Computer-Aided Detection of Epileptogenic Lesions
Based on Brain MRI Image Analysis

by

Huiquan Wang

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Signal and Image Processing

Department of Electrical and Computer Engineering

University of Alberta

© Huiquan Wang, 2018
Abstract

The invention of magnetic resonance imaging (MRI) has advanced the diagnosis of diseases dramatically as it is capable of producing high-quality images of soft tissues non-invasively and safely. However, the high volume of MRI images also means heavy workloads for physicians, which results in slow diagnosis and even misdiagnosis. As a consequence, computer-aided detection (CAD) systems, which can process the input images by computer and generate diagnosis results for radiologists to improve the diagnostic efficiency and accuracy, are in high demand. Some CAD systems for brain disorders, such as brain tumors, Alzheimer’s disease, and multiple sclerosis, have already been proposed and actively researched. But there is no CAD system for screening epileptogenic lesions even though there is a large population of epilepsy patients worldwide. In this thesis, several automated detection techniques that can aid build a CAD system for epileptogenic lesions are developed.

The contributions of this thesis are threefold. First, an automated detection technique for cavernous malformation based on MRI image analysis is proposed. The technique is a coarse to fine framework. After obtaining the candidate cavernous malformation regions using skull stripping and template matching, image features including texture, the histogram of oriented gradients, and local binary patterns of each candidate are extracted and then classified using support vector machines to exclude false detections. Second, an automated detection technique for mesial temporal sclerosis (MTS) is proposed. After the segmentation and 3D reconstruction of the hippocampus,
the hippocampal volume, shape, and cerebrospinal fluid features are calculated. Two support vector machines are then used to detect and lateralize MTS. Third, an automated detection technique for focal cortical dysplasia is proposed using MRI images and deep learning. After bias field correction, intensity normalization, and registration with a brain atlas, cortical patches are extracted and fed to a deep convolutional neural network with five convolutional layers, a max pooling layer, and two fully-connected layers. Image patches with focal cortical dysplasia are detected after classification and post-processing.

The proposed techniques are evaluated thoroughly using both a publicly available MRI dataset and images obtained from the University of Alberta Hospital. Experimental results indicate that the proposed techniques could provide superior performance compared with existing methods in the literature, thus showing potential in assisting neuroradiologists in the detection of epileptogenic lesions using brain MRI analysis.
To my parents Youping Wang and Dexiang Wu,
my wife Yan Wang, and my daughter Emily Wang
for their endless support.
Acknowledgements

First of all, I would like to express my very great appreciation to my supervisor, Dr. Mrinal Mandal, for his patient guidance, enthusiastic encouragement, and continuous support throughout my Ph.D. studies at the University of Alberta. He is a knowledgeable, kind and considerate professor, and could always provide valuable advice and constructive suggestions for my research.

I would also like to express my gratitude to my co-supervisor, Dr. Nizam Ahmed, for teaching me medical knowledge about epilepsy, identifying MRI images, and giving me valuable suggestions in my research. The works in this thesis could not be conducted without his help.

I want to express my sincere thanks to my committee members for devoting their precious time in reviewing my candidacy report and dissertation, as well as providing their insightful comments for my research.

I appreciate the financial support from China Scholarship Council (CSC) in the first four years of my Ph.D. study. I am particularly grateful for the help from my labmates in Multimedia Computing and Communications Laboratory (MCCL): Hongming Xu, Yue Li, Bingjie Ma, Salah Al-Heejawi, Lina Liu and many others. Their companionship made my Ph.D. life more colorful.

Last but not least, I would like to thank my parents, my wife, and daughter for their endless love, encouragement, and support.
# Table of Contents

1 Introduction 1
   1.1 Epilepsy ............................................. 1
   1.2 MRI-Based Diagnosis ............................... 3
   1.3 Problem Statements and Motivation ............... 7
   1.4 Major Contributions of the Thesis ............... 8
   1.5 Organization of the Thesis ...................... 10

2 Literature Review 11
   2.1 Preprocessing .................................... 11
      2.1.1 Smoothing .................................. 12
      2.1.2 Inhomogeneity Correction ................. 12
      2.1.3 Intensity Standardization .............. 13
      2.1.4 Registration ............................. 13
   2.2 Segmentation .................................... 14
      2.2.1 Thresholding ................................ 14
      2.2.2 Clustering ................................ 14
      2.2.3 Active Contour Models ................. 15
      2.2.4 Atlas-Based Segmentation ............. 16
   2.3 Feature Extraction .............................. 16
      2.3.1 First-order Textures ................. 17
      2.3.2 Histogram of Oriented Gradient ........ 17
      2.3.3 Local Binary Pattern ............... 18
2.3.4 The Discrete Wavelet Transform .......................... 18
2.4 Classification ............................................. 19
  2.4.1 K-Nearest Neighbors ................................. 19
  2.4.2 Logistic Regression .................................. 19
  2.4.3 Support Vector Machines ............................. 20
  2.4.4 Artificial Neural Networks ............................ 21
  2.4.5 Deep Learning ....................................... 22
  2.4.6 Performance Evaluation Metrics ...................... 22
2.5 CAD Systems ............................................. 24
2.6 Summary .................................................. 27

3 Automated Detection of Cavernous Malformation ............... 28
  3.1 Introduction ............................................. 29
  3.2 Materials ................................................ 32
  3.3 Proposed Method ....................................... 33
    3.3.1 Skull Stripping ..................................... 34
    3.3.2 Template Matching ................................ 38
    3.3.3 Feature Extraction ................................ 40
    3.3.4 Classification ...................................... 43
  3.4 Experimental Results .................................. 46
    3.4.1 Efficiency of Skull Stripping ....................... 46
    3.4.2 System Performance ................................ 47
    3.4.3 Computation Time ................................ 52
  3.5 Conclusion .............................................. 52

4 Automated Detection of Mesial Temporal Sclerosis ............. 54
  4.1 Introduction ............................................. 55
  4.2 Materials ................................................ 58
  4.3 Methods .................................................. 58
4.3.1 Brain and Hippocampus Segmentation .......................... 59
4.3.2 Feature Extraction ............................................. 60
4.3.3 Classification .................................................. 63
4.3.4 Evaluation ...................................................... 64
4.3.5 Performance Comparison ...................................... 65
4.3.6 Feature Significance ........................................... 65
4.4 Experimental Results .............................................. 68
  4.4.1 Effectiveness of PCA ........................................ 68
  4.4.2 Classification Models ....................................... 69
  4.4.3 System Performance ....................................... 71
  4.4.4 Computation Time .......................................... 74
  4.4.5 Discussion .................................................. 75
4.5 Conclusion ....................................................... 77

5 Automated Detection of Focal Cortical Dysplasia 78
  5.1 Introduction ................................................... 79
  5.2 Materials ...................................................... 83
  5.3 Methods ....................................................... 83
    5.3.1 Preprocessing ............................................. 84
    5.3.2 Patch Extraction ......................................... 84
    5.3.3 Deep Learning Classification ............................ 87
    5.3.4 Post-processing .......................................... 92
  5.4 Experimental Results ......................................... 93
    5.4.1 Implementation .......................................... 93
    5.4.2 Evaluation of the CNN .................................. 94
    5.4.3 Evaluation of the System ............................... 97
  5.5 Conclusion ................................................... 101
6 Conclusions and Future Work 102

6.1 Conclusions .................................................. 102
6.2 Resulting Publications ................................. 104
6.3 Future Work .................................................. 105
   6.3.1 More Epileptogenic Lesions ..................... 105
   6.3.2 Deep Learning in Epilepsy ....................... 106
   6.3.3 Multiple Imaging Modalities ...................... 107
   6.3.4 Accurate Segmentation of Epileptogenic Lesions 107

References 108
# List of Tables

2.1 First-order texture features. ........................................... 17

2.2 Related CAD systems based on brain MRI image analysis. BT: brain tumor, AD: Alzheimer’s disease, MS: multiple sclerosis, Dis.: disease, Cla.: classifier, Acc.: accuracy reported. .......... 24

3.1 Performance comparison of skull stripping methods. ............... 47

3.2 Parameters of training and testing. .................................. 49

3.3 Performance based on feature dimensionality ....................... 51

3.4 Performance comparison. .............................................. 52

4.1 Statistical analysis of hippocampal volume and CSF-ratio features between groups (NC, LMTS, and RMTS). SD: standard deviation. ...................................................... 66

4.2 Performance comparison for different classifiers. Note: the values in parentheses are the standard errors estimated using binomial distributions. .................................................. 70

4.3 Confusion matrix for LSVM and RSVM. Act.: Actual, Pred.: Prediction. ................................................................. 72

4.4 Performance comparison for different techniques. Sen.: sensitivity; Spe.: specificity; Acc.: accuracy. ................................. 74

5.1 Details of the proposed CNN architecture with 5 convolutional layers, 3×3 filters, and scale parameter \( k = 4 \). ......................... 88
5.2 Performance of different CNN architectures. Acc.: accuracy . 95
5.3 Confusion matrix for FCD detection with 30 MR images. . . . 98
5.4 Performance comparison with existing techniques for FCD de-
tection. Spe.: specificity, sen.: sensitivity, acc: accuracy . . . . 100
5.5 Performance comparison with existing techniques for FCD seg-
mentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
# List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Magnetic resonance imaging. (a) MRI scanner cutaway [1], (b) a perturbed proton in magnetic field.</td>
<td>5</td>
</tr>
<tr>
<td>1.2</td>
<td>Brain MRI images. (a)(b)(c) are T1W images in sagittal, coronal, and axial view, respectively. (d)(e)(f) are T2W images in sagittal, coronal and axial view, respectively. Note that (c) is labeled with cerebrospinal fluid, white matter, gray matter, scalp, and skull.</td>
<td>5</td>
</tr>
<tr>
<td>1.3</td>
<td>Three examples of cavernous malformation in T2W axial plane images. (a)(b)(c) are upper, middle, and lower level brain slices with cavernomas (in square boxes). (d)(e)(f) are the enlarged cavernoma regions. H: hemosiderin, V: vessels.</td>
<td>6</td>
</tr>
<tr>
<td>1.4</td>
<td>Mesial temporal sclerosis. (a) T2W image, (b) the corresponding FLAIR image.</td>
<td>7</td>
</tr>
<tr>
<td>1.5</td>
<td>Focal cortical dysplasia in T1W images.</td>
<td>7</td>
</tr>
<tr>
<td>1.6</td>
<td>The framework of the proposed CAD system for epileptogenic lesions.</td>
<td>9</td>
</tr>
<tr>
<td>2.1</td>
<td>General framework of a CAD system.</td>
<td>12</td>
</tr>
<tr>
<td>2.2</td>
<td>Intensity inhomogeneity in brain MRI image. Note that the top parts of the brain area have lower intensities compared to the bottom parts as shown in the inhomogeneity field.</td>
<td>13</td>
</tr>
<tr>
<td>2.3</td>
<td>LBP value for the center pixel.</td>
<td>18</td>
</tr>
</tbody>
</table>
2.4 A three-layer ANN. ............................................ 21

3.1 Three examples of cavernous malformations in T2W images.
   Top row: original images with cavernomas in yellow boxes. Bottom row: enlarged cavernoma regions. .......................... 30

3.2 Six samples of cavernous malformations. .......................... 33

3.3 Schematic of the proposed CAD system for cavernous malformations. ................................................................. 34

3.4 Skull stripping results of one slice of a 3D image. (a) An input T2W slice, (b) input slice overlaid with the brain mask (in green) after registration, (c) refined brain contour (shown by the yellow boundary), (d) extracted brain. ......................... 35

3.5 Templates used in the proposed technique. ......................... 39

3.6 Distribution of NCC values. (a) Maximum NCC values for each cavernoma, (b) the plot of the NCC cumulative distribution function. ................................................................. 40

3.7 The cell and block division in an image window. b and c refer to block and cell, respectively. ............................... 42

3.8 LBP value for the the center pixel. ............................... 43

3.9 Candidate region labeling. (a) The ground truth boundary (red) of a cavernoma, (b) a candidate region (yellow) is labeled as CM, (c) a candidate region (yellow) is labeled as non-CM. .......................... 44

3.10 ROC for classification by SVMs. ............................... 46

3.11 Boxplot of dice coefficients for all patients. Red lines denote the median dice coefficient and the ‘+’s denote the outliers. .... 48
3.12 An example of skull stripping. (a) The input image, (b) extracted brain (in yellow boundary) using atlas-based method, (c) extracted brain (in yellow boundary) using morphology-based method. Note that in (c), the cavernoma region (shown in red box) is not included in the brain area. 48

3.13 Two qualitative results of the proposed system. (a) Two input images corresponding to the upper level (top row) and lower level (bottom row) brain slices, (b) extracted brain after skull stripping, (c) candidate cavernoma regions in yellow boxes after template matching, (d) detected cavernomas (in red boxes) after SVM classification. 49

3.14 Performance of the CAD system for all patients. (a) Sensitivity, (b) specificity, and (c) accuracy. 50

3.15 Cumulative variance plot. 51

4.1 Left and right hippocampi in 3D. 55

4.2 Two T1-weighted MRI coronal slices with hippocampal volume loss indicated by white arrows. (a) Left side MTS, (b) right side MTS. Note that the lost hippocampal volume is occupied by cerebrospinal fluid (CSF) and appears black in the indicated regions. 56

4.3 Example of an MR image with manually segmented hippocampus in three view planes. (a) Sagittal plane, (b) coronal plane, and (c) transverse plane. 59

4.4 The proposed MTS detection method. 59

4.5 Segmentation results of one brain MR image. (a) Input image, (b) CSF, (c) gray matter, and (d) white matter. 60
4.6 Hippocampus extraction results. (a) Extracted hippocampal area (the left and right hippocampus are in pink and red, respectively) in the coronal plane, (b) the mesh model for the right hippocampus.

4.7 Bar graph of mean volumetric and CSF-ratio features for three image groups (NC, LMTS, and RMTS). (a) Normalized hippocampal volume, (b) CSF-ratio, (c) hippocampal and CSF-ratio asymmetry index. Error bars are standard deviations. The scatter points (in blue color) show actual values of all subjects in each group.

4.8 Shape deformations. (a) Mean right hippocampal shape of NC images, (b) the right hippocampal shape deformation for the RMTS group, (c) mean left hippocampal shape of NC images, (d) the left hippocampal shape deformation for the LMTS group. Note that the color stands for the t-statistic values.

4.9 PCA for left MTS detection. (a) Performance plot using different number of principal components, (b) scree plot of the percent variability explained by each principal component.

4.10 Bar plot of SVM weights. (a) LSVM, (b) RSVM.

4.11 The two miss detections. (a) Right MTS indicated by the white arrow, (b) ground truth [64] of right hippocampus (in the white contour) for (a), (c) segmentation results of right hippocampus for (a), (d) left MTS pointed by the white arrow, (e) ground truth [64] of left hippocampus (in the white contour) for (d), (f) segmentation results of left hippocampus for (d).

4.12 ROC curves for LSVM and RSVM.

4.13 MTS detection using different features. (a) Left MTS detection, (b) right MTS detection.
5.1 T1-weighted MR images. (a) An axial slice of a healthy brain, (b) a FCD slice with blurred gray/white matter boundary, (c) a FCD slice with increased cortical thickness (typical values of cortical thickness for adults are between 1.5 mm and 3.0 mm [133]).

5.2 Schematic of the proposed FCD detection method.

5.3 Patch masks extraction on one axial slice of GMPM. (a) The axial slice divided into horizontal strips of height $h$, (b) one horizontal strip, (c) line plot of the Radon transform of (b), (d) two external patches (the green boxes), and (e) two middle patches (the blue boxes) along the inter-hemisphere fissure. Note that all patch masks have the same size of $h \times w$.

5.4 Patches extracted on one axial slice.

5.5 Schematic of the proposed CNN architecture (with 5 convolutional layers).

5.6 Fully-connected layers.

5.7 A patch ($P$) and its four neighbors ($N_1$-$N_4$).

5.8 The ROC curve for the proposed CNN.

5.9 Loss and accuracy plots during the network training process.

5.10 The first layer filters.

5.11 An example of FCD detection. (a) an axial slice with FCD lesion labeled in red, (b) patch extraction results, (c) classification results and numbers stand for probabilities of being FCD patches, (d) detection results mapped onto the inflated cortical surface (shown in yellow).

5.12 The missed FCD detection. (a) an axial slice with the enlarged FCD lesion, (b) patch probabilities (in magenta) of being FCD.
## List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD</td>
<td>Alzheimer’s disease</td>
</tr>
<tr>
<td>AVM</td>
<td>arteriovenous malformation</td>
</tr>
<tr>
<td>CAD</td>
<td>computer-aided detection</td>
</tr>
<tr>
<td>CM</td>
<td>cavernous malformation</td>
</tr>
<tr>
<td>CNN</td>
<td>convolutional neural network</td>
</tr>
<tr>
<td>CSF</td>
<td>cerebrospinal fluid</td>
</tr>
<tr>
<td>CT</td>
<td>computed tomography</td>
</tr>
<tr>
<td>DWT</td>
<td>discrete wavelet transform</td>
</tr>
<tr>
<td>EEG</td>
<td>electroencephalogram</td>
</tr>
<tr>
<td>FCD</td>
<td>focal cortical dysplasia</td>
</tr>
<tr>
<td>FLAIR</td>
<td>fluid-attenuated inversion recovery</td>
</tr>
<tr>
<td>gLoG</td>
<td>generalized Laplacian of Gaussian</td>
</tr>
<tr>
<td>GMC</td>
<td>gray matter concentration</td>
</tr>
<tr>
<td>GME</td>
<td>gray matter extension</td>
</tr>
<tr>
<td>GPU</td>
<td>graphics processing unit</td>
</tr>
<tr>
<td>GWJ</td>
<td>gray matter white matter junction</td>
</tr>
<tr>
<td>HOG</td>
<td>histogram of oriented gradients</td>
</tr>
<tr>
<td>KNN</td>
<td>K-Nearest Neighbors</td>
</tr>
<tr>
<td>LBP</td>
<td>local binary pattern</td>
</tr>
<tr>
<td>LR</td>
<td>logistic regression</td>
</tr>
<tr>
<td>MRI</td>
<td>magnetic resonance imaging</td>
</tr>
<tr>
<td>MS</td>
<td>multiple sclerosis</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>MTS</td>
<td>mesial temporal sclerosis</td>
</tr>
<tr>
<td>NCC</td>
<td>normalized cross correlation</td>
</tr>
<tr>
<td>PCA</td>
<td>principal component analysis</td>
</tr>
<tr>
<td>PET</td>
<td>positron-emission tomography</td>
</tr>
<tr>
<td>PVE</td>
<td>partial volume estimation</td>
</tr>
<tr>
<td>ReLU</td>
<td>rectified linear units</td>
</tr>
<tr>
<td>ROC</td>
<td>receiver operating characteristic</td>
</tr>
<tr>
<td>ROI</td>
<td>region of interest</td>
</tr>
<tr>
<td>SBC</td>
<td>surface-based classification</td>
</tr>
<tr>
<td>SGD</td>
<td>stochastic gradient descent</td>
</tr>
<tr>
<td>SPM</td>
<td>statistical parametric mapping</td>
</tr>
<tr>
<td>T1W</td>
<td>T1-weighted</td>
</tr>
<tr>
<td>T2W</td>
<td>T2-weighted</td>
</tr>
<tr>
<td>TLE</td>
<td>temporal lobe epilepsy</td>
</tr>
<tr>
<td>TM</td>
<td>template matching</td>
</tr>
<tr>
<td>VBM</td>
<td>voxel-based morphometry</td>
</tr>
<tr>
<td>VNS</td>
<td>vagus nerve stimulation</td>
</tr>
<tr>
<td>VOI</td>
<td>volume of interest</td>
</tr>
</tbody>
</table>
List of Symbols

\( \bar{S} \)  
the mean hippocampal shape

\( \sigma \)
the scale factor in batch normalization

\( \beta \)
the offset factor in batch normalization

\( \gamma \)
the output probability of softmax function

\( \xi_i \)
the \( i \)th slack variable in SVM

\( \nabla f \)
the gradient of the function \( f \)

\( \phi \)
texture feature vector

\( \theta \)
orientation of the gLoG kernel

\( \tau \)
predefined threshold

\( \sigma_x, \sigma_y \)
scales of the gLoG kernel

\( H_b \)
the block gradient orientation histogram

\( H_c \)
the cell gradient orientation histogram

\( B_0 \)
the magnetic field

\( C \)
the regularization parameter in SVM

\( M \)
the proton magnetic moment

\( M_{xy} \)
the transverse moment

\( M_z \)
the longitudinal moment

\( N_{FN} \)
the number of false negatives

\( N_{FP} \)
the number of false positives

\( N_{TN} \)
the number of true negatives

\( N_{TP} \)
the number of true positives

\( z_i \)
a pixel intensity
Chapter 1

Introduction

Medical imaging techniques (X-ray, ultrasound, MRI, etc.) are playing essential roles in the diagnosis of patients at the hospital. Radiologists and clinicians usually have to inspect and analyse a large number of images obtained using these imaging techniques in a short time. To lessen the burden of doctors and assist them in the interpretation of medical images, some automated detection methods for various diseases (breast cancer, lung cancer, coronary artery disease, etc.) have already been proposed. The objective of this thesis is to develop a comprehensive computer-aided detection (CAD) system for epileptogenic lesions including cavernous malformation, mesial temporal sclerosis, and focal cortical dysplasia, based on brain MRI image analysis. In this chapter, a brief background on epilepsy along with its diagnosis based on MRI are first introduced. The research motivations and problems to solve are then presented. After that, the major contributions of this thesis are presented followed by the organization of a review of this thesis.

