Journal of Insect Behavior

Effect of environmental conditions on flight capacity in mountain pine beetle (Coleoptera: Curculionidae: Scolytinae). --Manuscript Draft--

Manuscript Number:	JOIR-D-19-00131R3			
Full Title:	Effect of environmental conditions on flight capacity in mountain pine beetle (Coleoptera: Curculionidae: Scolytinae).			
Article Type:	Original Article			
Keywords:	Dendroctonus ponderosae; light; temperat	ture; wind speed; insect dispersal		
Corresponding Author:	Asha Wijerathna, MSc University of Alberta Edmonton, Alberta CANADA			
Corresponding Author Secondary Information:				
Corresponding Author's Institution:	University of Alberta			
Corresponding Author's Secondary Institution:				
First Author:	Asha Wijerathna, MSc			
First Author Secondary Information:				
Order of Authors:	Asha Wijerathna, MSc			
	Maya Evenden			
Order of Authors Secondary Information:				
Funding Information:	Natural Sciences and Engineering Research Council of Canada (NET GP 434810-12)	Dr. Maya Evenden		
Abstract:	Mountain pine beetle (Dendroctonus ponderosae Coleoptera: Curculionidae: Scolytinae) is a major pest of pine (Pinaceae) in western North America. Mountain pine beetle has an obligatory dispersal phase during which beetles fly in search of new hosts to colonize. Climatic factors may influence dispersal in the expanding geographic range of the mountain pine beetle. This study tests mountain pine beetle flight capacity in the laboratory under different abiotic conditions including temperature, light and wind speed. Beetle flight capacity was tested under different temperatures before and during flight and different light regimes in separate computer-linked flight mill bioassays. A wind tunnel experiment tested the effect of wind speed on beetle flight. Pre-flight temperature and temperature during flight did not affect beetle flight capacity (distance or duration). Beetles do, however, use more energy during flight at high temperatures, which could affect host colonization following dispersal by flight of mountain pine beetle in nature. Beetles fly a greater distance and longer duration during a long (18 h) than short (16 h) photophase, suggesting that increased day length with a northern range expansion could affect beetle flight capacity. Although wind speed does not affect flight probability or duration, it affects the number of flights and flight patterns of mountain pine beetles.			
Response to Reviewers:	October 08, 2020 Re: Revised version of: Effect of environme mountain pine beetle (Coleoptera: Curculion Dear Drs. Allison and Cardé, Thank you very much for accepting our mar on flight capacity in mountain pine beetle (C publication in Journal of Insect Behaviour. F	nidae: Scolytinae) . nuscript, "Effect of environmental conditions Coleoptera: Curculionidae: Scolytinae)" for		

our manuscript. We have addressed the concerns raised by the editors. 1.We notice that species authors are included and these should be removed in keeping with house style. Authors response: We have removed species authors in the revised manuscript. [Lines 21, 47, 49, 53,86,325, 340] 2.Last reference, italicize genus, remove DOIs unless it's an online reference. Authors response: We have italicized genus name of the last reference and DOIs were removed from references when not applicable. 3.we ask that you take a look at the text around lines 91 and 355. It seems that there could be inconsistencies here. Authors response: [Line 91] Emerging mountain pine beetles normally fly downwind until they encounter an odor plume at which point beetles turn to orient upwind in response to the odor source (Safranyik et al. 1992). [Line 354-356] During the current study, beetles flew against the wind without the presence of any semiochemical cues. Mountain pine beetles fly downwind at emergence even in the presence of aggregation pheromones (Safranyik et al. 1992), before flying upwind after encountering an odor source (Gray et al. 1972). We have removed Line 355 from the revised manuscript. Line 354 "During the current study, beetles flew against the wind without the presence of any semiochemical cues." is same as the Line 356 " In the absence of an odor source, mountain pine beetle fly without wind or against all the different wind speeds tested in the current study". Therefore, we removed Line 354-355 to keep the flow of the discussion.

1	Effect of environmental conditions on flight capacity in mountain pine beetle (Coleoptera: Curculionidae:
2	Scolytinae)
3	
4	Asha Wijerathna [*] , Maya Evenden
5	Department of Biological Sciences, CW 405 Biological Sciences Building, University of Alberta, Edmonton,
6	Canada, T6G 2E9
7	*Corresponding author email: wijerath@ualberta.ca
8	ORCID: Asha Wijerathna: 0000-0002-6029-3330, Maya Evenden: 0000-0003-0333-7330
9	
10	Acknowledgments
11	We thank Devin Letourneau of Alberta Agriculture and Forestry for tree bolts and Jackson Lai for conducting
12	the wind speed flight bioassay. This research was supported by a grant to Maya Evenden from the Natural
13	Science and Engineering Research Council of Canada (grant no. NET GP 434810-12) to the TRIA Network,
14	with contributions from Alberta Agriculture and Forestry, fRI Research, Manitoba Conservation and Water
15	Stewardship, Natural Resources Canada - Canadian Forest Service, Northwest Territories Environment and
16	Natural Resources, Ontario Ministry of Natural Resources and Forestry, Saskatchewan Ministry of
17	Environment, West Fraser and Weyerhaeuser. Research presented in this manuscript followed all applicable
18	laws and rules set forth by provincial and federal governments and the University of Alberta and all necessary
19	permits were held when the research was conducted.

20

Abstract

21 Mountain pine beetle (Dendroctonus ponderosae Coleoptera: Curculionidae: Scolytinae) is a major pest of pine 22 (Pinaceae) in western North America. Mountain pine beetle has an obligatory dispersal phase during which beetles 23 fly in search of new hosts to colonize. Climatic factors may influence dispersal in the expanding geographic range of 24 the mountain pine beetle. This study tests mountain pine beetle flight capacity in the laboratory under different 25 abiotic conditions including temperature, light and wind speed. Beetle flight capacity was tested under different 26 temperatures before and during flight and different light regimes in separate computer-linked flight mill bioassays. 27 A wind tunnel experiment tested the effect of wind speed on beetle flight. Pre-flight temperature and temperature 28 during flight did not affect beetle flight capacity (distance or duration). Beetles do, however, use more energy during 29 flight at high temperatures, which could affect host colonization following dispersal by flight of mountain pine 30 beetle in nature. Beetles fly a greater distance and longer duration during a long (18 h) than short (16 h) photophase, 31 suggesting that increased day length with a northern range expansion could affect beetle flight capacity. Although 32 wind speed does not affect flight probability or duration, it affects the number of flights and flight patterns of 33 mountain pine beetles. 34 Keywords 35 Dendroctonus ponderosae, light, temperature, wind speed, insect dispersal 36

37

38 Introduction

39 Dispersal is a basic element in the population dynamics of eruptive insect species (Bjornstad 2002; Aukema 40 et al. 2006; Sturtevant et al. 2013) because low resource availability at high population densities affects insect flight 41 (Elliott and Evenden 2012; Evenden et al. 2014). Dispersal is energetically costly (Zera 2009) and may reduce 42 energy availability for subsequent reproduction (Hanski et al. 2006; Wijerathna and Evenden 2019). Understanding 43 dispersal is important to predict spread and manage eruptive insect pests. Insect dispersal includes both long- and 44 short-distance movement of individuals from natal habitats (Nathan et al. 2003) to feeding or breeding habitats 45 (Loxdale and Lushai 1999; Bowler and Benton 2005). Dispersal and movement of insects is influenced by many 46 factors that can act at individual to ecosystem levels (Loxdale and Lushai 1999).

47 Mountain pine beetle (Dendroctonus ponderosae Coleoptera: Curculionidae: Scolytinae) is the most 48 important pest of pine (Pinaceae) in western North America. It has killed lodgepole pine (Pinus contorta) forest over 49 an area of 18 million hectares during the most recent outbreak that started in the late 1990s (https://www2.gov.bc). 50 High population densities of mountain pine beetle in the most recent outbreak generated long-distance dispersal 51 events that resulted in range expansion into pine forests east and north of the Rocky Mountains in Alberta (Safranyik 52 et al. 2010). In its expanded range, mountain pine beetle has encountered the novel host, jack pine (P. banksiana) in 53 the boreal forest of Canada (Cullingham et al. 2011). In the new range, mountain pine beetle will encounter climatic 54 conditions that differ from its historical habitats which may influence dispersal in the new range.

