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Abstract 

Motion similarity analysis is a critical stage for the successful reuse of motion 

capture data.  Some previous works use one or multiple motion features, such as 

the difference between joint positions, joint angles, joint velocities and 

accelerations to capture the similarity information between two frames of 

different or the same motion streams. In this paper, two typical motion similarity 

approaches are reviewed and related problems are identified. To address the 

problems, a novel motion similarity method is proposed and two different 

features are used to measure the similarity between two motion frames: the 

curvature of space curve and the difference between joint relative positions. 

Additionally, we also propose a new general criterion to evaluate and to compare 

the performance of different motion similarity techniques. The experimental 

results demonstrate that our new motion similarity method can automatically 

generate visually acceptable results efficiently and that the other methods can be 
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improved by using our proposed evaluation criterion to select the required 

attribute weights appropriately. 

 

 

Index Terms --- Character animation, motion capture, motion transition, motion 

similarity measure 
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1 Introduction 

In computer graphics, character animation is an important research area and many 

research works focus on creating realistic and natural human animations. Recently, the 

price of motion capture hardware has dropped significantly, and hence, techniques based 

on motion capture data have become commonly used alternatives to the other two 

animation techniques, namely, keyframing and physical-based simulation. Because of 

the ease of use, realistic and natural motion capture data have become widely used in 

commercial applications; in particular, with the development of practical motion capture 

and editing techniques [3][4][5][10][11][12][14]. 

 

To generate new motion patterns by reusing existing motion capture data is still an 

interesting open problem. Two major approaches exist. One is to use motion blending by 

combining two or more motion examples to form a new motion clip [11][12][14]. The 

other approach is motivated by the video texture technique [2][7][8][9], by which a new 

motion sequence is generated by stitching the original motion clips in a new order. 

Because it directly reuses the source motion sequences, it is able to preserve realism and 

high-level details of the original motion. Moreover, motion blending focuses on creating 

an individual motion clip, while motion reassembling focuses on generating a new 

motion sequence. Both of the approaches mentioned above have the same goal to create 

new motions from exiting motion capture data. In this paper, the focus is on techniques 
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to stitch the original clips in a new order, in particular, in locating the best transition 

points in connecting two clips. 

 

To use the raw motion capture data directly is difficult because of the unstructured and 

high complexity nature inherent in the data. Thus, motion analysis tools, especially for 

analyzing human body motion, are indispensable and have become a very important 

research topic in the context of motion editing. Motion similarity analysis provides the 

foundation for many recent research works. For example, in [2][7][8][9], similar frames 

are detected first to find candidate transition points. Then a new motion sequence is 

synthesized by reordering motion clips. As discontinuities are introduced at transition 

points, they must be carefully selected. Thus, a smooth transition between clips is 

generated. While in motion blending [3][11][12][14], time warping is performed to align 

the example motions in the time domain (synchronization) according to the motion 

similarity. 

 

Some motion editing techniques require the user to determine the similarity manually 

[11] [12]. The animator specifies similar motion frames according to his/her perception 

and experience. Therefore, the quality of the resulting motion depends significantly on 

the animator's skills. Moreover, it is a labor-intensive process.  In order to reduce the 

burden on animators and to increase the speed of motion similarity analysis, some 

methods [2][7][8][9] have been proposed  to automatically detect motion similarity. 
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Two main types of motion similarity metrics based on different motion features are 

defined in previous works.  The first one is based on joint orientations and velocities 

[2][9] and the other on the distance between sample points (point clouds) [8]. Both of 

them emphasize on the pose similarity of two frames. In order to capture kinematic 

information, such as velocity and acceleration, the first approach directly incorporates 

these features, while the second approach considers the difference between the 

neighborhoods of the two frames. For the first approach, as the motion capture data are 

directly represented by the joint angle of a skeleton, the similarity metrics based on joint 

orientations can be easily computed directly. The disadvantage of this technique is that it 

uses a weighted sum of multiple joint attributes as a measure. The optimal attribute 

weights are very difficult to identify and may be dependent on motion patterns.  As a 

result, the dynamic information of the source data may not be incorporated well. The 

second approach is very time consuming and dependent on the coordinate system. The 

assumption that a motion is not changed by a rigid 2D transformation restricts its 

application to the movements on the same ground plane. 

