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ABSTRACT 29 

Multipartite symbioses are complex symbiotic relationships involving multiple interacting 30 

partners. These types of partnerships provide excellent opportunities in which to apply a 31 

comparative approach to identify common historical patterns of population differentiation 32 

and species-specific life history traits. Using three symbiotic blue stain fungal species 33 

(Ophiostomatacea) associated with outbreaking populations of the mountain pine beetle 34 

(Dendroctonus ponderosae Hopkins) in western Canada, we applied phylogenetic, 35 

population genetic, and demographic approaches to clarify phylogeographic patterns 36 

among the three fungal species. Broadly, the three species showed significant 37 

population differentiation, forming northern and southern populations, despite dramatic 38 

differences in haplotype diversity. Finer scale structuring and population demographic 39 

patterns were less consistent, showing some interspecific incongruence. By contrasting 40 
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these species simultaneously, we were able to identify differences in recombination rate 41 

and ecological traits that can explain the observed patterns of incongruence among the 42 

fungal species. By applying a comparative approach to partners of a multipartite 43 

symbiosis we were able to distinguish congruent population structuring and species-44 

specific differences that help us to understand the complexity and evolution of this 45 

symbiotic system. 46 
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INTRODUCTION 47 

Zook (1998) defined symbiotic relationships as “the acquisition and maintenance of one 48 

or more organisms by another that may result in novel structures and [or] metabolism”. 49 

Historically, symbioses have often been viewed in a pairwise manner, involving a host 50 

and a single microsymbiotic partner, but recent research, aided by new molecular and 51 

analytical tools (Ruby 2008), has shown that relationships are often not this simple 52 

(Stanton 2003). Many symbiotic systems are complex and involve a diversity of 53 

microsymbionts interacting within a single host (Klepzig et al. 2009). Multipartite 54 

symbioses are well known in mammalian digestive systems (e.g. Ley et al. 2008), and in 55 

recent years, have been described in insect systems, such as bark beetles (Cardoza et 56 

al. 2008; Klepzig & Six 2004), fungus farming ants (Caldera et al. 2009; Currie et al. 57 

2003), termites (Husseneder 2010), and aphids (Oliver et al. 2010). Multipartite 58 

symbioses represent dynamic communities, where spatial, temporal, and genetic 59 

variation in the community may affect host fitness.  To gain a realistic understanding of 60 

the interactions that occur between hosts and their symbiotic fauna, we need to examine 61 

co-occurring symbionts simultaneously in natural systems (Barrett et al. 2008a; Ruby 62 

2008). Comparative phylogeography and population genetic approaches can be used to 63 

identify concordant patterns of genetic variation among co-distributed organisms, and 64 

may help to identify common historical factors structuring this variation (Avise 2000; 65 

Bermingham & Moritz 1998). A comparative phylogeographic approach has been 66 

previously used in a range of organisms (e.g. Bernatchez & Wilson 1998; Bromilow & 67 

Sperling 2010; Michaux et al. 2005; Qu et al. 2010; Rocha et al. 2008; Szovenyi et al. 68 

2006), including macro- and microsymbiont systems (Ballard 2004; Jones et al. 2006; 69 

Maia Da Silva et al. 2007; Thompson et al. 2005), but has rarely been applied to multiple 70 

microsymbionts in a single host (Mikheyev et al. 2008; Noda et al. 2007). We will apply a 71 

comparative approach to a multipartite bark beetle-fungal symbiosis, allowing us not only 72 
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to infer common historical patterns among the symbionts, but also to identify species-73 

specific traits that may explain ecological and functional differences among the 74 

symbionts (Barrett et al. 2008a; Bleiker & Six 2009a).  75 

 76 

A well-known host for multiple symbionts is the mountain pine beetle (MPB, 77 

Dendroctonus ponderosae Hopkins), which has a diverse, well studied symbiont fauna 78 

(Adams et al. 2008; Bleiker & Six 2009a; Klepzig & Six 2004; Lee et al. 2006a; Six & 79 

Klepzig 2004, M. Evenden and H. Proctor, pers. comm.). MPB is a major pest of pines in 80 

western North America, and is currently experiencing one of the largest outbreaks in 81 

recorded history (Raffa et al. 2008). The current outbreak has seen unprecedented 82 

expansions of MPB populations into Alberta (Alberta Sustainable Resource 83 

Development 2009; Ono 2004; Powell 1961), so identifying factors that could impact 84 

beetle fitness, such as fungal genetic variation, is an important aspect to understanding 85 

MPB outbreaks.  86 

 87 

Some of the most well known MPB fungal symbionts are blue-stain fungi in the family 88 

Ophiostomatacea, specifically Grosmannia clavigera (Robinson-Jeffrey and Davidson) 89 

Zipfel, de Beer and Wingfield, Leptographium longiclavatum Lee, Kim and Breuil, and 90 

Ophiostoma montium (Rumbold) von Arx. Phylogenetically, G. clavigera and L. 91 

longiclavatum are closely related, belonging to the same teleomorph genus Grosmannia, 92 

while O. montium is nested within a more distantly related teleomorph genus 93 

Ophiostoma (Alamouti et al. 2009; Zipfel et al. 2006). G. clavigera is considered the 94 

primary fungal symbiont, with a long evolutionary history with MPB, while O. montium is 95 

thought to be a recent invader (Six & Paine 1999). The relationship of the recently 96 

described L. longiclavatum is not known (Lee et al. 2005), but following Six & Paine 97 

(1999) it could also be considered a recent invader. Each species is obligately 98 
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dependent on MPB for transport to ephemeral food sources (Six & Klepzig 2004; 99 

Whitney & Farris 1970). The fungi, in turn, provide nutrition, aid in overcoming host plant 100 

defenses, alteration of microclimatic conditions, and protection against antagonistic fungi 101 

(Bentz & Six 2006; Raffa & Berryman 1983; Reid et al. 1967; Six & Klepzig 2004; Six & 102 

Paine 1998). The fungi do not contribute equally to these different functional benefits 103 