55 Mountain pine beetle has an obligatory dispersal phase (Gray et al. 1972; de la Giroday et al. 2012) which 56 largely depends on short-distance or stand-level flight (Safranyik 1989). This dispersal can be influenced by weather 57 (Safranyik et al. 1992; Jackson et al. 2008; Murphy et al. 2004; Chen and Jackson 2017), host tree availability 58 (Robertson et al. 2007) and beetle physiology (Evenden et al. 2014; Wijerathna and Evenden 2019). Pioneer females 59 release an aggregation pheromone, trans-verbenol, after reaching a suitable host (Pureswaran and Borden 2005) 60 which attracts both sexes of mountain pine beetle to initiate the mass attack on the tree (Pitman 1968). Arriving 61 males produce a different aggregation pheromone, exo-brevicomin, which mainly attracts females until the attack 62 density is maximized. Both sexes produce anti-aggregation pheromone, verbenone, to discourage further 63 colonization of the host tree (Pureswaran et al. 2000). Despite our vast knowledge of mountain pine beetle ecology,

3

64 it is unclear how abiotic factors influence the flight capacity of mountain pine beetles during this obligatory

65 dispersal phase.

66 Weather factors are frequently correlated and have a combined effect on insect flight. Inner bark temperature 67 before flight initiation may be important for bark beetle flight in nature, as higher ambient temperatures are required 68 for flight take-off than for sustained flight in most insects (Johnson 1969; Rudinsky and Vite 1956). The minimum 69 flight initiation temperature of many *Dendroctonus* species lies between 16 to 20°C (Miller and Keen 1960; 70 McMullen and Atkins 1962; Atkins 1966; Shepherd 1966; Rasmussen 1974; Jones et al. 2019). Temperature affects 71 the flight speed, distance and the flight frequency in some bark beetle species (Henson 1962; Jones et al. 2019). 72 Flight by mountain pine beetle is severely restricted at temperatures above 38°C and no flight occurs above 41°C 73 (McCambridge 1971). The lower limit for flight initiation of mountain pine beetle is 19°C (McCambridge 1971). 74 The temperature might also affect mountain pine beetle flight through an indirect effect on the energy reserves used 75 in flight. High bark temperatures can lead to low-quality mountain pine beetle individuals (Chubaty et al. 2014) and 76 energy reserves are positively related to mountain pine beetle dispersal (Evenden et al. 2014; Wijerathna and 77 Evenden 2019). Mountain pine beetles with more fat fly further and for longer compared to those with low fat 78 reserves (Evenden et al. 2014; Wijerathna et al. 2019). Energy level can influence host selection decisions (Atkins 79 1966; Jones et al. 2019) of mountain pine beetle, as beetles with higher energy reserves are more host selective than 80 beetles with low energy reserves that accept poor quality trees (Chubaty et al. 2009; Latty and Reid 2010). 81 The current mountain pine beetle range expansion toward more northerly habitats will expose beetles to 82 longer day lengths during the summer flight period, which may change the distance and duration that beetles fly 83 during a day. Mountain pine beetles are photopositive at emergence under room temperature and more females 84 orient toward light than males (Atkins 1966). Mountain pine beetles become negatively phototactic when the 85 temperature exceeds 35°C (Shepherd 1966). Dendroctonus armandi also displays a photosensitive flight behavior in 86 which total flight distance is greater under artificial illumination than in natural light and dark conditions in a flight 87 mill study. Flight occurs most in the morning and afternoon and declines under dark conditions (Chen et al. 2010). 88 Insect orientation during dispersal is linked to the direction and speed of air movement. Emerging mountain 89 pine beetles normally fly downwind until they encounter an odor plume at which point beetles turn to orient upwind 90 in response to the odor source (Safranyik et al. 1992). Beetle response to attractive semiochemicals decreases with 91 increasing wind speed (Gray et al. 1972). Larger scolytids can navigate at wind speeds up to about 2 m/s (Rudinsky

92 1962; Coster and Gara 1968). Flight of *D. frontalis* ceases at wind speeds greater than ~ 2 m/s (Coster and Gara
93 1968). Hence, changes in wind speed might alter beetle flight patterns and response toward pheromones and host
94 volatiles.

95 Assessment of flight capacity in a controlled environment can indicate factors that may be driving variation 96 in the dispersal of mountain pine beetle under natural conditions. The purpose of this study is to understand 97 mountain pine beetle flight capacity under different abiotic conditions to predict how environmental factors will 98 affect dispersal in the expanded range of mountain pine beetle. We hypothesize that flight capacity of mountain pine 99 beetle is influenced by rearing and flying temperatures, light and wind speed. We use computer-linked flight mills to 100 determine the effects of variation in day length and temperature before and during flight on beetle flight capacity. 101 We measure flight distance, duration, speed, and the probability of beetles to fly under variable conditions. We 102 predict that mountain pine beetle reared and flown at low temperatures will have greater flight capacity compared to 103 those reared and flown at higher temperatures. As beetles fly during the day under natural conditions, we predict that 104 flight distance and duration will increase with day length under artificial conditions. We predict that beetle flight 105 capacity will decrease with increasing wind speeds. We use a wind tunnel bioassay to examine the effects of wind 106 speed on mountain pine beetle flight probability, duration, number of flights and flight patterns.

107

108 Methods

109 Beetles

110 Mountain pine beetle-infested lodgepole pine bolts were obtained from five different sites (3 trees/site) near 111 Grande Prairie, AB (55.1699°N, 118.7986°W) in October 2014. One 50-cm bolt from 1 m above the soil surface 112 was cut from each tree. These bolts were transported to the laboratory at the University of Alberta where the cut 113 ends were sealed with paraffin wax before storage at 5°C. Bolts were kept in cold storage for 4 to 6 months to 114 provide some winter condition for maximal mountain pine beetle development (Lusebrink et al. 2013). After 115 removal from cold storage, bolts were placed in separate 121-L bins made of opaque plastic and fitted with glass 116 emergence jars and held at room temperature. The emergent adult beetles were separated by sex (Lyon 1958) and 117 beetles were stored at 5°C in microcentrifuge tubes (2.0 ml) with a piece of paper to provide a surface to which 118 beetles could cling.

119 Beetle flight treatment

5

120 Two types of flight bioassays were used to test the effects of environmental conditions on mountain pine 121 beetle flight. To test the effects of temperature and light on beetle flight capacity, bioassays were conducted on 122 computer-linked flight mills (Evenden et al. 2014). Beetles (3-5 days post-emergence) were prepared for flight by 123 attaching a 0.4-mm-diameter loop of a tether made from 0.2-mm-diameter aluminum wire to the beetle pronotum 124 with Press-Tite Contact Cement (LePage, Mississauga, ON, Canada). Tethered beetles were attached to the distal 125 end of each flight mill arm by inserting a straight 2-cm portion of the aluminum tether at an approximately 100° 126 angle with the mill arm. The flight assay was initiated 4 h after the beginning of the photophase and lasted 23 h. 127 Beetles were flown at 621 Lux during the light cycle using high flicker frequency fluorescent bulbs. Males and 128 females were flown on alternate days (n=2-22 per day) to avoid sensory cues from the opposite sex affecting flight. 129 As beetles propelled the mill arms, a magnetic sensor on each flight mill indicated the arm rotation of each mill to 130 the computer. One revolution of the mill arm equaled 94.2 cm. The software (LabView, National Instruments 131 Corporation, Austin, TX) output included total distance flown, longest single flight, flight duration and flight speed. 132 Beetle flight status was recorded as a binary outcome (flight=1, no flight=0) for the beetles that were placed on 133 flight mills during the 23h flight period. A random sample of beetles was selected to serve as controls. Control 134 beetles were tethered in the same manner, but the tether was then removed from the beetles, and beetles were kept in 135 a perforated microcentrifuge tube (2 ml) during the flight period in the same environmental chamber that housed the 136 flight mills.

137 To test the effects of wind speed on beetle flight, a second set of flights was conducted in a small wind tunnel 138 (0.1m x 0.05m x 0.05m) (Fig. 1) positioned within a large wind tunnel (1.7m x 0.85m x 0.9m). The small wind 139 tunnel was connected to a variable-speed fan at the upwind end. The top of the wind tunnel was covered with a 140 transparent sheet (80cm x 40cm) to allow light penetration provided by 4, 100 watt incandescent lights (~650 lux). 141 A small window (30cm x 20cm) covered with a plastic transparent sheet on the side of the small tunnel allowed the 142 experimenter to observe the flight trials. Wind speed was measured at the beginning of each flight bioassay using a 143 hand-held anemometer (Model 9870, Sunshine Instruments) inserted into the wind tunnel 40 cm downwind from the 144 fan (Fig. 1).