1.1 Epilepsy

Epilepsy is a brain disease characterized by unprovoked seizures or epileptic features such as abnormal electroencephalogram (EEG) patterns and brain lesions found in MRI images [45]. It is the fourth commonest neurological
problem after migraines, stroke and Alzheimer’s disease [41]. It affects about 1% of the population worldwide [21] distributed across all ages and is more often seen in children and elderly people.

Epilepsy presents symptoms that may vary greatly, from full body convulsions to barely noticeable staring into space. Epileptic seizures are typically classified into two large groups [24]: generalized seizures and partial seizures, depending on whether both hemispheres or one hemisphere is involved at the onset of the seizures. A generalized seizure is typically easier to recognize, e.g., sudden falling from standing position, loss of bladder or bowel control, loss of consciousness and body shaking. Partial seizures, also known as focal seizures, have a more restricted and confined presentation, and the manifestations are dependent on the region of the brain that is convolved.

Epilepsy may have significant impacts on people’s life. It is reported [91] that the rate of sudden unexpected death in epilepsy is two times higher than that in the general population. A large number of epilepsy patients suffer from physical injuries including cuts, bruises, burns, head trauma, broken bones, and others. People with epilepsy are more likely to manifest signs of mood disorders (such as depression and suicidal thoughts) than people without epilepsy. Low quality of sleep is another common problem in people with epilepsy. Therefore, a person’s ability to live and work normally is compromised because of epilepsy.

There are several treatments available to control epileptic seizures. Anti-seizure medications are one of the most effective treatments for people with epilepsy. Approximately, 70% of patients become seizure-free by taking medications regularly [39]. Surgery, by removing a small portion of brain tissue that is responsible for epilepsy, is an alternative treatment for people whose seizures can not be controlled by medications. The success rate of surgery has improved significantly after the advent of EEG and MRI, which can locate the
epileptogenic lesions accurately. Furthermore, vagus nerve stimulation (VNS) is another treatment to refractory seizures by sending electrical pulse regularly to the brain using a stimuli device. Although the above treatments are effective for most cases, the causes for epilepsy are still not well known to physicians. Some possible causes include genetic defects, brain tumors, cavernous malformation, hippocampal sclerosis, and brain infections.

Epilepsy is diagnosed based on a thorough clinical history and neurological assessment. These patients are often investigated using tests such as EEG, MRI, and other functional imaging. EEG signals, which are collected by electrodes with one end attached to the patient’s scalp and the other end connected to an EEG machine, can show the patterns of brain electrical activity. Doctors can examine these brain waves or EEG signals to determine whether they are epileptogenic or not. Neuroimaging, such as computed tomography (CT) or MRI, is another test for investigating epilepsy by taking pictures of the brain so that structural abnormalities of the brain can be easily seen by doctors. MRI is usually preferred as it is able to generate high-quality images of the brain.

1.2 MRI-Based Diagnosis

The development of imaging techniques in medicine, especially the improvement of MRI, has dramatically changed the process for epilepsy diagnosis and treatment [21]. Brain MRI has become an essential tool for the investigation of epilepsy since it is able to generate high-resolution images with high soft tissue contrast, which makes it possible to accurately locate subtle epileptogenic lesions in the brain before surgical treatment of epilepsy. A general introduction to MRI is given below followed by its application in imaging epileptogenic lesions.

MRI is widely used for neuroimaging because of its superior imaging abili-
ties. Fig. 1.1 [114] (a) shows an MRI scanner, which primarily consists of the main magnet, radio frequency (RF) coil and gradient coils. The main magnet creates a strong homogeneous magnetic field $B_0$ that aligns the protons (within hydrogen atoms) along the direction of the field. The RF coil then burst short electromagnetic waves that knock the protons off their position. When the RF electromagnetic wave is stopped, the perturbed protons will return to their initial position. During this relaxation process, radio signals are emitted, which are detected by receivers. By using the gradient coil, spatial location information is also incorporated in the received signals. Finally, a picture is created based on the signals. Fig. 1.1 (b) shows the direction of the main magnetic field $B_0$, the perturbed proton magnetic moment $M$ with its longitudinal component $M_z$ and transverse component $M_{xy}$, and the direction of the RF pulse. The difference in proton density between soft tissue and hard tissue makes it possible to distinguish them in MRI images. By taking advantage of the intrinsic factors of MR relaxations, such as longitudinal relaxation (T1) and the transverse relaxation (T2), different soft tissue contrast can be obtained by MRI. Fig. 1.2 shows examples of T1-weighted (T1W) and T2-weighted (T2W) brain MRI images in different views. It is observed that gray matter appears dark and white matter appears bright in T1W images, while gray matter is bright and white matter is dark in T2W images.

As MRI can generate high contrast images of soft tissue structures, it is very suitable for imaging and capturing subtle lesions in the brain. As a consequence, MRI is becoming one of the most frequently used investigation tools in the diagnosis of epilepsy. Some of the epileptogenic lesions that can be captured by MRI are cavernous malformation (CM), focal cortical dysplasia (FCD), mesial temporal sclerosis (MTS), arteriovenous malformation (AVM), heterotopias, amygdala atrophy, congenital malformations and other genetic disorders.
Figure 1.1: Magnetic resonance imaging. (a) MRI scanner cutaway [1], (b) a perturbed proton in magnetic field.

Figure 1.2: Brain MRI images. (a)(b)(c) are T1W images in sagittal, coronal, and axial view, respectively. (d)(e)(f) are T2W images in sagittal, coronal and axial view, respectively. Note that (c) is labeled with cerebrospinal fluid, white matter, gray matter, scalp, and skull.

Cavernous malformation (CM) or cavernoma is the vascular abnormality that may cause seizures, headache or vision problems. It affects a large number (about 0.5% [38]) of the general population all over the world. MRI is becoming the standard test for diagnosing cavernomas because of the high soft tissue contrast in images [21]. Fig. 1.3 shows three examples of cavernoma in T2W MRI image. In T2W images, compartments filled with water (e.g. CSF) appear bright and tissues with high-fat content (e.g. white matter) appear dark.
As cavernous malformations are clusters of abnormal thin-walled blood vessels with surrounding hemosiderin (which is caused by bleeding), they appear bright in the center with dark surroundings in T2W images.

![Image of cavernous malformation](image1)

Figure 1.3: Three examples of cavernous malformation in T2W axial plane images. (a)(b)(c) are upper, middle, and lower level brain slices with cavernomas (in square boxes). (d)(e)(f) are the enlarged cavernoma regions. H: hemosiderin, V: vessels.

Mesial temporal sclerosis (MTS), also referred to as hippocampal sclerosis, is the brain lesion closely associated with temporal lobe epilepsy. It is caused by hippocampal neuronal loss accompanied by gliosis and atrophy [52], which could be captured by MRI clearly. The two primary MRI findings of MTS are hippocampal volume loss (caused by atrophy) and high intensity (related to gliosis). Fig. 1.4 shows the volume loss and high intensity of the right-side hippocampus in T2W and its fluid-attenuated inversion recovery (FLAIR) images.

Focal cortical dysplasia (FCD) is the malformation of the cortical development, which may be caused by reasons of cortical architecture or cytological abnormalities [85]. It is one of the most common causes of epilepsy in chil-
dren [3]. MRI is the imaging methodology usually used in identifying FCD as it can provide images with high contrast and high resolution. Fig. 1.5 [125] shows two examples of FCD in T1W MRI images. A clinician typically checks MRI images for the following features to diagnosis FCD: blurred gray-white matter boundary, increased/decreased cortical thickness, and high intensity in T2/FLAIR sequence.

1.3 Problem Statements and Motivation

MRI has become a standard investigative tool for diagnosing epilepsy as it generates high-contrast and high-resolution brain images. Traditionally, neu-
rologists and radiologists visually inspect brain MRI images for the detection of epileptogenic lesions. However, inspecting MRI images for brain lesions can be a labor-intensive and subjective task even for a very experienced specialist due to the large volume of images, the subtlety of epileptogenic lesions, the complexity of brain anatomic structure and partial volume effect [45]. Therefore, it is beneficial to develop an CAD system that can detect subtle epileptogenic lesions quickly and automatically to facilitate a prompt diagnosis.

The purpose of this thesis is to develop robust and accurate CAD algorithms for the epileptogenic lesions, including CM, MTS, and FCD, based on brain MRI image analysis. Fig. 1.6 shows the overall framework of the proposed system. Before the detection of epileptogenic lesions, image preprocessing is usually performed on the input brain MRI image. Typically, it includes skull stripping to remove the non-brain structures from image, brain segmentation to obtain the gray matter, white matter and CSF tissue, brain registration to align the image with a standard brain atlas, and 3D reconstruction to generate the surface models of cortical and sub-cortical structures. The detection of epileptogenic lesions is then performed based on the image features and classification models. In this work, the automatic detection algorithms for CM, FCD, and MTS have been developed. The detection results of these lesions are finally obtained to assist doctors in the diagnosis of epilepsy. The proposed system is expected to improve the efficiency of epilepsy diagnosis and provide supportive or complementary information to physicians.

1.4 Major Contributions of the Thesis

The major contributions of this thesis are listed below:

Contribution I: A computer-aided detection technique is proposed for cavernous malformation using support vector machines and multiple texture features of MR images [152, 154, 155] (presented in Chapter 3). To the best of
Figure 1.6: The framework of the proposed CAD system for epileptogenic lesions.

the author’s knowledge, this is the first technique proposed specifically for the detection of cavernous malformation.

Contribution II: A computer-aided detection technique is proposed for mesial temporal sclerosis based on the hippocampus and cerebrospinal fluid features in 3D MR images [149, 151, 153] (presented in Chapter 4). In this technique, the hippocampal shape is modeled using the principal component analysis and the mesh model of the hippocampus. The cerebrospinal fluid feature is proposed for the detection of mesial temporal sclerosis and showed its effectiveness in experiments.

Contribution III: An automated detection technique is proposed for focal cortical dysplasia using a deep convolutional neural network [150] (presented in Chapter 5). In this technique, an automated patch extraction method is proposed based on the brain gray matter probability map and the Radon
transform. An CNN architecture is proposed to classify image patches, and it demonstrated superior performance over the classifiers using manually-crafted features.

1.5 Organization of the Thesis

The rest of this report is organized as follows: Chapter 2 presents a broad literature review on image processing techniques that are widely used in brain MRI image analysis. Chapter 3 presents the proposed technique for the automated detection of cavernous malformation based on machine learning. Chapter 4 presents the proposed technique for the detection of mesial temporal sclerosis based on 3D features and classification. Chapter 5 presents the proposed technique for the detection of focal cortical dysplasia using deep learning. The main conclusions and proposed future work are presented in Chapter 6, which is followed by the bibliography.
Chapter 2

Literature Review

The purpose of a CAD system is to process the input images and output useful information (e.g., location, volume or shape of suspected lesions) for diagnosis, which may serve as a “second opinion” to assist an expert radiologist in interpreting medical images so that the efficiency and accuracy of diagnosis could be improved [8]. Fig. 2.1 shows the general framework of a typical CAD system. It includes four major steps: preprocessing, feature extraction, and classification. In this chapter, a brief overview of some common computer-aided image analysis techniques for MRI images is presented. Section 2.1 reviews the preprocessing techniques for MRI images. Section 2.2 and section 2.3 present, respectively, the image segmentation techniques and typical image features for medical image analysis. In section 2.4, some popular classification models are reviewed. Existing CAD systems based on MRI image analysis are briefly reviewed in 2.5, followed by a summary in section 2.6.

2.1 Preprocessing

The accuracy of digital images is usually compromised by noise, intensity variation, and inhomogeneity. To solve these problems, the images are typically preprocessed by one or a combination of the following algorithms: smoothing, inhomogeneity correction, and intensity standardization. Brain MRI images
also vary in size, shape, and orientation at acquisition. Therefore, registration with a standard brain atlas is often necessary in preprocessing.

2.1.1 Smoothing

Smoothing is a technique to reduce noise in an image typically by applying low pass filters to the image. Four most commonly used filters are the mean filter, median filter, Gaussian filter, and anisotropic filter. Anitha et al. [6] used mean filter to smooth brain MRI image in preprocessing stage. Beheshti et al. [16] used an 8-mm full-width-half-maximum Gaussian kernel to smooth the gray matter. Zijdenbos et al. [171] used anisotropic diffusion to reduce noise in MRI.

2.1.2 Inhomogeneity Correction

Due to the non-uniformity of the magnetic field and RF coil in MRI, intensity inhomogeneity is a common issue in MRI images, even though it is hardly noticeable by human eyes [147]. Fig. 2.2 shows an example of intensity inhomogeneity [147] in a brain MRI image and we can see the low-frequency spatial intensity variation is removed in the corrected image of Fig. 2.2. Meier et al. [110] already used the inhomogeneity correction techniques to remove
the intensity biased field in the CAD system for the brain tumor.

### 2.1.3 Intensity Standardization

It has been observed that pixel intensities of a brain MRI of a patient vary over different scans even if the same scanner is used [104]. To make the CAD technique robust to intensity variation, several algorithms have been proposed for intensity standardization by manipulating the image histogram, such as histogram matching [115], histogram estimation with Gaussian mixtures [63] and joint histograms registration [78]. Zhuge et al. [170] suggested that brain MRI image segmentation can be simplified by using intensity standardization in the preprocessing stage.

### 2.1.4 Registration

The purpose of registration is to find the optimal transformation $t'$ that is able align the input image into the same coordinate system with the reference image. In general, it can be calculated using the following equation:

$$
    t' = \arg \max_t \mu(I(x), R(t(x)))
$$

(2.1)

where $I$ is the input image, $R$ is the reference image, $\mu$ is similarity measurement (such as mean square error and mutual information), and $t(x)$ is
transformation (linear or nonlinear) to the coordinate $x$. On the one hand, registration can be applied to images of different modalities (ultrasound, CT, MRI, etc.) for the same subject. For example, Wein et al. [160] proposed a fully automatic registration technique using the affine transformation that aligns CT and ultrasound images to provide better localization for liver or kidney surgery. On the other hand, registration of the same modality between different subjects is also commonly used in medical CAD systems. Ashburner et al. [11] proposed a brain tissue segmentation method based on image registration with a standard probability atlas of the brain.

### 2.2 Segmentation

In computer-aided diagnosis systems, segmentation of regions of interest (ROI) is a typical step before any subsequent quantitative analysis, such as feature extraction and classification for lesion identification. This section reviews some basic techniques in segmentation that are widely used in skull stripping, brain tissue segmentation, and candidate region detection.

#### 2.2.1 Thresholding

Thresholding is a simple yet powerful image segmentation method, and it uses the intensity image histogram to find thresholds that separate image into objects. Shan et al. proposed to use Otsu’s thresholding method [117] for background and foreground separation followed by morphological operations in the skull stripping algorithm.

#### 2.2.2 Clustering

Clustering, which is an unsupervised segmentation method, is a process of grouping pixels into different clusters, where the pixel intensity values in the same group (a cluster) are more similar to each other than those in other
groups. Anitha et al. [6] used the k-means clustering technique [28] to segment the brain to different clusters before feature extraction. Li et al. proposed to use mean-shift clustering technique [108] for corpus callosum segmentation in brain MRI images.

### 2.2.3 Active Contour Models

A widely used approach for object segmentation is based on active contour models (ACMs) or snakes. The basic idea of these algorithms is to evolve a continuous curve in a 2-D plane to delineate structures in an image. The evolution of the ACMs is subject to constraints from the given image by seeking to minimize an energy function based on gradient or intensity information. One widely used model is based on gradient vector flow (GVF) [164], which is calculated as follows:

$$E = \int_0^1 E_{\text{int}}(\mathbf{x}(s)) + E_{\text{ext}}(\mathbf{x}(s))ds$$

(2.2)

where $\mathbf{x}(s) = [x(s), y(s)]$, $s \in (0, 1)$ is the contour. $E_{\text{int}}$ is the internal energy calculated as follows:

$$E_{\text{int}}(\mathbf{x}(s)) = \frac{1}{2}[\alpha|\mathbf{x}'(s)|^2 + \beta|\mathbf{x}''(s)|^2]$$

(2.3)

where $\mathbf{x}'(s)$ and $\mathbf{x}''(s)$ are the first and second derivatives of $\mathbf{x}(s)$, respectively, and $\alpha$ and $\beta$ are weighting parameters. $E_{\text{ext}}$ is the external energy of the contour calculated as follows:

$$E_{\text{ext}} = \int \int \mu(u_x^2 + u_y^2 + v_x^2 + v_y^2) + |\nabla f||\mathbf{v} - \nabla f|^2dxdy$$

(2.4)

where $\mathbf{v}(x, y) = (u(x, y), v(x, y))$ is the gradient vector flow, $f$ is the gradient of smoothed image as the edge map, $\{u_x, u_y, v_x, v_y\}$ are partial derivatives with respect to $x$ and $y$. Yoon et al. [166] proposed another active contour model using Gaussian gradient force as the external force.
2.2.4 Atlas-Based Segmentation

Atlas-based segmentation approaches are becoming more and more popular in segmenting brain tissues and brain structures. These approaches typically align the input image with a standard atlas that includes the anatomy, morphology, and soft tissue information of the regions of interest. The segmentation can be achieved by either direct extraction of the target region or iteratively refinement within a probabilistic framework. Aljabar et al. [4] proposed to use multiple brain atlases in the segmentation of brain subcortical structures. Heckemann et al. [62] proposed an automatic brain segmentation technique based on the registration with 29 atlases and decision fusion. The most popular brain atlas is MNI152 [48] created by the International Consortium for Brain Mapping (ICBM) using a high-resolution MRI image data set. All MRI scans are first non-uniform intensity corrected and intensity normalized. These scans are then co-registered in the MNI stereotaxic space. Finally, they are average voxel-by-voxel and the brain atlas is created.

2.3 Feature Extraction

In this section, we review four frequently used image features in brain MRI image analysis. They are: (1) first-order textures, (2) histogram of oriented gradients (HOG), (3) local binary pattern (LBP), and (4) discrete wavelet transform (DWT) coefficients. First-order textures provide information about the intensity distribution, and HOG describes the edge orientation, while LBP provides the pixel correlations in a small neighboring region. The DWT is related to the frequency and time resolution properties of an image.
2.3.1 First-order Textures

In medical image processing, textural features are important in tissue classification and lesion detection as the appearance of different tissues or lesions present differently in images. The texture features include mean, standard deviation, contrast, smoothness, etc. (as listed in Table 2.1), and they are calculated based on the intensity histogram of an ROI.

Table 2.1: First-order texture features.

