean-shift

clustering based on the centroids of the bounding boxes is then used to segment

and quantify the tumor region approximately.

Meier et al. [110] proposed a brain tumor segmentation method using

MRI images of multiple modalities (T1, T1C, T2, and FLAIR). After pre-

processing (smoothing, bias-field correction, and intensity normalization), the

appearance-sensitive (intensity values, first-order texture, and gradient) and

context-sensitive (atlas-normalized coordinates and ray feature) features are

extracted. A voxel-wise classification based on decision forest is then applied

refined by a spatial regularization.

Anitha et al. [6] proposed a CAD system for brain tumor using a two-

tier classification technique. First, the brain MRI is preprocessed using a

mean filter to remove noise and morphology-based skull stripping technique

to extract the brain portion. Second, a K-means clustering method is used

for brain segmentation. After that, discrete wavelet transform coefficients are

used to calculate feature vectors for classification. Finally, the self-organizing

map neural network and K-nearest neighbor classification algorithm are used

to classify brain images into cancer or non-cancer images.

Kloppel et al. [92] proposed to use SVM to classify T1W GM from AD

patients. In this method, brain images are segmented into gray matter, white

matter and cerebrospinal fluid using statistical parametric mapping (SPM)

[161].

Beheshti et al. [16] proposed a CAD system for Alzheimer’s disease (AD)
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using 3D T1W brain images. First, voxel-based morphometry is applied to

gray matter to obtain the volume of interests (VOIs). After extracting the in-

tensity value of VOIs as the raw feature vector. Seven feature ranking methods

are used to obtain the optimized feature vector that can minimize the classifi-

cation error. Finally, the optimized feature vector and the SVM classifier are

used for the detection of the AD.

Zhang et al. [168] proposed a three-stage CAD system for AD. First, AD

landmark model is generated by comparing local morphological features after

linear and non-linear registration. Second, a regression-forest based landmark

detection method is used to identify AD landmarks in a testing image. Finally,

an SVM classifier is used to diagnosis AD based on the morphological features

around the detected landmarks.

Zijdenbos et al. [171] proposed an voxel-wise classification framework for

MS lesions. Images are preprocessed using intensity normalization, smoothing

and bias correction techniques. Registrations are performed before resampling

the data into 1 mm resolution. Based six features (three modalities and three

spatial tissue priors), an artificial neural network classifier is used for a voxel

wised classification.

Khayati et al. [89] proposed an automated method to detect MS in brain

FLAIR images using an adaptive mixture method and a Markov random field

model. Each voxel is modeled as a combination of normal and abnormal parts,

and it can be further classified into chronic, early and recent acute lesions by

optimal thresholding.

Wang et al. [157] proposed a CAD system for multiple sclerosis (MS) based

on biorthogonal wavelet transform, RBF kernel principal component analysis

(RKPCA) and logistic regression. The biorthogonal wavelet transform of the

input image is first calculated and the features are extracted. The RKPCA is

then used to reduce the size of the feature vector. Finally, a linear regression
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method is used to classify the image as MS or non-MS image.

2.6 Summary

In this chapter, we presented a brief review of the automated image analysis

techniques including preprocessing, segmentation, feature extraction, and clas-

sification. Several CAD systems for different brain diseases (e.g . brain tumor,

Alzheimer’s disease, and multiple sclerosis) were also reviewed.
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Chapter 3

Automated Detection of
Cavernous Malformation

Cavernous malformation or cavernoma is one of the most common epilepto-

genic lesions. It is a type of brain vessel abnormality that can cause serious

symptoms such as seizures, intracerebral hemorrhage, and various neurologi-

cal disorders. Manual detection of cavernomas by physicians in a large set of

brain MRI slices is a time-consuming and labor-intensive task and often de-

lays diagnosis. In this chapter, we proposed an automated detection technique

for cavernomas based on T2-weighted axial plane MRI image analysis. The

proposed technique first extracts the brain area based on atlas registration

and active contour model, and then performs template matching to obtain

candidate cavernoma regions. Texture, the histogram of oriented gradients

and local binary pattern features of each candidate region are calculated, and

principal component analysis is applied to reduce the feature dimensionality.

Support vector machines (SVMs) are finally used to classify each region into

cavernoma or non-cavernoma so that most of the false positives (obtained by

template matching) are eliminated. The performance of the proposed tech-

nique is evaluated and the experimental results show a superior performance

in cavernoma detection compared to existing techniques.
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3.1 Introduction

Epilepsy is the fourth most common neurological problem (after migraines,

strokes, and Alzheimer’s disease) [45], which affects about 1% of the population

worldwide [21]. Epilepsy may have significant impacts on people’s lives as it is

reported [91] that the rate of sudden unexpected death in epilepsy is two times

higher than that in the general population. A large number of epilepsy patients

suffer from physical injuries including cuts, bruises, burns, head injury, broken

bones and others. Furthermore, people with epilepsy are more likely to have

mood (such as depression) and sleeping problems. Although most of the causes

of epilepsy are still unknown, some epileptogenic lesions are typically found in

images obtained by brain magnetic resonance imaging (MRI). An important

epileptogenic lesion is cavernous malformation or cavernoma that arises due

to vascular abnormality involving a cluster of abnormal vessels in brain [124].

MRI is a frequently used imaging method to diagnose cavernomas in hospitals

because of the high image quality of soft tissues in the brain. Fig. 3.1 shows

three T2-weighted (T2W) image with cavernous malformations surrounded by

square boxes. In a T2W image, a cavernoma typically looks like popcorn with

black surrounding due to the presence of hemosiderin. In typical brain lesion

detection, the task is to detect the presence of a malformation and determine

its location [15]. However, visual identification of cavernomas in a large set

of MRI slices is a tedious and time-consuming task that may result in a slow

diagnosis and even misdiagnosis. Therefore, computer-aided detection (CAD)

that can process the input MRI images using a computer to generate detection

results is highly desirable to improve the efficiency and accuracy of diagnosis.

To the author’s knowledge, there is no CAD technique in the literature

specifically for the detection of cavernous malformations. However, several
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Figure 3.1: Three examples of cavernous malformations in T2W images. Top
row: original images with cavernomas in yellow boxes. Bottom row: enlarged
cavernoma regions.

CAD systems for other brain diseases have been proposed by researchers, such

as those for brain tumors [5, 6, 43, 131], Alzheimer’s disease [16, 30, 92], vas-

cular dementia and multiple sclerosis [89, 157, 171]. Anitha et al. [6] proposed

a CAD system for brain tumor using a two-tier classification technique. The

brain MRI is first preprocessed to remove noise and skull area followed by a K-

means clustering method for brain segmentation. Discrete wavelet transform

coefficients are then used to calculate the feature vectors for classification.

Finally, the self-organizing map neural network and k-nearest neighbor classi-

fication are used for the brain tumor classification. Saha et al. [131] proposed

a brain tumor diagnosis system using the dissimilarity measurement of two

brain hemispheres to locate candidate tumor bounding boxes, and mean shift

clustering to segment and quantify the tumor. Ambrosini et al. [5] proposed
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a template matching technique to detect metastatic brain tumors by using

3D sphere templates, and thresholding normalized cross-correlation between

templates and candidate regions. Farjam et al. [43] proposed a method sim-

ilar to [5] for detecting brain tumor but used the size, shape and brightness

information of lesions to further improve the detection performance.

Beheshti et al. [16] proposed a CAD system for Alzheimer’s disease (AD)

using 3D T1-weighted (T1W) brain images. First, voxel-based morphometry

is applied to gray matter to obtain the volume of interest (VOI). After ex-

tracting the intensity value of VOI as the raw feature vectors, seven feature

ranking methods are used to obtain the optimized features that can minimize

the classification error. Finally, the optimized feature vector and the SVM

classifier are used for the detection of AD. Kloppel et al. [92] also proposed an

AD detection technique using SVM to classify T1W gray matter segments. In

this method, brain images are segmented into gray matter, white matter and

cerebrospinal fluid using statistical parametric mapping (SPM) [161]. Colliot

et al. [30] proposed an automated classification method for AD, mild cogni-

tive impairment, and aging based on the difference of hippocampal volumes

in T1W brain MRI images.

Wang et al. [157] proposed a CAD system for multiple sclerosis (MS) us-

ing biorthogonal wavelet transform to extract features, RBF kernel principal

component analysis to reduce the size of the feature vector and logistic regres-

sion to classify the image as MS or non-MS. Zijdenbos et al. [171] proposed a

voxel-wise classification framework for MS lesions using a three-layer artificial

neural network classifier based on multi-model intensity and spatial priors.

Khayati et al. [89] proposed an automated method to detect MS in brain

FLAIR images using an adaptive mixture method and a Markov random field

model. Each voxel is modeled as a combination of normal and abnormal parts,

and it can be further classified into chronic, early and recent acute lesions by
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optimal thresholding.

In this chapter, we propose a CAD technique to detect slices with cavernous

regions in T2W brain MRI images. It is an extension of our previous work

[156], in which we proposed to use skull stripping and template matching to de-

tect cavernous malformation. This paper improves [156] in two aspects: (1) An

atlas-based skull stripping technique is used instead of the morphology-based

method to obtain better brain area extraction; (2) After template matching,

SVM models are used to classify candidate regions to cavernomas or non-

cavernomas based on texture, histogram of gradient and local binary pattern

features with principal component analysis, instead of using size, shape and

brightness information of candidates for classification in [156]. The remainder

of this chapter is organized as follows: Section 3.2 describes the materials;

Section 3.3 explains the proposed method; experimental results are presented

in Section 3.4, while Section 3.5 concludes the paper.

3.2 Materials

In this study, a database of 192 T2W MRI axial images from 9 patients with

cavernous malformations are used. The images were obtained at the University

of Alberta Hospital. The T2W images were acquired using the turbo spin

echo sequence on a 1.5T Siemens MRI scanner (TE/TR = 99/5000 ms) and

have a pixel resolution of approximately 0.45×0.45mm with a slice thickness

of 6-8 mm. The resolution of each image slice is 512×416 pixels. Overall,

there are 23 cavernous images (out of 192), each image with one cavernoma

region. Due to the large slice thickness of the T2W images in our database,

the proposed detection is performed on 2D slices. Although a small data set

is used in this study, the cavernomas are representative in size, location, and

shape [13, 107, 145]. The cavernomas can be modeled by circular or elliptical

shapes. The diameter (major/minor axes length in case of elliptical shape)
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of these lesions on 2D slices spreads from 8 mm to 20 mm. Out of the 23

cavernomas, 8 are located in the frontal lobe, 8 in the temporal lobe, 6 in the

parietal lobe and 1 in the occipital lobe. The shape of these cavernomas also

covers a large variety. Fig. 3.2 shows six samples of cavernous malformations

in our study of different size and shape. The locations and boundaries of these

cavernomas are marked by an experienced neurologist and this information is

used as ground truth.

      
 Figure 3.2: Six samples of cavernous malformations.

The T2W ICBM 2009a non-linear symmetric brain atlas [48] and its brain

probability map are used in this work. The atlas, which is generated by aver-

aging the MNI152 database, has a high resolution of 1×1×1mm and includes

189 axial slices with the size of 197×233 pixels. It is one of the most popular

brain atlases in medical image analysis. The 3D atlas has a corresponding

brain probability map (B) that indicates if an MRI pixel belongs to the brain

area. It is defined as follows:

B(x) =


1, if x is a brain pixel
0, if x is not a brain pixel
p, others

(3.1)

where x is a 3D pixel location and p is the probability that the pixel at x is a

brain pixel.

3.3 Proposed Method

The purpose of a CAD system is to process the input images and generate

useful information (e.g., location, volume or shape of suspected lesions) for di-

agnosis, which can assist physicians in interpreting the medical images so that
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the efficiency and accuracy of diagnosis could be improved [8]. Fig. 3.3 shows

the schematic of the proposed CAD system for detecting cavernous malfor-

mation. It includes four major modules: skull stripping, template matching,

feature extraction, and classification. The details of these modules are pre-

sented in the following sections.
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Figure 3.3: Schematic of the proposed CAD system for cavernous
malformations.

3.3.1 Skull Stripping

Skull stripping, or brain extraction, is a technique that removes the non-brain

tissues, such as the skin of the scalp, bone of the skull, dura matter and eye-

balls, from a brain image. It is the first step in the proposed cavernomas detec-

tion system as only brain area is the region of interest (ROI) for cavernomas

detection. A number of automatic skull-stripping methods have already been

proposed in recent years, which can be categorized into morphology-based,

intensity-based, deformable surface-based, standard atlas-based and hybrid

methods [86]. The BET [137], BSE [134], and 3dSkullStrip [130] methods

are widely used for skull stripping in MRI images. Among them, BSE and

3dSkullStrip are designed to work primarily with T1W MR images. The BET
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method is capable of processing T2W images based on a deformable model

driven by local adaptive forces. This technique does not perform well for large

slice thicknesses as in our case. Therefore, we propose an improved skull strip-

ping method using atlas registration. This method has two steps: (1) affine

registration with a brain atlas to obtain the initial brain masks, and (2) con-

tour refinement in each slice using active contour model for brain extraction.

 (a)                                       (b)                                    (c)                                       (d) 

Figure 3.4: Skull stripping results of one slice of a 3D image. (a) An input T2W
slice, (b) input slice overlaid with the brain mask (in green) after registration,
(c) refined brain contour (shown by the yellow boundary), (d) extracted brain.