145 Temperature-flight bioassay

A flight mill experiment tested the effects of temperature before and during flight on the flight capacity of mountain pine beetle (Fig. 2). Beetles are ectotherms and lose more energy when kept at a higher temperature

148 compared to lower temperatures. Mountain pine beetles kept at 25°C lose more energy compared to those kept at 149 4°C (Chubaty et al. 2014). Therefore, we selected 5°C and 24°C as the beetle rearing temperatures for this 150 experiment. The lower limit for flight initiation of mountain pine beetle is 19°C and flight is severely restricted 151 above 38°C (McCambridge 1971). We selected two flying temperatures, 20°C and 24°C, where mountain pine 152 beetles can conduct sustained flights. Beetles (2-4 days post-emergence) were separated into different pre-flight 153 temperatures (5°C and 24°C) 23 h before the flight bioassay. After 23 h at the assigned pre-flight temperature, 154 beetles were weighed to the nearest 0.01 mg (Mettler Toledo, XS105, Columbus, OH) and the pronotum width and 155 body length (to the nearest 0.01mm) were measured using an ocular micrometer on a dissecting microscope (6.3 X 156 magnification). Tethered beetles from both pre-flight temperature treatment groups were flown at one of two flight 157 temperatures (20°C and 24°C). Beetles from both pre-flight temperature treatments were flown on a single day 158 under each flying temperature. A minimum of 50 male and 50 female beetles from each pre-flight temperature group 159 were flown at each flight temperature (total=401). Beetles were flown for 23 h under 16L: 8D at 621 Lux during the 160 light cycle. A separate set of control beetles was held at the same flight temperature for 23 h before the flight and 161 treated in the same manner as the flown beetles. Beetles were weighed to the nearest 0.01 mg after the 23 h flight. 162 *Light-flight bioassay*

163 Another flight mill experiment tested the effect of photophase duration on beetle flight (Fig. 3). Beetles 3-5 164 days post-emergence were tethered, and flights were conducted under two different photoregimes with different 165 photophase lengths (short [16L: 8D] and long [18L: 6D]). Two to 22 beetles were flown per day for 23 h at 24°C 166 under 621 Lux during the photophase. A separate set of control beetles was housed individually inside perforated 167 microcentrifuge tubes (2 ml) with a piece of paper. Control beetles were tethered in the same manner, but tethers 168 were removed and control beetles were held under the same conditions as experimental beetles during the flight 169 bioassay. Ninety-five females and 95 males were flown on the short day length cycle and 52 males and 38 females 170 were flown on the long day length cycle (total=280). The pronotum width and body length (to the nearest 0.01mm) 171 of each beetle was measured at 6.3X magnification before the flight. Pre- and post-flight weights were measured to 172 the nearest 0.01 mg (Mettler Toledo, XS105, Columbus, OH).

173 Wind speed-flight bioassay

The effect of wind speed on beetle flight probability and duration was tested in a wind tunnel flight
bioassay. Tethered beetles were suspended 15 cm from the roof of the wind tunnel, 40 cm from the upwind end (Fig.

176 1). Five tethered beetles of the same sex were positioned 5 cm apart in each trial. Beetles were introduced facing 177 both upwind and downwind directions within the flight chamber at one of four different wind speeds (0, 0.5. 1, 2 178 m/s) (Fig. 4). Beetles did not fly when facing downwind. Therefore, beetles were flown facing upwind during the 179 flight bioassay. Beetles were given 10 minutes to acclimatize before the experiment. Five beetles were observed for 180 50 minutes on each flight day at each wind speed. Different beetles were tested to each wind speed. The number and 181 duration of flights were recorded at each tested wind speed within the observation period. Beetle flight status was 182 recorded as a binary outcome (flight=1, no flight=0) of the beetles that were suspended from the ceiling of the wind 183 tunnel during the 50 min flight period. Wind speed treatments were alternated during the day to prevent confounding 184 effects of time of day on the beetle flight. Beetle pronotum width and body length (to the nearest 0.01mm) were 185 measured before the flight. Pre- and post-flight weight was measured to the nearest 0.01 mg (Mettler Toledo, 186 XS105, Columbus, OH). A total of 223 beetles were flown during the wind tunnel bioassay. Conditions within the

187 wind tunnel were maintained at light~650 Lux and temperature=24±2°C.

188 Data Analysis

189 Data were analyzed using R v. 3.5.2 2018.12.20 (R Core Development Team 2018) separately for the three 190 experiments (temperature, light and wind speed bioassays). The flight probability and flight capacity of the beetles 191 in flight assays were analyzed using generalized mixed effect models using lme4 library (Bates et al. 2015) (Table 192 1). To test flight capacity of the beetles in the temperature bioassay, flight duration, flight distance and flight speed 193 were treated as dependent variables in separate models. Pre-flight temperature, flying temperature, sex and pre-flight 194 weight were treated as fixed factors in flight probability and flight capacity models. The weight loss of the beetles 195 was analyzed using a generalized mixed effect model. Beetle weight loss was calculated by subtracting the post-196 flight weight from pre-flight weight. Pre-flight temperature, flying temperature and sex were the fixed factors in this 197 model. Data from all pre flight- flying temperatures regimes and both sexes were averaged to visualize effects of 198 pre-flight weight on flight distance and duration.

In the light experiment, flight distance and duration were treated as dependent variables in separate models.
The light cycle (short and long), light phase (photophase or scotophase), sex and pre-flight weight were used as
fixed factors. In the wind speed bioassay, flight probability and total flight duration were analyzed in separate
generalized mixed effect models. Wind speed, beetle sex and pre-flight weight were treated as fixed factors in each
model. Flight duration was transformed using Tukey's Ladder power transformation (Tukey 1977) to maintain the

normality. In the flight duration model, wind speed was treated as a continuous variable and pre-flight weight was treated as a covariate. To analyze beetle flight patterns, flights were categorized depending on the duration for each flight type within the 50 min bioassay: 1) no flight; 2) burst flight <15 s; 3) intermediate flight between 15 s-25 min; and 4) sustained flight for >25 min. The total number of flights conducted by all individuals under each wind speed was counted. Then, the percentage of each flight type conducted under each wind speed in the 50 min bioassay was calculated and used as the dependent variable in a generalized linear model. Tree bolts from which beetles emerged were treated as a random factor in the above generalized mixed effect models.

211Initial models contained all explanatory variables and interactions between all explanatory variables. In all212analyses, model simplification was achieved by ANOVA hypothesis testing (p < 0.05) for full and reduced models,</td>213until the most parsimonious model remained (Table 1). Model residuals were checked for normality using the214Shapiro Wilk test. The models were checked for homogeneity of variance using Levene's test and for overdispersion215using one sample Kolmogorov–Smirnov test in DARMa package (Hartig 2018). Model fit was tested using qq-plots.216The pairwise comparisons were conducted using the Tukey's post hoc test to test the separation of means of each217model using Ismeans package (Russell 2016).

218

219 **Results**

220 Temperature flight bioassay

221 Beetle flight probability

Between 52 and 80% of beetles flew in experiments testing the different pre-flight temperature and flight temperature combinations (Table 2). The flying temperatures had a significant effect on beetle flight probability $(\chi^2=4.6020, df=1, p=0.0319)$. Flight at 20°C was more likely than flight at 24°C. Pre-flight temperature, however, did not affect flight probability, as beetles held at 5°C were just as likely to fly as those held at 24°C before flight. Flight probability was significantly influenced by the pre-flight weight of beetles ($\chi^2=4.2554, df=1, p=0.0391$), as heavier beetles were more likely to fly than lighter beetles. Flight probability did not differ by beetle sex.