 

In order to tackle the problems mentioned above, the present work introduces two novel 

similarity features to reuse realistic motion capture data. Curvature, one of the intrinsic 

properties of space curve, is used to capture the kinematic information. The difference 

between joint positions in their own parent coordinates is used to evaluate the similarity 

of body configurations.  Both of these two features are coordinate invariant and can be 

computed efficiently. Most importantly, no attribute weight is needed in our approach. 
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To evaluation the performance of different motion similarity methods, this paper also 

presents a general criterion that helps to determine optimal attribute weights used in 

other approaches. The experimental results demonstrate that our approach for motion 

similarity analysis can generate visually acceptable results and that the other methods' 

performance can be improved by using our new evaluation criterion. 

 

This paper is organized as follows. In section 2, three motion similarity metrics are 

investigated. Then we describe the process of our motion similarity analysis section 3. 

Finally we show experimental results to compare our approach with other approaches. 

 

2 Related Work 

Since motion similarity analysis is a critical stage for many motion editing techniques, in 

this section, two typical types of distance functions in recent research work are 

reviewed, and then the problems related to them are identified. 

 

2.1 Similarity Based on Joint Attributes 

Because motion capture data are usually directly represented by the joint angles, many 

research works prefer using similarity distance functions that are based on joint angles 

and joint velocities. Two typical examples are given below. 
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J. Lee et al. [9] present a similarity metric based on joint angles and joint velocities. The 

similarity between two frames is computed as follows. 
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where 0,ip  and 0,jp  are the root joint (pelvis) positions at frame i and frame j, 

respectively. kj ,q  is the quaternion that represents the orientation of the kth joint at 

frame i. )( kikj ,
1
,log qq−  is the angle by which the kth joint rotates from the orientation of 

frame i  to the orientation of frame j. ki,v  is the velocity of the kth joint at frame i. 

kjkj ,, , vq  are, respectively, the joint orientation and velocity  at frame j.  k is the joint 

index, m is the number of joints; kw   is the joint weight to control the importance of the 

kth joint. ar ww ,  and vw  are the attribute weights to accommodate for the relative 

importance of the different joint attributes.  

 

The similarity function between frame i and j consists of three terms. The first one is the 

difference between root velocities. In the original paper [9], when the relative coordinate 

system used, it is the difference between the global root translation with respect to the 

previous frame; in which case, it is the same as the difference in the root velocities. 

While in the fixed coordinate system,  the root positions are used instead of velocities, 

this method will become coordinates dependent. Then only the frames that are located 

nearby in the 3 dimensional space can be selected as the similar frame pairs. Hence, the 

similarity analysis results largely depend on the root positions. The other two terms are 
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the difference of joint angles and the difference of joint velocities. The joint angle term 

captures the pose information. While the other two terms incorporate the kinematic 

information of the joints. From Equation (2.1), we can see that there are 3 weight 

parameters each for the 3 terms. In the original work, no information is given on how to 

determine the values of these parameters. We have tried using different attribute weights 

and found that the results can be quite different depending on their values (see Figure 1.) 

 

Figure 1: Similarity analysis based on joint angles with different attribute weight sets 
between left and right (columns correspond to frames from the first clip; rows 
correspond to frames from the second clip; the sampling rate is 24 frames/second). Top: 
The distance matrix. Bottom: The resulting similar frame pairs are denoted by dots. 

 

(a) (1.0, 1.0, 1.0 )                                                            (b) (0.05, 1.0, 0.02) 
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Arikan and Forsyth [2] define a similar distance function in Equation (2.2), except that it 

incorporates joint accelerations as well. This measure is based on joint positions and 

velocities in the root joint (pelvis) coordinates. There are four components in the 

equation, each of which represents a contribution to the similarity measure.  ∑
=

m

k
kk dpw

1
 

and ∑
=

m

k
kk dvw

1

 are, respectively, the difference in joint positions and joint velocities with 

respect to the root coordinates;  0dv  and 0da  are the difference of root velocities and 

accelerations. Each of the last two terms includes translation and orientation. k is the 

joint index,  m the number of joints. kw  is the joint weight to control the importance of 

the kth joint;  pw , vw , 0vw  and 0aw  are the attribute weights to control the relative 

importance of the different joint attributes. The difference of joint positions in the root 

frames defines the pose similarity. The other components incorporate kinematic 

information like velocities and accelerations. 
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The major drawback of this metric is on how to determine the optimal attribute weights. 

