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ABSTRACT

In this paper, we discuss multi-target tracking for a submarine model based on incomplete observations. The
submarine model is a weakly interacting stochastic dynamic system with several submarines in the underlying
region. Observations are obtained at discrete times from a number of sonobuoys equipped with hydrophones and
consist of a nonlinear function of the current locations of submarines corrupted by additive noise. We use filtering
methods to find the best estimation for the locations of the submarines. Our signal is a measure-valued process,
resulting in filtering equations that can not be readily implemented. We develop Markov chain approximation
approach to solve the filtering equation for our model. Our Markov chains are constructed by dividing the multi-
target state space into cells, evolving particles in these cells, and employing a random time change approach.
These approximations converge to the unnormalized conditional distribution of the signal process based on the
back observaions. Finally we present some simulation results by using the refining stochastic grid (REST) filter
(developed from our Markov chain approximation method).

Keywords: multi-target tracking, measure-valued process, filtering equations, Markov chain approximations,
REST

1. INTRODUCTION

There is an increasing interest in the area of multi-target tracking due to its wide applications to defense, surveil-
lance, search and rescue, financial markets, and communication networks. Here, we just list some recent research
papers in this area: Agate and Sullivan,1 Ballantyne, Chan, and Kouritzin,2 Ballantyne, Hailes, Kouritzin,
Long and Wiersma,3 Coraluppi and Grimmett,4 Hue, Le Cadre, and Pérez,6 Mahler and Zajic,11 Zajic
and Mahler.13 Multi-target tracking is a very difficult and challenging problem, especially when the involved
targets are weakly interacting. Many existing methods for multi-target tracking are valid only for independent
targets. But, in reality, we often encounter situations in which targets have correlation and interaction. In this
paper, we would like to develop a new filtering method to solve the interacting multi-target tracking problem.
In our simulation study, we consider the submarine model with several submarines and the observation data are
collected from certain number of sonobuoys equipped with hydrophones. From our simulation results, it shows
that our new Markov chain approximation method performs well.

Here, we mention some existing works for multitarget tracking by Mahler and Zajic,11 Orton and Fitzgerald,12

Hue, Le Cadre and Pérez6 and Ballantyne, Chan and Kouritzin.2 Mahler and Zajic11 were interested in finding
the unknown number of targets in the region of state space rather than the exact location of each target, and used
the probability hypothesis density (PHD) to design an approximate multitarget filter to estimate the expected
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number of targets. Orton and Fitzgerald12 applied independent partition particle filter method for tracking the
direction-of-arrival (DOA) of multiple moving targets. In the resampling step, particles with high weights are
copied many times, and those with low weights only a few, or not at all. Hue, Le Cadre and Pérez6 proposed
the multitarget particle filter (MTPF), which combines the two major steps (prediction and weighting) of the
classical particle filter with a Gibbs sampler-based estimation of the assignment probabilities. They also added
two statistical tests to decide if a target has appeared or disappeared from the surveillance area.

We consider an interacting multi-target tracking problem, where our targets are constrained to live within
the closure D̄ of a d- dimensional rectangular region D = (0, L1) × · · · × (0, Ld). Indeed, we assume that the
states of our m-target system satisfy the following model:

dXk
t = b(Xk

t , St)dt + σ(Xk
t , St)dW k

t (1)

Xk
0 = xk

0 , k = 1, · · ·m, St =
m∑

k=1

δXk
t
,

where b is the drift coefficient, σ is the diffusion coefficient matrix, δx is the Dirac measure at x, {W k, k =
1, · · · ,m} are independent d-dimensional Brownian motions, and a = σσT . The coefficients b and σ are given in
certain ways so that all the targets are kept inside the region D.

We assume that the r-dimensional observation process Y is given by

Yi = h(Sti
) + Vi, ti = iε, (2)

where h is bounded and continuous, ε > 0, and V ′
i are mutually independent (0, τ2I) - Gaussian random variables

which are independent of W k(k = 1, · · · ,m).

We now fix some notations. For a Polish space E, we denote the space of bounded continuous functions on E
by Cb(E). Let D([0, T ], E) denote the set of all cadlag functions from [0, T ] into E, and take P(E) and Mf (E)
to denote the spaces of probability measures and positive finite measures on E, respectively.

