MOLECULAR ECOLOGY

Comparative phylogeography, genetic differentiation, and contrasting reproductive modes in three fungal symbionts of a multipartite bark beetle symbiosis

Journal:	Molecular Ecology
Manuscript ID:	MEC-10-0850.R1
Manuscript Type:	Original Article
Date Submitted by the Author:	n/a
Complete List of Authors:	Roe, Amanda; University of Alberta, Biological Sciences Rice, Adrianne; University of Alberta, Biological Sciences Coltman, David; University of Alberta, Biological Sciences Cooke, Janice; University of Alberta, Biological Sciences Sperling, Felix; University of Alberta, Biological Sciences
Keywords:	comparative phylogeography, congruence analysis, multilocus sequence typing, Dendroctonus ponderosae, Fungi, multipartite symbiosis

1 **TITLE**

- 2 Comparative phylogeography, genetic differentiation, and contrasting reproductive
- 3 modes in three fungal symbionts of a multipartite bark beetle symbiosis.
- 4
- 5 AUTHORS
- 6 Amanda D Roe¹, Adrianne V Rice¹, David W Coltman¹, J EK Cooke¹, and Felix AH
- 7 Sperling¹
- 8
- 9 ¹CW 405 Dept. Biological Sciences

Roe, Rice, Coltman, Cooke, Sperling

- 10 University of Alberta
- 11 Edmonton, AB, CANADA
- 12 T6G 2E9
- 13
- 14 Corresponding author:
- 15 Amanda D Roe
- 16 CW 405 Dept. Biological Sciences
- 17 University of Alberta
- 18 Edmonton, AB, CANADA
- 19 T6G 2E9
- 20 amandaroe5@gmail.com
- 21

22 **KEYWORDS**

- 23 comparative phylogeography, congruence analysis, multilocus sequence typing,
- 24 Dendroctonus ponderosae, fungi, multipartite symbiosis

2526 RUNNING TITLE

27 Fungal symbiont comparative phylogeography

28

29 ABSTRACT

- 30 Multipartite symbioses are complex symbiotic relationships involving multiple interacting
- 31 partners. These types of partnerships provide excellent opportunities in which to apply a
- 32 comparative approach to identify common historical patterns of population differentiation
- 33 and species-specific life history traits. Using three symbiotic blue stain fungal species
- 34 (Ophiostomatacea) associated with outbreaking populations of the mountain pine beetle
- 35 (Dendroctonus ponderosae Hopkins) in western Canada, we applied phylogenetic,
- 36 population genetic, and demographic approaches to clarify phylogeographic patterns
- among the three fungal species. Broadly, the three species showed significant
- 38 population differentiation, forming northern and southern populations, despite dramatic
- 39 differences in haplotype diversity. Finer scale structuring and population demographic
- 40 patterns were less consistent, showing some interspecific incongruence. By contrasting

2

Roe, Rice, Coltman, Cooke, Sperling Re-submission MEC-10-0850

41 these species simultaneously, we were able to identify differences in recombination rate

42 and ecological traits that can explain the observed patterns of incongruence among the

43 fungal species. By applying a comparative approach to partners of a multipartite

- 44 symbiosis we were able to distinguish congruent population structuring and species-
- 45 specific differences that help us to understand the complexity and evolution of this
- 46 symbiotic system.

μp τ

Roe, Rice, Coltman, Cooke, Sperling

Re-submission MEC-10-0850

3

47 **INTRODUCTION**

48 Zook (1998) defined symbiotic relationships as "the acquisition and maintenance of one 49 or more organisms by another that may result in novel structures and [or] metabolism". 50 Historically, symbioses have often been viewed in a pairwise manner, involving a host 51 and a single microsymbiotic partner, but recent research, aided by new molecular and 52 analytical tools (Ruby 2008), has shown that relationships are often not this simple 53 (Stanton 2003). Many symbiotic systems are complex and involve a diversity of 54 microsymbionts interacting within a single host (Klepzig et al. 2009). Multipartite 55 symbioses are well known in mammalian digestive systems (e.g. Ley et al. 2008), and in 56 recent years, have been described in insect systems, such as bark beetles (Cardoza et 57 al. 2008; Klepzig & Six 2004), fungus farming ants (Caldera et al. 2009; Currie et al. 58 2003), termites (Husseneder 2010), and aphids (Oliver et al. 2010). Multipartite 59 symbioses represent dynamic communities, where spatial, temporal, and genetic 60 variation in the community may affect host fitness. To gain a realistic understanding of 61 the interactions that occur between hosts and their symbiotic fauna, we need to examine 62 co-occurring symbionts simultaneously in natural systems (Barrett et al. 2008a; Ruby 63 2008). Comparative phylogeography and population genetic approaches can be used to 64 identify concordant patterns of genetic variation among co-distributed organisms, and 65 may help to identify common historical factors structuring this variation (Avise 2000; 66 Bermingham & Moritz 1998). A comparative phylogeographic approach has been 67 previously used in a range of organisms (e.g. Bernatchez & Wilson 1998; Bromilow & 68 Sperling 2010; Michaux et al. 2005; Qu et al. 2010; Rocha et al. 2008; Szovenyi et al. 69 2006), including macro- and microsymbiont systems (Ballard 2004; Jones et al. 2006; 70 Maia Da Silva et al. 2007; Thompson et al. 2005), but has rarely been applied to multiple 71 microsymbionts in a single host (Mikheyev et al. 2008; Noda et al. 2007). We will apply a 72 comparative approach to a multipartite bark beetle-fungal symbiosis, allowing us not only

	Roe, Rice, Coltman, Cooke, Sperling	Re-submission MEC-10-0850	4
73	to infer common historical patterns among	the symbionts, but also to identify species-	
74	specific traits that may explain ecological a	nd functional differences among the	
75	symbionts (Barrett et al. 2008a; Bleiker & S	ix 2009a).	
76			
77	A well-known host for multiple symbionts is	the mountain pine beetle (MPB,	
78	Dendroctonus ponderosae Hopkins), which	has a diverse, well studied symbiont fauna	
79	(Adams <i>et al.</i> 2008; Bleiker & Six 2009a; K	epzig & Six 2004; Lee <i>et al.</i> 2006a; Six &	
80	Klepzig 2004, M. Evenden and H. Proctor,	pers. comm.). MPB is a major pest of pines i	n
81	western North America, and is currently exp	periencing one of the largest outbreaks in	
82	recorded history (Raffa et al. 2008). The cu	rrent outbreak has seen unprecedented	
83	expansions of MPB populations into Alberta	a (Alberta Sustainable Resource	
84	Development 2009; Ono 2004; Powell 196	I), so identifying factors that could impact	
85	beetle fitness, such as fungal genetic variat	ion, is an important aspect to understanding	
86	MPB outbreaks.		
87			
88	Some of the most well known MPB fungal s	symbionts are blue-stain fungi in the family	
89	Ophiostomatacea, specifically Grosmannia	clavigera (Robinson-Jeffrey and Davidson)	
90	Zipfel, de Beer and Wingfield, Leptographic	<i>um longiclavatum</i> Lee, Kim and Breuil, and	
91	Ophiostoma montium (Rumbold) von Arx. F	Phylogenetically, G. clavigera and L.	
92	longiclavatum are closely related, belonging	g to the same teleomorph genus Grosmannia	<u>,</u>
93	while O. montium is nested within a more d	istantly related teleomorph genus	
94	Ophiostoma (Alamouti et al. 2009; Zipfel et	<i>al.</i> 2006) <u>. <i>G. clavigera</i> is considered the</u>	
95	primary fungal symbiont, with a long evolut	onary history with MPB, while O. montium is	
96	thought to be <u>a recent invader</u> (Six & Paine	1999). The relationship of the recently	
97	described <u>L. longiclavatum</u> is not known (Le	ee et al. 2005), but following Six & Paine	
98	(1999) it could also be considered a recent	invader. Each species is obligately	

	Roe, Rice, Coltman, Cooke, SperlingRe-submission MEC-10-08505
99	dependent on MPB for transport to ephemeral food sources (Six & Klepzig 2004;
100	Whitney & Farris 1970). The fungi, in turn, provide nutrition, aid in overcoming host plant
101	defenses, alteration of microclimatic conditions, and protection against antagonistic fungi
102	(Bentz & Six 2006; Raffa & Berryman 1983; Reid et al. 1967; Six & Klepzig 2004; Six &
103	Paine 1998). The fungi do not contribute equally to these different functional benefits
104	(Six & Bentz 2007; Six & Paine 1998), so shifts in fungal species abundance throughout
105	the host range could dramatically impact MPB outbreaks (Hofstetter et al. 2006).
106	
107	Shifts in intraspecific strain abundance may also be important for MPB fitness, although
108	geographically extensive surveys of fungal intraspecific variation are currently lacking.
109	Even without broad-scale genetic characterization, intra-strain variation of functional
110	traits has been documented. For example, different O. montium stains have been shown
111	to have a range of impacts on MBP fitness, being antagonistic (Six & Paine 1998).
112	weakly mutualistic (Bleiker & Six 2007; Six & Klepzig 2004), and even important
113	mutualists in the MPB system (Bleiker & Six 2007). Virulence and nutrition also vary both
114	among and within fungal species, affecting the fitness of the beetle host. G. clavigera
115	has generally been found to be more virulent than either O. monitum and L.
116	<u>longiclavatum (</u> Lee et al. 2006b; Plattner et al. 2008; Reid et al. 1967; Rice et al. 2007;
117	Solheim & Krokene 1998). Nutritionally, little is known about L. longiclavatum and
118	beetles that feed on G. clavigera are larger than those that feed on O. montium,
119	although intra-strain variation confounds generalization (Bleiker & Six 2007).
120	
121	These fungi are also known to differ in a number of important ecological characteristics.
122	First, G. clavigera and L. longiclavatum are transported almost exclusively in mycangia,
123	while O. montium has been found in mycangia and on the exoskeleton of the beetle host
124	(Bleiker et al. 2009; Six 2003). Second, these three species vary in their environmental

