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ABSTRACT

The purpose of this thesis was to simulate the interaction between

a student and the IBM 1500 instructional computer system.

A set of conventions and codes was established to develop a list
structural representatioﬁ of computer-assisted instructional sequences
written in the language Coursewriter II for the 1500. This representa-
tion was then programmed for the IBM 360/67 computer. Accurate represen-

tations were produced for a variety of courses.

Three areas of application of the list structural representation
were investigated. The first product was a two-dimensional logic chart
which diagrams the complete instructional logic of a course. Sequential
execution, branches, and merges are indicated on the chart. The second
application was to trace all possible paths that could be followed by
students making consistent responses through a course. These applica-
tions provide needed assistance for authors in the development and docu-

mentation of courses.

The third application was the production of a framework for the
simulation of student response models. The framework requires the
specification of the condition for branching at each response~dependent
decision point in the course. Student simulation variables depending on
the path may be constructed. This application provides a mechanism for

testing student learning models.
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CHAPTER 1

Introduction



INTRODUCTION

A. Computer-Assisted Instruction

The digital computer has begun to be used experimentally as a
medium for the instructional process in a wide variety of subject matter
areas. Computer-assisted instruction (CAI) originated with the work of
Rath and his colleagues (Rath, Anderson, and Brainerd, 1959) and was
quickly taken up by other research groups (Coulson, 1962). Literature
in the area of CAI has been surveyed recently by several authors,

including Zinn (1967), Hickey (1968), and Silberman and Filep (1968).

CAI refers to the interactive instructional and learning process
between computer and student. The computervstores stimulus material, :
presents it to the student; accepts and analyzes student responses, and
records student performance. The student examines the stimulus material,

responds, and waits for the computer's reply.

The needs of students in the interactive CAI situation impose
certain requirements upon the computer system. A large memory capacity
is needed to store all the curriculum or stimulus material, as well as
records of student performance. Reasonably fast response time is desire-
able to avaid student inattention, and some form of time-sharing is
required in order that different students may work on different subject
matter at the same' time. Interactive media for stimulus and response
should be available in a variety of sensory modes, particularly auditory
and visual modes. This may involve films, graphics, audio tapes, and

the like. -



Another important requirement of a CAI system is software, parti-
cularly an author language that permits convenient enfry of stimulus

materiais and instructional logic into the system.

A recent development in CAI is the commercial marketing of instruc-—
tional computer systems for research purposes. For example, firms that
have specific *hrust in this area inclu@e RCA, Honeywell, Philco-Ford,
and IBM. One such experimental system is the University of Alberta IBM

1500 Instructional System.

With the 1500 system, curriculum material and instructional se-
quences are stored in peripheral memory banks (disks), while the central
processing unit presents the material to each student and analyzes
student responses. The equipment at each student terminal consists of
a typewriter or combination display screen and keyboard, a light pen,
and a film strip projector. As well, an audio play and record unit is

being made available for each student terminal at the time of writing.

Curriculum or stimulus material may be presented visually to the
student by means of the typewriter or screen and the projector. Char-
acters or grapﬁics of any design, within physical limitations, may be
presented on the.display screen cathode ray tube (IBM 1500 Coursewriter
1T Author's Guide, 1967). Film strip gslides may be shown individually
in any order. Student responses constructed from characters are accepted
from the typewriter or keyboard. As well, the system can recognize a
lighted area of the screen that is pointed to with the light pen. The
system is "¢ime-sharing" in the sense that each user at a terminal may
be working on different course material at the same time. The system

switches automatically between terminals in such a way that each user



tieed only be conscious of his own interaction with the computer.

System users may conveniently be categorized into three types:
proctors, authors,.and students. Proctors operate the system, schedule
courses, register students, and the 1ike. Authors have the responsibility
of developing curriculum material and instructional sequences. This in-
cludes the programming of such material in a language acceptable to the
computer, for example, the language Coursewriter II for the 1500 system.
Students interact witﬁ~ahd respond to the course material prepared by
authors. Each category of user has a set of system control commands at
his disposal. For example, author commands include those that permit the
insertion, deletion, replacement, movement, display, and execution of

Coursewriter statements in a course.

Computer-assisted instruction provides a medium in which controlled
éxperimentation on the instructional and learning processes can be made.
The extent to which CAI may have practical application in actual schools

is not yet fully known.

B. The Need for IBM 1500 Author Assistance

Programming a course for CAI on the 1500 computer system is a very
large chore. Besides requiring familiarity with curriculum material and
instructional methodology, the author must possess a working knowledge of
the Coursewriter II language. In contrast to algebraic languages such as
Fortran, Coursewriter II provides relatively few diagnostic messages to
help the programmer during assembly or execution. Instructional programs
tend to be long and logically complex, and the actual paths followed by

students through a program depend on the responses they make. The logical



complexity of Coursewriter II programs is greatly increased by a feature
of the language that provides for automatic or implicit branching. For
example, using the path-tracing program which is one product of this
thesis, more than 200 distinct paths were found in a course consisting of

only about 500 Coursewriter II statements.

At present it is usually the case that the only precise representa-
tion of the logic of an instructional sequence is the CAI program itself.
Usually this has been developed from existing book-form curriculum
material at the author's initiative, perhaps with the aid of flowcharts.
Flowcharts may be used to describe course logic at various levels,
depending on the amount of detail and precision required. At the most
detailed level, a flowchart may be a precise representation of program--
ming logic, and one that is readily comprehensible once the conventions
are understood, At another level, flowchart blocks may represent
logical units greater than a single instruction, hence their use in this

way may be symbolic and less precise.

Detailed flowcharts are generally not available for any CAI program,

as their construction by hand is too time-consuming.

It is generally feasible to completely debug an algebraic program
by testing all possible contingencies that may arise. Such a procedure
is more time-consuming with instructional programs on acccunt of their
length, logical complexity, and response-dependency. All possible
student responses must be considered in order to fully debug a CAI course.
To do this, an author would have to sign on as a student and try out all
responses that could be made in order to be assured that the program

takes appropriate action for each possible response.



In order to implement an instructional program, the author needs to
have an idea about the responses actual students will make, the difficulty
of the material, and time estimates. Grubb (1967, p.71) describes his
personal experience in writing a computerized course: "In writing the
statistics course for this medium I found that I was revising the course
almost hourly. Student-record data from the computer on students'
performance would almost always open up in the course material new branch

structures that I was not clever enough to predict."

A further burden for the CAI author is the task of documentation of
a.completed course. Exactly how much detail need be included in a docu-
mentation depends on for ﬁhom it is being prepared, but without .a form of
documentation a program is not very useful to others. All the afore-
mentioned reasons for difficulties in debugging apply also to documentation,

making it also very time-consuming, expensive, and inefficient.

C. Computer -Simulation

A computer simulation of an operation is a process of modelling the
operation by representing it with a computer program. The operations of
numerous industrial and administrative systems have been effectively and
economically modeiled through the use of computer simulation techniques.
New computer languages, both general and specific in their application,
have been.developed to meet the needs of thosecharged with the program-
ming of computer simulation models. One of the main purposes of such
work has been to optimize the parameters of a complex operation under
varying conditions. Naylor, Balintfy, Burdick, and Chu (1966) provide a

summary of simulation techniques in economics.



Digital simulation has been used to advantage in behavioral science
as we}}. Computer models of cognitive processes have been particularly
;roﬁiéihg, and are closely paralleled by numerous endeavours in the area
of artificial intelligence (Feigenbaum and Feldman, 1965). A computer
simulation of student performance in a computer-controlled instructional

setting is not yet reported in the literature.

The point of view developed in this thesis is to demonstrate how
computer simulation techniques can be applied to CAI in such a way as to
provide needed assistance for authors in the development of instructional
programs. It is also shown that computer simulation of CAIL may.be used

to test student learning models.

The idea of simulating CAI is to provide a representation of both
the:instructional logic and possible gtudent responses so that information
of benefit to authors may result. For example, a flowchart of the in-
structional logic could be drawn from the simulation representation. As
well, the paths followed by different types of students through an
instructional sequence could be traced, to give an idea of how a variety
of students might respond to the CAI course. Information derived from
the simulation could be used to develop, debug, improve, and document the

instructional program.



CHAPTER II

Background and Methodology



BACKGROUND AND METHODOLOGY

A summary of the computer language Coursewriter II is given in
section A of this chapter. A compariSon‘of-the advantages and disadvan-
tages of three alternative approaches to simulation of the instructional
and learning aspects of CAI is made in section B. Of the three suggested
possible methods, the last one, simulation using a list-processing
language, is selected. A brief description of a.modified symmetric list

processor (MOSLIP) is then given in section C.

A. Summary of Coursewriter II'

Instructional programs for the IBM 1500 are written in the computer
language Coursewriter II. The programmer or author of a computerized
course writes the sequence of instructions as if for one student, although
in fact a number of students may be at different points in the same course,
or another course, at the same time, because of the time-sharing nature
of the system. Each student station consists of a film strip projector,
audio equipﬁent, and a typewriter or display screen wigh keyboard and light
pen. For each station, areas in fhe computer memory are set aside as
buffers, counters, and switches to keep track of student responses, to
compute scores, and to provide for conditional branches. Buffers, counters,
and switches are used to store character string, integer, and logical data

respectively.

Details of the Coursewriter II language are given in the IBM 1500
Coursewriter II Author's Guide (1967). The thirty-five instructions of

the language may be summarized here by six main areas.



The summary gives. the two-character operation code (card calumns 7 and 8)

which calls up each instruction, followed by a brief explanation of the

operation performed by each instruction:

1. Problem presentation

)°29
ty
dt
dg
de
a1
pm
au
fp

pa

problem start (begin new problem)

type text or contents of buffer on typewriter
display text or conteﬁts of buffer on display screen
display graphic on display screen

erase one or more lines on the display screen
display emphasis line (underline) on display screen
proctor message sent to proctor station

position and/or play or record audio message
position film and/or open or close shutter

pause

2. Response request .

ep

ec

enter and process response from keyboard or light pen

enter response and continue

3. Response analysis (compare stored answer with student's response)

ca

ch

wa

wb

aa

ab

un

ea

correct answer

synonymous correct answer
wrong answer

synonymous wrong answer
additional answer

synonymous additional answer
unrecognized response

end of answers



4. Scorekeeping

ad add integer or counter to counter

sb gubtract integer or counter from counter

mp multiply counter by integer or counter

dv divide counter by integer or counter

1d load integer or counter into counter, load switch, or load

text or buffer into buffer

5. Presentation sequence control

nx no execute (conditional -execution of subsequent instructions)
tr transfer to new course segment
br branch to label, return register, last executed ep, oY n'th

next problem, either unconditionally or ¢onditional on the
state of a counter Or switch

ir load label into return register

6. Special instructions

cm call and execute a Coursewriter macro

fn call and execute an assembly-language function
no no operation

ma macro name (beginning of macro)

en end of macro

en end of course

Most of these instructions may have modifiers and/or parameters

which specify the details of the operation to be performed.

In addition to explicit branches which may be constructed by the use

of statement labels and the br instruction, Coursewriter II also features
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implicit or automatic branching. The entire logic of the implicit
branching feature of the language is summarized in the course flow
decision table (Figure 2.1) reprinted here from the IBM 1500 Goursewriter

II Author's Guide (1967).

All Coursewriter II instructions may be clagssified as either major
or minor. The major instructions include those previously classified -as
response analysis instructions (category 3 above) as well as the pr and
nx instructions. Whenever a céntrol instruction (a major or ep) is
executed, a condition is set up whereby subsequent instructions may or
may not be executed. The nine conditions that may be set up are indicated
in columns 0 through 8 of the course flow decision table, while the eight
types of instructions that may be currently encountered are indicated as
rows O through 7 of the table. The decision to be taken when an instruc-
tion is encountered under a given condition is indicated in the body of
thé course flow decision table at the intersection of the appropriate row

and column.

For example, minor instructions (row 4 of Figure 2.1) following an
executed ca or cb (correct answer) are executed or not depending on
whether the student'é response did or did not match the sto;gd correct
answer: (colimns 7 or 3 respectively). A8 another -example, when an aa, ca,
wa, or un (row 2) is encountered following a match on a ca or c¢b (column 7),

course flow automatically skips to the next problem (pr).

Implicit branching introduces a hidden, but useful, complexity in

the logic of instructional programs written in Coursewriter II.
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B. Alternative Methods of Simulation

The intent of the thesis was stated in Chapter I as the development
of means for computer simulation of student performance in a computer-
assiisted instructional setting. Input to the proposed simulation pwogram
would consist of a course program (written in Coursewriter II for the IBM
1500) and required parameters would include debug, documentation, and
learning options. depending on the principal intent of the gimulation.

The learning parameters would determine, on a deterministic or probabil-
istic b;sis, the decision to be taken at each respoﬁse-dependent branch
point of tﬁe course. Output would include a trace of course flow, and

particular debug and documentation information requested.

Three alternative methods are initially considered, depending on the
type of simulation language used. The three types of languages discussed
here are Coursewriier II, a general purpose simulation language, and a

list-processing language as the medium for simulation.

i. Simulation using Coursewriter II

Since the input course program in its existing form already repre-
gents a model of the instructional process for the course, only simulated
student responses (or their branching equivalents) need be added for the
program to represent the complete learning and instructional process.
Thus the simulated program would be written in the same language as the

input course program —-— Coursewriter 1I.

Since it could be run on the same computer (the IBM 1500), the
simulation program could easily replicate the details of the course

program (for example, graphic displays). This feature would make this



method particularily useful in debugging. Unfortunately, there are a

number of disadvantages to this approach:

(a) Simulation would tend to be slow, and might use up valuable author

or student time.

(b) It would be difficult to provide a clear separation of learning

aspects from instructional aspects.

(c) The inflexible nature of the Coursewriter language would tend to

make implementation difficult.

d) The representation would not be useful for documentation or flow-
charting, since it provides no alternative representation of course

logic other than that contained in the course program itself.

2. Simulation using a general purpose simulation language

The language selected must be flexible and suited to the special
needs of simulation, such as IBM's General Purpose Systems Simulator
(GPSS). GPSS has been used to simulate vehicle traffic, factory produc-
tion lines, communication systems and the like, and could be used to
represent student flow through a CAI course. The starting point of a
GPSS program is a block diagram similar to a flowchart with precise
conventions. Possible output could include the number of students
passing through any point in the system, time required for completion
of portions of the course, average utilization of system elements and

queue lengths at selected points.

GPSS might be more useful for study of performance of the whole 1500
system, rather than just the portion consisting of student interaction with

a course program. The main disadvantage of GPSS is that the starting point
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(a block diagram) does not meet the needs of the proposed simulation which
is required to begin with an existing CAI course program, for which no
flowchart is available. A typical Coursewriter II program contains a

large number of system elements, each of which would have to be represen-

ted by a block diagram.

Thus GPSS, although potentially useful.in a study of the 1500 system,

is not well suited to the needs of the proposed simulation.

3. Simulation using a list processing language

List processing languages have been found useful with a v#riety of
complex symbol-manipulation problems, including language translation and
artifictal intelligence. Hierarchically organized data of indefinite
length is stored in cells linked together to form lists. Lists iﬁ turn
may be linked together by the provision that a list cell may point to a
sublist. A tree structure results if sublists may be pointed to only.
once. A more complex list structure results if sublists may be sublists
of more than one list, as is permitted in the more general list-processing
languages. A detailed comparison of four well-known list-processing
languages (LISP, IPL-5, COMIT, and SLIP) is given by Bobrow and Raphael

(1964).

SLIP is a symmetric list processor consisting primarily of a set of
Fortran subprograms written by Weizenbaum (1963). A modified symmetric
list processor (MOSLIP) designed for the IBM 360/67 computer is described

by Flathman (1968).

Using MOSLIP, instructional logic would be represented -isomorphically

as a data structure that could be operated on in a variety of ways.
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Details of an 1nstructiona1 program, such as graphical displays, could not
be represented in their original form during a simulation so that certain
types of debug errors could not be located. However, the instructional
logic and branching mechanism could be completely represented. Powerful
list operations are provided in the language, and the well-known algebraic
flexibility of Fortran is also available. Learning and instructional
aspects of a CAI simulation could be clearly geparated. Thus a list-
processing language such as MOSLIP would seem to be the most advantageous

for the proposed application to CAI simulation.

The first major problem to be solved is to find a convenient and
economical representation of all Coursewriter instructions affecting
branching, both explicit and implicit, so that the logic of a complete
course could be represented as a data list structure.. Then, operating on
this data base, a variety of debug, documentation and learning simulation
programs could be written. Chapters IIL and IV of this thesis are devoted

to the solution of these problems.

To illustrate how list-processing may be applied to representing
program logic, an outline of a short but typical sequence of Coursewriter

instructions is given:

ep Trequest response

dt display text 1f respomse is in time
nx skip to ca 1f response is in time

de display erase if response is timed-out

ca compare with stored correct answer

1f the student responds in time to the response request ep instruction,

then it may be seen from the course flow decision table (Figure 2.1) that
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the dt and then the ca instructions are executed. In this case the nx and
de are not executed. However, if the student does not respond within the
permitted tatency time, then the ep is timed out and dt is not executed,

but ‘instead the nx, de, and ca are executed.

A possible MOSLIP list structure representation of the program logic

in this short sequence of Coursewriter instructions is given in Figure 2.2.

H ep P eﬁ 1;2 dt P
ep l
out
’—1
H nx de P

Figure 2.2 A MOSLIP Representation

In Figure 2.2, each box represents a MOSLIP cell. A box with an H
in it represents the header of a list, while a box with a P ig a cell
pointing to the header of a sublist. Cells on a list are indicated by
horizontal lines from the list header on the left to the end of the list

on the right. The occurrence of sublists is indicated by the vertical

arrows.

There are three lists in this representation, one for each control
instruction (major instruction or ep). The control instructions in this
example are the ep, nx, and ca, and there is a list header (H) for each.
The two paths through the sequence, (ep dt ca) and (ep nx de ca) are

clearly evident in this representation.



17
The complete details of how a MOSLIP representation may be established

for the logic of any Coursewriter course are given in Chapter III.

C. Modified Symmetric List Processor

This section comprises a brief description of the modified symmetric
list processor (MOSLIP) designed by Flathman (1968). MOSLIP is based on
the SLIP language invented by Weizenbaum (1963) and consists of a set of

Fortran subprograms for the IBM 360/67.

In MOSLIP, information is stored in specially désigned cells which
also hold data identifying the cell and describing its linkage to other
cells. Cells are linkeéd together into larger units called lists, which
are preceded by a special header cell. Lists in turn may be linked to

form more complex list structures.

Special processes are required to deal with data that is linked
hierarchically into lists and list structures. In addition to organizing
a storage area composed of cells and assigning a unique address to each,
processes are needed to deal with the storage and retrieval of information
in each portion of a cell. A special list of available space should be
created and maintained for storing cells that are not in use. Processes
are needed for removing cells from the list of available space, and

returning them when they are no longer needed.

More processes are required for linking cells together to form lists,
and for maintaining information about a whole list in the header cell.
Means must be provided for creating a list, adding cells to it, removing
cells from it, and erasing the list when it is no longer needed. Finally,

processes are required for the storage and retrieval of information on
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1ists, including the storage of pointers to sublists in order that complete

1ist structures may be created and handled.

The information actually stored in cells and lists, and the ways in
which cells and lists are to be linked, differs from one application to
another. This is determined by establishing a representation or corres—
pondence between the structures and processes in the intended application,
and the available list structure and processes in MOSLIP. The representa-
tion established for the logic of Coursewriter II in courses is described

in Chapter III.

A detailed description of the MOSLIP subprograms, along with some

Fortran Coding examples, is now given.

The basic MOSLIP processes, which are described first, deal with the
storage and retrieval of information in each portion of a cell. Then

follows a presentation of the processes for creating and erasing cells and

lists. The last subsection deals with the storage and retrieval of

information on lists.

1. Basic MOSLIP structure and processes

In MOSLIP the available computer memory is organized into at most
16000 fixed-size units called cells, with each cell having a unique
relative address between 1 and 16000. Cells may be linked together to
form lists, each 6f which begins with a special header cell that contains
information about the list as a whole. A list that consists only of a

header is said to be empty.



Each MOSLIP cell consists of four parts which will be described
individually in turn:

(a) a 2-byte integer field ID for identification

(b) a 2-byte integer field LNKL for link to the left

(c) a 2-byte integer field LNKR for link to the right

(d) a 4-byte integer field ICONT for the contents of the cell.

[ | inkr, | LINRR | ICONT 1

Figure 2.3 A MOSLIP Cell

The ID field describes the use to which a cell is put. F&f an& cell
address K between 1 and 16000, the ID field of cell K is given by the
value of function IDIN(K). If this value is 2 or more, the cell is a
list header. The LNKL field contains the address of the cell to the left
(or "above") on the same list. For any cell address K, the LNKL field of
cell K is given by the value of function LLIN(K). If K is a header cell,
then LLIN(K) is the address of the cell at the bottom of the list headed

by cell K, because of the circular or symmetric nature of MOSLIP lists.

The LNKR field contains the address of the cell to the right (or
"below") on the same list. For any cell address K, the LNKR field of
celi K is given by the value of function LRIN(K). If K is a header cell,
then LRIN(K) is the address of the cell at the top of the list headed by

cell K.

Subroutine SATIND is used to store values in the ID, LNKL, and/or
LNKR fields of a cell. The statement CALL SETIND (I, LL, LR, K) will
store the value of I in the ID field, LL in the LNKL field, and LR in the
LNKR field 6f the cell with address K. However, if I, LL, or LR has the

value -1, then the value of the corresponding field is not changed.