For µ1, µ2 ∈ Mf (D), the Wasserstein metric is defined by

ρ(µ1, µ2) = sup{|〈φ, µ1〉 − 〈φ, µ2〉| : φ ∈ B},

where
B = {φ : |φ(x) − φ(y)| ≤ |x − y|, |φ(x)| ≤ 1,∀x, y ∈ D̄}.

We set

Mm
c (D̄) = {µ ∈ Mf (D̄) : µ =

m∑

k=1

δxk
, xk ∈ D̄, i = 1, · · · ,m}.

Then Mm
c (D̄) is the state space of the stochastic process {St, t ≥ 0}, and (Mf (D̄), ρ) and (Mm

c (D̄), ρ) are
complete and separable compact metric spaces. Our goal is to find the best estimate for the location of each
target based on the observations Y by filtering methods.

This paper is organized as follows. In Section 2, we first list some fundamental theoretical results, such as the
Kallianpur-Striebel formula, the Zakai equation (cf. Zakai14) for weakly interacting multi-target systems and its
asymptotic equation. In Section 3, Markov chain approximations are studied as means to implement the filter.
In Section 4, a submarine model and observation model are described in detail. In Section 5, simulation data is
presented by calculating the mean-square errors (the distance between our filter and the signal state). Lastly, in
Section 6, conclusions are presented.

2. FILTERING EQUATIONS FOR MULTI-TARGET SYSTEMS

Let us fix a complete probability space (Ω,F , P ) on which all stochastic processes are defined.

We assume that the coefficients in (1) b : D̄ × Mf (D̄) → Rd and σ : D̄ × Mf (D̄) → Rd ⊗ Rd satisfy the
following Lipschitz conditions:
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For each x1, x2 ∈ D̄, µ1, µ2 ∈ Mf (D̄),

|b(x1, µ1) − b(x2, µ2)| ≤ K(|x1 − x2| + ρ(µ1, µ2))

and
||σ(x1, µ1) − σ(x2, µ2)|| ≤ K(|x1 − x2| + ρ(µ1, µ2))

for some constant K, where || · || denotes the matrix norm. Then from the arguments used by Kotelenez,8 the
equation (1) has a unique solution X = (X1, · · · ,Xm)T ∈ C([0, T ]; D̄m) a.s., which is an D̄m-valued Markov
process.

We define

L(µ)f(x) =
1
2

d∑

i,j=1

aij(x, µ)
∂2f(x)
∂xi∂xj

+
d∑

i=1

bi(x, µ)
∂f(x)
∂xi

, f ∈ D(L) = C2
b (D̄).

Let
D(A) = {F : F (µ) = Φ(〈f1, µ〉, · · · , 〈fn, µ〉),Φ ∈ C2

0 (Rn), f1, · · · , fn ∈ D(L), n ≥ 1},
where 〈f, µ〉 =

∫
fdµ. Then, for any F (·) = Φ(〈f1, ·〉, · · · , 〈fn, ·〉) ∈ D(A), we define

AF (µ) =
n∑

p=1

∂Φ
∂zp

〈L(µ)fp(·), µ〉

+
1
2

n∑

p,q=1

∂2Φ
∂zp∂zq

d∑

i,j=1

〈
ai,j(·, µ)

∂fp(·)
∂xi

∂fq(·)
∂xj

, µ

〉
, (3)

where Φ = Φ(z1, · · · , zn) and fp = fp(x1, · · · , xd).

An application of Itô’s formula to F (St) for F ∈ D(A) yields that

F (St) −
∫ t

0

AF (Su)du

is a martingale. Hence A is the generator of St. For a real number a, we denote by 	a
 the greatest integer not
more than a. We let FS

t = σ(Ss, 0 ≤ s ≤ t), FY
t = σ(Yti

, i = 1, · · · , 	t/ε
), and Ft = FS
t ∨ FY

t . We define the
optimal filter by

πt(F ) = E[F (St)|FY
t ], ∀F ∈ Cb(Mm

c (D̄)), (4)

which is the least mean-square estimate of F (St) given all the observations up to time t. Since the optimal
filtering process {πt} satisfies a nonliner stochastic evolution equation, we introduce a new probability measure
to get a linear stochastic equation which is much easier to solve numerically. For this, we define

ξi(µ) = exp
{ 〈h(µ), Yi〉 − 1

2 |h(µ)|2
τ2

}
, µ ∈ Mm

c (D̄),

ξ̄i = ξi − 1,

and

ηt =
�t/ε�∏

i=1

ξi(Sti
).