Re-submission MEC-10-0850

Roe, Rice, Coltman, Cooke, Sperling

125	tolerances; G. clavigera grows faster in cooler temperatures and oxygen deficient
126	tissues than O. montium, which is better adapted to warmer temperatures and tissues
127	with greater oxygen availability (Rice et al. 2008; Six & Bentz 2007; Solheim & Krokene
128	1998), although cold tolerant O. montium strains have been identified (Rice & Langor
129	2009). L. longiclavatum has similar environmental tolerances to G. clavigera, but has a
130	slower growth rate albeit with higher rates of sporulation at cooler temps (Lee et al.
131	2005, 2006b; Rice et al. 2008). Third, G. clavigera appears to be the primary colonizer,
132	isolated ahead of <i>O. montium</i> and <i>L. longiclavatum</i> in tree tissue (Bleiker & Six 2009b;
133	Kim et al. 2005), but both G. clavigera and O. montium are able to colonize previously
134	occupied substrates and have been shown to coexist and exhibit fine scale resource
135	partitioning (Bleiker & Six 2009a, b). As highlighted above, intra- and interspecific
136	variability in both functional and ecological traits clouds our understanding of the roles
137	that these fungi play within the MPB system and requires closer examination.
138	
139	Ultimately, MPB fitness is significantly improved in the presence of fungal symbionts
140	(Bleiker & Six 2007; Six & Paine 1998), and given the phenotypinc variability within and
141	among fungal species, it is important to characterize the genetic variation within each
142	fungal associate and to relate patterns of genetic diversity to this biological variation.
143	Earlier population genetic studies of <i>G. clavigera</i> (Lee et al. 2007) and MPB (Bartell et
144	<i>al.</i> 2008) show the presence of two distinct populations, a British Columbian and a
145	Rocky Mountain population (roughly corresponding to the northern and southern MPB
146	populations of Bartell et al. (2008)). Using a comparative approach, we have examined
147	the genetic diversity and geographic structuring of three MPB blue stain fungal
148	symbionts, O. montium, G. clavigera, and L. longiclavatum. Given the obligate nature of
149	the symbiosis between MPB and its fungi, we predicted that the geographic structuring
150	of the fungi would mirror that of the previous studies, with each species containing a

Re-submission MEC-10-0850

Roe, Rice, Coltman, Cooke, Sperling

151	northern and southern population. Moreover, we expected to observe congruent patterns
152	of genetic diversity and population demographics among the fungi given the putatively
153	similar biological constraints faced by the three symbionts. Characterization of
154	intraspecific population substructure is also an essential first step prior to identifying
155	patterns of adaptive variation in molecular markers or biological traits that could impact
156	MPB fitness (Pritchard et al. 2000).
157	
158	METHODS
159	Fungal isolation and multilocus sequence typing
160	Detailed descriptions of field collections and culturing of fungal isolates are available in
161	Roe et al. (2010). MPB adults, larvae and gallery wood were sampled from 42 stands of
162	lodgepole pine (Pinus contorta Douglas var. latifolia Engelmann) and three stands of
163	lodgepole x jack pine hybrids (<i>P. contorta</i> x <i>P. banksiana</i> Lamb.). Stands were grouped
164	in 12 landscapes located in British Columbia and Alberta from January 2007 – May 2008
165	(Fig. 1). Landscapes represent different ecoregions within the sampling area. Fungi were
166	cultured on malt extract agar and scored as one of three morphotypes: G. clavigera, L.
167	longiclavatum, or O. montium (Roe et al. 2010). Representative strains were deposited
168	in the University of Alberta Microfungus Collection and Herbarium (Appendix S1).
169	Following morphotyping, strains were randomly selected within stands using a random
170	number generator for single spore isolation (SSI) and multilocus sequence typing
171	(MLST). For SSI, strains morphotyped as G. clavigera or L. longiclavatum were grown
172	on malt extract agar, while O. montium morphotypes were grown on malt extract agar
173	amended with lodgepole pine shavings to encourage sporulation. Following Roe et al.
174	(2010), fungal isolates underwent DNA extraction, PCR amplification, and sequencing
175	for four or five gene regions: actin, elongation factor 1 alpha (EF1a), beta tubulin (Btub),
176	an anonymous locus (UFM), and ITS2 (partial 5.8S + internal transcribed spacer region

Re-submission MEC-10-0850

Roe, Rice, Coltman, Cooke, Sperling

8 177 2 + partial 28S). Sequence data for all five loci were previously published for G. clavigera 178 and L. longiclavatum (Roe et al. 2010, GenBank GU370130-GU370344). O. montium 179 sequence data for four loci (actin, EF1a, Btub and ITS2) were submitted to GenBank 180 (HQ413347 – HQ413650, Appendix S1). The UFM locus did not amplify for O. montium. 181 182 Phylogenetic relationships. Previously aligned sequences were obtained for G. clavigera 183 and L. longiclavatum from TreeBASE (http://www.treebase.org). Sequence data from O. 184 montium were initially aligned using Sequencher 4.8 (Gene Codes, Ann Arbor, MI) 185 followed by manual adjustments to the alignment. Unique O. montium haplotypes were 186 determined for each locus and parsimony networks were estimated using TCS 1.21 187 (Clement et al. 2000). Previously published sequence data of an O. montium strain were 188 included for Btub and ITS2 (GenBank AY194948, AY194964). Parsimony networks were 189 available for G. clavigera and L. longiclavatum from Roe et al. (2010). Following single 190 locus analysis, sequences were concatenated into multilocus data sets for each species. 191 Maximum likelihood (ML) trees were estimated for G. clavigera and L. longiclavatum 192 (Roe et al. 2010), and O. montium (present study) using RAxML v. 7.0.4 (Stamatakis 193 2006) implemented on the CIPRES portal v. 1.0 (Cyberinfrastructure for Phylogenetic 194 Research – http://phylo.org/portal/Home.do, accessed January 28, 2010). Analyses 195 were performed on the multilocus data sets using distinct models for each locus, with 196 individual partition branch length optimization. Clade support was estimated using 197 RAXML rapid bootstrapping with 1000 replicates, obtained simultaneously with the ML 198 tree search (Stamatakis et al. 2008). Previously published sequence data of a closely 199 related ophiostomatoid fungal species, O. ips (Rumbold) Nannfeldt, was used as an 200 outgroup in the O. montium analysis (GenBank AY194938, AY194951). Final alignment 201 and multilocus tree files were deposited in TreeBASE (www.treebase.org).

Roe, Rice, Coltman, Cooke, Sperling

Re-submission MEC-10-0850

203 Genetic diversity and population differentiation. Standard genetic diversity indices for 204 both the northern and southern populations, as well as the combined data sets, were 205 calculated for each species. The following were calculated using the concatenated 206 multilocus data sets in DNAsp v. 5.10.00 (Rozas et al. 2003): polymorphic sites (S), 207 number of haplotypes (h), haplotype diversity (Hd) (Nei 1987), and nucleotide diversity 208 (π) (Nei 1987). Genetic variation was examined for signatures of population 209 differentiation and substructure corresponding to previous fungal and MPB studies 210 (Bartell et al. 2008; Lee et al. 2007). Arlequin v.3.11 (Excoffier et al. 2005) was used to 211 perform a hierarchical analysis of molecular variance (AMOVA) (Excoffier et al. 1992). 212 Φ_{ST} is analogous to Fst and incorporates sequence divergence among haplotypes in 213 addition to shifts in haplotype frequency to infer genetic differentiation among 214 populations (Weir & Cockerham 1984), and the statistical significance of Φ_{ST} was 215 estimated using permutation tests (1000 replicates). 216 217 Comparative population structuring. To identify congruent patterns of population 218 structuring among the three fungal species, we compared fungal genetic distance

219 matrices using CADM (Congruence Among Distance Matrices) (Legendre & Lapointe

220 2004). Using DNAsp v. 5.10.00 we obtained pairwise landscape Φ_{ST} genetic distance

221 matrices for each species, a distance measure that incorporates both sequence

divergence and shifts in MLST haplotype frequency. Pairwise geographic distance

223 between each landscape was also included to identify potential spatial autocorrelation.