<table>
<thead>
<tr>
<th>Name</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>( m = \sum_{i=0}^{L-1} z_i p(z_i) )</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>( \sigma = \sqrt{\frac{1}{N-1} \left( \sum_{i=0}^{L-1} (z_i^2 h(z_i)) - N m^2 \right)} )</td>
</tr>
<tr>
<td>Smoothness</td>
<td>( s = 1 - \frac{1}{(1+\sigma^2)} )</td>
</tr>
<tr>
<td>Third moment</td>
<td>( \mu_3 = \sum_{i=0}^{L-1} (z_i - m)^3 p(z_i) )</td>
</tr>
<tr>
<td>Uniformity</td>
<td>( u = \sum_{i=0}^{L-1} p^2(z_i) )</td>
</tr>
<tr>
<td>Entropy</td>
<td>( e = -\sum_{i=0}^{L-1} p(z_i) \log_2 p(z_i) )</td>
</tr>
</tbody>
</table>

where \( R \) is an image region with \( N \) pixels, \( z_i \) is a pixel intensity, \( h(z) \) is the histogram of \( z \), \( p(z) \) is probability density function of \( z \), and \( L \) is the number of the intensity levels.

2.3.2 Histogram of Oriented Gradient

The histogram of oriented gradient (HOG) feature describes the appearance of an object using the distribution of local intensity gradients and edge direction. The HOG feature vector of an image window is calculated as follows.

First, the horizontal component \( g_h \) and the vertical component \( g_v \) of the gradient at a pixel are obtained by applying the filter kernels: \([-1, 0, 1]\) and \([-1, 0, 1]^T\), respectively. The orientation of the gradient is then calculated by \( \theta = \arctan \frac{g_v}{g_h} \). The orientation \( \theta \) is quantized into one of the nine values: \( \hat{\theta} = \frac{2(k-1)}{9} \pi \), \( 1 < k < 9 \). After that, the orientation histogram \( H \) of the image
window is calculated from $\hat{\theta}$ weighted by the gradient magnitude. Finally, the HOG feature of the image window is obtained by normalizing $H$ using the following equation:

$$\hat{H} = \frac{H}{||H||}$$  \hfill (2.5)

where $||.||$ is the $L^2$ norm. Note that the HOG feature is a vector with 9 elements.

### 2.3.3 Local Binary Pattern

The local binary pattern (LBP) has been used successfully in computer vision [158]. The LBP feature of an image window is extracted by the following three steps. First, to calculate the LBP value of a pixel, the pixel value is compared with the eight neighboring pixels, and corresponding eight binary numbers are generated (as shown in Fig. 2.3). The LBP value of the pixel is the decimal equivalent of the concatenated 8-bit binary numbers. Second, the histogram of the LBP values for all pixels in the candidate region is calculated (the histogram size is $1 \times 256$). Finally, the uniform pattern [146] (by choosing the lowest decimal values of all rotationally symmetric LBP patterns) can be used to reduce the size of the feature vector to $1 \times 59$.

![Figure 2.3: LBP value for the center pixel.](image)

### 2.3.4 The Discrete Wavelet Transform

The discrete wavelet transform (DWT) is a technique to separate data into different scales and it captures both frequency and location information. Fourier
series analysis chooses sinusoids as the basis function whereas wavelet analysis is based on orthonormal basis functions. Sinusoids are useful in analyzing periodic and time-invariant phenomena, while wavelets are well suited for the analysis of transient, time-varying signals because its energy concentrated in time. Furthermore, in the spatial domain, DWT analysis also gives the best performance in detecting discontinuities or abrupt changes in signals. Anitha et al. [6] proposed to use discrete wavelet transform (DWT) coefficients as feature vectors for tumor classification.

2.4 Classification

After feature extraction, a candidate region can be classified into lesion or non-lesion using machine learning models. In this section, four widely used models are reviewed.

2.4.1 K-Nearest Neighbors

The k-nearest neighbors (KNN) is a simple classification model. To determine the class of a new instance, the classes of $k$ nearest neighbors are obtained and the major class is assigned to the new instance. Sometimes the neighbors are weighted by the inverse of their distance for better classification. The best choice of K is obtained at the smallest validation error. KNN has already been successfully used in brain tumor classification [6][103] and brain abnormality segmentation [88].

2.4.2 Logistic Regression

The logistic regression (LR) is a simple but popular binary classification model. It converts the continuous value of a linear function of inputs to a probability value between 0 and 1 using the logistic function, as shown in the following
equation.

\[ P(y = 1|x) = h_\theta(x) \frac{1}{1 + \exp(-\theta^T x)} \]  \hspace{1cm} (2.6)

where \( x \) is the feature vector, \( y \) is the observation and \( \theta \) are the parameters that can be obtained by minimizing the following cost function \( J(\theta) \).

\[ J(\theta) = -\sum_i (y_i^{(i)} \log(h_\theta(x_i^{(i)})) + (1 - y_i^{(i)}) \log(1 - h_\theta(x_i^{(i)})) \]  \hspace{1cm} (2.7)

where \( y_i^{(i)} \) is the binary label ( 0 or 1) for the \( i \)th instances. It can be solved using the optimization algorithms such as gradient descent. Wang et al. [157] proposed a MS detection technique using logistic regression classifier based on DWT features.

### 2.4.3 Support Vector Machines

Support vector machines (SVMs) are supervised learning models popularly used in binary classification problems. In a training stage, a maximum margin hyperplane is determined, which means the distance from the hyperplane to the nearest data points of each class is maximized so that the generalization error of classification or prediction is minimized. The SVM is obtained by solving the following optimization problem:

\[ \min_{w, b} \frac{1}{2} ||w||^2 \]

\[ \text{s.t.} \ (w^T x_i + b) y_i \leq 1, \ i = 1, ..., m \]  \hspace{1cm} (2.8)

where \( w \) is the normal vector to the hyperplane, \( m \) is the size of training set, \( x_i \) is the feature vector of the \( i \)th block and \( y_i \) is its label. After solving this quadratic programming problem, the separating hyperplane is obtained as \( w^T x + b = 0 \). For data that is not linearly separable, SVMs can take advantage of kernel trick \( k(x_i, x_j) = \varphi(x_i) \cdot \varphi(x_j) \) to transfer data to be linearly separable in higher dimension.

In the testing phase, given a feature vector \( x \) corresponding to an image
block, the image block is classified as class 1 if $w^T x + b > 0$, otherwise the image block is classified as class 2.

2.4.4 Artificial Neural Networks

Inspired by biological neural systems, the artificial neural networks (ANNs) are comprised of artificial neurons (nodes) and interconnections with weights. The architecture of an ANN includes an input layer, multiple hidden layers, and an output layer, and each layer contains many nodes. Fig. 2.4 shows an example of ANN, and it is a three-layer feed-forward network. To determine the interconnection weights, backpropagation is the most popularly used supervised learning algorithm in ANNs. Yamashita et al. [165] proposed to use an ANN classifier for detecting ischemic lesions in MRI images. The ANN with 15 inputs, 8 hidden layers and 1 output was trained using the standard backpropagation algorithm. Anitha et al. [6] used ANN for brain tumor detection in MRI images.

![Figure 2.4: A three-layer ANN.](image-url)
2.4.5 Deep Learning

In recent years, deep learning techniques and especially convolutional neural networks (CNN) have shown great potentials in image classification problems since they could learn optimal features automatically [99]. Unlike ANN with fully connected layers, CNNs use convolutional and pooling layers to keep the number of parameters trainable and also make the network deeper. Anthimopoulos et al. [7] proposed a lung pattern classification technique for interstitial lung disease based on a deep CNN architecture of 5 convolutional layers with 2×2 kernels, a leaky rectifier linear unit (LReLU), and average pooling. Pereira et al. [121] proposed a brain tumor segmentation technique based on a CNN architecture with 4-6 convolutional layers, 3×3 kernels, and LReLU.

Some well-known deep learning architectures for image classification are AlexNet [97], VGG [136], GoogLeNet [142], and ResNet [61]. AlexNet uses rectified linear units (ReLU) as nonlinear activations, a dropout technique to avoid overfitting, and GPU to reduce training time. Instead of using large-size filters in convolutional layers, VGG networks use much smaller 3×3 filters to reduce the number of parameters. GoogLeNet further reduces the computational burden of deep networks while obtaining good performance by using the inception architecture, especially the introduction of 1×1 convolutional blocks. ResNet feeds the output of two successive convolutional layers and the input to the next layer, and bypassing two layers improves the performance of deep learning.

2.4.6 Performance Evaluation Metrics

The purpose of the evaluation is to assess the performance and robustness of a CAD system. Usually, a training database is used to obtain the optimal model parameters and a testing database is used for performance evaluation. As the medical image databases are typically small, a popular evaluation test
is $k$-fold cross-validation, in which the training data is randomly separated into $k$ dataset. Of the $k$ dataset, $k-1$ dataset is used as training data and the remaining one dataset is used for testing. The kind of test is repeated by $k$ times. If $k$ is equal to the number of cases (patients), the $k$-fold cross-validation is known as leave-one-out cross-validation.

To quantitative evaluate the performance of a binary classification system, statistical measures, such as sensitivity, specificity, accuracy and precision, are commonly used. They are calculated as follows:

\[
\text{Sensitivity} = \frac{N_{TP}}{N_{TP} + N_{FN}} \times 100\% \tag{2.9}
\]

\[
\text{Specificity} = \frac{N_{TN}}{N_{TN} + N_{FP}} \times 100\% \tag{2.10}
\]

\[
\text{Accuracy} = \frac{N_{TP} + N_{TN}}{N_{TP} + N_{FP} + N_{FN} + N_{TN}} \times 100\% \tag{2.11}
\]

\[
\text{Precision} = \frac{N_{TP}}{N_{TP} + N_{FP}} \times 100\% \tag{2.12}
\]

where $N_{TP}$, $N_{TN}$, $N_{FN}$, and $N_{FP}$ are the count of true positives, true negatives, false negatives and false positives, respectively. Sensitivity is also known as recall, or true positive rate. Sometimes, precision and recall are used together as a single combined measurement for the system, known as the F-measure. It is calculated as follows:

\[
f = 2 \times \frac{\text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}} \tag{2.13}
\]

The receiver operating characteristic (ROC) curve is a plot that illustrates the performances of a classifier. It is obtained by plotting the true positive rate ($\text{Sensitivity}$) against the false positive rate ($1 - \text{Specificity}$) at various threshold points. The ROC curve also provides a tool to find the optimal classification models.

To measure the performance of a segmentation technique, Dice coefficient is often used as the similarity measurement. If $A$ corresponds to the automatically segmented region and $B$ is the ground truth, the Dice coefficient is
calculated as follows:

\[ d(A, B) = \frac{2|A \cap B|}{|A| + |B|} \]  

(2.14)

where \( |A| \) and \( |B| \) are the areas of image region \( A \) and \( B \), respectively, and \( |A \cap B| \) is the mutual area.

### 2.5 CAD Systems

Table 2.2: Related CAD systems based on brain MRI image analysis. BT: brain tumor, AD: Alzheimer’s disease, MS: multiple sclerosis, Dis.: disease, Cla.: classifier, Acc.: accuracy reported.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bauer et al., 2011 [14]</td>
<td>BT</td>
<td>T1, T1C, T2,</td>
<td>Intensity and texture</td>
<td>SVM</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>FLAIR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saha et al., 2012 [131]</td>
<td>BT</td>
<td>T1C, T2</td>
<td></td>
<td></td>
<td>92%</td>
</tr>
<tr>
<td>Meier et al., 2014 [110]</td>
<td>BT</td>
<td>T1, T1C, T2,</td>
<td>Appearance and context</td>
<td>Decision Forest</td>
<td>84%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FLAIR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anitha et al., 2016 [6]</td>
<td>BT</td>
<td>T2</td>
<td>DWT</td>
<td>ANN,</td>
<td>92%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>KNN</td>
<td></td>
</tr>
<tr>
<td>Kloppel et al., 2008 [92]</td>
<td>AD</td>
<td>T1</td>
<td>GM intensity</td>
<td>SVM</td>
<td>96%</td>
</tr>
<tr>
<td>Beheshti et al., 2016 [16]</td>
<td>AD</td>
<td>T1</td>
<td>Intensity</td>
<td>SVM</td>
<td>92%</td>
</tr>
<tr>
<td>Zhang et al., 2016 [168]</td>
<td>AD</td>
<td>T1</td>
<td>Morphological</td>
<td>SVM</td>
<td>84%</td>
</tr>
<tr>
<td>Zijdenbos et al., 2002 [171]</td>
<td>MS</td>
<td>T1, T2, PD</td>
<td>Modality and tissue priors</td>
<td>ANN</td>
<td>81%</td>
</tr>
<tr>
<td>Khayati et al., 2008 [89]</td>
<td>MS</td>
<td>FLAIR</td>
<td>Intensity</td>
<td>Thresholding</td>
<td>83%</td>
</tr>
<tr>
<td>Wang et al., 2016 [157]</td>
<td>MS</td>
<td>T2</td>
<td>DWT</td>
<td>LR</td>
<td>98%</td>
</tr>
</tbody>
</table>

Bauer et al. [14] proposed a fully automatic voxel-wise classification technique for brain tumor segmentation using a support vector machine (SVM)
combined with hierarchical conditional random field (CRF) regularization. The intensity and first-order texture features from different modalities are used for training the classifier and making classification.

Saha *et al.* [131] proposed a fast brain tumor segmentation system using the dissimilarity measurement (Bhattacharya coefficient) of two brain hemispheres to locate candidate tumor bounding boxes in each slice. A mean-shift clustering based on the centroids of the bounding boxes is then used to segment and quantify the tumor region approximately.

Meier *et al.* [110] proposed a brain tumor segmentation method using MRI images of multiple modalities (T1, T1C, T2, and FLAIR). After preprocessing (smoothing, bias-field correction, and intensity normalization), the appearance-sensitive (intensity values, first-order texture, and gradient) and context-sensitive (atlas-normalized coordinates and ray feature) features are extracted. A voxel-wise classification based on decision forest is then applied refined by a spatial regularization.

Anitha *et al.* [6] proposed a CAD system for brain tumor using a two-tier classification technique. First, the brain MRI is preprocessed using a mean filter to remove noise and morphology-based skull stripping technique to extract the brain portion. Second, a K-means clustering method is used for brain segmentation. After that, discrete wavelet transform coefficients are used to calculate feature vectors for classification. Finally, the self-organizing map neural network and K-nearest neighbor classification algorithm are used to classify brain images into cancer or non-cancer images.

Kloppel *et al.* [92] proposed to use SVM to classify T1W GM from AD patients. In this method, brain images are segmented into gray matter, white matter and cerebrospinal fluid using statistical parametric mapping (SPM) [161].

Beheshti *et al.* [16] proposed a CAD system for Alzheimer’s disease (AD)
using 3D T1W brain images. First, voxel-based morphometry is applied to gray matter to obtain the volume of interests (VOIs). After extracting the intensity value of VOIs as the raw feature vector. Seven feature ranking methods are used to obtain the optimized feature vector that can minimize the classification error. Finally, the optimized feature vector and the SVM classifier are used for the detection of the AD.

Zhang et al. [168] proposed a three-stage CAD system for AD. First, AD landmark model is generated by comparing local morphological features after linear and non-linear registration. Second, a regression-forest based landmark detection method is used to identify AD landmarks in a testing image. Finally, an SVM classifier is used to diagnosis AD based on the morphological features around the detected landmarks.

Zijdenbos et al. [171] proposed an voxel-wise classification framework for MS lesions. Images are preprocessed using intensity normalization, smoothing and bias correction techniques. Registrations are performed before resampling the data into 1 mm resolution. Based six features (three modalities and three spatial tissue priors), an artificial neural network classifier is used for a voxel wised classification.

Khayati et al. [89] proposed an automated method to detect MS in brain FLAIR images using an adaptive mixture method and a Markov random field model. Each voxel is modeled as a combination of normal and abnormal parts, and it can be further classified into chronic, early and recent acute lesions by optimal thresholding.

Wang et al. [157] proposed a CAD system for multiple sclerosis (MS) based on biorthogonal wavelet transform, RBF kernel principal component analysis (RKPCA) and logistic regression. The biorthogonal wavelet transform of the input image is first calculated and the features are extracted. The RKPCA is then used to reduce the size of the feature vector. Finally, a linear regression
method is used to classify the image as MS or non-MS image.

2.6 Summary

In this chapter, we presented a brief review of the automated image analysis techniques including preprocessing, segmentation, feature extraction, and classification. Several CAD systems for different brain diseases (e.g. brain tumor, Alzheimer’s disease, and multiple sclerosis) were also reviewed.
Chapter 3

Automated Detection of Cavernous Malformation

Cavernous malformation or cavernoma is one of the most common epileptogenic lesions. It is a type of brain vessel abnormality that can cause serious symptoms such as seizures, intracerebral hemorrhage, and various neurological disorders. Manual detection of cavernomas by physicians in a large set of brain MRI slices is a time-consuming and labor-intensive task and often delays diagnosis. In this chapter, we proposed an automated detection technique for cavernomas based on T2-weighted axial plane MRI image analysis. The proposed technique first extracts the brain area based on atlas registration and active contour model, and then performs template matching to obtain candidate cavernoma regions. Texture, the histogram of oriented gradients and local binary pattern features of each candidate region are calculated, and principal component analysis is applied to reduce the feature dimensionality. Support vector machines (SVMs) are finally used to classify each region into cavernoma or non-cavernoma so that most of the false positives (obtained by template matching) are eliminated. The performance of the proposed technique is evaluated and the experimental results show a superior performance in cavernoma detection compared to existing techniques.
3.1 Introduction

Epilepsy is the fourth most common neurological problem (after migraines, strokes, and Alzheimer’s disease) [45], which affects about 1% of the population worldwide [21]. Epilepsy may have significant impacts on people’s lives as it is reported [91] that the rate of sudden unexpected death in epilepsy is two times higher than that in the general population. A large number of epilepsy patients suffer from physical injuries including cuts, bruises, burns, head injury, broken bones and others. Furthermore, people with epilepsy are more likely to have mood (such as depression) and sleeping problems. Although most of the causes of epilepsy are still unknown, some epileptogenic lesions are typically found in images obtained by brain magnetic resonance imaging (MRI). An important epileptogenic lesion is cavernous malformation or cavernoma that arises due to vascular abnormality involving a cluster of abnormal vessels in brain [124]. MRI is a frequently used imaging method to diagnose cavernomas in hospitals because of the high image quality of soft tissues in the brain. Fig. 3.1 shows three T2-weighted (T2W) image with cavernous malformations surrounded by square boxes. In a T2W image, a cavernoma typically looks like popcorn with black surrounding due to the presence of hemosiderin. In typical brain lesion detection, the task is to detect the presence of a malformation and determine its location [15]. However, visual identification of cavernomas in a large set of MRI slices is a tedious and time-consuming task that may result in a slow diagnosis and even misdiagnosis. Therefore, computer-aided detection (CAD) that can process the input MRI images using a computer to generate detection results is highly desirable to improve the efficiency and accuracy of diagnosis.

To the author’s knowledge, there is no CAD technique in the literature specifically for the detection of cavernous malformations. However, several
Figure 3.1: Three examples of cavernous malformations in T2W images. Top row: original images with cavernomas in yellow boxes. Bottom row: enlarged cavernoma regions.

CAD systems for other brain diseases have been proposed by researchers, such as those for brain tumors [5, 6, 43, 131], Alzheimer’s disease [16, 30, 92], vascular dementia and multiple sclerosis [89, 157, 171]. Anitha et al. [6] proposed a CAD system for brain tumor using a two-tier classification technique. The brain MRI is first preprocessed to remove noise and skull area followed by a K-means clustering method for brain segmentation. Discrete wavelet transform coefficients are then used to calculate the feature vectors for classification. Finally, the self-organizing map neural network and k-nearest neighbor classification are used for the brain tumor classification. Saha et al. [131] proposed a brain tumor diagnosis system using the dissimilarity measurement of two brain hemispheres to locate candidate tumor bounding boxes, and mean shift clustering to segment and quantify the tumor. Ambrosini et al. [5] proposed
a template matching technique to detect metastatic brain tumors by using 3D sphere templates, and thresholding normalized cross-correlation between templates and candidate regions. Farjam et al. [43] proposed a method similar to [5] for detecting brain tumor but used the size, shape and brightness information of lesions to further improve the detection performance.