We define a new probability measure Q by
dQ

dP

∣∣∣∣
Ft

= η−1
t .
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Then, under Q, Yti
, i = 1, · · · , 	t/ε
 are mutually independent (0, τ2I)−Gaussian random variables which are

independent of {Ss, 0 ≤ s ≤ t}, and {Ss, 0 ≤ s ≤ t} has the same distribution as under P . Then, we have the
Kallianpur-Striebel formula

πt(F ) =
EQ[F (St)ηt|FY

t ]
EQ[ηt|FY

t ]
:=

σt(F )
σt(1)

, ∀F ∈ Cb(Mm
c (D̄)), (5)

where σt(F ) = EQ[F (St)ηt|FY
t ] is an unnormalized filter. The process σt satisfies the following weak form of

Zakai equation: for all F ∈ D(A),

σt(F ) = π0(F ) +
∫ t

0

σs(AF )ds +
�t/ε�∑

i=1

σti

(
F · ξ̄i

ξi

)
, a.s. Q. (6)

In next section, we are going to discuss Markov chain approximations to (6).

3. MARKOV CHAIN APPROXIMATIONS

The Markov chain approximation discussed in this paper is motivated by the stochastic particle models of
chemical reaction with diffusion. We refer to Kouritzin, Long and Sun9 as well as Jha, Kouritzin and Kurtz7 for
some historical comments and recent results.

Let D = (0, L1] × · · · × (0, Ld], and DN = {j = (j1, · · · , jd) ∈ Nd : 1 ≤ ji ≤ N for each 1 ≤ i ≤ d}. For
j = (j1, · · · , jd) ∈ DN , we take CN

j = ( (j1−1)L1
N , j1L1

N ] × · · · × ( (jd−1)Ld

N , jdLd

N ] and CN = {CN
j , j ∈ DN}. For

J = (J1, · · · , Jm) ∈ Dm
N satisfying Jk �= Ji for k �= i, we set

MN
J = {µ ∈ Mm

c (D);µ =
m∑

k=1

δxk
, xk ∈ CN

Jk
, k = 1, · · · ,m}.

so MN
J = MN

J ′ if J ′ = (J ′
1, · · · , J ′

m) is any permutation of J = (J1, · · · , Jm). Let [J1, · · · , Jm] denote the set of
all permutations of J1, · · · , Jm, and let

JN = {J = [J1, · · · , Jm];Jk ∈ DN , k = 1, · · · ,m, Jk �= Ji for k �= i},

then Mm
c (D) =

⋃
J∈JN

MN
J . For J = [J1, · · · , Jm] ∈ JN , Jk = (J (1)

k , · · · , J
(d)
k ) ∈ DN , k = 1, · · · ,m, let

ZN
Jk

=
(

J
(1)
k L1

N , · · · ,
J

(d)
k Ld

N

)
and νN

J =
∑m

k=1 δZN
Jk

. For 1 ≤ i ≤ d, let ei = (0, · · · , 0, 1, 0, · · · , 0) with 1 in the

i-th coordinate.

Let D0 = {F : F (µ) =
∏n

i=1〈fi, µ〉, fi ∈ D(L), i = 1, · · · , n, n ≥ 1}. For F (·) =
∏n

i=1〈fi, ·〉 ∈ D0, we have

AF (µ) =
n∑

p=1

∏

q �=p

〈fq, µ〉〈L(µ)fp(·), µ〉

+
1
2

n∑

p,q=1
p�=q

∏

k �=p,q

〈fk, µ〉
d∑

i,j=1

〈
ai,j(·, µ)

∂fp

∂xi

∂fq

∂xj
, µ

〉
.

