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Abstract

This paper presents a decentralized stochastic programming operation scheme for a
vehicle-to-grid system in a smart grid, which includes a series of equipment with ran-
dom power generation and demands. For households with electric devices, renewable solar
power generation, energy storage systems and electric vehicles, we consider utility oper-
ating expenses, including power loss and energy consumption cost as the objective func-
tion. For customers, we consider the cost of electricity, including battery degradation. To
investigate the uncertainty of the devices, a bottom-up approach is proposed to develop
a random device usage model for analyzing customers’ uncertain behaviour. Besides, a
random renewable power generation model and an electric vehicle random driving model
are implemented. The proposed approach is implemented with OpenMP to simulate the
decentralized process on a multi-core CPU while reducing the computational burden. A
case study based on the IEEE 33-bus distribution system with different scenarios is used
to evaluate the performance of the proposed approach. The simulation results show that
by introducing an optimal household operation schedule, the expense of distribution sys-
tem utility company can be reduced in which both customers and operators can benefit
from the optimization of the system schedules.

1 INTRODUCTION

Electric vehicles (EVs) [1] are becoming the primary means of
reducing carbon dioxide emissions if they can be recharged by
renewable power generation compared to conventional internal
combustion engine vehicles. In addition, compared with tradi-
tional community shared storage, EV, as a kind of mobile stor-
age, can be used as a family private storage unit to charge and
discharge at home, and can serve as an additional storage unit
for community shared battery storage. According to different
incentive policies, the total number of EVs will reach 220 mil-
lion by 2030, compared with the current number of 3 million
[2]. However, since EV charging consumes a large amount of
power, this can lead to higher peak grid consumption. In addi-
tion, the randomness associated with EV driving makes the EV
optimization problem more challenging to solve.

There is a lot of research that studies EV charging methods
as well as infrastructure analysis in response to incentive poli-
cies. Basically, recent research on EV optimization can be clas-
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sified into two categories by different charging locations: charg-
ing EV at charging stations or charging EV at home. Specifi-
cally, for the charging station optimization problem, authors in
[3] proposed a framework to optimize the bidding strategy of
an ensemble of charging stations equipped with an energy stor-
age system in the day-ahead power market. EV charging stations
with renewable generation are discussed in [4]. By providing lim-
ited information to the proposed optimization framework, the
system cost can be dramatically reduced compared to the bench-
mark. Besides, similar to EV charging stations, the EV parking
lot allocation problem has been solved in [5].

For the optimization of home energy systems considering
charging EVs at home, recent research works discusses how to
minimize power loss in a smart home energy management [1,
6], which can help achieve more efficient grid operation . The
authors in [7, 8] take renewable energy and local energy stor-
age into consideration, seeking a minimum electricity cost while
satisfying household energy demand and EV charging require-
ments. Moreover, by charging or discharging EVs, home energy
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management can minimize energy costs by considering esti-
mates of household power demand or considering home climate
energy cost [9, 10].

According to the technical literature, considerable research
has provided impressive models for EV optimal operation.
However, combined scheduling of different types of house-
hold appliances, renewable energy resources, EV operations
and energy storage operations, while considering the operating
expenses of utility, has not yet been resolved. Moreover, when
considering EVs and renewable generation units, the scale of
the problem has become dramatically large. The contributions
of this article can be summarized as follows:

1. A stochastic model is proposed to determine the uncertain
behaviour of household appliances load demands, EV driv-
ing model and distributed renewable resources, and mod-
elling the home energy management system using stochastic
formulation.

2. In order to describe the uncertain relationship between
households and utility companies, we developed a bi-level
stochastic programming model to determine the optimal
household operating schedule. In addition, to reduce com-
putational complexity, we implemented problem decomposi-
tion and scenario reduction technique in the proposed prob-
lem.

3. Decentralized computing is applied to accelerate the pro-
posed approach. Our decentralized bi-level structure quan-
tifies the cost-saving of utility as well as EV operation with
renewable generation, while protecting customers’ privacy.

The rest of this paper is organized as follows. The existing lit-
erature is reviewed in Section 2. Section 3 presents the problem
formulation for each element in a distribution system. Section 4
introduces the problem formulation using a bi-level stochastic
linear programming to achieve an economic goal for both util-
ity companies and customers. Section 5 presents the decentral-
ized bi-level stochastic linear programming. In Section 6, a case
study with the IEEE 33-bus test distribution system is carried
out. The conclusions are drawn in Section 7.