In the original work, the authors provide a clever way to handle the attribute weights. 

The maximum difference between sequential frames in the database is used to normalize 

each term. The normalization process could better balance the effects of the four features 

on similarity analysis. But the attribute weights after normalization might be dependent 

on different motion databases. In other words, the attribute weights are likely to change 

when the database includes motion streams with different special patterns. Figure 2 
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shows the different similarity analysis results generated for the same two clips in two 

different datasets. 

 

Figure 2: Similarity analysis based on joint velocities and accelerations in different 
datasets.    Left: The dataset has only 2 clips. Right: The dataset has 25 clips. Top: The 
distance matrix. Bottom: The resulting similar frame pairs are denoted by dots. 

 

2.2 Similarity Based on Point Clouds 

In [8], two point sets driven by a skeleton are used to estimate the similarity between 

two frames. In fact, the point set of a frame can be formed by the joint positions at the 
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frame and its neighboring frames, which form a window of the current frame. Each 

frame in the window has a different weight, called frame weight, which controls the 

relative importance of the frame with respect to the other frames in the window. 

Typically, the frame weight is tapered off towards the end of the window. 

 

The similarity metric is defined as the minimum difference between the two point sets. 

In order to calculate the minimum difference in joint positions, an optimal 2D 

transformation matrix must be computed first. After transformation, the second point set 

can be aligned with the first point set. The similarity measure is defined in Equation 

(2.3). 
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where i
kf ,p  is the kth joint position in the fth frame of the point set at frame i. j

kf ,p  is 

similarly defined to the point set at frame j.  k is the joint index; m is the number of 

joints; kw  is the joint weight. fw  is the frame weight; f denotes the frame index within 

the window and  F is the number of frames in the window. T is the transformation 

matrix for rotating by an angleθ  around the vertical axis, translating on the horizontal 

plane by ),( 00 zx .  In the original paper, a solution is given to find the matrix T.  In this 

approach, as joint positions are directly used, the similarity between body configurations 

of the frames can be captured. As well the consideration of a frame’s neighborhood (8 

frames in length) incorporates the kinematic differences between the two sequences.  

 



Guan and Yang 

 12

The major disadvantage of this metric is that it uses a 2D transformation matrix as the 

optimal matrix. The method assumes that all the motions happen at the same level as the 

ground. The optimal transformation matrix in [8] does not consider translation along the 

y-axis, and rotations around the x-axis or the z-axis. For example, when in one motion 

clip a character is running on a flat floor; and in the second clip, the character is walking 

on a ramp (see Figure 3). The similarity result is shown in Figure 4. Obviously, when 

the vertical distance between the root joints of the two clips increases, their similarity 

measure also increases. As a result, only the frames with root joints at the same level are 

selected as similar frame pairs.  To solve this problem, one way is to compute the 3D 

transformation matrix by which the two point sets can be aligned. However, computing 

the 3D transformation matrix can be very time consuming. 

 

 

 

 

 

 

 

Figure 3: Two motion clips on the different level. 
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Figure 4: Similarity analysis based on point clouds. Left: two clips on the same level. 
Right: two clips on the different level. Middle: The distance matrix. Bottom: The 
resulting similar frames denoted by dots. 

 

2.3 Joint Weight 

In the motion similarity metrics discussed above, different joint weights are used to 

control the importance of different joints. In real life, different joints surely have 

different visual importance to the perception or understanding of motion. For example, 

the hip joint, knee joint, shoulder joint, elbow, pelvis and spine are more important than 

the others. In [9], the weights of the important joints are set to one, while the 

unimportant ones are set to zero. Wang et al. [13] propose a set of optimal joint weights 
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(shown in Table 1) for the similarity metrics proposed in [9]. They also compare their 

optimal joint weight set with the one in [9] by running a user study and found that the 

results using the optimal joint weight set are more robust and superior to the results 

using the original joint weight set in [9]. However, they indicate that their experimental 

results may be affected by the motion database and the different transition techniques 

applied. As all motion similarity analysis techniques have to specify a joint weight set to 

control the importance of different joints, in the novel approach presented in Section 3, 

we adopt the joint weight set as specified in [9].   