228 Beetle flight capacity

Beetle pre-flight weight significantly influenced the total distance ($\chi^2=13.5076$, df=1, p=0.0002) (Fig. 5a) and the total duration ($\chi^2=7.4760$, df=1, p=0.0062) (Fig. 5b) of flight with heavier beetles flying further and for a longer duration than lighter beetles. Pre-flight temperatures had no effect on flight distance ($\chi^2<0.0001$, df=1,

p=0.9959), flight duration (χ^2 =0.2645, df=1, p=0.6070), or flight speed of the beetles (χ^2 =0.7063, df=1, p=0.4007) 232 233 (Table 2). Similarly, temperature during flight had no effect on flight distance (χ^2 =0.0515, df=1, p=0.8204), flight 234 duration (χ^2 =0.1130, df=1, p=0.7367), or flight speed (χ^2 =1.3865, df=1, p=0.2390) of the beetles. Pre-flight 235 temperature, flying temperature and sex interacted to affect beetle weight loss as a result of flight (χ^2 =4.9808, df=1, 236 p=0.0255) (Fig.6). Weigh loss was not different only between pre flight-flight regime combinations of 5-20°C and 237 24-20°C. Both males and females lost similar weight despite the rearing temperature. Female beetles flew at 20°C 238 lost similar weight to the males flew at 24°C (Tukey's post hoc, p<0.05). Females lost more weight when flown at 239 the higher temperature (24°C) compared to the lower flying temperature (20°C) (χ^2 =57.4873, df=1, p<0.0001). But 240 males only lost more weight when held at the lower temperature (5°C) and flown at the higher temperature (24°C) 241 $(\chi^2 = 7.0557, df = 1, p = 0.0079).$ 242

- 243 Light-flight bioassay
- 244 Beetle flight capacity

There are interaction effects of light cycle, light phase, pre-flight weight and sex on beetle flight distance and (χ^2 =5.5717, df= 1, p= 0.0182) flight duration (χ^2 =6.8432, df= 1, p= 0.0089). Female beetles flew for a longer distance (Fig.7a) and duration (Fig.8a) during the longer photophase compared to the shorter photophase, but this was not found in male beetles (Figs.7b and 8b) (Tukey's post hoc, p<0.05). Beetle flight distance and duration were higher during the photophase compared to scotophase in both light cycles tested.

- 250
- 251 Wind speed-flight bioassay
- 252 Beetle flight probability

253 When beetles were positioned facing upwind in the wind tunnel, flight probability was not affected by the 254 wind speeds tested (χ^2 = 3.8601, df=3, p= 0.2769) nor by beetle sex (χ^2 = 0.5256, df=1, p= 0.4684). Heavier beetles

255 were more likely to fly than light beetles (χ^2 = 12.1968, df=1, p= 0.0004) in the wind tunnel assay.

256 Beetle flight capacity

257 The flight duration of beetles within the 50-minute observation period did not vary with wind speeds tested 258 (χ^2 = 3.0205, df=1, p= 0.0822). The total flight time during the 50-minute flight period varied with beetle pre-flight weight (χ^2 = 18.7915, df=1, p< 0.0001). Beetles with a higher pre-flight weight flew for a longer duration compared

- to lighter beetles. Females flew for longer durations than males at all wind speeds ($\chi^2 = 4.7776$, df=1, p= 0.0288).
- 261 Number of flights and flight patterns

The number of flights was not affected by the wind speed (χ^2 = 1.7575, df=1, p=0.5382), beetle sex (χ^2 = 0.0688, df=1, p=0.7931) or pre-flight weight (χ^2 = 0.3742, df=1, p=0.5407) over the 50- minute flight period. The percentage of each flight type exhibited by beetles varied with wind speed (χ^2 = 26.402, df=1, p< 0.0001) but, not by beetle sex (Fig. 9). Intermediate and burst flights were the prominent flight type in both males and females at most of the wind speeds (0.5, 1 and 2 m/s). Females were capable of more sustained flights in the absence of wind than males, as a large percentage of males did not fly without wind. Males conducted more intermediate flights at the highest wind speed tested, 2 m/s, than females.

269

270 Discussion

271 Dispersal is a basic animal life history trait which allows for a change of habitat. The separation of 272 individuals by dispersal includes two major categories: movement within home range and movement beyond the 273 home range (Dingle 1996). Animals disperse in search for food (Loxdale and Lushai 1999), mates (Rudinsky 1962; 274 Dingle and Drake 2007) or to escape from deteriorating habitats (Dingle 2001) and from predatory risk (Weisser 275 2001). Dispersal is driven by a combination of individual characteristics and environmental effects (Lambin et al. 276 2001; Bowler and Benton 2005; McCauley 2010) and costs and consequences of dispersal may alter with these 277 factors. The study of dispersal is important in relation to population dynamics, because population density can affect 278 the relationship between habitat quality and individual fitness (Loxdale and Lushai 1999; Bowler and Benton 2005; 279 Clobert et al. 2012).

Dispersal is an important aspect of the life cycle of eruptive insects. Most bark beetles have an obligatory flight period to find a new host for brood production after emergence from the natal host. Dispersal capacity is crucial for beetles to find suitable host plants. Physiological, morphological, genetic and environmental conditions influence bark beetle flight capacity, and these factors can be used to parametrize models to predict bark beetle dispersal (Goodsman et al. 2016; Jones et al 2019). Climate conditions can affect energy metabolism and movement of insects. Models that integrate abiotic factors with biotic factors that influence dispersal can help to predict dispersal under changing environmental conditions (Safranyik et al. 2010). In this study, we investigate howmountain pine beetle flight is affected by varying abiotic conditions.

288 Mountain pine beetle flight probability is higher at the lower flying temperature (20 °C) tested in the current 289 study, but flight probability is not affected by pre-flight temperature. These findings suggest that mountain pine 290 beetle flight probability may increase in the northern parts of the beetles' expanded range. Beetles are ectothermic 291 and expend energy more quickly at higher temperatures than at cooler temperatures. Therefore, beetle energetic 292 condition will be lower when beetles fly at high compared to low temperatures (Chubaty et al. 2014), as long as the 293 temperature is above the flight threshold. Energetic condition after flight impacts host finding, colonization 294 behaviors (Atkins 1966; Chubaty et al. 2009, 2014; Xu et al. 2016) and subsequent reproduction (Elkin and Reid 295 2005; Wijerathna et al. 2019) of bark beetles. Females with more fat reserves can successfully colonize well-296 defended hosts (Reid et al. 2017), suggesting that a decline in energy reserves at high flying temperatures might 297 influence mountain pine beetle host acceptance and colonization. Mountain pine beetles with low energy reserves 298 accept lower quality hosts compared to beetles with more energy reserves (Chubaty et al. 2009; 2014; Latty and 299 Reid 2010). Bark beetles with high lipid content are expected to have a long adult life span (Safranyik 1976) and 300 greater flight capacity (Williams and Robertson 2008; Evenden et al. 2014) than short-lived adults. Low flight 301 probability of beetles flown at the higher temperature (24 °C), could indicate lower quality individuals with reduced 302 resources to dedicate to flight resulting in individuals, with lower capacity to tolerate tree defenses during host 303 colonization period. Flight distance and duration did not vary significantly with pre-flight and flying temperatures in 304 the current study, but beetles lost more weight when flown at the 24 °C compared to 20 °C. Energy use is lower at 305 low temperatures (Chubaty et al. 2014), and mountain pine beetle dispersal is positively correlated with energy 306 reserves used during flight (Safranyik 1976; Evenden et al. 2014; Jones et al. 2019). 307 In the current study, flight reaches a maximum of 2.7 km/h speed at the high holding and flight temperatures.

A field study estimate for mountain pine beetle flight velocity is approximately 2 m/s (7.2 km/h) (Safranyik 1989), which is much faster than the flight velocity measured in the current study and could suggest that the tether on the beetle significantly impeded flight. The temperature, light and wind speed conditions under which beetle velocity was estimated, however, were not reported in the field study (Safranyik 1989). Measuring flight capacity and flight probability using tethered beetles on flight mills and in wind tunnels has benefits and drawbacks. First, neither of the bioassay methods mimic the natural flight conditions, as in both bioassays, insects are attached to a stiff tether.

12

Beetles flown on flight mills need to overcome inertia associated with attachment to the mill arm and flight distance could be underestimated (Taylor et al. 2010). Alternatively, flight of tethered insects could be overestimated, as the insect is suspended by the tether (Robertson and Roitberg 1998). Therefore, flight data should be interpreted in a relative manner (Jones et al. 2019).