19
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A simple example of the use of the MOSLIP subprograms mentioned so

far follows, with notes to the right:

CALL SETIND (3,5,7,29) set_3,5,7 in cell 29

CALL SETIND (-1,-1,9,29) set 9 in LNKR of cell 29

I = IDIN (29) I equals the ID of cell 29

J = LLIN (29) J equals the LNKL of cell 29
K = LRIN (29) K equals the LNKR of cell 29

At the end of this short sequence, -the value of I is 3, J is 5, and

K is 9.

The ICONT field of a MOSLIP cell contains the contents or datum
stored in the cell. A datum may be an integer, floating point number,
Hollerith field up to 4 characters, or the name of a sublist. For any
cell address K, the ICONT field of cell K is given by the value of

function INHALT(K).

Subroutine STRIND is used to store a datum in the ICONT field of a
cell. The statement CALL STRIND (M,K) will store the value of datum M

in the ICONT field of cell with address K. TFor example, in the following

sequence:
DATA M/'DATA'/, K/57/ define M and K
CALL STRIND (M,K) store M in cell K
I = INHALT (K) 1 equals the contents of K

1 has the value 'DATA', a 4-character Hollerith constant.

Lists may be linked together to form more complex list structure by
the provision that a datum stored in a cell may be the name of a sublist.
The name of a list is a simple transformation of the address of the header

cell of the list. This transformation is accomplished by function NAME.
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For the address K of any header cell, the name of the list headed by cell

K is given by the value of the function NAME(K).

The reverse transformation from the name of a list to the address of
the header cell is done by function MADLST. For the list whose name is L,
the address of the header cell of list L is given by the value of the
function MADLST(L). For example, in the following statement:

I = MADLST (NAME(K))
the second transformation MADLST undoes the first transformation NAME so
that the resulting value of I is simply the cell address K. If L is
already the address of a cell, rather than the name of a list, then the

transformation MADLST(L) results in the same value L.

2. Creating and erasing cells and lists

A mainline MOSLIP program begins with two standard statements. The
first is an optional declarative statement: COMMON LAVS, LW(10). This
provides access to the header of a special list called the list of
available space (LAVS) and to the names of ten public working lists
LW(1l) to LW(1D). This first statement is not required if LAVS and the

LW's are not referred to in the program.

The second standard statement, which isn't optional, is a call to
SUBROUTINE INITAS(N), "initial available space', which organizes core
into N cells and stores them on LAVS. Cells which are not in use are
stored on LAVS and made available when needed. INITAS also creates the
ten public working lists LW(l) to LW(10). The argument N of INITAS is
equal to the number of cells created, and must be an integer between 12
and 16000. For example: CALL INITAS (16000) organizes the memory into

16000 MOSLIP cells, stores them on the list of available space, and
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creates empty lists Tw(l) to 1W(10). The value -1 is stored in the

contents of the headers of the iW's.

New cells may be obtained from the top of LAVS by function NUCELL(X),
where X is a dumm& variable. The address of the new cell is given by the
value of function NUCELL(X). If the ID of the cell has the value i,
indicating the cell contains the name of a sublist, erasure of the sublist

is called for.

Cells are returned to the bottom of ‘LAVS by subroutine RCELL. The
statement CALL RCELL(K) will return the cell with address K to LAVS.
For example, consider the following statement: CALL RCELL (NUCELL(X)).
In this example, a new cell is taken from the top of LAVS by ‘NUCELL, and
.then it is returned to the bottom of LAVS by RCELL. Thus RCELL undoes

the work of NUCELL (although the gstructure of LAVS is changed) .

Function LISTMT(L) tests whether or not a list is empty. If L is a
1ist name or address of a header cell, the value of function LISTMT(L) is

0 if the list is empty, and -1 otherwise.

Function MTLIST(L) empties list L by returning all its cells except

the header, to LAVS. L is also the value of the function.

Function IRALST(L), "erase 1ist", decrements the reference counter of
1ist L by one, delivering the new value of the reference counter as the
value of the function. 1f the decremented reference counter is 2 or less,
the list L is erased by returning all its cells, including the header, to

LAVS .

New lists can be created whenever desired with the LIST function.

The statement L = LIST(K) creates an empty list whose name is L. The
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contents of the header cell is set to the valﬁe -1, If K is 2 the refer-
ence counter of the new list is 2, otherwise the reference counter is set
to 3. Only main lists or those that the programmer wishes to explicity
erase when no longer needed should be created with a reference counter of
3. Sublists should ordinarily be created with a reference counter of 2,
in which case they will automatically be erased when lists referencing

them are erased.

Here is a short series of statements {llustrating the last few MOSLIP

subprograms that have been defined:

L = LIST(3) create list with name L

T = LISTMT(L) I is O since L is empty

J = MILIST(L) J equals L after emptying

K = IRALST(L) K equals reference counter of L after erasure

In this example, list L is created with a reference counter of 3. Since
L is empty when created, variable I receives the value 0. The third state-—
ment has no effect on list L, since L is already empty, but J receives the

value of L. The last statement erases 1ist L and sets K equal to 2.

The purpose and operation of . reference counters is discussed more

fully in the next section.

3. Sforage and retrieval of information on lists

Two functions, NEWTOP and NEWBOT, are provided for storing data on
lists. The statement K = NEWTOP(M,L) causes datum M to be "pushed down'
on top of the list named L, or to the right of the cell with address L.
That is, a new cell, whose relative address is K, is taken from LAVS,
datum M is stored in its ICONT field, and the new cell is inserted immed-

iately below L. If M is the name of a sublist, the reference counter of
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the sublist is incremented by one and the ID field of cell K is set to 1.

Otherwise, the ID field of cell K is set to O.

Similarly K = NEWBOT(M,L) causes datum M to be "pushed up" on the
bottom of list L, or above (to the left of) cell L. A'ﬁew"celi K is taken
from LAVS, datum M is stored in it, and cell K is inserted immediately to

the left of-cellAL, or at the bottom of list L.

Two converse functions, TIPOPUP and IPOPBT, remove data that is stored
on lists. Function IPOPUP(M.L) removes the cell below (to the right of)
cell L, or the cell on top of 1ist L, delivering its contents M before
returning it to LAVS. The value of the function is 0 unless L is the last
cell on the list (or list L is empty), in which case the value of the

function is -1, no operation is performed, and M 1is zero.

Function IPOPBT(M,L) similarly pops up the cell above (to the left

of) cell L, or the cell on the bottom of list L, delivering its contents M.

A short example is now given of the use of the storage and removal

functions:

L = LIST(3) ) create list name L

CALL NEWTOP(17,L) store 17 in cell at top of list L

CALL NEWBOT(21,L) store 21 in cell at bottom of L

1 = IPOPUP{M1,L) pop up contents M1 from top of list L

J = IPOPBT(M2,L) pop up contents M2 from bottom of list L
K = IPOPUP(M3,L) attempt to pop up M3 from top of list L

In this example, list L is created and the integer 17 is stored in a cell
at the top, and 21 in a cell at the bottom of L. Then both the top and
the bottom cells are removed ("popped"), with the result that the value

of M1 is 17, M2 is 21, and 1 and J are both 0. List L is now empty and
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an attempt to pop it up results in M3 equal to O, and K is -1,
Sometimes it is desired to look at the datum in the top cell on a
list without removing the cell that contains the datum. Function ITOP(M,L)
displays datum M on top of list L, or the datum in the cell with address
L. No storing or removal of cells on the list occurs. The value of the

function is O unless list L is empty, or cell L is at the bottom of the

list, in which case the value of the function is ~1 and M is O.

The address of a cell located a specified distance from the top of
a list may be found using function MADNTP(L,N). The value of the function
is the address of the cell that is N cells from the top of list L. For

example, consider the following sequence:

L = LIST(3) \ create list named L

I = ITOP(M,L) examine datum M at top of L

CALL NEWBOT(1,L) store 1 in cell at bottom of L

CALL NEWBOT(2,L) store 2 in cell at bottom of L

J = ITOP(N,L) examine datum N at top of L

K = INHALT (MADNTP(L,2) K equals datum 2 cells from top of L

In this example, empty list L is created and an attempt is made to examine
the datum in the top cell. Since there are no cells on the list other
than the header, I is -1 and M is 0. Then data values 1 and 2 are stored
in cells on list L. The datum N, which receives the value 1, on top of
list L is displayed, and J is 0. Then the datum K, 2 cells from the top

of 1list L is displayed, and K is 2.



CHAPTER III

Establishing a Representation
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ESTABLISHING A -REPRESENTATION -

The conventions by which a list structural representation of a.
Coursewriter course may be established are described and illustrated in
Section A of this chapter. Section B summarizes the list structural
codes used in the representation. A number of utility programs used in
creating the representation are.described in Section C. Section D
- contains a description of the method used to program the representation

of the implicit branches generated by the input Coursewriter instructions.

A. Conventions of the Representation -

In this section, conventions are described by which a correspondence
is established between instructional logic and a list representation.
The Coursewriter II instructions comprising course material and instruc-
tional strategy may be represented by a MOSLIP list structure according

to the following four conventions.

Convention 1

Each Coursewriter II instruction is represented by one MOSLIP cell.
The cell contents are the operation code and modifier of the Course-
writer II instruction, a total of three characters. Labels, which
may be considered to be minor instructions, are up to 12 characters
long, and hence are represented by as many as 3 consecutive cells on
a MOSLIP list.

In generél, it is not necessary to represent the details of an
instruction as specified by its parameters and subparameters, sinae

these usually have no effect on the instructional strategy or path
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which a student would follow through the course. However, this
generalization is not true of the br imstruction, nor the instruc-
tions ad, sb, mp, dv, 1r, and 1d which change the values of counters,
switches, and return registers, and hence affect branching. The
parameters of these instructions are stored in subsequent MOSLIP
cells on the same list, but each parameter is preceded b; a blank
character to provide one column of indentation on printout.

Occasionally, on account of the implicit branching of the course
flow decision table, two or more paths with different conditions may
develop in the same sequence of Coursewriter instructions. In such
a case, each path receives a separate list representation, and all

of the instructions in the sequence appear on each path representation.

Convention 2

Sequential execution of instructions along any path through a course
is represented by consecutive cells on a list, from left to right

(top to bottom).

Convention 3

Each label and each control instruction (major instruction or ep)
begins a new list. This means that the MOSLIP cell representing the
label or instruction is preceded by a list header cell. Execution
of such an instruction is indicated by a cell pointing to the list
header. This may imply a merger of one or more paths. The reason
for this provision is that such instructions can, in general, be the
destination of explicit or implicit branches.

A minor instruction following a synonymous answer instruction
(wb, cb, or ab) also starts a new list since it may be branched to

as a result of a "no execute, examine next instruction" condition.
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Examples 3 and 4 below illustrate this situation.
If the same label or minor instruction occurs on more than one
path generated by the course flow decision table, a header cell occurs

on only one such path.

Convention 4

A branch is a departure from séquential execution and is represented

by a pointer to a sublist. Such branches may be either conditional

or unconditional and either explicit or implicit. In the case of
conditional implicit branches due to mismatch or time-out on a response
analysis or ep instruction respectively, the poiater cell always

immediately follows the cell containing the instruction.

Examples illustrating the application of the four conventions are now
given. Figure 2.2 of Chapter II also illustrated some of the comventions
of the representation. In the examples, the Coursewriter II sequence of
instructions is given first, followed by its MOSLIP representation. Each
MOSLIP cell is indicated by a box and its contents are printed in the box.
P indicates a cell pointing to a sublist headed by a header cell designated

H.

Example 1 - Unconditional explicit branch

In this example, the label.label2 has 6 characters, so its represen-
tation requires two consecutive MOSLIP cells, with the first 4 characters
in the first cell, and the last 2 imn the second cell. The label is pre-
ceded by a header so that it may be branched to from other points in the

program: dt display text

br label2 branch to label2



dt br P

H lab% 12

Figure 3.1 Logic of Example 1

Example 2 - Conditional explicit branch.

The parameters of the conditional br are each indented or preceded

by a blank. The cell pointing to the label immediately follows the

parameters of the condition:

br label =/cl =/le =/3 branch to label if counter 1
is less than or equal to 3
dt display text
br cl le 3 p falsel g
true
N

29

T

Figure 3.2 Logic of Example 2

Example 3 - Implicit branches

This example shows both conditional and unconditional implicit
branches. Following the fourth convention, the ca @ismatch pointer cell
immediately follows the cell containing the ca, whereas the match condi-
tion involves only sequential execution and hence is indicated by subse-
quent cells on the same list. This list ends with an unconditional

implicit branch to the minor pa, on account of the "no execute examine



next instruction"” condition that occurs when the cb is encountered on

this path.

there is a match on the cb, the pa is executed first, otherwise execution

skips immediately to the pr.

The cb instruction is executed'in case of ca mismatch.

through this sequence:

If

30

The 1list structure clearly shows three paths

ca correct answer
dt display text
cb synonymous correct answer
pa pause
Pr start new problem
tchl
H ca P fma dt P
1
mis— % H pa
match
N
H cb p fatend p
mis-match

Figure 3.3 L

ogic of Example 3

Example 4 - Two paths through the same sequence

Pr

In the discussion of the first convention it was mentioned that two

or more paths could develop through the same sequence of instructions.

An example of this situation is the pa instruction in the following

sequence. The pa instruction has two separate representations because

it appears on two paths under different conditions with different logical
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outcomes. When pa is executed following a match on ab, the nx is

encountered butnot executed as a skip occurs to the next major (px).

However, when pa is executed following execution of the first nx, ab is

skipped ("no execute, examine next instruction") and the second nx is

executed. Thus the pa occurs in two cells, only ome of which is

preceded by a header.

aa
dt
nx
dg
ab
pPa
nx

dl

pr

additional answer

display text

conditional execute

display graphic

synonymous additional answer
pause

conditional execute

display emphasis line

start new problem

tc

| dt

ILE

mis-
match

Figure 3.4

mis-
match
- P H ngt d1 P
Htpatt P

Logic .of Example 4
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B. List Structural Codes

In order to set up a MOSLIP representationrof an arbitrary input
Coursewriter II course program, the four conventions described in the
previous section need to be applied. In addition to meeting the conven-
tions, the representation should store all necessary informaticn in ofder
that the instructional logic of the course can pe effectively traced and
simulated. To meet these requirements, codes are established for the
Coursewriter II instructions affecting branching, and for all the condi-
tions occuring in the course flow decision table (Figure 2.1). In addi-
tion, a small number of special codes are created to represent certain
1ist structural situations and information for printing 2 logic chart.

All codes used are integers, positive or negative.

The operation code for Coursewriter II instructions affecting
branching is given in Figure 3.5. There are 20 such instructions,
including all majors and ep, br, tr, ad, sb, mp, dv, 1r, 1d (except load
buffer), and fn. Each such instruction is coded as an integer between

1 and 20.

ea | nx | aa | ca wa |un | pr | wb [cb ab

ep | br tr | ad | sb | mp dv [ 1r {1d | fn

11 {12 13| 14 {15 16 | 17 |18 | 19 | 20

Figure 3.5, Coursewriter Instruction Code

The Coursewriter instruction code is used in a number of ways to

establish the list structural representation of a sequence of Coursewriter



instructions. Initially, the code is used by the mainline program to
jdentify an instruction. The instruction code is then stored in the list

structure, along with the instruction itself.

A control instruction (major or ep) is, according to the third
convention, preceded by a list header. This is true also of every label,
and of each minor instruction following a synonymous answer (wb, cb, ab).
The instruction code is stored in the contents (ICONT field) of the

header as indicatad in Figure 3.6.

Code Meaning
-12 to -1 Label (negative character length)

-1 single character label or any other list
0 minor other than ep
1 ea
2 nx
3 aa
4 ca
5 wa
6 un
8 wb
9 cb

10 ab

11 ep

more than 100 pr (in sequence)

Figure 3.6 Header Contents Code

The length of a label, up to 12 characters, is stored as a negative
integer in the contents of the corresponding header cell. The code -1 may
refer to a single character label, or it may be the contents of any other
list, such as the working lists LW(1) to 1W(10). The header preceding a

control instruction contains the corresponding instruction code, 1 to 11,
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except for the pr imstruction. Problems (pr) are given a sequence number
in the order in which they are encountered in a course, beginning at 101,
and this sequence number is stored in the contents of the header of each

pr list.

The remaining Coursewriter II instructions that affect branching,
coded 12 to 20 in Figure 3.5, are not preceded by a list header. Instead
the instruction code is stored in the ID field of the MOSLIP cell that
contains the instruction. The ID or identification field is used for a

number 6f purposee as summarized in Figure 3.7.

As indicated in Figure 3.7, an ID of 2 or more identifies a cell as
a list header. The amount by which the ID exceeds 2 is the value of the
reference counter, which is the number of times the list is referenced as
a sublist. This represents the number of possible paths of execution
along which subsequent instructions lie. The reason for the header is

given in the ICONT field of the same cell, coded as in Figure 3.6.

An ID of 1 denotes that the cell contains the name of a sublist
representing an instruction encountered through merging or ordinary
sequential execution, according to the third convention. An ID of O

indicates that the cell contains 1 word of Hollerith characters.

Departures from sequential execution are represented by pointers to
sublists according to the fourth convention. The type of branch is coded
in the ID field of the pointer cell containing the name of the sublist.
An ID of -3 or -4 identifies a cell containing the name of a sublist to
which a branch occurs on condition of time-out or mismatch respectively.
Any other departure from sequential execution is designated by a pointer

cell with an ID of -2.



35

Code Méaning
2 or more header and reference counter
merge to name contained
contains 1 word characters
-2 branch to name contained
-3 conditional branch: ep time-out
-4 conditional branch: mismatch
=5 contains an integer
~6 contents and subsequent cell form 2 word characters
-7 contents and subsequent 2 cells form 3 word characters
-8 suppress printing of contents
-12 conditional br
-14 ~ad
=15 sb
-16 mp
=17 dv
-18 ir
-19 1d

Figure 3.7 Cell ID Code

An ID of -5 indicates that the cell contains an integer, instead of
characters. This is used, for example, to store parameters of instruc-

tions such as ad or 1d that refer to the values of counters or switches.

As already mentioned, a cell containing characters in its ICONT field
has an ID of 0, unless the characters form a unit whose length exceeds 4.
In the latter case, the unit requires more than one cell for its storage.
As many as three consecutive cells are used to store labels, which may be
~as long as 12 characters. The ID of the first cell indicates the number
of cells required, with -6 denoting 2 consecutive cells, and -7 denoting

3 cells. The ID of each of the extra cells is set to 0.
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Two cells are also required to store a reference to a switch such as
S10a, which is 4 ch;racters long, but is preceded by a single blank char-
acter for indentation during printing, making a total of 5 characters.
In this case, the blank and the first three characters are stored in a
cell with an ID of -6, and the last character is stored in.the next cell

on the same list, with an ID of O.

Occasionally it is desirable, during printing of the logic chart, to
suppress the printing of the contents of a cell. The ID field of such a
cell is set to -8. zFor example, an ID of -8 is given to the cell contain-
ing the value of the IUNI counter, which is a count of the number of un
instructions for each un following an ep. This is an internal counter used
only for determining the un Ccounter) match or mismatch condition. Compar-
ison is made with the IUN2 counter whose value is equal to the number of
times the ep has been executed. An ID of -8 is also used for the cell that
stores the address of a label loaded into a return register by the lr

instruction.

An ID of -12 indicates that a cell contains a conditional br instruac-
tion. The parameters or items forming the condition follow in subsequent

cells, each indented by one blank character.

1D values of -14 to -19 indicate that the contents of a cell is an
instruction coded 14 to 19 respectively, according to the instruction code

(Figure 3.5). These are the instructions ad, sb, mp, dv, lr and 1ld.

Examples are now given illustrating the use of the header contents
code (Figure 3.6) and the cell ID code (Figure 3.7). 1In the following
four diagrams (Figures 3.8 to 3.11), a cell is shown as a box divided into

two parts, with the upper part containing the ID or identification field,
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and the lower part the ICONT or.contents field. Characters are shown left
justified, while integers are right justified (as far to the right as
possible) within their part of a box. Pointers to sublists are again
designated P, but headers are identified merely by an ID greater than or

equal to 2.

ID 12 0 0 =5 —2 0}
ICONT |br cl — 11e]  [_3 P dt |
N
3 -6 0
-5 labe

Figure 3.8 Coding Example 2

Figure 3.8 is an elaboration of example 2 of the previous section,
showing the complete coding of the ID and ICONT fields of the MOSLIP
representation of the sample of Coursewriter coding. The first cell has
an ID of ~12 and contains a conditional br instruction. The following
two items, cl and le, are each indented by one blank character and have
an ID of 0. The last item of the condition is the integer 3 contained

in a cell with an ID of -5.