(Six & Bentz 2007; Six & Paine 1998), so shifts in fungal species abundance throughout 104 

the host range could dramatically impact MPB outbreaks (Hofstetter et al. 2006).  105 

 106 

Shifts in intraspecific strain abundance may also be important for MPB fitness, although 107 

geographically extensive surveys of fungal intraspecific variation are currently lacking. 108 

Even without broad-scale genetic characterization, intra-strain variation of functional 109 

traits has been documented. For example, different O. montium stains have been shown 110 

to have a range of impacts on MBP fitness, being antagonistic (Six & Paine 1998), 111 

weakly mutualistic (Bleiker & Six 2007; Six & Klepzig 2004), and even important 112 

mutualists in the MPB system (Bleiker & Six 2007). Virulence and nutrition also vary both 113 

among and within fungal species, affecting the fitness of the beetle host. G. clavigera 114 

has generally been found to be more virulent than either O. monitum and L. 115 

longiclavatum (Lee et al. 2006b; Plattner et al. 2008; Reid et al. 1967; Rice et al. 2007; 116 

Solheim & Krokene 1998). Nutritionally, little is known about L. longiclavatum and 117 

beetles that feed on G. clavigera are larger than those that feed on O. montium, 118 

although intra-strain variation confounds generalization (Bleiker & Six 2007).  119 

 120 

These fungi are also known to differ in a number of important ecological characteristics. 121 

First, G. clavigera and L. longiclavatum are transported almost exclusively in mycangia, 122 

while O. montium has been found in mycangia and on the exoskeleton of the beetle host 123 

(Bleiker et al. 2009; Six 2003). Second, these three species vary in their environmental 124 
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tolerances; G. clavigera grows faster in cooler temperatures and oxygen deficient 125 

tissues than O. montium, which is better adapted to warmer temperatures and tissues 126 

with greater oxygen availability (Rice et al. 2008; Six & Bentz 2007; Solheim & Krokene 127 

1998), although cold tolerant O. montium strains have been identified (Rice & Langor 128 

2009). L. longiclavatum has similar environmental tolerances to G. clavigera, but has a 129 

slower growth rate albeit with higher rates of sporulation at cooler temps (Lee et al. 130 

2005, 2006b; Rice et al. 2008). Third, G. clavigera appears to be the primary colonizer, 131 

isolated ahead of O. montium and L. longiclavatum in tree tissue (Bleiker & Six 2009b; 132 

Kim et al. 2005), but both G. clavigera and O. montium are able to colonize previously 133 

occupied substrates and have been shown to coexist and exhibit fine scale resource 134 

partitioning (Bleiker & Six 2009a, b). As highlighted above, intra- and interspecific 135 

variability in both functional and ecological traits clouds our understanding of the roles 136 

that these fungi play within the MPB system and requires closer examination. 137 

 138 

Ultimately, MPB fitness is significantly improved in the presence of fungal symbionts 139 

(Bleiker & Six 2007; Six & Paine 1998), and given the phenotypinc variability within and 140 

among fungal species, it is important to characterize the genetic variation within each 141 

fungal associate and to relate patterns of genetic diversity to this biological variation. 142 

Earlier population genetic studies of G. clavigera (Lee et al. 2007) and MPB (Bartell et 143 

al. 2008) show the presence of two distinct populations, a British Columbian and a 144 

Rocky Mountain population (roughly corresponding to the northern and southern MPB 145 

populations of Bartell et al. (2008)). Using a comparative approach, we have examined 146 

the genetic diversity and geographic structuring of three MPB blue stain fungal 147 

symbionts, O. montium, G. clavigera, and L. longiclavatum. Given the obligate nature of 148 

the symbiosis between MPB and its fungi, we predicted that the geographic structuring 149 

of the fungi would mirror that of the previous studies, with each species containing a 150 
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northern and southern population. Moreover, we expected to observe congruent patterns 151 

of genetic diversity and population demographics among the fungi given the putatively 152 

similar biological constraints faced by the three symbionts. Characterization of 153 

intraspecific population substructure is also an essential first step prior to identifying 154 

patterns of adaptive variation in molecular markers or biological traits that could impact 155 

MPB fitness (Pritchard et al. 2000). 156 

 157 

METHODS 158 

Fungal isolation and multilocus sequence typing 159 

Detailed descriptions of field collections and culturing of fungal isolates are available in 160 

Roe et al. (2010). MPB adults, larvae and gallery wood were sampled from 42 stands of 161 

lodgepole pine (Pinus contorta Douglas var. latifolia Engelmann) and three stands of 162 

lodgepole x jack pine hybrids (P. contorta x P. banksiana Lamb.). Stands were grouped 163 

in 12 landscapes located in British Columbia and Alberta from January 2007 – May 2008 164 

(Fig. 1). Landscapes represent different ecoregions within the sampling area. Fungi were 165 

cultured on malt extract agar and scored as one of three morphotypes: G. clavigera, L. 166 

longiclavatum, or O. montium (Roe et al. 2010).  Representative strains were deposited 167 

in the University of Alberta Microfungus Collection and Herbarium (Appendix S1). 168 

Following morphotyping, strains were randomly selected within stands using a random 169 

number generator for single spore isolation (SSI) and multilocus sequence typing 170 

(MLST). For SSI, strains morphotyped as G. clavigera or L. longiclavatum were grown 171 

on malt extract agar, while O. montium morphotypes were grown on malt extract agar 172 

amended with lodgepole pine shavings to encourage sporulation. Following Roe et al. 173 

(2010), fungal isolates underwent DNA extraction, PCR amplification, and sequencing 174 

for four or five gene regions: actin, elongation factor 1 alpha (EF1a), beta tubulin (Btub), 175 

an anonymous locus (UFM), and ITS2 (partial 5.8S + internal transcribed spacer region 176 

Page 7 of 38 Molecular Ecology



For Review
 O

nly

Roe, Rice, Coltman, Cooke, Sperling Re-submission MEC-10-0850  8 

2 + partial 28S). Sequence data for all five loci were previously published for G. clavigera 177 

and L. longiclavatum (Roe et al. 2010, GenBank GU370130-GU370344). O. montium 178 

sequence data for four loci (actin, EF1a, Btub and ITS2) were submitted to GenBank 179 