Table 1: The optimal joint weight set in [13]1. 

Joint Name Optimal Joint Weight

Right and Left Hip 1.000 

Right and Left Knee 0.0901 

Right and Left Shoulder 0.7884 

Right and left Elbow 0.0247 

 

3 Curvature and Relative Position Approach 

In this paper, we are concerned with finding visually similar frames in two motion 

streams automatically. This means that the skeletal poses, joint velocities, and 

accelerations of these two frames and of their neighborhood frames should be similar. In 

                                                           
1 Only the joints with non-zero weights are shown. 
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order to efficiently and accurately identify corresponding similar frames in two motion 

clips, we select features that satisfy the following criteria. 

• Coordinate invariant. This is important because the motion should not change 

after 3D rigid transformations. It is also called translation and rotation invariants.  

Here, we only consider the motion data with the same skeletal size.  

• Efficient computation. Since similarity analysis is performed on a frame by 

frame basis, the computation time is at least )( 2nO , where n is the number of 

frames in the motion database. For this reason, the feature computation cost is 

expected to be lower. Thus, the similarity computation can scale well with large 

motion databases.  

• The similarity of skeletal pose and kinematics information should be 

incorporated. 

• The method should not require determining the attribute weight parameters.   

 

According to the above criteria, we select two features in our similarity analysis method. 

The first is joint relative position in its own parent coordinate. The second is the 

curvature of the global curve formed by the movement of each joint.  Both of them are 

coordinate independent and can be easily computed from the motion capture data. In the 

proposed approach, there are two stages as shown in Figure 5, which are described in 

details in the following sections. 
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Figure 5: Motion similarity analysis process. 

 

3.1 Difference between Joint Relative Positions 

The joint (except for the root joint) relative position and its difference in two motion 

frames are computed according to Equation (3.1) and (3.2). 

vrp yxz RRR=                                                         (3.1) 
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v  is a vector that represents the offset of a joint. yxz RRR  are the rotation matrix of its 

parent; i and j are the frame indices; k is the joint index, m is the number of joints;  kw  is 

the joint weight to control the importance of the kth  joint.  Note that  in this feature, the 

root joint (pelvis) is excluded. Since the root joint's parent is the global world, its 

relative position is the same as the root's global position. If the root joint were included 

in the difference sum, then a coordinate dependent factor would be introduced. For the 

same reason, the root’s children, i.e. Chest, LeftUpLeg and RighUpLeg, are also 

excluded. Thus, the difference between joint relative positions is also invariant to global 

orientations. The joint relative position reduces the effects of its parent's movements on 

Drp  Computation Curvature 
Cross-correlation 

Clip1 
Clip2 

Similar 
frame pairs 
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the joint. The difference of this feature represents the position difference after the origins 

of their parent coordinates have been aligned and hence, can capture the pose similarity 

more accurately.  After this step only candidate frame pairs that are similar enough will 

go to the second stage. A threshold is needed to specify the number of candidates. By 

trying different choices, we found that 20 percent of all the possible frame pairs are 

sufficient for the second step. Figure 6 shows the rpD  matrix and candidate similar 

frame pairs. 

 

Figure 6: rpD computation between walking and running. Left: rpD matrix. Right: 
Candidate similar frame pairs. 

 

3.2 Curvature Cross Correlation 

In the second stage, the global motion curve of each joint is generated and its curvatures 

are calculated. Then cross-correlation is used to find the corresponding similar frames 

based on the curvature information.  
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The space curve of a joint is calculated as given in Equation (3.3). The offset vector of 

the joint v  is multiplied by the transformation matrix of its parent, then the 

transformation matrix of its grandparent and so on, until the transformation matrix of   

the root is reached. This operation is performed in the same manner as that in 

determining the joint positions in the global coordinate frame. 

( ) vr parenttgrandparenroot MMMt ...=                        (3.3) 

When a space curve is represented in parametric form, its curvature is calculated 

according to Equation (3.4).  