Beheshti et al. [16] proposed a CAD system for Alzheimer’s disease (AD) using 3D T1-weighted (T1W) brain images. First, voxel-based morphometry is applied to gray matter to obtain the volume of interest (VOI). After extracting the intensity value of VOI as the raw feature vectors, seven feature ranking methods are used to obtain the optimized features that can minimize the classification error. Finally, the optimized feature vector and the SVM classifier are used for the detection of AD. Kloppel et al. [92] also proposed an AD detection technique using SVM to classify T1W gray matter segments. In this method, brain images are segmented into gray matter, white matter and cerebrospinal fluid using statistical parametric mapping (SPM) [161]. Colliot et al. [30] proposed an automated classification method for AD, mild cognitive impairment, and aging based on the difference of hippocampal volumes in T1W brain MRI images.

Wang et al. [157] proposed a CAD system for multiple sclerosis (MS) using biorthogonal wavelet transform to extract features, RBF kernel principal component analysis to reduce the size of the feature vector and logistic regression to classify the image as MS or non-MS. Zijdenbos et al. [171] proposed a voxel-wise classification framework for MS lesions using a three-layer artificial neural network classifier based on multi-model intensity and spatial priors. Khayati et al. [89] proposed an automated method to detect MS in brain FLAIR images using an adaptive mixture method and a Markov random field model. Each voxel is modeled as a combination of normal and abnormal parts, and it can be further classified into chronic, early and recent acute lesions by
optimal thresholding.

In this chapter, we propose a CAD technique to detect slices with cavernous regions in T2W brain MRI images. It is an extension of our previous work [156], in which we proposed to use skull stripping and template matching to detect cavernous malformation. This paper improves [156] in two aspects: (1) An atlas-based skull stripping technique is used instead of the morphology-based method to obtain better brain area extraction; (2) After template matching, SVM models are used to classify candidate regions to cavernomas or non-cavernomas based on texture, histogram of gradient and local binary pattern features with principal component analysis, instead of using size, shape and brightness information of candidates for classification in [156]. The remainder of this chapter is organized as follows: Section 3.2 describes the materials; Section 3.3 explains the proposed method; experimental results are presented in Section 3.4, while Section 3.5 concludes the paper.

3.2 Materials

In this study, a database of 192 T2W MRI axial images from 9 patients with cavernous malformations are used. The images were obtained at the University of Alberta Hospital. The T2W images were acquired using the turbo spin echo sequence on a 1.5T Siemens MRI scanner (TE/TR = 99/5000 ms) and have a pixel resolution of approximately 0.45×0.45mm with a slice thickness of 6-8 mm. The resolution of each image slice is 512×416 pixels. Overall, there are 23 cavernous images (out of 192), each image with one cavernoma region. Due to the large slice thickness of the T2W images in our database, the proposed detection is performed on 2D slices. Although a small data set is used in this study, the cavernomas are representative in size, location, and shape [13, 107, 145]. The cavernomas can be modeled by circular or elliptical shapes. The diameter (major/minor axes length in case of elliptical shape)
of these lesions on 2D slices spreads from 8 mm to 20 mm. Out of the 23 cavernomas, 8 are located in the frontal lobe, 8 in the temporal lobe, 6 in the parietal lobe and 1 in the occipital lobe. The shape of these cavernomas also covers a large variety. Fig. 3.2 shows six samples of cavernous malformations in our study of different size and shape. The locations and boundaries of these cavernomas are marked by an experienced neurologist and this information is used as ground truth.

![Figure 3.2: Six samples of cavernous malformations.](image)

The T2W ICBM 2009a non-linear symmetric brain atlas [48] and its brain probability map are used in this work. The atlas, which is generated by averaging the MNI152 database, has a high resolution of 1×1×1mm and includes 189 axial slices with the size of 197×233 pixels. It is one of the most popular brain atlases in medical image analysis. The 3D atlas has a corresponding brain probability map ($B$) that indicates if an MRI pixel belongs to the brain area. It is defined as follows:

$$B(x) = \begin{cases} 
1, & \text{if } x \text{ is a brain pixel} \\
0, & \text{if } x \text{ is not a brain pixel} \\
p, & \text{others}
\end{cases} \quad (3.1)$$

where $x$ is a 3D pixel location and $p$ is the probability that the pixel at $x$ is a brain pixel.

### 3.3 Proposed Method

The purpose of a CAD system is to process the input images and generate useful information (e.g., location, volume or shape of suspected lesions) for diagnosis, which can assist physicians in interpreting the medical images so that
the efficiency and accuracy of diagnosis could be improved [8]. Fig. 3.3 shows the schematic of the proposed CAD system for detecting cavernous malformation. It includes four major modules: skull stripping, template matching, feature extraction, and classification. The details of these modules are presented in the following sections.

Figure 3.3: Schematic of the proposed CAD system for cavernous malformations.

### 3.3.1 Skull Stripping

Skull stripping, or brain extraction, is a technique that removes the non-brain tissues, such as the skin of the scalp, bone of the skull, dura matter and eyeballs, from a brain image. It is the first step in the proposed cavernomas detection system as only brain area is the region of interest (ROI) for cavernomas detection. A number of automatic skull-stripping methods have already been proposed in recent years, which can be categorized into morphology-based, intensity-based, deformable surface-based, standard atlas-based and hybrid methods [86]. The BET [137], BSE [134], and 3dSkullStrip [130] methods are widely used for skull stripping in MRI images. Among them, BSE and 3dSkullStrip are designed to work primarily with T1W MR images. The BET
method is capable of processing T2W images based on a deformable model driven by local adaptive forces. This technique does not perform well for large slice thicknesses as in our case. Therefore, we propose an improved skull stripping method using atlas registration. This method has two steps: (1) affine registration with a brain atlas to obtain the initial brain masks, and (2) contour refinement in each slice using active contour model for brain extraction.

![Figure 3.4: Skull stripping results of one slice of a 3D image. (a) An input T2W slice, (b) input slice overlaid with the brain mask (in green) after registration, (c) refined brain contour (shown by the yellow boundary), (d) extracted brain.](image)

**Registration**

In order to obtain an approximate brain area, researchers sometimes perform registration with a standard brain atlas to generate the mask of ROI (i.e., the brain). In this work, the T2W ICBM 2009a non-linear symmetric brain atlas is used to register with the input T2W brain images to obtain the initial brain masks for contour refinement.

The brain atlas is used as the moving image, and the input image as the fixed image in a 3D affine registration framework. The mutual information of the moving and fixed image serves as the objective function to be maximized. The purpose of registration is to find the best transformation $t'$ that will align the input image to the brain atlas in the same coordinate system. In this work,


\( t' \) is obtained by solving the following equation.

\[
  t' = \arg \max_t \mu(I(x), A(t(x)))
\]  

(3.2)

where \( I \) is the input 3D MRI image (about 20 axial slices), \( A \) is the reference brain atlas image (189 axial slices), \( \mu \) is the mutual information, \( t(x) \) is affine transformation to the coordinate \( x \), and \( t' \) is the best transformation. Note that affine transformation is a combination of transforms including translation, scale, shear and rotation. For the 3D affine transformation, the degree of freedom is 12. The mutual information of two images \( I \) and \( A \) is calculated as follows:

\[
  \mu(I, A) = e(I) + e(A) - e(I, A)
\]  

(3.3)

where \( e(I) \) and \( e(A) \) are the entropies of images \( I \) and \( A \), respectively, and \( e(I, A) \) is the joint entropy. The entropies are calculated based on the 1D probability density function of the pixel intensities of the entire 3D images \( I \) and \( A \), and the joint entropy is calculated based on the joint histogram of \( I \) and \( A \). As the brain atlas \( A \) typically has more axial slices but less axial plane resolution than \( I \), both sampling and interpolation operations are applied to \( A \) (to make it of the same size as that of \( I \)) before calculating the mutual information.

After registering the brain atlas \( A \) with the input brain image \( I \), we obtain the best transformation \( t' \). As only the brain area is the ROI, we apply \( t' \) to the brain probability map \( B(x) \) to generate the brain mask for the input image as follows:

\[
  M(t'(x)) = \begin{cases} 
  1, & \text{if } B(x) = 1 \\
  0, & \text{otherwise}
\end{cases}
\]  

(3.4)

where \( M \) is the brain mask of input image \( I \) and \( x \) is a pixel location in \( B \). Fig. 3.4 (a) shows one slice of a T2W brain MRI image and Fig. 3.4 (b) shows the image slice in (a) overlaid with its brain mask obtained after registration.
We observe that, even though the brain mask is not perfect, it is close enough to be an initial brain contour for further refinement.

**Contour Refinement**

In contour refinement, we use an active contour model, also known as snakes, which is a popular segmentation technique that minimizes the energy along the contour of object. The refinement of contours is driven by two forces: an internal force that keeps the contour smooth, and an external force that pushes it towards the object contour. The active contour model based on a gradient vector flow [164] is used in the proposed system for brain contour refinement.

The contour \( x(s) \) is obtained by minimizing \( E \) as defined below.

\[
E = \int_0^1 [E_{int}(x(s)) + E_{ext}(x(s))]ds \tag{3.5}
\]

where \( x(s) = [x(s), y(s)], \ s \in (0, 1). \) The internal energy \( E_{int} \) is calculated as follows:

\[
E_{int}(x(s)) = \frac{1}{2}[\alpha|x'(s)|^2 + \beta|x''(s)|^2] \tag{3.6}
\]

where \( x'(s) \) and \( x''(s) \) are the first and second derivatives of \( x(s) \), respectively, and \( \alpha \) and \( \beta \) are weighting parameters. \( E_{ext} \) is the external energy of the contour calculated as follows:

\[
E_{ext} = \iint [(u_x^2 + u_y^2 + v_x^2 + v_y^2) + |\nabla f|\kappa - \nabla f|^2]dxdy \tag{3.7}
\]

where \( \kappa(x, y) = (u(x, y), v(x, y)) \) is the gradient vector flow, \( \nabla f \) is the gradient of the smoothed image as the edge map, \( \{u_x, u_y, v_x, v_y\} \) are the partial derivatives with respect to \( x \) and \( y \).

Fig. 3.4 (c) shows the final brain contour (the yellow boundary) after contour refinement and Fig. 3.4 (d) is the extracted brain.
3.3.2 Template Matching

Template matching (TM) is a technique to locate regions of an image that have similar structure or pattern with a reference image known as a template. In order to increase the sensitivity of matching, multiple templates are generally used, which are transformations (scaling, rotation, etc.) of a reference template. In T2W MR images, a cavernoma appears bright at center with a dark surrounding, and it is always located inside of brain tissues that appear gray in images. Therefore, we can use templates of similar structures to match and detect the cavernous malformations. In the proposed technique, we generate the template database using the generalized Laplacian of Gaussian (gLoG) [94]. The gLoG function is given as follows:

$$\nabla^2 G(x, y) = \frac{\partial^2 G}{\partial x^2} + \frac{\partial^2 G}{\partial y^2}$$

(3.8)

where \((x, y)\) are pixel coordinates in image, and \(G\) is the Gaussian function.

The definitions of \(G\) and the second derivatives of \(G\) are given as follows:

$$G(x, y) = e^{- (ax^2 + 2bxy + cy^2)}$$

(3.9)

$$\frac{\partial^2 G}{\partial x^2} = [(2ax + 2by)^2 - 2a]G(x, y)$$

(3.10)

$$\frac{\partial^2 G}{\partial y^2} = [(2bx + 2cy)^2 - 2c]G(x, y)$$

(3.11)

where \(a\), \(b\), \(c\) are parameters that control the shape and orientation of a template, and are defined as follows:

$$a = \frac{\cos^2 \theta}{2\sigma_x^2} + \frac{\sin^2 \theta}{2\sigma_y^2}$$

(3.12)

$$b = -\frac{\sin 2\theta}{4\sigma_x^2} + \frac{\sin 2\theta}{4\sigma_y^2}$$

(3.13)

$$c = \frac{\sin^2 \theta}{2\sigma_x^2} + \frac{\cos^2 \theta}{2\sigma_y^2}$$

(3.14)

where \(\sigma_x, \sigma_y\) are scale parameters and \(\theta\) is the orientation parameter. Fig. 3.5 shows the 28 templates used in the proposed CAD system for cavernomas.
Each template size is $25 \times 25$mm ($48 \times 48$ in pixels) as the diameter of cavernous malformation varies from 8 to 20 mm in our image database. Both $\sigma_x$ and $\sigma_y$ are chosen from {8, 12, 16, 20} mm and $\theta$ are from {0°, 45°, 90°, 135°}.

In the proposed technique, the normalized cross correlation (NCC), defined below, is used to measure the similarity of an image region $R$ and a template $T$.

$$NCC(R, T) = \frac{\sum_{i,j}[R(i,j) - \bar{R}][T(i,j) - \bar{T}]}{\sqrt{\sum_{i,j}[R(i,j) - \bar{R}]^2 \sum_{i,j}[T(i,j) - \bar{T}]^2}} \quad (3.15)$$

where $R(i,j)$ and $T(i,j)$ are pixel intensities of the image region and the template, $\bar{R}$ and $\bar{T}$ are the mean intensities of the region $R$ and the template $T$, respectively. The NCC value is in the range of [-1, 1] and a larger NCC value reflects a better matching. To identify the matching regions, a template image is compared with the source image by sliding it (i.e., moving the template one pixel at a time from left to right and top to bottom) and a NCC value is calculated at each (central) pixel location. Using this procedure, a NCC
response map is generated for that template. As there are 28 templates in the database, 28 NCC response maps are generated for each image slice. For each response map, we find cavernoma candidates by thresholding the local maxima.

A region R is a cavernoma candidate if

$$NCC(R, T) > \tau$$

(3.16)

where \(\tau\) is a predetermined threshold. Fig. 3.6 (a) shows the NCC values of cavernoma regions, whereas Fig. 3.6 (b) shows the cumulative distribution function (CDF) of NCC values of both cavernoma and non-cavernoma regions. In this paper, we have chosen \(\tau = 0.4\) to detect candidate cavernoma regions with a low false positive rate.

![Figure 3.6: Distribution of NCC values. (a) Maximum NCC values for each cavernoma, (b) the plot of the NCC cumulative distribution function.](image)

### 3.3.3 Feature Extraction

Using TM, we obtain a large set of cavernoma candidate regions. However, many of these regions are false positives. The feature extraction and classification modules reduce the number of false positives by classifying the region into either cavernoma (CM) or non-cavernoma (non-CM). Three kinds of features
are used: (1) first-order textures, (2) histogram of oriented gradients (HOG) and (3) local binary pattern (LBP). First-order textures provide information about the intensity distribution, and HOG describes the edge orientation, while LBP provides the pixel correlations in a small neighborhood. The three types of features together are able to capture the appearance information of an object efficiently, and effectively.

**First-order Textures**

In this work, we use six first-order texture features (mean, standard deviation, smoothness, third moment, uniformity and entropy), as defined in Table 2.1, based on the intensity histogram of a region. Let the texture feature vector be denoted by $\phi$.

**HOG**

The HOG feature describes the appearance of an object using the distribution of local intensity gradients and edge direction. The HOG feature vector of an image region is calculated as follows.

Step 1. A candidate image region is divided into overlapping blocks and each block is comprised of cells, as shown in Fig. 3.7. The size of regions, blocks and cells are $48 \times 48$, $16 \times 16$ and $8 \times 8$ pixels, respectively. The overlap of adjacent blocks is half the block size. Overall, there are 25 blocks in a candidate region.

Step 2. The gradient of each pixel is obtained by applying two filter kernels: $[-1,0,1]$ and $[-1,0,1]^T$ to the image region. Each gradient is then quantized into one of the nine major orientations: $\frac{2(k-1)\pi}{9}$, $1 \leq k \leq 9$, and weighted by the gradient magnitude. After this, the orientation histogram $H_c$ of each cell is obtained, and the size is $1 \times 9$.  

41
Step 3. The feature vector of each block is then obtained as $H_b = [H_{c1}, H_{c2}, H_{c3}, H_{c4}]$, where $H_{cm}$ is orientation histogram of the $m$th cell. The feature vector $H_b$ is then normalized using the following equation.

$$\hat{H}_b = \frac{H_b}{||H_b||}$$  \hspace{1cm} (3.17)

where $||.||$ is the $L^2$ norm.

Figure 3.7: The cell and block division in an image window. $b$ and $c$ refer to block and cell, respectively.

The HOG feature vector of an image region is obtained by concatenating all the normalized block feature vectors. As there are 25 blocks in an image region and the size of each normalized block feature vector is $1 \times 36$, the size of the HOG feature vector of one candidate region is $1 \times 900$. Let the HOG feature vector be denoted by $\eta$.

**LBP**

The LBP has been used successfully in many computer vision applications [158]. In the proposed CAD system, we calculate the LBP feature of each cavernoma candidate region. First, to calculate the LBP value of a pixel, the pixel value is compared with the eight neighboring pixels, and corresponding
eight binary numbers are generated (as shown in Fig. 3.8). The LBP value of
the pixel is the decimal equivalent of the concatenated 8-bit binary numbers.
Second, the histogram of the LBP values for all pixels in the candidate region
is calculated (the histogram size is 1×256). Finally, we use the uniform pattern
[146] (by choosing the lowest decimal values of all rotationally symmetric LBP
patterns) to reduce the size of the feature vector to 1×59. Let this feature
vector be denoted by $\zeta$.

![Figure 3.8: LBP value for the center pixel.](image)

Combining the three types of features, the overall feature vector, of dimen-
sion $1 \times 965$, is obtained as $x = [\phi, \eta, \zeta]$.

**Feature Dimensionality Reduction**

The feature vector $x$ has a large dimension of $1 \times 965$. In order to discard
features that are correlated with others and improve the efficiency of classi-
ification, the principal component analysis (PCA) technique is applied in our
system. The PCA can reduce the feature dimension, and at the same time
retain most of the variation present in the original data set [83]. In the pro-
posed system, the number of principal components is chosen such that they
can explain at least 90% of the data variance.

**3.3.4 Classification**

SVMs [32, 123] are widely used in classification applications from character
recognition to tumor detection for its high performance and robustness even
in noisy datasets. After template matching, we typically obtain a large set of candidate cavernous regions. In order to train an SVM model, these candidate regions are labeled (by visual inspection) as either CM (1) or non-CM (-1). As shown in Fig. 3.9, a candidate region is labeled as CM if it encloses the center of a cavernous malformation, otherwise it is labeled as non-CM.

A common problem in medical image classification is the imbalanced dataset. The size of the two groups is highly imbalanced as there are many (about 50 times) more non-cavernoma candidates than cavernoma candidates. If we use the imbalanced dataset in the training process directly, the trained SVM tends to classify all candidates into non-CM group to obtain a higher accuracy, resulting in low sensitivity. To avoid this, we use the following methods.

**Imbalanced Dataset Handling**

In our CAD system, we use two techniques to avoid imbalanced training: oversampling and dataset division [95].

- Oversampling: it is a way to increase the number of cavernoma instances so that the two groups are more evenly balanced. For each cavernoma

Figure 3.9: Candidate region labeling. (a) The ground truth boundary (red) of a cavernoma, (b) a candidate region (yellow) is labeled as CM, (c) a candidate region (yellow) is labeled as non-CM.
candidate, we generate 8 more instances by sampling regions centered at the neighboring pixels of the original center pixel.

- Dataset division: although oversampling increases the number of cavernoma instances, it is still unable to balance the two groups. Therefore, we divide the dataset into multiple (e.g. 5) subsets and in each subset, all cavernoma instances and the same size of non-cavernoma instances are included. With each balanced subset, we train an SVM model. So five SVMs are trained and used for classification.