In case the condition is true, the pointer cell follows with an ID of
-2 indicating a departure from sequential execution. Otherwise, dt is
executed, as shown stored in a cell with 0 ID. When the condition is true,
the branch is to label, headed by a header cell with an ID of 3, indicating
no other references to this label. The contents of the header cell is -5,
indicating a label of length 5 characters. The label label is contained
in two consecutive cells, the first of which has an ID of -6, indicating

that another cell follows, with an ID of O.
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ca P At p

Figure 3.9 Coding Example 3

Figure 3.9 is an elaboration of Example 3 of the previous section.
The ca instruction is preceded by a header cell with a contents of 4,
which is the ca instruction code (Figure 3.5). In case of mismatch, a
pointer cell with an ID of -4 indicates a branch to cb, headed by a
header cell with an ID of 3 and contents of 9. 1In case of a match on the
ca, the dt is executed and then a merge takes place to the pa instruction
as indicated by a pointer cell with an ID of 1. The merge is with the
path generated by a cb match condition. The reference counter of the
header cell preceding the pa instruction has been incremented twice and
hence the ID is 4, while the ICONT field ig 0 indicating a minor imstruc-
tion. The pa is followed by sequential execution of pr, as indicated by
a pointer with an ID of 1. The header of the pr inmstruction also has an
1D of 4, since merger takes place with the path generated in case of mis-
match on cb. The pr header has a contents of 101, indicating the first

pr encountered in the course.
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3
| un P | 1

Figure 3.10 Coding an un Instruction

Figure 3.10 shows the coding for the first of a geries of un (unrec-
ognizable response) instructions. The un is preceded by a header cell
containing a 6 in the ICONT field in accordance with the header contents
code of Figure 3.6. The value of the IUNI counter is 1, indicating the
first of a series of un instructions, and the integer 1 is shown in a cell
with ID equal to -8 to suppress printing. When the un is executed, counter
IUNI is compared with internal counter IUN2, whose value is equal to the
number of times the preceding ep instruction has been executed. If the
counters match, the i{nstructions following the un are executed, otherwise

a branch is made as shown by the pointer P.

-18 -8 -6 0
1r | 603 lab el rrl

Figure 3.11 Coding an 1r Instruction

Coding of the instruction ir label -/rr2 is shown in Figure 3.11.
The 1lr instruction is contained in . a cell with an ID of -18, in agreement
with the cell ID code of Figure 3.7. The label address 603 is stored next
in a cell with ID of -8 to suppress printing. Label addresses are gener—
ated by function NULAﬁL discussed in the next section. The label is
stored in the next two cells, the first of which  has ID equal to -6 to

indicate that another cell follows. The label is preceded by a blank



40

character in the first of the two cells to provide for indentation during
printout. The itum rr2 is also preceded on the left by a blank character

in the last cell.

A complete summary of the utilization of the four fields of a MOSLIP
cell for simulating or representing the logic of a Coursewriter II course
is given in Figure 3.12. 1In this figure, the four fields of a cell are
gshown as columns of the table, and the possible values in each field are

in the rows of the table. The ID or identification field providee summary

e T

e T

information about the contents (ICONT field) of the cell, while LNKL and
LNKR always store the addresses of the cells linked to the left and right

respectively. Figi 3.32combifies and reiates Figure 3.6 and Figure 3.7.
44ﬂ#df¢ra;ﬂ‘guxef

C. Utility Routines

The 1list structural representation of an arbitrary input sequence of
Coursewriter II instructions is created in one pass. This 1& done by a
mainline program, CL2, and function MAJOR discussed in the next section on
implicit branches. In order to create a list structure in agreement with
the conventions and codes just described, a number of more general proces-

ses, referred to here as utility routines, are required.

Character manipulation operations required for establishing the repre-
sentation include character packing and unpacking. Packing is necessary
in order to store condensed information ih cells, but occasionally unpack-
ing must be done to place data in suitable form for pfinting. Whole char-
acter strings may need to be packed, and the length of strings up to
specified delimiters determined. Integers need to be computed from their
character representation in order. that arithmetic may be performed. The

reverse operation of computing the character representation corresponding
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ID LNKL | LNKR ICONT
more than 100 —- pr (in sequence order)
11 -- ep
10 -- ab
2 9 - c¢b
or 8 ——- wb
more 6 —— un
5 --wa
header 4 —— ca
and 3 — aa
reference; 2 ~= nx
counter 1l -- ea
0 -- minot other than ep
1 1 -1 -- single‘charactef label or any oi?:z
to to -1 to -12 - label (negative character length)
16000 | 16000
: merge to name contalned
contains 1 word charaéters
-2 link | Llink branch to name contained
-3 left |right conditional branch: ep time out
-4 conditional branch: mismatch
-5 contains an integer
-6 contents and subsequent cell form 2 word characters
-7 contents and subsequent 2 cells form 3 word characters
-8 suppress printing of contents
-12 conditional brx
~-14 ad
-15 sb
-16 mp
-17 dv h
-18 1r
-19 1d

Figure 3.12 MOSLIP Cells for Coursewriter II Representation
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to an integer is also required in order that all information can be

printed in a common format.

Two general list processes required, in addition to those provided
by MOSLIP, include searching and copying. When creating the list structure
and printing it, lists are set up that store information about the opera-
tions, and these must be searched at later times to find the data that has
been stored. Copying is necessary when more than one path develops through

a sequence of instructions.

Finally, processes are required to dissect and store labels and instruc-
tions in accordance with the conventions and codes. Labels must be identi-
fied, stored, and assigned a unique address. For instructions that affect

branching, the parameters must be separated, interpreted and stored.

Programs that carry out these utility processes are now described

individually in more detail.

1. Character Manipulation

Character manipulation operations are performed by five subprograms:
PACK, UNPACK, SPACK, LIMTER, and HOLLER. Four characters may be packed-
into a 360 word by the function PACK(I1l, I2, I3, I4). The four arguments
I1 to I4 are the four characters to be packed, each left justified in its
own word. The value of PACK is the resultant packed word with a floating-
point or real name. Entry IPACK(I1l, I2, I3, I4) may be used if the packed

word is to have a fixed-point or integer name.

The inverse function is UNPACK(I, IB). The symbol I represents the
word to be unpacked, and IB is the byte number, 1 to 4 only. The value of

UNPACK is the character that is unpacked from byte IB of word I, left
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justified with blanks in the rightmost three bytes. UNPACK is used if the
unpacked character is to have a real name, otherwise entry TUNPAK(I,IB)
unpacks byte IB from word I and gives the result an integer name. Both
PACK and UNPACK require subroutine EQUAL(Y,X) which sets Y equal to X
regardless of real and integer naming conventions. Arguments Il, I2, 13,

and I4 of PACK, and argument I of UNPACK, can be either real or integer.

For example, the value of PACK (IUNPAK(X,1), IUNPAK(X,Z), IUNPAK(X,3),
IUNPAK(X,4)) is X. As another example, the value of IPACK (UNPACK('SKI',1),
UNPACK('SUN',3), UNPACK('POLE',2), UNPACK('TOW',3)) is 'SNOW'. The effect
of PACK is to change 4 characters from Al format to A4 format, while UNPACK

changes 1 character from any position in A4 format to Al format.

A vector string of characters in Al format may be packed into a vector
of words of A4 format using subroutine SPACK(STRING, LENGTH, PACKED, N).
Input is a character vector STRING of a specified LENGTH in Al format, with
each character left-justified in its word. Output is a PACKED character
vector string of length N words, with & characters per word in A4 format.
The last or N'th word of PACKED contains up to 3 blanks to the right in
order to fill up the word. For example, 1if STRING(1) to STRING(6) have the
values 'S','T','R','I','N','G' respectively, then the statement CALL SPACK
(STRING,6, PACKED,N) produces PACKED(1) equal to 'STRI', PACKED(2) equal

to 'NG', and N equal to 2.

The length of a character vector string of format Al, up to a specified
delimiter, is found by function LIMTER(STRING, LENGTH, DELIMT,M,N). The
input character vector STRING has a maximum total LENGTH in Al format with
each character left-justified in its word. The delimiter DELIMT consists

of M consecutive characters. The maximum M is & characters left-justified
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and packed into the word DELIMT. The value of the function is also the
value of N, which is the length of the string up to but not including the
delimiter. For example, if éTRING(l) to STRING(8) have the values 'S',
"T','R',"I','N','G", 'S,/ respectively, STRING(9) to STRING(80) are any
characters, and the delimiter is '4/' of length 2, then the value of

LIMTER (STRING,80'+/"',2,N) 1s 6, and N also receives the value 6.

Some common delimiters occurring on Coursewriter II cards are the
0-8-2 punch (enter symbol) denoting the end of a statement, '-*' denoting
continuation of a statement on a subsequent card, and '-/' which separates

. the parameters of an instruction.

An integer of magnitude less than 100,000 receives a character
representation for each of its digits by subroutine HOLLER(IHOLL,INT,IP).
The input integer INT is converted to a packed character string IHOLL of
length 2 words of type A4, and to an unpacked character string IP of length
8 words of format Al. The ind;vidual digits of the integer are left-
Jjustified in each string, with blanks filling any remaining space to the
right. For example, if the integer INT has the value 769, then the state-
ment CALL HOLLER(IHOLL,INT,IP) produces IHOLL(1) = '769', IHOLL(2) is
blank, IP(1) is '7', IP(2) is '6', IP(3) 1is '9', and IP(4) to IP(8) are

blank.

2. List—processing subprograms

Two list-processing subprograms of general applicability are IFIND
and LCOPY.  Function IFIND(M,L,K) searches list L from the top for a cell
containing datum M. If such a cell is found, then K is the cell address
and the value of the function is 0. If the datum M is not found on list

L, then the value of the function is -1.
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Function LCOPY(ILST,NLST) copies the ID and contents of consecutive
cells on a list beginning with the first cell below ILST, and storing the
copled cells on the bottom of the list with ad&ress NLST. The value of
the function is NLST. Pointer cells with an ID of 1 are not copied, but
descent is made into the indicated sublist and its cells are copied onto
the bottom of NLST. This subprogram is used by function MAJOR to copy a
sequence of instructions when two or more paths with different outcomes

develop by implicit branching.

3. Dissecting and storing instructions

Labels are identified, stored, and assigned a unique address by
function NULABL(LABEL,N). The character vector LABEL of length N is
packed from Al format into temporary storage in A4 format. Working list
LW(7), which stores the addresses of all labels, is searched and if LABEL
is found its address is returned as the value of the function. If LABEL
is not found on LW(7), then a new list is created to represent the label,
LABEL is stored in packed form on the new list, and the address of the new
list is stored on LW(7) and returned as the value of the function. NULABL
also stores the appropriate codes in the label header and in the cells on
the new list that is created if necessary. Function NULABL is called by

subprograms BR and LR as well as by the main program.

The main program, given the name CL2, reads Coursewriter II program
cards one at a time into the integer vector COL in format (80Al). The
label or instruction is identified and, if it is to be executed, it is
stored in a new cell on the bottom of the current execution list LST.
Then subroutine LR, BR, TR or DISECT is called in case the instructiop is

lr, br, tr or one of (ad,sb,mp,dv,1d) respectively. These subroutines
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dissect and store the parameters of the corresponding instructions, accord-
ing to the conventions and codes previously described. The parameters are

stored in consecutive cells on the current list.

Subroutine BR sets up an explicit branch to a label, last executed ep,
a pr, or a return register. First the subroutine determines whether the
.branch is conditional or unconditional. For a conditional br, a flag is
reset and subroutine BRC is called to store the items making up the condi-
tion. Then subroutine BR determines the destination of the branch, which is

the address of the header of a sublist according to Convention 4,

For an explicit branch to a label, subroutine BR calls NULABL. If the
destination of a brangh is the last executed ep, working list LW(9) is
designated as the sublist. LW(9) holds the address of the last encountered
ep, which is updated by subroutine MAJOR. If MAJOR cannot determine from
the static logic that the last executed ep is the same as the last encoun-
tered ep, then LW(9) is set equal to the "TO EP" list LW(10), as described

in the next section.

For an explicit branch to a pr, working list LW(8) is searched to find
the appropriate sublist. LW(8) holds the addresses of the current pr and
the next seven consecutive pr's that may be branched to. Subroutine MAJOR
updates LW(8) whenever a pr is encountered in the input data. If the
branch is to a return register, subroutine BR designates sublist LW(l) to
LW(6), representing return registers rr0 to rr5 respectively. Working
lists LW(1l) to LW(6) contain only one cell, which holds the name of the

correponding return register.

Subroutine TR sets up a transfer to a label in another segment. A new

list is created to represent each such label encountered, and these labels
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Code Execution Decision
0 execute
1 no execute -- return to un
2 no execute -- skip to pr
3 no execute -- examirne next instruction
4 no execute —- skip to next major
5 no execute -- return to last executed ep

Figure 3.14 Execution Decision Code

are not stored on the labels working list LW(7). Subroutine TR stores on
the new list both the name of the label and the segment number to which

the transfer is indicated.

D. Implicit Branching

Most of the work of determining implicit branches and setting up
their list representation is done by subroutine MAJOR. The nature and
location of implicit branches is determined from the Course Flow Decision
Table (Figure 2.1), which is stored as a table of coded integers (Figure

3.13) in subroutine Major.

In the Decision Table Code of Figure 3.13, the currently encountered
instruction is found along the rows, which are numbered 1 to 11 as in the
Coursewriter Instruction Code of Figure 3.5. The last executed instruc-
tion and/or current condition is found in the columns of Figure 3.13,
while the decision to be taken with respect to the current instruction is
found in the body of the table. The decisions themselves are coded as
integers 0 to 5, with meaning as ékplained in Figure 3.14, the Execution

Decision Code.



49

In the Execution Decision Code of Figure 3.14, the decision to
execute is coded 0, while no execute is coded 1 to 5 depending on the
destination of the implicit branch, if any. Codes 1, 2, 4 and 5 designate
the execution of an instruction other than the current one, while code 3
indicates that the next instruction is to be examined with no change in
the current condition. Decision code 4 - skip to next major - is also
included in the Decision Table Code, colﬁmn 10, while column 11 indicates

that any instruction is executed following an explicit branch to a label.

The implication of the Decision Table Code of Figure 3.13 is that omne
or more paths of execution and/or non-execution may develop automatically

(o}

2]

implicitly in a given sequence of Coursewriter instructions. This may
be seen particularly from row 11, which applies to all minor instructions
as well as ep. Row 11 consists only of O's and 3's, indicating that either
a minor instruction 1is executed, or else the next instruction is examined.
Along any path, a consecutive series of minor instructions is either
executed, or else merely examined until the next major instruction is
encountered. This means that all paths may be classified into two types:
paths along which a minor instruction will be executed ("continuation"
paths), and paths along which a minor instruction will not be executed

but the next instruction will be examined ("branch" paths).

Continuation paths (columns 6 to 9 and column 11 of Figure 3.13) and
branch paths (columns 1 to 5 and 10) develop from the execution of a major
instruction or ep, or by explicit branch to a label (column 11 only). The
branch and continuation conditions so generated form the columns of the
Decision Table Code of Figure 3.14. A complete list of these generated

conditions and their origin is given in Figure 3.15.
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Branch Continuation
Code | Inmstruction.| Condition 1 | Condition 2

ea 0

=
o

nx
aa
ca
wa
un
PT
wb
cb
ab
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[
=

ep
label

=
|

Figure 3.15 Branch and Continuation Conditions

Figure 3.15 lists the conditions of the branch and continuation paths
generated by each control instruction and label. Execution of any one of
these instructions produces a continuation comdition (condition 2) whose
code is given in the last column of Figure 3.15, and which is used to
determine the appropriate colummn of the Decision Table Code of Figure 3.13
when a new instruction is encountered. Most of the instructions of Figure
3.15 also generate a branch path whose condition is given in the previous
column (condition 1). However, ea, pr, and labels do not generate branch
paths, so their branch condition is coded as O. The branch condition code
is also used to determine the appropriate column ;f Figure 3.13 to f£ind out

the execution status of subsequent instructions that are encountered.

In order to keep track of the multiplicity of paths and conditions
which could potentially develop through implicit branching, two current
lists LCURR(1) and LCURR(2) are created and used to store essential infor-

mation about branch and continuation paths respectively. LCURR(1) and
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LCURR(2) store consecutively the list header address of the last control
instruction or label executed, and the corresponding branch or continuation
code. Any number of path headers and their conditions can be stacked on

each list, with the most recent on top.

The mainline program CL2 creates lists LCURR(1l) and LCURR(2), and
initializes LCURR(1l) to the list representing the beginning of the sequence
of Coursewriter instructions whose representation is to be established.

CL2 also stacks the label header address and condition code 1l on top of
LCURR(2) whenever a label is encountered, assuming that the label may be
branched to from elsewhere in the course. For the same reason the last
executed ep list LW(9) is set equal to the more general "TO EP" list LW(10)
after a label is encountered, since the label may be branched to after
execution of some ep other than the last ep encountered. Working list
LW(10) contains only two cells storing the information "TO EP", and no
attempt is made to determine which ep is to be represented. The appropriate
ep can be determined when the list structural representation is later
traced. Whenever a minor instruction is encountered, it is stored only on

the topmost continuation list of LCURR(2).

Subroutine MAJOR is called whenever a control instruction, TR, or
unconditional BR is encountered. Current lists LCURR(1l) and LCURR(2) are
popped to determine the outcome of each current branch or continuation path
that has not yet been disposed of. Each continuation list is checked to
see whether or not its execution outcome is the same as the previous con-
tinuation list above. If the outcome or decision, as determined from the
decision table code, is the same, then, unless the decision is to examine

the next instruction, the first or upper list is stored on the second or
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lower list. Thus a merger of paths is created in agreement with Conven-
tion 3. If the decision with respect to two continuation paths stacked
consecutively on LCURR(2) is different, or if the decision is to examine
the next instruction, then the upper continuation list is copied onto the

lower by function LCOPY described in the previous section.

Function MAJOR determines a list LISTEX to represent the currently
encountered control instruction, if it is to be executed. All branch or
continuation paths are then disposed of in terms of their outcomes from
the Decision Table Code of Figure 3.13. MAJOR keeps track of the last
encountered ep, LW(9), and the last unm, LASTUN, as well as updating the
pr storage list LW(8) whenever a pr is encountered. If the decision for
a branch path is to examine the next instruction (code 3 of the Execution
Decision Code of Figure 3.14), then the path list header and its condi-
tion are stored back again on the same curremt list LCURR(1), in order
that they may be dealt with later. If the decision for a continuation
path is to examine the next jnstruction, then a new list is created for
the first minor that may follow, and it is this list and the unchanged
condition which are stored back on the current list LCURR(2). This

provides for the latter part of Convention 3.

Finally, function MAJOR stores on. each branch or continuation list
the outcome or decision list which has been determined for the path under
the existing conditions. The new branch and continuation conditions
which may have been created by execution of the currently encountered
instruction are stored on ﬁhe corresponding current lists LCURR(1) and

LCURR(2), which are thus continually updated.

Function MAJOR is called in case of a TR or unconditional BR simply



to dispose of all current continuation lists on LCURR(2). The continua-
tion lists will in this case all become sublists of each other as they

are unstacked from LCURR(2), and LCURR(2) 1s left empty.
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CHAPTER IV

Applications of the Representation
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APPLICATIONS OF THE REPRESENTATION

This chapter presents a description of three applications of the
list structural representation of a Coursewriter II sequence established
in Chapter III. The first application, discussed in section A, is the
development of a printed logic chart illustrating the instructional logic
of a course. Tracing all possible paths that could be followed by a
student through a course is discussed in section B. The third applicationm,
described in section C, is the representation of student response models

and the determination of simulation variables for each artificial student.

A. Logic Chart

The purpose of printing a logic chart is to assist authors witﬁ the
analysis of the instructional logic of a course, as well as to be an aid
in debugging and documentation. Thus the objective of the logic chart is
to provide a clear representation of course logic, while omitting unneces-
sary detail. A diagrammatic two-dimensional logic chart was decided upon
in order to provide the most visually useful output, as well as to exploit
the full potential of the paper. This is in contrast with most types of

computer~-drawn flowcharts, which are one-dimensional (Sherman, 1966).

1. Chart Specifications

The specifications or conventions according to which a logic chart
may be developed are now described:
(a) All Coursewriter instructions associated with a particular pr

are printed separately. The reason for this is that the pr



(b)

(c)

(d)
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instruction is designed to specify the beginning of a new problem,
and thus the pr and associated instructions are intended to form a

logical unit. Each problem unit is clearly separated.

A series of sequentially executed instructions are arranged verti-
cally in one of a number of channels'or columns down the printed
page, The vertical representation for sequential execution is
natural in that it corresponds to the way the instructions are ori-
ginally composed. Several vertical channels are provided in order

that branches and merges among channels may be diagrammed.

In general, only the operation code of an instruction is printed,
but any control instruction or minor which is represented by a list
header, has the address of the header printed above the instructiom,
for reference purposes. The same refcrence number is printed in
the left margin of an augmented course listing which is output before
the logic chart. The reference number (header address), where pre-
sent, is preceded above by a vertical bar (|), in order that the
location of the instruction may stand out for purposes of cross
reference. Conditional explicit branches and any instructions that
change the values of counters, switches, or return registers are
followed by the instruction parameters or items, each indented one
column. Printing the parameters is desirable since the detailed
information affects branching, while the indentation serves to

separate instructions from parameters of instructionms.

Labels are also preceded above by a vertical bar to make them stand
out for cross reference. Occasionally the logic of implicit branch-

ing requires the execution of a sequence of instructions under two
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or more different conditions. Each such path is indicated separ-
ately in the chart, and the instructions and their associated labels
appear on each path. Thus a series of instructions and labels may
appear at more than one place on the chart. A label is preceded by
a vertical bar on only one such path, indicating the point at which
branches or merges are to take place. Also, any control instruction
or minor which possesses a reference number (address of list header)
is preceded above by its reference number and a vertical bar on only

one path. This convention avoids any possibility of ambiguity.