Registration

In order to obtain an approximate brain area, researchers sometimes perform

registration with a standard brain atlas to generate the mask of ROI (i.e., the

brain). In this work, the T2W ICBM 2009a non-linear symmetric brain atlas

is used to register with the input T2W brain images to obtain the initial brain

masks for contour refinement.

The brain atlas is used as the moving image, and the input image as the

fixed image in a 3D affine registration framework. The mutual information of

the moving and fixed image serves as the objective function to be maximized.

The purpose of registration is to find the best transformation t′ that will align

the input image to the brain atlas in the same coordinate system. In this work,
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t′ is obtained by solving the following equation.

t′ = arg max
t

µ(I(x), A(t(x))) (3.2)

where I is the input 3D MRI image (about 20 axial slices), A is the reference

brain atlas image (189 axial slices), µ is the mutual information, t(x) is affine

transformation to the coordinate x, and t′ is the best transformation. Note

that affine transformation is a combination of transforms including translation,

scale, shear and rotation. For the 3D affine transformation, the degree of

freedom is 12. The mutual information of two images I and A is calculated as

follows:

µ(I, A) = e(I) + e(A)− e(I, A) (3.3)

where e(I) and e(A) are the entropies of images I and A, respectively, and

e(I, A) is the joint entropy. The entropies are calculated based on the 1D

probability density function of the pixel intensities of the entire 3D images I

and A, and the joint entropy is calculated based on the joint histogram of I

and A. As the brain atlas A typically has more axial slices but less axial plane

resolution than I, both sampling and interpolation operations are applied to

A (to make it of the same size as that of I) before calculating the mutual

information.

After registering the brain atlas (A) with the input brain image I, we

obtain the best transformation t′. As only the brain area is the ROI, we apply

t′ to the brain probability map (B) to generate the brain mask for the input

image as follows:

M(t′(x)) =

{
1, if B(x) = 1
0, others

(3.4)

where M is the brain mask of input image I and x is a pixel location in B.

Fig. 3.4 (a) shows one slice of a T2W brain MRI image and Fig. 3.4 (b) shows

the image slice in (a) overlaid with its brain mask obtained after registration.
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We observe that, even though the brain mask is not perfect, it is close enough

to be an initial brain contour for further refinement.

Contour Refinement

In contour refinement, we use an active contour model, also known as snakes,

which is a popular segmentation technique that minimizes the energy along

the contour of object. The refinement of contours is driven by two forces: an

internal force that keeps the contour smooth, and an external force that pushes

it towards the object contour. The active contour model based on a gradient

vector flow [164] is used in the proposed system for brain contour refinement.

The contour x(s) is obtained by minimizing E as defined below.

E =

∫ 1

0

[Eint(x(s)) + Eext(x(s))]ds (3.5)

where x(s) = [x(s), y(s)], s ∈ (0, 1). The internal energy Eint is calculated as

follows:

Eint(x(s)) =
1

2
[α|x′(s)|2 + β|x′′(s)|2] (3.6)

where x′(s) and x′′(s) are the first and second derivatives of x(s), respectively,

and α and β are weighting parameters. Eext is the external energy of the

contour calculated as follows:

Eext =

∫∫
[γ(u2x + u2y + v2x + v2y) + | 5 f ||κ−5f |2]dxdy (3.7)

where κ(x, y) = (u(x, y), v(x, y)) is the gradient vector flow, Of is the gra-

dient of the smoothed image as the edge map, {ux, uy, vx, vy} are the partial

derivatives with respect to x and y.

Fig. 3.4 (c) shows the final brain contour (the yellow boundary) after con-

tour refinement and Fig. 3.4 (d) is the extracted brain.
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3.3.2 Template Matching

Template matching (TM) is a technique to locate regions of an image that

have similar structure or pattern with a reference image known as a template.

In order to increase the sensitivity of matching, multiple templates are gen-

erally used, which are transformations (scaling, rotation, etc.) of a reference

template. In T2W MR images, a cavernoma appears bright at center with a

dark surrounding, and it is always located inside of brain tissues that appear

gray in images. Therefore, we can use templates of similar structures to match

and detect the cavernous malformations. In the proposed technique, we gener-

ate the template database using the generalized Laplacian of Gaussian (gLoG)

[94]. The gLoG function is given as follows:

52 G(x, y) =
∂2G

∂x2
+
∂2G

∂y2
(3.8)

where (x, y) are pixel coordinates in image, and G is the Gaussian function.

The definitions of G and the second derivatives of G are given as follows:

G(x, y) = e−(ax
2+2bxy+cy2) (3.9)

∂2G

∂x2
= [(2ax+ 2by)2 − 2a]G(x, y) (3.10)

∂2G

∂y2
= [(2bx+ 2cy)2 − 2c]G(x, y) (3.11)

where a, b, c are parameters that control the shape and orientation of a

template, and are defined as follows:

a =
cos2 θ

2σ2
x

+
sin2 θ

2σ2
y

(3.12)

b = −sin 2θ

4σ2
x

+
sin 2θ

4σ2
y

(3.13)

c =
sin2 θ

2σ2
x

+
cos2 θ

2σ2
y

(3.14)

where σx, σy are scale parameters and θ is the orientation parameter. Fig.

3.5 shows the 28 templates used in the proposed CAD system for cavernomas.
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                                                              𝜎𝑥 = 𝜎𝑦 = {8, 12,16,20} 

           
      𝜎𝑥 = 20, 𝜎𝑦 = 16, 𝜃 ∈ {0°, 45°, 90°, 135°}                𝜎𝑥 = 20, 𝜎𝑦 = 12, 𝜃 ∈ {0°, 45°, 90°, 135°} 

           
        𝜎𝑥 = 20, 𝜎𝑦 = 8, 𝜃 ∈ {0°, 45°, 90°, 135°}                𝜎𝑥 = 16, 𝜎𝑦 = 12, 𝜃 ∈ {0°, 45°, 90°, 135°} 

           
        𝜎𝑥 = 16, 𝜎𝑦 = 8, 𝜃 ∈ {0°, 45°, 90°, 135°}                  𝜎𝑥 = 12, 𝜎𝑦 = 8, 𝜃 ∈ {0°, 45°, 90°, 135°} 

Figure 3.5: Templates used in the proposed technique.

Each template size is 25×25mm (48×48 in pixels) as the diameter of cavernous

malformation varies from 8 to 20 mm in our image database. Both σx and σy

are chosen from {8, 12, 16, 20} mm and θ are from {0◦, 45◦, 90◦, 135◦}.

In the proposed technique, the normalized cross correlation (NCC), defined

below, is used to measure the similarity of an image region R and a template

T .

NCC(R, T ) =

∑
i,j[R(i, j)− R̄][T (i, j)− T̄ ]√∑

i,j[R(i, j)− R̄]2
∑

i,j[T (i, j)− T̄ ]2
(3.15)

where R(i, j) and T (i, j) are pixel intensities of the image region and the

template, R̄ and T̄ are the mean intensities of the region R and the template

T , respectively. The NCC value is in the range of [-1, 1] and a larger NCC value

reflects a better matching. To identify the matching regions, a template image

is compared with the source image by sliding it (i.e., moving the template

one pixel at a time from left to right and top to bottom) and a NCC value

is calculated at each (central) pixel location. Using this procedure, a NCC
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response map is generated for that template. As there are 28 templates in

the database, 28 NCC response maps are generated for each image slice. For

each response map, we find cavernoma candidates by thresholding the local

maxima.

A region R is a cavernoma candidate if

NCC(R, T ) > τ (3.16)

where τ is a predetermined threshold. Fig. 3.6 (a) shows the NCC values

of cavernoma regions, whereas Fig. 3.6 (b) shows the cumulative distribution

function (CDF) of NCC values of both cavernoma and non-cavernoma regions.

In this paper, we have chosen τ = 0.4 to detect candidate cavernoma regions

with a low false positive rate.
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Figure 3.6: Distribution of NCC values. (a) Maximum NCC values for each
cavernoma, (b) the plot of the NCC cumulative distribution function.

3.3.3 Feature Extraction

Using TM, we obtain a large set of cavernoma candidate regions. However,

many of these regions are false positives. The feature extraction and classifica-

tion modules reduce the number of false positives by classifying the region into

either cavernoma (CM) or non-cavernoma (non-CM). Three kinds of features
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are used: (1) first-order textures, (2) histogram of oriented gradients (HOG)

and (3) local binary pattern (LBP). First-order textures provide information

about the intensity distribution, and HOG describes the edge orientation, while

LBP provides the pixel correlations in a small neighborhood. The three types

of features together are able to capture the appearance information of an ob-

ject efficiently, and effectively.

First-order Textures

In this work, we use six first-order texture features (mean, standard deviation,

smoothness, third moment, uniformity and entropy), as defined in Table 2.1,

based on the intensity histogram of a region. Let the texture feature vector

be denoted by φ.

HOG

The HOG feature describes the appearance of an object using the distribution

of local intensity gradients and edge direction. The HOG feature vector of an

image region is calculated as follows.

Step 1. A candidate image region is divided into overlapping blocks and

each block is comprised of cells, as shown in Fig. 3.7. The size

of regions, blocks and cells are 48×48, 16×16 and 8×8 pixels, re-

spectively. The overlap of adjacent blocks is half the block size.

Overall, there are 25 blocks in a candidate region.

Step 2. The gradient of each pixel is obtained by applying two filter kernels:

[−1, 0, 1] and [−1, 0, 1]T to the image region. Each gradient is then

quantized into one of the nine major orientations: 2(k−1)π
9

, 1 ≤

k ≤ 9, and weighted by the gradient magnitude. After this, the

orientation histogram Hc of each cell is obtained, and the size is

1×9.
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Step 3. The feature vector of each block is then obtained as Hb= [Hc1, Hc2,

Hc3, Hc4], where Hcm is orientation histogram of the mth cell. The

feature vector Hb is then normalized using the following equation.

Ĥb =
Hb

‖Hb‖
(3.17)

where ‖.‖ is the L2 norm.

c1 c2 

 c3 c4 

 

 

b 

… 

…
 

Figure 3.7: The cell and block division in an image window. b and c refer to
block and cell, respectively.

The HOG feature vector of an image region is obtained by concatenating

all the normalized block feature vectors. As there are 25 blocks in an image

region and the size of each normalized block feature vector is 1×36, the size

of the HOG feature vector of one candidate region is 1×900. Let the HOG

feature vector be denoted by η.

LBP

The LBP has been used successfully in many computer vision applications

[158]. In the proposed CAD system, we calculate the LBP feature of each

cavernoma candidate region. First, to calculate the LBP value of a pixel, the

pixel value is compared with the eight neighboring pixels, and corresponding
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eight binary numbers are generated (as shown in Fig. 3.8). The LBP value of

the pixel is the decimal equivalent of the concatenated 8-bit binary numbers.

Second, the histogram of the LBP values for all pixels in the candidate region

is calculated (the histogram size is 1×256). Finally, we use the uniform pattern

[146] (by choosing the lowest decimal values of all rotationally symmetric LBP

patterns) to reduce the size of the feature vector to 1×59. Let this feature

vector be denoted by ζ.

Figure 3.8: LBP value for the the center pixel.

Combining the three types of features, the overall feature vector, of dimen-

sion 1×965, is obtained as x = [φ,η, ζ].

Feature Dimensionality Reduction

The feature vector x has a large dimension of 1×965. In order to discard

features that are correlated with others and improve the efficiency of classi-

fication, the principal component analysis (PCA) technique is applied in our

system. The PCA can reduce the feature dimension, and at the same time

retain most of the variation present in the original data set [83]. In the pro-

posed system, the number of principal components is chosen such that they

can explain at least 90% of the data variance.

3.3.4 Classification

SVMs [32, 123] are widely used in classification applications from character

recognition to tumor detection for its high performance and robustness even
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in noisy datasets. After template matching, we typically obtain a large set of

candidate cavernous regions. In order to train an SVM model, these candidate

regions are labeled (by visual inspection) as either CM (1) or non-CM (-1). As

shown in Fig. 3.9, a candidate region is labeled as CM if it encloses the center

of a cavernous malformation, otherwise it is labeled as non-CM.

 

 

 

 

 

 

   
(a) (b) (c)

Figure 3.9: Candidate region labeling. (a) The ground truth boundary (red) of
a cavernoma, (b) a candidate region (yellow) is labeled as CM, (c) a candidate
region (yellow) is labeled as non-CM.

A common problem in medical image classification is the imbalanced dataset.

The size of the two groups is highly imbalanced as there are many (about 50

times) more non-cavernoma candidates than cavernoma candidates. If we use

the imbalanced dataset in the training process directly, the trained SVM tends

to classify all candidates into non-CM group to obtain a higher accuracy, re-

sulting in low sensitivity. To avoid this, we use the following methods.

Imbalanced Dataset Handling

In our CAD system, we use two techniques to avoid imbalanced training:

oversampling and dataset division [95].

• Oversampling: it is a way to increase the number of cavernoma instances

so that the two groups are more evenly balanced. For each cavernoma
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candidate, we generate 8 more instances by sampling regions centered at

the neighboring pixels of the original center pixel.