224 CADM is a generalization of a Mantel test that allows the simultaneous comparison of

225 multiple distance matrices to identify both global and *a posteriori* pairwise congruence

among matrices (Legendre & Lapointe 2004). CADM was implemented in the R

framework (R Development Core Team 2010) using the ape package v. 2.5-2 (Paradis

10

Roe, Rice, Coltman, Cooke, Sperling

Re-submission MEC-10-0850

228	et al. 2004). Initially, a global test was performed with the CADM.global function to test
229	for overall congruence among the four distance matrices. If the null hypothesis of
230	incongruence was rejected, then a posteriori pairwise CADM and one-tailed Mantel tests
231	were performed to identify which combinations of matrices were congruent. One-tailed
232	Mantel tests were based upon ranks (Spearman correlation coefficient r). A posteriori
233	pairwise CADM and complementary one-tailed Mantel tests were executed with the
234	function CADM.post. For both the global and a posteriori analyses, we used 9999
235	permutations to assess the significance of matrix congruence. For the <i>a posteriori</i> tests,
236	a Holm correction (Holm 1979) was also used to correct <i>P</i> -values for multiple testing.
237	
238	Population demographics. Population demographic patterns were examined within the
239	two populations of each fungal species. In Arlequin v. 3.11, we calculated a mismatch
240	distribution and compared this distribution to that of an expanding population which is
241	expected to be unimodal (Rogers & Harpending 1992). Fit of the observed to an
242	unimodal distribution was estimated with sum of squares deviations (SSD) and
243	Harpendings raggedness statistic (r) (Harpending 1994). We also calculated Tajima's D
244	and Fu's Fs, two tests of neutrality which are sensitive to signatures of population
245	expansion (Fu 1997; Rogers & Harpending 1992; Tajima 1989). Significance was
246	determined by comparing the observed values to a randomly generated distribution
247	(1000 permutations) assuming selective neutrality and population stationarity (Excoffier
248	et al. 2005). In an expanding population, an excess of low frequency variants is
249	expected for all loci, leading to negative Tajima's D and Fu's Fs values (Ramos-Onsins
250	& Rozas 2002; Tajima 1989).
251	

Evidence of recombination. Three methods were used to detect evidence of
recombination. First, concatenated sequence data sets were used to construct split

Roe, Rice, Coltman, Cooke, Sperling

Molecular Ecology

Re-submission MEC-10-0850

11

254 networks in SplitsTree v. 4.10 using the neighbor-net algorithm (Bryant & Moulton 2004). 255 This algorithm uses uncorrected pairwise distances to estimate relationships among 256 MLST haplotypes, using reticulations to represent incompatibilities within the data set 257 (Huson & Bryant 2006). A reticulated network provides an implicit representation of 258 evolutionary patterns, and may indicate the presence of homoplasy or recombination 259 (Huson & Bryant 2006). Second, we used the pairwise homoplasy index (Φ_w) (Bruen et 260 al. 2006), implemented in SplitsTree. The test is robust to demographic history and 261 mutation rate and relies on the premise that physically close sites will be less likely to be 262 disassociated by recombination than distant sites. Using a 100 bp window, compatibility 263 among sites was calculated and significance determined with a permutation test 264 assuming no recombination. Third, an index of association (I_A) , a test for clonality or lack of recombination, was calculated using Multilocus v.1.3b (Agapow & Burt 2001) on a 265 266 clone-corrected data set. The observed MLST haplotype distribution was compared to 267 an expected haplotype distribution generated from 1000 randomly reshuffled haplotype 268 combinations. The test assumes an infinite amount of recombination so significant 269 departure from the simulated data set suggests the presence of clonality. Clone 270 corrected data sets were obtained by removing identical MLST haplotypes at the level of 271 the stand to reduce the chances of sampling the same fungal strain multiple times. 272 273 RESULTS

- 274 Phylogeographic analyses. A total of 143 O. montium, 155 G. clavigera, and 169 L.
- 275 *longiclavatum* isolates from 45 stands in 12 landscapes were sequenced (Fig. 1). Five
- loci (actin, EF1a, Btub, UFM, and ITS2) were amplified for *G. clavigera* and *L.*
- 277 *longiclavatum*, and four loci (missing UFM) were amplified for *O. montium*. Haplotype
- 278 networks inferred from each locus are presented in Appendix S2, including <u>pruned</u>
- 279 networks for G. clavigera and L. longiclavatum which were described previously (Roe et

12

Roe, Rice, Coltman, Cooke, Sperling

Re-submission MEC-10-0850

280 al. 2010). Sequences were concatenated, creating a multilocus data set for each 281 species, from which unique MLST haplotypes were selected for ML analysis. A summary 282 of the phylogenetic data and ML model parameters for *O. montium* are presented in 283 Table 1, with similar data available for the other two species in Roe et al. (2010, Table 284 2). ML phylograms for O. montium (Fig. 2), G. clavigera and L. longiclavatum (Fig. 3) are 285 shown, in which O. montium was paraphyletic, while both G. clavigera and L. 286 longiclavatum formed monophyletic clades. ML phylograms of all three species have 287 short internal branches and longer terminal branches, with some very long branches 288 indicating highly divergent O. montium MLST haplotypes (Fig. 2, e.g. M37). Given the 289 congruence between MPB and G. clavigera population structure (Bartell et al. 2008; Lee 290 et al. 2007), we looked for similar congruence our fungal data sets. O. montium was the 291 most diverse of the three species. A total of 66 MLST haplotypes were found, with over 292 half found only in a single strain (Fig. 2). Few MLST haplotypes were shared between 293 northern and southern populations, with more shared between landscapes within the 294 populations than between populations. Based on the ML relationships, phylogenetic 295 structuring exists among O. montium haplotypes, partially corresponding to geographic 296 location, although these relationships were poorly supported (Fig. 2). Single locus data 297 showed a similar pattern (Appendix S2A), with only half of the haplotypes shared 298 between northern and southern populations, although correspondence between 299 phylogenetic relationship and geographic location was less evident. In contrast, G. 300 *clavigera* and *L. longiclavatum* (Fig. 3) had far fewer MLST haplotypes and showed little 301 correspondence between phylogenetic structuring and geographic location. In G. 302 clavigera 12 MLST haplotypes were found, seven of which were very common and 303 shared between northern and southern populations, while all but one of the remaining 304 haplotypes were only in the southern population. L. longiclavatum had six MLST 305 haplotypes, two of which were very common and were shared between northern and

Roe, Rice, Coltman, Cooke, Sperling

Re-submission MEC-10-0850

13

southern populations, with the remaining haplotypes found only in the southernpopulation.

308

309 Genetic diversity and population differentiation. Indices of genetic diversity for each 310 species, as well as for northern and southern populations within each species, are 311 provided in Table 2. O. montium had the highest overall Hd and π , followed by G. 312 *clavigera*, and then *L. longiclavatum*. All species had higher Hd in the southern 313 population. O. montium had similar levels of π in both populations, while G. clavigera 314 and L. longiclavatum both had slightly higher π in the southern population. Using 315 AMOVA we estimated population differentiation and structure for each fungal species. 316 For all three species, variation within populations accounted for the majority of the total 317 variation (Table 3). The percentage of variation among the northern and southern 318 populations ranged from 4.47% (O. montium) to 21.67% (L. longiclavatum), and all Φ_{ST} 319 values were significant (Table 3). 320 321 Comparative population structuring. With CADM we tested for congruence among three 322 fungal Φ_{ST} distance matrices and a landscape-level geographic distance matrix (Table

4). The global CADM test rejected the null model of incongruence among the matrices

324 and all *a posteriori* CADM results indicate that each matrix was congruent with at least

one other matrix. One-tailed Mantel tests showed that the Φ_{ST} distance matrices of *G*.

326 *clavigera* and *L. longiclavatum* were congruent (*P* < 0.01), suggesting similar landscape-

327 level population structuring. *L. longiclavatum* genetic distance matrix was also congruent

328 with geographic distance (P < 0.05), indicating significant spatial autocorrelation. O.

329 *montium* was incongruent with both other fungal matrices, but was congruent with

330 geographic distance (P < 0.01), indicating significant spatial autocorrelation.