**SVM**

To train an SVM model for binary classification, feature vectors $\{x_1, x_2, \ldots , x_n\}$ and their labels $\{y_1, y_2, \ldots , y_n\}$ are generated from training ground truth data, where $n$ is the size of training set. In our CAD system, the size of each feature vector is $1 \times 965$ and each label is either CM (1) or non-CM(-1). The SVM generates a hyperplane that can separate the training data with maximum margin. The SVM model is obtained by solving the following equation:

$$
\begin{align*}
\min_{w, b} & \quad \frac{1}{2} ||w||^2 \\
\text{s.t.} & \quad (w^T x_i + b) y_i \geq 1, \quad i = 1, \ldots , n 
\end{align*}
$$

(3.18)

where $w$ is the normal vector to the hyperplane, $x_i$ is the $i$th feature vector and $y_i$ is its label. By solving the above quadratic programming problem, we obtain the separating hyperplane as $w^T x + b = 0$. In this work, the SVM implementation provided in MATLAB “Statistics and Machine Learning” toolbox is used. An attractive property of SVM is that we can use so-called kernel tricks to convert a non-linearly separable dataset to a linearly separable one. Some commonly used kernels are polynomial, Gaussian and radial basis function (RBF). After testing with different kernels, we found that the linear SVMs perform the best in cavernoma classification.
As mentioned in the imbalanced dataset handling section, multiple SVMs are trained in the proposed CAD system to detect cavernoma. As a consequence, a voting strategy is used in prediction. If the number of predictions of CM is larger than a threshold $\tau_v$, the candidate block is deemed to be a CM. Otherwise, it is non-CM. The threshold $\tau_v$ is determined using the receiver operating characteristic (ROC) curve, as shown in Fig. 3.10. We can see the best value for voting threshold $\tau_v$ is 3.

![ROC for classification by SVMs.](image)

Figure 3.10: ROC for classification by SVMs.

### 3.4 Experimental Results

In this section, we evaluate the proposed CAD system for cavernous malformation detection based on two aspects: the accuracy of skull stripping, and the CM detection performance of the proposed system.

#### 3.4.1 Efficiency of Skull Stripping

In this section, we evaluate the performance of the atlas-based skull stripping method in the proposed CAD system by calculating the dice coefficient of every slice. If $B$ and $G$ are the automatically extracted and manually extracted brain
images, respectively, the dice coefficient corresponding to \((B, G)\) is obtained by using the following equation.

\[
d(B, G) = 2 \frac{|B \cap G|}{|B| + |G|}
\]  

(3.19)

where \(|B|\) and \(|G|\) are the areas of \(B\) and \(G\), respectively, and \(|B \cap G|\) is the mutual area. Fig. 3.11 shows the distribution of dice coefficients for each patient and the average value is around 0.95. In other words, the atlas-based skull stripping method used in our CAD system can extract the brain region accurately, and no cavernoma region is excluded by the atlas-based skull stripping method. Fig. 3.12 (b) shows an example of the extracted brain. We also tried to use a morphology-based technique [54] in skull stripping. However, the morphology-based method does not perform very well and sometimes excludes cavernoma regions that are located at brain edge, as shown in Fig. 3.12 (c), while the atlas-based method can avoid the problem. The performance of the proposed skull stripping method is also compared with the BET [137]. Table 3.1 shows the mean dice coefficients of the skull stripping results using our T2W image dataset. The proposed atlas-based method can outperform the BET in processing the T2W images with large slice thickness and a dice coefficient of 0.95 is obtained.

Table 3.1: Performance comparison of skull stripping methods.

<table>
<thead>
<tr>
<th>Methods</th>
<th>BET [137]</th>
<th>Proposed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dice Coefficient</td>
<td>0.90</td>
<td>0.95</td>
</tr>
</tbody>
</table>

3.4.2 System Performance

For subjective evaluation of the proposed CAD system, two examples of diagnostic results are shown in Fig. 3.13. It is observed that the atlas-based skull
Figure 3.11: Boxplot of dice coefficients for all patients. Red lines denote the median dice coefficient and the '+'s denote the outliers.

Figure 3.12: An example of skull stripping. (a) The input image, (b) extracted brain (in yellow boundary) using atlas-based method, (c) extracted brain (in yellow boundary) using morphology-based method. Note that in (c), the cavernoma region (shown in red box) is not included in the brain area.

stripping technique extracts the brain area precisely. The template matching technique produces three candidates in both examples. The SVM models correctly detect the cavernous malformations based on the features of each candidate region.

For a quantitative evaluation of the proposed SVM-based cavernomas detection system, we use the leave-one-out ‘by patient’ cross validation test [8], which means images of one patient is used for testing and the other patients
images are used for training the SVM models. After template matching, we obtain 1161 candidate regions consisting of 207 CM regions and 954 non-CM regions (see Table 3.2). For each patient, the test runs for 100 times and in each run, five SVMs (to offset the data imbalance) are learned based on the
randomly divided training dataset (so the prediction results may vary). After SVM classification, the sensitivity, specificity, and accuracy are calculated. Fig. 3.14 shows the average sensitivity, specificity, and accuracy for each patient. It is observed that, on average, 95% of CM regions could be identified and approximate 90% of false positives could be removed by the classification model.

![Bar charts showing sensitivity, specificity, and accuracy](image)

Figure 3.14: Performance of the CAD system for all patients. (a) Sensitivity, (b) specificity, and (c) accuracy

In the proposed technique, a feature vector $\mathbf{x}$ of length 965 is calculated for each candidate region, and the PCA is applied to reduce the feature dimensionality. To evaluate the significance of PCA (Section 3.3.3), the performance of the system is measured at different feature dimensionality, with results shown in Table. 3.3. It is observed that the performance (accuracy, sensitivity, and
specificity) is improved at a low dimensionality, which explains approximately 90% of the feature variance according to the cumulative variance plot in Fig. 3.15.

Table 3.3: Performance based on feature dimensionality

<table>
<thead>
<tr>
<th>Dimensionality</th>
<th>Sensitivity(%)</th>
<th>Specificity(%)</th>
<th>Accuracy(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>90</td>
<td>80</td>
<td>82</td>
</tr>
<tr>
<td>40</td>
<td>92</td>
<td>86</td>
<td>87</td>
</tr>
<tr>
<td>60</td>
<td>94</td>
<td>89</td>
<td>90</td>
</tr>
<tr>
<td>80</td>
<td>93</td>
<td>90</td>
<td>91</td>
</tr>
<tr>
<td>100</td>
<td>95</td>
<td>90</td>
<td>91</td>
</tr>
<tr>
<td>150</td>
<td>92</td>
<td>88</td>
<td>89</td>
</tr>
<tr>
<td>200</td>
<td>91</td>
<td>88</td>
<td>89</td>
</tr>
<tr>
<td>250</td>
<td>90</td>
<td>89</td>
<td>89</td>
</tr>
<tr>
<td>300</td>
<td>94</td>
<td>89</td>
<td>89</td>
</tr>
<tr>
<td>400</td>
<td>90</td>
<td>89</td>
<td>89</td>
</tr>
<tr>
<td>500</td>
<td>91</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>700</td>
<td>92</td>
<td>90</td>
<td>91</td>
</tr>
</tbody>
</table>

Figure 3.15: Cumulative variance plot.

Table 3.4 compares the performance of the proposed technique with three other existing techniques. The first two techniques [14, 40] were proposed for general tumor detection. To implement them for the cavernomas detection,
the candidate cavernoma regions are first obtained using the skull stripping and TM technique proposed in this paper. The classification of these candidate regions is then performed using the texture features and SVM classifier as in [14], and the DWT features with PCA and ANN classifiers as in [40]. The third technique [156], developed by us, is based on template matching and thresholding for the cavernomas detection. It is observed that the proposed technique outperforms the other three techniques with respect to all three performance criteria.

Table 3.4: Performance comparison.

<table>
<thead>
<tr>
<th>Techniques</th>
<th>Sensitivity(%)</th>
<th>Specificity(%)</th>
<th>Accuracy(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Texture+SVM [14]</td>
<td>83</td>
<td>79</td>
<td>80</td>
</tr>
<tr>
<td>DWT+PCA+ANN [40]</td>
<td>88</td>
<td>82</td>
<td>82</td>
</tr>
<tr>
<td>TM+Thresholding [156]</td>
<td>86</td>
<td>80</td>
<td>81</td>
</tr>
<tr>
<td>Proposed</td>
<td><strong>95</strong></td>
<td><strong>90</strong></td>
<td><strong>91</strong></td>
</tr>
</tbody>
</table>

### 3.4.3 Computation Time

The proposed CAD system is implemented using MATLAB R2016b on a desktop computer with a 4.0 GHZ Intel i7-6700K CPU and 16.0 GB RAM. Typical processing time for one 3D image (with $512 \times 416 \times 20$ voxels) is approximately 2 minutes.

### 3.5 Conclusion

In this chapter, we have proposed a computer-aided diagnosis system for cavernomas based on axial T2W MRI images. The proposed system first extracts the brain region using an atlas-based skull stripping method. A template matching method is then used to detect the candidate cavernoma regions. Several textures, HOG and LBP features are extracted for each candidate,
and feature dimensionality is reduced using PCA. Finally, five SVM models are used to classify the candidate regions into cavernoma or non-cavernoma. Experimental results show promising performance for the proposed technique. The future study will be focused on the segmentation of cavernous malformations using high-resolution 3D MRI images and the evaluation of the system with a larger dataset.
Chapter 4

Automated Detection of Mesial Temporal Sclerosis

Mesial temporal sclerosis (MTS) is the commonest brain abnormalities in patients with intractable epilepsy. Its diagnosis is usually performed by neuroradiologists based on visual inspection of MRI scans, which is a subjective and time-consuming process with inter-observer variability. In order to expedite the identification of MTS, an automated computer-aided method based on brain MRI characteristics is proposed in this chapter. It includes brain segmentation and hippocampus extraction followed by calculating features of both hippocampus and its surrounding cerebrospinal fluid. After that, support vector machines are applied to the generated features to identify patients with MTS from those without MTS. The proposed technique is developed and evaluated on a data set comprising 15 normal controls, 18 left and 18 right MTS patients. Experimental results show that subjects are correctly classified using the proposed classifiers with an accuracy of 0.94 for both left and right MTS detection. Overall, the proposed method could identify MTS in brain MR images and shows promising performance, thus showing its potential clinical utility.
4.1 Introduction

Mesial temporal sclerosis (MTS) is the commonest brain structural abnormality in drug-resistant temporal lobe epilepsy patients [105], and is associated with gliosis and the loss of neurons in hippocampus [22]. In Fig. 4.1, an example of 3D reconstructed hippocampi from an anterior view of brain is shown. To evaluate the structural change of hippocampus noninvasively, MRI is the modality of choice to generate brain images, on which MTS characteristics of hippocampal atrophy and abnormal signals [135] are visually identified.

![Figure 4.1: Left and right hippocampi in 3D.](image)

The T1-weighted coronal MR images in Fig. 4.2 show the volume loss in the hippocampus with MTS, indicated by the white arrows. For cases (e.g. mild or bilateral MTS) that are difficult to be identified visually, the volumetric analysis can be helpful. This is typically performed manually on structural MR images with a high coronal resolution using the Cavalieri principle [51]. The hippocampal structures on each slice are outlined by a pre-clinical trainee and/or a research staff, and the areas from all slices are summed. Hippocampal volume is then obtained by multiplying the total area by the slice thickness. However, volumetric analysis is tedious and time-consuming, as it takes approximately 60 minutes to analyze one 3D image [59]. It requires expertise in brain anatomy and is therefore operator-dependent and subjective. For the
above reasons, volumetric analysis is restricted to tertiary care research facilities. It is reported that up to 60% of patients with MTS can be rendered seizure-free after temporal lobectomy [162], and this number increases if MTS is discovered at an early stage [98], when manual identification is challenging. It is therefore imperative to develop noninvasive techniques that can detect MTS efficiently and objectively.

![Figure 4.2](image_url)

**Figure 4.2:** Two T1-weighted MRI coronal slices with hippocampal volume loss indicated by white arrows. (a) Left side MTS, (b) right side MTS. Note that the lost hippocampal volume is occupied by cerebrospinal fluid (CSF) and appears black in the indicated regions.

The hippocampal shape changes in patients with MTS have been studied by researchers and used in the detection of MTS. Hogan *et al.* [66] used the deformation-based hippocampal shape analysis to quantify the difference between the hippocampus with MTS and the normal hippocampus. They found the maximum shape changes in the medial and lateral hippocampal head and tail. Mumoli *et al.* [111] assessed the hippocampal shape changes in patients with MTS using shape analysis and surface reconstruction. The most prominent hippocampal atrophy was found in the CA1 subregion and subiculum. Kohan *et al.* [93] proposed to use hippocampal shape-based features to identify...
patients with temporal lobe epilepsy.

Hippocampal volume loss is an important feature of MTS [46, 143], and has been used in identifying the patients with MTS. Bonilha et al. [19] proposed an automated MTS detection technique based on voxel-wise morphometry of the gray matter volume in hippocampus. A predefined threshold was used to identify the hippocampus with MTS. However, more advanced detection techniques usually combine multiple features within a machine learning framework. Jafari et al. [77] extracted the intensity, texture, and volume features of hippocampus from both T1-weighted and FLAIR images, and performed a linear classification to lateralize the mesial temporal lobe epilepsy. A similar study was proposed by Jafari [76] based on the quantitative analysis of the SPECT images. Focke et al. [47] used a linear SVM classifier with multiple features extracted from T1-weighted MRI, diffusion tensor imaging and T2 relaxometry images to detect MTS. Cantor et al. [23] proposed a technique for temporal lobe epilepsy detection using a linear SVM classifier in multi-parametric quantitative MR imaging, including T1 map, T2 map, fractional anisotropy and mean diffusivity. Rudie et al. [129] proposed to use machine learning and the morphological features of the whole brain for the detection of MTS.

Overall, some works have used shape features to analyze the difference in hippocampus between normal controls and patients with MTS. Some papers used multiple features, including the hippocampal volume, for the detection of MTS. However, the deformation of hippocampus may also be reflected by the volume change of surrounding cerebrospinal fluid [67], which, to the best of the authors’ knowledge, has not been studied in the automated detection of MTS. In this chapter, we propose to use both hippocampus and CSF features with machine learning for MTS detection.

The remainder of this chapter is organized as follows. In Section 4.2, the materials of this study are introduced. In Section 4.3, the proposed methods
are presented. The experimental results are reported in Section 4.4. The chapter is concluded in Section 4.5.

4.2 Materials

In this study, the materials include 51 T1-weighted coronal MR images obtained from Henry Ford hospital [64, 69]. They are divided into 3 groups: (1) 18 images with left-side MTS, (2) 18 with right-side MTS, and (3) 15 images of normal controls. The three groups are respectively noted as LMTS, RMTS, and NC in this work. All of the images were initially reviewed by a neuroradiologist and then validated by an epileptologist epilepsy at the University of Alberta hospital. There was no disagreement between the two reviewers. These images were acquired using an inversion-prepared spoiled gradient recall sequence on either a 1.5T MRI scanner (TR/TI/TE = 7.6/1.7/500 ms, flip angle = 20°) with a scanning time of 5 minutes and 45 seconds or a 3.0 T (TR/TI/TE = 10.4/4.5/300 ms, flip angle = 15°) MRI scanner with a scanning time of 6 minutes. The voxel sizes are 0.78 × 0.78 × 2.0 mm³ for 1.5T MR images, and 0.39 × 0.39 × 2.0 mm³ for 3.0T MR images. In our dataset, 7 images in LMTS group, 10 images in RMTS group, and 5 images in NC group were obtained from the 3.0T MRI scanner. The other images (i.e. 11 LMTS, 8 RMTS, and 10 NC) were obtained on the 1.5T MRI scanner. Fig. 4.3 shows an image example with marked hippocampus in white boundaries on three view planes.

4.3 Methods

The overall schematic of the proposed MTS detection technique is shown in Fig. 4.4, and it consists of three main parts: (1) brain and hippocampus segmentation, (2) feature extraction, and (3) image classification. Details of
Figure 4.3: Example of an MR image with manually segmented hippocampus in three view planes. (a) Sagittal plane, (b) coronal plane, and (c) transverse plane.

the three parts are given in Section 4.3.1 to Section 4.3.3.

Figure 4.4: The proposed MTS detection method.

4.3.1 Brain and Hippocampus Segmentation

As the shape change in hippocampus may affect the volume of the neighboring CSF, the brain MR image is first segmented into three tissue types (i.e. gray matter, white matter and CSF) using the “FAST” tool [169] from the FSL suite [138]. The FAST tool is based on a hidden Markov random field model and the expectation-maximization algorithm. The process is fast, reliable, and fully automatic. An example of the brain segmentation is shown in Fig. 4.5, and only the CSF partial volume estimation (PVE) is used in this work.

In this study, the extraction of hippocampus is performed using the FSL “FIRST” tool [120] that could automatically segment the brain sub-cortical structures based on a two-stage linear registration with standard brain templates and active appearance model within a Bayesian framework. The tool
generates the mesh of hippocampus and the transformation matrix from native to standard space. An example of hippocampus extraction is shown in Fig. 4.6.

4.3.2 Feature Extraction

Based on the results of brain and hippocampus segmentation, the hippocampus and CSF features are calculated as presented in the following sections.
Volumetric features

One feature of MTS is the hippocampal volume loss which is a common feature for MTS detection. Both the left hippocampal volume ($LHV$) and right hippocampal volume ($RHV$) are calculated from the segmentation results using the FIRST tool. They are then normalized to (i.e. divided by) the intracranial volume ($ICV$). The normalized hippocampal volumes are noted as $nLHV$ and $nRHV$ for the left- and right-side, respectively. The following two equations show the calculation of $nLHV$ and $nRHV$.

\[ nLHV = \frac{LHV}{ICV} \times 100 \]  
\[ nRHV = \frac{RHV}{ICV} \times 100 \]

Typically, for an adult, the volume of each hippocampus is approximately $3.0 \text{ cm}^3$ compared with $1200 \text{ cm}^3$ for the intra-cranial volume [79, 141]. So, the $nLHV$ (or $nRHV$) value is approximately $0.25$.

The volume asymmetry property of hippocampi is also useful in MTS detection, and calculated using the below equation.

\[ HAI = \frac{2(LHV - RHV)}{LHV + RHV} \]

where $HAI$ is the hippocampal volume asymmetry index.

Overall, the volumetric feature vector ($F_v$) is defined as:

\[ F_v = \{nLHV, nRHV, HAI\} \]

Shape Features

In this study, the hippocampal shape is represented by the vertex coordinates of the hippocampus mesh, which is obtained in Section 4.3.1. All the coordinates are in a standard space (MNI152) so that the same location of hippocampi means the same vertex in the hippocampal mesh model. The shape
(S) of one hippocampus is represented as below.

\[ S = \{x^1, y^1, z^1, x^2, y^2, z^2, ..., x^n, y^n, z^n\} \]  \hspace{1cm} (4.4)

where \((x^i, y^i, z^i)\) are coordinates of the \(i\)th vertex and \(n\) is the number of vertices in each mesh. So, the shape of the hippocampus is represented by a vector of size \(3n\).

Principal component analysis (PCA) is then applied to reduce the size of the shape vector. PCA transforms a set of possibly correlated variables into a set of uncorrelated low-dimensional variables (coefficients) using principal components. Dimensionality is reduced by only using the first few principal components, while retaining most of the variance in the dataset. The hippocampal shape \((S_i)\) of the \(i\)th image is represented using PCA as follows:

\[ S_i = \bar{S} + pF_{si} \]  \hspace{1cm} (4.5)

where \(\bar{S}\) is the mean hippocampal shape of the training images, \(p\) is the principal components, and \(F_{si}\) is the scores of principal components. \(F_{si}\) is used as a low-dimension feature vector of the \(i\)th image for MTS detection. In this study, the number of principal components is chosen such that at least 95% of the data variance is included in the principal components. After PCA, the shape features of left- and right-side hippocampi are noted as \(F_{sl}\) and \(F_{sr}\), respectively.