• Dataset division: although oversampling increases the number of caver-

noma instances, it is still unable to balance the two groups. Therefore,

we divide the dataset into multiple (e.g. 5) subsets and in each subset,

all cavernoma instances and the same size of non-cavernoma instances

are included. With each balanced subset, we train an SVM model. So

five SVMs are trained and used for classification.

SVM

To train an SVM model for binary classification, feature vectors {x1,x2, . . . ,xn}

and their labels {y1, y2, . . . , yn} are generated from training ground truth data,

where n is the size of training set. In our CAD system, the size of each feature

vector is 1 × 965 and each label is either CM (1) or non-CM(-1). The SVM

generates a hyperplane that can separate the training data with maximum

margin. The SVM model is obtained by solving the following equation:

minw,b
1

2
‖ w ‖2

s.t. (wTxi + b)yi ≥ 1, i = 1, ..., n

(3.18)

where w is the normal vector to the hyperplane, xi is the ith feature vector

and yi is its label. By solving the above quadratic programming problem, we

obtain the separating hyperplane as wTx+b = 0. In this work, the SVM imple-

mentation provided in MATLAB “Statistics and Machine Learning” toolbox is

used. An attractive property of SVM is that we can use so-called kernel tricks

to convert a non-linearly separable dataset to a linearly separable one. Some

commonly used kernels are polynomial, Gaussian and radial basis function

(RBF). After testing with different kernels, we found that the linear SVMs

perform the best in cavernoma classification.
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As mentioned in the imbalanced dataset handling section, multiple SVMs

are trained in the proposed CAD system to detect cavernoma. As a conse-

quence, a voting strategy is used in prediction. If the number of predictions of

CM is larger than a threshold τv, the candidate block is deemed to be a CM.

Otherwise, it is non-CM. The threshold τv is determined using the receiver

operating characteristic (ROC) curve, as shown in Fig. 3.10. We can see the

best value for voting threshold τv is 3.
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Figure 3.10: ROC for classification by SVMs.

3.4 Experimental Results

In this section, we evaluate the proposed CAD system for cavernous malfor-

mation detection based on two aspects: the accuracy of skull stripping, and

the CM detection performance of the proposed system.

3.4.1 Efficiency of Skull Stripping

In this section, we evaluate the performance of the atlas-based skull stripping

method in the proposed CAD system by calculating the dice coefficient of every

slice. If B and G are the automatically extracted and manually extracted brain
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images, respectively, the dice coefficient corresponding to (B,G) is obtained

by using the following equation.

d(B,G) =
2|B ∩G|
|B|+ |G|

(3.19)

where |B| and |G| are the areas of B and G, respectively, and |B ∩ G| is the

mutual area. Fig. 3.11 shows the distribution of dice coefficients for each pa-

tient and the average value is around 0.95. In other words, the atlas-based

skull stripping method used in our CAD system can extract the brain region

accurately, and no cavernoma region is excluded by the atlas-based skull strip-

ping method. Fig. 3.12 (b) shows an example of the extracted brain. We also

tried to use a morphology-based technique [54] in skull stripping. However,

the morphology-based method does not perform very well and sometimes ex-

cludes cavernoma regions that are located at brain edge, as shown in Fig. 3.12

(c), while the atlas-based method can avoid the problem. The performance

of the proposed skull stripping method is also compared with the BET [137].

Table. 3.1 shows the mean dice coefficients of the skull stripping results using

our T2W image dataset. The proposed atlas-based method can outperform

the BET in processing the T2W images with large slice thickness and a dice

coefficient of 0.95 is obtained.

Table 3.1: Performance comparison of skull stripping methods.

Methods BET [137] Proposed

Dice Coefficient 0.90 0.95

3.4.2 System Performance

For subjective evaluation of the proposed CAD system, two examples of diag-

nostic results are shown in Fig. 3.13. It is observed that the atlas-based skull
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Figure 3.11: Boxplot of dice coefficients for all patients. Red lines denote the
median dice coefficient and the ’+’s denote the outliers.

(a) (b) (c)

Figure 3.12: An example of skull stripping. (a) The input image, (b) ex-
tracted brain (in yellow boundary) using atlas-based method, (c) extracted
brain (in yellow boundary) using morphology-based method. Note that in (c),
the cavernoma region (shown in red box) is not included in the brain area.

stripping technique extracts the brain area precisely. The template match-

ing technique produces three candidates in both examples. The SVM models

correctly detect the cavernous malformations based on the features of each

candidate region.

For a quantitative evaluation of the proposed SVM-based cavernomas de-

tection system, we use the leave-one-out ‘by patient’ cross validation test [8],

which means images of one patient is used for testing and the other patients
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(a) (b) (c) (d)

Figure 3.13: Two qualitative results of the proposed system. (a) Two input
images corresponding to the upper level (top row) and lower level (bottom row)
brain slices, (b) extracted brain after skull stripping, (c) candidate cavernoma
regions in yellow boxes after template matching, (d) detected cavernomas (in
red boxes) after SVM classification.

Table 3.2: Parameters of training and testing.

Parameters Value

No. of images 192

No. of candidate regions 1161

No. of CM regions∗ 207

No. of non-CM regions 954

No. of SVMs 5

∗After oversampling by a factor of 9.

images are used for training the SVM models. After template matching, we

obtain 1161 candidate regions consisting of 207 CM regions and 954 non-CM

regions (see Table 3.2). For each patient, the test runs for 100 times and in

each run, five SVMs (to offset the data imbalance) are learned based on the
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randomly divided training dataset (so the prediction results may vary). Af-

ter SVM classification, the sensitivity, specificity, and accuracy are calculated.

Fig. 3.14 shows the average sensitivity, specificity, and accuracy for each pa-

tient. It is observed that, on average, 95% of CM regions could be identified

and approximate 90% of false positives could be removed by the classification

model.
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Figure 3.14: Performance of the CAD system for all patients. (a) Sensitivity,
(b) specificity, and (c) accuracy

In the proposed technique, a feature vector x of length 965 is calculated for

each candidate region, and the PCA is applied to reduce the feature dimension-

ality. To evaluate the significance of PCA (Section 3.3.3), the performance of

the system is measured at different feature dimensionality, with results shown

in Table. 3.3. It is observed that the performance (accuracy, sensitivity, and
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specificity) is improved at a low dimensionality, which explains approximately

90% of the feature variance according to the cumulative variance plot in Fig.

3.15.

Table 3.3: Performance based on feature dimensionality

Dimensionality Sensitivity(%) Specificity(%) Accuracy(%)

20 90 80 82

40 92 86 87

60 94 89 90

80 93 90 91

100 95 90 91

150 92 88 89

200 91 88 89

250 90 89 89

300 94 89 89

400 90 89 89

500 91 90 90

700 92 90 91
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Figure 3.15: Cumulative variance plot.

Table 3.4 compares the performance of the proposed technique with three

other existing techniques. The first two techniques [14, 40] were proposed for

general tumor detection. To implement them for the cavernomas detection,
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the candidate cavernoma regions are first obtained using the skull stripping

and TM technique proposed in this paper. The classification of these candidate

regions is then performed using the texture features and SVM classifier as in

[14], and the DWT features with PCA and ANN classifiers as in [40]. The

third technique [156], developed by us, is based on template matching and

thresholding for the cavernomas detection. It is observed that the proposed

technique outperforms the other three techniques with respect to all three

performance criteria.

Table 3.4: Performance comparison.

Techniques Sensitivity(%) Specificity(%) Accuracy(%)

Texture+SVM [14] 83 79 80

DWT+PCA+ANN [40] 88 82 82

TM+Thresholding [156] 86 80 81

Proposed 95 90 91

3.4.3 Computation Time

The proposed CAD system is implemented using MATLAB R2016b on a desk-

top computer with a 4.0 GHZ Intel i7-6700K CPU and 16.0 GB RAM. Typical

processing time for one 3D image (with 512×416×20 voxels) is approximately

2 minutes.

3.5 Conclusion

In this chapter, we have proposed a computer-aided diagnosis system for cav-

ernomas based on axial T2W MRI images. The proposed system first extracts

the brain region using an atlas-based skull stripping method. A template

matching method is then used to detect the candidate cavernoma regions.

Several textures, HOG and LBP features are extracted for each candidate,
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and feature dimensionality is reduced using PCA. Finally, five SVM models

are used to classify the candidate regions into cavernoma or non-cavernoma.

Experimental results show promising performance for the proposed technique.

The future study will be focused on the segmentation of cavernous malforma-

tions using high-resolution 3D MRI images and the evaluation of the system

with a larger dataset.
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Chapter 4

Automated Detection of Mesial
Temporal Sclerosis

Mesial temporal sclerosis (MTS) is the commonest brain abnormalities in pa-

tients with intractable epilepsy. Its diagnosis is usually performed by neuro-

radiologists based on visual inspection of MRI scans, which is a subjective

and time-consuming process with inter-observer variability. In order to expe-

dite the identification of MTS, an automated computer-aided method based

on brain MRI characteristics is proposed in this chapter. It includes brain

segmentation and hippocampus extraction followed by calculating features of

both hippocampus and its surrounding cerebrospinal fluid. After that, support

vector machines are applied to the generated features to identify patients with

MTS from those without MTS. The proposed technique is developed and eval-

uated on a data set comprising 15 normal controls, 18 left and 18 right MTS

patients. Experimental results show that subjects are correctly classified using

the proposed classifiers with an accuracy of 0.94 for both left and right MTS

detection. Overall, the proposed method could identify MTS in brain MR

images and shows promising performance, thus showing its potential clinical

utility.
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4.1 Introduction

Mesial temporal sclerosis (MTS) is the commonest brain structural abnormal-

ity in drug-resistant temporal lobe epilepsy patients [105], and is associated

with gliosis and the loss of neurons in hippocampus [22]. In Fig. 4.1, an exam-

ple of 3D reconstructed hippocampi from an anterior view of brain is shown.

To evaluate the structural change of hippocampus noninvasively, MRI is the

modality of choice to generate brain images, on which MTS characteristics of

hippocampal atrophy and abnormal signals [135] are visually identified.

 

Right Left 

Figure 4.1: Left and right hippocampi in 3D.

The T1-weighted coronal MR images in Fig. 4.2 show the volume loss in the

hippocampus with MTS, indicated by the white arrows. For cases (e.g . mild

or bilateral MTS) that are difficult to be identified visually, the volumetric

analysis can be helpful. This is typically performed manually on structural

MR images with a high coronal resolution using the Cavalieri principle [51].

The hippocampal structures on each slice are outlined by a pre-clinical trainee

and/or a research staff, and the areas from all slices are summed. Hippocampal

volume is then obtained by multiplying the total area by the slice thickness.

However, volumetric analysis is tedious and time-consuming, as it takes ap-

proximately 60 minutes to analyze one 3D image [59]. It requires expertise in

brain anatomy and is therefore operator-dependent and subjective. For the
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above reasons, volumetric analysis is restricted to tertiary care research facil-

ities. It is reported that up to 60% of patients with MTS can be rendered

seizure-free after temporal lobectomy [162], and this number increases if MTS

is discovered at an early stage [98], when manual identification is challenging.

It is therefore imperative to develop noninvasive techniques that can detect

MTS efficiently and objectively.

(a) (b)

Figure 4.2: Two T1-weighted MRI coronal slices with hippocampal volume
loss indicated by white arrows. (a) Left side MTS, (b) right side MTS. Note
that the lost hippocampal volume is occupied by cerebrospinal fluid (CSF)
and appears black in the indicated regions.

The hippocampal shape changes in patients with MTS have been studied

by researchers and used in the detection of MTS. Hogan et al . [66] used the

deformation-based hippocampal shape analysis to quantify the difference be-

tween the hippocampus with MTS and the normal hippocampus. They found

the maximum shape changes in the medial and lateral hippocampal head and

tail. Mumoli et al . [111] assessed the hippocampal shape changes in patients

with MTS using shape analysis and surface reconstruction. The most promi-

nent hippocampal atrophy was found in the CA1 subregion and subiculum.

Kohan et al . [93] proposed to use hippocampal shape-based features to identify
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patients with temporal lobe epilepsy.

Hippocampal volume loss is an important feature of MTS [46, 143], and has

been used in identifying the patients with MTS. Bonilha et al . [19] proposed

an automated MTS detection technique based on voxel-wise morphometry of

the gray matter volume in hippocampus. A predefined threshold was used to

identify the hippocampus with MTS. However, more advanced detection tech-

niques usually combine multiple features within a machine learning framework.

Jafari et al . [77] extracted the intensity, texture, and volume features of hip-

pocampus from both T1-weighted and FLAIR images, and performed a linear

classification to lateralize the mesial temporal lobe epilepsy. A similar study

was proposed by Jafari [76] based on the quantitative analysis of the SPECT

images. Focke et al . [47] used a linear SVM classifier with multiple features ex-

tracted from T1-weighted MRI, diffusion tensor imaging and T2 relaxometry

images to detect MTS. Cantor et al . [23] proposed a technique for temporal

lobe epilepsy detection using a linear SVM classifier in multi-parametric quan-

titative MR imaging, including T1 map, T2 map, fractional anisotropy and

mean diffusivity. Rudie et al . [129] proposed to use machine learning and the

morphological features of the whole brain for the detection of MTS.