Set D0
N = {j = (j1, · · · , jd) ∈ DN ; 2 ≤ j1, · · · , jd ≤ N − 1}. We introduce difference operators as follows:


N
i f(x) ≡ N

Li
[f(x +

Li

N
ei) − f(x)] ≈ ∂f(x)

∂xi
,

and


N
ij f(x) ≡ N2

LiLj
[f(x +

Li

N
ei) − f(x +

Li

N
ei − Lj

N
ej) − f(x) + f(x − Lj

N
ej)] ≈ ∂2f(x)

∂xi∂xj
.
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Let
〈f, µ〉N ≡

∑

j∈D0
N

f(ZN
j )µ(CN

j ) ≈ 〈f, µ〉,

where ZN
j = ( j1L1

N , · · · , jdLd

N ). Now, we define

LN (µ)f(·) =
1
2

d∑

i,j=1

aij(·, µ) 
N
ij f(·) +

d∑

i=1

bi(·, µ) 
N
i f(·) (7)

and

ANF (µ) =
n∑

p=1

∏

q �=p

〈fq, µ〉N 〈LN (µ)fp, µ〉N

+
1
2

n∑

p,q=1
p�=q

∏

k �=p,q

〈fk, µ〉N ×
d∑

i,j=1

〈aij(·, µ) 
N
i fp 
N

j fq, µ〉N (8)

We want to find numerical solution to the Zakai equation (6) by using Markov chain approximation approach.
For each J = [J1, · · · , Jm] ∈ JN , we take F (·) =

∏m
k=1〈1CN

Jk

, ·〉 to implement the algorithm. Let lN be a function
of N such that lN → ∞ as N → ∞. We set

nN
J (0) = 	lNµ0(MN

J )
 = 	lNP (S0 ∈ MN
J )
. (9)

We distribute nN
J (0) particles into cell J according to the initial distribution of the signal process. Particles in

each cell will evolve by undergoing births or deaths from observations, diffusion, and drift. Then, our Markov
chain approximation is given by

σN
t F =

∑

J∈JN

nN
J (t)
lN

F (νN
J ), ∀F ∈ D0 (10)

where 1/lN denotes the mass of each particle and nN
J (t)/lN can be considered as the concentration or density

of particles in cell J . We can prove that σN
t F converges to the solution of (6) as N → ∞. The convergence

analysis will be presented in a seperate paper.

4. SUBMARINE MODEL

4.1. Signal model

We assume that there are m targets (submarines) randomly moving in a certain ocean region. We denote by
(x, y) the location, v the velocity, and θ the orientation of each target. The motion model of the i-th target
satisfies the following SDE’s:

dxi
t = vi

tcosθ
i
tdt + σxdW x,i

t , (11)
dyi

t = vi
tsinθi

tdt + σydW y,i
t , (12)

dvi
t = (avg(v) − vi

t)dt +
√

(max(v) − vi
t)(vi

t − min(v))dW v,i
t , (13)

dθi
t =

[
f i

y(t)cos(θi
t) − f i

x(t)sin(θi
t)

]
θfdt + σθdW θ,i

t , (14)

where σx, σy, σθ and θf are constants, W x,i
t ,W y,i

t ,W v,i
t and W θ,i

t (i = 1, · · · ,m) are independent Brownian
motions, and

f i
x(t) = f i,S

x (t) + f i,A
x (t) + f i,C1

x (t) + f i,C2

x (t),

Proc. of SPIE Vol. 5429     249

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 12/13/2013 Terms of Use: http://spiedl.org/terms



provided that

f i,S
x (t) =

m∑

k=1
k �=i

Sf (xi
t − xk

t )
(xi

t − xk
t )2 + (yi

t − yk
t )2

,

f i,A
x (t) =

m∑

k=1

Af√
m

[
1 + (xi

t − xk
t )2 + (yi

t − yk
t )2

]cos(θk
t ),

f i,C1

x (t) =
C1

f√
m

· (x̄t − xi
t)√

(x̄t − xi
t)2 + (ȳt − yi

t)2,

where

x̄t =
1
m

m∑

k=1

xk
t , ȳt =

1
m

m∑

k=1

yk
t ,

f i,C2

x (t) =
max(x)

xi
t

− max(x)
max(x) − xi

t

· C2
f ,

where max(x) is the maximum value of x in the domain, Sf , Af , C1
f , and C2

f are constants.