2 RELATED WORK

When considering random features such as household appli-
ances and EV operations, which related to human activities,
or random renewable generation, the massive set of scenar-
ios makes the optimal operation in a distribution very diffi-
cult to solve. Compared with the load demand optimization of
household appliances, EV needs more energy to charge. There-
fore, it is critical to consider the randomness of EV operation.
There are many uncertainties regarding the operation of EV,
such as drivers’ departure/arrival time uncertainty [11], energy
consumption uncertainty caused by drivers’ different driving
habits [6, 12], charging station access uncertainty and traffic
flow uncertainty [13] and market price uncertainty [3]. Specif-
ically, considering the uncertain EV demand and the driver’s
arrival/departure times, a two-stage stochastic programming

model is proposed in [13], which aims to maximize access to
the location and capacity of public EV charging stations in
urban areas. A similar study [12] discusses efficient and reli-
able access to EV charging stations, and considers the EV ran-
dom usage model under real-time pricing in smart grids. More-
over, a stochastic energy-aware routing framework that consid-
ers the random effects of environmental factors is proposed in
[14], in order to improve the sustainability of future electrified
transportation systems. All these research works discussed EV
charging problems under uncertain pricing schemes or uncer-
tain environmental conditions in the distribution system, but
ignored home EV charging problem under the consideration of
household load demand.

There are a limited number of research works that discussed
EV operation in household load demand optimization under
uncertainties. In [1], by coordinating the EV charging process,
minimized power loss and voltage deviation can be achieved.
In this work, the total load demand is randomly selected from
specific scenarios for simulation, without considering EV oper-
ation randomness. Refs. [6, 15] have a similar problem. When
optimizing an EV under the situation that the household load
is uncertain, the load demand for household appliances is usu-
ally regarded as a random value, which is not accurate enough
in the home energy management system. Customers’ different
lifestyles or family composition will lead to different lifestyle
habits. The appliances related to these habits will cause random
load demand, which cannot be simulated using random values.

Based on the stochastic features mentioned above, the opti-
mization problems are usually modelled as a stochastic pro-
gramming problem [7, 13, 14], in order to find the optimal
decision with the minimum cost or the optimal scheduling. To
solve the massive set of uncertain scenarios, Monte–Carlo simu-
lation [6, 11], roulette wheel mechanism [8] or scenarios selected
from historical data [5] have been widely used in recent research
works. But after all, it is ultimately some specific cases that are
randomly selected from determined distributions.

On the other hand, to improve the efficiency of stochas-
tic programming optimization, decentralized computing can
potentially be used. Different from parallel computing, which
relies on high-performance computers, decentralized comput-
ing distributes tasks to one or more computers. Specifically, to
solve the large-scale optimization problem in smart grid oper-
ations, the authors of [16] proposed a decomposition algo-
rithm using the MapReduce framework. The model can also be
applied to the synchronized harmonics [17] or circuit switches
[18] in distribution networks for big data analysis. The appli-
cation in a smart grid can be used to optimize the control of
distribution feeders with smart loads [19]. By distributing indi-
viduals from the master-node computer among worker-nodes
to achieve minimal losses, the run-time can be significantly
reduced simultaneously.

In this work, optimization issues in a distribution system
with households equipped with renewable power generation,
electric vehicle and backup storage units are investigated. Ran-
dom features such as renewable power generation, uncer-
tain house power consumption and uncertainties associated
with EV driving will be modelled by a probabilistic model.
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Decentralized computing is used for large-scale optimization.
To reduce the computational complexity, problem decomposi-
tion and scenario reduction are implemented in this research.

3 SYSTEM MODEL

Households in a typical smart grid consist of conventional
electricity, electrical equipment, renewable energy generation,
energy storage systems and EVs. In this section, we introduce
the linear power flow model for the distribution system and
household random components features.

3.1 Linear power flow analysis

It is known that, for an N node distribution system, the com-
plex power flow can be defined as

Sn = Pn + jQn = VnI ∗n , ∀n ∈ N (1)

where P and Q represent real power and reactive power, respec-
tively, while V and I refer to the node voltage phasor and cur-
rent phasor, respectively. This equation shows that the complex
power flow S is composed of real power and reactive power,
which is equal to the product of voltage and the conjugate of the
corresponding node current. In addition, it is known that cur-
rent through the nodal admittance matrix Y is linearly related
to the voltage, as indicated by I = YV . By assuming that the
shunt admittances of the buses are negligible [20], we can derive
the admittance matrix to satisfy Y 𝟙 = 0, where 𝟙 represents the
vector of ones. Moreover, by extending the linear relationship
between voltage and current as[

I0

In

]
=

[
Y00 Y0n

Yn0 Ynn

][
V0

Vn

]
, ∀n ∈ N (2)

where node 0 refers to the PCC point and extension matrix Y

is the admittance between nodes 0 and n, we can derive the fol-
lowing linear equation:

Vn = V0𝟙 +Y −1
nn In, ∀n ∈ N (3)

where Ynn is invertible because 𝟙 is the only vector in the null
space of Y . Consequently, by solving Equations (1) and (3), we
can achieve power loss  as shown below:

n = Y |Vn|2, ∀n ∈ N (4)

3.2 Home demand loads probabilistic
model

Since most home electrical appliances require manual operation,
we can define the random distribution of these devices through

the random distribution of human activities. For example, we
can define the probability distribution of oven or stove usage by
human cooking probability distribution. In addition, the proba-
bility distribution of human activities also depends on the type
of family, and the composition of the family can be found
in [21].