Overall, some works have used shape features to analyze the difference in

hippocampus between normal controls and patients with MTS. Some papers

used multiple features, including the hippocampal volume, for the detection

of MTS. However, the deformation of hippocampus may also be reflected by

the volume change of surrounding cerebrospinal fluid [67], which, to the best

of the authors’ knowledge, has not been studied in the automated detection of

MTS. In this chapter, we propose to use both hippocampus and CSF features

with machine learning for MTS detection.

The remainder of this chapter is organized as follows. In Section 4.2, the

materials of this study are introduced. In Section 4.3, the proposed methods
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are presented. The experimental results are reported in Section 4.4. The

chapter is concluded in Section 4.5.

4.2 Materials

In this study, the materials include 51 T1-weighted coronal MR images ob-

tained from Henry Ford hospital [64, 69]. They are divided into 3 groups: (1)

18 images with left-side MTS, (2) 18 with right-side MTS, and (3) 15 images

of normal controls. The three groups are respectively noted as LMTS, RMTS,

and NC in this work. All of the images were initially reviewed by a neuro-

radiologist and then validated by a epileptologist epilepsy at the University

of Alberta hospital. There was no disagreement between the two reviewers.

These images were acquired using an inversion-prepared spoiled gradient recall

sequence on either a 1.5T MRI scanner (TR/TI/TE = 7.6/1.7/500 ms, flip

angle = 20◦) with a scanning time of 5 minutes and 45 seconds or a 3.0 T

(TR/TI/TE = 10.4/4.5/300 ms, flip angle = 15◦) MRI scanner with a scan-

ning time of 6 minutes. The voxel sizes are 0.78 × 0.78 × 2.0 mm3 for 1.5T

MR images, and 0.39× 0.39× 2.0 mm3 for 3.0T MR images. In our dataset,

7 images in LMTS group, 10 images in RMTS group, and 5 images in NC

group were obtained from the 3.0T MRI scanner. The other images (i.e. 11

LMTS, 8 RMTS, and 10 NC) were obtained on the 1.5T MRI scanner. Fig.

4.3 shows an image example with marked hippocampus in white boundaries

on three view planes.

4.3 Methods

The overall schematic of the proposed MTS detection technique is shown in

Fig. 4.4, and it consists of three main parts: (1) brain and hippocampus

segmentation, (2) feature extraction, and (3) image classification. Details of
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(a) (b) (c)

Figure 4.3: Example of an MR image with manually segmented hippocampus
in three view planes. (a) Sagittal plane, (b) coronal plane, and (c) transverse
plane.

the three parts are given in Section 4.3.1 to Section 4.3.3.
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Figure 4.4: The proposed MTS detection method.

4.3.1 Brain and Hippocampus Segmentation

As the shape change in hippocampus may affect the volume of the neighboring

CSF, the brain MR image is first segmented into three tissue types (i.e. gray

matter, white matter and CSF) using the “FAST” tool [169] from the FSL

suite [138]. The FAST tool is based on a hidden Markov random field model

and the expectation-maximization algorithm. The process is fast, reliable, and

fully automatic. An example of the brain segmentation is shown in Fig. 4.5,

and only the CSF partial volume estimation (PVE) is used in this work.

In this study, the extraction of hippocampus is performed using the FSL

“FIRST” tool [120] that could automatically segment the brain sub-cortical

structures based on a two-stage linear registration with standard brain tem-

plates and active appearance model within a Bayesian framework. The tool
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(d)

Figure 4.5: Segmentation results of one brain MR image. (a) Input image, (b)
CSF, (c) gray matter, and (d) white matter.

generates the mesh of hippocampus and the transformation matrix from na-

tive to standard space. An example of hippocampus extraction is shown in

Fig. 4.6.

(a)

  

            (b)

Figure 4.6: Hippocampus extraction results. (a) Extracted hippocampal area
(the left and right hippocampus are in pink and red, respectively) in the coro-
nal plane, (b) the mesh model for the right hippocampus.

4.3.2 Feature Extraction

Based on the results of brain and hippocampus segmentation, the hippocampus

and CSF features are calculated as presented in the following sections.
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Volumetric features

One feature of MTS is the hippocampal volume loss which is a common feature

for MTS detection. Both the left hippocampal volume (LHV ) and right hip-

pocampal volume (RHV ) are calculated from the segmentation results using

the FIRST tool. They are then normalized to (i.e. divided by) the intracranial

volume (ICV ). The normalized hippocampal volumes are noted as nLHV and

nRHV for the left- and right-side, respectively. The following two equations

show the calculation of nLHV and nRHV .

nLHV =
LHV

ICV
× 100 (4.1)

nRHV =
RHV

ICV
× 100 (4.2)

Typically, for an adult, the volume of each hippocampus is approximately 3.0

cm3 compared with 1200 cm3 for the intra-cranial volume [79, 141]. So, the

nLHV (or nRHV ) value is approximately 0.25.

The volume asymmetry property of hippocampi is also useful in MTS de-

tection, and calculated using the below equation.

HAI =
2(LHV −RHV )

LHV +RHV
(4.3)

where HAI is the hippocampal volume asymmetry index.

Overall, the volumetric feature vector (Fv) is defined as:

Fv = {nLHV, nRHV,HAI}

Shape Features

In this study, the hippocampal shape is represented by the vertex coordi-

nates of the hippocampus mesh, which is obtained in Section 4.3.1. All the

coordinates are in a standard space (MNI152) so that the same location of hip-

pocampi means the same vertex in the hippocampal mesh model. The shape
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(S) of one hippocampus is represented as below.

S = {x1, y1, z1, x2, y2, z2, ..., xn, yn, zn} (4.4)

where (xi, yi, zi) are coordinates of the ith vertex and n is the number of

vertices in each mesh. So, the shape of the hippocampus is represented by a

vector of size 3n.

Principal component analysis (PCA) is then applied to reduce the size of

the shape vector. PCA transforms a set of possibly correlated variables into

a set of uncorrelated low-dimensional variables (coefficients) using principal

components. Dimensionality is reduced by only using the first few principal

components, while retaining most of the variance in the dataset. The hip-

pocampal shape (Si) of the ith image is represented using PCA as follows:

Si = S̄ + pFsi (4.5)

where S̄ is the mean hippocampal shape of the training images, p is the

principal components, and Fsi is the scores of principal components. Fsi is

used as a low-dimension feature vector of the ith image for MTS detection.

In this study, the number of principal components is chosen such that at least

95% of the data variance is included in the principal components. After PCA,

the shape features of left- and right-side hippocampi are noted as Fsl and Fsr,

respectively.

CSF-ratio Features

The CSF has been observed to encompass more space in a predefined box

surrounding the hippocampus with MTS. To calculate the CSF-ratio features

for each brain MR image, the following procedure is used.

a. The CSF PVE (i.e. obtained in Section 4.3.1) in native space is trans-

formed to the standard MNI152 space using the transformation matrix

from the FIRST tool.
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b. Based on the standard brain atlas (i.e. MNI152), the bounding box of the

left hippocampus is defined with the length, width, and height directions

along the x, y, and z directions in the MNI space. The bounding box

is then expanded outward by a certain distance (5 mm in our study) for

each face. Its volume is noted as LBV .

c. Based on the defined box and CSF PVE in the standard space, the left-

side CSF volume (LCV ) is obtained. Therefore, the left-side CSF ratio

(LCR) is calculated using LCR = LCV
LBV

.

d. The right-side CSF volume (RCV ) and the ratio (RCR) in a predefined

box are calculated using the same procedure of [b - c] for the right hip-

pocampus. Typically, both LCR and RCR are in the range of [0.07, 0.11]

for the surrounding box with 5 mm extensions. The extension is chosen

at 5 mm in this study to maximize the correlation between the CSF-ratio

features and the group labels.

e. The CSF volume asymmetry index is obtained as follows.

CAI =
2(LCV −RCV )

LCV +RCV
(4.6)

The overall features of the CSF-ratio include LCR, RCR and CAI as follows.

Fc = {LCR,RCR,CAI}

4.3.3 Classification

In classification, the support vector machine (SVM) is used for its efficiency

and robustness [32, 123]. In this study, we use two SVM models - LSVM and

RSVM for left and right MTS detection, respectively. Note that, the LSVM is

trained using features F = {Fv,Fsl,Fc} of normal controls and patients with

left MTS. The RSVM is trained using features F = {Fv,Fsr,Fc} of normal

controls and patients with right MTS
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During training, the SVM generates a hyperplane with the largest margin

between the two classes. The objective function of SVM is shown below.

min
ω,b

1

2
‖ ω ‖2 +C

n∑
1

ξi, (4.7)

where ω is a coefficients vector orthogonal to the hyperplane, ξi is the ith

slack variable, and C is the regularization parameter. In this work, the SVM

implementation provided in the MATLAB “Statistics and Machine Learning”

toolbox is used.

The logistic regression (LR) and K-Nearest Neighbors (KNN) models are

also evaluated for this classification problem. LR uses a linear combination

of features in a logistic function to estimate the probability of the class label

[84]. The linear coefficients are estimated using maximum likelihood estima-

tion, and the classification results are obtained by thresholding the output

probabilities. KNN uses the training data directly for classification instead of

building a model [34]. It finds k nearest neighbors in training data based on

the distance measure, and assigns the majority class label within this neighbor-

hood to the testing data. For each classification model, the hyperparameters

are optimized (using grid-search) in the training stage by minimizing a 10-

fold cross-validation loss. Their classification performance are reported in the

experimental results section.

4.3.4 Evaluation

To evaluate the MTS detection performance, the leave-one-out cross-validation

strategy is used. One image is removed from training and used as the testing

image. It is repeated until all images are tested. The LSVM model is evaluated

using the images of normal controls and patients with left MTS, and the RSVM

is evaluated using the images of normal controls and patients with right MTS.

Sensitivity, specificity and accuracy are used as the performance measures for
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MTS detection.

4.3.5 Performance Comparison

For comparison purposes, two existing MTS detection techniques are imple-

mented and evaluated. The first technique [129] is implemented as follows. The

brain is first segmented into 15 sub-cortical structures (i.e. left hippocampus,

right hippocampus, left amygdala, right amygdala, left pallidum, right pal-

lidum, etc.) using the FIRST tool. Note that [129] also used cortical regions,

but these regions could not be obtained using the FIRST tool. The morpholog-

ical features (i.e. volume, voxel intensity mean, and voxel intensity standard

deviation ) of these sub-cortical structures are then calculated and classified

using SVM classifiers. The second technique [93] is implemented using linear

SVMs based on hippocampal volume and shape features, including maximum

shape diameter, shape volume, surface area, 3D compactness, etc. The com-

parison results are shown in the section of experimental results.

4.3.6 Feature Significance

A statistical analysis for the hippocampal volume and the CSF-ratio features

is performed to quantify the difference of each feature between control and

patient groups, using a student’s t-test [18] with a two-tailed significance level

of 0.01. Fig. 4.7 shows the mean and standard deviation of each feature, and

Table 4.1 shows the statistical analysis results (p values) between groups. It

is observed that the LMTS group has the smallest mean value of nLHV , and

there is a significant difference of nLHV between LMTS and NC groups(p <

0.0001), and between LMTS and RMTS groups (p < 0.001). For nRHV

feature, the RMTS group has the smallest mean value, and the difference

between NC and RMTS groups is significant (p < 0.0001). Regarding the

CSF ratios, as shown in Fig. 4.7(b), the LMTS group has the largest mean
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value of LCR, and the RMTS group has the largest mean value of RCR.

Significant differences are observed between NC and LMTS groups for LCR

(p = 0.02), and between NC and RMTS groups for RCR (p < 0.0001). For the

HAI feature in Fig. 4.7(c), the mean of the NC group is close to zero, while

that of the LMTS group is negative and that of the RMTS group is positive.

Note that the negative values on HAI indicate that nLHV is smaller than

nRHV , while positive values indicate that nLHV is greater than nRHV .

For CAI, there is no significant difference between NC and LMTS groups

(p = 0.464), while the significant difference is observed in the other two group

pairs(NC-RMTS and LMTS-RMTS).

Table 4.1: Statistical analysis of hippocampal volume and CSF-ratio features
between groups (NC, LMTS, and RMTS). SD: standard deviation.

Features p value

NC-LMTS NC-RMTS LMTS-RMTS

nLHV <0.0001 0.123 <0.001

nRHV 0.128 <0.0001 0.034

HAI <0.001 0.054 <0.0001

LCR 0.002 0.127 0.071

RCR 0.002 <0.0001 0.570

CAI 0.464 <0.0001 <0.0001

To visualize the shape deformations in hippocampi between normal con-

trols and MTS groups, the mean hippocampal shape of the NC images group

is first computed. Perpendicular displacements are then calculated between

corresponding vertices from the mean shape to each subject. The t-statistic

values [18] between the patient and control displacements are finally computed

and visualized, as shown in Fig. 4.8. The mean left and right hippocampal

shapes for the NC group are shown in Fig. 4.8 (a) and (c). The shape defor-

mations of MTS hippocampi compared with normal controls are shown in Fig.