              ( )
( ) ( )
( ) 3t

tt
t

r

rr

′

′′×′
=κ                                 (3.4) 

( ) ( )tt rr ′′′ ,  are, respectively, the first and second order derivatives of the space curve at 

time t. In practice, the cubic B-spline is used to approximate the trajectory curve, so that 

the first and second order derivatives can be directly evaluated. Before the B-spline 

approximation, the curve is smoothed by a Gaussian filter to make the curvature value 

more stable. Figure 7 shows the results with smoothing and without smoothing.  
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Figure 7: The curvature of the motion curve for the joint leftLowArm in a walking clip, 
where the top signal is the curvature (shifted up by 3) calculated with a Gaussian filter 
and the bottom signal is the curvature calculated without a Gaussian filter. 

Curvature is an unsigned value that measures how rapidly the curve pulls away from its 

tangent. Therefore, it is used to represent the kinematic information of joint movements. 

The curvatures of each joint at frame t form a feature vector for one motion stream. The 

dimension of the vector is determined by the number of joints.  

 

Figure 8: Cross correlation operated on the feature vectors of two motion clips. 

mask 
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To identify similar movements, cross-correlation is applied, which is a standard method 

of estimating how two signals are correlated. It is a widely used technique to identify 

similar 2D patterns in computer vision.  Here, the feature vector defined above in the 

neighborhood of a frame forms a pattern mask. The mask slides over the second motion 

clip. If a similar pattern can be found in the second clip, then the corresponding frame is 

similar to the frame in the middle of the mask in terms of curvature (see Figure 8).  The 

correlation between two frames is defined as in Equation (3.5). 
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where N is the size of the neighborhood. kw  is the joint weight to control the importance 

of the kth  joint. Frame i and its eight neighbors form a mask. We have found 

empirically that 9 frames is suitable for the size of the mask, since most transitions 

happen in a short interval, ranging from 10 to 30 frames. kli ,+κ  is the feature's kth 

dimension value of the lth neighbor of frame i; kimean ,  is the feature's kth dimension 

mean value of frame i. klj ,+κ  and kjmean ,  are similarly defined for frame j. According to 

the cross correlation result, the corresponding frame pairs with larger correlation values 

are considered as similar frame pairs. The left image of Figure 9 shows the cross 

correlation result between a walking and a running sequence, where the whiter areas 

have larger cross correlation values. Note that only the cross correlation results for the 
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candidate frame pairs are computed, while the others are assigned the minimum of the 

computed cross correlation values to have the gray scale drawing. The right image in 

Figure 9 shows similar frame pairs as the output of our system.  

 

 

Figure 9: Left: Cross correlation results.  Right: Similar frame pairs. 

 

4 Experimental Results 

In this section, we present the experimental results on motion similarity analysis using 

the novel approach described in the previous section. The other 3 previous approaches 

for motion similarity analysis are also implemented. Then experiments designed to 

compare the performance of different methods are carried out. We focus on three major 

performance aspects: efficiency, accuracy and visual acceptability. All approaches are 

implemented on an average PC (1.16 GHz P4 with 2 GB of memory running Windows 

XP Professional) using C++ and Maya 5.0. The motion dataset includes a wide variety 
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of human motions, such as walking, running, dancing with different styles, and on 

different levels.  

 

4.1 Run Time Comparison 

Table 2 shows the run time comparison between different approaches, where the 

similarity computation time between walking (300 frames) and running (236 frames) is 

shown. Given a motion dataset involving n clips, the total time needed for motion 

similarity analysis is Run Time (in Table 2) 
2

)1( +
×

nn , when the number of frames for 

each motion clip is in the same range, that is, from 236 to 300 frames. The run time of 

the different motion similarity analysis methods ordered from fast to slow is: the 

curvature and rpD  approach, the joint positions and velocities approach, the joint angles 

and velocities approach,  and the point clouds approach. The results demonstrate that our 

approach is very efficient and can significantly improve the run-time performance for 

motion similarity analysis.  

Table 2: Run time to compute the similarity between two motion clips for different 
motion similarity analysis methods. 

Approaches Run Time (seconds) 

Curvature and rpD   1.842 

Joint positions and velocities 7.585 
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Joint angles and velocities 9.844 

Point clouds 65.422 

 

4.2 Accuracy Study 

4.2.1 Accuracy Criteria 

From the proceeding discussion, it is already known that similar frame pairs should 

match in terms of skeletal configurations, joint velocities and joint accelerations. 