Departures from sequential execution (branches) are to be indicated
by strokes (---) to another vertical channel. A conditional branch
due to time-out on a response request (ep) is indicated by the
printing of T-OUT along the strokes, while a branch due to mismatch
during response analysis is indicated by MIS-M. An explicit branch
due to an unconditional br is indicated by strokes beside the br.
For a conditional br, the items forming the condition are indented
and printed below the br, while the destination of the branch is
indicated by strokes beside the last item of the condition. Any
other type of branch, also indicated by strokes, results from the
implicit branching feature of Coursewriter II.

Sometimes when a branch is called for, a channel may not be
able to indicate its branch until adjacent channels have cleared.
This waiting is indicated by continuing the channel with a series

of vertical bars until the branch can be displayed.

Merger of paths. Paths through a course do not ordinarily terminate
except by transfer to another course segment. Instead, when a vert-

ical channel of instructions on the logic chart comes to an end,



(g)

(h)

(1)

then, if no branch is indicated, a merger takes place with another
path. The point of merger is indicated by the label or numbered
statement which terminates the channel.

A merger, in contrast to a branch, does not constitute a depar-
ture from sequential execution. Instructions following a label, con-
trol instruction, or minor with a reference number (list header) are
printed only once. If the instructions can be reached or executed
from some other point in the course, this is indicated by branch or

merge, but the subsequent instructions are not printed again.

When a branch occurs back to the last executed ep, the program may
not have determined which ep was executed last for each path. 1In
this case, the branch is indicated as "TO EP", without specifying
which ep. Similarly, branches to return registers are indicated as
such, regardless of which label may have been loaded last into the

return register.

Because some labels may not be branched to, or may be branched to
only through return registers, any labels and associated instructions
not previously printed will be printed when the rest of the logic

chart has been completed.

Function call instructions (fn) with modifiers are represented in
accordance with the appropriate row of the Course Flow Decision Table
(Figure 2.1) as indicated by the modifier. Row 2 of this table is
ambiguous (aa, ca, wa, or un), so that a user-supplied routine FN2

is provided in the program to specify the behavior intended when fn

is used with modifier 2.
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(§J) The call macro (cm) instruction is treated as a minor having no
effect on branching. Therefore macros should be in expanded form

in the input deck.

2. Programming the iogic chart

Subroutine CHART and several lesser subprograms print a logic chart
conforming to the specifications just described. The chart is construc-
ted from the list structural representation created for an arbitrary
input Coursewriter II course as discussed in Chapter III. This entire
1list structure is leafed through cell by cell and list by list until the

end is reached.

In order to print separately the logic associated with each in-
struction, every pr encountered in the list structure (except at the
beginning) is stored in sequence order on working list LW(8) by subrou-
tine PR. List LW(8) is popped up to retrieve the next pr to be printed
whenever the end of the instructions associated with the previous pr is
reached. When LW(8) becomes empty, labels list LW(7) is searched for
any labels that have not yet been printed. These isolated labels and
their associated instructions are either not branched to, or else are

branched to only through return registers.

When each label and each list with a reference counter exceeding 3
is printed, the header address is stored on a memory or junk list. The
junk list is searched before printing in order to avoid duplication of

output, and to provide for the path merger specification.

Subroutine CHART maintains, prints, and updates 16 vertical channels

across the page. The channels are numbered 1 to 16 from left to right,
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and printing of the list structure begins in channel 9. According to the
chart specifications, other channels become occupied as branches develop,
and printing of a channel terminates when a merge or unconditional branch

develops.

Channel conditions.are updated as.the chart is printed, one hori-
zontal line at a time. Two computer words store the contents of each
channel for printing, in vector CHANEL of length 32 words, aﬁd the entire
chart is printed in format (X,16(2A44)). After each line is printed, the

contents of all channels are set to blanks.

The utilization of each of the 16 channels is coded in terms of one
of 9 distinct conditions, numbered 1 to 9, which determine the state or
condition of the channel, and what is to be printed. A complete list of
these 9 conditions, and permissible subsequent conditions for each, is

given in the Chart Channel Condition Code of Figure 4.1,

An integer condition vector COND, of length 16, stores the current
condition code for each of the 16 channels. Initially, all channels are
free except channel 9, so that COND(1) to COND(16) are each 6, except
COND(9) has the value of 8. This permits the printing of a vertical bar
in channel 9 to start the chart. As branches develop, the conditions of
the other channels change through 6, (perhaps 7), and 8, to condition 1,
indicating that the channel is in use. When a merge or unconditional
branch develops to terminate the printing of a channel, the channel is
first put in a state of suspension, codes 4 and 5, before becoming free.
This assures that a channel is blank for the printing of one or two lines
before it can come back into use. Thus a typical sequence of condition

codes that a channel may assume, as a series of lines is printed, might
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Permissible
Code Meaning Subsequent Conditions
1 channel is in use 1, 2, 3, 4, 9
2 attempt td branch 1, 2, 4
3 prepare to suspend 4
4 begin suspension 5
5 continue suspension 6
6 available or free 6, 7, 8
7 prepare for use after branch to right 8
8 prepare for use; print vertical bar 1
9 print merge after label before 3, 4
suspension

Figure 4.1 Chart Channel Condition Code

be 6,8,1,4,5,6 as the condition changes from free to busy to suspended to

free again.

Entirely different portions of the list structure may be printed in
different channels of the chart at the same time. Relationships between
channels come about only through branching or merging. Subroutine CHART
stores the address of the list structural cell which each channel has
printed in the integer vector CELL, of length 16. When a channel is in
normal use (for example, printing a series of minor instructions), the
cell for the channel is advanced one to the right in the list structure

after each line is printed.

Before a new line is printed, each channel is examined in turn
from left to right in order to decide what should be printed, and what
the subsequent cell and condition code should be for the channel. For
a condition code of 1, the identification field (ID) of the current cell

is first examined. Subsequent action depends on the value of the ID,
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in accordance with the Cell ID Code of Figure 3.7.

1f the ID is 2 or more, a list header has been encountered. The -
junk list is searched to see if the list has been previously printed.
If it has, then the condition code is changed to 3 (or 4 for labels) to
provide for merger and suspension of further printing in the ch;nnel.
The 1list reference number (or label) is then stored in CHANEL for print-
ing. On the other hand, if the list has not previously been printed,
then its address is stored on the junk list and the condition code is

not changed.

For a condition code of 1 and a current cell ID of 1, a merger sub-
1ist has been encountered. Accordingly, a vertical bar is stored in
CHANEL for printing, and CELL is changed to the address of the header of
the sublist. If the ID is -2, -3, or -4, an immediate attempt is made
to indicate a branch to another channel. If this is not possible, the
channel condition code is changed to 2 and a vertical bar is stored for
printing to indicate continuation of the chanmel in accordance with the

specifications.

For any other cell ID and a condition code of 1, the cell contents
is printed in accordance with the ID as in Figure 3.7. For example, if
the ID is 0, the contents are printed as a single word of characters,
whereas if the ID is -5, the contents is an integer which must first be
changed to characters using subroutine HOLLER, and indentation and a
possible minus sign must be provided for in printing. In any case CELL
is advanced to the next appropriate cell, and an immediate branch is

attempted if the ID of the new cell so dictates.

When a channel has a condition code of 2, branching is attempted by
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calling function NUCHAN to determine the channel that may be branched to
(1f any). NUCHAN examines the conditions of neighbouring channels to
either side, and selects the side on which there is more room (left or
right depending which side has the most consecutive free channels adja-
cent to the channel in question). NUCHAN then selects as a branch
channel one that is about one third of the way to the first busy channel
or to the edge of the paper. This seems to provide adequate spacing
across the page, in an esthetically pleasing manner, for most purposes.
If no branch channel is available, the condition code for the current
channel remains at 2. Otherwise, subroutine ARTIST is called to draw
strokes (---) to the branch channel, and to print T-OUT or MIS-M if the

cell ID is -3 or -4 respectively.

A channel condition code of 3 is a pre-suspension condition used
with lists that are not representing labels, With these lists, the
reference number (header address) is to be printed first, followed by
the instruction. This requires one more line thén for iabels, which are
unique and do not require a reference number. Accordingly, when the
channel condition code is 3, the cell contents are stored for printing

and the new condition code is set to 4.

When the current channel condition dode is 4 or 5, the channel is in
suspension prior to becoming available, and the new condition code is set
to 5 or 6 respectively. This means that at least one blank position will
be printed after a channel has been in use and before it becomes avail-

able for use again.

A channel condition code of 6 indicates that the channel is avail-

able or free for use. The channel remains available until selected by
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NUCHAN to be the branch destination for some other nearby channel. The
condition code then changes to 8, or else 7 for a destination channel
that is to the right of the branching channel. A condition code of 7
changes to 8‘before a line is printed, since channels are examined in-

turn from left to right before a line is printed.

A condition code of 8 designates a channel that is about to come
into use. A vertical bar (|) is stored in CHANEL for printing, and the

condition code is changed to 1.

Condition code 9 is sometimes used when a label is encountered that
has previously been printed. Ordinarily the channel code would be set.to
4, but if the label is followed jmmediately by another label or instruc-
tion wiéﬁ a reference number, then code 9 is used to delay suspension of -
the channel until the label or instruction has been printed. Accordingly,
CELL is advanced and the condition code 1s changed to 3 or 4. This con-
dition provides for the printing of an important instruction immediately

following a label even if the instruction has been printed before.

3. Chart Example

A listing of a short series of Coursewriter statements is given in
Figure 4.2. This course listing is augmented on the left by label-
sequence numbers and CL2 reference numbers (list header addresses). For
example, the statement un has label-sequence number LABEL1-6 and CL2
reference number 129. This augmented listing is printed by the CL2 main
program as the input Coursewriter cards are being read and the list

structure is being created.

CL2 reference numbers form two separate non-decreasing sequences,
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. one for pr instructions and the other for any other numbered instruc-

tions.

to locate any numbered instruction.

This means the augmented listing can be quickly scanned in order

As an additional scanning aid, each

label, pr and ep is indicated in successive columns from the left margin.

of the listing.

PR

EP

LABEL1

LAB2

LAB3

19

57

70
78
87
90

106

129

152

Figure 4.2

o~ LNNDE

10

1
1
1

1
2
3

PR

LR LAB3-/RR2
DT1

BR LAB2-/S1-/0
AA

DT2

LD -12-/Cl4
EP

DT3

NR

DT4

AB

DT5

LABEL1

X

b

ooV LNOREE

(=~ IR N o N0, I - R UL RN (L

N

w

DT6

NX

DT7

LD Cl4-/Cl5
BR LAB2

UN

DT8

DT9

DTA

EA

DTB

BR RR2+/C1l-/LE~/10
DTC

TR 2-1/SECOND

Augmented Course Listing of Logic Chart Example
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I

19
PR
LR
LAB3
RR2
DT1
BR
S1
0

LAB2
DT9

LAB3
DTA

152

DTB

57
AA

65

MIS-M

DT2

LD

-12
Cl4

70

T-OUT___EP

78
NX

87
MIS-M___AB
DT5
106 LABELL
NX DT6

TO EP

Figure 4.3 Logic Chart Example
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The logic chart is shown in Figure 4.3. 'Sequential execution of
the first four instructions is indicated by their consecutive vertical
ordering. The pr instruction, since it is represented by a list header,
is preceded above by its reference number 19, which is the list header
addresé. The items or parameters of lr (LAB3 and RR2) are indented and
printed below the instruction. Similarly the parameters of br (S1 and 0)
are indented and printed below it. The destination of this conditional
explicit branch is denoted by strokes to label LAB2 which heads a-channel
to the left. If the condition is false (that is, if switch S1 does not
have the valueVO), then continuation of sequential execution is indicated,

and instruction aa with reference number 57 is executed next.

When 57 aa is executed, a match or mismatch results. In case of
mismatch, a branch to 78 nx is indicated by strokes to a chanmnel at the
right. Otherwise, if there is a match on the aa, sequential execution

continues and dt2 is executed, followed by 1d with parameters -12 and Cl4.

Then ep with reference number 70 is executed, and if the response
is not in time, an implicit branch to 78 nx is indicated. This time-out
channel merges with 78 nx in the right hand channel. Otherwise, if 70
ep receives a response in time, sequential execution continues as dt3 is

executed. This is followed by an unconditional implicit branch to 87 ab.

In case of mismatch on the ab, an implicit branch takes place to 106
nx which has already been printed in a channel to the right. Otherwise,
if a response match takes place when the ab is executed, then sequential
execution of dt5, LABELl, and dt6 is jndicated, followed by an uncondi-
tional implicit branch to 129 un. The instructions dt5, LABEL1l and dté

occur also on the path in the channel at the right, but the outcome is
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different on each path, so the two paths through the same instructions
are shown separately. This duplication of instructions on more than one
path leads to more complex program logic than what is ordinarily prac-

tised, so such occurrences are rare,

However, in this example another such duplication occurs with label
LAB2 and the three following instructions. These instructions occur both
in the left channel, and also below 129 un. It is important to note that
when the rightmost channel branches to LAB2, this branch is to the point

where LAB2 is preceded above by a vertical bar, namely the left channel.

The channel headed by 129 un ends with an unconditional implicit
branch "TO EP". The program has not determined which ep was the last one

executed for this path.

B. Systematic Path Tracing

While the logic chart shows diagrammatically the entire logical
structure of a course, it is deficient in being static rather than
dynamic. For example, conditional branches may be charted for which
the truth evaluation of the conditional expression depends upon the path
taken up to that point. A program that systematically traces all poss-
ible paths that a student could take through a course would therefore
provide additional useful information about the dynamic logic of the

course.

A problem that arises in attempting to trace possible paths through
a course is the fact that any path is in part determined by student

responses. While it is possible to consider tracing paths generated by
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all possible response combinations, the number of paths so generated
quickly becomes impractically large even for a relatively short course.

It was therefore decided to trace only those paths generated on the
assumption of response consistency, which means that the same response
will be made if the same response-dependent instruction is executed
more than once. The response consistency assumption is defined more

precisely below.

Another path tracing requirement is that paths be traced in a
systematic fashion. This is necessary both in order to avoid retracing
the same path, and to enable the user to locate particular paths of
jnterest from a large set of paths that may be output by the program.
For instance, an author may find it useful to determine what happens
when a student fails to respond in time, especially if no special

provision has been made for such a contingency.

1. Path Tracing Specifications

(a) Execution. In order that paths be correctly traced, the execution
of all instructions that affect branching must be simulated. The
truth of the conditional expression in an explicit conditional
branch must be evaluated, and switches, counters, and return regis-
ters must be updated as required. Unfortunately, it is not easily
possible to simulate the execution of functions that affect branch-
ing, since functions are not written in Coursewriter. Therefore

functions are not executed.

(b) Printing. In order to provide the minimum of printed output consis-
tent with accurate recording of the path of execution, only labels

or numbered instructions are to be printed. Since all branches



(c)

(d)
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involve labels or instructions with reference numbers, the printing
of these as they are executed provides an unambiguous record of the
path traced. If an ep is in time, T-OUT is not printed, and 1if a

match is selected during response analysis, MIS-M is not printed.

Systematic tracing. Paths are traced systematically in a very
definite order. The first path times out on every response request
and mismatches on every response analysis instruction (aa, ca, wa,
wb, cb, and ab; matches on un are determined entirely by internal
counters). When a path terminates, the next path is defined by
changing the last executed mismatch or time-out to a match or time-
in. However, since a timed-out response cannot be matched, a re-
sponse request instruction is placed in time before any subsequent
answer mismatches are changed to matches. Also, once a response
request (ep) instruction has been placed in time, it is not allowed
to time out on subsequent paths. With these conventions, a systema-
tic series of paths may be traced until, on the last path, every

response-dependent instruction is in time or matched.

Response consistency. If a response-dependent instruction (response
request or response analysis) is executed more than once along the
same route in a path, the same response condition will apply each
time. For example, if an ep is in time and a subsequent ca is
matched, and if the same ep and ca are executed again on the same
path, they will still be in time and matched respectively.

If the assumption of response consistency is viewed as a student
response model, the students so defined are unrealistically charac-

terized by both a lack of forgetfulness and an inability to learn
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anything new. The purpose of the path tracing 1s, however, to
{1lustrate features of the dynamic logic of a course, and the re-
sponse consistency convention reduces the number of redundant paths
traced usually without loss of important features of the instruc-
tional logic. Much more will be said about student response models

in the next section.

(e) Path termination. Paths may end in one of five distinct ways - an
infinite loop, transfer to another segment, termination of course,
branch to a non—existeﬁ£ iabel, or branch to an empty return regis—
ter. Most of these types of path termination are represented in the

output of the path tracing to be described.

2. Path Tracing Program

In order to trace paths through a course, it is essential to simu-
late the execution of the instructions that affect branching. Counters,
switches, and return registers must be represented, and the representa-
tions must be updated whenever a Coursewriter II instruction that changes
their values is encountered. The truth value of a conditional expression
in a conditional explicit branch must be evaluated to decide whether to
branch or not. The last executed response request (ep) instruction must
be stored, since it may be the destination of a branch, and the operation

of the two un counters must be simulated.

The 31 counters, 528 switclhes (32 standard switches and 1 switch for
each of the 16 bits of each of the 31 counters) and 6 return registers
are each represented by a separate integer variable. Whenever a Course-
writer II instruction is encountered that changes the values of counters,

switches or return registers (instructions ad, sb, mp, dv, lr, and 14,



except load buffer), the TRACE subprogram calls subroutine EXCUTE to

update the appropriate representation.

Subroutine EXCUTE first determines whether it is a switch, counter,
or return register that is fo be changed. If it is a switch, function
ISWICH is called to determine which switch, while if it is a counter,
function ICOUNT determines which counter. Arithmetic operations with
integers and counters are performed as required, and the new value is
stored in the appropriate simulated switch or counter. Execution of the
load register (1lr) instruction is simulated by storing the label address
in the appropriate return reg;ster representation. The value of the
simulated UN2 counter (represented by integer variable IUN2) is also

stored whenever a label is loaded into a return register.

When the TRACE subroutine encounters a conditional explicit branch,
logical function IVAL is called to evaluate the truth value of the con-
ditional expression. For this evaluation, ISWICH and iCOUNT are called
to determine which counters and switches are involved, and then the
values of the appropriate simulated counters and switches are used to

make the comparison that determines the logical outcome.

The TRACE subroutine stores the address of the last executed ep
instruction, and increments the simulated UN2 counter whenever the same
ep is executed again. When a un instruction is encountered, match or

mismatch is determined by comparison of the simulated UN2 counter with

the simulated UN1 counter which is stored in.a cell in the list structure.

When a branch is encountered to a return register, the address of the
appropriate label is retrieved from the simulated return register, and

the value of the simulated UN2 counter is restored.
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A path is traced through a course by advancing cell by cell through
its list strﬁctural representation. Each time a list header is encoun-
tered, its address is stored on a list named MEMORY. The MEMORY is also
searched to see if the list address is already stored there, in which
case the same instruction is being re-executed. Program loops are detec-
ted in this manner. Tracing of a path terminates when a program loop has
been executed ten times (or a specified number of times, on the assumption
that an endless loop has been encountered). Tracing will alsc terminate

if the end of a list is reached and no branch or merge has been specified.

The MEMORY list stores an account of the path being traced, and is
used by subroutine PATH to print a trace of the labels and numbered
instructions whose execution has been simulated. Subroutine PATH prints
an instruction preceded by its reference number (list header address).
For response-dependent instructions, T-OUT or MIS-M is printed if a time-
out or mismatch response has been selected. The word LOOP is printed at

the end of paths that terminate in an endless loop.

Whenever a path decision depends on a student response, the conven-
tion of systematic tracing and the assumption of response consistency
are used to make the decision. On the first path, time-out or mismatch
responses are made at each response—dependent.decision point (referred to
as a "door"). In other words, all doors are open on the first path, but
the last open door is remembered. When the path terminates, the last open
door is stored on a list that records the addresses of all doors that are

to be shut.

When subsequent paths are systematically traced, doors that are

stored on the record list, in order, are not permitted to be opened. At
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the termination of each path, the last open door is added to the record
1ist of doors that are shut, and any closed doors after the last open
door are removed from the list. Finally, on the last path, all doors
have been shut, and in-time or match responses are made at each response-

dependent decision point.

An ep instruction is placed in time before rhe subsequent response
analysis instructions are permitted to match. Then the address of the ep
is stored so that it is not permitted to time out on subsequent paths.
When any response-dependent instruction is re-executed, the same response

is made again.

Along each path, a count is maintained of the total number of state-
ments executed on the path, and this information is printed at the term-—

ination of the path.

3. Path Tracing Example

A listing of a short series of Coursewriter II statements for a path
tracing example is given in Figure 4.4. The listing is augmented on the
left by label sequence numbers, reference numbers (list header addresses),

and indication of the location of each ep, pr, and label.

Figure 4.5 shows the paths traced through the series of instructions
listed in Figure 4.4. In accordance with the specifications, only labels
and numbered instructions are printed, but the execution of all instruc-

tions that affect branching has been simulated.

The first path times out and mismatches at every opportunity. As
counter Cl is being incremented, the path times out four times on instruc-—

tion 47 EP before the conditional expression of the conditional branch
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is false, and then execution branches to 21 PR, Response consistency is

evident as the path times out continually on 134 EP and terminates in an

endless loop.

PATH NO. 2 is determined from PATH NO. 1 by changing 134 EP from

time-out to in time.

and 159 FN2 before PATH NO. 2 terminates.

by matching on 159 FN2, and PATH NO. 4 by matching on 152 CA.

This leads to a new route and mismatches on 152 CA

PATH NO. 3 is then determined

PATH NO. 5

first puts 47 EP in time before matching on 73 CA, 80 CB, or 100 WA.