4.8 (b) and (d). Note that a positive t-statistic value means outward deforma-
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Figure 4.7: Bar graph of mean volumetric and CSF-ratio features for three
image groups (NC, LMTS, and RMTS). (a) Normalized hippocampal volume,
(b) CSF-ratio, (c) hippocampal and CSF-ratio asymmetry index. Error bars
are standard deviations. The scatter points (in blue color) show actual values
of all subjects in each group.

tion, and a negative value means inward deformation. The individual color in

Fig. 4.8 (b) shows the shape deformation in the right hippocampus between

the RMTS and NC groups, and that in Fig. 4.8 (d) is the shape deformation

in left hippocampus between the LMTS and NC groups. In both cases, obvi-

ous hippocampal sclerosis is noted on the lateral side. Similar findings were

reported in the literature [9, 66].
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Figure 4.8: Shape deformations. (a) Mean right hippocampal shape of NC
images, (b) the right hippocampal shape deformation for the RMTS group,
(c) mean left hippocampal shape of NC images, (d) the left hippocampal shape
deformation for the LMTS group. Note that the color stands for the t-statistic
values.

4.4 Experimental Results

4.4.1 Effectiveness of PCA

In this work, the PCA is applied to the shape vector (S) of the hippocampus.

As we use the leave-one-out testing strategy, all images except one are used

as the training set, and the omitted one is for testing. For PCA, the mean

hippocampal shape and the principle components are calculated only using

the training set. The relationship between the number of principal compo-

nents used and the system performance is explored in this section. Fig. 4.9 (a)

shows the performance of the left-side MTS detection using a varying number

of principal components, while the scree plot in Fig. 4.9 (b) shows the percent

variability explained by each principal component in decreasing order along
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with the cumulated variance explained plot (the magenta line). It is observed

that the first nine components could explain at least 95% of the total vari-

ance, and using more principal components does not help to improve the left

MTS detection performance. Similar results are seen for right MTS detection.

Overall, the number of principal components is chosen if they can explain at

least 95% of the variance for both left and right side MTS detection.
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Figure 4.9: PCA for left MTS detection. (a) Performance plot using differ-
ent number of principal components, (b) scree plot of the percent variability
explained by each principal component.

4.4.2 Classification Models

Table 4.2 shows the performance of MTS detection using different classification

models: LR, kNN, and SVM. Since the leave-one-out testing strategy is used,

multiple optimal hyperparameters are obtained for each classification model.
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For kNN, the average number of neighbors k is 12. For SVM model, the

majority is the linear SVM with an average regularization parameter C=32.

The LR model has a ridge regularization with an average strength of 1 [65].

Overall, LR and SVM could achieve comparable performances, and better

sensitivities than kNN for both left and right MTS detection. In this study,

we choose to use SVM as the classification model in experiments.

Table 4.2: Performance comparison for different classifiers. Note: the values
in parentheses are the standard errors estimated using binomial distributions.

LMTS

Sensitivity Specificity Accuracy

kNN 0.83(0.09) 0.87(0.09) 0.85(0.06)

LR 0.94(0.06) 0.87(0.09) 0.91(0.05)

SVM 0.94(0.06) 0.93(0.07) 0.94(0.04)

RMTS

Sensitivity Specificity Accuracy

kNN 0.83(0.09) 0.93(0.07) 0.88(0.06)

LR 0.89(0.08) 0.93(0.07) 0.91(0.05)

SVM 0.94(0.06) 0.93(0.07) 0.94(0.04)

In Fig. 4.10, the learned SVM weights are shown. The values in this fig-

ure are the mean of multiple SVM models obtained during the leave-one-out

cross-validation process. Note that the features are normalized in training the

SVM models. Fig. 4.10a shows the weights in LSVM. A large negative weight

is observed for the left hippocampal volume (nLHV ), which means the volume

loss in the left hippocampus increases the classification value. The large posi-

tive weight for left-side CSF volume ratio (LCR) shows a positive correlation

between CSF volume and MTS prediction. The first shape feature (Shape1)

has a large weight at approximately -0.6, with the other shape weights are

relative small. For Fig. 4.10b, the nRHV has a negative weight at about -0.3,

and the RCR has a positive weight at approximately +0.3. It illustrates the
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decrease in nRHV and the increase in RCR can increase the right MTS de-

tection. The first shape feature is also observed to have a large contribution

to the right MTS detection.
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Figure 4.10: Bar plot of SVM weights. (a) LSVM, (b) RSVM.

4.4.3 System Performance

The confusion matrices for both LSVM and RSVM are shown in Table 4.3.

For left MTS detection, 17/18 MTS images were detected, and 14/15 NON-

MTS images were identified successfully, thus obtaining a sensitivity of 0.94, a

specificity of 0.93, and an accuracy of 0.94. For right MTS detection, there was

one false negative out of 18 RMTS images, and 14 healthy right hippocampi

were identified correctly. Thus, the sensitivity, specificity, and accuracy of

right MTS detection are 0.94, 0.93, and 0.94, respectively.
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Table 4.3: Confusion matrix for LSVM and RSVM. Act.: Actual, Pred.: Pre-
diction.

LSVM RSVM
PPPPPPPPPAct.

Pred.
MTS NONMTS MTS NONMTS

MTS 17 1 17 1

NONMTS 1 14 1 14

Fig. 4.11 shows the two miss detections (i.e . one in LMTS and another in

RMTS) along with the segmented hippocampal areas. Fig. 4.11 (b) and (e)

are the ground truth of hippocampal regions (in white contours), while (c)

and (f) are the segmentation results (white regions) using the FIRST tool (in

section 4.3.1). The segmentation of hippocampus with MTS is not accurate

for these two cases, as the segmentation results include the lost hippocampal

volume (indicated by the white arrows in (a) and (d)) as hippocampus regions.

Improving the segmentation results of the hippocampus is our future research

goal.

To plot the receiver operating characteristic (ROC) curves of SVMs, the

distance to the hyperplane is converted to the posterior probability that an

observation is classified into the MTS group using a sigmoid function [122]. By

varying a predefined threshold of the probability, the true and false positive

rates are calculated at each threshold value. Therefore, the ROC curves are

plotted in Fig. 4.12 for both LSVM and RSVM. The area under the curve

(AUC) measurement for LSVM is 0.97 and the AUC for RSVM is 0.98.

In Fig. 4.13, we compare the performance of each feature type (i.e . hip-

pocampal shape, volume or CSF-ratio) in MTS detection. It is observed that

the performance based on the CSF-ratio features is comparable (in left MTS

detection) with or better (in right MTS detection) than that based on the

hippocampal shape or volume features.
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Figure 4.11: The two miss detections. (a) Right MTS indicated by the white
arrow, (b) ground truth [64] of right hippocampus (in the white contour) for
(a), (c) segmentation results of right hippocampus for (a), (d) left MTS pointed
by the white arrow, (e) ground truth [64] of left hippocampus (in the white
contour) for (d), (f) segmentation results of left hippocampus for (d).
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Figure 4.12: ROC curves for LSVM and RSVM

Table 4.4 shows the performance comparison results. It is observed that

the proposed method could achieve a superior performance for MTS detection.
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Figure 4.13: MTS detection using different features. (a) Left MTS detection,
(b) right MTS detection.

Table 4.4: Performance comparison for different techniques. Sen.: sensitivity;
Spe.: specificity; Acc.: accuracy.

LMTS RMTS

Technique Sen. Spe. Acc. Sen. Spe. Acc.

Rudie [129] 0.89 0.87 0.88 0.83 0.87 0.85

Kohan [93] 0.78 0.80 0.79 0.78 0.87 0.82

Proposed 0.94 0.93 0.94 0.94 0.93 0.94

4.4.4 Computation Time

Regarding computation time, the proposed method takes approximately 7 min-

utes on average based on the time measurement on a computer with an Intel

Core i5 CPU (2.6 GHZ) and 8 GB RAM, running MacOS. In this study,

the FAST [169] and FIRST [120] tools are used for brain and hippocampus

segmentation. Feature extraction and classification are implemented in MAT-
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LAB R2017b. It is observed that the brain and hippocampus segmentation

(i.e. preprocessing) takes over 95% of the overall computation time. Feature

extraction and classification are computationally efficient as these together

take approximately 10 seconds. Compared with manual hippocampal quan-

tification, which takes approximately 1 hour for a typical 3D MR image [59],

the proposed technique is much more time-efficient.

4.4.5 Discussion

Neuroimaging is the most commonly used tool in the identification of brain

structural abnormalities. MTS characteristics in MR images mainly involve

the reduced volume and abnormal morphometry of the hippocampus [75, 105].

This study aims to develop an automatic MTS detection technique using a ma-

chine learning approach based on the combination of the hippocampus and its

surrounding tissue (i.e. CSF) features in T1-weighted structural MR images.

Experimental results have shown a promising performance of the proposed

technique, indicating its potential in clinical utility.

The three types of features (i.e . hippocampal volume, hippocampal shape

and CSF features) used in this chapter could provide complementary infor-

mation for MTS classification. Previous groups [42, 59, 129] have already

shown that hippocampal volume and asymmetry properties are the most re-

liable features in identifying MTS or TLE. Some studies [66, 111] suggested

that hippocampal shape analysis could provide further insights into MTS when

there is little difference in the total hippocampal volume between normal con-

trols and patients. Furthermore, the neuronal cell loss in the hippocampus

may be reflected by the space change in cerebrospinal fluid surrounding the

diseased tissue [67]. As seen in Fig. 4.13, CSF features are comparable with

hippocampal volume and shape features in the performance of MTS detection.

Table 4.4 compares the proposed technique with two existing techniques
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[93, 129]. Kohan et al . [93] used the hippocampal volume and shape fea-

tures, and obtained a sensitivity of 0.78 for both left and right MTS detection.

Rudie’s technique [129] was implemented using the morphological features of

15 sub-cortical structures, and CSF properties were not included. It is ob-

served that using a large number of structures did not achieve a better per-

formance. One possible reason is that insignificant features were included and

introduced noise to the classification problem. The results further illustrated

the significance of CSF features in MTS detection.

The SVM is a classification model widely used in the detection of brain

lesions, including tumors [58, 113], multiple sclerosis [102], stroke [33, 167] and

arteriovenous malformations [50, 116]. One advantage of SVM is its robustness

against the risk of over-fitting [72, 159]. Additionally, SVM could use kernel

tricks to map features that are not linearly separable into a higher-dimensional

space to make the separation much easier. However, this study finds that the

linear SVM classifier outperforms the kernel-SVMs (polynomial and RBF), as

reported in Table 4.2. This may be caused by the sample size, which may be

not large enough to estimate the kernel-SVMs parameters. The classification

problem in this study could also be considered as a multi-class classification

problem using one classifier to classify an MR image into normal, left MTS,

right MTS, or bilateral MTS. However, generating classification scores for the

left and right hemispheres separately has been reported to be more clinically

relevant [23, 129], which has been done in this study. Additionally, using two

binary classifiers can detect bilateral MTS cases, even if the training dataset

does not include bilateral cases.

This study can also be extended to the detection of some other neurological

diseases, such as multiple sclerosis and Alzheimer’s disease, which affect the

hippocampal morphometry. Reduced hippocampal volume has been reported

to have an association with the cognitive impairment in multiple sclerosis
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[57] and Alzheimer’s disease [140]. It is notable that neurological features of

MTS are not limited to the change of hippocampal volume, shape, and CSF

properties. MTS is also linked with whole-brain white matter and gray mat-

ter changes [46, 101]. Additionally, CSF biomarkers are also correlated with

the neurodegenerative processes in MTS [143], multiple sclerosis [53, 57], and

Alzheimer’s disease [35]. Overall, combining both pathological and neuroimag-

ing features may further improve the detection and prediction of neurological

diseases.

Some limitations of our study are worth noting. First, the sample size is

limited, which is a common problem in neuroimaging studies [23, 66, 111].

Therefore, leave-one-out cross-validation is used in this study to avoid the

possibility of over-fitting and to estimate the general performance [27]. A

larger dataset may contribute to developing even more robust and accurate

classifiers for MTS. Second, this study only involves T1-weighted images, which

are more sensitive to subtle abnormalities in brain tissues [20]. Features from

T2 [23], FLAIR [77], PET [87], or SPECT [76] images have been reported to be

helpful in MTS/TLE detection. Therefore, there is still room to improve the

performance of the proposed system. In the future, a larger dataset including

multiple modalities could be used to develop more comprehensive models.