In this work, we first define the household probability dis-
tribution of the daily activity by 𝝃m,t , where the subscript (m, t )
represents the index of houses and the time slots, respectively.
We assume that devices related to an identical activity follow the
same probability and their activities are affected by the electrical
price Bt . Therefore, the price-sensitive probability distribution
profile can be expressed as

𝝃
′

m,t = 𝜎G (Bt ) ⋅ 𝝃m,t , ∀m ∈ M, t ∈ T (5)

where 𝜎 is the coefficient to maintain the summation of the
new distribution is equal to 1, and G (Bt ) denotes to the price-
sensitive function.

Due to the device distributions, the total household load con-
sumption distribution 𝜻

m,t
of each time slot can be derived by

the bottom-up approach. For appliance a ∈ A, we have the turn
on probability 𝜉a,t at time t by the device distribution 𝝃m,t (the

probability of turn off device a′ ∈ A is 𝜉
′

a′ ,t = 1 − 𝜉a,t ) and
their rated power consumption. Then, we can have the power
probability distribution at time t as follows:

𝜻
m,t

= ΠA𝝃
′

a′ ,t ⋅ 𝝃
′

a,t , ∀a ∩ a′ = A, a ≠ a′ (6)

Here, a and a′ indicate the appliances which are turned on or
off, respectively. And the corresponding power can be achieved
as follows:

P
f

m,t =
∑

a

Pa,t , ∀a ∈ A, m ∈ M, t ∈ T (7)

where the set a ∈ A is identical to the one in (6). By defining the
number of the scenarios k ∈ K , we can conclude the household
power distribution as

𝜁
f

m,k,t
= h f (P

f

m,k,t
), ∀m ∈ M, k ∈ K, t ∈ T (8)

3.3 Renewable power generation model

Similar to the previous section, we can derive the solar power
generation distribution by solar irradiance. Solar irradiance
I𝛽 [22] is related to a series of parameters, such as photo-
voltaics (PV) array inclination angle 𝛽, beam radiation ratio
[23], reflectance of the ground, extraterrestrial solar irradiance,
diffuse fraction and clearness indicator. With the relationship
between diffuse fraction and clearness indicator, we can derive
the probability density function (PDF) of the clearness indicator
as introduced in [24] and the distribution of solar irradiance.
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FIGURE 1 Travel start time by trip purpose distribution probability

As we mentioned, the PDF of PV active power output is
related to solar irradiance and has several variables, such as the
total area of the PV array area w and the cell temperature [25].
Moreover, according to [26], the temperature change of the PV
cell is much slower than the rapid change of solar irradiance.
Therefore, we ignore the influence of PV cell temperature and
present the PV power output function as follows:

Pr
m,t = I𝛽,t wm𝜂

r , ∀m ∈ M, t ∈ T (9)

where 𝜂r is the coefficient of the PV array efficiency. Therefore,
the PDF of the PV power output 𝜉r

m,t (Pr
m,t ) can be calculated

and is defined as

𝜉r
m,t = hr (Pr

m,t ), ∀m ∈ M, t ∈ T (10)

3.4 EV probabilistic model

Different from other household electrical appliances, the
randomness of EV is much more complicated to present
directly due to uncertain driving patterns and different human
behaviours in different lifestyles. To solve this problem, in this
section, we first introduce the uncertainty features of EV, and
then present the typical constraints of EV.

3.4.1 EV usage probabilistic model

The random EV driving mode, such as the arrival and depar-
ture times of EV owner, driving distance, or the amount of
EV battery remaining when people are arriving or departing,
makes the establishment of the EV probability model more
complicated.

To build an EV model that takes these random character-
istics into account, we can derive the distribution of EV ran-
dom usage time through the UK National Travel Survey [27],
in which we can achieve the time and distance of people travel-
ling. Depending on the purpose of the trip, we can analyze the
start or end time of the trip based on Figure 1, and define these
distributions as variable tv . Then, we can use this distribution to
generate the operation time by start time t u and the end oper-

FIGURE 2 Travel distance probability distribution

ation time t z , respectively. Thus, the start and end times of EV
operations follow the distribution shown as

t u = hv (t v ),

t z = hv (t v ),
∀(t u, t z ) ∈ tv , t z ≥ t u (11)

tflag =

{
1, if t ∈ [t u, t z ]
0, otherwise

)
(12)

Moreover, we can derive travel distance through the National
Household Travel Survey [28]. And we define it by the random
variable X and shown in Figure 2.

As we mentioned, the battery state before the operation is
another stochastic variable. If given a distribution of the state
of charge (SOC) at the starting time t u , the battery state can be
achieved by

Et = SOC ⋅ Z v, ∀t = t u (13)

Note that in this work, we do not consider EV charging in a
parking lot or EV charging station, and only consider operation
at home. Therefore, we should realize that if there is no one in
the house (tflag = 0), then unless people arrive home (tflag = 1),
EVs should not be used or optimized.

Moreover, it is worth noting that due to the lack of EV data,
the survey data we implemented is applicable to all private vehi-
cles, including traditional internal combustion engine vehicles,
electric vehicles and hybrid vehicles.