**CSF-ratio Features**

The CSF has been observed to encompass more space in a predefined box surrounding the hippocampus with MTS. To calculate the CSF-ratio features for each brain MR image, the following procedure is used.

a. The CSF PVE (\(i.e.\) obtained in Section 4.3.1) in native space is transformed to the standard MNI152 space using the transformation matrix from the FIRST tool.
b. Based on the standard brain atlas (i.e., MNI152), the bounding box of the left hippocampus is defined with the length, width, and height directions along the $x$, $y$, and $z$ directions in the MNI space. The bounding box is then expanded outward by a certain distance (5 mm in our study) for each face. Its volume is noted as $LBV$.

c. Based on the defined box and CSF PVE in the standard space, the left-side CSF volume ($LCV$) is obtained. Therefore, the left-side CSF ratio ($LCR$) is calculated using $LCR = \frac{LCV}{LBV}$.

d. The right-side CSF volume ($RCV$) and the ratio ($RCR$) in a predefined box are calculated using the same procedure of [b - c] for the right hippocampus. Typically, both $LCR$ and $RCR$ are in the range of $[0.07, 0.11]$ for the surrounding box with 5 mm extensions. The extension is chosen at 5 mm in this study to maximize the correlation between the CSF-ratio features and the group labels.

e. The CSF volume asymmetry index is obtained as follows.

$$CAI = \frac{2(LCV - RCV)}{LCV + RCV}$$ (4.6)

The overall features of the CSF-ratio include $LCR$, $RCR$ and $CAI$ as follows.

$$\mathbf{F}_c = \{LCR, RCR, CAI\}$$

### 4.3.3 Classification

In classification, the support vector machine (SVM) is used for its efficiency and robustness [32, 123]. In this study, we use two SVM models - LSVM and RSVM for left and right MTS detection, respectively. Note that, the LSVM is trained using features $\mathbf{F} = \{\mathbf{F}_v, \mathbf{F}_{sl}, \mathbf{F}_c\}$ of normal controls and patients with left MTS. The RSVM is trained using features $\mathbf{F} = \{\mathbf{F}_v, \mathbf{F}_{sr}, \mathbf{F}_c\}$ of normal controls and patients with right MTS.
During training, the SVM generates a hyperplane with the largest margin between the two classes. The objective function of SVM is shown below.

\[
\min_{\omega, b} \frac{1}{2} \| \omega \|^2 + C \sum_{i=1}^{n} \xi_i, \tag{4.7}
\]

where \( \omega \) is a coefficients vector orthogonal to the hyperplane, \( \xi_i \) is the \( i \)th slack variable, and \( C \) is the regularization parameter. In this work, the SVM implementation provided in the MATLAB “Statistics and Machine Learning” toolbox is used.

The logistic regression (LR) and K-Nearest Neighbors (KNN) models are also evaluated for this classification problem. LR uses a linear combination of features in a logistic function to estimate the probability of the class label \[84\]. The linear coefficients are estimated using maximum likelihood estimation, and the classification results are obtained by thresholding the output probabilities. KNN uses the training data directly for classification instead of building a model \[34\]. It finds \( k \) nearest neighbors in training data based on the distance measure, and assigns the majority class label within this neighborhood to the testing data. For each classification model, the hyperparameters are optimized (using grid-search) in the training stage by minimizing a 10-fold cross-validation loss. Their classification performance are reported in the experimental results section.

### 4.3.4 Evaluation

To evaluate the MTS detection performance, the leave-one-out cross-validation strategy is used. One image is removed from training and used as the testing image. It is repeated until all images are tested. The LSVM model is evaluated using the images of normal controls and patients with left MTS, and the RSVM is evaluated using the images of normal controls and patients with right MTS. Sensitivity, specificity and accuracy are used as the performance measures for
MTS detection.

### 4.3.5 Performance Comparison

For comparison purposes, two existing MTS detection techniques are implemented and evaluated. The first technique [129] is implemented as follows. The brain is first segmented into 15 sub-cortical structures (i.e. left hippocampus, right hippocampus, left amygdala, right amygdala, left pallidum, right pallidum, etc.) using the FIRST tool. Note that [129] also used cortical regions, but these regions could not be obtained using the FIRST tool. The morphological features (i.e. volume, voxel intensity mean, and voxel intensity standard deviation) of these sub-cortical structures are then calculated and classified using SVM classifiers. The second technique [93] is implemented using linear SVMs based on hippocampal volume and shape features, including maximum shape diameter, shape volume, surface area, 3D compactness, etc. The comparison results are shown in the section of experimental results.

### 4.3.6 Feature Significance

A statistical analysis for the hippocampal volume and the CSF-ratio features is performed to quantify the difference of each feature between control and patient groups, using a student’s t-test [18] with a two-tailed significance level of 0.01. Fig. 4.7 shows the mean and standard deviation of each feature, and Table 4.1 shows the statistical analysis results (p values) between groups. It is observed that the LMTS group has the smallest mean value of nLHV, and there is a significant difference of nLHV between LMTS and NC groups (p < 0.0001), and between LMTS and RMTS groups (p < 0.001). For nRHV feature, the RMTS group has the smallest mean value, and the difference between NC and RMTS groups is significant (p < 0.0001). Regarding the CSF ratios, as shown in Fig. 4.7(b), the LMTS group has the largest mean
value of \( LCR \), and the RMTS group has the largest mean value of \( RCR \). Significant differences are observed between NC and LMTS groups for \( LCR \) \((p = 0.02)\), and between NC and RMTS groups for \( RCR \) \((p < 0.0001)\). For the \( HAI \) feature in Fig. 4.7(c), the mean of the NC group is close to zero, while that of the LMTS group is negative and that of the RMTS group is positive. Note that the negative values on \( HAI \) indicate that \( nLHV \) is smaller than \( nRHV \), while positive values indicate that \( nLHV \) is greater than \( nRHV \).

For \( CAI \), there is no significant difference between NC and LMTS groups \((p = 0.464)\), while the significant difference is observed in the other two group pairs (NC-RMTS and LMTS-RMTS).

Table 4.1: Statistical analysis of hippocampal volume and CSF-ratio features between groups (NC, LMTS, and RMTS). SD: standard deviation.

<table>
<thead>
<tr>
<th>Features</th>
<th>NC-LMTS</th>
<th>NC-RMTS</th>
<th>LMTS-RMTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>( nLHV )</td>
<td>(&lt;0.0001)</td>
<td>0.123</td>
<td>(&lt;0.001)</td>
</tr>
<tr>
<td>( nRHV )</td>
<td>0.128</td>
<td>(&lt;0.0001)</td>
<td>0.034</td>
</tr>
<tr>
<td>( HAI )</td>
<td>(&lt;0.001)</td>
<td>0.054</td>
<td>(&lt;0.0001)</td>
</tr>
<tr>
<td>( LCR )</td>
<td>(0.002)</td>
<td>0.127</td>
<td>0.071</td>
</tr>
<tr>
<td>( RCR )</td>
<td>(0.002)</td>
<td>(&lt;0.0001)</td>
<td>0.570</td>
</tr>
<tr>
<td>( CAI )</td>
<td>0.464</td>
<td>(&lt;0.0001)</td>
<td>(&lt;0.0001)</td>
</tr>
</tbody>
</table>

To visualize the shape deformations in hippocampi between normal controls and MTS groups, the mean hippocampal shape of the NC images group is first computed. Perpendicular displacements are then calculated between corresponding vertices from the mean shape to each subject. The t-statistic values [18] between the patient and control displacements are finally computed and visualized, as shown in Fig. 4.8. The mean left and right hippocampal shapes for the NC group are shown in Fig. 4.8 (a) and (c). The shape deformations of MTS hippocampi compared with normal controls are shown in Fig. 4.8 (b) and (d). Note that a positive t-statistic value means outward deformations.
Figure 4.7: Bar graph of mean volumetric and CSF-ratio features for three image groups (NC, LMTS, and RMTS). (a) Normalized hippocampal volume, (b) CSF-ratio, (c) hippocampal and CSF-ratio asymmetry index. Error bars are standard deviations. The scatter points (in blue color) show actual values of all subjects in each group.

...tion, and a negative value means inward deformation. The individual color in Fig. 4.8 (b) shows the shape deformation in the right hippocampus between the RMTS and NC groups, and that in Fig. 4.8 (d) is the shape deformation in left hippocampus between the LMTS and NC groups. In both cases, obvious hippocampal sclerosis is noted on the lateral side. Similar findings were reported in the literature [9, 66].
4.4 Experimental Results

4.4.1 Effectiveness of PCA

In this work, the PCA is applied to the shape vector ($S$) of the hippocampus. As we use the leave-one-out testing strategy, all images except one are used as the training set, and the omitted one is for testing. For PCA, the mean hippocampal shape and the principle components are calculated only using the training set. The relationship between the number of principal components used and the system performance is explored in this section. Fig. 4.9 (a) shows the performance of the left-side MTS detection using a varying number of principal components, while the scree plot in Fig. 4.9 (b) shows the percent variability explained by each principal component in decreasing order along
with the cumulated variance explained plot (the magenta line). It is observed that the first nine components could explain at least 95% of the total variance, and using more principal components does not help to improve the left MTS detection performance. Similar results are seen for right MTS detection. Overall, the number of principal components is chosen if they can explain at least 95% of the variance for both left and right side MTS detection.

![Figure 4.9: PCA for left MTS detection. (a) Performance plot using different number of principal components, (b) scree plot of the percent variability explained by each principal component.](image)

**4.4.2 Classification Models**

Table 4.2 shows the performance of MTS detection using different classification models: LR, $k$NN, and SVM. Since the leave-one-out testing strategy is used, multiple optimal hyperparameters are obtained for each classification model.
For $k$NN, the average number of neighbors $k$ is 12. For SVM model, the majority is the linear SVM with an average regularization parameter $C=32$. The LR model has a ridge regularization with an average strength of 1 [65]. Overall, LR and SVM could achieve comparable performances, and better sensitivities than $k$NN for both left and right MTS detection. In this study, we choose to use SVM as the classification model in experiments.

Table 4.2: Performance comparison for different classifiers. Note: the values in parentheses are the standard errors estimated using binomial distributions.

<table>
<thead>
<tr>
<th></th>
<th>LMSTS</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sensitivity</td>
<td>Specificity</td>
<td>Accuracy</td>
</tr>
<tr>
<td>$k$NN</td>
<td>0.83(0.09)</td>
<td>0.87(0.09)</td>
<td>0.85(0.06)</td>
</tr>
<tr>
<td>LR</td>
<td>0.94(0.06)</td>
<td>0.87(0.09)</td>
<td>0.91(0.05)</td>
</tr>
<tr>
<td>SVM</td>
<td>0.94(0.06)</td>
<td>0.93(0.07)</td>
<td>0.94(0.04)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>RMSTS</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sensitivity</td>
<td>Specificity</td>
<td>Accuracy</td>
</tr>
<tr>
<td>$k$NN</td>
<td>0.83(0.09)</td>
<td>0.93(0.07)</td>
<td>0.88(0.06)</td>
</tr>
<tr>
<td>LR</td>
<td>0.89(0.08)</td>
<td>0.93(0.07)</td>
<td>0.91(0.05)</td>
</tr>
<tr>
<td>SVM</td>
<td>0.94(0.06)</td>
<td>0.93(0.07)</td>
<td>0.94(0.04)</td>
</tr>
</tbody>
</table>

In Fig. 4.10, the learned SVM weights are shown. The values in this figure are the mean of multiple SVM models obtained during the leave-one-out cross-validation process. Note that the features are normalized in training the SVM models. Fig. 4.10a shows the weights in LSVM. A large negative weight is observed for the left hippocampal volume ($nLHV$), which means the volume loss in the left hippocampus increases the classification value. The large positive weight for left-side CSF volume ratio ($LCR$) shows a positive correlation between CSF volume and MTS prediction. The first shape feature ($Shape1$) has a large weight at approximately -0.6, with the other shape weights are relative small. For Fig. 4.10b, the $nRHV$ has a negative weight at about -0.3, and the $RCR$ has a positive weight at approximately +0.3. It illustrates the
decrease in $nRHV$ and the increase in $RCR$ can increase the right MTS detection. The first shape feature is also observed to have a large contribution to the right MTS detection.

4.4.3 System Performance

The confusion matrices for both LSVM and RSVM are shown in Table 4.3. For left MTS detection, 17/18 MTS images were detected, and 14/15 NON-MTS images were identified successfully, thus obtaining a sensitivity of 0.94, a specificity of 0.93, and an accuracy of 0.94. For right MTS detection, there was one false negative out of 18 RMTS images, and 14 healthy right hippocampi were identified correctly. Thus, the sensitivity, specificity, and accuracy of right MTS detection are 0.94, 0.93, and 0.94, respectively.
Table 4.3: Confusion matrix for LSVM and RSVM. Act.: Actual, Pred.: Prediction.

<table>
<thead>
<tr>
<th></th>
<th>LSVM</th>
<th></th>
<th>RSVM</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MTS</td>
<td>NONMTS</td>
<td>MTS</td>
<td>NONMTS</td>
</tr>
<tr>
<td>MTS</td>
<td>17</td>
<td>1</td>
<td>17</td>
<td>1</td>
</tr>
<tr>
<td>NONMTS</td>
<td>1</td>
<td>14</td>
<td>1</td>
<td>14</td>
</tr>
</tbody>
</table>

Fig. 4.11 shows the two miss detections (i.e. one in LMTS and another in RMTS) along with the segmented hippocampal areas. Fig. 4.11 (b) and (e) are the ground truth of hippocampal regions (in white contours), while (c) and (f) are the segmentation results (white regions) using the FIRST tool (in section 4.3.1). The segmentation of hippocampus with MTS is not accurate for these two cases, as the segmentation results include the lost hippocampal volume (indicated by the white arrows in (a) and (d)) as hippocampus regions. Improving the segmentation results of the hippocampus is our future research goal.

To plot the receiver operating characteristic (ROC) curves of SVMs, the distance to the hyperplane is converted to the posterior probability that an observation is classified into the MTS group using a sigmoid function [122]. By varying a predefined threshold of the probability, the true and false positive rates are calculated at each threshold value. Therefore, the ROC curves are plotted in Fig. 4.12 for both LSVM and RSVM. The area under the curve (AUC) measurement for LSVM is 0.97 and the AUC for RSVM is 0.98.

In Fig. 4.13, we compare the performance of each feature type (i.e. hippocampal shape, volume or CSF-ratio) in MTS detection. It is observed that the performance based on the CSF-ratio features is comparable (in left MTS detection) with or better (in right MTS detection) than that based on the hippocampal shape or volume features.
Table 4.4 shows the performance comparison results. It is observed that the proposed method could achieve a superior performance for MTS detection.
Figure 4.13: MTS detection using different features. (a) Left MTS detection, (b) right MTS detection.

Table 4.4: Performance comparison for different techniques. Sen.: sensitivity; Spe.: specificity; Acc.: accuracy.

<table>
<thead>
<tr>
<th>Technique</th>
<th>LMTS</th>
<th>RMTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rudie [129]</td>
<td>0.89</td>
<td>0.87</td>
</tr>
<tr>
<td>Kohan [93]</td>
<td>0.78</td>
<td>0.80</td>
</tr>
<tr>
<td>Proposed</td>
<td>0.94</td>
<td>0.93</td>
</tr>
</tbody>
</table>

4.4.4 Computation Time

Regarding computation time, the proposed method takes approximately 7 minutes on average based on the time measurement on a computer with an Intel Core i5 CPU (2.6 GHZ) and 8 GB RAM, running MacOS. In this study, the FAST [169] and FIRST [120] tools are used for brain and hippocampus segmentation. Feature extraction and classification are implemented in MAT-
LAB R2017b. It is observed that the brain and hippocampus segmentation (i.e. preprocessing) takes over 95% of the overall computation time. Feature extraction and classification are computationally efficient as these together take approximately 10 seconds. Compared with manual hippocampal quantification, which takes approximately 1 hour for a typical 3D MR image [59], the proposed technique is much more time-efficient.

4.4.5 Discussion

Neuroimaging is the most commonly used tool in the identification of brain structural abnormalities. MTS characteristics in MR images mainly involve the reduced volume and abnormal morphometry of the hippocampus [75, 105]. This study aims to develop an automatic MTS detection technique using a machine learning approach based on the combination of the hippocampus and its surrounding tissue (i.e. CSF) features in T1-weighted structural MR images. Experimental results have shown a promising performance of the proposed technique, indicating its potential in clinical utility.

The three types of features (i.e. hippocampal volume, hippocampal shape and CSF features) used in this chapter could provide complementary information for MTS classification. Previous groups [42, 59, 129] have already shown that hippocampal volume and asymmetry properties are the most reliable features in identifying MTS or TLE. Some studies [66, 111] suggested that hippocampal shape analysis could provide further insights into MTS when there is little difference in the total hippocampal volume between normal controls and patients. Furthermore, the neuronal cell loss in the hippocampus may be reflected by the space change in cerebrospinal fluid surrounding the diseased tissue [67]. As seen in Fig. 4.13, CSF features are comparable with hippocampal volume and shape features in the performance of MTS detection.

Table 4.4 compares the proposed technique with two existing techniques
Kohan et al. [93] used the hippocampal volume and shape features, and obtained a sensitivity of 0.78 for both left and right MTS detection. Rudie’s technique [129] was implemented using the morphological features of 15 sub-cortical structures, and CSF properties were not included. It is observed that using a large number of structures did not achieve a better performance. One possible reason is that insignificant features were included and introduced noise to the classification problem. The results further illustrated the significance of CSF features in MTS detection.

The SVM is a classification model widely used in the detection of brain lesions, including tumors [58, 113], multiple sclerosis [102], stroke [33, 167] and arteriovenous malformations [50, 116]. One advantage of SVM is its robustness against the risk of over-fitting [72, 159]. Additionally, SVM could use kernel tricks to map features that are not linearly separable into a higher-dimensional space to make the separation much easier. However, this study finds that the linear SVM classifier outperforms the kernel-SVMs (polynomial and RBF), as reported in Table 4.2. This may be caused by the sample size, which may be not large enough to estimate the kernel-SVMs parameters. The classification problem in this study could also be considered as a multi-class classification problem using one classifier to classify an MR image into normal, left MTS, right MTS, or bilateral MTS. However, generating classification scores for the left and right hemispheres separately has been reported to be more clinically relevant [23, 129], which has been done in this study. Additionally, using two binary classifiers can detect bilateral MTS cases, even if the training dataset does not include bilateral cases.

This study can also be extended to the detection of some other neurological diseases, such as multiple sclerosis and Alzheimer’s disease, which affect the hippocampal morphometry. Reduced hippocampal volume has been reported to have an association with the cognitive impairment in multiple sclerosis.
and Alzheimer’s disease [140]. It is notable that neurological features of MTS are not limited to the change of hippocampal volume, shape, and CSF properties. MTS is also linked with whole-brain white matter and gray matter changes [46, 101]. Additionally, CSF biomarkers are also correlated with the neurodegenerative processes in MTS [143], multiple sclerosis [53, 57], and Alzheimer’s disease [35]. Overall, combining both pathological and neuroimaging features may further improve the detection and prediction of neurological diseases.

Some limitations of our study are worth noting. First, the sample size is limited, which is a common problem in neuroimaging studies [23, 66, 111]. Therefore, leave-one-out cross-validation is used in this study to avoid the possibility of over-fitting and to estimate the general performance [27]. A larger dataset may contribute to developing even more robust and accurate classifiers for MTS. Second, this study only involves T1-weighted images, which are more sensitive to subtle abnormalities in brain tissues [20]. Features from T2 [23], FLAIR [77], PET [87], or SPECT [76] images have been reported to be helpful in MTS/TLE detection. Therefore, there is still room to improve the performance of the proposed system. In the future, a larger dataset including multiple modalities could be used to develop more comprehensive models.