4.5 Conclusion

In this chapter, a computer-aided detection technique for MTS is proposed

based on both hippocampus and CSF features. Two SVMs are used for left-

and right-side MTS detection, respectively. The experimental results demon-

strate the promising detection performance of the proposed technique. In

future, a larger dataset should be used to evaluate the proposed technique for

patients with bilateral MTS, and to analyze the impact of MRI field strength

on detection performance.
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Chapter 5

Automated Detection of Focal
Cortical Dysplasia

Focal cortical dysplasia (FCD) is one of the commonest epileptogenic lesions,

and is related to malformations of the cortical development. The findings on

MRI images are important for the diagnosis and surgical planning of FCD. In

this chapter, an automated detection technique for FCD is proposed using MRI

images and deep learning. The input MRI image is first preprocessed to correct

the bias field, normalize intensities, align with a standard atlas, and strip the

non-brain tissues. All cortical patches are then extracted on each axial slice,

and these patches are classified into FCD and non-FCD using a deep convo-

lutional neural network (CNN) with five convolutional layers, a max pooling

layer, and two fully-connected layers. Finally, the false and missed classifica-

tions are corrected in the post-processing stage. The technique is evaluated

using images of 10 patients with FCD and 20 controls. The proposed CNN

shows a superior performance in classifying cortical image patches compared

with multiple CNN architectures. For the system-level evaluation, nine of the

ten FCD images are successfully detected, and 85% of the non-FCD images

are correctly identified. Overall, this CNN based technique could learn opti-

mal cortical (texture and symmetric) features automatically, and improve the

accuracy of FCD detection.
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5.1 Introduction

Focal cortical dysplasia (FCD) is the malformation of the cortical develop-

ment, which may be caused by reasons of cortical architecture or cytologi-

cal abnormalities [85]. It is the foremost cause of epilepsy in children and

the third most significant cause in adults [100]. Magnetic resonance imaging

(MRI) is widely used in identifying FCD as it can provide images of soft tissue

with high contrast and resolution. In Fig. 5.1, three T1-weighted MR images

(i.e. one healthy and two FCD images) are shown. The regions enclosed by

red rectangular boxes in Figs. 5.1 (b) and (c) show two typical MRI features

of FCD: blurred gray matter (GM) - white matter (WM) boundary and in-

creased cortical thickness. Manual identification of FCD lesion on MR images

is a time-consuming and subjective task even for an experienced specialist due

to the subtlety of FCD lesions and complexity of brain anatomic structure

[126]. In MR images, multiple tissue types (e.g . GM, WM, CSF) contribute

to voxel/pixel intensities, which is known as partial volume effect, and it may

also compromise the diagnosis of FCD. Therefore, it is important to develop

a computerized system that can process brain MR images and detect subtle

lesions automatically and objectively, to assist radiologists in analyzing images

and making diagnosis.

Several techniques have been proposed for FCD detection in the literature.

These techniques can be broadly divided into two categories: voxel-based mor-

phometry (VBM), and surface-based classification (SBC). In the following, a

brief review of techniques in these two categories is presented. Unless men-

tioned otherwise, T1-weighted MR images are assumed.

The VBM techniques [109] typically normalize images to a standard stereo-

tactic space, segment the normalized images into regions of interest (ROIs),

smooth these ROIs, and finally performs a voxel-wise statistical analysis to
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(a) (b) (c)

Figure 5.1: T1-weighted MR images. (a) An axial slice of a healthy brain, (b)
a FCD slice with blurred gray/white matter boundary, (c) a FCD slice with
increased cortical thickness (typical values of cortical thickness for adults are
between 1.5 mm and 3.0 mm [133]).

highlight significant anatomical differences between patients and healthy groups.

The techniques usually generate statistical feature maps that are used to detect

FCD regions by choosing an optimum threshold. Colliot et al . [29] proposed

to use gray matter concentration (GMC) map for FCD detection. The GMC

map is calculated by segmenting a normalized brain into GM, WM, and CSF,

smoothing the GM mask, and calculating z-score [96] at each voxel in GM

region. Note that z-score measures how many standard deviations a GMC

value is above or below the mean of controls. A voxel is classified as FCD

if its z-score value is greater than a predefined threshold. Similarly, Pail et

al . [118] used GMC map to detect FCD within the temporal pole in patients

with mesial temporal lobe epilepsy. Wagner et al . [148] proposed to use gray

matter white matter junction (GWJ) and gray matter extension (GME) maps

for FCD detection. The calculation of GWJ includes brain normalization,

segmentation, binarization to obtain GM-WM junctions, smoothing and com-

parison with normal database. The GME map is calculated using the GM

segment of brain. Wong-Kisiel et al . [163] further illustrated the effectiveness

of GWJ and GME maps in FCD detection on a larger database of patients
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and controls. House et al . [71] also used GWJ map, but based on T2-weighted

MR images, to detect FCD regions.

The SBC techniques typically perform cortical reconstruction to obtain

inner- and outer-cortical surfaces (using publicly available softwares such as

FreeSurfer [49]), extract features at each vertex, and finally classify lesion ver-

tices using the machine learning methods, such as artificial neural network

(ANN) and support vector machine (SVM). Different surface-based features

and classification models have been proposed in these SBC techniques. Besson

et al . [17] calculated five features (i.e . cortical thickness, GM-WM blur, T1

hyper-intensity, sulcal depth, and curvature) at each vertex after cortical sur-

face reconstruction, and performed both vertex-wise classification (using a

bagged ANN) and cluster-wise classification (based on the statistic values of

clusters). Hong et al . [68] used similar surface features, but vertex-wise clas-

sification was performed using Fisher linear discriminant analysis and cluster-

wise classification was based on the statistical moments of clusters. Ahmed

et al . [3] proposed to use bagged logistic regression to classify FCD vertices

for “MRI-negative” patients. Adler et al . [2] proposed additional “doughnut”

features (calculated on a circle region of vertices on the inflated surface) in the

vertex classification using ANN. Clustering was applied in the end to remove

false positive FCD clusters. Tan et al . [144] used surface features of both MRI

and positron-emission tomography (PET) images, followed a two-step classi-

fication: a voxel-based SVM to maximize the sensitivity, and a patch-based

classifier to remove the false positives. Jin et al . [82] proposed a FCD detection

technique similar to [2], but with a larger database of images obtained from

different epilepsy centers.

As observed, most techniques are based on either VBM or SBC. Typically,

the VBM techniques use a few neurological features (e.g . GMC, GWJ, and

GME), which are used for clinical diagnosis. Although, the VBM techniques
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have shown a good performance, these techniques are sensitive to artifacts

including misalignment, misclassification, and differences in anatomical struc-

tures [10]. On the other hand, the SBC techniques generate cortical surfaces,

and calculate features that are robust to alignment and segmentation artifacts.

These techniques are relatively efficient in FCD detection as they take into

consideration the anatomical relationships across cortex [68]. But these tech-

niques also have a high computational complexity because of the 3D surface

reconstruction [127]. A further improvement may be possible by combining

both voxel and surface features.

In recent years, deep learning techniques and especially convolutional neu-

ral networks (CNN) have shown great potential in image classification and

segmentation problems since they could learn optimal features automatically

[99]. Anthimopoulos et al . [7] proposed a lung pattern classification technique

for interstitial lung disease based on a deep CNN architecture of 5 convolu-

tional layers with 2×2 kernels, leaky rectifier linear unit (LReLU), and average

pooling. The CNN architecture is trained and evaluated on non-overlapping

image patches, and it shows superior classification performance over feature-

based techniques (e.g., intensity, texture, LBP features). Pereira et al . [121]

proposed a brain tumor segmentation technique based on a CNN architec-

ture with 4-6 convolutional layers, 3×3 kernels, and LReLU. To the best of

the authors knowledge, deep learning has not been applied to the detection

of FCD. In this chapter, we propose an automated FCD detection technique

using a deep CNN architecture. The rest of this chapter is organized as fol-

lows. In Section 5.2, the materials used in this work are introduced. The

proposed methods are presented in Section 5.3, and the experimental results

are reported in Section 5.4. Section 5.5 concludes this chapter.
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5.2 Materials

In this study, the patient group includes a retrospective cohort of 10 patients

who underwent T1-weighted imaging on the 1.5T Siemens MRI scanner at the

University of Alberta Hospital, with confirmed FCD lesions. The study was ap-

proved by the Alberta health services and University of Alberta research ethics

board. The MR images were acquired using the T1-weighted magnetization-

prepared rapid-acquisition gradient echo (MPRAGE) sequence (TR = 2130ms,

TE = 3.91ms, and flip angle = 15◦) with an isotropic voxel dimension of 1×1×1

mm3. Each 3D MR image has 208×256×192 (coronal×sagittal×axial) voxels.

The FCD lesions are labeled manually on axial slices of the 3D MR images by

an expert neurologist at the University of Alberta Hospital.

The control group includes 10 healthy subjects and 10 temporal lobe epilepsy

(TLE) patients. The healthy controls were obtained from the IXI dataset

[25], and the T1-weighted images were acquired on a 3.0T Philips MRI scan-

ner at Hammersmith Hospital (TR = 9.6ms, TE = 4.6ms, and flip angle =

8◦) with a voxel dimension of 0.9×0.9×1.2 mm3 and an image resolution of

256×256×150. The TLE controls were obtained from the Henry Ford Hospital

(HFH) dataset [64, 69], and the T1-weighted images were acquired on a 1.5T

GE MRI scanner (TR = 7.6ms, TE = 500ms, and flip angle = 20◦) with a

voxel dimension of 0.8×0.8×2 mm3 and an image resolution of 256×256×124.

All of the control images were reviewed by an neurologist at the University of

Alberta, and confirmed with no FCD lesions.

5.3 Methods

The overall schematic of the proposed technique is shown in Fig. 5.2. It in-

cludes four modules: 1) preprocessing, 2) patch extraction, 3) deep learning

classification, and 4) post-processing. Details of the proposed methods are
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presented in the following sections.
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Figure 5.2: Schematic of the proposed FCD detection method.

5.3.1 Preprocessing

T1-weighted MR images are preprocessed using FMRIB Software Library

(FSL) v5.0 [81], which involves the use of several FSL tools. First, the bias

field correction algorithm in the automated segmentation tool [169] is applied

to correct intensity non-uniformities caused by the low-frequency artifacts.

Second, the linear image registration tool [80] is performed to align the image

with a standard brain atlas [48]. The brain extraction tool [137] is then used

to remove the non-brain tissues from the whole-head image. Finally, intensity

normalization is applied to keep the image intensity in the range [0, 1].

5.3.2 Patch Extraction

Since FCD is a malformation of cortical development, neurologists are typically

interested in the cortical regions and GM-WM junctions. Therefore, we extract

rectangular patches of brain cortex on axial MR slices for FCD detection. The

patch extraction is performed by first extracting patch masks on the gray

matter probability map (GMPM) of the brain atlas [48], and then applying

the masks to the preprocessed brain images. Patch masks are extracted using

the following procedure.

1) Each axial slice of GMPM is divided into horizontal strips of height h

(h = 16 pixels in this work). An example of GMPM division is shown in

Fig. 5.3(a), and a horizontal strip is shown in Fig. 5.3(b).
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2) On each horizontal strip, the Radon transform [36] is performed verti-

cally to obtain the projection onto the horizontal axis. Fig. 5.3(c) shows

the line plot of the Radon transform of the horizontal strip in Fig. 5.3(b).

3) To locate the cortex region in a horizontal strip, the values of its Radon

transform are checked from left to right. Once the value changes from

0 to a positive value, a rectangular box of size h× w (w = 32 pixels) is

placed at this point to be one patch mask. This is shown as the left green

box in Fig. 5.3(d). Based on the symmetric property of the brain atlas

and the mirror reflection about the middle sagittal line, the right-side

patch mask is obtained, shown as the right green box in Fig. 5.3(d).

4) Cortical patches along the inter-hemispheric fissure are extracted, shown

as the blue rectangles in Fig. 5.3(e).

5) Repeat step 1) - 4) on every axial slice of GMPM, the patch masks of

the whole brain are extracted.

For a preprocessed image, the cortical patches are extracted based on the

patch masks obtained from the above procedure. One example slice is shown

in Fig. 5.4, and the extracted image patches are shown as the green and blue

rectangular regions. In order to capture both the texture and symmetric prop-

erties of cortex, we use a pair of patches as the input to a classification model.

Each cortical patch is paired with the mirror reflection of the corresponding

patch on the other hemisphere. For example, in Fig. 5.4, patch pair 1 is formed

by the image patch P1 and the reflection of patch P2 (noted as P̄2), and patch

pair 2 is formed by P2 and the reflection of P1 (noted as P̄1). The patch pair

has the same label as the image patch. Therefore, the axial slice in Fig. 5.4

could generate 42 patch pairs since there are 42 patches in this slice.

Using the above procedure, 129,780 (30 images × 4326 patches/image)
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h 

Figure 5.3: Patch masks extraction on one axial slice of GMPM. (a) The axial
slice divided into horizontal strips of height h, (b) one horizontal strip, (c) line
plot of the Radon transform of (b), (d) two external patches (the green boxes),
and (e) two middle patches (the blue boxes) along the inter-hemisphere fissure.
Note that all patch masks have the same size of h× w.
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Figure 5.4: Patches extracted on one axial slice.

patches are extracted from the dataset (of 30 MR images) in this study. Out

of these, 2,302 patches are labeled as FCD and 127,478 as non-FCD. To over-

come the imbalance between FCD and non-FCD patches, data augmentation is

applied. The traditional affine transform based data augmentation is not suit-

able for the cortical dysplasia images because the texture properties of a lesion

region may be changed inappropriately after transformation. In this study, we
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use up-sampling method to increase the number of FCD patches, which is

achieved by re-extracting FCD patches starting from the ith (2 ≤ i ≤ h)

row on each axial slice. This results in a total of 36,786 FCD patches (with

an up-sampling factor of approximately 16). The same number of non-FCD

patches are selected randomly to balance the two classes. All patches are di-

vided into training, validation, and testing sets at ratios of 70%, 15%, and

15%, respectively.

5.3.3 Deep Learning Classification

Deep learning techniques, especially CNNs, have been used extensively in im-

age classification problems due to their superior performance. In this chapter,

a CNN architecture is proposed for cortical patch classification, as shown in

Fig. 5.5. The input is one patch pair, and output is the classification result

(i.e. probability of being FCD). The CNN architecture consists of five convo-

lutional layers (Conv1 - Conv5), one pooling layer, and two fully-connected

layers (FC1 and FC2). The details of this architecture are listed in Table 5.1,

and the following types of CNN layers are involved.