318 Mountain pine beetles fly for a longer distance and duration with increased day length at a constant 319 temperature. This finding suggests that the distance beetles can fly in a day will increase in the most northern parts 320 of its expanded range because of long summer days. Mountain pine beetle body lipid content decreases with flight 321 distance (Evenden et al. 2014). Greater flight distance and duration with increased day length in the most northern 322 part of its expanded range may lower the energy resources and affect subsequent host colonization (Atkins 1966; 323 Chubaty et al. 2009, 2014; Xu et al. 2016; Reid et al. 2017) and reproduction (Elkin and Reid 2005; Wijerathna et al. 324 2019). Temperature and light influence navigation during the flight phase of D. brevicomis and Ips confusus (Gara 325 and Vite 1962). Flight activity of the bark beetle Xylosandrus germanus is influenced by photoperiod in the field 326 where beetles prefer low light conditions for flight, but do not fly in the dark (Weber 1982). Photoperiod is the 327 major factor determining flight activity of *I. typographus*, while other environmental factors play a secondary role. 328 Swarming behavior of *I. typographus* depends on sunshine, as more beetles take flight during periods of sunshine 329 than without sunshine (Wermelinger 2004). Beetles flew more during the photophase than the scotophase in this 330 study. The time available for beetle flight in the scotophase is lower than that of photophase during the current 331 study, but beetle flight was not constrained by time during the scotophase.

332 Mountain pine beetles are photopositive at emergence under room temperature and females orient toward a 333 single light source more than males (Atkins 1966). In the current study, the length of the photophase influences the 334 flight capacity of male and female beetles differently, as females fly further and longer in the photophase during the 335 longer light cycle compared to males. Females are the pioneers in host finding and in initiating mass attack of new 336 hosts (Gitau et al. 2013). The longer flight time and distance achieved by females in the longer photophase suggests 337 the potential for successful colonization of sparsely treed landscapes in northern habitats. Dendroctonus armandi 338 display a phototactic flight behavior in which total flight distance and flight time is greater under artificial 339 illumination than in natural light conditions. Flight activities in the field are highest in the morning and afternoon 340 and decline with the onset of darkness (Chen et al. 2010). The bark beetle Scolytus multistriatus is photopositive 341 during initial flight in a wind tunnel flight assay (Choudhury and Kennedy 1980). Local flight patterns and

navigation by olfactory cues by *D. brevicomis* are influenced by light conditions (Gara and Vite' 1962). *Ips typographus* fly only during conditions of sunshine and do not fly in the dark (Lobinger and Skatulla 1996). The
current study is the first to record an increased flight capacity of mountain pine beetle with longer day length. This
finding may be important in the modeling of beetle dispersal in novel habitats.

346 Mountain pine beetles fly in the presence or absence of wind and are capable of flight at all of the wind 347 speeds tested in the current study. In our study, both sexes flew at the tested wind speeds and bigger beetles were 348 more likely to fly. Beetles fly upwind against a wind of 2 m/s in the field (Safranyik et al. 1992), and under the 349 conditions of our experiment there is a slight non-significant trend for reduced flight at 2 m/s wind speed compared 350 to the 0, 0.5 and 1 m/s wind speeds tested. Some scolytid beetles cease flight at wind speeds greater than their 351 maximum flight speed (Seybert and Gara 1970; Meyer and Norris 1973). Such conditions may similarly affect flight 352 activity of mountain pine beetle. Intermediate and burst flights were more prominent in both sexes in the wind 353 tunnel as compared to sustained flight. In the absence of an odor source, mountain pine beetle fly without wind or 354 against all the different wind speeds tested in the current study. The flight behavior of beetles may vary, however, 355 with the presence and composition of semiochemicals. Mountain pine beetles fly with wind in the absence of odor 356 plumes and fly against the wind in the presence of aggregation pheromones (Gray et al. 1972).

357 We found that air temperature during flight but not pre-flight temperature influences mountain pine beetle 358 flight probability. Beetles were more likely to fly at the lower flying temperature (20 °C) than at the higher flying 359 temperature (24 °C). Pre-flight and flight temperatures did not affect the beetle flight capacity. The flight 360 temperatures tested during the current study are above the lower limits for mountain pine beetle flight and in the 361 range of beetle spontaneous flight activity. Energy use was greater at high than low flying temperatures. Longer 362 artificial day lengths increased the flight capacity of beetles and beetles showed very low flight capacity in the 363 scotophase. Mountain pine beetles flew, with and without wind, in the absence of an odor source at each tested wind 364 speed. Discoveries of beetle flight under natural conditions are difficult to conduct and the factors that initiate long 365 distance dispersal above the canopy are poorly understood (Safranyik et al. 1992). Individual flight capacity 366 measurements conditions, as measured in the current study, are likely more important for within stand dispersal and 367 are difficult to test in the natural habitat. This study provides baseline relative data on tethered beetles describing 368 individual flight capacity under varying environmental conditions. These findings will be important to incorporate 369 into models that predict mountain pine beetle dispersal in its expanded range.

Figure captions

Fig. 1 Diagram of the wind tunnel (0.1m x 0.05m x 0.05m) used for the wind speed bioassay. Beetles were tethered by attaching a beading wire to the pronotum. Tethers were attached to the roof of the wind tunnel so that beetles were apart by 5 cm and suspended 15 cm from the roof and 40 cm from the upwind end of the tunnel. Five beetles of the same sex were tested at each trial and were placed facing upwind

Fig. 2 Experimental design of the temperature flight bioassay. Mountain pine beetle flight capacity was tested at four different pre-flight and flight temperature regimes

Fig. 3 Experimental design of light flight mill bioassay. Mountain pine beetles flight capacity was tested under two different light cycles (16L:8D and 18L:6D) with different day lengths

Fig. 4 Experimental design of wind speed flight bioassay. Mountain pine beetles flight capacity was tested at four different wind speeds (0, 0.5, 1, 2 m/s)

Fig. 5 Variation of mountain pine beetle flight distance (km) (a) and flight duration (h) (b) with pre-flight weight. Female and male beetles were held separately at two pre-flight temperatures: 5°C and 24°C for 23 hours before the initiation of the flight bioassay, which was conducted at 20 or 24°C for 23 h. Beetles from both pre-flight temperatures were flown at the same time under a selected flying temperature. Beetle pre-flight weight was measured before the flight. Females and males were flown separately on alternate days. Data presented are averaged data for all pre flight- flying temperatures regimes and for both sexes. The shaded area represents the 95% confidence intervals

Fig. 6 Mountain pine beetle mean weight loss during flight (mg) under the tested pre-flight and flight temperature regimes. a) Female, b) Male. Female and male beetles were held separately at two pre-flight temperatures: 5° C and 24°C for 23 hours before the initiation of the flight bioassay, which was conducted at 20 or 24°C for 23 h. Beetles from both pre-flight temperatures were flown at the same time under a selected flying temperature. Females and males were flown separately on alternate days. Beetle weight loss was calculated subtracting the post-flight weight from pre-flight weight. Data were analyzed using a general mixed effects model. Means with different letters are significantly different (Tukey's post hoc test p<0.05)

Fig. 7 Mountain pine beetle mean flight distance (km) in the photophase and scotophase of the two tested light cycles: short (16L: 8D) and long (18L: 6D). Females and males were flown separately on alternate days. a) Female,

15

b) Male. Data were analyzed using a general mixed effects model. Means with different letters are significantly different (Tukey's post hoc test p<0.05)

Fig. 8 Mountain pine beetle mean flight duration (km/h) in the photophase and scotophase of the two tested light cycles: short (16L: 8D) and long (18L: 6D). Females and males were flown separately on alternate days. a) Female, b) Male. Data were analyzed using a general mixed effects model. Means with different letters are significantly different (Tukey's post hoc test p<0.05)

Fig. 9 Mountain pine beetle flight patterns at the tested wind speeds 50 min wind tunnel bioassay. Female (a) and male (b) beetles, 3-5 days post emergence were held separately at 5°C prior to flight for 23 h. Tested wind speeds were: 0 m/s, 0.5m/s, 1m/s, 2 m/s. Females and males were flown separately on alternate days. The wind treatments were alternated during the day. Data were analyzed using a generalized linear model

Table 1: Statistical models used in temperature, light and wind speed flight bioassays. Each model includes dependent variable~ fixed effects and random effects. Symbol * indicates interactions between fixed factors and symbol + indicates no interactions between fixed factors. The models present here are the final models.