(HQ413347 – HQ413650, Appendix S1). The UFM locus did not amplify for O. montium.  180 

 181 

Phylogenetic relationships. Previously aligned sequences were obtained for G. clavigera 182 

and L. longiclavatum from TreeBASE (http://www.treebase.org). Sequence data from O. 183 

montium were initially aligned using Sequencher 4.8 (Gene Codes, Ann Arbor, MI) 184 

followed by manual adjustments to the alignment. Unique O. montium haplotypes were 185 

determined for each locus and parsimony networks were estimated using TCS 1.21 186 

(Clement et al. 2000). Previously published sequence data of an O. montium strain were 187 

included for Btub and ITS2 (GenBank AY194948, AY194964). Parsimony networks were 188 

available for G. clavigera and L. longiclavatum from Roe et al. (2010). Following single 189 

locus analysis, sequences were concatenated into multilocus data sets for each species. 190 

Maximum likelihood (ML) trees were estimated for G. clavigera and L. longiclavatum 191 

(Roe et al. 2010), and O. montium (present study) using RAxML v. 7.0.4 (Stamatakis 192 

2006) implemented on the CIPRES portal v. 1.0 (Cyberinfrastructure for Phylogenetic 193 

Research – http://phylo.org/portal/Home.do, accessed January 28, 2010). Analyses 194 

were performed on the multilocus data sets using distinct models for each locus, with 195 

individual partition branch length optimization. Clade support was estimated using 196 

RAxML rapid bootstrapping with 1000 replicates, obtained simultaneously with the ML 197 

tree search (Stamatakis et al. 2008). Previously published sequence data of a closely 198 

related ophiostomatoid fungal species, O. ips (Rumbold) Nannfeldt, was used as an 199 

outgroup in the O. montium analysis (GenBank AY194938, AY194951). Final alignment 200 

and multilocus tree files were deposited in TreeBASE (www.treebase.org). 201 

 202 
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Genetic diversity and population differentiation. Standard genetic diversity indices for 203 

both the northern and southern populations, as well as the combined data sets, were 204 

calculated for each species. The following were calculated using the concatenated 205 

multilocus data sets in DNAsp v. 5.10.00 (Rozas et al. 2003): polymorphic sites (S), 206 

number of haplotypes (h), haplotype diversity (Hd) (Nei 1987), and nucleotide diversity 207 

(π) (Nei 1987). Genetic variation was examined for signatures of population 208 

differentiation and substructure corresponding to previous fungal and MPB studies 209 

(Bartell et al. 2008; Lee et al. 2007). Arlequin v.3.11 (Excoffier et al. 2005) was used to 210 

perform a hierarchical analysis of molecular variance (AMOVA) (Excoffier et al. 1992). 211 

ΦST is analogous to Fst and incorporates sequence divergence among haplotypes in 212 

addition to shifts in haplotype frequency to infer genetic differentiation among 213 

populations (Weir & Cockerham 1984), and the statistical significance of ΦST was 214 

estimated using permutation tests (1000 replicates). 215 

 216 

Comparative population structuring. To identify congruent patterns of population 217 

structuring among the three fungal species, we compared fungal genetic distance 218 

matrices using CADM (Congruence Among Distance Matrices) (Legendre & Lapointe 219 

2004). Using DNAsp v. 5.10.00 we obtained pairwise landscape ΦST genetic distance 220 

matrices for each species, a distance measure that incorporates both sequence 221 

divergence and shifts in MLST haplotype frequency. Pairwise geographic distance 222 

between each landscape was also included to identify potential spatial autocorrelation. 223 

CADM is a generalization of a Mantel test that allows the simultaneous comparison of 224 

multiple distance matrices to identify both global and a posteriori pairwise congruence 225 

among matrices (Legendre & Lapointe 2004). CADM was implemented in the R 226 

framework (R Development Core Team 2010) using the ape package v. 2.5-2 (Paradis 227 
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et al. 2004). Initially, a global test was performed with the CADM.global function to test 228 

for overall congruence among the four distance matrices. If the null hypothesis of 229 

incongruence was rejected, then a posteriori pairwise CADM and one-tailed Mantel tests 230 

were performed to identify which combinations of matrices were congruent. One-tailed 231 

Mantel tests were based upon ranks (Spearman correlation coefficient r). A posteriori 232 

pairwise CADM and complementary one-tailed Mantel tests were executed with the 233 

function CADM.post. For both the global and a posteriori analyses, we used 9999 234 

permutations to assess the significance of matrix congruence. For the a posteriori tests, 235 

a Holm correction (Holm 1979) was also used to correct P-values for multiple testing. 236 

 237 

Population demographics. Population demographic patterns were examined within the 238 

two populations of each fungal species. In Arlequin v. 3.11, we calculated a mismatch 239 

distribution and compared this distribution to that of an expanding population which is 240 

expected to be unimodal (Rogers & Harpending 1992). Fit of the observed to an 241 

unimodal distribution was estimated with sum of squares deviations (SSD) and 242 

Harpendings raggedness statistic (r) (Harpending 1994). We also calculated Tajima’s D 243 

and Fu’s Fs, two tests of neutrality which are sensitive to signatures of population 244 

expansion (Fu 1997; Rogers & Harpending 1992; Tajima 1989). Significance was 245 

determined by comparing the observed values to a randomly generated distribution 246 

(1000 permutations) assuming selective neutrality and population stationarity (Excoffier 247 

et al. 2005). In an expanding population, an excess of low frequency variants is 248 

expected for all loci, leading to negative Tajima’s D and Fu’s Fs values (Ramos-Onsins 249 

& Rozas 2002; Tajima 1989). 250 

 251 

Evidence of recombination. Three methods were used to detect evidence of 252 

recombination. First, concatenated sequence data sets were used to construct split 253 
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networks in SplitsTree v. 4.10 using the neighbor-net algorithm (Bryant & Moulton 2004). 254 

This algorithm uses uncorrected pairwise distances to estimate relationships among 255 

MLST haplotypes, using reticulations to represent incompatibilities within the data set 256 