3.4.2 EV operation characterization

After determining the uncertain EV operating time and mileage
of the usage, we can build the stochastic EV operating model
through the EV battery charging and discharging process. First,
during a specific time period t ∈ [t u, t z ], the EV charging or
discharging process should not occur at the same time, and we
define EV battery charging/discharging power limits and energy
storage limits as follows:

Pvc
t ⋅ Pvd

t = 0, P
vc
≤ Pvc ≤ P

vc

P
vd
≤ Pvd ≤ P

vd
, E

v
≤ Ev ≤ E

v
(14)
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By defining the battery charging/discharging operation effi-
ciency 𝜂vc and 𝜂vd , respectively, we can calculate the EV battery
current state by

Ev
t = Ev

t−Δt
+ Pvc

t−Δt
⋅ 𝜂vc ⋅ Δt + Pvd

t−Δt
⋅ 𝜂vd ⋅ Δt (15)

The equation shows that, the EV battery current state is related
to the previous time state, and is also related to the amount
of power required for charging/discharging operation during
this period.

Moreover, the EV total energy charged should satisfy the
next driving requirements shown as follows:

Ev =
∑

t

Ev
t , Ev ≥ X ∗ 𝜂X (16)

Here, the EV battery efficiency 𝜂X can be achieved by analyz-
ing the EVs available on the market. The details and parameters
we introduced in this section will be presented in the simula-
tion section.

Moreover, battery degradation is an essential indicator of
maintaining battery health. Therefore, we consider it as follows:

Dv
t =

𝛿1 ⋅ 𝔼(Et )∕Z v − 𝛿2

CF ⋅ y ⋅ 8760
(17)

where 𝛿1 and 𝛿2 are linear fit coefficients; CF refers to the
capacity fade, which is usually taken above to be 20%; y repre-
sents the battery life span; and Z v represents the battery capac-
ity. Finally, we can derive the total EV electrical cost, which
includes the expense of charging or discharging process and the
cost of battery degradation, given by

C v =
∑

t

(Bt ⋅ Pvc −Ut ⋅ Pvd + Dv
t ), t ∈ [t u, t z ] (18)

3.5 Energy storage model

Houses equipped with renewable generation usually have alter-
nate energy storage to store extra energy. Therefore, we con-
sider some common storage characteristics, which should sat-
isfy the following constraints:

Pxc
t ⋅ Pxd

t = 0, P
xc
≤ Pxc

t ≤ P
xc

P
xd

≤ Pxd
t ≤ P

xd
, E

x
≤ Ex

t ≤ E
x

(19)

Ex
t = Ex

t−Δt
+ Pxc

t−Δt
⋅ 𝜂xc ⋅ Δt + Pxd

t−Δt
⋅ 𝜂xd ⋅ Δt (20)

Similar to the EV operating constraints, battery operation
should avoid simultaneous charging and discharging process,
and can operate within a tolerable range, which is shown in
Equation (19). In addition, we have the current battery state
equation shown in Equation (20). Moreover, since the battery
degradation for EV [Equation (17)] is calculated based on long-
term data research results, it is suitable for most lithium-ion bat-

teries. Therefore, we implement the same degradation model for
energy storage.

Note that the difference between an EV and a battery storage
is that the battery storage can be operated in all periods, and the
operation does not require people to be at home. We assume the
battery is a type of recourse appliance, which is dependent on
the operation of other appliances. Therefore, battery operation
costs can be derived as follows:

C x =
∑

t

(Bt ⋅ Pxc −Ut ⋅ Pxd + Dx
t ), t ∈ T (21)

4 PROBLEM FORMULATION

Considering that we are seeking for optimization of both cus-
tomers and operators, a bi-level model can solve this problem
simultaneously. Utility companies can determine the amount of
power purchased from the customers in the upper level prob-
lem, with the maximum profits, while customers can decide
their electrical devices usage in the lower level, aiming at min-
imizing the power consumption expenses.

Different from the standard bi-level model, such as the gen-
eral formulation of the Stackelberg game, customers would
compete with each other, but in our proposed problem, infor-
mation is not shared among customers each other. Moreover,
our proposed problem has existing uncertainties in the lower
level. Thus, we introduce the common bi-level stochastic linear
model as follows:

Upper level: min F (Pg ) =
∑

t

C (Pg )t

s.t. O1Pg + R1 ≤ b1, Pg ≥ 0

Lower level: min f (Pg ) = c2P̂g + Φ(P̂g, Pg(𝜉, 𝜁))

s.t. O2P̂g + R2 ≤ b2, Pg ≥ 0

Φ(P̂g, Pg(𝜉, 𝜁)) = 𝔼𝜉,𝜁 [h(P̂g, 𝜉, 𝜁)]

s.t. W𝜉,𝜁Pg(𝜉, 𝜁) = r𝜉,𝜁 − T𝜉,𝜁 P̂g, Pg ≥ 0
(22)

We implement this model to our proposed problem, where the
lower level represents the customer’s model, while the upper
level represents the operator’s level. Details will be presented
in the following subsections.