Re-submission MEC-10-0850

14

332	Population demographics. Comparing several tests for population expansion, conflicting
333	population demographic patterns occurred within and between species. Following Grant
334	& Bowen (1998), <i>O. montium</i> was characterized by high Hd (>0.5) and low π (<0.5),
335	consistent with a past population bottleneck followed by rapid population expansion.
336	Mismatch distributions for both O. montium populations were multi-modal, containing
337	multiple distinct peaks (Fig. 4). The demography of the northern population was
338	significantly different from the null model of sudden expansion, while the southern
339	population was consistent with the model of a sudden expansion. Both populations had
340	a non-significant Harpendings raggedness index. In O. montium the northern population
341	had a small cluster of highly divergent pairwise differences (Fig. 4), which may
342	correspond to mismatches between divergent haplotypes (e.g. M37 or M65; Fig. 2).
343	Using the tests of neutrality, Tajima's D was significant for both northern and southern O.
344	montium populations, suggesting population expansion, while only Fu's Fs was
345	significant for the southern population. Like O. montium, G. clavigera was characterized
346	by high Hd (>0.5) and low π (<0.5), suggesting a past population bottleneck followed by
347	rapid population expansion. Mismatch distributions of both G. clavigera populations were
348	unimodal, were not significantly different from the null model of sudden expansion, and
349	had a non-significant Harpendings raggedness index (Fig. 4). In contrast, neither Fu's Fs
350	or Tajima's D were significant for populations of G. clavigera, refuting a population
351	expansion scenario. Unlike the previous species, L. longiclavatum had relatively low Hd
352	(≤0.5) and low π (<0.5), making it difficult to differentiate between a bottleneck and
353	recent population expansion, or a population bottleneck with few founders. Mismatch
354	distributions in L. longiclavatum were difficult to define due to the low Hd, particularly in
355	the northern population (only two MLST haplotypes were present). The distribution in the

Roe, Rice, Coltman, Cooke, Sperling

Re-submission MEC-10-0850

15

northern population was significantly different from the null model of sudden expansion,
although this may be due to the low Hd characterizing this population. Both populations
had non-significant Harpending's raggedness index. Like *G. clavigera*, neither test of
neutrality (Fu's Fs or Tajima's D) was significant for populations of *L. longiclavatum*.

361 Evidence for recombination. Using the concatenated data set, networks were produced 362 for each species using the neighbor-net algorithm. Each species showed a reticulate 363 topology, although the level of reticulation varied between species (Fig. 5). O. montium 364 had the most reticulation among haplotypes, followed by G. clavigera. Reticulation 365 among haplotypes within these two species occurred between internal nodes, as well as 366 between terminal branches, a pattern indicative of recombination (Rosendahl et al. 367 2009). Reticulation among *L. longiclavatum* haplotypes, on the other hand, was 368 restricted to internal nodes as expected from homoplasy. Using Φ_{w} , another metric for 369 presence of recombination, only O. montium was found to have significant evidence for 370 recombination. We should note that Φ_w has been demonstrated to be too conservative 371 when sequence diversity is low and populations are growing (Bruen et al. 2006), so it is 372 possible that this test failed to detect recombination in G. clavigera and L. longiclavatum 373 (Type II error). To further assess the presence (or lack thereof) of recombination, we 374 used I_A (Agapow & Burt 2001). Using clone-corrected data sets we examined I_A for each 375 fungal species and population, although we were unable to calculate I_A for the northern 376 L. longiclavatum population due to the low Hd. Based on I_A, we could not reject the 377 presence of recombination in *O. montium* or *L. longiclavatum*, both at the species level 378 and at the population level. In G. clavigera, I_A was significant at the species level, as well 379 as in the southern population, suggesting that the southern population, at least, shows 380 evidence for clonality.

Re-submission MEC-10-0850

16

2	0	1
3	ð	T

382 **DISCUSSION**

383	The current MPB outbreak in western Canada has been characterized by large
384	demographic and range expansions (Raffa et al. 2008). Given the obligate nature of the
385	MPB-fungal symbiosis, we had an ideal opportunity to use a comparative approach to
386	infer common historical patterns in multiple co-distributed species, test for evidence of
387	recombination that may affect the genetic diversity of each species, and to relate the
388	observed genetic diversity to biological characteristics of each species. This type of
389	comparative study is of particular value in pathogenic species (Barrett et al. 2008a) and
390	can improve our understanding of population structure and demographic processes
391	affecting these economically important organisms. Despite similar needs (e.g.
392	transportation to ephemeral food sources), these three fungi were surprisingly different,
393	even with concordant broad-scale population structuring. Comparative, simultaneous
394	comparisons of multiple co-distributed species also serves to demonstrate the level of
395	complexity observed within multipartite symbioses and should be considered for future
396	studies on multipartite symbioses.

397

398 Broad-scale population structuring was congruent across the three fungal species, with 399 each species differentiating into southern and northern populations (Table 3), similar to 400 previously observed patterns in G. clavigera (Lee et al. 2007) and MPB (Bartell et al. 401 2008). We observed higher levels of Hd in all three southern fungal populations that, as 402 suggested in Lee et al. (2007), could be evidence of earlier MPB outbreaks in western 403 Canada. Over the past 100 years, three MPB outbreaks have been recorded in this 404 region. The first two recorded outbreaks (1934-43, 1977-85) occurred in south-central 405 British Columbia and expanded into southern Alberta (Ono 2004; Powell 1961). If 406 remnant populations of MPB and fungi from these previous outbreaks persisted at

	Roe, Rice, Coltman, Cooke, SperlingRe-submission MEC-10-08501	.7
407	endemic levels in Alberta, there would have been time for the fungal lineages to	
408	differentiate. When the disjunct populations in British Columbia expanded during the	
409	current outbreak, signatures of an endemic southern Alberta population remained as	
410	suggested by our data.	
411		
412	While we did see congruent broad-scale population differentiation, when we compared	
413	these three species at <u>a finer</u> landscape-level, this congruence was less apparent. The	
414	population structuring of two species (G. clavigera and L. longiclavatum) were	
415	congruent, while O. montium was incongruent. Interestingly both L. longiclavatum and C	Э.
416	montium showed evidence of spatial autocorrelation, although no evidence was found in	n
417	G. clavigera. The extremely high levels of haplotype diversity in O. montium could	
418	explain this incongruence, while the lack of spatial autocorrelation in G.clavigera is	
419	harder to interpret. G. clavigera is often considered the primary fungal symbiont,	
420	providing the MPB greater fitness benefit than other fungal species (Bleiker & Six 2007;	I
421	Six & Paine 1998). It is possible that G. clavigera is experiencing different dispersal	
422	patterns or rates than the other two fungal species, influencing its phylogeographic	
423	patterns and creating incongruence with the other two symbionts.	
424		
425	Interestingly, neither broad nor finer scale population structuring was observed among	
426	the phylogenetic relationships of haplotypes within the fungal species. We found little	
427	phylogeographic structuring among the MLST haplotypes, and the intraspecific	
428	relationships were poorly supported. We were surprised to see little evidence for the	
429	previously detected cryptic diversity in G. clavigera (Groups 1 & 2, Lee et al. 2007). It is	
430	possible that our conserved nuclear and ribosomal markers were unable to separate	

431 these two groups, which were identified using more variable AFLP markers.

432 Alternatively, it is also possible that members of one of the two groups were not

18

Roe, Rice, Coltman, Cooke, Sperling

Re-submission MEC-10-0850

433 sampled. The relationships among our haplotypes were star-like, with short internal 434 nodes and long terminal branches (Figs. 2, 3, 5), characteristic of populations that have 435 recently undergone a rapid expansion (Excoffier et al. 2009). Given the observed 436 demographic and spatial expansion of the current MPB outbreak, it is not surprising that 437 the obligate symbiotic fungi are also experiencing similar, detectable, population 438 expansions. Moreover, these outbreaks have occurred very recently, so there may not 439 have been time for lineage sorting to result in detectable phylogenetic signal. Expanding 440 populations are expected to have an excess of rare alleles and low frequency mutations 441 with a skew towards singletons, gene trees with long terminal branches and star-like 442 topologies, negative Tajima's D and Fu's Fs, and unimodal mismatch distributions 443 (Excoffier et al. 2009; Harpending & Rogers 2000; Slatkin & Hudson 1991)). Many of 444 these genetic patterns were observed in the fungi (Figs 2, 3, 4, and Appendix 2), albeit 445 with some conflicting results. These conflicts may be due to the recent nature of the 446 current MPB population expansion, low levels of nucleotide diversity that decrease the 447 power to detect signatures of population expansion, or unrecognized cryptic species, 448 which could be giving misleading results for the tests of neutrality and confound the 449 interpretation of mismatch distributions.

450

Incongruent_genetic diversity, demographic patterns, and landscape-level population
structuring <u>could result from a number of biological differences between the three</u>
species (Figs. 2, 3, Tables 2, 3, 4). <u>First, differential recombination rates provide</u> one
possible explanation for these interspecific differences. Differences in reproductive
mode (e.g. sexual versus asexual) is known to affect a range of population
characteristics (Barrett *et al.* 2008b), such as genetic diversity (Milgroom 1996),
population growth rate (Heitman 2006), persistence (Barrett *et al.* 2007), and rate of

458 evolutionary change (McDonald & Linde 2002). Sexual reproduction or, more broadly,