Thus,the difference in positions, velocities and accelerations can be applied to indicate 

how similar a frame pair is. For that reason, in our experiments, three criteria are 

designed to evaluate the qualities of the results between different similarity analysis 

methods. They are, respectively, the velocity difference, the acceleration difference and 

the position difference ( av DD , and pD for short), and defined in the following equations. 
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where v , a  and p  represent, respectively, the velocity, acceleration and position. i and j 

are the indices of the similar frame pair; k is the joint index; m is the number of joints;  
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kw  is the joint weight. f is the frame index within the neighborhood of the compared 

frame; F is the number of frames in the neighborhood; fw  is the frame weight. 0,iM is 

the transformation matrix of the root joint at frame i; 1
0,

−
jM  is the inverse of the 

transformation matrix of the root joint at frame j. When the transition happens from 

frame i to frame j, the matrix ( 1
0,0,

−
ji MM ) is used to align the two clips. Therefore, pD  is 

able to roughly measure the similarity between the two compared frames and their 

neighborhoods. Actually, the physical interpretation of pD is similar to that of the 

minimal position difference in the point clouds approach. But they are different in the 

following two aspects. In our approach, a 3D transformation matrix is used to align the 

two point sets, while a 2D transformation matrix is used in the point clouds approach. 

Additionally, the 3D transformation matrix is directly computed from the transformation 

matrix of the root joints at the two compared frames, no other joints are involved. In the 

point clouds approach, a more complex computation scheme involving the important 

joints is carried out to compute the 2D transformation matrix, and makes the 

computation cost more expensive. For example, on the same PC, it takes about 65 

seconds to compute the point clouds distance matrix between two clips 

(300frames×236frames), while it takes about 40 seconds to compute pD  for the same 

two clips. Moreover, since the position difference pD  can individually capture the 

similarity between two frames and their neighborhoods, it is more important than the 

other two measures, and is used as a major evaluation criterion in our evaluation 

scheme.  
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To compute the above three measures, the same number of similar frame pairs are 

generated between any two clips in the motion datasets for each approach. The quick 

sort algorithm is used to order the computed similarity measure between any two motion 

clips. The frame pairs with a higher similarity are kept as the results. Note that the 

curvature and rpD  approach sorts the candidate frame pairs according to the cross-

correlation values in the second step.  

 

4.2.2 Optimal Attribute Weights Computation 

The measure pD  can provide guidelines to find an optimal attribute weight set needed in 

the approaches based on the sum of multiple joint attributes. At this point, the computed 

optimal attribute weights are used to control the relative importance of the different joint 

attributes, such as joint positions, joint angles, root velocities and accelerations. The 

optimal attribute weights are different from joint weights which control the importance 

of different joints. In our experiments, we adopt the joint weight set as that specified in 

[9]. The weights of the important joints are set to one, while the unimportant ones are set 

to zero. All the other approaches use the same joint weight set. 

 

The process to compute the optimal attribute weights needed in the approaches based on 

the weighted sum of multiple joint attributes is described in detail as follows. 
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• Design an initial attribute weight search space. For example, each weight has 10 

possible values evenly distributed in the range (0, 1].  

• For each possible attribute weight set, calculate pD .  Then the attribute weight 

set with the minimum pD  corresponds to the optimal attribute weight set in the 

current search space. 

• Refine the attribute weight search space if necessary. 

The exhausting search for an optimal attribute weight set is very time consuming and the 

optimal attribute weight set depends on the motion patterns in the dataset. For example, 

in the approach based on joint angles and velocities, when the dataset includes only 2 

clips (each has 150 frames), and the search space is 101010 ×× , it takes more than 4 

hours to find the optimal attribute weights. When the search space increases to 

202020 ×× , it needs about 34 hours. In the first dataset, which includes running and 

walking only, the optimal attribute weight set is (0.1, 1.0, 0.1). In the second dataset, 

which includes dancing and running, the optimal attribute weight set becomes (1.0, 1.0, 

0.1).  If no measures such as pD  are defined to help detect the optimal attribute weights 

automatically, then the animators have to estimate the values of these attribute weights 

by trial-and-error, which is obviously a very tedious and labor intensive exercise. 