4.1 Customer’s model: minimizing
electrical cost

4.1.1 Objective function

For each customer m ∈ M , the objective includes all electric-
ity expenditures, such as an electric vehicle, electric appliances,
renewable power generation profits (investment fee and mainte-
nance fees are not considered as they are usually at a fixed value)
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and storage battery degradation fee:

min f (Pg ) =
∑

t

(
Bt (Pg+ )t −Ut (Pg− )t

)
=
∑

t

(
C x

t + 𝔼[C (Pr
t (𝝃 ) − P

f
t (𝜻 )) +C v

t ]
) (23)

where Pg+ = Pg, if Pg ≥ 0; Pg− = |Pg|, otherwise.
Generally, the customers’ electricity bill is simply the profit of

selling electricity to the grid plus the cost of regular use, shown
in the first line equation. In this user’s objective function, we
consider the following parts as electricity costs: battery storage,
EV operation and household electrical equipment operation,
and the profit part consists of power generated by renewable
energy, as shown in the second line of the equation. Due to the
randomness of the devices, we implement stochastic program-
ming in the lower level problem through the idea of stochastic
linear programming introduced at the beginning of this section.

4.1.2 Constraints

In the household energy system, in addition to the characteris-
tics of each specific device introduced in Sections 3.2– 3.5, here
we add the following general constraints in the home energy
system:

P f (𝜁 f ) + Pr (𝜉r ) + Pv ≤ Pmax

Pg = Pr (𝜉r ) ± Pv ± Px − P f (𝜁 f )
(24)

Here, the two random variables P f (𝜁 f ) and Pr (𝜉r ) are the
power demand of household common electrical devices and
power generated by renewable power generation, respectively.
And the variables Pv and Px are the EV operation and backup
storage power exchange, respectively. These constraints indicate
that the total household power consumption should not exceed
the maximum value of Pmax, and the power transmission from
the grid to the customer should be balanced.

4.2 Operator’s model: minimizing power
consumption expenses and power loss

4.2.1 Objective function

In this work, we use the minimum system loss as the objective
function in the distribution system. Some losses, such as invest-
ment and maintenance costs, are usually at a fixed rate, so they
are excluded from the total system expenditure. We include the
power loss and electrical supply in this formulation, given by

min F (P+ ) =
∑

n

∑
t

(C (Ln,t ) +C (P+
n,t ) +C (P−

n,t ))

=
∑

n

∑
t

(
Ht ⋅ (Ln,t ) +Ut ⋅ (P−

n,t ) − Bt ⋅ (P+
n,t )

)
∀n ∈ N (25)

4.2.2 Constraints

Pn =
∑

m∈M

P
g

m,

where P+
n = Pn, if Pn ≥ 0; P−

n = |Pn|, otherwise (26a)

Pn,t ≤ Pn,t ≤ Pn,t , Vn,t ≤ Vn,t ≤ Vn,t ,∀n ∈ N (26b)

Equations (1)–(4). (26c)

In the operator’s model, node power [Equation (26a)] can
be summed by the house power consumption, followed by the
node power limits and node voltage power limits [Equation
(26b)]. Adjusting the power that the operator (utility) purchases
from customer C P+ not only helps maintain the grid power bal-
ance, but also helps achieve optimal operations for the utility
companies.

5 DECENTRALIZED BI-LEVEL
STOCHASTIC LINEAR PROGRAMMING

In general, our problem cannot be solved by the standard Stack-
elberg game model, because customers do not share informa-
tion with each other to keep their privacy. But this allows us
to distribute computing tasks to accelerate the process. In this
section, we present a decentralized bi-level stochastic linear pro-
gramming, in which the operator serves as the upper level, and
the customer serves as the lower level.

Note that the proposed problem is in a multi-stage, bi-level
and stochastic architecture, which makes this problem very
complicated to solve. Therefore, we first propose two methods
to reduce the complexity, and the decentralized architecture will
be presented after.

5.1 Problem decomposition

Due to the multi-stage structure of the proposed problem, we
first decouple the problem by time, and transfer the problem
into a dynamic programming formulation as follows:

f (Pg ) =
∑

t

(
C x

t + 𝔼[C (Pr
t (𝝃 ) − P

f
t (𝜻 )) +C v

t ]
)

=
[

f (Pg )t1 + 𝔼
[

f (Pg )t2 ⋯+𝔼
[

f (Pg )T

]]] (27)

For a specific time t , we can reformulate the objective function
as follows:

1 min f̂ (Pg )t = f (Pg )t + 𝔼
(

f̂ (Pg )t+1
)

= C (Pg )t + 𝔼
(
C (Pg )t+1

)
(28)

= Bt (Pg+ )t −Ut (Pg− )t + 𝔼
(
Bt (Pg+ )t −Ut (Pg− )t

)
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Moreover, we can further decompose the lower level by each
device as follows:

5𝜓(Ev
t )+ 𝜓(Ex

t ) + 𝜓(Pr (𝜉r )) + 𝜓(P f (𝜁 f )) = b1 : 𝜇cp

𝜓(Ev
t ) = b2 : 𝜇v

𝜓(Ex
t ) = b3 : 𝜇x

𝜓(Pr (𝜉r )) = b4 : 𝜇r

𝜓(P f (𝜁 f )) = b5 : 𝜇 f

(29)

where function 𝜓 indicates the relations among the devices, and
the coupled constraints (𝜇cp) are shown as follows and we intro-
duce the slack variable 𝜋:

P f (𝜁 f ) + Pr (𝜉r ) + Pv + 𝜋 = Pmax

Pg = Pr (𝜉r ) ± Pv ± Px − P f (𝜁 f )
(30)

Therefore, all the variables are bounded and we can decom-
pose the proposed problem to the following format with
extreme points set j ∈ J as follows:

min f̂ (Ev, Ex, Pr (𝜉r ), P f (𝜁 f ))

= C v
t

(∑
j∈J v

𝜇v
j (E

v
j )

)
+C x

t

(∑
j∈J x

𝜇x
j (Ex

j )

)

+C r
t

(∑
j∈J r

𝜇r
j (P

r (𝜉r ))

)
+C

f
t

⎛⎜⎜⎝
∑
j∈J f

𝜇
f

j (P f (𝜁 f ))
⎞⎟⎟⎠

(31)

Then, we can find optimal solutions for each variable which
we define as Ev◦, Ex◦, Pr (𝜉r )◦ and P f (𝜁 f )◦, and we use sub-
scripts 1, 2,… , j to define the number of the optimal solution
of each variable as follows:

Ev◦ = 𝜇v
1Ev◦

1 + 𝜇v
2Ev◦

2 +⋯𝜇v
j E

v◦
j (32)

𝜇v
1 + 𝜇v

2 +⋯𝜇v
j = 1, ∀ j ∈ J v

Ex◦ = 𝜇x
1 Ex◦

1 + 𝜇x
2 Ex◦

2 +⋯𝜇x
j Ex◦

j (33)

𝜇x
1 + 𝜇x

2 +⋯𝜇x
j = 1, ∀ j ∈ J x

Pr (𝜉r )◦ = 𝜇r
1Pr (𝜉r )◦1 + 𝜇r

2Pr (𝜉r )◦2 +⋯𝜇r
j P

r (𝜉r )◦
j

(34)

𝜇r
1 + 𝜇r

2 +⋯𝜇r
j = 1, ∀ j ∈ J r

P f (𝜁 f )◦ = 𝜇
f

1 P f (𝜁 f )◦1 + 𝜇
f

2 P f (𝜁 f )◦2 +⋯𝜇
f

j P f (𝜁 f )◦
j

(35)

𝜇
f

1 + 𝜇
f

2 +⋯𝜇
f

j = 1. ∀ j ∈ J f

5.2 Scenario reduction

Since we defined the random distribution of household power
demand, and renewable power generation, the scenario set
(ℝr × ℝ f ) could be very large in most cases. Therefore, we can
combine some similar scenarios to keep the random set within
a computationally tractable range.

For these two random variables, we first redistribute them by
the amount of power, as follows:

𝜁
f

m,l f ,t
=
∑
k f

𝜁
f

m,k f ,t
, ∀P

f

m,l f ,t
= P

f

m,k f ,t

𝜉r
m,lr ,t

=
∑
kr

𝜉r
m,kr ,t

, ∀Pr
m,lr ,t

= Pr
m,kr ,t

(36)

where l represents the power level after the probability distribu-
tion is redistributed without duplication. Then, we can decide
the accuracy level of the simulation and combine the scenarios
to a limited number q as follows:

P
f

m,l f ,t
(q f ) =

max
(

P
f

m,l f ,t

)
q f

, ∀q f = 1, 2,… ,ℕl f

Pr
m,lr ,t

(qr ) =
max

(
Pr

m,lr ,t

)
qr

, ∀qr = 1, 2,… ,ℕlr

(37)

Here, the larger the number q, the higher the accuracy of the
new distribution allocation. Thus, we can finally achieve the new
distribution of the two variables by

𝜁
f

m,l f ,t
(q f ) =

∑
l f

𝜁
f

m,l f ,t
, 𝜉r

m,lr ,t
(qr ) =

∑
lr

𝜉r
m,lr ,t

(38)

5.3 Decentralized architecture

The main steps of the proposed optimal control algorithm are
described as follows:

1. At the upper level, the operator publishes power limits
through power flow analysis and issues different electricity
tariffs for different purposes.

2. Each customer can calculate their own minimum electricity
cost min f (Pg ) for daily appliances scheduling based on the
home energy management system. For privacy reasons, cus-
tomers can calculate their own expenses individually, which
is why this step can be decentralized computing, and cus-
tomers do not require to share information with each other.

3. Operators at the upper level controller can collect data and
information (such as the amount of electricity exchanged by
customers from the grid) from all the lower level customers.
Based on the information, the operator can decide the next
control policy, such as energy obtained from the customers,
and then evaluate the cost function (25).
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ALGORITHM 1 Decentralized Stochastic Optimization

1: Utility input: Ht ,Ut , Bt , Pn,t , Pn,t ,Vn,t , Vn,t

2: for n = 1 : N do

3: Utility company decides the amount of power sold from customer
to the grid, considering the minimum power loss.

4: for customer 1 : M do

5: Assign customer solve their own electricity cost by linear
programming to obtain the optimal electricity cost appliances usage
schedule.