Roe, Rice, Coltman, Cooke, Sperling Re-submission MEC-10-0850 459 recombination (including parasexual recombination) creates mosaic sequences and 460 provides a means of creating new genetic combinations. Fungal species show a great 461 diversity in levels of recombination, ranging from fully asexual lineages to obligate 462 outcrossers (Milgroom 1996) and detection of this process is paramount to understanding fungal evolution. 463 464 465 Among the study species, morphological evidence for recombination (sexual 466 reproduction) is uneven. Sexual states have been observed in *O. montium* (Rumbold 467 1931, A.V. Rice, K. Bleiker, unpublished), and evidence for sexual reproduction is quite 468 common in O. ips and O. pulvinisporum Zhou & Wingfield, two closely related species 469 (Zhou et al. 2007; Zhou et al. 2004). In contrast, sexual states in G. clavigera have rarely 470 been reported since they were originally described by Robinson-Jeffrey & Davidson 471 (1968), despite efforts to produce sexual states in artificial pairings (Six et al. 2003; Six & 472 Paine 1997). The anamorphic genus *Leptographium* is considered to include the asexual 473 forms of Grosmannia species (Lee et al. 2005; Zipfel et al. 2006), so it would be 474 surprising to detect recombination in members of this group, such as L. longiclavatum. 475 476 Using a neighbor-net algorithm, Φ_w , and I_A , we consistently detected evidence for 477 recombination in O. montium, while recombination in the other two species was weakly 478 supported (Table 2, Fig. 5). A species capable of recombination would be expected to 479 have higher genotypic diversity than an asexual species, and would also be expected to 480 have a high number of unique, recombinant genotypes (Barrett et al. 2008a; Burdon & 481 Roelfs 1985), similar to our observations for *O. montium*. Recombination, rather than 482 cryptic species diversity, could explain the highly divergent MLST haplotypes observed 483 in O. montium, such as ME8 in EF1a (Appendix S2). Conversely, asexual species, or 484 species where recombination is rare would have a number of common genotypes

Molecular Ecology Roe, Rice, Coltman, Cooke, Sperling Re-submission MEC-10-0850 20 485 shared between populations and few unique strains, as we observed in L. longiclavatum 486 and G. clavigera (Table 2, Fig. 5). 487 488 Asexual reproduction, or clonality, is considered a common adaptation to mutualistic 489 relationships (Wulff 1985), allowing symbiotic partners to co-evolve with optimally 490 adapted clones without the confounding force of recombination disassociating 491 successful gene combinations. However, truly asexual lineages may be prone to the 492 accumulation of deleterious alleles and may be unable to rapidly adapt to heterogeneous 493 environments (Lushai et al. 2003). Organisms with recombination, on the other hand, 494 have the advantage of purifying selection and the ability to create new gene 495 combinations allowing rapid adaptation to changing conditions. Many fungi have the 496 ability to switch between recombining and clonal reproduction (Taylor et al. 1999), 497 providing great adaptive potential. Recombination can produce highly adapted 498 genotypes, which then can increase in frequency through clonal reproduction (Barrett et 499 al. 2008a; McDonald & Linde 2002). It will be interesting to further explore patterns and 500 rates of recombination among these species, relating the differences in mode of 501 reproduction to their functional roles in the MPB-fungal symbiosis. 502 503 In addition to recombination, differences in other biological traits relating to the functional 504 roles of each fungal species could explain the observed incongruence. First, while G. 505 clavigera and L. longiclavatum are transmitted exclusively in the mycangia, O. montium 506 can be transmitted in the mycangia, as well as on the exoskeleton of the beetle host 507 (Lee et al. 2005; Six 2003). This apparent disparity in transmission efficiency could result

508 in the transmission of a greater diversity of *O. montium* strains relative to the exclusively
 509 mycangial associates. Coupled with higher rates of recombination, these dual modes of

510 <u>transportation may contribute to the maintenance of higher levels of genetic diversity in</u>

Roe, Rice, Coltman, Cooke, Sperling

Molecular Ecology

Re-submission MEC-10-0850

21

511	O. montium, creating discordance between the different fungal species. Second,
512	mycangial transport requires acquisition of fungal spores by the beetle prior to
513	emergence from the natal host (Six 2003). If the beetle is preferentially selecting spores
514	of certain fungal strains, this could dramatically influence the genetic diversity,
515	population structuring and demographic patterns of the mycangial species. Non-random
516	selection of fungal strains by the beetle would act like purifying selection on the fungal
517	populations, reducing genetic diversity particularly if the selected species are asexual or
518	have low rates of recombination. Third, G. clavigera is considered the primary symbiont
519	of the MPB (Bleiker & Six 2007; Six & Paine 1998) with a long evolutionary history with
520	this beetle host, while O. montium is a recent invader of the system (Six & Paine 1999).
521	It is possible that the long evolutionary history with MPB has resulted in a loss of genetic
522	diversity in G. clavigera, a pattern not yet observed in O. montium. On the other hand,
523	high genetic diversity as a result of recombination may have permitted the invasion and
524	persistence of <i>O. montium</i> in the MPB system.

525

526 CONCLUSION

As general understanding of the multipartite MPB-fungal symbiosis expands, it is 527 528 apparent that we have only begun to comprehend the complexity of this system. Our 529 comparative examination of three co-occurring fungal symbionts identified similar broad-530 scale population structuring, confirming the presence of northern and southern fungal 531 populations. <u>However</u>, finer scale population structuring showed surprising levels of 532 incongruence, refuting our initial hypotheses. In our results O. montium was 533 characterized by high haplotype diversity with evidence of high rates of recombination, 534 while haplotype diversity for G. clavigera, and to a greater extent L. longiclavatum, were 535 much lower and showed little to no evidence for recombination. Characterizing the 536 differences among fungal species, such as recombination rate and standing genetic

22

Roe, Rice, Coltman, Cooke, Sperling

Re-submission MEC-10-0850

537	variation, is critical to understanding fungal evolution and adaptation. This is particularly
538	true in symbiotic relationships, where the fitness and adaptability of one symbiont
539	directly affects the other. While asexuality is often viewed as beneficial in symbiotic
540	relationships, recombination creates variation that can allow rapid adaptation to
541	changing environments (Croll & Sanders 2009). This creation of novel gene
542	combinations can result in phenotypic changes, which may confer an adaptive
543	advantage to a recombinant strain (Awadalla 2003), which may in turn provide an
544	advantage to the symbiont host. Recently, Wilkinson et al. (2010) demonstrated that
545	high intraspecific diversity of an ectomycorrhizal fungus had a significant impact on its
546	contribution to ecosystem productivity and ecological function. This work serves to
547	highlight the importance of individuals within studies seeking to clarify the functional
548	roles of fungal symbionts. Similar types of phenotypic variability have been
549	demonstrated among MPB fungal symbionts, leading to conflicting results between
550	studies. Given the potential individual variability, it will be essential to take strain
551	genotype into account when designing studies that examine the functional roles of fungal
552	symbionts, as individual strains may broadly vary in their environmental tolerance,
553	nutritive value and virulence, all factors that could impact MPB fitness.
554	
555	From our study, other exciting avenues for future work have emerged. For example, how
556	does the genetic diversity of the mycangial symbionts following beetle emergence
557	compare to the community within the gallery? Does the beetle select for particular fungal
558	genotypes? Given that O. montium is transmitted both mycangially and phoretically, is
559	the genetic diversity of the mycangial strains different than those on the exoskeleton?
560	Does the observed genetic diversity and recombination rates within these symbionts
561	correlate with variation seen in other traits, such as ergosterol content (Bentz & Six
562	2006), virulence (Lee et al. 2006b; Plattner et al. 2008; Rice et al. 2007; Solheim &

Roe, Rice, Coltman, Cooke, Sperling

Molecular Ecology

Re-submission MEC-10-0850

563	Krokene 1998), and environmental tolerance (Adams & Six 2007; Bleiker & Six 2009a;
564	Rice et al. 2008)? Do different populations of MPB (e.g. northern vs. southern) have
565	differentially adapted symbionts? Ultimately, with this new understanding of genetic
566	variation within the MPB symbiont community we now have the tools to further explore
567	MPB fungal symbiont evolution and help resolve the complexities of this system.
568	
569	ACKNOWLEDGEMENTS
570	We wish to acknowledge all the TRIA field crews and laboratory technicians who
571	obtained and processed the fungal samples. We particularly wish to acknowledge the
572	contributions of several key personnel associated with the TRIA project: Dr. Patricia
573	Crane, who developed and cultured the single spore isolates; Sean Bromilow, William
574	Clark, and Sophie Dang, who extracted, optimized and collected fungal molecular data;
575	Sepideh Alamouti, Colette Breuil, Richard Hamelin, and Clement Tsui, who provided
576	support and advice throughout this project. Funding for this research has been provided
577	through grants from the Government of Alberta (AAET/AFRI-859-G07), as well as from
578	the Government of Alberta through Genome Alberta, and from the Government of British
579	Columbia through Genome BC (The TRIA Project, http://www.thetriaproject.ca) to JEKC,
580	DWC, and FAHS.