(Huson & Bryant 2006). A reticulated network provides an implicit representation of 257 

evolutionary patterns, and may indicate the presence of homoplasy or recombination 258 

(Huson & Bryant 2006).  Second, we used the pairwise homoplasy index (Φw) (Bruen et 259 

al. 2006), implemented in SplitsTree. The test is robust to demographic history and 260 

mutation rate and relies on the premise that physically close sites will be less likely to be 261 

disassociated by recombination than distant sites. Using a 100 bp window, compatibility 262 

among sites was calculated and significance determined with a permutation test 263 

assuming no recombination. Third, an index of association (IA), a test for clonality or lack 264 

of recombination, was calculated using Multilocus v.1.3b (Agapow & Burt 2001) on a 265 

clone-corrected data set. The observed MLST haplotype distribution was compared to 266 

an expected haplotype distribution generated from 1000 randomly reshuffled haplotype 267 

combinations. The test assumes an infinite amount of recombination so significant 268 

departure from the simulated data set suggests the presence of clonality. Clone 269 

corrected data sets were obtained by removing identical MLST haplotypes at the level of 270 

the stand to reduce the chances of sampling the same fungal strain multiple times. 271 

 272 

RESULTS 273 

Phylogeographic analyses. A total of 143 O. montium, 155 G. clavigera, and 169 L. 274 

longiclavatum isolates from 45 stands in 12 landscapes were sequenced (Fig. 1). Five 275 

loci (actin, EF1a, Btub, UFM, and ITS2) were amplified for G. clavigera and L. 276 

longiclavatum, and four loci (missing UFM) were amplified for O. montium. Haplotype 277 

networks inferred from each locus are presented in Appendix S2, including pruned 278 

networks for G. clavigera and L. longiclavatum which were described previously (Roe et 279 
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al. 2010). Sequences were concatenated, creating a multilocus data set for each 280 

species, from which unique MLST haplotypes were selected for ML analysis. A summary 281 

of the phylogenetic data and ML model parameters for O. montium are presented in 282 

Table 1, with similar data available for the other two species in Roe et al. (2010, Table 283 

2). ML phylograms for O. montium (Fig. 2), G. clavigera and L. longiclavatum (Fig. 3) are 284 

shown, in which O. montium was paraphyletic, while both G. clavigera and L. 285 

longiclavatum formed monophyletic clades. ML phylograms of all three species have 286 

short internal branches and longer terminal branches, with some very long branches 287 

indicating highly divergent O. montium MLST haplotypes (Fig. 2, e.g. M37). Given the 288 

congruence between MPB and G. clavigera population structure (Bartell et al. 2008; Lee 289 

et al. 2007), we looked for similar congruence our fungal data sets. O. montium was the 290 

most diverse of the three species. A total of 66 MLST haplotypes were found, with over 291 

half found only in a single strain (Fig. 2). Few MLST haplotypes were shared between 292 

northern and southern populations, with more shared between landscapes within the 293 

populations than between populations. Based on the ML relationships, phylogenetic 294 

structuring exists among O. montium haplotypes, partially corresponding to geographic 295 

location, although these relationships were poorly supported (Fig. 2). Single locus data 296 

showed a similar pattern (Appendix S2A), with only half of the haplotypes shared 297 

between northern and southern populations, although correspondence between 298 

phylogenetic relationship and geographic location was less evident. In contrast, G. 299 

clavigera and L. longiclavatum (Fig. 3) had far fewer MLST haplotypes and showed little 300 

correspondence between phylogenetic structuring and geographic location. In G. 301 

clavigera 12 MLST haplotypes were found, seven of which were very common and 302 

shared between northern and southern populations, while all but one of the remaining 303 

haplotypes were only in the southern population. L. longiclavatum had six MLST 304 

haplotypes, two of which were very common and were shared between northern and 305 
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southern populations, with the remaining haplotypes found only in the southern 306 

population. 307 

 308 

Genetic diversity and population differentiation. Indices of genetic diversity for each 309 

species, as well as for northern and southern populations within each species, are 310 

provided in Table 2. O. montium had the highest overall Hd and π, followed by G. 311 

clavigera, and then L. longiclavatum. All species had higher Hd in the southern 312 

population. O. montium had similar levels of π in both populations, while G. clavigera 313 

and L. longiclavatum both had slightly higher π in the southern population. Using 314 

AMOVA we estimated population differentiation and structure for each fungal species. 315 

For all three species, variation within populations accounted for the majority of the total 316 

variation (Table 3). The percentage of variation among the northern and southern 317 

populations ranged from 4.47% (O. montium) to 21.67% (L. longiclavatum), and all ΦST 318 

values were significant (Table 3). 319 

 320 

Comparative population structuring. With CADM we tested for congruence among three 321 

fungal ΦST distance matrices and a landscape-level geographic distance matrix (Table 322 

4). The global CADM test rejected the null model of incongruence among the matrices 323 

and all a posteriori CADM results indicate that each matrix was congruent with at least 324 

one other matrix. One-tailed Mantel tests showed that the ΦST distance matrices of G. 325 

clavigera and L. longiclavatum were congruent (P < 0.01), suggesting similar landscape-326 

level population structuring. L. longiclavatum genetic distance matrix was also congruent 327 

with geographic distance (P < 0.05), indicating significant spatial autocorrelation. O. 328 

montium was incongruent with both other fungal matrices, but was congruent with 329 

geographic distance (P < 0.01), indicating significant spatial autocorrelation. 330 
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 331 

Population demographics. Comparing several tests for population expansion, conflicting 332 

population demographic patterns occurred within and between species.  Following Grant 333 

& Bowen (1998), O. montium was characterized by high Hd (>0.5) and low π (<0.5), 334 

consistent with a past population bottleneck followed by rapid population expansion. 335 

Mismatch distributions for both O. montium populations were multi-modal, containing 336 

multiple distinct peaks (Fig. 4). The demography of the northern population was 337 

significantly different from the null model of sudden expansion, while the southern 338 

population was consistent with the model of a sudden expansion. Both populations had 339 

a non-significant Harpendings raggedness index. In O. montium the northern population 340 

had a small cluster of highly divergent pairwise differences (Fig. 4), which may 341 

correspond to mismatches between divergent haplotypes (e.g. M37 or M65; Fig. 2). 342 