PATH NO. 6 ends in a loop by consistently giving wrong answer 100 WA to

response request 47 EP,

PR
EP
PR
EP
LABEL
PR

19 1
2

3

47 4
54 5
6

7

8

73 9
80 10
83 11
100 12
109 13
118 14
21 15
134 16
141 17
18

152 19
159 20
21

175 22
23

24
LABEL

1

2

23 3

Figure 4.4

PR
LD
LD
EP

BR
BR
CA
CB
LR
WA
UN
UN
PR
EP

BR
CA
FN2
TR
UN
BR
EA

BR
PR

0-/Cl1
0-/S1

1-/C1
REA/C1~/LEA/3
PR1

LABEL~/RRO

RE

001-/0NE

RRO-/S14/0

1-+/81
PRO

Augmented Listing of Path Tracing Example



PATH NO. 1 51 STATEMENTS
19 PR 47 EP T-OUT 54 NX
54 NX 47 EP T-OUT 54 NX
134 EP T-OUT 141 NX 134 EP

PATH NO. 2 27 STATEMENTS
19 PR 47 EP T-OUT 54 NX
54 NX 47 EP T-OUT 54 NX
159 FN2 MIS-M 175 UN RRO

PATH NO. 3 28 STATEMENTS
19 PR 47 EP T-OUT 54 NX
54 NX 47 EP T-OUT 54 NX
159 FN2 ONE

PATH NO. 4 24 STATEMENTS
19 PR 47 EP T~OUT 54 NX
54 NX 47 EP T-OUT 54 NX

PATH NO. 5 68 STATEMENTS
19 PR 47 EP 73 CA MIS-M
109 UN 47 EP 73 CA MIS-M
109 UN MIS-M 118 UN 47 EP

PATH NO. 6 43 STATEMENTS
19 PR 47 EP 73 CA MIS-M
LOOP

PATH NO. 7 . .67 STATEMENTS
19 PR 47 EP 73 CA MIS-M
152 CA MIS-M 159 FN2 MIS-M
152 CA MIS-M 159 FN2 MIS-M

PATH NO. 8 15 STATEMENTS
19 PR 47 EP 73 CA MIS-M
152 CA MIS-M 159 FN2 ONE

PATH NO. 9 11 STATEMENTS
19 PR 47 EP 73 CA MIS-M
152 CA 23 PR

PATH NO. 10 66 STATEMENTS
19 PR 47 EP 73 CA 83 LR
159 FN2 MIS-M 175 UN LABEL
159 FN2 MIS-M 175 UN 134 EP

PATH NO. 11 14 STATEMENTS
19 PR 47 EP 73 CA 83 LR
159 FN2 ONE

PATH NO. 12 10 STATEMENTS
19 PR 47 EP 73 CA 83 LR
23 PR

Figure 4.5
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EXECUTED

47 EP T-OUT

47 EP T-OUT
LooP

47 EP T-0UT
21 PR

EXECUTED
47 EP T-OUT
21 PR 134 EP

54 NX 47 EP T-OUT
152 CA MIS-M

EXECUTED
47 EP T-0OUT
21 PR 134 EP

54 NX 47 EP T-0OUT
152 CA MIS-M

EXECUTED
47 EP T-OUT
21 PR 134 EP

54 NX 47 EP T-0UT
152 CA 23 PR

EXECUTED

80 CB MIS-M
80 CB MIS-M
Loop

100 WA MIS-M
100 WA MIS-M

EXECUTED

80 CB MIS-M' 100 WA 47 EP

EXECUTED
80 CB
175 UN
175 UN

83 LR
LABEL
134 EP

21 PR
21 PR
LOOP

134 EP
134 EP

EXECUTED

80 CB 83 LR 21 PR 134 EP

EXECUTED

80 CB 83 LR 21 PR 134 EP

EXECUTED
21 PR
21 PR
LOOP

134 EP
134 EP

152 CA MIS-M
152 CA MIS-M

EXECUTED

21 PR 134 EP 152 CA MIS-M

EXECUTED

21 PR 134 EP. 152 CA

Path Tracing Example
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When PATH No. 7 matches on 80 CB, a route again develops to 134 EP
which 1s not -permitted to time out since it was already placed in time
on PATH NO. 2. The response analysis instructions 152 CA and 159 FN2
following 134 EP are however again permitted to mismatch, since the
conditions of counters, switches, and return registers may be different.
This is indeed the case in this example, since LABEL was loaded into RRO

on PATH NO. 7 but not on PATH NO. 2.

The remaining paths are traced in turn until at last on PATH NO. 12
all EP's are in time and no response mismatches occur. This is also the
shortest path in this examnle.

A

C. Student Response Simulation

A major objective of this thesis is to show how the computer may be
used as a means of representing or simulating student response models.
A student model can then interact with a course representation to simu-
late both the instructional and learning processes. So far, it has been
shown how the decision structure of a course or logical sequence of
instructions as described in Coursewriter II language, can be simulated.
In this section, a framework for the representation of student models is
described, and two simplified examples of student response models and

their interaction with a course are illustrated.

1. A Framework for Student Models

An important step in computer simulation is the development and
testing of adequate models of the process being simulated. Here it is
the instructional and learning aspects of a computer-assisted instruc-

tional (CAI) setting that are being simulated. The development of models
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is considered in this chapter and the previous chapters, and the adequacy

of the models is considered in the next chapter.

Student responses influence the instructional and learning process
of CAI by determining the decisions taken at response-dependent decision
points (nodes) in the course. In Coursewriter II, nodes are genmerated by
execution of the response request instruction (ep in time or timed-out)
and some of the response analysis instructions (aa, ca, wa, wb, cb, ab
match or mis-match). A student response model must specify the decision
to be taken at each such node. The instructional logic of a course, in
conjunction with the student model, determines the path followed by each

simulated student through the course.

An evaluation of the adequacy of a student response model can be
made by detailed comparison of the paths followed by real and simulated
students through a course. However, it is frequently desirable to com-
pare real and simulated students on the basis of generated variables
which summarize aspects of the paths. For instance, the path 1eﬁgth in
terms of the number of instructions executed in a course can be compared
for real and simulated students. Therefore a facility for generation of
simulation variables which are a function of the paths followed by simu-
lated students is a requirement of a framework for expressing student

simulation models.

To trace the paths followed by simulated students through a course,
subroutine STRACE advances cell by cell through the list structural
representation in a manner similar to the TRACE subroutine described in
the previous section. The assumption of response consistency is replaced
by a call to a special MODEL subroutine whenever a response-dependent

node is encountered.
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Subroutine MODEL provides the framework for representing student
response models, as well as a facility for the generation of simulation
variables. In order to provide for both of these functions, MODEL is
called at response-dependent decision points so that a simulated response
may be made, and MODEL is also called whenever any instruction is exe-
cuted so that path-dependent simulation variables may be generated.
Indication of the location of the node or instruction being executed is

provided.

The six arguments of subroutine MODEL are:
N - student number
IX - integer vector of simulation variables that may be created for each
student
IREF - the reference number (list header address) of the last label or
numbered instruction
ICELL - the MOSLIP address of the current instruction
NODE - logical variable that is true whenever a response-dependent node
or decision point is encountered, otherwise false.
BRANCH - logical variable that should be set false for a student to be in
time or match at a response-dependent node; otherwise true (timg-

out or mismatch) is assumed.

The MODEL subroutine is called under the two different circumstanceé
already mentioned:

(a) MODEL is called whenever a node is generated, immediately after
execution of a response-dependent instruction. In this case, NODE
is true and IREF is the reference number (list header address) of
the node. A decision must be made, on the basis of the student

model, whether or not to set BRANCH to false. If BRANCH is not set



to false, then true is assumed and the simulated student will time-

out or mismatch at the node.

(b) Subroutine MODEL is also called whenever any instruction is executed.
In this case, NODE is false and ICELL is the MOSLIP address of the
instruction. No decision must be made about the truth value of
BRANCH. Instead, information about the instruction may be used to

generate any desired simulation variables.

Thus subroutine MODEL provides a framework for the Fortran coding of

student response models.

2. A Random Response Model

This first student simulation example shows how a very simple stoch-
astic response model may be coded. At each response-dependent decision
point (node) in the course, a pseudorandom number uniformly distributed
between O and 1 is generated. If the random number is less than 0.5, a
match or in time response is made, otherwise a mismatch or time-out
response is selected. Thus each simulated student has equal probability

of responding in time (matching) or timing-out (mismatching) at each node.

The Fortran coding of this random response model as represented by
subroutine MODEL is shown below:

SUBROUTINE MODEL (N,IX,IREF,ICELL,NODE,BRANCH)
C MODEL 1 - RANDOM RESPONSE MODEL -
INTEGER IX(1),IR/5093/
LOGICAL NODE,BRANCH
IF(NODE) GO TO 99
IX(1)=IX(1)+1
RETURN
99 CONTINUE
CALL RANDU(IR,IY,R)
IR=1Y
IF(R.LT.0.5) BRANCH=.FALSE.
RETURN
END
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STUDENT 1 20 STATEMENTS EXECUTED
19 PR 47 EP 73 CA MIS-M = 80 CB 83 LR 21 PR
134 EP T-OUT 141 NX 134 EP T-OUT 141 NX 134 EP T-0UT
141 NX 134 EP 152 CA 23 PR
VARIABLE 1 :
20

STUDENT 2 26 STATEMENTS EXECUTED _
19 PR- 47 EP T-OUT 54 NX 47 EP T-OUT 54 NX 47 EP T-OUT
54 NX 47 EP 73 CAMIS-M 80 CB 83 LR 21 PR
134 EP T-OUT 141 NX 134 EP 152 CA 23 PR
VARIABLE 1
.26

STUDENT 3 21 STATEMENTS EXECUTED
19 PR 47 EP 75 CA MIS-M 80 CB MIS-M 100 WA MIS-M
109 UN 47 EP 73 CA 83 LR 21 PR 134 EP T-OUT 141 NX
134 EP T-OUT 141 NX 134 EP 152 CA 23 PR ‘
VARIABLE 1
21

STUDENT 4 24 STATEMENTS EXECUTED
19 PR 47 EpP T-OUT 54 NX 47 EpP T-OUT 54 NX 47 EP T-OUT
54 NX 47 EP T-OUT 54 NX 21 PR 134 EP 152 CA 23 PR
VARIABLE 1
24

STUDENT 5 46 STATEMENTS EXECUTED

19 PR 47 EP 73 CA MIS-M 80 CB MIS-M 100 WA MIS-M
109 UN 47 EP T-OUT 54 NX 47 EP 73 CA 83 LR 21 PR
134 EP T-0UT 141 NX 134 EpP T-OUT 141 NX 134 Ep T-OUT
141 NX 134 EP T-OUT 141 NX 134 EP T-OUT 141 X
134 EP T-OUT 141 NX 134 EP T-OUT 141 NX 134 EP T-OUT
141 NX 134 EP T-0UT 141 NX 134 EP 152 CA 23 PR
VARIABLE 1l

46

Figure 4.6

Simulation Output for Random Response Model
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The two separate circumstances under which subroutine MODEL is
called are clearly evident in the coding of the above random response
model.. If a node is encopntered, execution transfers to 99. Otherwise
variable IX(1) is incremented by 1 and executjon returns to the calling
program (STRACE). Since all variables are ipitially set to zero for each
student, and since NODE is false whenever MODEL is called at the execu-
tion of an instruction, variable IX(1l) will add up to be the total number
of instructions executed for each student. This agrees with the printed
simulation output for the random response model (Figure 4.6), as applied
to interact with the course sequence of Figure 4.4. For example, 20
statements were executed for the first simulated student, and the value

of variable 1 is also 20.

Whenever MODEL is called at a response-dependent node, NODE is true
and subroutine RANDU (from the IBM System/360 Scientific Subroutine
Package, 1968) generates a pseudorandom number R uniformly distributed
between 0 and 1. The integer 5093 is the starting point of the sequence
of pseudorandom numbers. If R is less than 0.5, BRANCH is set to false
(the response is a match or in time), otherwise true is assumed and the

response is a mismatch or time-out.

In this way, the random response model provides for simulated student
responses whenever a response-dependent decision point is encountered in
a CAI course. However, this simple model is unlikely to give an accurate

simulation of the response of real students.

3. A Two-Group Model

This is a second example of a student simulation model for use with
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the course sequence of Figure 4.4. In this model thefe are two groups

of simulated students, referred to as HIGH and LOW, with four students in
each group. Probabilities.of being in time or matching are specified for
each group at each of the seven response-dependent nodes of the example.
The fourteen variables representing frequencies of path selection (in
time or match and time-out or mismatch frequencies) at each node are
generated for each student. Simulated students 1l to 4 are in the HIGH
group, while students 5 to 8 are in the LOW group. Here is the Fortran
coding for this second model.

SUBROUTINE MODEL(N,IX,IREF,ICELL,NODE,BRANCH)
c MODEL 2
INTEGER IX(1),IR/5093/
LOGICAL NODE,BRANCH
INTEGER NODES(7)/47,73,80,100,134,152,159/
REAL HIGH(7)/.90,.70,.70,.20,.80,.60,.90/
REAL LOW(7)/.45,.35,.35,.40,.40,.30,.45/
IF(.NOT.NODE) RETURN
DO 100 I=1,7
IF(IREF.EQ.NODES(I)) GO TO 102
100 CONTINUE
WRITE(6,101) IREF
101  FORMAT (' UNEXPECTED NODE'I5,'ENCOUNTERED')
STOP
102  CALL RANDU(IR,IY,R)
IR=IY
IF(N.LE.4.AND.R.LT.HIGH(I)) GO TO 103
IF(N.GT.4.AND.R.LT.LOW(I)) GO TO 103
IX(2*1)=IX(2*1)+1
RETURN
103  IX(2*%I-1)=IX(2%I-1)+1
BRANCH=. FALSE.
RETURN
END

The array NODES contains the reference numbers of the 7 response-
dependent nodes in the example: 47 EP, 73 CA, 80 CB, 100 WA, 134 EP,
152 CA, and 159 FN2. Arrays HIGH and LOW contain the in-time or match

probabilities of the HIGH and LOW groups at each of the 7 nodes. The

HIGH group is given twice the probability of the LOW group for being in
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time or matching at each node except node 100 WA, where the LOW group has
twice the probability of matching as the HIGH group. The values of the
probabilities could be estimated by the course author from his familiarity
with the course and with the students being simulated. Alternatively, if
the intention of the simulation is to test a learning theory, branching
decisions should be derived from the theory. For this fictitious example,

the probabilities HIGH and LOW were selected fictitiously.

This second MODEL does not make use of information about instructions
encountered, so that execution returns to the calling program if NODE is
not true. The subscript I of a node is identified in the DO 100 loop by
matching its reference number with the stored array NODES. An error
message is printed if no match is found. Otherwise RANDU generates a
random number R uniformly distributed between 0 and 1. If R is less than
the stored probability (HIGH(I) for students 1 to 4 and LOW(I) for stu-
dents 5 to 8) of being in time or matching at the specific node, execution

transfers to 103 and BRANCH is set to false. Otherwise BRANCH is true.

The variable representing the in-time (match) counter for the node
(IX(2*%I-1)) or the time-out (mismatch) counter (IX(2*1)) is also incremen-
ted accordingly. For example, with IREF equal to 47 (node 1), variable
IX(1l) is incremented if R is less than HIGH(I) or LOW(I), otherwise
variable IX(2), the time-out counter for node 1, is incremented. The
result is that, for each student, the odd-numbered variables IX(1l) to
IX(13) are the in-time (match) frequencies, while even-numbered variables

IX(2) to IX(14) are the time-out (mismatch) frequencies for nodes 1 to 7.

Simulation output for the two group model (Figure 4.7) shows a

predictable tendency for the students in the LOW group to have longer
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STUDENT 1 15 STATEMENTS EXECUTED
19 PR 47 EP 73 CA MIS-M 80 CB 83 LR 21 PR 134 EP .

152 CA MISs-M 159 FN2 ONE
VARIABLE 1 2 3 &4 5 6 7 8
1 0 0 1 1 0 0 O

=0
o
o
-
=
=)

STUDENT 2 14 STATEMENTS EXECUTED
19 PR 47 EP 73 CA 83 LR 21 PR 134 EP 152 CA MIS-M
159 FN2 ONE
VARIABLE 1 2 3 & 5
i1 0 1 o o 0 0 O

STUDENT 3 14 STATEMENTS EXECUTED
19 PR 47 EP 73 CA 83 IR 21 PR 134 EP 152 CA MIS-M
159 FN2 ONE
VARIABLE 1 2 3 &4 5 6 7 8 9 10 11 12 13 14
i1 0 1 0 0o 0 O O 1 0 0 1 1 0

STUDENT 4 16 STATEMENTS EXECUTED
19 PR 47 EP 73 CA 83 LR 21 PR 134 EP T-OUT 141 NX
134 EP T-OUT 141 XX 134 EP 152 CA 23 PR
VARIABLE 1 2 3 4 5 6 7 8 9 10 11 12 13 14
i 0 1 0 o0 O 0 O 1 2 1 0 0 0

STUDENT 5 11 STATEMENTS EXECUTED
19 PR- 47 EP .73 CA MIS-M 80 CB 83 LR 21 PR 134 EP
152 CA 23 PR
VARIABLE 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 0 0 1 1 o o0 o0 1 0 1 0 0 0

STUDENT 6 24 STATEMENTS EXECUTED
19 PR 47 EP T-OUT 54 NX 47 EP T-OUT 54 NX 47 EP T-OUT
54 NX 47 EP T-OUT 54 NX 21 PR 134 EP 152 CA 23 PR
VARIABLE 1 2 3 4 5 6 7 8 9 10 11 12 13 14
o 4 0 0 0 O O o0 1 0 1 0 0 0

STUDENT 7 46 STATEMENTS EXECUTED

19 PR 47 EP 73 CA MIS-M 80 CB MIS-M 100 WA MIS-M

109 UN 47 EP T-OUT 54 NX 47 EP 73 CA 83 LR 21 PR

134 EP T-OUT 141 NX 134 EP T-OUT 141 XX 134 EP T-OUT

141 NX 134 Ep T-0UT 141 NX 134 EP T-OUT 141 NX

134 EP T-OUT 141 NX 134 EP T-OUT 141 NX 134 Ep T-OUT

141 X 134 EP T-OUT 141 NX 134 EP 152 CA 23 PR

VARIABLE 1 2 3 4 5 6 7. 8 9 10 11 12 13 14
2 1 1 1 0o 1 0 1 1 9 1 0 0 0

STUDENT 8 24 STATEMENTS EXECUTED
19 PR 47 EP T-OUT 54 NX 47 EP T-OUT 54 NX 47 EP T-OUT
54 NX 47 EP T-0UT 54 NX 21 PR 134 EP 152 CA 23 PR
VARIABLE 1 2 3 4 5 6 7 8 9 10 1 12 13 14
o 4 o o 0 0 0 O 1 0 1 0 0 0

Figure 4.7 Simulation Output for Two-Group Model



85
paths through the course. This second model is more specific than the
random response model, in that the model provides different parameters
for each response-dependent decision point in the course. The random
response model could apply to any course or sequence of Coursewriter II
instructions, but the two-group model just &escribed has been tailored

_to meet specific requirements of the particular course.
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Discussion



DISCUSSION

A. Evaluation of the Simulation

The preceding chapters have presented a simulation of the logical
aspects of the interaction that takes place between computer and student
in a computer-assisted instructional setting. The simulation programs
developed deal with both the instructional and learning aspects of this
interaction, specifically for the IBM 1500 Instructional System and the

Coursewriter II language.

The programs that develop the list structural representation of a
course, as described in Chapter III, and the printout of this structure
in the form of a logic chart (Chapter IV, section A) deal only with
instructional agpects of CAIL.. In contrast, fhe systematic path tracing
and the student responsé model programs .(Chapter IV, sections B and C)

involve dynamic simulation of execution of a course.

Adequacy of the simulation is now discussed with respecf to three

criteria - generality, accuracy, and usefulness.

1. Generality

Although the simulation was developed in the context of the Univer—- -

sity of Alberta IBM 360/67 and the IBM 1500 Instructional System, the
application of the programs is more general. The simulation is intended
to input any course which meets the specifications of the Coursewriter
II language, regardless of the origin or purpose of the course. However,
the simulation programs developed in this fhe;is do not accept course

input in any other CAI language, and could not easily be modified to do

86
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so. Nevertheless, some of the ideas relating to storage of course logic
in 1list structural form, and the specifications developed for a logié
chart and path tracing could be applied to develop simulation programs

for other course languages.

The simulation programs are implemented on the IBM 360/67. Because
of the character manipulation operations developed for the programs, a
dependency exists on the 32-bit word and the two's—-complement represen-—
tation of integers. Thus considerable modification would be required to
make the simulation operational on a computer that doesn't have these
characteristics. However, it is easy to change the program to operate
with less core (for example, on a smaller 360). Dimension statements
for linear arrays exist in subprograms IDIN, LLIN, LRIN, SETIND, STRIND,
and INHALT. The arrays are presently dimensioned at 16000, to make 16000
MOSLIP cells available for use, and this occupies 160 K bytes of core
storage. The statement CALL INITAS(16000) in the main program would also
have to be altered accordingly. Of course, if the dimension statements
are decreased, the programs might not be able to simulate lengthy Course-
writer courses. With 16000 MOSLIP cells, it is estimated that a typical

course of up to 5000 Coursewriter II instructions can be handled.