### 4.5 Conclusion

In this chapter, a computer-aided detection technique for MTS is proposed based on both hippocampus and CSF features. Two SVMs are used for left- and right-side MTS detection, respectively. The experimental results demonstrate the promising detection performance of the proposed technique. In future, a larger dataset should be used to evaluate the proposed technique for patients with bilateral MTS, and to analyze the impact of MRI field strength on detection performance.
Chapter 5

Automated Detection of Focal Cortical Dysplasia

Focal cortical dysplasia (FCD) is one of the commonest epileptogenic lesions, and is related to malformations of the cortical development. The findings on MRI images are important for the diagnosis and surgical planning of FCD. In this chapter, an automated detection technique for FCD is proposed using MRI images and deep learning. The input MRI image is first preprocessed to correct the bias field, normalize intensities, align with a standard atlas, and strip the non-brain tissues. All cortical patches are then extracted on each axial slice, and these patches are classified into FCD and non-FCD using a deep convolutional neural network (CNN) with five convolutional layers, a max pooling layer, and two fully-connected layers. Finally, the false and missed classifications are corrected in the post-processing stage. The technique is evaluated using images of 10 patients with FCD and 20 controls. The proposed CNN shows a superior performance in classifying cortical image patches compared with multiple CNN architectures. For the system-level evaluation, nine of the ten FCD images are successfully detected, and 85% of the non-FCD images are correctly identified. Overall, this CNN based technique could learn optimal cortical (texture and symmetric) features automatically, and improve the accuracy of FCD detection.
5.1 Introduction

Focal cortical dysplasia (FCD) is the malformation of the cortical development, which may be caused by reasons of cortical architecture or cytological abnormalities [85]. It is the foremost cause of epilepsy in children and the third most significant cause in adults [100]. Magnetic resonance imaging (MRI) is widely used in identifying FCD as it can provide images of soft tissue with high contrast and resolution. In Fig. 5.1, three T1-weighted MR images (i.e. one healthy and two FCD images) are shown. The regions enclosed by red rectangular boxes in Figs. 5.1 (b) and (c) show two typical MRI features of FCD: blurred gray matter (GM) - white matter (WM) boundary and increased cortical thickness. Manual identification of FCD lesion on MR images is a time-consuming and subjective task even for an experienced specialist due to the subtlety of FCD lesions and complexity of brain anatomic structure [126]. In MR images, multiple tissue types (e.g. GM, WM, CSF) contribute to voxel/pixel intensities, which is known as partial volume effect, and it may also compromise the diagnosis of FCD. Therefore, it is important to develop a computerized system that can process brain MR images and detect subtle lesions automatically and objectively, to assist radiologists in analyzing images and making diagnosis.

Several techniques have been proposed for FCD detection in the literature. These techniques can be broadly divided into two categories: voxel-based morphometry (VBM), and surface-based classification (SBC). In the following, a brief review of techniques in these two categories is presented. Unless mentioned otherwise, T1-weighted MR images are assumed.

The VBM techniques [109] typically normalize images to a standard stereotactic space, segment the normalized images into regions of interest (ROIs), smooth these ROIs, and finally performs a voxel-wise statistical analysis to
highlight significant anatomical differences between patients and healthy groups. The techniques usually generate statistical feature maps that are used to detect FCD regions by choosing an optimum threshold. Colliot et al. [29] proposed to use gray matter concentration (GMC) map for FCD detection. The GMC map is calculated by segmenting a normalized brain into GM, WM, and CSF, smoothing the GM mask, and calculating z-score [96] at each voxel in GM region. Note that z-score measures how many standard deviations a GMC value is above or below the mean of controls. A voxel is classified as FCD if its z-score value is greater than a predefined threshold. Similarly, Pail et al. [118] used GMC map to detect FCD within the temporal pole in patients with mesial temporal lobe epilepsy. Wagner et al. [148] proposed to use gray matter white matter junction (GWJ) and gray matter extension (GME) maps for FCD detection. The calculation of GWJ includes brain normalization, segmentation, binarization to obtain GM-WM junctions, smoothing and comparison with normal database. The GME map is calculated using the GM segment of brain. Wong-Kisiel et al. [163] further illustrated the effectiveness of GWJ and GME maps in FCD detection on a larger database of patients.
and controls. House et al. [71] also used GWJ map, but based on T2-weighted MR images, to detect FCD regions.

The SBC techniques typically perform cortical reconstruction to obtain inner- and outer-cortical surfaces (using publicly available softwares such as FreeSurfer [49]), extract features at each vertex, and finally classify lesion vertices using the machine learning methods, such as artificial neural network (ANN) and support vector machine (SVM). Different surface-based features and classification models have been proposed in these SBC techniques. Besson et al. [17] calculated five features (i.e. cortical thickness, GM-WM blur, T1 hyper-intensity, sulcal depth, and curvature) at each vertex after cortical surface reconstruction, and performed both vertex-wise classification (using a bagged ANN) and cluster-wise classification (based on the statistic values of clusters). Hong et al. [68] used similar surface features, but vertex-wise classification was performed using Fisher linear discriminant analysis and clusterwise classification was based on the statistical moments of clusters. Ahmed et al. [3] proposed to use bagged logistic regression to classify FCD vertices for “MRI-negative” patients. Adler et al. [2] proposed additional “doughnut” features (calculated on a circle region of vertices on the inflated surface) in the vertex classification using ANN. Clustering was applied in the end to remove false positive FCD clusters. Tan et al. [144] used surface features of both MRI and positron-emission tomography (PET) images, followed a two-step classification: a voxel-based SVM to maximize the sensitivity, and a patch-based classifier to remove the false positives. Jin et al. [82] proposed a FCD detection technique similar to [2], but with a larger database of images obtained from different epilepsy centers.

As observed, most techniques are based on either VBM or SBC. Typically, the VBM techniques use a few neurological features (e.g. GMC, GWJ, and GME), which are used for clinical diagnosis. Although, the VBM techniques
have shown a good performance, these techniques are sensitive to artifacts including misalignment, misclassification, and differences in anatomical structures [10]. On the other hand, the SBC techniques generate cortical surfaces, and calculate features that are robust to alignment and segmentation artifacts. These techniques are relatively efficient in FCD detection as they take into consideration the anatomical relationships across cortex [68]. But these techniques also have a high computational complexity because of the 3D surface reconstruction [127]. A further improvement may be possible by combining both voxel and surface features.

In recent years, deep learning techniques and especially convolutional neural networks (CNN) have shown great potential in image classification and segmentation problems since they could learn optimal features automatically [99]. Anthimopoulos et al. [7] proposed a lung pattern classification technique for interstitial lung disease based on a deep CNN architecture of 5 convolutional layers with 2×2 kernels, leaky rectifier linear unit (LReLU), and average pooling. The CNN architecture is trained and evaluated on non-overlapping image patches, and it shows superior classification performance over feature-based techniques (e.g., intensity, texture, LBP features). Pereira et al. [121] proposed a brain tumor segmentation technique based on a CNN architecture with 4-6 convolutional layers, 3×3 kernels, and LReLU. To the best of the authors knowledge, deep learning has not been applied to the detection of FCD. In this chapter, we propose an automated FCD detection technique using a deep CNN architecture. The rest of this chapter is organized as follows. In Section 5.2, the materials used in this work are introduced. The proposed methods are presented in Section 5.3, and the experimental results are reported in Section 5.4. Section 5.5 concludes this chapter.
5.2 Materials

In this study, the patient group includes a retrospective cohort of 10 patients who underwent T1-weighted imaging on the 1.5T Siemens MRI scanner at the University of Alberta Hospital, with confirmed FCD lesions. The study was approved by the Alberta health services and University of Alberta research ethics board. The MR images were acquired using the T1-weighted magnetization-prepared rapid-acquisition gradient echo (MPRAGE) sequence (TR = 2130ms, TE = 3.91ms, and flip angle = 15°) with an isotropic voxel dimension of 1×1×1 mm³. Each 3D MR image has 208×256×192 (coronal×sagittal×axial) voxels. The FCD lesions are labeled manually on axial slices of the 3D MR images by an expert neurologist at the University of Alberta Hospital.

The control group includes 10 healthy subjects and 10 temporal lobe epilepsy (TLE) patients. The healthy controls were obtained from the IXI dataset [25], and the T1-weighted images were acquired on a 3.0T Philips MRI scanner at Hammersmith Hospital (TR = 9.6ms, TE = 4.6ms, and flip angle = 8°) with a voxel dimension of 0.9×0.9×1.2 mm³ and an image resolution of 256×256×150. The TLE controls were obtained from the Henry Ford Hospital (HFH) dataset [64, 69], and the T1-weighted images were acquired on a 1.5T GE MRI scanner (TR = 7.6ms, TE = 500ms, and flip angle = 20°) with a voxel dimension of 0.8×0.8×2 mm³ and an image resolution of 256×256×124. All of the control images were reviewed by an neurologist at the University of Alberta, and confirmed with no FCD lesions.

5.3 Methods

The overall schematic of the proposed technique is shown in Fig. 5.2. It includes four modules: 1) preprocessing, 2) patch extraction, 3) deep learning classification, and 4) post-processing. Details of the proposed methods are
presented in the following sections.

5.3.1 Preprocessing

T1-weighted MR images are preprocessed using FMRIB Software Library (FSL) v5.0 [81], which involves the use of several FSL tools. First, the bias field correction algorithm in the automated segmentation tool [169] is applied to correct intensity non-uniformities caused by the low-frequency artifacts. Second, the linear image registration tool [80] is performed to align the image with a standard brain atlas [48]. The brain extraction tool [137] is then used to remove the non-brain tissues from the whole-head image. Finally, intensity normalization is applied to keep the image intensity in the range $[0, 1]$.

5.3.2 Patch Extraction

Since FCD is a malformation of cortical development, neurologists are typically interested in the cortical regions and GM-WM junctions. Therefore, we extract rectangular patches of brain cortex on axial MR slices for FCD detection. The patch extraction is performed by first extracting patch masks on the gray matter probability map (GMPM) of the brain atlas [48], and then applying the masks to the preprocessed brain images. Patch masks are extracted using the following procedure.

1) Each axial slice of GMPM is divided into horizontal strips of height $h$ ($h = 16$ pixels in this work). An example of GMPM division is shown in Fig. 5.3(a), and a horizontal strip is shown in Fig. 5.3(b).
2) On each horizontal strip, the Radon transform [36] is performed vertically to obtain the projection onto the horizontal axis. Fig. 5.3(c) shows the line plot of the Radon transform of the horizontal strip in Fig. 5.3(b).

3) To locate the cortex region in a horizontal strip, the values of its Radon transform are checked from left to right. Once the value changes from 0 to a positive value, a rectangular box of size $h \times w$ ($w = 32$ pixels) is placed at this point to be one patch mask. This is shown as the left green box in Fig. 5.3(d). Based on the symmetric property of the brain atlas and the mirror reflection about the middle sagittal line, the right-side patch mask is obtained, shown as the right green box in Fig. 5.3(d).

4) Cortical patches along the inter-hemispheric fissure are extracted, shown as the blue rectangles in Fig. 5.3(e).

5) Repeat step 1) - 4) on every axial slice of GMPM, the patch masks of the whole brain are extracted.

For a preprocessed image, the cortical patches are extracted based on the patch masks obtained from the above procedure. One example slice is shown in Fig. 5.4, and the extracted image patches are shown as the green and blue rectangular regions. In order to capture both the texture and symmetric properties of cortex, we use a pair of patches as the input to a classification model. Each cortical patch is paired with the mirror reflection of the corresponding patch on the other hemisphere. For example, in Fig. 5.4, patch pair 1 is formed by the image patch $P_1$ and the reflection of patch $P_2$ (noted as $\bar{P}_2$), and patch pair 2 is formed by $P_2$ and the reflection of $P_1$ (noted as $\bar{P}_1$). The patch pair has the same label as the image patch. Therefore, the axial slice in Fig. 5.4 could generate 42 patch pairs since there are 42 patches in this slice.

Using the above procedure, 129,780 (30 images $\times$ 4326 patches/image)
Figure 5.3: Patch masks extraction on one axial slice of GMPM. (a) The axial slice divided into horizontal strips of height $h$, (b) one horizontal strip, (c) line plot of the Radon transform of (b), (d) two external patches (the green boxes), and (e) two middle patches (the blue boxes) along the inter-hemisphere fissure. Note that all patch masks have the same size of $h \times w$.

patches are extracted from the dataset (of 30 MR images) in this study. Out of these, 2,302 patches are labeled as FCD and 127,478 as non-FCD. To overcome the imbalance between FCD and non-FCD patches, data augmentation is applied. The traditional affine transform based data augmentation is not suitable for the cortical dysplasia images because the texture properties of a lesion region may be changed inappropriately after transformation. In this study, we
use up-sampling method to increase the number of FCD patches, which is achieved by re-extracting FCD patches starting from the \( i \)th \((2 \leq i \leq h)\) row on each axial slice. This results in a total of 36,786 FCD patches (with an up-sampling factor of approximately 16). The same number of non-FCD patches are selected randomly to balance the two classes. All patches are divided into training, validation, and testing sets at ratios of 70%, 15%, and 15%, respectively.

### 5.3.3 Deep Learning Classification

Deep learning techniques, especially CNNs, have been used extensively in image classification problems due to their superior performance. In this chapter, a CNN architecture is proposed for cortical patch classification, as shown in Fig. 5.5. The input is one patch pair, and output is the classification result (i.e. probability of being FCD). The CNN architecture consists of five convolutional layers (Conv1 - Conv5), one pooling layer, and two fully-connected layers (FC1 and FC2). The details of this architecture are listed in Table 5.1, and the following types of CNN layers are involved.

![Figure 5.5: Schematic of the proposed CNN architecture](image)

1) **Convolutional layers:** In a convolutional layer, a neuron is only connected to a local area of input neurons instead of full-connection so that the number of parameters to be learned is reduced significantly and a network can grow deeper with fewer parameters. In the proposed CNN,
Table 5.1: Details of the proposed CNN architecture with 5 convolutional layers, 3×3 filters, and scale parameter $k = 4$.

<table>
<thead>
<tr>
<th>Layer</th>
<th>Type</th>
<th>Filters (#, size)</th>
<th>Activations</th>
<th>Learnables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inputs</td>
<td>Input</td>
<td>-</td>
<td>16×32×2</td>
<td></td>
</tr>
<tr>
<td>Conv1</td>
<td>Convolution</td>
<td>16, 3×3</td>
<td>14×30×16</td>
<td>Weight: 3×3×2×16</td>
</tr>
<tr>
<td></td>
<td>Normalization</td>
<td>-</td>
<td>14×30×16</td>
<td>Offset: 16</td>
</tr>
<tr>
<td></td>
<td>ReLU</td>
<td>-</td>
<td>14×30×16</td>
<td>Scale: 16</td>
</tr>
<tr>
<td>Conv2</td>
<td>Convolution</td>
<td>32, 3×3</td>
<td>12×28×32</td>
<td>Weight: 3×3×16×32</td>
</tr>
<tr>
<td></td>
<td>Normalization</td>
<td>-</td>
<td>12×28×32</td>
<td>Offset: 32</td>
</tr>
<tr>
<td></td>
<td>ReLU</td>
<td>-</td>
<td>12×28×32</td>
<td>Scale: 32</td>
</tr>
<tr>
<td>Conv3</td>
<td>Convolution</td>
<td>64, 3×3</td>
<td>10×26×64</td>
<td>Weight: 3×3×32×64</td>
</tr>
<tr>
<td></td>
<td>Normalization</td>
<td>-</td>
<td>10×26×64</td>
<td>Offset: 64</td>
</tr>
<tr>
<td></td>
<td>ReLU</td>
<td>-</td>
<td>10×26×64</td>
<td>Scale: 64</td>
</tr>
<tr>
<td>Conv4</td>
<td>Convolution</td>
<td>128, 3×3</td>
<td>8×24×128</td>
<td>Weight: 3×3×64×128</td>
</tr>
<tr>
<td></td>
<td>Normalization</td>
<td>-</td>
<td>8×24×128</td>
<td>Offset: 128</td>
</tr>
<tr>
<td></td>
<td>ReLU</td>
<td>-</td>
<td>8×24×128</td>
<td>Scale: 128</td>
</tr>
<tr>
<td>Conv5</td>
<td>Convolution</td>
<td>256, 3×3</td>
<td>6×22×256</td>
<td>Weight: 3×3×128×256</td>
</tr>
<tr>
<td></td>
<td>Normalization</td>
<td>-</td>
<td>6×22×256</td>
<td>Offset: 256</td>
</tr>
<tr>
<td></td>
<td>ReLU</td>
<td>-</td>
<td>6×22×256</td>
<td>Scale: 256</td>
</tr>
<tr>
<td>Pooling</td>
<td>Max Pooling</td>
<td>-</td>
<td>3×11×256</td>
<td></td>
</tr>
<tr>
<td>FC1</td>
<td>Dropout</td>
<td>-</td>
<td>8448</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fully-connected</td>
<td>-</td>
<td>256</td>
<td>Weight: 8448×256</td>
</tr>
<tr>
<td>FC2</td>
<td>Fully-connected</td>
<td>-</td>
<td>2</td>
<td>Weight: 256×2</td>
</tr>
<tr>
<td>Outputs</td>
<td>Softmax</td>
<td>-</td>
<td>1</td>
<td>Bias: 2</td>
</tr>
</tbody>
</table>

Each convolutional layer consists of three operations: convolution, batch normalization, and ReLU activation.

(a) Convolution The output of a convolution operation is computed
by convolving the input with a number of filters, as shown in the following equation:

$$x_j = I \ast W_j + b_j, j = 1, 2, \ldots, N$$  \hspace{1cm} (5.1)$$

where $I$ is the input, $N$ is the number of filters, $x_j$ is the output corresponding to the $j$th convolution filter, $W_j$ is the weights of the $j$th filter, and $b_j$ is the $j$th bias. In the first convolutional layer of the network in Fig. 5.5, $I, W_j$, and $x_j$ have dimensions of $16 \times 32 \times 2$, $3 \times 3 \times 2$, and $14 \times 30$, respectively. Note that $x_j$ does not include any partial convolution output. As a result, the feature map dimension decreases after each convolution operation. In CNN, the number of filters and the filter size are two hyperparameters that need to be specified. The number of filters, $N$, at each convolutional layer, is defined as follows:

$$N_l = k \times 2^{l+1}, l = 1, 2, \ldots, L$$  \hspace{1cm} (5.2)$$

where $N_l$ is the number of filters at the $l$th convolutional layer, $L$ is the total number of convolutional layers (e.g. $L = 5$), and $k$ is a scale parameter.

(b) **Batch normalization:** After convolution operation, batch normalization is used to speed up the training of CNN and reduce the effect of initialization [74]. It normalizes each input channel across a mini-batch by subtracting mean of the mini-batch and dividing by its standard deviation. The normalized values are then scaled and shifted as follows:

$$y_i = \sigma \hat{x}_i + \beta$$  \hspace{1cm} (5.3)$$

where $y_i$ is output value, $\hat{x}_i$ is the normalized input value, $\sigma$ and $\beta$ are the scale and offset factors that are learnable during the network training.
(c) **ReLU:** Nonlinear activation functions are applied element-wise to increase the non-linear properties of the network. In the CNN, rectified linear unit (ReLU) is the most commonly used nonlinear activation function [112], and it replaces all negative pixel values by zeros using the following equation:

\[ f = \max(0, y) \]  

(5.4)

where \( y \) is the input value to ReLU, and \( f \) is the output. Compared with \( \tanh \) and \( \text{sigmoid} \) activations, ReLU has the advantages of speeding up training [97] and inducing the sparsity in hidden units [56].

Step (a)-(c) are repeated five times (as shown in Table 5.1). After the ReLU module, the feature map \( f \) is used as the input (I) of the next convolutional layer (if appropriate). After the five convolutional layers in the proposed architecture, 256 feature maps, each of dimension \( 6 \times 22 \), are obtained, as shown in Table 5.1. These are then down-sampled in a pooling layer.

2) **Pooling:** In a pooling layer, the feature maps are down-sampled using an average or a max operation to reduce the number of parameters and control overfitting in a network. In this study, a max pooling layer with filter of size \( 2 \times 2 \) with a stride of 2 is used. Before the pooling, there are 256 feature maps of size \( 3 \times 11 \). After the pooling, the feature maps are flattened and concatenated to form a \( 8448 \times 1 \) feature vector.

3) **Fully-connected (FC) layers:** The proposed CNN has two FC layers as shown in Fig. 5.6. After pooling and flattening, the feature vector of size \( 8448 \times 1 \) is fully connected to 256 nodes at the first FC layer. The second
FC layer has 2 nodes, and its output scores (noted as $z_i$, $i = 1, 2$) are fed to a softmax layer where the classification probability is calculated.

As observed in Table 5.1, the proposed network has a total of 2,556,914 parameters (numbers of parameters listed in the last column) that need to be updated during the training process, and the first FC layer takes approximately 85% of this number. To speed up training [139], dropout is used in the first FC layer removing some nodes with a probability ($p = 0.4$) during training. In other words, 40% of the $8448 \times 256$ weights (chosen randomly) are not updated at each training iteration.