Similarly,
f i

y(t) = f i,S
y (t) + f i,A

y (t) + f i,C1

y (t) + f i,C2

y (t),

provided that

f i,S
y (t) =

m∑

k=1
k �=i

Sf (yi
t − yk

t )
(xi

t − xk
t )2 + (yi

t − yk
t )2

,

f i,A
y (t) =

m∑

k=1

Af√
m

[
1 + (xi

t − xk
t )2 + (yi

t − yk
t )2

]sin(θk
t ),

f i,C1

y (t) =
C1

f√
m

· (ȳt − yi
t)√

(x̄t − xi
t)2 + (ȳt − yi

t)2,

and

f i,C2

y (t) =
max(y)

yi
t

− max(y)
max(y) − yi

t

· C2
f ,

This motion model characterizes the following steering behaviors of multiple targets: separation, alignment,
cohesion, and containment. Separation means that each target should steer to avoid collision with other targets.
Alignment means that all the targets should steer towards the average heading. Cohesion means that each target
should move toward to average position of all the targets. Containment is the force to keep all of our targets
inside the region.

For simplicity, we assume that x ∈ [0, 1], y ∈ [0, 1], v ∈ [min(v),max(v)], and θ ∈ [0, 2π]. We can easily
rewrite the above submarine model as in the form of SDE (1).

4.2. Observation model

We assume that there are p sonobuoys (equipped with hydrophones) deployed in the underlying ocean region to
track m targets (submarines). From the sonar contact data, we can get sensor measurements about the distance
rij from the i-th sonobuoy to the j-th target, and the counter-clockwise orientation αij of j-th target relative to
the i-th sonobuoy. For convenience, we denote by (xi

R, yi
R) the location of the i-th sonobuoy, and by (xj

tk
, yj

tk
)

the location of the j-th target at time tk. The observation model is given by:

Y i,j
k = h(xi

R, yi
R;xj

tk
, yj

tk
) + vi,j

k , i = 1, · · · , p, j = 1, 2, · · · ,m, (15)
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where h(·) = (h1(·), h2(·))T with

h1(xi
R, yi

R;xj
tk

, yj
tk

) =
√

(xi
R − xj

tk
)2 + (yi

R − yj
tk

)2,

and
h2(xi

R, yi
R;xj

tk
, yj

tk
) = tan−1

(
yj

tk
− yi

R, xj
tk

− xi
R

)
,

and vi,j
k are independent Gaussian random variables with variance τ2

r for the distance and τ2
α for the orientation.

In our simulation, we set m = 2 and p = 4.

5. SIMULATIONS

5.1. Simulation description

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0  20  40  60  80  100

E
rr

or

Simulation Time (sec)

MULTI-TARGET FILTER ERROR

FILTER ERROR

1

Figure 1. 2-target simulation with the REST filter

We ran our REST filter with a simulated signal with two submarines. Due to limited computational resources,
only 10 runs of 200 iterations were performed. For each iteration we measure the filter error. These error values
are presented in Figure. 1.

Each simulation starts at time t0 = 0 time units and progresses to t100 = 200 time units, with iterations of
0.5 time units each.

Observations have four sonabuoys and are constructed at time intervals tk+1 − tk = 0.5 time units.

The results showed that the filter effectively localized the signal fairly quickly. With further refinements we
expect the filter will be able to use a finer grid, resulting in even lower error.

5.2. Comparison method
After every observation update the filter is evaluated in terms of an estimate error value. Normally, the error of
a filter approximation would be measured with a MSE defined by:

MSE(tk) =
1

rmax

rmax∑

r=1

d(Sr
tk

, E[Sr
tk
|Y r

1 , . . . , Y r
k ])2, (16)
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where Sr, Y r
k are the signal path and observations from run number r, rmax is the total number of simulation

runs, and d is some distance function defined on the signal domain. However, in the case of multiple targets in
which the signal is a counting measure rather than a single point, and in which a distance between two counting
measures or the mean of a set of counting measures which may contain differing number of points has no usual
definition, no standard MSE calculation is possible and a different value for filter error must be defined.

We simply match each target in the signal, to the closest target in the filter estimate, and use a standard
distance function to determine the error.

6. CONCLUSIONS

In this paper, we develop a novel Markov chain approximation method for tracking weakly interacting multiple
targets. Due to interaction between targets, our signal is an infinite dimensional empirical measure-valued process
which makes the tracking very difficult. Many existing methods are inapplicable to this case. Our simulation
result shows that our new method works well even though the computation is rather intensive. In the near future,
we will try to simulate for signal model with more targets and compare computational efficiency of our method
with other recently developed methods such as refining branching paricle filter and hybrid weighted interacting
particle filter methods.
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