The specifications of the logic chart (Chapter IV, section A) put
some restrictions upon the type of course for which a chart can be printed.
It is possible for all 16 channels to become occupied at once, and any
further branching introduces an endless printing loop as each channel
waits for others to clear. Since the instructions associated with each
problem (pr) are printed separately, this difficulty can arise in printing

the chart for a course with insufficient number of pr instructions. The
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generality of the logic chart program is restricted to courses that have

pr statements at convenient places.

This difficulty with the logic chart is agsociated with the fact
that instructions following a branch to a label are printed even if the
label is found much later in the course input data. This permits a multi-
plicity of branches to appear within close proximity to each other on the
chart. The accuracy of the chart is not affected by this difficulty; the
consequences are overcrowding and the possibility of an endless printing

loop.

An important feature of the simulation is the separation of the
instructional aspects (course material and instructional logic) from the
student response or learning aspects. A user who wishes to construct and
test a student response model does not have to be concerned about simu-
lating the course, because the simulation program does this separately
and automatically. Nevertheless, one may make use of information about
the course (for example, the whereabouts of a simulated student in the
course) in order to make decisions at response—dependent nodes and to

construct simulation variables.

There is very little to restrict the generality of procedures for
constructing student response models. The full algebraic power of Fortran
is available to the user in the MODEL subroutine, as well as information
about the course and the values of constructed simulation variables. The
last example of Chapter IV illustrates the use of some of this flexibil-
ity for decision-making. However, it is necessary for the student response
model to be specific enough to provide decisions at each response-depen—

dent decision point in the course. This means that any student model to



be considered must be sufficiently definite that responses are predicted

by the model whenever called for by the instructional program.

2.  Accuracy

The conventions of the list structural representation developed in
Chapter III are intended to define an exact simulation of the logical
structure of any course written in Coursewriter II. Aithough it is
believed that the conventians are sufficient to provide an exact repre-
sentation, a proof of this assertion would be difficult, especially on
account of the complexity of -the implicit branching mechanism. All con-
tingencies implied by -the Course Flow Decision Table (Figure 2.1) are
provided for by storing the table in coded form (Figure 3.13). However,
the implementation of the conventions involves many detailed procedures,

and inaccuracy could be introduced at some point.

The logic .chart program (Chapter IV, section A) prints the list
structure established to represent the logic of any course. A logic
chart has be~=n printed for a variety of courses, and no discrepancy from
the actual logical structure has been noticed. This provides evidence

in favor of the accuracy of the representation.

In contrast, the dynamic tracing of paths through the simulated
logical structure of a course is easily shown to have inaccuracies under
certain circumstances. There are at least two instances where the pro-

gram may trace incorrect paths.

(a) In Coursewriter II, each of the 16 bits of a counter may be used as
a switch at the same time, so that is possible to store an integer
in a counter and refer to each bit through the corresponding switch.

Simulated counters and switches are all assigned to separate storage
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areas, because of the difficulties of bit manipulation. Inaccuracy
in dynamic path tracing is thus introduced whenever branches depend
upon the fact that counters and extra switches occupy the same stor-

age area. For most courses, this is not a major problem.

(b) A more basic difficulty is with the use of functions (fn) that
change the values of counters and switches. Functions are written
in assembly language, rather than Coursewriter II, and hence are not
simulated. If a course has conditional branches depending on coun-
ters and switches whose values have been set by functions, incorrect
paths will be traced. This is a major problem since functions are
receiving increased use on account of the many inflexibilities of

the Coursewriter language.

The accuracy of student response models must be tested by comparison
with real students. Because of the variability of human behavior, great
accuracy in response simulation should not be expected. The development
of models in this area requires special attention, and it seems likely

that stochastic models should be employed (Bush & Mosteller, 1955).
3. Usefulness

Generality and accuracy are prerequisites to the usefulness of any
simulation, but the stated purpose for this CAI simulation is to provide
assistance for course authors. In particular, the main purpose is to aid
in the development, debugging, and documentation of Coursewriter II

courses for the IBM 1500.

Probably the most useful product of the thesis is the logic chart,

which draws a two-dimensional picture of branches, merges, and sequential
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execution of instructions in a course. The logic chart is particularly
effective in portraying branches in the instructional logic. Merges are
less clearly depicted, because no line is drawn to a point of merger.,
Instead, the user of the logic chart must search the chart on his own to
find the point of merger, with the assistance of the augmented course
listing for cross r;ference. Nevertheless, the logic chart depicts
course logic in a perceptually useful form that js almost language inde-

pendent.

A logic chart ‘has been printed for a variety of courses in order to
evaluate the effectiveness of the logic chart program. Crowding is some-
times a problem, because a branch to a label is printed even if the label
is found much later in the course input data, so that a multiplicity of
branches may develop in close proximity an the chart. This also increases
the difficulty of cross referencing labels on the chart with the augmented

course listing.

In addition to its usefulness in debugging and documentation of in-
structional logic of courses, an important application of the logic chart
could be as a tool in teaching the Coursewriter II language. Because of
the hidden complexity of implicit branching, it is frequently difficult
for a student learning Coursewriter II to grasp the logical structure of
a sequence of instructions. The logic chart has not yet been applied for
this purpose, but considerable potential exists for its usefulness in this

area.

The systematic path tracing program provides a detailed list of major
instructions along all possible response-consistent paths in a course.

This produces considerable information about the dynamic logic of a course.



However, as already mentioned, there may be errors in the accuracy of

the path as constructed, particularly when functions affeét counters and
switches used for conditional branching. As well, the path tracing pro-
gram locates more paths than what may be of interest to a course author,
even with the response-consistency assumption. ?ath tracing would seem
to be most useful for detailed logical analysis of short courses without

function calls.

The usefulness of the student simulation program awaits the devel-
opment of adequate student response models. Probably the main importance
of this aspect of the work is the provision of a framework within which
student response simulation models may be expressed, and simulation vari-

ables may be computed for testing the model against real students.

Finally, the efficiency of the simulation deserves brief mention.
The simulation programs use core memory only, without recourse to peri-
pheral storage media. The representation of a Coursewriter II course as
a list structure is created in one pass, and the logic chart is printed
in one traversal of the list structure. This takes about 0.7 minutes of

execution time on the IBM 360/67 for each 1000 Coursewriter cards input.

Systematic path tracing and student simulation are slower because
the list structure is traversed from the beginning for each path or
student. In a course with about 500 instructions, 206 paths were traced

in 2.40 minutes.

B. Suggested Further Research

A number of suggestions for further research stem from the evalua-

tion of the simulation discussed in the previous section. The logic
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chart could be improved by the addition of a mechanism p;oviding for
separation of output by labels as they are encountered in the course.
This would solve the problem of crowding on the chart and provide better
cross reference with the course listing. Perhaps also a better method
could be developed for the designation of merges so that the user would

not have to search the chart for the point of merger.

The systematic path tracing could be improved by providing exits for
the simulation of functions. Perhaps also a more powerful scheme could
be devised for the elimination of paths that are not of interest to an
author. The assumption of response consistency eliminates the tracing of
many similar paths, but there seems to be a greater need for selectivity

in path tracing.

The development of adequate student learning models for CAI is a

large area that is left untouched by the work of this thesis. Provision

is made for users to code their own student models, and to tailor them to
the requirements of a specific course. Methods of comparison of the paths

traced by real and simulated students would need to be devised.

The simulation programs developed in this thesis for the purpose of
author assistance have so far received little use by authors. Most authors
develop theilr courses in interactive mode online with the IBM 1500, but
the simulation requires entry of courses to the IBM 360/67. Thus a step
is required to transfer the information, by means of cards, from the 1500
to the 360. If the simulation programs were implemented on the IBM 1500,
this intermediate step and delay would not be necessary, and use could be

made of graphical display devices.
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COMPUTER PROGRAM CL?2

COMMON LAVS,LW(10)

INTEGER COL (80) 4LCURR(2) s TITLE(20),BLANK/! v/
REAL UPCDDE(ZO)/'EA',‘NX','AA'y'CA','WA','UN',‘PR','WB','CB',

1 YABY,"EP',"BR",'TR", *AD","SB*,*MP?,"DV*,"LR*,'LD!,'FN?/
91  CONTINUE ' -

CALL INITAS{160CO)

MINQR=0

NPR=100
N=0
DO 90 I=1,2

90 LCURRI{I)=LIST(2)
LCORSE=MADLST(LIST(3))
CALL NEWBOT(1LCORSE,NEWBOT{6,LCURR(2)))

READ(5,88) TITLE
88  FORMAT(20A4)
IF(TITLE(1) .EQ.TITLE(2)) STOP

WRITE{6,99) TITLE
99 FORMAT(1H1,37X,20A4)
READ(5,489) ITAPE,NLOOP,ILIST,ITRACEyICHARTpNPER,NVAR,IPUNCH

89 FORMAT{1€15]
IF(ITAPE.EQ.O0) ITAPE=5
IF{ITAPE.NE,5) REWIND ITAPE

IF(NLOOP.EQ.O) NLOOP=10
DO 98 I=1,8
98 CALL NEWBOT(MADLST{(LIST(2)),LW(8))

M=NEWBOT({'TO E' NEWBOT('P *L,LW(10)))
CALL SETIND(=6,-1,—1,M)
LW{S)=MADLST(LW(10})

1000 REAOD(ITAPE,101) COL
101 FORMAT(8CAL)
INSTR=10C

TIF(COL(1).EQ.BLANK) GO TO 103
N=MINO(LIMTER(COL(11,12,°* ', 1,N), LIMTER(COL(1),12," "»1,N})
NEXT=NULABL(COL (1) 4N}

CALL NEWTOP(11,NEWTOP(NEXT,LCURR(2)))
LW(9)=MADLST(LW(10))
IF(ILIST.EQ.0) WRITE(6,981) (COL(I),T=1,12),COL

981 FORMAT(1X,12A1,25%X,80A1)
N=0
102 IF(COL(72).EQ.BLANK.AND.LIMTER(CDL(11)q61y'ﬂ*'12,M).EQ.61)GOTDIOOO

READ(5,101) COL
IF(ILIST.EQ.O0) WRITE(6,104) COL
104 FORMAT{38X,80A1)

GO 7O 102
103 IF(COL(7).EQ.BLANK) GG TO 800
N=N+1

OP=PACK (COL(7),COL (8),BLANK,BLANK)
OPER=PACK(COL(7),CUL(8)9CDL(9),COL(10))




107

96

DO 108 INSTR=1,20

108

IF{OPCODE({INSTR).EQ.OP) GO TO 109
CONTINUE
INSTR=21

109

1091

IF{INSTR.LE.11) GO TO 800 :
IF(INSTR.EQ.20.AND.COL{9) NE.BLANK) GO TO 20
IF(ITOP(LST,LCURR(2))) 100,110,100 :

110

CALL NEWBOT(OPER,LST)
IF(INSTR.EQ.18) GO TO 18
IFCINSTR oGE.14. AND. INSTR.LE.19) CALL DISECT{COL, INSTRyLST)

IF(INSTR.GT.13) GO TO 100
I=0
IFUINSTR.EQ.12) CALL BRI(COL,LBR,I,LST)

IFCINSTR.FQ.13) CALL TR{COL,LBR)
M=NEWBOT (NAME(LBR),LST)
CALL SETIND(-Z:‘Iv‘lvM)

800

IF(1.NE.O) GO TC 100
NEXT=MAJCR {(OPER,INSTR,LCURR,MINOR,NPR)
IF(INSTR.EQ.100) GO 70O 400

801

IF(NEXT) 801,100,801
IF(INSTR.EQ.7) GO TO 806
IF(INSTR.EQ.11) GO 71O 808

802

IF(ILIST.EQ.O0) WRITE(6,4802) NEXT,N,(COL(1),I=7,80)
FORMAT(134,18,2Xy74A1)
GO_T0 102

806
807

IF{ILIST.EQ.C) WRITE(64807) OPER,NEXT,N,{(COL(I),1=7,80)
FORMAT(18X,A3,113,18,2X,74A1)
GG 70 102

808
809

IF(ILIST.EQe0) WRITE(6,809) OPER,NEXT 4Ny {COL{T),1=7,80)
FORMAT(24X9A3,17,18,2X,74A1)
GQ 70 102

18
100
804

CALL LR{COL,LST)
IF(MINOR) 804,8(C5,89%4
NEXT=MINCR

805

MINOR=0
GO 70 801
IF(ILIST.EQ.0) WRITE(6,803) N,(COL(T),1=7,80)

803

20

FORMAT(I42,2Xy74A1)
GO 70 102
INSTR=COL{9)/16777216+15

IF({INSTR.EQ.4.0R.INSTR.GT.7) GO TO 1091
INSTR=INSTR+1
IF{INSTR.GT.3) INSTR=INSTR+2

IF(INSTR.EQ.6) INSTR=7
IF(INSTR.EQ.3) CALL FN2(COL,INSTR,LST)
GO0 TG 80C

400

CONT INUE
IF(ILIST.FQ.0) WRITE(6,99) TITLE
IF(ITRACE.EQ.D) CALL TRACFE(LCORSE,NLOOP)

IF(NPER.EQ.0) GO TO 401
WRITE(6,59) TITLE




CALL STRACE(LCORSE,NLCOP,NPER,NVAR, IPUNCH)

97T

401

IF{ ICHART.NE.O) GO TO 402
WRITE(6,459) TITLE
CALL CHART(LCORSE)

402
93

DO 93 I=1,10
CALL MTLIST(LHW(I))
GO T0 91

END
SUBROUTTNE MODEL (N, IX,IREF, ICELL,NODE,BRANCH)
MODEL 1 - RANDOM RESPONSE MODEL

INTEGER IX(1),IR/5093/
LOGICAL NODE,BRANCH
IF(NODE) GO TO SS9

99

IX{(1)=IX(1)+1
RETURN
CONTINUE

CALL RANDU(IR,1Y,4R)
IR=1Y
IF(R.LToC.5) BRANCH=.FALSE.

RETURN
END
SUBROUTINE FN2(COL, INSTR,LST)

INTEGER COL{1)
RETURN
END

SUBROUT INE STRACE{LCORSE,NLOOP,NPER,NVAR,IPUNCH)

COMMON LAVS,LW(10)
LOGICAL IVAL,TOUT,NODE,BRANCH

INTEGER%2 C(31),S(5238)
INTEGER RR{6),IUN2RR(6),IX{250)
NPATH=0

78
85

TOUT=.FALSE.
DO 85 I=1,31
Cti)=0

86

DO 86 1I=1,528
S(13¥=0
MEMORY=LIST(3)

LST=LCORSE
ICELL=LST
LENGTH=0

LASTEP=0
NEXT=LST
IF{NVAR.EQ.2) GC TO 99

98
99

DO 98 I=1,NVAR
IX(I)=0
NRING=0

100

LRING=0
TCELL=LRIN(ICELL)
ID=INDINCICELL)

1C1

IF(ID~-1) 200,301,500
LENGTH=LENGTH+1




98

NODE=.FALSE. B

CALL MUDEL(NPATH,IX,LST'ICELL,NUDE,BRANCH)
IF(ID.NE.6.AND.ID.,NE.7) GO TO 100
DO 1011 1=6,10

1011

200.

ICELL=LRIN(ICELL)
G0 TO 100 B
IF(1D.EQ.0) GO 70 101

ID=-1D
IF{IC.EQ.2) GO TO 301
IF{ID.LE.4) GO 7O 250

102

IF(ID-12) 102,12,202
IF(ID.NE.6.AND.ID.NE.7) GO TO 100
GO 7O 101

12

IF{ IVAL{ICELL,C,S)) GO TO 101
ICELL=LRIN(ICELL)
GO 10 101

202

250

CALL EXCUTE(ICELLoIDvaSoRRyIUNZ,IUNZRR)
GO T0 101
TF(ID.NE «4sOR INHALT(LST).NE.6) GO _T0 251

TF{MADLSTUINHALT({ICELL)).EQ.LST) GO. T0O 100
TUN1=INHALT(LRINCICELL))
IF{ TUN1-IUN2) 301,100,301

251

IF(ID.EQ.4.AND. TOUT) GO TO 301
BR ANCH=. TRUE.,
NODE=,TRUE.

CALL MODEL(NPATH:IX:LSTleELL,NODEyBRANCH)
IF{ ,NOT.BRANCH) GO TO 100
IF{ID.EQ.3) TOUT=.TRUE.

LST=MADLSTUINHALT{ICELL))
IF(LST-11) 303,302,304
LST=LASTEP

303

GO TO 304
1.STT=RR{LST-1)
IF{IFIND(LSTT,LW(7),M}) 304,3031,304

3031

304

LST=LSTT
TUN2=TUN2RR{LST-1)
NEXT=LLIN(NEXT)

40C

I=1
TF(NRING.NE.C) GO TO 402
IF{IC.EQ.1) GO TOQ 403

401
402

IF(IFIND(LST,MEMORYNEXT)) 403,401,403
LRING=LST
IF(LRING.EQ.LST) NRING=NRING+1

403

IF{NRING.EQ.NLOCP) GO TO 500
M=NFWTOP(LST MENORY)
CALL SETIND(=ID,=1,-1,M)

1IF(1.EQ.2) GO TO 109
TF{INHALT(LST) .EQ.11) TOUT=.FALSE.
ICELL=LST

IF(INHALTILST) .NE.11) GO TO 405
IF(LST.EG.LASTEP) GO TO 404




LASTEP=L ST

404
405

TUN2=0
TUN2=TUN2+1 :

IF(NRING.EQ.0.0R.INHALT(NEXT).EQ.LST) GO _TO 100
CALL I1POPUP(LST,MEMORY)

NRING=0

LRING=0

500

I=2
GO 10 400
CONTINUE

CALL PATH(MEMDRY,LRINGyNLUOP,NPATH;LENGTH:'STUDENT ')
CALL IRALST(MEMORY) '
IF{NVAR.EQ.0) GO TO 600

M=(NVAR+13)/14
DO 540 J=1.M
IA=J%14-13

510

IB=J%*14-J/M%{J*14-NVAR)
WRITE(6,510) (I,I=IA,I1B)
FORMAT({1HOSX'VARIABLE'1416)

520

WRITE(6,4520) (IX(1),I=TA,18B)
FORMAT(14X1416)
IE{IPUNCH.NE.O) WRITE(7,530) NPATH,Js (IX(I),I=1A,18)

530
540
609

FORMAT(1615)
CONTINUE :
IF(NPATH.NE.NPER) GO TO 78

RETURN
END
SUBROUTINE TRACE(LCORSE,NLOOP)

COMMON LAVS,LW{10)
LOGICAL IVAL,TOUT
INTEGER%2 C(31),5(528)

INTEGER RR{6) 4 IUNZRR{6)
LRECRD=LISTI(3)
LISTEP=LIST{3)

LSHUT=0
NPATH=0
TO0UT=.FALSE.