Response variable	Fixed effects	Random effects	Data	
			distribution	
Temperature bioassay				
Flight probability	pre-flight temperature + flying temperature +pre-flight	bolt	binomial	
	weight +sex			
Flight distance	pre-flight temperature + flying temperature +pre-flight	bolt	Gamma	
	weight +sex			
Flight duration	pre-flight temperature + flying temperature +pre-flight	bolt	Gamma	
	weight +sex			
Flight speed	pre-flight temperature + flying temperature +pre-flight	bolt	Gamma	
	weight +sex			
Total weight loss	pre-flight temperature * flying temperature *sex	bolt	Gamma	
Female weight loss	pre-flight temperature + flying temperature	bolt	Gamma	
Male weight loss	pre-flight temperature * flying temperature	bolt	Gamma	
Light flight bioassay				
Flight duration	light cycle* light phase* sex* pre-flight weight	bolt	Gamma	
Flight distance	light cycle* light phase* sex* pre-flight weight	bolt	Gamma	
Wind speed bioassay				
Flight probability	wind speed+ sex+ pre-flight weight	bolt	binomial	
Flight duration	wind speed+ sex+ pre-flight weight	bolt	gaussian	
Number of flights	wind speed+ sex+ pre-flight weight	bolt	poisson	
Flight pattern	wind speed+ sex	bolt	binomial	

Beetle sex and pre-flight-	Proportion	Average distance	Average duration	Fight velocity
flying temperature	that flew	flown (km)	(h)	(km/h)
regimes(°C)				
Female				
5-20	0.70	5.43±5.06 (47)	3.67±3.20 (47)	2.16±4.98 (47)
5-24	0.70	3.98± 3.86(49)	2.88±2.46 (49)	1.41±0.64 (49)
24-20	0.79	4.21±4.61(57)	3.06±3.29 (57)	1.47±0.56 (57)
24-24	0.80	4.6 ± 5.83(49)	3.02±3.15 (49)	1.62±1.23 (49)
M-1-				
Male				
5-20	0.72	3.65±4.51(49)	2.37±2.77 (49)	1.82±1.47 (49)
5-24	0.69	3.35±3.20 (49)	2.74 ±2.61 (49)	1.34±0.90 (49)
24-20	0.77	3.98±4.95(52)	2.54± 3.08 (52)	2.09±2.67 (52)
24-24	0.52	2.61±3.55(49)	2.27± 3.06(49)	2.79±4.76 (49)

Table 2: The effects of temperature before and during flight on flight performance of male and female mountain pine beetle. Values are mean± SE, and sample size is stated in brackets.

References

- Atkins MD (1966) Laboratory studies on the behavior of the Douglas-fir beetle, *Dendroctonus pseudotsugae* Hopkins. Can Entomol 98: 953-991.
- Aukema BH, Carroll AL, Zhu J, Raffa KF, Sickley TA, Taylor SW (2006) Landscape level analysis of mountain pine beetle in British Columbia, Canada: spatiotemporal development and spatial synchrony within the present outbreak. Ecography 29: 427-441.
- Bates D, Maechler M, Bolker B, Walker S (2015). Fitting linear mixed-effects models using lme4. J Stat Softw 67: 1-48.
- Bjornstad ON (2002) Waves of Larch budmoth outbreaks in the European Alps. Science 298: 1020-1023.
- Bowler DE, Benton TG (2005) Causes and consequences of animal dispersal strategies: relating individual behaviour to spatial dynamics. Biol Rev Camb Philos Soc 80: 205-225.
- Chen H, Jackson PL (2017) Climatic conditions for emergence and flight of mountain pine beetle: implications for long-distance dispersal. Can J For Res 47: 974-984.
- Chen H, Li Z, Tang M (2010) Laboratory evaluation of flight activity of *Dendroctonus armandi* (Coleoptera: Curculionidae: Scolytinae). Can Entomol 142: 378-387.
- Choudhury JH, Kennedy JS (1980) Light versus pheromone bearing wind in the control of flight direction by bark beetles, *Scolytus multistriatus*. Physiol Entomol 5: 207-214.
- Chubaty AM, Hart M, Roitberg BD (2014) "To tree or not to tree": The role of energy limitation on host tree acceptance in a bark beetle. Evol Ecol Res 16: 337-349.
- Chubaty AM, Roitberg BD, Li C (2009) A dynamic host selection model for mountain pine beetle, *Dendroctonus ponderosae* Hopkins. Ecol Model 220: 1241-1250.
- Clobert J, Baguette M, BentonTG, Bullock JM (2012) Dispersal ecology and evolution. Oxford University Press, Oxford.
- Coster JE, Gara RI (1968) Studies on the attack behavior of the southern pine beetle. 2. Response to attractive host material. Contrib Boyce Thompson Inst Plant Res 24: 69-75.
- Cullingham CI, Cooke JEK, Dang S, Davis CS, Cooke BJ, Coltman DW (2011) Mountain pine beetle host-range expansion threatens the boreal forest. Mol Ecol 20: 2157-2171.
- Dingle H (1996) Migration: The biology of life on the move. Oxford University Press, Oxford.

Dingle H (2001) The evolution of migratory syndromes in insects. In: Woiwod IP, Reynolds DR, Thomas CD (ed) Insect movement: mechanisms and consequences,2nd edn. CABI Publishing, New York, pp 159-182.

Dingle H, Drake V (2007) What is migration?. Bioscience 57: 113-121.

- de la Giroday HMC, Carroll AL, Aukema BH (2012) Breach of the northern Rocky Mountain geoclimatic barrier: Initiation of range expansion by the mountain pine beetle. J Biogeogr 39: 1112-1123.
- Elkin CM, Reid ML (2005) Low energy reserves and energy allocation decisions affect reproduction by mountain pine beetles, *Dendroctonus ponderosae*. Funct Ecol 19:102-109.
- Elliott CG, Evenden ML (2012) The effect of flight on reproduction in an outbreaking forest lepidopteran. Physiol Entomol 37: 219-226.
- Evenden ML, Whitehouse CM, Sykes J (2014) Factors influencing flight capacity of the mountain pine beetle (Coleoptera : Curculionidae : Scolytinae). Environ Ecol 43: 187-196.
- Gara RI, Vite JP (1962) Studies on the flight patterns of bark beetles (Coleoptera: Scolytidae) in second growth ponderosa pine forests. Contrib Boyce Thompson Inst Plant Res 21: 275-289.
- Gitau CW, Bashford R, Carnegie AJ, Gurr GM (2013) A review of semio- chemicals associated with bark beetle (Coleoptera: Curculionidae: Scolytinae) pests of coniferous trees: a focus on beetle interactions with other pests and their associates. For Ecol Manage 297: 1-14.
- Goodsman DW, Koch D, Whitehouse C, Evenden ML, Cooke BJ, Lewis MA (2016) Aggregation and a strong Allee effect in a cooperative outbreak insect. Ecol Appl 26: 2623-2636.
- Gray B, Billings RF, Gara RI, Johnsey RL (1972) On the emergence and initial flight behavior of the mountain pine beetle, *Dendroctonus ponderosae*, in eastern Washington. Zeitschrift fur Angew Entomol 71: 250-259.
- Hanski I, Saastamoinen M, Ovaskainen O (2006) Dispersal-related life-history trade-offs in a butterfly metapopulation. J Anim Ecol 75: 91-100.
- Hartig F (2018) DHARMa: residual diagnostics for hierarchical (multi-level/mixed) regression models. R package version 0.2.0. http://florianhartig.github.io/DHARMa. Accessed 20 January 2020.
- Henson WR (1962) Laboratory studies on the adult behavior of *Conophthorus coniperda* (Coleoptera: Scolytidae). III. Flight. Ann. Entomol Soc Am 55: 524-530.
- History of Mountain pine beetle infestation in B.C. Ministry of Forests, Lands and Natural Resource Operations. https://www2.gov.bc.ca/assets/gov/farming-natural-resources-and-industry/forestry/forest-health/bark-

beetles/history_of_the_mountain_pine_beetle_infestation.pdf. Accessed 20 January 2020.

Jackson PL, Straussfogel D, Lindgren BS, Mitchell S, Murphy B (2008) Radar observation and aerial capture of mountain pine beetle, *Dendroctonus ponderosae* Hopk. (Coleoptera: Scolytidae) in flight above the forest canopy. Can J For Res 38: 2313-2327.

Johnson CG (1969) Migration and Dispersal of insects by flight. Methuen & Co. Ltd, London.