Using the tests of neutrality, Tajima’s D was significant for both northern and southern O. 343 

montium populations, suggesting population expansion, while only Fu’s Fs was 344 

significant for the southern population. Like O. montium, G. clavigera was characterized 345 

by high Hd (>0.5) and low π (<0.5), suggesting a past population bottleneck followed by 346 

rapid population expansion. Mismatch distributions of both G. clavigera populations were 347 

unimodal, were not significantly different from the null model of sudden expansion, and 348 

had a non-significant Harpendings raggedness index (Fig. 4). In contrast, neither Fu’s Fs 349 

or Tajima’s D were significant for populations of G. clavigera, refuting a population 350 

expansion scenario. Unlike the previous species, L. longiclavatum had relatively low Hd 351 

(≤0.5) and low π (<0.5), making it difficult to differentiate between a bottleneck and 352 

recent population expansion, or a population bottleneck with few founders. Mismatch 353 

distributions in L. longiclavatum were difficult to define due to the low Hd, particularly in 354 

the northern population (only two MLST haplotypes were present). The distribution in the 355 
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northern population was significantly different from the null model of sudden expansion, 356 

although this may be due to the low Hd characterizing this population. Both populations 357 

had non-significant Harpending’s raggedness index. Like G. clavigera, neither test of 358 

neutrality (Fu’s Fs or Tajima’s D) was significant for populations of L. longiclavatum. 359 

 360 

Evidence for recombination. Using the concatenated data set, networks were produced 361 

for each species using the neighbor-net algorithm. Each species showed a reticulate 362 

topology, although the level of reticulation varied between species (Fig. 5). O. montium 363 

had the most reticulation among haplotypes, followed by G. clavigera. Reticulation 364 

among haplotypes within these two species occurred between internal nodes, as well as 365 

between terminal branches, a pattern indicative of recombination (Rosendahl et al. 366 

2009). Reticulation among L. longiclavatum haplotypes, on the other hand, was 367 

restricted to internal nodes as expected from homoplasy. Using Φw, another metric for 368 

presence of recombination, only O. montium was found to have significant evidence for 369 

recombination. We should note that Φw has been demonstrated to be too conservative 370 

when sequence diversity is low and populations are growing (Bruen et al. 2006), so it is 371 

possible that this test failed to detect recombination in G. clavigera and L. longiclavatum 372 

(Type II error). To further assess the presence (or lack thereof) of recombination, we 373 

used IA (Agapow & Burt 2001). Using clone-corrected data sets we examined IA for each 374 

fungal species and population, although we were unable to calculate IA for the northern 375 

L. longiclavatum population due to the low Hd. Based on IA, we could not reject the 376 

presence of recombination in O. montium or L. longiclavatum, both at the species level 377 

and at the population level. In G. clavigera, IA was significant at the species level, as well 378 

as in the southern population, suggesting that the southern population, at least, shows 379 

evidence for clonality. 380 
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 381 

DISCUSSION 382 

The current MPB outbreak in western Canada has been characterized by large 383 

demographic and range expansions (Raffa et al. 2008). Given the obligate nature of the 384 

MPB-fungal symbiosis, we had an ideal opportunity to use a comparative approach to 385 

infer common historical patterns in multiple co-distributed species, test for evidence of 386 

recombination that may affect the genetic diversity of each species, and to relate the 387 

observed genetic diversity to biological characteristics of each species. This type of 388 

comparative study is of particular value in pathogenic species (Barrett et al. 2008a) and 389 

can improve our understanding of population structure and demographic processes 390 

affecting these economically important organisms. Despite similar needs (e.g. 391 

transportation to ephemeral food sources), these three fungi were surprisingly different, 392 

even with concordant broad-scale population structuring. Comparative, simultaneous 393 

comparisons of multiple co-distributed species also serves to demonstrate the level of 394 

complexity observed within multipartite symbioses and should be considered for future 395 

studies on multipartite symbioses.  396 

 397 

Broad-scale population structuring was congruent across the three fungal species, with 398 

each species differentiating into southern and northern populations (Table 3), similar to 399 

previously observed patterns in G. clavigera (Lee et al. 2007) and MPB (Bartell et al. 400 

2008). We observed higher levels of Hd in all three southern fungal populations that, as 401 

suggested in Lee et al. (2007), could be evidence of earlier MPB outbreaks in western 402 

Canada. Over the past 100 years, three MPB outbreaks have been recorded in this 403 

region. The first two recorded outbreaks (1934-43, 1977-85) occurred in south-central 404 

British Columbia and expanded into southern Alberta (Ono 2004; Powell 1961). If 405 

remnant populations of MPB and fungi from these previous outbreaks persisted at 406 
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endemic levels in Alberta, there would have been time for the fungal lineages to 407 

differentiate. When the disjunct populations in British Columbia expanded during the 408 

current outbreak, signatures of an endemic southern Alberta population remained as 409 

suggested by our data. 410 

 411 

While we did see congruent broad-scale population differentiation, when we compared 412 

these three species at a finer landscape-level, this congruence was less apparent. The 413 

population structuring of two species (G. clavigera and L. longiclavatum) were 414 

congruent, while O. montium was incongruent. Interestingly both L. longiclavatum and O. 415 

montium showed evidence of spatial autocorrelation, although no evidence was found in 416 

G. clavigera. The extremely high levels of haplotype diversity in O. montium could 417 

explain this incongruence, while the lack of spatial autocorrelation in G.clavigera is 418 

harder to interpret. G. clavigera is often considered the primary fungal symbiont, 419 

providing the MPB greater fitness benefit than other fungal species (Bleiker & Six 2007; 420 