78

85

LDOOR=0
DN 85 I=1,31
c(11=0

86

D0 86 1=1,528
S{1)=0
MEMORY=LIST(3)

LST=LCCORSE
TCELL=LST
LENGTH=0

LAST=0
LASTEP=0
1SHUT=0

99

NEXT=LST
NRING=0




100

LRING=0 :

© 100 ICELL=LRINCICELL)
ID=IDIN{ ICELL)
IF¢{I1D-1) 200,301,500

101 LENGTH=LENGTH+1
G8 70 10¢C .
200 IF(I1D.EQ.0) GO TO 101

1D=-1D :
IF(IC.EQ.2) GO 10 301
IF(ID.LE.4) GO TO 2590

IF{ID-12) 1024124202
102 IF(ID.NE.7) GO TO 100
LENGTH=L ENGTH-1

GO 10 100
12 IF(IVAL(ICELL,CyS)) GO TO 101
ICELL=LRIN(ICELL)

GO 70 101
202 CALL EXCUTE(ICELL,IDyCsSyRR,IUN2,TUNZRR)
GO 70 101

250 IF(ID.NE.4.0R.INHALT(LST).NE.6) GO TO 251
IF{MADLST(INHALT{ICELL)).EQ.LST) GO TO 100
TUNI=TNHALT(LRINCICELL))

IFCIUNL-TUN2) 3C1,100,301
251 IF(ID.EQ.4.AND.TOUT) GO TO 301
IF(IST.NE.LSHUT) GO TC 290

IF{LDOORNE.LAST) ISHUT=LSHUT
LAST=LDOCR
LREC=LLIN(LREC)

LSHUT=INHALT(LREC)
GO TO 10¢C
290 IF(ID.NE.3) GO 70 295

IF(IFIND(LST,LISTEP,M)) 294,100,294
294 TOUT=.TRUE.
GC 10 29¢

295 IF(NRING.EQ.0) GO TO 296
TF{MADLSTOINHALT{ICELL))NELINHALTILLIN(NEXT))) GO TO 100
296 1L NDOCR=LST

301 LST=MADLST(INHALT(ICELL))
IF(LST-11) 303,302,304
302 LST=LASTEP .

GO TD 304
303 LSTT=RRILST~1) -
IF(IFIND(LSTT,LW{7),M)) 304,3031,304

3031 LST=LSTT
TUN2=TUN2RR(LST-1)
304 NEXT=LLIN(NEXT)

I=1
IF{NRING.NE.O) GO TOQ 402
400 IF(IC.EQ.1) GO TO 493

IF(IFIND(LSTyMEMDRY 4NEXT)) 403,401,403
401 LRING=LST




402

101

IE(LRING.EQ.LST) NRING=NRING+1

IF(NRING.EQ.NLOOP) GO TO 500
403 M=NEWTOP {LST,MEMORY)
CALL SETIND(-ID,-1,~1,M)
IF(1.EQ.2) GO 70 100
IF{ INHALT(LST) .EQ.11) TOUT=.FALSE.
ICELL=LST
IFCINHALT(LST) JNEo11) GO TO 405
IF(LST.EG.LASTEP) GO TO 404
LASTEP=L ST
1UN2=0
404 TUN2=TUN2+1
405 IF(NRING.EQ.O.UR.INHALT(NEXT)lggiLST) GO 10 100
CALL IPOPUP(LST,MEMORY)
NRING=0
LRING=0
I=2
GO TO 40C
500 . CONTINUE
- CALL PATH(MEMORY,LRING;NLODP,NPATH:LENGTH"PATH NO.?)
CALL IRALST(MEMORY)
IF(LDOOR.EQ.0) GO TQ 600
IF( INHAL T(LDOOR) .EQ.11) GO TO 501
M=NEWTOP (LDOOR, LRECRD)
5002 IF(LDOOR .NE.LAST) GO TO 5004
5003 CALL IPOPUP(LSHUT,M)
IF(LSHUT .NE.ISHUT) GO TO 5003
5004 LREC=LLIN(MADLST(LRECRD))
LSHUT=INHALT(LREC)
GO TC 78
501 CALL NEWTOP(LDOOR,LISTEP)
M=LRECRD
GO TO 5002
600 CALL IRALST(LRECRD)
CALL IRALST(LISTEP)
RETURN
END
SUBROUTINE PATH(MENDRY,LRINGyNLOOPqNPATHyLENGTH,TITLE)
INTEGER CHANEL(32),1P(8),BLANK/" 1/,TITLE(2)
INTEGER TDU/'T-GU'/oT/'T'/,MIS/'MIS—'lyMA/'M'/yLOOP/'LOﬂP'/
NPATH=NPATH+1
WRITE(6959) TITLE,NPATH,LENGTH
99 FORMAT (1H0,2A4%,15,10X15,"* STATEMENTS EXECUTED')
IF(LRING.EQ.C) GO TO 11C
NRING=1
100 1D=IDIN{LRIN(MACLST (MEMORY)))

CALL 1POPUP{LST,MEMORY)
IF(LST .NELLRING) GO TOQ 100
NRING=NRING+1

IFINRING .NE.NLOCP) GO TO 100
M=NEWTOP{LST yMEMORY)




CALL SETIND(ID,-1,-1,M)

102

110

111

ICELL=MADLST(MEMORY)
N=0 -
ICELL=LL INCICELL)

112

ID=TIDIN(ICELL)
IF{ID.GE.2) GO TO 700
IF(ID.EQ.-3) GO TO 300

1120

IF(ID.EQe.-4) GO TO 400
IREF=INHALT(ICELL)
INSTR=INHALT{ IREF)

113

IF(INSTR.LT.Q) GO TGO 203

IF((N+3).6T.32) GO TO 500

N=N+2

CALL HOLLER{CHANEL (N),IREF,IP)

M=2
DO 201 I=1,45

IF(IP{6~-1).EQ.BLANK) GO TO 200

IP{6-T+M)=IP(6-1)
GG T0 201

200
201

M=M+1
CONTINUE
D3 202 I=1,4M

202

IP{T)=BLANK

CHANEL (N-1)=IPACK(IP(1),IP{2),IP(3),1IP(4))
CHANEL (N)=IPACK(IP(5),IP(6),1P(T7),IP(8))

M=1
GO 70 2041
M=(3-INSTR) /4

204

IF{(N+M+1}.GT.32) GO TO 600

N=N+1
CHANEL {N)=BLANK

2041

205

DO 205 I=14M
IREF=LRIN(IREF)
CHANEL {(N+T)=INHALT (IREF)

206

N=N+M
IF(N.NE.32) GO TO 111
ASSIGN 111 7O IRACK

207
2C8

WRITE(64208) (CHANEL(I)4I=1,N)

FORMAT (2X32A4)
N=0

300
301

GO TN IBACK, (111,301,401,113,204,721,1120,7001)
IF({N+2) .GT.32) GO TO 302

N=N+2

CHANEL(N-1)=BLANK
IFIN.EQL2) N=3
CHANEL (N-1)=T0U

302

CHANEL(N)=T
GO TO 45C
ASSIGN 301 TO IBACK

400

GO 10 207

IF((N+2) .GT.32) GO T 402




401

“103

N=N¥2
CHANEL{N-1)=BLANK
IF(N.EQ.2) N=3
CHANEL {N=1)=MIS
: CHANEL{N)=MA :
450 1FIN.NE.32) GO TO 11290
_ASSIGN 1120 TO I1BACK
GO TO 207 -
402 ASSIGN 401 TO IBACK -
GQ 10 207
500 ASSIGN 113 TO IBACK
GO TO 207
600 ASSIGN 204 TO IBACK
GO 10 207
700 ASSIGN 7C1 TG IBACK
IF(LRING.EQ.0) GO TQ 7C03
1F((N+2) .GT.32) GO TO 7002
7001 N=N+2
CHANEL (N-1)=BLARK
CHANEL{N)=LOOP
ASSIGN 701 TO IBACK
GO TOQ 207
7002 ASSIGN 7001 TG IBACK
GO 70O 207
7003 IF(N.NE.C) GO 70 207
701 RETURN
END
FUNCTION ISWICH(ICELL,IN)
ISWICH=IUNPAK(IN,4)/16777216+15
IF(IDIN(ICELL) .NE.-6) GO TO 5
JCELL=LRIN(ICELL)
IALPHA=IUNPAK(INHALT(ICELL)yl)/16777216+63
J=10
GO 10 8
5 IALPHA=ISWICH+48
IF(ISWICH.LT.0) GO TO 7
1ALPHA=-31
K=1
J=10
IF(ISVICE.LE.9) GO TQ 9
K ISWICH=0
J=1
8 IF(JALPHA.,GT.10) IALPHA=TALPHA-7
TF(IALPHA.GT.0) K=16
9 ISWICH=K*(ISWICH+J*(IUNPAK(IN,31/16777216+15))+IALPHA+3?
RETURN
END

FUNCTION ICOUNT(ICELL,IN)
ICOUNT=IUNPAK(Ik,4)/16777?16+15

J=10
IF(ICOUNT.LE.Q) GO TO 13




ICOUNT=0

13

J=1
ICOUNT= ICOUNT+J*(IUNPAK(IN 3)/16777216+15)+1
RETURN

END

SUBROUTINE EXCUTE{ICELL,INSTR,C,SsRR, IUNZ,IUNZRR)

INTEGER*2 C(1),5(1)

INTEGER RR(I);IUNZRR(I),IP(Z),CEE/ cv/
K=1
1S=0

ICELL=LRIN{ICELL)
IFLINSTR.NE.18) GO TO 12
LABEL=TINFEALT{ICELL)

ICELL=LRIN(CICELL)
N==4-IDIN(ICELL)
DO 11 I=1,N

11

ICELL=LRIN{ICELL)
I=TUNPAK{ INHALT (ICELL) ,4)/16777216+16
RR{I)=LABEL

12

TUN2RR{T)=1IUN2
RETURN
IP{K)=INHALT(ICELL)

TE(IDIN(ICELL) .EQ.-5) GO TO 14
IC=ICOUNT(ICELL,IP{K))
1P{K)=C(IC)

14

TFIK-1) 14414,15
ICELL=LRIN(ICELL)
K=2

IN=INHALT(ICELL)
IF{TUNPAK{IN,2).EQ.CEE) GO TO 12
IS=ISWICH(ICELL ,IN)

15

1P(2)=5(1S)
INST=INSTR-13
GO 70 (1452934444, 6),INST

IN=IP(2)+1P(1)
GO TO 16
IN=1P{2}-1P(1)

GO TO 16
IN=IP(2)%IP(1)
GO _T0 16

IN=IP(2)/1P(1)
GO TN 16
IN=IP{1)

IF{1S.GT.ND) GO TQ 17
C(IC)=1IN
RETURN

17

S(IS)I=IN
RETURN
END

LOGICAL FUNCTION IVAL(ICELL,C,S)
INTEGER*2 C(1),S(1)




.‘?%CIQS.:{:“

INTEGER CEE/'C"/,REL(6)/* L *,* LE"," E',* NE',' GE',' G'/
ICELL=LRINCICELL) ' : :
IN=INHALT(ICELL) o

IF(IUNPAK(IN,2) EQ.CEE) GO TO 10

T1=ISWICHIICELL,IN)
11=S(11)
1=3

10

GO 10 12
I1=ICOUNTUICELL,IN)
11=C{11)

ICELL=LRIN(ICELL)
IN=INHALT(ICELL)
DO 11 I=1,6

11
12

IF(REL{I).FQ.IN) GO TO 12
CONTINUE
ICELL=LRIN(CICELL)

12=INHALT(ICELL)
IFUIDIN(CICELL).EQ.-5) GO TO 13
12=1COUNT(ICELL,12)

12=C(12)
GO TO (1424394454+6),1
IVAL=11.1T.12

RETURN
IVAL=T1l.LE.I2
RETURN

IVAL=I1.EQ.I2
RETURN
IVAL=T1.ME.12

RETURN
IVAL=T1.CE.I2
RETURN

IVAL=11.GT.I2
RETURN
END

FUNCTION MAJOR (OPER, INSTR,LCURRyMINOR,NPR)
COMMON LAVS,LW(10)
INTEGER LCURR(1)

INTEGER CONTIN(L1)/€96971489999967948y747/
INTEGER BRANCHI{L11)/091093444959190954944342/
INTEGER DECIDE(ll,ll)/l95*0,1,4*3,2,6*0,4*39216*0'2*3v0y39215*09

13v012*3v217*013*39276*073*3v092y495*073*3,016*21093*3v017*573*3101
210%043,11%0/
INST=MINC{INSTR,11)

LISTEX=0
MAJOR=0
DO 710 I=1,2

700
701

K=LCURR(I)
IF{IPOPUP(LST,K)) 7091,701,7091
CALL TPOPUP(LAST,K)

ICOND=DECIDE(INST,LAST)
IF(1.EQ.1l} GC TGO 704




106

1LST=LST

7011 IF({IPOPUP(NLST,K)) 704,702,704
702 CALL IPOPUP{NLAST,K)
IF{CECIDE(INST,NLAST) .NE. ICOND) GO T4Q 703

IF(NLAST.NE.LAST.AND.ICDND.EQ.B) GO TQ 703
CALL NEWBOT{NAME(ILST),NLST)
ILST=NLST

GO 7O 7011
703  NLST=LCOPY{ILST,NLST) |
CALL NEWTOPINLAST,NEWTOP(NLST,K))

704 GO 7O (1929394+5)9 ICOND
IFLINSTR.GT.11} GO TO 711
IF(LISTEX.NE.O) GO TO 707

IF(INSTR.NE.7) GO TO 705
7041 CALL TPOPUP(LISTEX,LW(8))
CALL ITOP{LISTEX,LW(8B))

CALL NEWBOT (MADLSTILIST(2)),LW(8))
NPR=NPR+1
CALL STRIND{(NPR,LISTEX)

GO T0O 706
705 LISTEX=MADLST(LIST(2))
CALL STRIND{INSTR,LISTEX)

706 CALL NEWBCT(OPER,LISTEX)
IF{ INSTR.NE.6) GO TO 707
TUN1=TUN1+1

M=NEWROT (IUN1,LISTEX)
CALL SETIND(=8,-1,-14M)
707 NEXT=LISTEX

IF(LSTY 710,710,708

1 NEXT=LASTUN
GO TQ 708

2 CALL ITOP(NEXT,LRIN(MADLST(LW(B))))
GO 70O 708

3 GC TQ (314321),1

31 K=NEWTOP (LAST,NEWTOP(LST,K))
GO TQ 70C

32 NEXT=MADLST(LIST(2))

MINNR=NEXT
CALL STRIND(O,NEXT)
K=NEWTOP(LAST,NEWTOP {NEXT,K))

GO TO 709

4 CALL NEWBOT(LST,NEWBOT(10,LCURP(1)))
GO _TO 70C

5 NEXT=LW(S)

108 IF(1.FQ.2.0R.LAST.EQ.10) GO TO 709
M=NEWTOP (NAME(NEXT),LRIN(LST))

CALL SETIND{-44-1y~14M)
IF(LAST.EQ.2) CALL SETIND(-=3,-14-1,M)
IF{ICOMD .FQe2) CALL SETIND{=-2,-15s-1+M)

GO 70 70C
709 PM=NEWBCT {NAME(NEXT),LST)




o107

IF(LAST.EQ.I0.0R.NEXT.EQ.LN(Q).UR.ICOND.EQ.Z)

1 CALL SETIND(-24-14-14M)
GO TO 70C ‘
7091 IF{LISTEX.FQ.0.AND.INSTR.EQ.7.AND.T.EQ.2) GO 10 7041

710 CONTINUE '
IF(LISTEX.EQ.0) RETURN
LAST=CONTIN(INSTR) ‘

CALL NEWBOT{(LISTEXsNEWBOT(LAST,LCURR(2)))
IF{INSTR.NE.11) GO TO 7162
LW(9)=MADLST(LW(10))

IF{LISTMT(LCURRI(L1))) 7102,7101,7102
7101 LWI9)=LISTEX
7102 IF(LAST.NE.6) CALL NEWBOT(LISTEX, NEWBDT(BRANCH(INSTR),LCURR(I)))

IFCINSTR.EQ.6) LASTUN=LISTEX
IFLINSTR.EQ.7) LWI9)=MADLSTI(LW(10))
IF(INSTR.EQ.11) TUNI=C

711 MAJOR=LISTEX
RETURN
END

SUBROUTINE CHART(LCORSE)
COMMON LAVS,LW(10)
INTEGER COND(16),CELL(16) ,CHANEL(32)},BLANK/"' */

INTEGER IP(8),BAR/® | '/ MINUS/*-'/
NC=16
CALL MTLIST(LW(8))

LST=LRIN(LCORSE)
JUNK=LIST(3)}
89 D8 90 TI=1,NC

30 COND(I)=6
COND(9)=8
CELL(9)=LSTY

IBEGIN=0
91  1END=0.
DO_92 I=1,NC

IF{COND{I).NE.&) IEND=1
CHANEL (2*%T-1)=BLANK
92 CHANEL (2*T)=BLAMK

IF{T1END) 93,19,93
93 D0 6 T=1,NC
ICONC=CONDI(I)

ICELL=CELL(I)
GO TO (192+394+4+69498,9),1COND
1 ID=ICIN{ICELL)

TF(ID-1) 10411,12
10 IF(ID.EQ.0) GO TGO 1002
N=—4-1D

IFIN-1) 1C01,1C2,1CD2
1001 ICOND=2
GO 10 2

1002 N=1
1003 IF(ID.EQ.-8) GO TO 128




108

IF(N.GT.3) N=]

DO 1004 J=1,N
CHANEL(2%1-2+J)=INHALT(ICELL)
IF(COND(1) .EQ.2.0R.CONDII).EQ.4) GO TO 1004

1004

ID=IDIN{LRIN{ICELL))
IF(ID.LE.-2.AND.ID.GE.-4) GO TO 13
ICELL=tRINCICELL)

IF(COND{I) .NE.4.OR.IDIN{ICELL).NE.1) GO TO 1005
LL=LLINICELL(I))
IF(IDINCLL) .GE <2 AND. INHALT(LL) .LT.O) COND(T)=9

1005
101

CELL{I)=ICELL
IF(IDIN(CELL(I)).GE.2) CONDI(I)=4
GC TC 6

102

IN=INHALT(ICELL)
IPO=BLANK
1IF(IN.GE.0) GO 70 1021

1021

1PO=MTNUS
IN=-IN
CALL HOULLER(CHANEL (2%1-1),IN,IP)

CHANEL(2%I-1)=IPACK(IPO,IP(1),IP(2),IP(2))
CHANEL (2*1)=TPACK{IP(4),IP(5),1P(6),IP(T7))
TF(COND!1) . EQ.2 .0R.COND(I).EQ.4) GO TO 1022

1022

ID=IDINC(LRINCICELL))
IF({ID.LE.-2.AND.ID.GE.-4) GO TO 13
CELL{I)=LRINCICELL)

11

GC TC 1¢C1
CHANEL(2*I-1)=BAR
CELL(I)=MADLST{INHALT(ICELL )

GO 7O 6
INSTR=INKALT(ICELL)
IF(COND(I).EQ.4) GO TG 125

IF(INSTR.LT.100.0R.IBEGIN.EQ.0) GO TO 121
CALL PR {ICELL, INSTR)
COND(I)=3

121}

IFCINSTR.LT.C) CONDI(TI)=4
GO 10O 127
IF(IDINCICELL)-3) 122,122,123

122
123
126

IFLINSTR) 1264127,127
IF(IFIND{ICELL,JUNKyN)) 126,125,126
CALL NEWTOPC(ICELL,JUNK)

127

IF(INSTR.LT.0) GO TO 128
CALL HCLUER{CHANEL{2*1-1),ICFLL,IP)
CELL(I)=LRIN(ICELL)

128

IBEGIN=1
GO 10 6
ICELL=LRINCICELL)

13

CELL(I)=ICELL
GO 10 1
ICCND=13

IF{N.GT.2) GC TC 22
N=NUCHAN{COND, I4NC)




IF(N.NE.I) GO 7O 25

109

22

CHANEL(2%I-1)=BAR
COND(1)=2
IF(ICOND.EQ.2) GO TQ 6

25

ICELL=CELL(I)
GO 7O 1
CALL ARTIST(ICELL, ICOND,CHANEL,1,N)

CELL{T)=LRIN(ICELL)
CELLIN)=MADLST{ INHALT(ICELL))
COND(I)=1

COND(N)=8
IF(N.GT.I) COND(N)=T
GO 70 101

COND{1)=4
GO TO 1
COND(T)=ICOND+1

GO TO 6
COND(I)=3
GO 10 11

COND(I)=1
CHANEL{2*I-1)=BAR
CONT INUE

31

WRITE(6,31) CHANEL
FORMAT(1X,16(2A4))
GO T0O 91

19

191

CONTINUE
DO 193 I=1,2
IF(1POPUP(LST,LW(9-1))) 193,192,193

192
183

IF(IFIND(LSTJUNK,N}) 89,191,189
CONTINUE
CALL TRALST(JUNK)

RETURN
END
SURRQUTINE HOLLER(IHOLL,ICELL,IP)

CHANGES 5 PLACE INTEGER TO HOLLERITH
INTEGER THOLL{1),IP(8),BLANK/? v/ ,ZERQ/'0OY/
IR=ICELL ' :

J=100000
N=0
DO 3 I=1,5

J=J/10
K=IR/J
IF{K)1y1,42

IFIN) 3,342
N=N+1
IPIN)=(K-16)%16777216

IR=IR-IR/J*J
NP1=N+1
DO 4 I=NP1,8

IP(TI=BLANK
IFIN.EQ.0) IP(1)=ZERQ
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IHOLL(1)=IPACK(IP{1),IP{2),1P(3),IP(4)])

THOLL(2)=IPACK (IP(5),IP{6),IP(T),1IP(8))
RETURN
END

SUBROQUTINE PR{ICELL,INSTR)
COMMON LAVS,LW(10)
L=MADLST(LW(B)]}

L=LRINIL)
IF(IDIN(L)-2) 2+3,3
K=INHALT(L)

IF(INSTR=-INHALT(K)) 344,1
CALL NEWBOT(ICELL,L)
RETURN

END
SUBROUTINE ARTIST(ICELL, ICOND,CHANEL,I,N)
DRAWS LINE FROM CELL AT CHANNEL I 70 CHANNEL N.