Figure 5.5: Schematic of the proposed CNN architecture (with 5 convolutional
layers).

1) Convolutional layers: In a convolutional layer, a neuron is only con-

nected to a local area of input neurons instead of full-connection so that

the number of parameters to be learned is reduced significantly and a

network can grow deeper with fewer parameters. In the proposed CNN,
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Table 5.1: Details of the proposed CNN architecture with 5 convolutional
layers, 3×3 filters, and scale parameter k = 4.

Layer Type Filters
(#, size)

Activations Learnables

Inputs Input - 16×32×2

Conv1

Convolution 16, 3×3 14×30×16 Weight: 3×3×2×16
Bias: 16

Normalization - 14×30×16 Offset: 16 Scale: 16

ReLU - 14×30×16 -

Conv2

Convolution 32, 3×3 12×28×32 Weight: 3×3×16×32
Bias: 32

Normalization - 12×28×32 Offset: 32 Scale: 32

ReLU - 12×28×32 -

Conv3

Convolution 64, 3×3 10×26×64 Weight: 3×3×32×64
Bias: 64

Normalization - 10×26×64 Offset: 64 Scale: 64

ReLU - 10×26×64 -

Conv4

Convolution 128,
3×3

8×24×128 Weight: 3×3×64×128
Bias: 128

Normalization - 8×24×128 Offset: 128 Scale: 128

ReLU - 8×24×128 -

Conv5

Convolution 256,
3×3

6×22×256 Weight: 3×3×128×256
Bias: 256

Normalization - 6×22×256 Offset: 256 Scale: 256

ReLU - 6×22×256 -

Pooling Max Pooling - 3×11×256 -

FC1
Dropout - 8448 -

Fully-
connected

- 256 Weight: 8448×256
Bias: 256

FC2 Fully-
connected

- 2 Weight: 256×2 Bias: 2

Outputs Softmax - 1

each convolutional layer consists of three operations: convolution, batch

normalization, and ReLU activation.

(a) Convolution The output of a convolution operation is computed
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by convolving the input with a number of filters, as shown in the

following equation:

xj = I ∗Wj + bj, j = 1, 2, ..., N (5.1)

where I is the input, N is the number of filters, xj is the output

corresponding to the jth convolution filter, Wj is the weights of the

jth filter, and bj is the jth bias. In the first convolutional layer of

the network in Fig. 5.5, I, Wj, and xj have dimensions of 16×32×2,

3×3×2, and 14×30, respectively. Note that xj does not include any

partial convolution output. As a result, the feature map dimension

decreases after each convolution operation. In CNN, the number of

filters and the filter size are two hyperparameters that need to be

specified. The number of filters, N , at each convolutional layer, is

defined as follows:

Nl = k ∗ 2l+1, l = 1, 2, ..., L (5.2)

where Nl is the number of filters at the lth convolutional layer, L

is the total number of convolutional layers (e.g . L = 5), and k is a

scale parameter.

(b) Batch normalization: After convolution operation, batch norma-

lization is used to speed up the training of CNN and reduce the

effect of initialization [74]. It normalizes each input channel across

a mini-batch by subtracting mean of the mini-batch and dividing

by its standard deviation. The normalized values are then scaled

and shifted as follows:

yi = σx̂i + β (5.3)

where yi is output value, x̂i is the normalized input value, σ and β

are the scale and offset factors that are learnable during the network

training.
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(c) ReLU: Nonlinear activation functions are applied element-wise to

increase the non-linear properties of the network. In the CNN,

rectified linear unit (ReLU) is the most commonly used nonlinear

activation function [112], and it replaces all negative pixel values

by zeros using the following equation:

f = max(0, y) (5.4)

where y is the input value to ReLU, and f is the output. Compared

with tanh and sigmoid activations, ReLU has the advantages of

speeding up training [97] and inducing the sparsity in hidden units

[56].

Step (a)-(c) are repeated five times (as shown in Table 5.1). After the

ReLU module, the feature map f is used as the input (I) of the next

convolutional layer (if appropriate). After the five convolutional layers

in the proposed architecture, 256 features maps, each of dimension 6×22,

are obtained, as shown in Table 5.1. These are then down-sampled in a

pooling layer.

2) Pooling: In a pooling layer, the feature maps are down-sampled using

an average or a max operation to reduce the number of parameters and

control overfitting in a network. In this study, a max pooling layer with

filter of size 2 × 2 with a stride of 2 is used. Before the pooling, there

are 256 feature maps of size 3×11. After the pooling, the feature maps

are flattened and concatenated to form a 8448 × 1 feature vector.

3) Fully-connected (FC) layers: The proposed CNN has two FC layers as

shown in Fig. 5.6. After pooling and flattening, the feature vector of size

8448×1 is fully connected to 256 nodes at the first FC layer. The second
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FC layer has 2 nodes, and its output scores (noted as zi, i = 1, 2) are

fed to a softmax layer where the classification probability is calculated.

 

z1 

z2 
ᵞ 

 

 

pooling & 
 flattening 

8448 

256 

2 
1 

FC1 

FC2 
softmax 

output 

Figure 5.6: Fully-connected layers.

As observed in Table 5.1, the proposed network has a total of 2,556,914

parameters (numbers of parameters listed in the last column) that need

to be updated during the training process, and the first FC layer takes

approximately 85% of this number. To speed up training [139], dropout

is used in the first FC layer removing some nodes with a probability

(p = 0.4) during training. In other words, 40% of the 8448×256 weights

(chosen randomly) are not updated at each training iteration.

4) Softmax: The softmax function is applied at the last layer to generate

the probability distribution of the classification results. The predicted

probability is computed using the following equation.

γ =
ez1

ez1 + ez2
(5.5)

where γ is the probability that the input belongs to the FCD class.

Training: To train the CNN, the loss function and the optimization algo-

rithm must be defined. In this study, we use the cross entropy loss function
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for multi-class classification, which is defined as follows:

E = −
S∑
s=1

ts ln γs (5.6)

where S is the number of training samples (i.e . image patch pairs), ts is the

ground truth value that the sth sample belongs to the FCD class, and γs is

the output probability of the network. To minimize the loss function E, the

stochastic gradient descent with momentum (SGDM) [128] optimizer is used

in the proposed technique. The SGDM accelerates stochastic gradient descent

(SGD) and reduces the oscillation problem of SGD by adding the contribution

from the previous iteration to the current iteration. The update to the network

parameters is performed using the following equation:

θn+1 = θn − α5 E(θn) + µ(θn − θn−1) (5.7)

where n is the iteration number, θ is the parameter vector, 5E(θ) is the

gradient of the loss function, α is the learning rate, and µ is momentum. In

this work, the momentum is set to 0.9. The learning rate is initialized to 0.01,

and drops every 10 epochs by a factor of 0.2. The mini-batch size is set to 128

and the maximum number of epochs is set to 40.

5.3.4 Post-processing

A patch is considered as FCD if γ > τ , where τ is a threshold that maximizes

the validation accuracy. In the post-processing stage, the classification results

of both a patch and its four neighbors are considered. As shown in Fig. 5.7, the

four neighbors of a patch P include two patches (N1, N2) from the same slice,

one patch (N3) from the upper slice, and one (N4) from the lower slice. The

following two steps are performed to remove noise and avoid misclassifications.

1) If P is classified as FCD and N1-N4 are classified as non-FCD, P is treated

as a noise and re-labeled as non-FCD. 2) If P is a non-FCD patch and N1-N4
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are FCD patches, P is treated as a misclassification and re-labeled as FCD.

After post-processing, an image with FCD is corrected identified if the detected

FCD patches and the ground-truth FCD regions have overlap.
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Figure 5.7: A patch (P ) and its four neighbors (N1-N4).

5.4 Experimental Results

In this section, we first present the implementation of the proposed technique.

The evaluation results of the proposed CNN model are then provided. Finally,

the system-level evaluation is presented.

5.4.1 Implementation

The proposed technique is implemented using MATLAB R2018a with the neu-

ral network toolbox. All experiments are performed on a Windows 10 com-

puter with Intel i7-6700K CPU and 16 GB RAM. The CNN architectures are

trained using a NVIDIA GeForce GTX 970 graphic card.
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5.4.2 Evaluation of the CNN

In this section, the classification performances of multiple CNN architectures

are evaluated and compared with the proposed network. These architectures

are constructed based on variations of the hyperparameters (i.e. number of

layers, number of filters, type of activation function, and dropout probability).

Each architecture is trained on the training dataset, and fine tuned on the

validation dataset. The performance of each architecture is evaluated on the

testing patch dataset using accuracy, which is calculated using the following

equation.

Accuracy =
TP + TN

TP + FP + TN + FN
(5.8)

where TP, FP, TN and FN are the numbers of true-positive, false-positive,

true-negative, and false-negative patches, respectively.

Table 5.2 compares multiple CNN architectures in the patch classification

performance. In this table, the last row in bold shows the testing accuracy

(0.941) of the proposed architecture. The CNNs using 4 and 6 convolutional

layers obtain a classification accuracy of 0.892 and 0.905, respectively, which

are roughly a 5% drop in accuracy. Using smaller (2×2) filters reduces the

performance by about 5%, and using larger (4×4) filters by another 1%. It

illustrates that the optimal size of the receptive field corresponds to the convo-

lutional filters of size 3×3. To determine the parameter k, values of 3 and 5 are

tested, and it is observed that neither decreasing nor increasing the number of

filters could increase the performance. LReLU activations with scale factors

0.01 and 0.1 are also evaluated with the proposed CNN, and they are inferior

to the use of the ReLU activation function. The use of a dropout layer with

a probability of 0.4 could increase the classification accuracy from 0.897 to

0.941 comparing with the CNN without dropout. Using either a lower (0.3)

or a higher (0.5) dropout probability results in a performance drop.
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Table 5.2: Performance of different CNN architectures. Acc.: accuracy.

# layers Filter
size

# filters
(k)

Activation
function

Dropout
(p)

Testing
acc.

4 3×3 4 ReLU 0.4 0.892

6 3×3 4 ReLU 0.4 0.905

5 2×2 4 ReLU 0.4 0.897

5 4×4 4 ReLU 0.4 0.881

5 3×3 3 ReLU 0.4 0.903

5 3×3 5 ReLU 0.4 0.914

5 3×3 4 LReLU(0.01) 0.4 0.930

5 3×3 4 LReLU(0.1) 0.4 0.918

5 3×3 4 ReLU 0 0.897

5 3×3 4 ReLU 0.3 0.911

5 3×3 4 ReLU 0.5 0.930

5 3×3 4 ReLU 0.4 0.941

Fig. 5.8 shows the receiver operating characteristic (ROC) curve for the

proposed CNN. It illustrates the true positive rate against false positive rate

based on the classification results on the testing dataset. The area under the

ROC curve is 0.985, which indicates a good classification performance [106] of

the proposed CNN.
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Figure 5.8: The ROC curve for the proposed CNN.

In Fig. 5.9, it shows the loss and performance curves during the training

of the proposed CNN. Each iteration is corresponding to an update to the

95



0 1000 2000 3000 4000 5000 6000 7000
Iterations

0

0.2

0.4

0.6

0.8

1

A
cc

ur
ac

y/
Lo

ss

training loss
training accuracy
validation loss
validation accuracy

Figure 5.9: Loss and accuracy plots during the network training process.

network parameters based on the mini-batch gradients. The training accuracy

and loss are calculated on each individual mini-batch. The validation accu-

racy and loss are calculated on the validation dataset at the end of every 300

iterations. The network training stops when the validation accuracy did not

increase in the previous 5 validations, and it takes approximately 19 minutes.

In Fig. 5.9, the training and validation accuracy curves are generally consis-

tent during the network training process. The small divergence between the

two at the end of the training, however, it may be related to the emerging of

overfitting. Similar trend is also observed from the training and validation loss

curves.

The 16 filters of the first convolutional layer are shown in Fig. 5.10. In

Fig. 5.10, row 1-2 shows the two channels of the first 8 filters, and row 3-4 are

the two channels of the other 8 filters. It is observed that both high and low

frequency patterns are captured by using this group of filters. The similarity

of the two filter channels may indicate that these filters could capture the

symmetric properties of the input patch pair.
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Figure 5.10: The first layer filters.

5.4.3 Evaluation of the System

To evaluate the FCD detection performance of the proposed system, we use

leave-one-out cross validation strategy that all images but one are used for

training the CNN model, and the left image is tested. This procedure is

repeated until all images are evaluated. The FCD detection performance is

measured using sensitivity, specificity, and accuracy.

To evaluate the FCD segmentation performance of the proposed system,

the detected FCD patches are mapped to the inflated cortical surfaces (ob-

tained using the FreeSurfer software [49]) and the dice coefficient is calculated

using the following equation.

Dice =
2(A ∩ B)

A ∪ B
(5.9)

where A ∩ B is the number of vertices common to the detected (A) and the

ground-truth (B) FCD surface, and A ∪ B is the number of vertices in either

A or B.

Table 5.3 shows the confusion matrix of the FCD detection. Nine of the

ten FCD images are detected correctly using the proposed system. For non-
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FCD images, 85% of them are correctly identified, and all of the three false

detections are from the HFH dataset that has a larger slice thickness than the

IXI dataset. It indicates the cortical structures may have some unnoticeable

distortions due to either the effect of the disease (TLE) or the interpolation

artifacts in image preprocessing. It is possible to increase the specificity by

using higher resolution images.