Six & Paine 1998). It is possible that G. clavigera is experiencing different dispersal 421 

patterns or rates than the other two fungal species, influencing its phylogeographic 422 

patterns and creating incongruence with the other two symbionts.  423 

 424 

Interestingly, neither broad nor finer scale population structuring was observed among 425 

the phylogenetic relationships of haplotypes within the fungal species. We found little 426 

phylogeographic structuring among the MLST haplotypes, and the intraspecific 427 

relationships were poorly supported. We were surprised to see little evidence for the 428 

previously detected cryptic diversity in G. clavigera (Groups 1 & 2, Lee et al. 2007). It is 429 

possible that our conserved nuclear and ribosomal markers were unable to separate 430 

these two groups, which were identified using more variable AFLP markers. 431 

Alternatively, it is also possible that members of one of the two groups were not 432 
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sampled. The relationships among our haplotypes were star-like, with short internal 433 

nodes and long terminal branches (Figs. 2, 3, 5), characteristic of populations that have 434 

recently undergone a rapid expansion (Excoffier et al. 2009). Given the observed 435 

demographic and spatial expansion of the current MPB outbreak, it is not surprising that 436 

the obligate symbiotic fungi are also experiencing similar, detectable, population 437 

expansions. Moreover, these outbreaks have occurred very recently, so there may not 438 

have been time for lineage sorting to result in detectable phylogenetic signal. Expanding 439 

populations are expected to have an excess of rare alleles and low frequency mutations 440 

with a skew towards singletons, gene trees with long terminal branches and star-like 441 

topologies, negative Tajima’s D and Fu’s Fs, and unimodal mismatch distributions 442 

(Excoffier et al. 2009; Harpending & Rogers 2000; Slatkin & Hudson 1991)). Many of 443 

these genetic patterns were observed in the fungi (Figs 2, 3, 4, and Appendix 2), albeit 444 

with some conflicting results. These conflicts may be due to the recent nature of the 445 

current MPB population expansion, low levels of nucleotide diversity that decrease the 446 

power to detect signatures of population expansion, or unrecognized cryptic species, 447 

which could be giving misleading results for the tests of neutrality and confound the 448 

interpretation of mismatch distributions. 449 

 450 

Incongruent genetic diversity, demographic patterns, and landscape-level population 451 

structuring could result from a number of biological differences between the three 452 

species (Figs. 2, 3, Tables 2, 3, 4). First, differential recombination rates provide one 453 

possible explanation for these interspecific differences.  Differences in reproductive 454 

mode (e.g. sexual versus asexual) is known to affect a range of population 455 

characteristics (Barrett et al. 2008b), such as genetic diversity (Milgroom 1996), 456 

population growth rate (Heitman 2006), persistence (Barrett et al. 2007), and rate of 457 

evolutionary change (McDonald & Linde 2002). Sexual reproduction or, more broadly, 458 
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recombination (including parasexual recombination) creates mosaic sequences and 459 

provides a means of creating new genetic combinations. Fungal species show a great 460 

diversity in levels of recombination, ranging from fully asexual lineages to obligate 461 

outcrossers (Milgroom 1996) and detection of this process is paramount to 462 

understanding fungal evolution.  463 

 464 

Among the study species, morphological evidence for recombination (sexual 465 

reproduction) is uneven. Sexual states have been observed in O. montium (Rumbold 466 

1931, A.V. Rice, K. Bleiker, unpublished), and evidence for sexual reproduction is quite 467 

common in O. ips and O. pulvinisporum Zhou & Wingfield, two closely related species 468 

(Zhou et al. 2007; Zhou et al. 2004). In contrast, sexual states in G. clavigera have rarely 469 

been reported since they were originally described by Robinson-Jeffrey & Davidson 470 

(1968), despite efforts to produce sexual states in artificial pairings (Six et al. 2003; Six & 471 

Paine 1997). The anamorphic genus Leptographium is considered to include the asexual 472 

forms of Grosmannia species (Lee et al. 2005; Zipfel et al. 2006), so it would be 473 

surprising to detect recombination in members of this group, such as L. longiclavatum.  474 

 475 

Using a neighbor-net algorithm, Φw, and IA, we consistently detected evidence for 476 

recombination in O. montium, while recombination in the other two species was weakly 477 

supported (Table 2, Fig. 5). A species capable of recombination would be expected to 478 

have higher genotypic diversity than an asexual species, and would also be expected to 479 

have a high number of unique, recombinant genotypes (Barrett et al. 2008a; Burdon & 480 

Roelfs 1985), similar to our observations for O. montium. Recombination, rather than 481 

cryptic species diversity, could explain the highly divergent MLST haplotypes observed 482 

in O. montium, such as ME8 in EF1a (Appendix S2). Conversely, asexual species, or 483 

species where recombination is rare would have a number of common genotypes 484 
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shared between populations and few unique strains, as we observed in L. longiclavatum 485 

and G. clavigera (Table 2, Fig. 5).  486 

 487 

Asexual reproduction, or clonality, is considered a common adaptation to mutualistic 488 

relationships (Wulff 1985), allowing symbiotic partners to co-evolve with optimally 489 

adapted clones without the confounding force of recombination disassociating 490 

successful gene combinations. However, truly asexual lineages may be prone to the 491 

accumulation of deleterious alleles and may be unable to rapidly adapt to heterogeneous 492 

environments (Lushai et al. 2003). Organisms with recombination, on the other hand, 493 

have the advantage of purifying selection and the ability to create new gene 494 

combinations allowing rapid adaptation to changing conditions. Many fungi have the 495 

ability to switch between recombining and clonal reproduction (Taylor et al. 1999), 496 

providing great adaptive potential. Recombination can produce highly adapted 497 

genotypes, which then can increase in frequency through clonal reproduction (Barrett et 498 

al. 2008a; McDonald & Linde 2002). It will be interesting to further explore patterns and 499 

rates of recombination among these species, relating the differences in mode of 500 

reproduction to their functional roles in the MPB-fungal symbiosis. 501 

 502 

In addition to recombination, differences in other biological traits relating to the functional 503 

roles of each fungal species could explain the observed incongruence. First, while G. 504 

clavigera and L. longiclavatum are transmitted exclusively in the mycangia, O. montium 505 

can be transmitted in the mycangia, as well as on the exoskeleton of the beetle host 506 