- Jones KL, Shegelski VA, Marculis NG, Wijerathna AN, Evenden ML (2019). Factors influencing dispersal by flight in bark beetles (Coleoptera: Curculionidae: Scolytinae): from genes to landscapes. Can J Forest Res 49:1024-1041.
- Lambin X, Aars J, Piertne SB (2001) Dispersal, intraspecific competition, kin competition and kin facilitation: a review of the empirical evidence. In: Clobert J, Danchin E, Dhondt AA, Nichols JD (ed) Dispersal, Oxford University Press, New York, pp 261-272.
- Latty TM, Reid ML (2010) Who goes first? Condition and danger dependent pioneering in a group-living bark beetle (*Dendroctonus ponderosae*). Behav Ecol Sociobiol 64: 639–646.
- Lobinger G, Skatulla U (1996) Untersuchungen zum Ein uss von Sonnenlicht auf das Schwärmverhalten von Borken- käfern. Anzeiger für Schädlingskunde, P anzenschutz, Umweltschutz, 69: 183-185.
- Loxdale HD, Lushai G (1999) Slaves of the environment: the movement of herbivorous insects in relation to their ecology and genotype. Physiol Trans Bio Sci 354: 1479-1495.
- Lusebrink I, Erbilgin N, Evenden, ML (2013) The lodgepole x jack pine hybrid zone in Alberta, Canada: A stepping stone for the mountain pine beetle on its journey east across the boreal forest? J Chem Ecol 39: 1209-1220.

Lyon RL (1958) A useful secondary sex character in Dendroctonus bark beetles. Can Entomol 90: 582-584.

McCambridge W (1971) Temperature limits of flight of the mountain pine beetle, *Dendroctonus ponderosae*. Ann Entomol Soc Am 64: 534-535.

McCauley SJ, Rowe L (2010) Notonecta exhibit threat-sensitive, predator-induced dispersal. Biol Lett 6: 449-452.

- McMullen LH, Atkins MD (1962) On the flight and host selection of the Douglasfir beetle, *Dendroctonus pseudotsugae* Hopk. (Coleoptera: Scolytidae). Can Entomol 94: 1309-1325.
- Meyer HJ, Norris DM (1973) A mathematical relation to describe the influence of wind on the initial flight dispersal of *Scolytus multistiatus* (Coleoptera: Scolytidae). Annu Entomol Soc Am 66: 505-508.

Miller JM, Keen FP (1960) Biology and control of the western pine beetle: a summary of the first fifty years of

research. U.S. Department of Agriculture, Washington.

- Murphy BD, Jackson PL, Lindgren BS (2004) A synoptic climatology for emergence and flight of the mountain pine beetle. University of Northern British Columbia. http://cirrus.unbc.ca/mpbi/docs/mpbi-annual-report-jackson-2004-05-07.pdf. Accessed 18 February 2020.
- Nathan R, Perry G, Cronin JT, Strand AE, Cain ML (2003) Methods for estimating long-distance dispersal. Oikos. 103: 261-273.
- Pitman (1968) Bark beetle attractants: trans-verbenole isolated from Dendroctonus. Nature 218: 168-169.
- Pureswaran DS, Borden JH (2005) Primary attraction and kairomonal host discrimination in three species of *Dendroctonus* (Coleoptera: Scolytidae). Agric For Entomol 7: 219-230.
- Pureswaran DS, Gries R, Borden JH, Pierce Jr HD (2000) Dynamics of pheromone production and communication in the mountain pine beetle, *Dendroctonus ponderosae* Hopkins, and the pine engraver, *Ips pini* (Say)(Coleoptera: Scolytidae). Chemoecology 10:153-168.
- Rasmussen LA (1974) Flight and attack behavior of mountain pine beetles in lodgepole pine of northern Utah and southern Idaho. US Dept. Agri. Forest Service, Utah.
- Reid ML, Sekhon JK, LaFramboise LM (2017) Toxicity of monoterpene structure, diversity and concentration to mountain pine beetles, *Dendroctonus ponderosae*: beetle traits matter more. J Chem Ecol 43: 351-361.
- Robertson C, Nelson TA, Boots B (2007) Mountain pine beetle dispersal: The spatial-temporal interaction of infestations. For Sci 53: 395-405.
- Robertson IC, Roitberg BD (1998) Duration of paternal care in pine engraver beetles: why do larger males care less? Behav Ecol Sociobiol 43: 379-386.
- Rudinsky J (1962) Ecology of Scolytidae. Annu Rev Entomol 7: 327-348.
- Rudinsky JA, Vite JP (1956) Effects of temperature upon the activity and the behavior of the Douglas-fir beetle. For Sci 2: 257-67.
- Russell VL (2016). Least-Squares Means: The R Package Ismeans. J Stat Softw 69: 1-33.
- Safranyik L (1976) Size- and sex-related emergence, and survival in cold storage, of mountain pine beetle adults. Can Entomol 108: 209-212.
- Safranyik L (1989) An empirical approach to modeling the local dispersal of the mountain pine beetle (*Dendroctonus ponderosae* Hopk.) (Coleoptera; Scolytidae) in relation to sources of attraction, wind direction

and speed. J Appl Ent 108: 498-511.

- Safranyik L, Carroll AL, Régnière J, Langor DW, Riel WG, Shore TL, Peter B, Cooke BJ, Nealis VG, Taylor SW (2010) Potential for range expansion of mountain pine beetle into the boreal forest of North America. Can Entomol 142: 415-442.
- Safranyik L, Linto D, Silversides R, McMullen L (1992) Dispersal of released mountain pine beetles under the canopy of a mature lodgepole pine stand. J Appl Entomol 113: 441-450.
- Seybert RF, Gara RI (1970) Notes on flight and host-selection behavior of pine engraver, *Ips pini* (Coleoptera: Scolytidae). Can Entomol 98: 507-518.
- Shepherd RF (1966) Factors influencing the orientation and rates of activity of *Dendroctonus portderosae* Hopkins (Coleoptera : Scolytidae). Can Entomol 98:507-518.
- Sturtevant BR, Achtemeier GL, Charney JJ, Anderson DP, Cooke BJ, Townsend PA (2013) Long-distance dispersal of spruce budworm (*Choristoneura fumiferana* Clemens) in Minnesota (USA) and Ontario (Canada) via the atmospheric pathway. Agric For Meteorol 168: 186-200.
- Taylor RAJ, Bauer LS, Poland TM, Windell KN (2010). Flight performance of *Agrilus planipennis* (Coleoptera: Buprestidae) on a flight mill and in free flight. J Insect Behav 23: 128-148.
- Tukey JW (1977) Exploratory data analysis. Addison-Wesley, Boston.
- Weber BC (1982) The biology of the ambrosia beetle *Xylosandrus germanus* (Coleoptera: Scolytidae) and its effects on black walnut. Dissertation, Southern Illinois University
- Weisser WW (2001) The effects of predation on dispersal. In: Clobert J, Danchin E, Dhondt AA, Nichols JD (ed) Dispersal, Oxford University Press, Oxford, pp 180-190.
- Wermelinger B (2004) Ecology and management of the spruce bark beetle *Ips typographus*. A review of recent research For Ecol Manage 202: 67-82.
- Wijerathna A, Evenden M (2019) Energy use by the mountain pine beetle (Coleoptera: Curculionidae: Scolytinae) for dispersal by flight. Physiol Entomol 44: 200-208.
- Wijerathna A, Whitehouse C, Proctor H, Evenden M (2019) Testing for trade-offs between flight and reproduction in the mountain pine beetle (Coleoptera: Curculionidae) on two pine (Pinaceae) hosts. Can Entomol 151: 298-310.
- Williams WI, Robertson IC (2008) Using automated flight mills to manipulate fat reserves in Douglas-fir beetles

(Coleoptera: Curculionidae). Environ Entomol 37: 850-856.

- Xu L, Shi Z, Wang B, Lu M, Sun J (2016) Pine defensive monoterpene α-pinene influences the feeding behavior of Dendroctonus valens and its gut bacterial community structure. I J Mol Sci 17: 1734. https://doi.org/10.3390/ijms17111734.
- Zera AJ (2009) Wing polymorphism in *Gryllus* (Orthoptera: Gryllidae): proximate endrocine, energetic and biochemical mechanisms underlying morph specialization for flight vs. reproduction. In: Whitman DW, Ananthakrishnan TN (ed), Phenotypic Plast Insects Mechanisms and Consequances. Science Publishers Inc., Enfield, pp 609-653.