Table 5.3: Confusion matrix for FCD detection with 30 MR images.

Prediction

FCD Non-FCD Total

Actual
FCD 9 1 10

Non-FCD 3 17 20

Total 12 18 30

Fig. 5.11 shows an example of correct detections with a 3D view of the lesion

on the inflated cortical surface. In Fig. 5.11a, it is an axial slice with marked

FCD lesion along the red line. Patch extraction and classification results of

this slice are shown in Fig. 5.11b and Fig. 5.11c, respectively. The magenta-

color numbers in Fig. 5.11c are the predicted probabilities of these patches

being FCD, and the high values at FCD regions illustrate the effectiveness of

the proposed classification model. After post-processing, the FCD patches are

mapped to the inflated cortical surface (obtained using FreeSurfer) so that the

predicted FCD region could be viewed in 3D as the yellow region in Fig. 5.11d.

Fig. 5.12 shows the FCD image that is not successfully detected by the

proposed technique. It is observed that although the lesion is subtle, the

proposed CNN could classify the FCD patch with a high probability (0.99).

But the post-processing stage mistakenly removed the FCD patch, resulting in

the miss detection. To increase the sensitivity of the FCD detection, a smaller

threshold (τ )) could be chosen, but it in turn will decrease the specificity.

Table 5.4 shows a performance comparison between the proposed technique
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0.01 0.01

0.06 0.010.01 0.00

0.88 0.660.00 0.01

0.97 0.920.01 0.41

0.17 1.000.05 0.10

0.06 1.000.00 0.00

0.00 0.980.20 0.04

0.06 0.970.18 0.06

0.00 0.140.00 0.03

0.00 0.010.30 0.03

(c) (d)

Figure 5.11: An example of FCD detection. (a) an axial slice with FCD
lesion labeled in red, (b) patch extraction results, (c) classification results and
numbers stand for probabilities of being FCD patches, (d) detection results
mapped onto the inflated cortical surface (shown in yellow).

with three existing techniques using the images in this work. For the VBM

technique [118], the optimal z-score threshold (of 3.5) is chosen to maximize

the detection accuracy based on the GMC maps. The two SBC techniques

[3, 82] are supervised classification techniques, and they are evaluated using

the leave-one-out strategy. It is observed that the proposed technique provides

a detection accuracy of 0.88, which is a 0.15 increase over the state of the art

at 0.73. The specificity and sensitivity are also observed superior to the other

three techniques. It indicates that the proposed deep learning technique may

be a valuable tool for FCD detection and patient evaluation.

Table 5.5 compares the segmentation accuracy of the correctly detected

FCD regions between the proposed technique and two SBC-based techniques
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0.73 0.830.00 0.02

0.34 0.390.01 0.00

0.44 0.740.03 0.07

0.41 0.990.01 0.00

0.07 0.850.04 0.00

0.00 0.210.04 0.01

0.09 0.070.00 0.00

0.00 0.010.12 0.00

0.73 0.320.00 0.01

0.04 0.340.03 0.00

0.00 0.000.00 0.00

(b)

Figure 5.12: The missed FCD detection. (a) an axial slice with the enlarged
FCD lesion, (b) patch probabilities (in magenta) of being FCD.

Table 5.4: Performance comparison with existing techniques for FCD detec-
tion. Spe.: specificity, sen.: sensitivity, acc: accuracy

Paper Method Spe. Sen. Acc.

Pail, 2012 [118] VBM 0.60 0.70 0.66

Ahmed, 2015 [3] SBC 0.75 0.60 0.70

Jin, 2018 [82] SBC 0.75 0.70 0.73

Proposed CNN 0.85 0.90 0.88

[3, 82] using surface mapping and dice coefficient. After FCD detection, we first

reconstructed the cortical surface of each image using the FreeSurfer software,

and then mapped the detection results to this surface. The dice coefficient is
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calculated using Eq. 5.9 for each FCD lesion. The mean dice coefficients are

reported in Table 5.5. It is observed that the proposed technique can provide

a higher segmentation accuracy.

Table 5.5: Performance comparison with existing techniques for FCD segmen-
tation.

Technique Dice

Ahmed, 2015 [3] 0.43

Jin, 2018 [82] 0.55

Proposed 0.78

5.5 Conclusion

In this chapter, an automated technique is proposed for FCD detection in T1-

weighted MR images using a deep convolutional neural network. The proposed

technique first performs preprocessing to align the input image with a standard

brain atlas. The cortical patches are then extracted on axial slices. Each

patch is paired and fed to a CNN classifier with 5 convolutional layers, 1 max

pooling layer, and 2 fully-connected layers. Finally, the post-processing stage

removes noises and correct missed detections. Experimental results show a

superior performance (90% sensitivity) of the proposed technique compared

to the state of the art (70% sensitivity).
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Chapter 6

Conclusions and Future Work

In recent years, computer-aided techniques of image analysis and lesion detec-

tion are attracting more and more attention from both academic researchers

and medical professionals. These techniques are playing increasingly impor-

tant roles in assisting neuroradiologists in their routine diagnosis and treatment

planning. However, due to the variation and complexity of the human brain,

much effort is still required to develop more robust computer-aided techniques

for brain MRI image analysis and lesion detection. This thesis has developed

several CAD techniques for the epileptogenic lesions, including cavernous mal-

formation, mesial temporal sclerosis, and focal cortical dysplasia. This chapter

concludes the thesis and discusses some future research works.

6.1 Conclusions

In Chapter 1, we presented a brief introduction to epilepsy and its diagnosis

using MRI. The three most common epileptogenic lesions (i.e . CM, MTS, and

FCD) were introduced, and the research topics of this thesis were presented.

In Chapter 2, a brief review of related medical image analysis techniques was

presented, followed by an overview of some existing CAD systems for differ-

ent brain diseases. The main contributions of this thesis were presented in

Chapters 3 to 5.
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Chapter 3 presented the proposed technique for the automated detection of

the cavernous malformation in T2-weighted axial plane MRI images. The brain

area is first extracted using atlas registration and an active contour model.

Template matching is then performed to obtain the candidate cavernoma re-

gions. Texture, the histogram of oriented gradients and local binary pattern

features of each candidate region are calculated, and principal component anal-

ysis is applied to reduce the feature dimensionality. Support vector machines

are finally used to classify each region into cavernoma or non-cavernoma. The

proposed technique was evaluated using 9 MR images of patients with a to-

tal of 23 cavernous malformations. The experimental results show a superior

performance in cavernoma detection compared to existing techniques.

Chapter 4 presented the proposed technique for the automated detection of

mesial temporal sclerosis based on the hippocampus and CSF features in MRI

images. It includes brain segmentation and hippocampus extraction followed

by calculating features of both hippocampus and its surrounding cerebrospinal

fluid. Support vector machines are then applied to the generated features to

identify patients with MTS from those without MTS. The proposed technique

is developed and evaluated on a data set comprising 15 normal controls, 18

left and 18 right MTS patients. Experimental results show that subjects are

correctly classified using the proposed classifiers with an accuracy of 0.94 for

both left and right MTS detection.

Chapter 5 presented the proposed technique for the automated detection of

focal cortical dysplasia using MRI images and deep learning. The input MRI

image is first preprocessed to correct the bias field, normalize intensities, align

with a standard atlas, and strip the non-brain tissues. All cortical patches

are then extracted on each axial slice, and these patches are classified into

FCD and non-FCD using a deep convolutional neural network (CNN) with

five convolutional layers, a max pooling layer, and two fully-connected layers.
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Finally, the false and missed classifications are corrected in the post-processing

stage. The proposed technique is evaluated using images of 10 patients with

FCD and 20 controls. The proposed CNN shows a superior performance in

classifying cortical image patches compared with multiple CNN architectures.

For the system-level evaluation, nine of the ten FCD images are successfully

detected, and 85% of the non-FCD images are correctly identified. Overall,

the proposed CNN-based technique improves the detection of FCD.

6.2 Resulting Publications

Based on the work of this thesis, the following papers have been published in

refereed journals and conferences.

Journals

[1] H. Wang, SN. Ahmed and M. Mandal, Computer-aided diagnosis of cav-

ernous malformations in brain MR images, Computerized Medical Imag-

ing and Graphics, vol. 66, pp. 115-123, 2018.

[2] H. Wang, SN. Ahmed and M. Mandal, Computer-aided detection of

mesial temporal sclerosis based on hippocampus and cerebrospinal fluid

features in MR images, Biocybernetics and Biomedical Engineering, vol.

39, pp. 122-132, 2019.

[3] H. Wang, SN. Ahmed and M. Mandal, Automated detection of focal

cortical dysplasia using a deep convolutional neural network, submitted,

Computerized Medical Imaging and Graphics, 2018.

Conferences

[1] H. Wang, SN. Ahmed and M. Mandal, Efficient detection of mesial tem-

poral sclerosis using hippocampus and CSF features in MRI images,
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IEEE EMBS International Conference on Biomedical Health Informat-

ics, Las Vegas, NV, 2018, pp. 178-181

[2] H. Wang, SN. Ahmed and M. Mandal, Automated detection of mesial

temporal sclerosis based on multiple hippocampal features in T1-weighted

MRI Images, 18th Annual Alberta Biomedical Engineering Conference,

Banff, AB, 2017, pp. 7

[3] H. Wang, SN. Ahmed, H. Xu and M. Mandal, Automated detection of

cavernous malformations in brain MRI images, 8th IEEE EMBS Con-

ference on Neural Engineering, Shanghai, 2017, pp. 17-20.

[4] H. Wang, H. Xu, SN. Ahmed and M. Mandal, Computer aided detec-

tion of cavernous malformation in T2-weighted brain MR images, IEEE

Healthcare Innovation Point-Of-Care Technologies Conference, Cancun,

2016, pp. 101-104.

6.3 Future Work

In this thesis, computer-aided detection techniques have been developed for

the epileptogenic lesions. However, there are still many works that should

be done to improve the completeness of a CAD system for epilepsy. A few

possible future research works are introduced in this section.

6.3.1 More Epileptogenic Lesions

Other than cavernous malformation, mesial temporal sclerosis, and focal cor-

tical dysplasia, there are still some other causes of intractable epilepsy, such

as heterotopia, polymicrogyria, gliosis, and epileptogenic tumors. A complete

CAD system for epilepsy should be able to screen as many epileptogenic le-

sions as possible. The techniques developed in this thesis could be extended
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easily to detect these lesions. Future research work could be focused on devel-

oping detection techniques for more epileptogenic lesions, thus increasing the

screening capability of the proposed CAD system for epilepsy.

6.3.2 Deep Learning in Epilepsy

In recent years, deep learning techniques, in particular, convolutional neural

networks (CNN), have been used extensively in image classification and seg-

mentation problems since they could learn optimal features automatically [99].

Some successful applications of deep learning in brain image analysis are brain

extraction [90], brain segmentation [26], tumor segmentation [60], Alzheimer’s

disease prediction [70], tumor grading [119], microbleed detection [37], lacune

detection [55], etc. In these applications, the deep learning techniques have

already shown superior performance over the traditional techniques based on

manually-crafted features.

The detection for the epileptogenic lesions in MRI is challenging due to the

following reasons: a lack of labeled images, class imbalance, lesion complexity

and variability in location, morphometry, and texture. In this thesis, we de-

veloped a CNN architecture for FCD that showed promising performance. Al-

though several techniques have been proposed for the detection of epileptogenic

lesions, all of these techniques are based on manually-crafted features (either

voxel- or surface-based) [2, 71, 144, 163], and there is still room to improve the

performance. Therefore, it is necessary to use deep learning algorithms in the

computational analysis for epileptogenic lesions, and it is expected that the

deep learning algorithms will increase the detection performance for epilepto-

genic lesions by automatically learning optimal lesion features in MRI.
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6.3.3 Multiple Imaging Modalities

Currently, the computational analysis for epilepsy images is generally based on

structural MRI. The 3D T1-weighted MR images are commonly used in the

detection of mesial temporal sclerosis [93, 129], and focal cortical dysplasia

[3, 163] for its high resolution and gray-white matter contrast. Few previous

techniques have combined images of more than one imaging modalities in

the epilepsy image analysis. Diffusion-weighted MRI generates images based

on the diffusion property of water molecules [31], and it could increase the

contrast of gray-white matter and the sensitivity to changes in gray matter

[44]. Positron emission tomography (PET) uses radioactive tracers to observe

the metabolic process and aid the diagnosis of lesions [12]. Some studies

have shown that the co-registration of PET and MRI images improves the

detection of cortical dysplasia [132]. Future research could be focused on

combining features of multiple imaging modalities to increase the detection

and segmentation performance for the epileptogenic lesion.

6.3.4 Accurate Segmentation of Epileptogenic Lesions

It is reported that approximately 80% of epilepsy patients are rendered seizure

free after complete resection of epileptogenic lesions, while this number is only

20% - 50% when incomplete resection is performed due to lack of imaging

findings [100]. It is important to segment epileptogenic lesions accurately

and completely in MRI because of this correlation between complete resection

and good surgical outcome. However, delineating epileptogenic lesions from

healthy brain tissue is a difficult task [73], and very few studies have shown

good segmentation results. Further research could be conducted on improving

the accuracy of segmenting epileptogenic lesions in brain images.
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