INTEGER 1P(4),CHANEL(1),STROKE/*____'/+BLANK/? 1/,1082/7Y '/
INTEGER ILEFT/'_{ *'/,IRIGHT/' \__'/4yNLEFT/* __"/4NRIGHT/?
INTEGER TOU/'T-0U*/,T/*T"/,MIS/"MIS-*/,M/ M/

v/

INTEGER TS/'T___'/ MS/'M___"/
12M1=2%]1~-1
N2M1=2%N-1

IF(N.GT.I) GO TO 2
12M2=2%1-2
D 1 J=N2M1,12M2

CHANEL{ J)=STROKE
CHANEL{N2M1)=NLEFT
IF(ICOND.NE.2) GO TQ 4

CHANEL(I2ML)=1ILEFT
GO T0 5
[2=2%1

12P1=2%T1+1
no 3 J=12P1,N2M1
CHANEL {J)=STROKE

CHANEL{N2M1)}=NRIGHT
IF(ICOND.NEL2) GO TO 30
CHANEL (12M1)=1IRIGHT

30

CHANEL(12)=STROKE
GO 70 5
DO 31 J=1+4

31

IP(J)=TUNPAK(CHANEL{I2),+J)
IF{IP(J).FQ.BLANK,OR.IP{J).EQ.1082) [P{J)=STROKE
CONTINUE

CHANEL(12)=IPACK(IP(1)1IP(2)11P(3),IP(4))
DO 32 J=3,4
1P{J)=TUNPAK(CHANEL { I2M1),J)

32

IF(IP(J) .EQ.BLANK.OR.IP{J).FQ.1082) IP(J)=STROKE
CONTINUE

CHANEL(IZMl)=IPACK(IUNPAK(CHANEL(IZMl)yl),IUNPAK(CHANEL(IZM1)92)y

1 1P(3),IP(4))
JICELL=LRINCICELL)
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ID=IDIN(ICELL)

IF(ID+3) 746,+8
CHANEL{N2ZM1)=TOU
CHANEL (2%*N)=T

IF(N.LT.I) CHANEL{2*N)=TS
RETURN
CHANEL (N2M1)=MIS

CHANEL(2*N)=M
IF{N.LT.1) CHANEL(2*N}=MS
RETURN

END
_SUBROUTINE’LR(CCL;LST)
INTEGER COL(1),IP(11),BLANK/? v/

CALL SETIND(=18,-14-1,LLIN(LST))
CALL LIMTER(COL(11),61," '514N)
CALL L IMTER(COL(11),Ny*'/"52,K)

NEXT=NULABL(COL(11),K)
N=NEWBOT (NEXT,LST)
CALL SETIND(-8,-14-1,N}

N=MINO(3,K/4+1)
PO 1 I=1,3 -
1P( 1)=BLANK

TE(1.LE.K) IP(I)=COL(I+10)
CONTINUE
IN=IPACK(BLANK9IP(l),IP(Z),IP(3))

M=NEWBOT (IN,LST)
IF{K.GT.3) CALL SETIND(-M=4y=19-1+M)
IF(K.LE.3) GO TO 4

DO 2 I=4,7
IP{1)=8BLANK
IF{I.LF.K) IP(1)=COL(I+10)

CONTINUE
IN=IPACK(IP(4),IP(5),IP(6),IP(T))
CALL NEWBOT(IN,LST)

IF{K.LE.7) GO TO 4
DO 3 1I=8,11
IP{1)1=8BLANK

IF(1.LE.K) TP({I)=COL(I+10)
CONTINUE
IN=IPACK(IP(8)7IP(9)'IP(1O)yIP(ll))

CALL NEWBOTCIN,LST)
CALL NENBOT(PACK(BLANK,COL(K+13)1CUL(K+14),COL(K+15))yLST)
RETURN

END
FUNCTION LCOPY{ILSToNLST)
LCOPY=NLST

K=ILST
K=LRIN(K)
IFCIDIN(KI-1) 2,344

M=NEWBOT {INHALT(K),LCCPY)
CALL SETIND(IDIN(K)y—=1,=1,M)
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GO 10 1

3 K=MADLST (INHALT{K))
GO 10 1

4 RETURN
END

- FUNCTION NULABL(LABELyN)

RETURNS NAME OF LABEL LIST AND STORES LABEL AND LIST ON LW(T7) IF
NOT ALREADY THERE '
COMMON LAVS,LW(10)

INTEGER LABEL(1),LAB(3)

CALL SPACK(LABEL,N,LAB,M)
K=MADLST{LW(T))
K=LLIN{K)

IFCIDINEK)=2) 34646
L=INHALT({K)
IF(INHALT(LI+N) 24442

DO 5 I=14M
L=LRIN(L)
IF(INHALT(L) .NELLAB(I)) GO TO 2

CONTINUE
NULABL=INHALT(K)
RETURN

NULABL=MADLST(LIST(2)}
CALL NEWBOT{NULABL,LW(T))
CALL STRIND(-N,NULABL)

DC 7 I=1,4M
LAB{I)=NEWBOT(LAB(I),NULABL)
IF(M.GE.2) CALL SETINN{(-M-4,-1,-1,LAB(1))

RETURN
END
FUNCTION NUCHAN(COND, I,NC)

SELECTS BRANCH CHANNEL
ICF IS THE CENTERING FACTCR
INTEGER CONB{1l)

ICF=3
IMl=1-1
DO 21 K=1,1IM1

21

J=I-K
IF(COND{J1-8) 22421,22
CONTINUE

22

J=0
IPl=1+]
DO 23 K=1P1,NC

23

TF(COND(K)~6) 24,23,24
CONT INUE
K=NC+1

24

L=I1-{1-J+ICF-2)/1ICF
M=I+{K-T+ICF-2)/ICF
NUCHAN=L

IF(K-T.GT.I-J) NUCHAN=M
RETURN
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 END.

SUBROUTINE BR{COLyLBRyIFLAG,LST)
SETS UP BRANCH TO LABEL, LASTEP, PROBLEM, OR RETURN REGISTER.,
COMMON L AVS,LW(10)

INTEGER COL(L)4E/YE'/4P/'PY/4R/'RY/. -
INTEGER INTGER{10) /901,111,121 ,937,141,51,167,°7,°8",'9"/
IFLAG=1

K=MINO(LIMTER{(CEL(11),+61,° }917K),LIMTER(COL(II),élo' ',1,K))
IF(LIMTER(COL(11) 4Ky "=/ "4 25N} EQ.K) IFLAG=0
IF{IFLAG.EQ.1) CALL BRC(COL L SToKyN)

IF({N.GT.3) GO T0 302
IF(COL(11).EQ.P) GO TO 304
IF(COL{11).EQ.R) GO TO 304

302
303

LABEL |
L BR=NULABL{COL{11),N)
RETURN

304

IF(CCL(12).EQ.R) GO TO 305
IF{COL{11).EQ.P) GO TO 302
IF(COL{(12) . NEL,E) GO TQ 302

IF(N.NE.2) GO TO 302
LASTEP
LBR=LW(9)

305

RETURN
DO 306 1=1,8
IF(COL{13).EQ.INTGER(T})) GO T0O 307

306

3071

CONTINUE
GO 10 302
IF(COL(11).EQ.R) GO 7Q 308

PR
LBR=INHALT (MADNTP(LW(8),+1})
RETURN

[

308

IF(1.GT.6) GO TO 302
RR
LBR=MADLST(LW(I))

309

IFUIDINCLRIN(MADLST(LW(I)})))) 309,303,309
CALL NEWTOP(PACK{*R",*R",COL(13)," 1),LW(I))
RETURN

END
SUBRCUTINE BRC{COLsLST,K,N)
INTEGER COL{1),C/*'C*/,BLANK/! '/ 4MINUS/Z' =Y/

CALL SET IND(-12,-14-1,LLIN{LST))
CALL LIMTER(COL(N+13),K-N-Z;'~/';2;M)
IF(M.GE.3) GO TO 2

IN=IPACK(BLANK,COL(N+13),COL(N+14),BLANK)
GO 1O 4
IN=IPACK(BLANK1COL(N+13)7COL(N+14)9COL(N+15))

IF(M.EQ.3) GO TC 4
J=NEWBQT(IN,LST)
CALL SFETIND(-6s=1,=1,J)

IN=IPACK(CUL(N+16?yBLﬁNK,BLANK,BLANKi
CALL NEWBOTUIN,LST)
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M=N+M+15

"IF(COLIN+13).NE.C) GO TO 5
CALL LIMTER(COL(MY 49?2/ "%32,5L)
IP3=BLANK _

IF(L.EQ.2) 1P3=COL(M+1) :
CALL NEWBOT(PACK(®' ',COL(M),IP3,' "),LST)
M=M+L+2

NN=K-M+11
IF{COL{M).NE.C) GO TO 6
IP3=BLANK

IF(NN.EQ.3) IP3=COL(M+2)
CALL NEWBOT{PACK(® ',C,COLIM+1),IP3),LST)
RETURN

J=NN
IF(COL(M).EQ.MINUS) J=NN-1
IN=0

L=1
D3 7 I=1,J
IN=IN#(COL(114K~1)/16777216+15) *L

L=L*10
IF(J.NE.NN) IN=-IN
M=NEWBOT (IN,LST)

CALL SETIND(-54-1,-1,M)
RETURN
END .

SUBROUTINE TR(CCL,NEXT)
CREATES TRANSFER TO LABEL OF NEW SEGMENT
INTEGER COL(1),LABEL(3),BLANK/Y *'/,IP(4)

N=MINO(LIMTER(CCL(11),61,° ",1,N)sLIMTER(COL{11),61,"' *»1,N))
CALL LIMTER{COL(L1)sN,s"~/"42,4K)
NEXT=MADLST(LIST{2))

CALL STRIND{2+K-NyNEXT)
CALL SPACK{COL{13+K),N~K-2,LABEL,N)
DO 1 I=1,N

LABEL (1) =NEWBOT(LABEL (I),NEXT)
IF(N.GF.2) CALL SETIND{-N-4,-1,-1,LABEL{1))
CALL NEWBOT('SEG-',NEXT)

DO 2 I=144
IP(I)=COL(T+10)
IF(1.GT,K) TIP(I)=BLANK

CONTINUE
CALL NEWBOT(PACK{IP{1),1P(2),IPI{3),IP(4))4NEXT)
RETURN

END
SUBROUT INF DISECT(COL, INSTR,LST)
INTEGER COL(1),S/*S*'/4C/"C* /4BLANK/? v/, IP{4)yMINUS /-1 /

N=MINO{L IMTER(COL(11),61," t,14N) LIMTER(COLI(11) 614" *41,N}}
IFIN.GT.11) RETURN
CALL LIMTER{COL(11)yNy"/"y2,4K)

IF(K.FQeN) RETURN
IE(CCL{K+13) NE.S<AND.COL(K+13) .NF.C) RETURN




CALL SETIND(-INSTR.—ly-lyLLIN(LST)i

Coas

IF(COL(11).NE.C) GO T0 10
1P4=BLANK -
IF(K.EQ.3) IP4=COL(13)

CALL NEWBOT(PACK{' ',CyCDL(lZ),IPélyLST)
GO 10 12 -

10 J=K “
IF(CUL(II)-EQ.MINUS) J=K-1
IN=0
M=1"
DO 11 I=1,J e
IN=IN+(CUL(K+11‘I)/16777216+15)*M
11 M=M*10
IF{J.NE.K) IN==IN
M=NEWBQT (IN,LST)
CALL SETIND('Sv-lv‘lvM)
12 J=N-K-2
1F(J.GE.3) GO 7O 3
IN=IPACK(BLANK1CDL(K+13)1CUL(K+14)9BLANK)
GG TO 5
3 IN=IPACK(BLANK’COL(K+13)1COL{K+l4)'COL(K+15,,
1IF{J.FQ.3) GO 70 5
M=NEWBOT (IN,LST)
CALL SETIND(-év'ly“lfN)
IN=IPACK(COL(K+]6)gBLANKoBLANK,BLANK)
5 CALL NEWBOT ( IN,LST) '
RETURN
END
FUNCT ION TFINDI My LK)
K=MADLST (L)
1 K=LRIN(K)
IF(IDIN(KY=2) 24444
2 1F{ INHALTIK)-M) 143,1
3 IFIND=0
RETURN
4 IFIND=-1
RETURN
END
FUNCTICN LIMTER(STRING,LENGTH,DELIMT,MyN)
C FINDS NUMBER OF CHARACTERS N UP TO NELIMT FOR _STRING OF GIVEN
C LENGTH. DELIMITER LENGTH M MUST NOT EXCEED 4 CHARACTERS (1 WORDY) .
REAL STRING(1),DEL(4)
00 1 J=1,M
1 DEL(J)=UNPACK(DELIMT1J)
N=LFNGTH+1-M
Do 3 I=1,N
Do 2 J=1,4M
IF(STRING(I+J-17-NE-DEL(J)) GO 10 3
2 CONTINUE
GO TQ 4
3 CONT INUE
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I=LENGTH+]

LIMTER=1-1
N=LIMTER

_RETURN

END. - , :
SUBROUTINE SPACK(STRINGqLENGTHyPACKED:N)
PACKS STRING OF GIVEN LENGTH FROM Al INTO PACKED STRING OF LENGTH

N WORDS OF TYPE A4. BLANKS FILL ANY REMAINING SPACE.
REAL STRING(I);BLANK/' '/ ,PACKED(1), EXTRA(4)
N=(LENGTH+3)/4

M=N-1
IF(M}6+3s1
Do 2 I=1,M

PACKED(I)=PACK(STRING(4*I-3),STRING(4*I-2),STRING(4*I—1)'

1 STRING(4*1))

NEXTRA=L ENGTH-M*4

DO 5 I=1,4
EXTRA(T)=BLANK
TF(I-NEXTRA) 49445

v

EXTRA{T)=STRING{4%M+I)
CONTINUE
PACKED(N)=PACK(EXTRA(1),EXTRA(Z)'EXTRA(3),EXTRA(4))

RETURN
END
FUNCTION PACK(I11,12,13,14)

o OO

EXAMPLES- IPACK{®A?,'B%,'C*,'D") IS *ABCD?
IPACK('ABCD','EFGH','IJKL','MNUP') 1S YAEIM! ETC.

PROGRAMMED 0OCY/68 BY D. FLATHMAN
ENTRY IPACK(TI1l,12,13,14)

K=I1

IF(K.LT,0) K=—(K+1)

IPACK=K/16777216*16777216
K=12
IF(K.LT.G) K=—(K+1)

K=K/16777216
IF(ISIGN(1911)+ISIGN(1y12).EQ.O) K=255-K
IPACK=TPACK+K*65536

k=13
IF(K.LT.C) K==(K+1)
K=K/16777216

TF(ISIGN{1,I11+ISIGN{1,13).EQ.0) K=255-K
IPACK=TPACK+K*256
K=14

IF(K.LT.C) K==(K+1)
K=K/16777216
IF(ISIGN(l,Il)+ISIGN(1114).EQ.O) K=255-K

IPACK=TPACK#K
IF{11.LT.0) IPACK=-1PACK-1
CALL EQUAL(PACK,TIPACK)

RETURN
END
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FUNCTION UNPACK{I,IB)

EXAMPLES- TUNPAK('ABCD',1) 1S A !
IUNPAK{ *ABCD'y2) IS 'B ’
JUNPAK('ABCD",3) IS *C ' ETC.

AOOOOO0O

IN WORD 1, IB IS BYTE 14243y OR 4, OTHERWISE 1 IS ASSUMED.
THE RESULT IS ALWAYS RETURNED IN BYTE 1, WITH BLANKS TO THE RIGHT.
PROGRAMMED 0CT/68 BY D. FLATHMAN

ENTRY ITUNPAK(I1,1B)
K=1
IF{1.LT7.0) K=={1+1)

GO TO (1929344),18B
K=K/16777216
1F{K-127)545,8

KA=K/ 65536
K=KA-KA/256%256
[F(K-127)5+5,8

KA=K/256
K=KA-KA/256%256
1F(K-127)5,5,8

K=K-K/25€%256
IF(K=12T7)545,:8
TUNPAK=K*16777216+4210752

IFUI)64T47
!UNPAK=(255—K)*16777216+4210752
IF(1)7,646

IUNPAK=-IUNPAK-8355712
CALL EQUAL(UNPACK, IUNPAK])
RETURN

END
SUBROUTINE EQUAL(Y,X)
Y=X

RETURN
END
FUNCTION IRALST{K)

L=MADLST(K)
CALL SETIND(IDIN{(L)-1,-1,-1,1)
JRALST=IDIN(L)

1F(IRALST=-212,251
CALL MTLIST(L)
CALL SETIND{(Oy-1,=1,L)

CALL RCELL(L)
RETURN
END

FUNCTION IDIN(K)
INTEGER*2 ID(IbOOO)yLNKL(léOOO),LNKR(léOOO)
COMMON LAVS,LN(lO),ICONT(16000)1IDoLNKLqLNKR

IDIN=IN(K)
RETURN
END

FUNCTION LLIN(K)
INTEGER*2 ID(léOOO),LNKL(]6000),LNKR(16000)




COMMON LAVS,LW(10)  ICONT(16000),1DsLNKL»LNKR
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LLIN=LNKL{K)
RETURN
END

FUNCTION LRIN(K)
INTEGER*2 ID(lbOOO),LNKL(lbOOO),LNKR(IbOOO)
COMMON LAVS,LW(10) ,ICONT(16000),1Dy LNKL,LNKR

ALRIN=LNKR{K)

RETURN
END

SUBROUTINE SETIND{I,.LLsLR,4K)
INTEGER*2 1D(16000),LNKL{16000)+LNKR{16000)
COMMON LAVS,LW{10),ICONT(16000),1DysLNKL,LNKR

IF{1+1)1,42,1
1I0(KY=1

CIF(LL+1)2,4,3

LNKL(K)=LL
IF(LR+1)E46,45
LNKR{K)=LR

N DW=

RETURN
END
SUBROUTINE STRIND{M,K)

INTEGER*2 ID(16000)  LNKL(16000) ,LNKR{16000)
COMMON LAVS,LW(IOF,ICUNT(16000)yID,LNKL'LNKR
ICONT(K) =M

RETURN
END
FUNCTION INHALT(K)

INTEGER*2 ID(16000),LNKL{16000) ,LNKR{16000)
COMMON LAVS;LW(lO)1ICGNT(16000)9IDyLNKLyLNKR
INHALT=ICONT{K)

RETURN
END
FUNCTION NAME(MAD)

NAME=MAD-101058055
101058055 IS '9999°
RETURN

END
FUNCTION MADLST(L)
MADLST=L

[

IF(MADLST)1s1,2
MADLST=1L+4101058055
RETURN

END
SUBROUT INE INITAS(N)
COMMON L AVS,LW(10)

LAVS=1
CALL SETIND(C,N,12,LAVS)
CALL STRIND{N,LAVS)

Do 1 1=2,11
LW(I-1)=NAME(])




CALL SETIND(9999,1,1,1)
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CALL STRIND(-1,1)
DO 2 I=12,N
CALL SETIND(O404,1+1,1)

CALL STRIND(O,1)
CALL SETIND{(0,0,+0,4N)
RETURN

END
SUBROUTINE RCELL(L)
COMMON L AVS

CALL SETIND{-1y-1,L,LLIN(LAVS))
CALL SETIND(-1,L,-14LAVS)
CALL SETIND{-1,-1,0,L)

RETURN
END
FUNCTION LISTMT(K)

L=MADLST (K)
IF{LRIN(L)-L)3,4,3
LISTMT=0

RETURN
LISTMT=-1
RETURN

END
FUNCTION MTLIST(K)
COMMON LAVS

MTLIST=K
L=MADLST(K)
IF(LISTMT(L))I3,4,43

LR=LRIN(L)
LL=LLIN(L)
CALL SETIND{-1,L,L,1)

CALL SETIND{-15-14LR,LLIN(LAVS))
CALL SETIND{-1,LLs-1,LAVS)
CALL SFTIND{-1,-140,L1)

RFTURN
END
FUNCTION NUCELL (X)

COMMON LAVS
L=LRIN{LAVS)
IF(L)14+5,1

CALL SETIND{-1,-1,LRIN(L),LAVS)
IF(IDIN(LY=-1)442+4
CALL TRALSTCINHALT(L))

CALL SETIND{O0+0,0,L)
CALL STRIND(O,L)
NUCELL=L

wm

RETURM
WRITE(64€)

FORMAT{ ' OAVAILARBRLE SPACE EXHAUSTED')

STOP
END




FUNCTION LIST(K)
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LIST=NUCELL(X)
IF{K=2)142y1
CALL SETIND{3,L1ST,LIST,LIST)

GO 70 3
CALL SETIND(?:LISTyLISToLISTl
CALL STRIND(-1,LIST)

LIST=LIST-101058055
IF(K/4) 495+4
K=LIST

RETURN
END
FUNCTION NAMTST (M)

N

COMMON LAVS
IF{M)5,1,1
L =M+101058055

IF(L)1s146
IF(L-INHALT{LAVS))4,4’1
IF(IDIN(LY-2)142,2

w N> o

IF(LRIN(LLIN(L))—L)11311
NAMTST=0
RETURN

fo]

NAMTST=-1
RETURN
END

FUNCTION NEWTOP(M,L)
1=MADLST (L)
1R=NUCELL(X)

LR=LRIN(T)
NEWTOP=IR
CALL SETIND(-1,-1,IR, 1}

CALL SETIND(O,I,5LR,IR)
CALL SETIND(-14 IRy -14LR)
IF(NAMTST(M))2,1,2

CALL SETIND(1,-1,-1,IR)
LR=MADLST(M)
CALL SET IND{IDIN(LRI+1,=1y=1y

LR)

CALL STRIND(M,IR)
RETURN
END

FUNCT ION NEWBOT (M, L)
I[=MADLST (L)
TL=NUCEL LX)

LL=LLIN(T)
NEWBOT=TL
CALL SETIND{—1,=-1,IL,LL)

CALL SETIND(O,LL,E,sIL)
CALL SETIND(-141ILs-1,1)
IF(NAMTST{M))251,42

CALL SETIND(1,-1,-1,11)
LL=MADLST(M)




CALL SETIND{IDIN(LE)+1,-14=1,LL1)
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CALL STRIND{M,IL)
RETURN
END

FUNCTION IPOPUP({M,I)
L=MADLST(TI)
K=LRIN(L)

IFCIDIN(K)=-2)1,42,42
NEXT=LRIN(K)
M=INHALT (K)

CALL SETIND(-1,-1,NEXT,L)
CALL SETIND{-1,Ls-14NEXT)
CALL RCELL{K)

1POPUP=0
RETURN
1POPYP=-1

M=0
RETURN
END

FUNCTION IPOPBT(I,L)
K=MADLST (L)
M=LLIN(K)

IFUIDIN{M)I=2)14242
NEXT=LLIN(M)
I=INHALT (M)

CALL SETIND{-1,NEXTs-1,K)
CALL SETIND(-1,-1,K,NEXT)
1PAPBTY=0

CALL RCELL(M)
RETURN
1=0

IPOPBT=-1.
RETURN
END

FUNCTION ITOP{M,L)
LR=LRIN{MADLST(L))
IF(IDINC(LRY-2)1,2,42

M=TNHALT (LR)
1TOP=0
RETURN

M=0
1ITOP=-1
RETURN

END
FUNCTION MACNTP(KyN)
MADNTP=MADLST{K)

DO 1 I=1,4N
MADKTP=LRIN(MADNTP)
RETURN

END