24

581 **LITERATURE CITED**

582	Adams AS, Six DL (2007) Temporal variation in mycophagy and prevalence of fungi
583	associated with developmental stages of Dendroctonus ponderosae (Coleoptera:
584	Curculionidae). Environmental Entomology 36 , 64-72.
585	Adams AS, Six DL, Adams SM, Holben WE (2008) In vitro interactions between yeasts
586	and bacteria and the fungal symbionts of the mountain pine beetle
587	(Dendroctonus ponderosae). Microbial Ecology 56, 460-466.
588	Agapow PM, Burt A (2001) Indices of multilocus linkage disequilibrium. Molecular
589	Ecology Notes 1, 101-102.
590	Alamouti SM, Tsui CK, Breuil C (2009) Multigene phylogeny of filamentous ambrosia
591	fungi associated with ambrosia and bark beetles. Mycological Research 113,
592	822-835.
593	Alberta Sustainable Resource Development (2009) 2008 Annual Report Forest Health in
594	Alberta, p. 44.
595	Avise JC (2000) Phylogeography: The history and formation of species Harvard
596	University Press, Cambridge, MA.
597	Awadalla P (2003) The evolutionary genomics of pathogen recombination. Nature
598	Reviews Genetics 4, 50-60.
599	Ballard JW (2004) Sequential evolution of a symbiont inferred from the host: Wolbachia
600	and Drosophila simulans. Molecular Biology and Evolution 21, 428-442.
601	Barrett LG, Thrall PH, Burdon JJ (2007) Evolutionary diversification through hybridization
602	in a wild host-pathogen interaction. Evolution 61, 1613-1621.
603	Barrett LG, Thrall PH, Burdon JJ, Linde CC (2008a) Life history determines genetic
604	structure and evolutionary potential of host-parasite interactions. Trends in
605	Ecology & Evolution 23, 678-685.
606	Barrett LG, Thrall PH, Burdon JJ, Nicotra AB, Linde CC (2008b) Population structure
607	and diversity in sexual and asexual populations of the pathogenic fungus
608	Melampsora lini. Molecular Ecology 17, 3401-3415.
609	Bartell NV, Lindgren B, Cooke JEK, et al. (2008) Using genetic analyses to infer
610	mountain pine beetle population structure and dispersal patterns in British
611	Columbia and Alberta. 9, 140-142.
612	Bentz BJ, Six DL (2006) Ergosterol content of fungi associated with Dendroctonus
613	ponderosae and Dendroctonus rufipennis (Coleoptera: Curculionidae,
614	Scolytinae). Annals of the Entomological Society of America 99, 189-194.
615	Bermingham E, Moritz C (1998) Comparative phylogeography: concepts and
616	applications. Molecular Ecology 7, 367-369.
617	Bernatchez L, Wilson C (1998) Comparative phylogeography of Nearctic and Palearctic
618	fishes. <i>Molecular Ecology</i> 7 , 431-452.
619	Bleiker KP, Potter SE, Lauzon CR, Six DL (2009) Transport of fungal symbionts by
620	mountain pine beetles. The Canadian Entomologist 141, 503-514.
621	Bleiker KP, Six DL (2007) Dietary benefits of fungal associates to an eruptive herbivore:
622	potential implications of multiple associates on host population dynamics.
623	Environmental Entomology 36 , 1384-1396.
624	Bleiker KP, Six DL (2009a) Competition and coexistence in a multi-partner mutualism:
625	interactions between two fungal symbionts of the mountain pine beetle in beetle-
626	attacked trees. <i>Microbial Ecology</i> 57, 191-202.
627	Bleiker KP, Six DL (2009b) Effects of water potential and solute on the growth and
628	interactions of two fungal symbionts of the mountain pine beetle. Mycological
629	<i>Research</i> 113 , 3-15.

630	Bromilow S, Sperling F (2010) Phylogeographic signal variation in mitochondrial DNA
631	among geographically isolated grassland butterflies. Journal of Biogeography In
632	press.
633	Bruen TC, Philippe H, Bryant D (2006) A simple and robust statistical test for detecting
634	the presence of recombination. <i>Genetics</i> 172 , 2665-2681.
635	Bryant D, Moulton V (2004) Neighbor-net: an agglomerative method for the construction
636	of phylogenetic networks. <i>Molecular Biology and Evolution</i> 21 , 255-265.
637	Burdon JJ, Roelfs AP (1985) Isozyme and virulence in asexually reproducing
638	populations of Puccinia graminis and Puccinia recondita on wheat
639	Phytopathology 75 , 907-913.
640	Caldera EJ, Poulsen M, Suen G, Currie CR (2009) Insect symbioses: a case study of
641	past, present, and future fungus-growing ant research. Environmental
642	Entomology 38 , 78-92.
643	Cardoza YJ, Moser JC, Klepzig KD, Raffa KF (2008) Multipartite symbioses among
644	fungi, mites, nematodes, and the spruce beetle, Dendroctonus rufipennis.
645	Environmental Entomology 37, 956-963.
646	Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene
647	genealogies. Molecular Ecology 9, 1657-1659.
648	Croll D, Sanders IR (2009) Recombination in <i>Glomus intraradices</i> , a supposed ancient
649	asexual arbuscular mycorrhizal fungus. BMC Evolutionary Biology 9, 13.
650	Currie CR, Wong B, Stuart AE, et al. (2003) Ancient tripartite coevolution in the attine
651	ant-microbe symbiosis. Science 299, 386-388.
652	Excoffier L, Foll M, Petit RJ (2009) Genetic consequences of range expansions. Annual
653	Review of Ecology Evolution and Systematics 40, 481-501.
654	Excoffier L. Laval G. Schneider S (2005) Arlequin (version 3.0): An integrated software
655	package for population genetics data analysis. Evolutionary Bioinformatics
656	Online 1, 47-50.
657	Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from
658	metric distances among DNA haplotypes: application to human mitochondrial
659	DNA restriction data. <i>Genetics</i> 131 , 479-491.
660	Fu YX (1997) Statistical tests of neutrality of mutations against population growth.
661	hitchhiking and background selection. <i>Genetics</i> 147 , 915-925.
662	Grant WS. Bowen BW (1998) Shallow population histories in deep evolutionary lineages
663	of marine fishes: Insights from sardines and anchovies and lessons for
664	conservation. Journal of Heredity 89, 415-426.
665	Harpending H. Rogers A (2000) Genetic perspectives on human origins and
666	differentiation. Annual Review of Genomics and Human Genetics 1, 361-385.
667	Harpending HC (1994) Signature of ancient population growth in a low-resolution
668	mitochondrial DNA mismatch distribution. <i>Human Biology</i> 66 . 591-600.
669	Heitman J (2006) Sexual reproduction and the evolution of microbial pathogens. <i>Current</i>
670	<i>Biology</i> 16 . R711-725.
671	Hofstetter RW. Cronin JT. Klepzig KD. Moser JC. Avres MP (2006) Antagonisms.
672	mutualisms and commensalisms affect outbreak dynamics of the southern pine
673	beetle. <i>Oecologia</i> 147 . 679-691.
674	Holm S (1979) A simple sequentially rejective multiple tests procedure. Scandinavian
675	Journal of Statistics 6, 65-70.
676	Huson DH. Brvant D (2006) Application of phylogenetic networks in evolutionary studies
677	Molecular Biology and Evolution 23 , 254-267.
678	Husseneder C (2010) Symbiosis in subterranean termites: a review of insights from
679	molecular studies. Environmental Entomology 39, 378-388.

680	Jones BW, Lopez JE, Huttenburg J, Nishiguchi MK (2006) Population structure between
681	environmentally transmitted vibrios and bobtail squids using nested clade
682	analysis. <i>Molecular Ecology</i> 15 , 4317-4329.
683	Kim JJ, Allen JA, Humble L, Breuil C (2005) Ophiostomoid and basidiomycetous fungi
684	associated with green, red, and grey lodgepole pines after mountain pine beetle
685	(Dendroctonus ponderosae) infestation. Canadian Journal of Forest Research
686	35 , 274-284.
687	Klepzig KD, Adams AS, Handelsman J, Raffa KF (2009) Symbioses: a key driver of
688	insect physiological processes, ecological interactions, evolutionary
689	diversification, and impacts on humans. Environmental Entomology 38, 67-77.
690	Klepzig KD, Six DL (2004) Bark beetle-fungal symbiosis: Context dependency in
691	complex associations. Symbiosis 37, 189-205.
692	Lee S. Hamelin RC. Six DL. Breuil C (2007) Genetic diversity and the presence of two
693	distinct groups in Ophiostoma clavigerum associated with Dendroctonus
694	ponderosae in British Columbia and the northern rocky mountains
695	Phytopathology 97 1177-1185
696	Lee S. Kim JJ. Breuil C (2005) Leptographium longiclavatum sp nov., a new species
697	associated with the mountain pine beetle. <i>Dendroctonus ponderosae</i>
698	Mycological Research 109 1162-1170
699	Lee S. Kim J.J. Breuil C (2006a) Diversity of fungi associated with the mountain pine
700	beetle. Dendroctonus ponderosae and infested lodgenole pines in British
701	Columbia <i>Fungal Diversity</i> 22, 91-105
702	Lee S Kim J.I. Breuil C (2006b) Pathogenicity of Leptographium longiclavatum
703	associated with Dendroctonus ponderosae to Pinus contorta. Canadian Journal
704	of Forest Research 36, 2864-2872
705	Legendre P Lapointe E (2004) Assessing congruence among distance matrices: Single-
706	malt Scotch whiskies revisited Australian & New Zealand Journal of Statistics
700	46 615-629
708	Lev BE Lozupone CA Hamady M Knight B Gordon II (2008) Worlds within worlds:
700	evolution of the vertebrate out microbiota Nature Reviews Microbiology 6 776-
710	
711	Lushai G. Loydale HD. Allen, IA (2003) The dynamic clonal genome and its adaptive
712	notential <i>Biological</i> Journal of the Linnean Society 79 , 193-208
712	Maia Da Silva E Junqueira AC Campaner M <i>et al.</i> (2007) Comparative phylogeography
714	of Trypanosoma rangeli and Bhodnius (Hemintera: Beduviidae) supports a long
715	coexistence of parasite lineages and their sympatric vectors. Molecular Ecology
716	16 3361-3373
717	McDonald BA Linde C (2002) Pathogen population genetics evolutionary potential and
718	durable resistance Annual Review of Phytopathology 40 349-379
710	Michaux IB Libois B. Filippucci MG (2005) So close and so different: comparative
720	nhylogeography of two small mammal species, the vellow-necked fieldmouse
720	(Anodemus flavicallis) and the woodmouse (Anodemus sylvaticus) in the
721	Wostern Palearetic region Heredity 04, 52-63
722	Mikhovov AS, Vo T, Muollor LIG (2008) Phylogoography of post-Ploistocopo population
723	ovpansion in a fungue gardoning ant and its microbial mutualists. Molocular
725	Ecology 17 4480-4488
726	Mildroom MG (1996) Recombination and the multiloous structure of funcal populations
720	Annual Review of Phytonathology 34 457-477
728	Nei M (1987) Molecular Evolutionary Genetice Columbia University Press New Vork
120	The Wight of providence and the second of th