6: end for

7: end for

8: Customer input: appliance usage power and probability, EV and
battery storage-related properties.

9: for t = 1 : T do

10: Multiple stage optimization problem

11: end for

12: Until the stopping criterion is satisfied

13: Each customer can achieve the optimal electricity cost

FIGURE 3 Flowchart of the proposed decentralized process

4. Update all equipment status and forecast data for renewable
power generation in the smart grid.

We elaborate on the details in Algorithm 1 and the flowchart
in Figure 3.

6 CASE STUDY

In order to evaluate the performance of the proposed approach
under the randomness of household demand, renewable energy

FIGURE 4 One-line diagram of IEEE 33-bus test distribution system

TABLE 1 Electrical characteristics of electric vehicle

EV battery capacity 40 kWh

Full charged battery range 242 km

EV battery efficiency 18.55 kWh/100 km

Average annual driving distance 20,000 km

Average daily distance Random from Figure 2

Min and max SOC for healthy battery 20%–80%

Battery lift span 15 (years)

generation and EV uncertain driving patterns, a case study was
conducted in this section. The simulation was performed on
a Windows desktop with an Intel Core i7-4790 CPU at 3.60
GHz with 16 GB of random access memory (four physical cores
and eight logical cores). It should be noted that in order to
implement the proposed EV decentralized operation, we use
OpenMP parallel computing to serve each core as an individ-
ual EV.

6.1 Simulation set-up

The proposed decentralized operation scheme was tested on the
IEEE 33-bus distribution system, and the system data are pro-
vided in [29], where the total active and reactive power loads on
the system are 3715 kW and 2300 kVar, respectively. The sys-
tem’s one-line diagram is shown in Figure 4.

In this simulation, several categories of typical household
appliances are considered, whose characteristics can be found
in [30]. There are in total 21 kinds of electrical appliances, and

4132 scenarios of power demand 𝜉
f

m,l f ,t
considered. The range

is from 0 W (all appliances are turned off) to 21,725 W (all appli-
ances are turned on). For the PV generation, there are 21 sce-
narios of power generated 𝜉r

m,lr ,t
. After scenario reduction tech-

nique, there are in total 55 scenarios. Since the EV plays the role
of decentralized computing platform, different EV models are
not considered in this work. The parameters in this simulation
are based on the average values of parameters of popular EV
models (such as BMW i3, Ford Focus, Hyundai IONIQ, Nissan
Leaf, and Tesla Model S). The parameters can be found in [31],
and the average values implemented in the simulation are shown
in Table 1.

Moreover, similar to the purpose of the EV parameters, we
applied the average values of current popular household energy
storage models (such as Tesla, Nissan, LG Chem and Mercedes-
Benz) to simulate, with the battery capacity being 10 kWh. This
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FIGURE 5 EV battery operation status

system was implemented for a finite time horizon of 48 h in this
study, and the time step is set to be 1 h.

Several cases are presented in this simulation to compare with
our proposed decentralized scheme.

Case 1. The proposed stochastic programming, which includes
252 scenarios for hourly house load demand and
renewable power generation.

Case 2. The maximum probability scenario [32], which means
that the scenario corresponding to the maximum prob-
ability will be selected for the process.

Case 3. The mean value scenario [33], which is similar to Case
2, but based on the average value of the random sce-
nario.

Case 4. Monte–Carlo randomly selected scenario [34], through
which several scenarios will be selected randomly to the
process.

Case 5. Worst-case scenario [35], which is based on the highest
household energy demand through the time span.

6.2 Simulation results

In this section, we analyze household energy management and
utility optimal operation, respectively.

6.2.1 Household energy management

With the parameters and datasets introduced above, we first
analyzed the stochastic household energy management. The
optimal EV energy schedule is shown in Figure 5. The green
line indicates the Time of Use (ToU) price in Ontario, Canada.
The on-peak price is 13.4 ¢/kWh, mid-peak price is 9.4 ¢/kWh
and the off-peak price is 6.5 ¢/kWh. Due to the high random-
ness in this simulation, in order to make a fair comparison, we
used the fixed variable method to model the randomness related
to EV travels, including travel start time and travel distance. In
this simulation, all cases were selected for education purposes
during the first 24 h, and commute purpose was selected over
the last 24 h to make all scenarios fair.

FIGURE 6 Household load demand

As we can see, the EV starts operation when it arrives at
home, and the battery energy status shows that the battery is
being charged during off-peak hours. Because of the different
purposes and driving distances of the EV, the battery discharges
when it leaves the house. Moreover, the charging rate varies
depending on the household load demand. For example, the
rate at night is low and becomes slightly higher in the morning.
Specifically, the trends of the EV battery status in all cases indi-
cate that EVs are operating when they return home, except that
they leave the house between 9 AM and 5 PM, and between 33
and 41 (the next day from 9 AM to 7 PM). For the consecutive
night from time period 17 to 33 (7 PM on the first day to 9 AM
the next day), the EV trend shows that it is charging, but the
trend becomes different as the load demand changes. In addi-
tion, our proposed scheme Case 1 is very close to Case 2, which
is because, in the stochastic programming process, all scenarios
were evaluated for optimization, while a larger probability may
have a more significant impact on the process. Case 3 shows a
smoothing trend compared to Case 4, and the total home elec-
tric costs are $4.02, $4.10, $4.26 and $4.44, respectively.