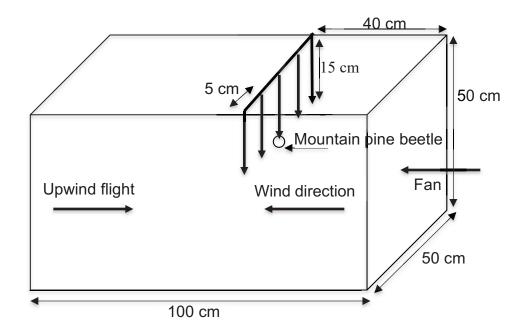


Fig. 1

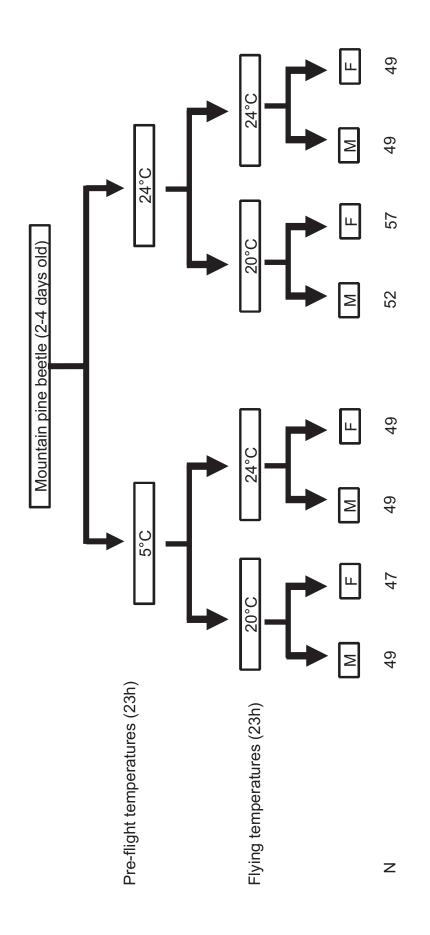


Fig. 2

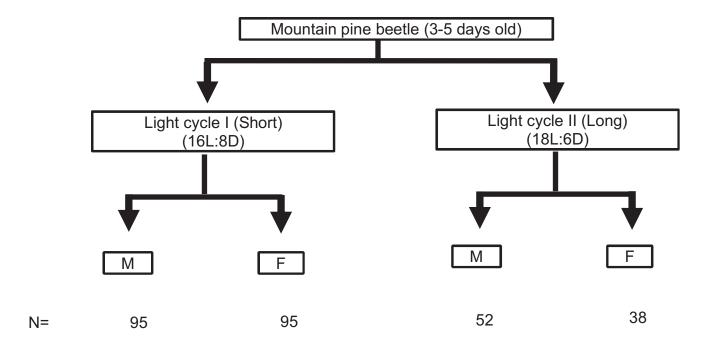
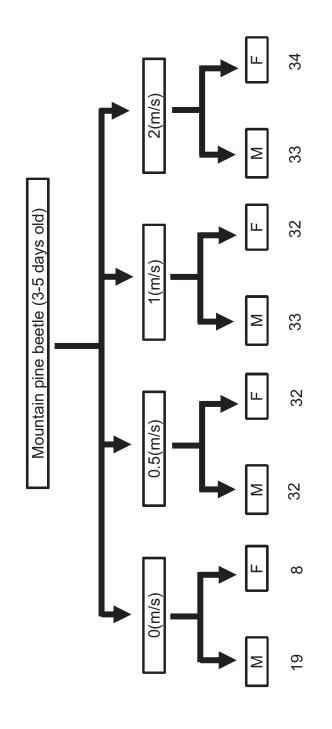
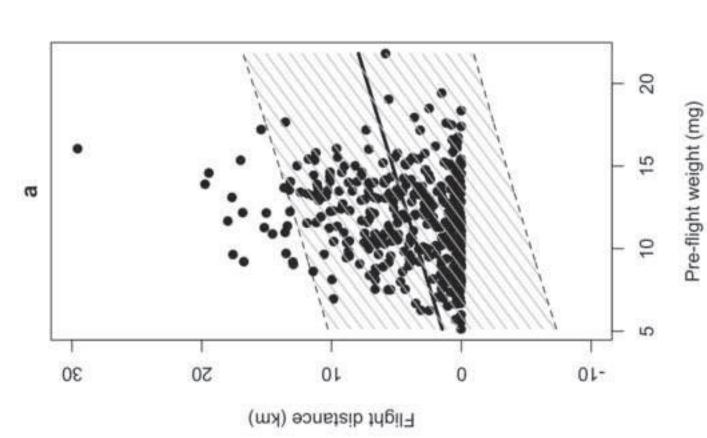
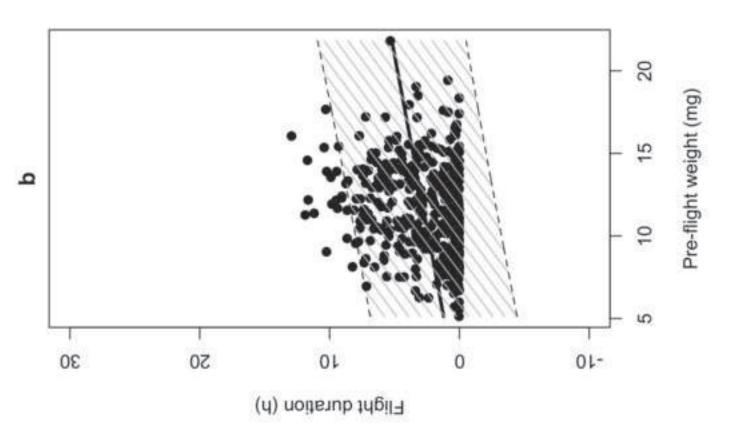
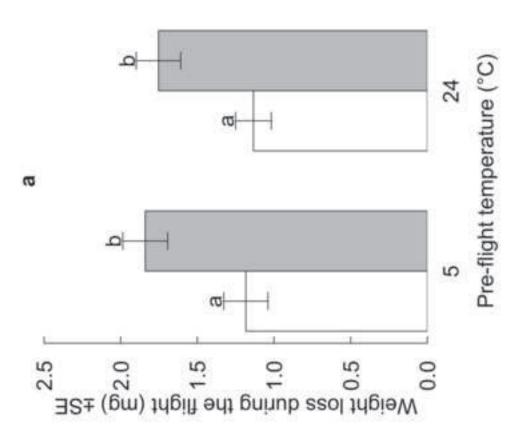
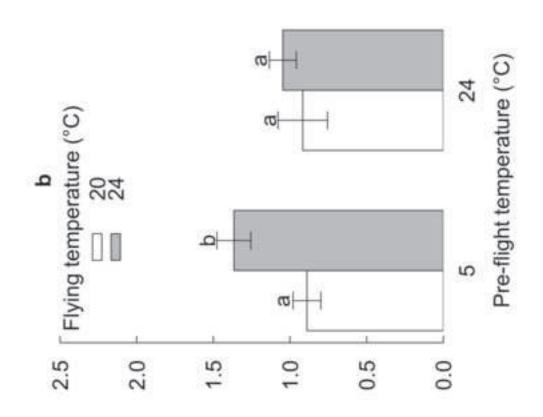
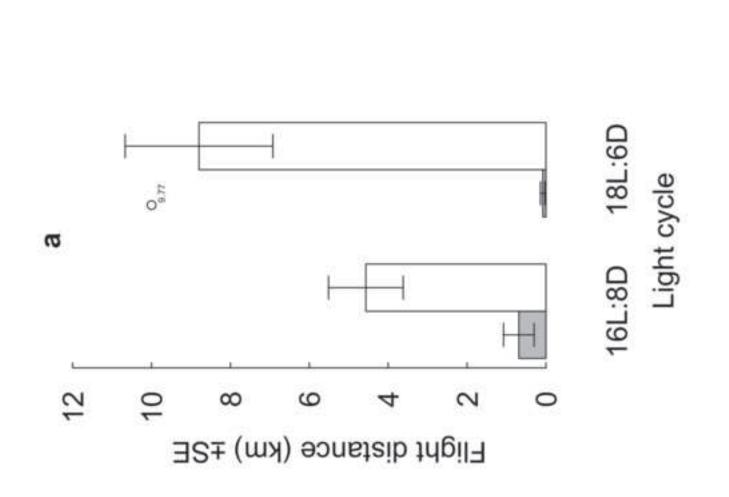


Fig. 3


Fig. 4


Ш Z