(Lee et al. 2005; Six 2003). This apparent disparity in transmission efficiency could result 507 

in the transmission of a greater diversity of O. montium strains relative to the exclusively 508 

mycangial associates. Coupled with higher rates of recombination, these dual modes of 509 

transportation may contribute to the maintenance of higher levels of genetic diversity in 510 
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O. montium, creating discordance between the different fungal species. Second, 511 

mycangial transport requires acquisition of fungal spores by the beetle prior to 512 

emergence from the natal host (Six 2003). If the beetle is preferentially selecting spores 513 

of certain fungal strains, this could dramatically influence the genetic diversity, 514 

population structuring and demographic patterns of the mycangial species. Non-random 515 

selection of fungal strains by the beetle would act like purifying selection on the fungal 516 

populations, reducing genetic diversity particularly if the selected species are asexual or 517 

have low rates of recombination. Third, G. clavigera is considered the primary symbiont 518 

of the MPB (Bleiker & Six 2007; Six & Paine 1998) with a long evolutionary history with 519 

this beetle host, while O. montium is a recent invader of the system (Six & Paine 1999). 520 

It is possible that the long evolutionary history with MPB has resulted in a loss of genetic 521 

diversity in G. clavigera, a pattern not yet observed in O. montium. On the other hand, 522 

high genetic diversity as a result of recombination may have permitted the invasion and 523 

persistence of O. montium in the MPB system.  524 

 525 

CONCLUSION 526 

As general understanding of the multipartite MPB-fungal symbiosis expands, it is 527 

apparent that we have only begun to comprehend the complexity of this system. Our 528 

comparative examination of three co-occurring fungal symbionts identified similar broad-529 

scale population structuring, confirming the presence of northern and southern fungal 530 

populations. However, finer scale population structuring showed surprising levels of 531 

incongruence, refuting our initial hypotheses. In our results O. montium was 532 

characterized by high haplotype diversity with evidence of high rates of recombination, 533 

while haplotype diversity for G. clavigera, and to a greater extent L. longiclavatum, were 534 

much lower and showed little to no evidence for recombination. Characterizing the 535 

differences among fungal species, such as recombination rate and standing genetic 536 
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variation, is critical to understanding fungal evolution and adaptation. This is particularly 537 

true in symbiotic relationships, where the fitness and adaptability of one symbiont 538 

directly affects the other. While asexuality is often viewed as beneficial in symbiotic 539 

relationships, recombination creates variation that can allow rapid adaptation to 540 

changing environments (Croll & Sanders 2009). This creation of novel gene 541 

combinations can result in phenotypic changes, which may confer an adaptive 542 

advantage to a recombinant strain (Awadalla 2003), which may in turn provide an 543 

advantage to the symbiont host. Recently, Wilkinson et al. (2010) demonstrated that 544 

high intraspecific diversity of an ectomycorrhizal fungus had a significant impact on its 545 

contribution to ecosystem productivity and ecological function. This work serves to 546 

highlight the importance of individuals within studies seeking to clarify the functional 547 

roles of fungal symbionts. Similar types of phenotypic variability have been 548 

demonstrated among MPB fungal symbionts, leading to conflicting results between 549 

studies. Given the potential individual variability, it will be essential to take strain 550 

genotype into account when designing studies that examine the functional roles of fungal 551 

symbionts, as individual strains may broadly vary in their environmental tolerance, 552 

nutritive value and virulence, all factors that could impact MPB fitness.  553 

 554 

From our study, other exciting avenues for future work have emerged. For example, how 555 

does the genetic diversity of the mycangial symbionts following beetle emergence 556 

compare to the community within the gallery? Does the beetle select for particular fungal 557 

genotypes? Given that O. montium is transmitted both mycangially and phoretically, is 558 

the genetic diversity of the mycangial strains different than those on the exoskeleton? 559 

Does the observed genetic diversity and recombination rates within these symbionts 560 

correlate with variation seen in other traits, such as ergosterol content (Bentz & Six 561 

2006), virulence (Lee et al. 2006b; Plattner et al. 2008; Rice et al. 2007; Solheim & 562 

Page 22 of 38Molecular Ecology



For Review
 O

nly

Roe, Rice, Coltman, Cooke, Sperling Re-submission MEC-10-0850  23 

Krokene 1998), and environmental tolerance (Adams & Six 2007; Bleiker & Six 2009a; 563 

Rice et al. 2008)? Do different populations of MPB (e.g. northern vs. southern) have 564 

differentially adapted symbionts? Ultimately, with this new understanding of genetic 565 

variation within the MPB symbiont community we now have the tools to further explore 566 

MPB fungal symbiont evolution and help resolve the complexities of this system.  567 

 568 
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Table 1: Parameters for individual loci and the concatenated multilocus maximum 
likelihood analysis of O. montium sequence data. A partitioned ML analysis was 
employed, and character information is presented for each locus partition. 
Ingroup character information includes the representative sequence data 
obtained from GenBank. 
 

 actin EF1a Btub ITS2 Combined
a
 

# haplotypes
 b

 6 9 17 7 66 
# sites 702 568 632 918 2820 
# constant char.

 b
 693 541 597 907 2738 

# variable char. 
(uninformative)

 b
 

0 8 5 0 13 

# pars. inform. char.
 

b
 

9 19 30 11 69 

% informative
 b

 1.28% 3.34% 4.75% 1.20% 2.44% 
Base freq.

c
      

  A  0.1920 0.2041 0.1811 0.2090 - 
  C  0.2924 0.3220 0.3235 0.2852 - 
  G 0.3220 0.2076 0.2745 0.3108 - 
  T 0.1935 0.2662 0.2208 0.1949 - 
Rate Matrix 

c
      

  A-C 1.1732 2.8713 1.9422 1.6953 - 
  A-G 16.4090 1.4441 5.8509 3.9262 - 
  A-T 2.0000E-5 1.6941 3.7643 2.6116 - 
  C-G 6.4245 0.8930 2.0085 2.0000E-5 - 
  C-T 1.1050 8.0788 7.5822 23.1454 - 
  G-T 1.0000  1.0000  1.0000  1.0000  - 
Γ (alpha)

c
 0.02000 0.02000 0.02000 0.02000  

a 
GTR+Γ ML model ; -ln = -5114.4; ∝ gaps/missing = 0.06755 

b
 ingroup only 

c
 partitioned 
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Table 2: Genetic diversity and recombination indices for populations of O. montium, G. clavigera, and L. longiclavatum. 
 