4) **Softmax:** The softmax function is applied at the last layer to generate the probability distribution of the classification results. The predicted probability is computed using the following equation.

$$\gamma = \frac{e^{z_1}}{e^{z_1} + e^{z_2}} \quad (5.5)$$

where $\gamma$ is the probability that the input belongs to the FCD class.

**Training:** To train the CNN, the loss function and the optimization algorithm must be defined. In this study, we use the cross entropy loss function.
for multi-class classification, which is defined as follows:

\[ E = - \sum_{s=1}^{S} t_s \ln \gamma_s \]  

(5.6)

where \( S \) is the number of training samples (i.e. image patch pairs), \( t_s \) is the ground truth value that the \( s \)th sample belongs to the FCD class, and \( \gamma_s \) is the output probability of the network. To minimize the loss function \( E \), the stochastic gradient descent with momentum (SGDM) [128] optimizer is used in the proposed technique. The SGDM accelerates stochastic gradient descent (SGD) and reduces the oscillation problem of SGD by adding the contribution from the previous iteration to the current iteration. The update to the network parameters is performed using the following equation:

\[ \theta_{n+1} = \theta_n - \alpha \nabla E(\theta_n) + \mu(\theta_n - \theta_{n-1}) \]  

(5.7)

where \( n \) is the iteration number, \( \theta \) is the parameter vector, \( \nabla E(\theta) \) is the gradient of the loss function, \( \alpha \) is the learning rate, and \( \mu \) is momentum. In this work, the momentum is set to 0.9. The learning rate is initialized to 0.01, and drops every 10 epochs by a factor of 0.2. The mini-batch size is set to 128 and the maximum number of epochs is set to 40.

5.3.4 Post-processing

A patch is considered as FCD if \( \gamma > \tau \), where \( \tau \) is a threshold that maximizes the validation accuracy. In the post-processing stage, the classification results of both a patch and its four neighbors are considered. As shown in Fig. 5.7, the four neighbors of a patch \( P \) include two patches \( (N_1, N_2) \) from the same slice, one patch \( (N_3) \) from the upper slice, and one \( (N_4) \) from the lower slice. The following two steps are performed to remove noise and avoid misclassifications. 1) If \( P \) is classified as FCD and \( N_1-N_4 \) are classified as non-FCD, \( P \) is treated as a noise and re-labeled as non-FCD. 2) If \( P \) is a non-FCD patch and \( N_1-N_4 \)
are FCD patches, $P$ is treated as a misclassification and re-labeled as FCD. After post-processing, an image with FCD is corrected if the detected FCD patches and the ground-truth FCD regions have overlap.

Figure 5.7: A patch ($P$) and its four neighbors ($N_1$-$N_4$).

### 5.4 Experimental Results

In this section, we first present the implementation of the proposed technique. The evaluation results of the proposed CNN model are then provided. Finally, the system-level evaluation is presented.

#### 5.4.1 Implementation

The proposed technique is implemented using MATLAB R2018a with the neural network toolbox. All experiments are performed on a Windows 10 computer with Intel i7-6700K CPU and 16 GB RAM. The CNN architectures are trained using a NVIDIA GeForce GTX 970 graphic card.
5.4.2 Evaluation of the CNN

In this section, the classification performances of multiple CNN architectures are evaluated and compared with the proposed network. These architectures are constructed based on variations of the hyperparameters (i.e. number of layers, number of filters, type of activation function, and dropout probability). Each architecture is trained on the training dataset, and fine tuned on the validation dataset. The performance of each architecture is evaluated on the testing patch dataset using accuracy, which is calculated using the following equation.

$$\text{Accuracy} = \frac{TP + TN}{TP + FP + TN + FN}$$  \hspace{2cm} (5.8)

where TP, FP, TN and FN are the numbers of true-positive, false-positive, true-negative, and false-negative patches, respectively.

Table 5.2 compares multiple CNN architectures in the patch classification performance. In this table, the last row in bold shows the testing accuracy (0.941) of the proposed architecture. The CNNs using 4 and 6 convolutional layers obtain a classification accuracy of 0.892 and 0.905, respectively, which are roughly a 5% drop in accuracy. Using smaller (2×2) filters reduces the performance by about 5%, and using larger (4×4) filters by another 1%. It illustrates that the optimal size of the receptive field corresponds to the convolutional filters of size 3×3. To determine the parameter $k$, values of 3 and 5 are tested, and it is observed that neither decreasing nor increasing the number of filters could increase the performance. LReLU activations with scale factors 0.01 and 0.1 are also evaluated with the proposed CNN, and they are inferior to the use of the ReLU activation function. The use of a dropout layer with a probability of 0.4 could increase the classification accuracy from 0.897 to 0.941 comparing with the CNN without dropout. Using either a lower (0.3) or a higher (0.5) dropout probability results in a performance drop.
Table 5.2: Performance of different CNN architectures. Acc.: accuracy.

<table>
<thead>
<tr>
<th># layers</th>
<th>Filter size</th>
<th># filters (k)</th>
<th>Activation function</th>
<th>Dropout (p)</th>
<th>Testing acc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>3×3</td>
<td>4</td>
<td>ReLU</td>
<td>0.4</td>
<td>0.892</td>
</tr>
<tr>
<td>6</td>
<td>3×3</td>
<td>4</td>
<td>ReLU</td>
<td>0.4</td>
<td>0.905</td>
</tr>
<tr>
<td>5</td>
<td>2×2</td>
<td>4</td>
<td>ReLU</td>
<td>0.4</td>
<td>0.897</td>
</tr>
<tr>
<td>5</td>
<td>4×4</td>
<td>4</td>
<td>ReLU</td>
<td>0.4</td>
<td>0.881</td>
</tr>
<tr>
<td>5</td>
<td>3×3</td>
<td>3</td>
<td>ReLU</td>
<td>0.4</td>
<td>0.903</td>
</tr>
<tr>
<td>5</td>
<td>3×3</td>
<td>5</td>
<td>ReLU</td>
<td>0.4</td>
<td>0.914</td>
</tr>
<tr>
<td>5</td>
<td>3×3</td>
<td>4</td>
<td>LReLU(0.01)</td>
<td>0.4</td>
<td>0.930</td>
</tr>
<tr>
<td>5</td>
<td>3×3</td>
<td>4</td>
<td>LReLU(0.1)</td>
<td>0.4</td>
<td>0.918</td>
</tr>
<tr>
<td>5</td>
<td>3×3</td>
<td>4</td>
<td>ReLU</td>
<td>0</td>
<td>0.897</td>
</tr>
<tr>
<td>5</td>
<td>3×3</td>
<td>4</td>
<td>ReLU</td>
<td>0.3</td>
<td>0.911</td>
</tr>
<tr>
<td>5</td>
<td>3×3</td>
<td>4</td>
<td>ReLU</td>
<td>0.5</td>
<td>0.930</td>
</tr>
</tbody>
</table>

Fig. 5.8 shows the receiver operating characteristic (ROC) curve for the proposed CNN. It illustrates the true positive rate against false positive rate based on the classification results on the testing dataset. The area under the ROC curve is 0.985, which indicates a good classification performance [106] of the proposed CNN.

![Figure 5.8: The ROC curve for the proposed CNN.](image)

In Fig. 5.9, it shows the loss and performance curves during the training of the proposed CNN. Each iteration is corresponding to an update to the
Figure 5.9: Loss and accuracy plots during the network training process.

network parameters based on the mini-batch gradients. The training accuracy and loss are calculated on each individual mini-batch. The validation accuracy and loss are calculated on the validation dataset at the end of every 300 iterations. The network training stops when the validation accuracy did not increase in the previous 5 validations, and it takes approximately 19 minutes.

In Fig. 5.9, the training and validation accuracy curves are generally consistent during the network training process. The small divergence between the two at the end of the training, however, it may be related to the emerging of overfitting. Similar trend is also observed from the training and validation loss curves.

The 16 filters of the first convolutional layer are shown in Fig. 5.10. In Fig. 5.10, row 1-2 shows the two channels of the first 8 filters, and row 3-4 are the two channels of the other 8 filters. It is observed that both high and low frequency patterns are captured by using this group of filters. The similarity of the two filter channels may indicate that these filters could capture the symmetric properties of the input patch pair.
5.4.3 Evaluation of the System

To evaluate the FCD detection performance of the proposed system, we use leave-one-out cross validation strategy that all images but one are used for training the CNN model, and the left image is tested. This procedure is repeated until all images are evaluated. The FCD detection performance is measured using sensitivity, specificity, and accuracy.

To evaluate the FCD segmentation performance of the proposed system, the detected FCD patches are mapped to the inflated cortical surfaces (obtained using the FreeSurfer software [49]) and the dice coefficient is calculated using the following equation.

\[
\text{Dice} = \frac{2(A \cap B)}{A \cup B}
\]  

(5.9)

where \( A \cap B \) is the number of vertices common to the detected \( A \) and the ground-truth \( B \) FCD surface, and \( A \cup B \) is the number of vertices in either \( A \) or \( B \).

Table 5.3 shows the confusion matrix of the FCD detection. Nine of the ten FCD images are detected correctly using the proposed system. For non-
FCD images, 85% of them are correctly identified, and all of the three false detections are from the HFH dataset that has a larger slice thickness than the IXI dataset. It indicates the cortical structures may have some unnoticeable distortions due to either the effect of the disease (TLE) or the interpolation artifacts in image preprocessing. It is possible to increase the specificity by using higher resolution images.

Table 5.3: Confusion matrix for FCD detection with 30 MR images.

| Actual | Prediction | | |
|--------|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|
Figure 5.11: An example of FCD detection. (a) an axial slice with FCD lesion labeled in red, (b) patch extraction results, (c) classification results and numbers stand for probabilities of being FCD patches, (d) detection results mapped onto the inflated cortical surface (shown in yellow).

with three existing techniques using the images in this work. For the VBM technique [118], the optimal z-score threshold (of 3.5) is chosen to maximize the detection accuracy based on the GMC maps. The two SBC techniques [3, 82] are supervised classification techniques, and they are evaluated using the leave-one-out strategy. It is observed that the proposed technique provides a detection accuracy of 0.88, which is a 0.15 increase over the state of the art at 0.73. The specificity and sensitivity are also observed superior to the other three techniques. It indicates that the proposed deep learning technique may be a valuable tool for FCD detection and patient evaluation.

Table 5.5 compares the segmentation accuracy of the correctly detected FCD regions between the proposed technique and two SBC-based techniques.
Figure 5.12: The missed FCD detection. (a) an axial slice with the enlarged FCD lesion, (b) patch probabilities (in magenta) of being FCD.

Table 5.4: Performance comparison with existing techniques for FCD detection. Spe.: specificity, sen.: sensitivity, acc: accuracy

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pail, 2012 [118]</td>
<td>VBM</td>
<td>0.60</td>
<td>0.70</td>
<td>0.66</td>
</tr>
<tr>
<td>Ahmed, 2015 [3]</td>
<td>SBC</td>
<td>0.75</td>
<td>0.60</td>
<td>0.70</td>
</tr>
<tr>
<td>Jin, 2018 [82]</td>
<td>SBC</td>
<td>0.75</td>
<td>0.70</td>
<td>0.73</td>
</tr>
<tr>
<td><strong>Proposed</strong></td>
<td>CNN</td>
<td><strong>0.85</strong></td>
<td><strong>0.90</strong></td>
<td><strong>0.88</strong></td>
</tr>
</tbody>
</table>

[3, 82] using surface mapping and dice coefficient. After FCD detection, we first reconstructed the cortical surface of each image using the FreeSurfer software, and then mapped the detection results to this surface. The dice coefficient is
calculated using Eq. 5.9 for each FCD lesion. The mean dice coefficients are reported in Table 5.5. It is observed that the proposed technique can provide a higher segmentation accuracy.

Table 5.5: Performance comparison with existing techniques for FCD segmentation.

<table>
<thead>
<tr>
<th>Technique</th>
<th>Dice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ahmed, 2015 [3]</td>
<td>0.43</td>
</tr>
<tr>
<td>Jin, 2018 [82]</td>
<td>0.55</td>
</tr>
<tr>
<td><strong>Proposed</strong></td>
<td><strong>0.78</strong></td>
</tr>
</tbody>
</table>

## 5.5 Conclusion

In this chapter, an automated technique is proposed for FCD detection in T1-weighted MR images using a deep convolutional neural network. The proposed technique first performs preprocessing to align the input image with a standard brain atlas. The cortical patches are then extracted on axial slices. Each patch is paired and fed to a CNN classifier with 5 convolutional layers, 1 max pooling layer, and 2 fully-connected layers. Finally, the post-processing stage removes noises and correct missed detections. Experimental results show a superior performance (90% sensitivity) of the proposed technique compared to the state of the art (70% sensitivity).
Chapter 6

Conclusions and Future Work

In recent years, computer-aided techniques of image analysis and lesion detection are attracting more and more attention from both academic researchers and medical professionals. These techniques are playing increasingly important roles in assisting neuroradiologists in their routine diagnosis and treatment planning. However, due to the variation and complexity of the human brain, much effort is still required to develop more robust computer-aided techniques for brain MRI image analysis and lesion detection. This thesis has developed several CAD techniques for the epileptogenic lesions, including cavernous malformation, mesial temporal sclerosis, and focal cortical dysplasia. This chapter concludes the thesis and discusses some future research works.

6.1 Conclusions

In Chapter 1, we presented a brief introduction to epilepsy and its diagnosis using MRI. The three most common epileptogenic lesions (i.e. CM, MTS, and FCD) were introduced, and the research topics of this thesis were presented. In Chapter 2, a brief review of related medical image analysis techniques was presented, followed by an overview of some existing CAD systems for different brain diseases. The main contributions of this thesis were presented in Chapters 3 to 5.
Chapter 3 presented the proposed technique for the automated detection of the cavernous malformation in T2-weighted axial plane MRI images. The brain area is first extracted using atlas registration and an active contour model. Template matching is then performed to obtain the candidate cavernoma regions. Texture, the histogram of oriented gradients and local binary pattern features of each candidate region are calculated, and principal component analysis is applied to reduce the feature dimensionality. Support vector machines are finally used to classify each region into cavernoma or non-cavernoma. The proposed technique was evaluated using 9 MR images of patients with a total of 23 cavernous malformations. The experimental results show a superior performance in cavernoma detection compared to existing techniques.

Chapter 4 presented the proposed technique for the automated detection of mesial temporal sclerosis based on the hippocampus and CSF features in MRI images. It includes brain segmentation and hippocampus extraction followed by calculating features of both hippocampus and its surrounding cerebrospinal fluid. Support vector machines are then applied to the generated features to identify patients with MTS from those without MTS. The proposed technique is developed and evaluated on a data set comprising 15 normal controls, 18 left and 18 right MTS patients. Experimental results show that subjects are correctly classified using the proposed classifiers with an accuracy of 0.94 for both left and right MTS detection.

Chapter 5 presented the proposed technique for the automated detection of focal cortical dysplasia using MRI images and deep learning. The input MRI image is first preprocessed to correct the bias field, normalize intensities, align with a standard atlas, and strip the non-brain tissues. All cortical patches are then extracted on each axial slice, and these patches are classified into FCD and non-FCD using a deep convolutional neural network (CNN) with five convolutional layers, a max pooling layer, and two fully-connected layers.
Finally, the false and missed classifications are corrected in the post-processing stage. The proposed technique is evaluated using images of 10 patients with FCD and 20 controls. The proposed CNN shows a superior performance in classifying cortical image patches compared with multiple CNN architectures. For the system-level evaluation, nine of the ten FCD images are successfully detected, and 85% of the non-FCD images are correctly identified. Overall, the proposed CNN-based technique improves the detection of FCD.

6.2 Resulting Publications

Based on the work of this thesis, the following papers have been published in refereed journals and conferences.

Journals


Conferences

[1] H. Wang, SN. Ahmed and M. Mandal, Efficient detection of mesial temporal sclerosis using hippocampus and CSF features in MRI images,
6.3 Future Work

In this thesis, computer-aided detection techniques have been developed for the epileptogenic lesions. However, there are still many works that should be done to improve the completeness of a CAD system for epilepsy. A few possible future research works are introduced in this section.

6.3.1 More Epileptogenic Lesions

Other than cavernous malformation, mesial temporal sclerosis, and focal cortical dysplasia, there are still some other causes of intractable epilepsy, such as heterotopia, polymicrogyria, gliosis, and epileptogenic tumors. A complete CAD system for epilepsy should be able to screen as many epileptogenic lesions as possible. The techniques developed in this thesis could be extended.
easily to detect these lesions. Future research work could be focused on developing detection techniques for more epileptogenic lesions, thus increasing the screening capability of the proposed CAD system for epilepsy.

6.3.2 Deep Learning in Epilepsy

In recent years, deep learning techniques, in particular, convolutional neural networks (CNN), have been used extensively in image classification and segmentation problems since they could learn optimal features automatically [99]. Some successful applications of deep learning in brain image analysis are brain extraction [90], brain segmentation [26], tumor segmentation [60], Alzheimer’s disease prediction [70], tumor grading [119], microbleed detection [37], lacune detection [55], etc. In these applications, the deep learning techniques have already shown superior performance over the traditional techniques based on manually-crafted features.

The detection for the epileptogenic lesions in MRI is challenging due to the following reasons: a lack of labeled images, class imbalance, lesion complexity and variability in location, morphometry, and texture. In this thesis, we developed a CNN architecture for FCD that showed promising performance. Although several techniques have been proposed for the detection of epileptogenic lesions, all of these techniques are based on manually-crafted features (either voxel- or surface-based) [2, 71, 144, 163], and there is still room to improve the performance. Therefore, it is necessary to use deep learning algorithms in the computational analysis for epileptogenic lesions, and it is expected that the deep learning algorithms will increase the detection performance for epileptogenic lesions by automatically learning optimal lesion features in MRI.
6.3.3 Multiple Imaging Modalities

Currently, the computational analysis for epilepsy images is generally based on structural MRI. The 3D T1-weighted MR images are commonly used in the detection of mesial temporal sclerosis [93, 129], and focal cortical dysplasia [3, 163] for its high resolution and gray-white matter contrast. Few previous techniques have combined images of more than one imaging modalities in the epilepsy image analysis. Diffusion-weighted MRI generates images based on the diffusion property of water molecules [31], and it could increase the contrast of gray-white matter and the sensitivity to changes in gray matter [44]. Positron emission tomography (PET) uses radioactive tracers to observe the metabolic process and aid the diagnosis of lesions [12]. Some studies have shown that the co-registration of PET and MRI images improves the detection of cortical dysplasia [132]. Future research could be focused on combining features of multiple imaging modalities to increase the detection and segmentation performance for the epileptogenic lesion.

6.3.4 Accurate Segmentation of Epileptogenic Lesions

It is reported that approximately 80% of epilepsy patients are rendered seizure free after complete resection of epileptogenic lesions, while this number is only 20% - 50% when incomplete resection is performed due to lack of imaging findings [100]. It is important to segment epileptogenic lesions accurately and completely in MRI because of this correlation between complete resection and good surgical outcome. However, delineating epileptogenic lesions from healthy brain tissue is a difficult task [73], and very few studies have shown good segmentation results. Further research could be conducted on improving the accuracy of segmenting epileptogenic lesions in brain images.
References


[25] Centre for the Developing Brain, Imperial College London. IXI dataset.


113


[90] J. Kleesiek, G. Urban, A. Hubert, D. Schwarz, K. Maier-Hein, M. Bend- 
szus, and A. Biller. Deep mri brain extraction: a 3d convolutional neural 

with epilepsy: a study of patients in long term residential care. *Journal 


epilepsy detection in magnetic resonance imaging. In *Medical Imaging: 
Biomedical Applications in Molecular, Structural, and Functional Imag-
ing*, volume 9788, page 97882, San Diego, California, United States, Feb. 
2016.

[94] H. Kong, H. C. Akakin, and S. E. Sarma. A generalized Laplacian of 
Gaussian filter for blob detection and its applications. *IEEE transactions 

[95] S. Kotsiantis, D. Kanellopoulos, et al. Handling imbalanced datasets: 
a review. *GESTS International Transactions on Computer Science and 


with deep convolutional neural networks. In *Advances in neural infor-


fluid features in MR images. *Biocybernetics and Biomedical Engineering (accepted)*, 2018.


125