729	Noda S, Kitade O, Inoue T, et al. (2007) Cospeciation in the triplex symbiosis of termite
730	gut protists (<i>Pseudotrichonympha</i> spp.), their hosts, and their bacterial
731	endosymbionts. <i>Molecular Ecology</i> 16 , 1257-1266.
732	Oliver KM, Degnan PH, Burke GR, Moran NA (2010) Facultative symbionts in aphids
733	and the horizontal transfer of ecologically important traits. Annual Review of
734	Entomology 55, 247-266.
735	Ono H (2004) The mountain pine beetle: scope of the problem and key issues in Alberta.
736	In: Mountain Pine Beetle Symposium: challenges and solutions eds. Shore TL,
737	Brooks JE, Stone JE), p. 298. Natural Resources Canada, Canadian Forest
738	Service, Pacific Forestry Centre, Victoria, BC.
739	Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in
740	R language. Bioinformatics 20, 289-290.
741	Plattner A, Kim JJ, DiGuistini S, Breuil C (2008) Variation in pathogenicity of a mountain
742	pine beetle-associated blue-stain fungus, Grosmannia clavigera, on young
743	lodgepole pine in British Columbia. Canadian Journal of Plant Pathology 30, 457-
744	466.
745	Powell JM (1961) The mountain pine beetle, <i>Dendroctonus monticolae</i> Hopk. in western
746	Canada, p. 42. Canada Department of Forestry, Forest Entomology and
747	Pathology Laboratory, Calgary, AB.
748	Pritchard JK, Stephens M, Rosenberg NA, Donnelly P (2000) Association mapping in
749	structured populations. American Journal of Human Genetics 67, 170-181.
750	Qu Y, Lei F, Zhang R, Lu X (2010) Comparative phylogeography of five avian species:
751	implications for Pleistocene evolutionary history in the Qinghai-Tibetan plateau.
752	Molecular Ecology 19, 338-351.
753	R Development Core Team (2010) R: A language and environment for statistical
754	computing. R Foundation for Statistical Computing, Vienna, Austria.
755	Raffa KF, Aukema BH, Bentz BJ, et al. (2008) Cross-scale drivers of natural
756	disturbances prone to anthropogenic amplification: The dynamics of bark beetle
757	eruptions. <i>Bioscience</i> 58, 501-517.
758	Raffa KF, Berryman AA (1983) Physiological aspects of lodgepole pine wound response
759	to a fungal symbiont of the mountain pine beetle. Canadian Entomologist 115 ,
760	723-734.
761	Ramos-Onsins SE, Rozas J (2002) Statistical properties of new neutrality tests against
762	population growth. <i>Molecular Biology and Evolution</i> 19 , 2092-2100.
763	Reid RW, Whitney HS, Watson JA (1967) Reactions of lodgepole pine to attack by
764	Dendroctonus ponderosae Hopkins and blue stain fungi. Canadian Journal of
765	Botany 40, 609-614.
766	Rice A, Langor D (2009) Mountain pine beetle-associated blue-stain fungi in lodgepole x
/6/	jack pine hybrids near Grande Prairie, Alberta (Ganada). Forest Pathology 39,
768	323-334.
/69	Rice AV, Thormann MN, Langor DW (2007) Virulence of, and interactions among,
//0	mountain pine beetle associated blue-stain fungi on two pine species and their
//1	nybrids in Alberta. Canadian Journal of Botany 85, 316-323.
112	Rice AV, Thormann MiN, Langor DW (2008) Mountain pine beetle-associated blue-stain
113	iungi are unterentially adapted to poreal temperatures. Forest Pathology 38, 113-
//4 775	IZU. Pahingan Jaffary PC, Davidean DW (1969) Three new Europhium aposiae with
775 776	Verticicle dielle imperfect states on blue-stained ning. Canadian Journal of Potenty
770	A_{6} 1523-1527
, , ,	$\tau \mathbf{v}, \tau \mathbf{v} \in \mathcal{V}$

778 779	Rocha LA, Rocha CR, Robertson DR, Bowen BW (2008) Comparative phylogeography of Atlantic reef fishes indicates both origin and accumulation of diversity in the
780	Caribbean. BMC Evolutionary Biology 8, 157.
781	Roe AD, Rice AV, Bromilow SE, Cooke JEK, Sperling FAH (2010) Multilocus species
782	identification and fungal DNA barcoding: insights from blue stain fungal
783	symbionts of the mountain pine beetle. <i>Molecular Ecology Resources</i> 10 , 946-
784	959.
785	Rogers AR, Harpending H (1992) Population growth makes waves in the distribution of
786	pairwise genetic differences. <i>Molecular Biology and Evolution</i> 9 , 552-569.
787	Rosendahl S. McGee P. Morton JB (2009) Lack of global population genetic
788	differentiation in the arbuscular mycorrhizal fungus Glomus mosseae suggests a
789	recent range expansion which may have coincided with the spread of agriculture.
790	Molecular Ecology 18, 4316-4329
791	Bozas J. Sanchez-DelBarrio JC. Messequer X. Bozas B (2003) DnaSP. DNA
792	polymorphism analyses by the coalescent and other methods. <i>Bioinformatics</i> 19
793	
704	Ruby EG (2008) Symbiotic convorcations are revealed under genetic interregation
705	Nature Reviews Microbiology 6, 752-762
706	Rumbold C (1931) Two blue-staining functions associated with bark bootle infectation of
790	ninon Journal of Agricultural Pacagraph 13 , 947, 974
709	Six DL (2002) A comparison of mycongial and pharatic fungi of individual mountain pine
790	Six DL (2003) A comparison of mycangial and photelic fungi of molividual mountain pine
799 800	Siv DL Bontz B L (2007) Temperature determines symbiant abundance in a multipartite
800 801	Six DL, Beniz BJ (2007) Temperature determines Symptom abundance in a multipartite
801	Six DL Harrington TC, Chaimed L MaNay D, Daine TD (2002) Canadia relationshing
802 802	Six DL, Harnington TC, Steinfel J, Michew D, Paine TD (2003) Genetic relationships
80 <i>5</i> 80 <i>4</i>	Among Leptographium terebrantis and the mycangial lungi of three western Dendrostanus bork bostlos, Muselegia 05, 791, 702
804 805	Six DL Klanzia KD (2004) Dendrectanus bark beetles as model evoteme for studios en
805	Six DL, Kiepzig KD (2004) Dendrocionus bark beeties as model systems for studies on
800	Symple Daine TD (1007) Ophicatoma alguigary is the mycanolial fungue of the leftron
807	Six DL, Paine TD (1997) Ophiosiona clavigerun is the mycangial lungus of the Jenney
808	pine beene, Denarocionus jenneyi. Mycologia 69 , 656-666.
009	Six DL, Paine TD (1996) Effects of mycangial lungi and host free species of progeny
810 011	Survival and emergence of <i>Dendroctorius ponderosae</i> (Coleoptera: Scolytidae).
ð11 012	Environmental Entomology 21, 1393-1401.
812 912	Six DL, Paine TD (1999) Phylogenetic companison of ascomycete mycangiai lungi and
813 014	Enterpological Casiaty of America 20 , 150, 100
814 015	Entomological Society of America 92, 159-166.
813 916	Statkin M, Hudson RR (1991) Pairwise companisons of millochononal DNA sequences in
810 017	stable and exponentially growing populations. <i>Genetics</i> 129 , 555-562.
81/	Solneim H, Krokene P (1998) Growth and Virulence of mountain pine beetle associated
818	blue-stain fungi, Opniostoma clavigerum and Opniostoma montium. Canadian
819	Journal of Botany /b , 561-566.
820	Stamatakis A (2006) RAXIVIL-VI-HPC: maximum likelinood-based phylogenetic analyses
821	with thousands of taxa and mixed models. <i>Bioinformatics</i> 22, 2688-2690.
822	Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAXIVIL
823	web servers. Systematic Biology 51, /58-//1.
824	Stanton IVIL (2003) Interacting guilds: moving beyond the pairwise perspective on
825	mutualisms. <i>The American Naturalist</i> 162 , S10-23.
826	Szovenyi P, HOCK Z, Urmi E, Schneller JJ (2006) Contrasting phylogeographic patterns
827	in Spnagnum timpriatum and Sphagnum squarrosum (Bryophyta, Sphagnopsida)
828	in ⊨urope. <i>The ivew Phytologist</i> 172 , 784-794.