 Genetic Diversity Indices Tests of Neutrality Recombination 
 n S h Hd (SD) π (SD) Fs D IA Φw 
O. montium          

North 80 56 29 0.93(0.014) 0.0019(0.00045) -6.22 ns -1.86** 0.088 ns - 
South 63 42 43 0.98(0.0060) 0.0019(0.00021) -25.26*** -1.41* -0.094 ns - 
Total 143 76 66 0.97(0.0070) 0.0020(0.00027) - -1.96* -0.051 ns ** 

G. clavigera          
North 79 5 8 0.74(0.040) 0.00045(0.000040) -0.51 ns 0.75 ns 0.018 ns - 
South 76 6 11 0.82(0.023) 0.00046(0.000040) -3.23 ns 0.37 ns 0.24*** - 
Total 155 6 12 0.81(0.021) 0.00049(0.000030) - 0.73 ns 0.12** ns 

L. longiclavatum          
North 122 1 2 0.41(0.036) 0.00015(0.000010) 5.73 ns 1.30 ns -

a
 - 

South 47 4 6 0.57(0.068) 0.00026(0.000320) 0.72 ns -0.38 ns 0.13 ns - 
Total 169 4 6 0.52(0.022) 0.00021(0.000020) - -0.33 ns 0.057 ns ns 

n, number of strains; S, segregating sites; h, number of haplotypes; Hd, haplotype diversity; SD, standard deviation; Pi, nucleotide diversity; Fs, 

Fu’s Fs; D, Tajima’s D; IA, Index of association; Φw, pairwise homoplasy index. 
* P ≤ 0.05; ** P≤0.01; ***P≤0.001; ns: not significant. 
a
Lack of genetic variability prevents calculation  
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Table 3: Analysis of molecular variance for northern and southern populations of MPB 

associated fungi. 

 

 d.f. SSD Var.  % Var. ΦΦΦΦST 

O. montium      

 Among N, S pops. 1 14.092 0.16*** 4.47 0.045*** 

 Within N-S pops. 137 462.43 3.38 95.53  

      

G. clavigera      

 Among N, S pops. 1 5.058 0.055*** 6.52 0.065*** 

 Within N-S pops. 152 120.76 0.79 93.48  

      

L. longiclavatum      

 Among N, S pops. 1 13.46 0.19*** 21.67 0.22*** 

 Within N-S pops. 166 114.70 0.69 78.33  

***P<0.0001 

d.f., degrees of freedom; SSD, sum of squares deviation; Var., components of variance; 

% Var., percent of variance. 
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Table 4: Congruence among pairwise ΦST values calculated from concatenated MLST 
sequence data of three fungal species and geographic distance among landscapes. 
Tests were calculated using CADM in the ape package implemented in the R framework. 
 
Global congruence H0: matrices are incongruent   
 Kendall’s W:  0.4612     
 Friedman’s χ2: 119.8787***     
       
A posteriori pairwise congruence  H0: matrix is incongruent with remaining matrices 

  H1: matrix is congruent with at least one other matrix  
  P-value adjusted P-value

a
    

 G. clavigera * *    

 L. longiclavatum ** *    
 O. montium ** *    
 Geographic distance ** **    

     
One-tailed Mantel tests H0: r = 0; H1: r > 0    
   

G. clavigera 
 
L. longiclavatum 

 
O. montium 

Geographic 
distance 

 

 G. clavigera 1.0000 0.4208** 0.1901ns 0.1496ns  
 L. longiclavatum  1.0000 0.1469ns 0.3661*  
 O. montium   1.0000 0.4151**  
 Geographic distance    1.0000  
* P ≤ 0.05; ** P≤0.01; ***P≤0.001; ns: not significant 
a
Holm adjustment for multiple tests 
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Figure 1. Location of collection sites for MPB fungal symbionts and the eastern boundary of 
MPB outbreak in Alberta. Sites grouped by landscapes. Northern landscapes: FC, Fox Creek; 
FV, Fairview; GP, Grande Prairie; TR, Tumbler Ridge; V, Valemont; WK, Willmore-Kakwa.
Southern landscapes: CH, Cypress Hills; CA, Canmore; CP, Crowsnest Pass;  G, Golden;  
KY, Kootenay-Yoho; SW, Sparwood. MPB outbreak boundary based on 2009 aerial survey data 
from Alberta Sustainable Resource Development 
(www.mpb.alberta.ca/Files/MPB-AerialOverview-2009.pdf, accessed 06-05-10).
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Figure 2.  Maximum likelihood phylogram for the O. montium concatenated multilocus data set of four 
independent loci (actin, EF1a, Btub, ITS2). Thickened branches indicate clade support greater than 80%. 
For each haplotype, population assignment (north, south, or shared) and landscape of origin is shown.
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Figure 3.  Maximum likelihood phylograms for the G. clavigera and L. longiclavatum concatenated multilocus 
data sets of five independent loci (actin, EF1a, Btub, UFM, ITS2). Thickened branches indicate clade support 
greater than 80%. For each haplotype, population assignment (north, south, or shared) and landscape of origin 
is shown. Phylograms were adapted from Roe et al. 2010.
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Figure 4. Mismatch distributions for nothern and southern populations of three mountain pine beetle 
fungal symbionts. Bars indicate the observed mismatch difference between haplotypes and the lines
represent the expected distribution under a sudden population expansion model. Deviations from the
expected distribution are assessed with sums of squares deviation (SSD) and Harpendings raggedness
index (r) (Harpending 1994). Measures of significance as in Table 2.
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Figure 5. Reticulate topologies among mountain pine beetle
fungal symbionts calculated with the neighbour-net algorithm
and uncorrected p distances. Population membership as in 
Fig. 3. A. O. montium; B. G. clavigera; C. L. longiclavatum. 
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