In addition, the household load demand is shown in Figure 6.
We can see that in the first 24 h, the load demand increases dur-
ing the day and decreases at night, depending on the family with
two or more children. In the next 24 h, due to high electricity
prices, the load demand first drops in the morning and after-
noon, while the load increases at night. This is because the fam-
ily consists of multiple people but no dependent children. In
addition, compared with the case, our Case 1 shows a relatively
flatter trend than other cases, which shows a better performance
than other cases.

6.2.2 Utility optimal operation

In the home energy management system, our proposed
approach Case 1 shows a slight advantage compared to another
method. However, the difference between the system opera-
tion costs of utility becomes larger, according to the utility
expense convergence results shown in Figure 7. As we can see,
all cases converged during the first 30 iterations. Our proposed
approach shows the fastest convergence with the lowest oper-
ating expense. In this figure, compared to Case 2, the trend for
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FIGURE 7 Utility cost ($)

FIGURE 8 Power loss ($)

Case 3 is closer to Case 1, which is the opposite of home EV
operation. This suggests that when there is a long-term dataset
or a large dataset available, the maximum probability scenarios
and mean value scenario seem to be well optimized, but for a
single realization problem, we need to analyze from the bottom,
such as analyzing each customer’s habits. Moreover, the power
loss shown in Figure 8 is more pronounced to show the advan-
tage of our proposed method.

The execution time for all the cases is shown in Table 2. The
results indicate that for residents, due to the limited number of
special scenarios, the execution time of special cases (Cases 2–
5) is faster than our proposed method. And generally, for util-
ity companies with large datasets, the average value scenario
case (Case 3) is usually used, which makes sense comparing
the results for utility cost and power loss, where the average
case has the closest performance of our proposed algorithm.
In addition, for other cases (cases 2, 4, 5) are usually imple-
mented in traditional optimization, so they are not suitable for
actual cases. For our proposed algorithm, the performance of
execution time may not be as good as other cases, but through
technology development, due to the decentralization of the pro-
posed algorithm, it is feasible to perform complex calculations
using existing equipment such as EV or smartphones.

TABLE 2 Execution time

Case number Execution time Case number Execution time

Case 1 (4 cores) 66.45 s Case 3 6.22 s

Case 1 (1 cores) 278.32 s Case 4 5.81 s

Case 2 5.64 s Case 5 6.04 s

7 CONCLUSION

Stochastic energy management is of considerable significance
in distribution systems. This paper developed a household
stochastic energy management model that consists of electri-
cal devices, renewable energy generation, energy storage sys-
tems and EVs. In addition to the typical expense costs in the
objective function, degradation cost for energy storage and EV
is also considered in our model. The uncertainty of solar power
generation is captured by a stochastic probability model. Fur-
thermore, to protect customer privacy, we present a decentral-
ized bi-level stochastic linear programming model, in which the
operator serves as the upper level, and the customer serves as
the lower level. To reduce the computation complexity, problem
decomposition and scenario reduction techniques are applied
to improve efficiency. The proposed method has been ana-
lyzed through a case study, and the simulation results show the
effectiveness and reliability. Moreover, the comparison with the
approach with specific cases validates the advantages of the pro-
posed method, which is more applicable in practice in the future
smart grid. Uncertainties due to real-time pricing schemes, park-
ing lot or charging station availability and renewable energy gen-
eration farm can be explored in future extensions of this work.

NOMENCLATURE

Superscript

c Charging process
d Discharging process
f Households
g Power grid
r Renewable power generation
u EV start operation time
v EV operation
x Energy storage
z EV stop operation time

Variables

𝝃 Household customers’ activities distribution
𝛿1, 𝛿2 Battery degradation linear fit coefficient

𝜂 Efficiency of different components
 Power loss
𝜇 Lagrange multiplier
𝜉r Probability distribution of renewable power generation
𝜁 f Probability distribution of house load consumption
B Electrical price for customer purchase from utility
C Cost
D Battery degradation
E Energy

G () Price-sensitive function
H Electrical price for electricity wholesale price
h() Probability distribution function

I Line current phasor
I𝛽 Solar irradiance with PV array inclination angle 𝛽

O, R, b Bi-level model linear variables
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P Real power
p Probability

Q Reactive power
S Complex power flow

U Electrical price for customer sell to utility
V Line voltage phasor
w PV array area

X EV travel distance
Y Admittance
y Battery life span

Z Storage capacity
𝜎 Coefficient of household probability distribution

Sets and individuals

A, a House appliances a ∈ A

J, j Extreme points k ∈ K

K, k Scenarios k ∈ K

M, m Households m ∈ M

N, n Bus nodes n ∈ N

T, t Time slots t ∈ T

Abbreviations

EV Electric vehicle
PV Photovoltaics

SOC State of charge
ToU Time of use
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