- Taylor J, Jacobson D, Fisher M (1999) The evolution of asexual fungi: reproduction, speciation and classification. *Annual Review of Phytopathology* **37**, 197-246.
- Thompson AR, Thacker CE, Shaw EY (2005) Phylogeography of marine mutualists:
 parallel patterns of genetic structure between obligate goby and shrimp partners.
 Molecular Ecology 14, 3557-3572.
- Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. *Evolution* **38**, 1358-1370.
- Whitney HS, Farris SH (1970) Maxillary mycangium in the mountain pine beetle. *Science* 167, 54-55.
- Wilkinson A, Solan M, Taylor A, Alexander I, Johnson D (2010) Intraspecific diversity
 regulates fungal productivity and respiration. *PLoS One* 5, e12604.
- Wulff JL (1985) Clonal organisms and the evolution of mutualism. In: *Population biology and evolution of clonal organisms* (eds. Jackson JBC, Buss LW, Cook RE), pp.
 437-466. Yale University Press, New Haven, CT.
- Zhou X, Burgess TI, de Beer ZW, et al. (2007) High intercontinental migration rates and
 population admixture in the sapstain fungus *Ophiostoma ips. Molecular Ecology* 16, 89-99.
- Zhou X, de Beer ZW, Cibrian D, Wingfield BD, Wingfield MJ (2004) Characterization of
 Ophiostoma species associated with pine bark beetles from Mexico, including *O*.
 pulvinisporum sp. nov. *Mycological Research* 108, 690-698.
- Zipfel RD, de Beer ZW, Jacobs K, Wingfield BD, Wingfield MJ (2006) Multi-gene
 phylogenies define *Ceratocystiopsis* and *Grosmannia* distinct from *Ophiostoma*.
 Studies in Mycology 55, 75-97.
- Zook DP (1998) A new symbiosis language. *Symbiosis News* **1**, 1-3.
- 855 856

Table 1: Parameters for individual loci and the concatenated multilocus maximum likelihood analysis of *O. montium* sequence data. A partitioned ML analysis was employed, and character information is presented for each locus partition. Ingroup character information includes the representative sequence data obtained from GenBank.

	actin	EF1a	Btub	ITS2	Combined ^a
# haplotypes ^b	6	9	17	7	66
# sites	702	568	632	918	2820
# constant char. ^b	693	541	597	907	2738
# variable char. (uninformative) ^b	0	8	5	0	13
${\#}_{b}$ pars. inform. char.	9	19	30	11	69
% informative ^b	1.28%	3.34%	4.75%	1.20%	2.44%
Base freq. ^c					
A	0.1920	0.2041	0.1811	0.2090	-
С	0.2924	0.3220	0.3235	0.2852	-
G	0.3220	0.2076	0.2745	0.3108	-
Т	0.1935	0.2662	0.2208	0.1949	-
Rate Matrix ^c					
A-C	1.1732	2.8713	1.9422	1.6953	-
A-G	16.4090	1.4441	5.8509	3.9262	-
A-T	2.0000E-5	1.6941	3.7643	2.6116	-
C-G	6.4245	0.8930	2.0085	2.0000E-5	-
C-T	1.1050	8.0788	7.5822	23.1454	-
G-T	1.0000	1.0000 🧹	1.0000	1.0000	-
Г (alpha) ^с	0.02000	0.02000	0.02000	0.02000	

^a GTR+ Γ ML model ; -In = -5114.4; ∞ gaps/missing = 0.06755 ^b ingroup only ^c partitioned

	Gene	etic D	Divers	sity Indices		Tests of	Neutrality	Recombination	
	n	S	h	Hd (SD)	π (SD)	Fs	D	I _A	Φ_{w}
O. montium									
North	80	56	29	0.93(0.014)	0.0019(0.00045)	-6.22 ns	-1.86**	0.088 ns	-
South	63	42	43	0.98(0.0060)	0.0019(0.00021)	-25.26***	-1.41*	-0.094 ns	-
Total	143	76	66	0.97(0.0070)	0.0020(0.00027)	-	-1.96*	-0.051 ns	**
G. clavigera									
North	79	5	8	0.74(0.040)	0.00045(0.000040)	-0.51 ns	0.75 ns	0.018 ns	-
South	76	6	11	0.82(0.023)	0.00046(0.000040)	-3.23 ns	0.37 ns	0.24***	-
Total	155	6	12	0.81(0.021)	0.00049(0.000030)	-	0.73 ns	0.12**	ns
L. longiclavatum									
North	122	1	2	0.41(0.036)	0.00015(0.000010)	5.73 ns	1.30 ns	_ ^a	-
South	47	4	6	0.57(0.068)	0.00026(0.000320)	0.72 ns	-0.38 ns	0.13 ns	-
Total	169	4	6	0.52(0.022)	0.00021(0.000020)	-	-0.33 ns	0.057 ns	ns

Table 2: Genetic diversity and recombination indices for populations of O. montium, G. clavigera, and L. longiclavatum.

n, number of strains; S, segregating sites; h, number of haplotypes; Hd, haplotype diversity; SD, standard deviation; Pi, nucleotide diversity; Fs, Fu's Fs; D, Tajima's D; I_A, Index of association; Φ_w , pairwise homoplasy index. * $P \le 0.05$; ** $P \le 0.01$; *** $P \le 0.001$; ns: not significant.

^aLack of genetic variability prevents calculation

	d.f.	SSD	Var.	% Var.	Φ_{ST}
O. montium					
Among N, S pops.	1	14.092	0.16***	4.47	0.045***
Within N-S pops.	137	462.43	3.38	95.53	
G. clavigera					
Among N, S pops.	1	5.058	0.055***	6.52	0.065***
Within N-S pops.	152	120.76	0.79	93.48	
L. longiclavatum					
Among N, S pops.	1	13.46	0.19***	21.67	0.22^{***}
Within N-S pops.	166	114.70	0.69	78.33	
1.1.1.1. D 0.0001					

Table 3: Analysis of molecular variance for northern and southern populations of MPB associated fungi.

***P<0.0001

.

<u>9</u> .guares de d.f., degrees of freedom; SSD, sum of squares deviation; Var., components of variance; % Var., percent of variance.

Table 4: Congruence among pairwise Φ_{ST} values calculated from concatenated MLST sequence data of three fungal species and geographic distance among landscapes. Tests were calculated using CADM in the ape package implemented in the R framework.

Global congruence Kendall's W : Friedman's χ^2 :	H ₀ : matrices are incongruent 0.4612 119.8787***				
A posteriori pairwise congruence	H ₀ : matrix is inc H ₁ : matrix is cor <i>P</i> -value	ongruent with remain ngruent with at least c adjusted <i>P</i> -value ^a	ing matrices one other matrix	x	
G. clavigera	*	*			
L. longiclavatum	**	*			
O. montium	**	*			
Geographic distance	** H ₀ : <i>r</i> = 0: H ₁ : <i>r</i> >	**			
	•••••••••••••••••••••••••••••••••••••••			Geographic	
	G. clavigera	L. longiclavatum	O. montium	distance	
G. clavigera	1.0000	0.4208**	0.1901ns	0.1496ns	
L. longiclavatum		1.0000	0.1469ns	0.3661*	
O. montium			1.0000	0.4151**	
Geographic distance				1.0000	
* <i>P</i> ≤ 0.05; ** <i>P</i> ≤0.01; *** <i>P</i> ≤0.001; ns: no	t significant				
"Holm adjustment for multiple tests					

(www.mpb.alberta.ca/Files/MPB-AerialOverview-2009.pdf, accessed 06-05-10).

Figure 2. Maximum likelihood phylogram for the O. montium concatenated multilocus data set of four independent loci (actin, EF1a, Btub, ITS2). Thickened branches indicate clade support greater than 80%. For each haplotype, population assignment (north, south, or shared) and landscape of origin is shown.

Figure 3. Maximum likelihood phylograms for the *G. clavigera* and *L. longiclavatum* concatenated multilocus data sets of five independent loci (actin, EF1a, Btub, UFM, ITS2). Thickened branches indicate clade support greater than 80%. For each haplotype, population assignment (north, south, or shared) and landscape of origin is shown. Phylograms were adapted from Roe *et al.* 2010.

Figure 4. Mismatch distributions for nothern and southern populations of three mountain pine beetle fungal symbionts. Bars indicate the observed mismatch difference between haplotypes and the lines represent the expected distribution under a sudden population expansion model. Deviations from the expected distribution are assessed with sums of squares deviation (SSD) and Harpendings raggedness index (r) (Harpending 1994). Measures of significance as in Table 2.