Furthermore, the quality of the results depends on the experience and skills of the 

animator. So compared with these techniques, our approach has the major advantage that 

it does not require the animator to set any attribute weights.  
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4.2.3 Results for Accuracy Evaluation 

In this section, the results for accuracy evaluation are presented when different motion 

similarity analysis techniques are applied to different datasets. 

 

 

Figure 10: Two motion clips on the same floor plane. 

 

 

Figure 11: Two motion clips on different levels. Top: Running on the floor plane. 
Bottom: Walking along a ramp with a slope of 15 degrees. H represents the vertical 
distance by which the walking clip is shifted down from the floor plane. 
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4.2.3.1 Motions on Different Levels 

The two clips are running and walking on the same floor plane shown in Figure 10. In 

the different level cases, the walking is modified by rotating the root joint around the z-

axis by 15 degrees so that walking on the ground plane is changed to walking on a slope. 

Then two more walking clips (see Figure 11) on a ramp are generated by shifting the 

rotated walking clip down by 30 and 60 cm. Thus, the effects of the vertical distance 

between the root joints of the two compared frames can be investigated. 

 

 

 

 

 

Figure 12: Similarity analysis based on point clouds. (a) Two clips are on the same floor 
plane; (b)(c)(d) on 3 different level cases. Top: The root trails of walking and running. 
The dotted boxes mark the areas with a smaller vertical distance of the root joints.      
Middle: The distance matrix (darker areas imply a lower distance measure). Bottom: 
The resulting similar frame pairs denoted by dots. The rows represent the frames in the 
running clip, while the columns represent the frames in the walking clip.  

walking 
running 

(a) Same level case                   (b) H = 0                           (c) H = 30                          (d) H = 60 
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The top images in Figure 12 show the trails of the root joints in walking and in running, 

where the areas with a smaller vertical distance of the root joints are marked by the 

dotted boxes. The middle and bottom images show the similarity analysis results in the 

point clouds approach between the same level case and 3 different level cases. Since the 

point clouds approach uses a 2D rigid transformation matrix to compute the minimal 

distance between two point sets, the similarity results obtained by this method are quite 

different between the four compared cases. When the vertical distance between the root 

joints of the two clips increases, the difference measure increases, or the similarity 

measure decreases. While in the other three techniques, since all the motion features are 

coordinate invariant, the same results are achieved between the same level case and the 

different level cases for each technique (shown in Figure 13). Figure 14 shows the 

performance comparison between the same level case and 3 different level cases. The 

results demonstrate that the accuracy performance of the point clouds approach 

decreases largely in the different level cases when compared with that in the same level 

cases; while the other approaches keep the same performance in both cases. Here, in the 

approaches based on the weighted sum of multiple joint attributes, all the attribute 

weights are set to one. According to the criterion pD , the performance of the approach 

based on curvature and rpD , the approach based on joint positions and velocities, the 

point clouds approach in the same level case are much better than the performance of the 

approach based on joint angles and velocities. It is because the unit weight set used in 

the joint angle approach is not suitable for the test motion clips.  
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Figure 13: Similarity analysis based on: (a) Curvature and rpD ; (b) Joint angles and 
velocities; (c) Joint positions and velocities. Top left: Cross-correlation results. Top 
middle and right: Distance matrix.   Bottom: The resulting similar frame pairs. 

 

 

 

(a) Curvature and Drp.        (b) Joint angles & velocities.          (c) Joint positions & velocities 
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Figure 14: Performance comparison between the same level case and the 3 different 
level cases. In the different level case, the performance for the point clouds approach      
decreases largely when compared with its performance in the same level case; while the     
other approaches perform almost the same in both cases. 

(c) Acceleration difference (d) Computation time (seconds) 

(a) Position difference (b) Velocity difference 

Same level case 
H = 0 
H = 30 
H = 60 

1. curvature and Drp 

2. point clouds 

3. joint angles and velocities 

4. joint positions and velocities 
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4.2.3.2 Optimal Attribute Weight Sets Computation 

In the joint angle approach, three attribute weights ( vap www :: ) are used to 

accommodate for the relative importance of the difference of root velocities, the 

difference of joint angles and the difference of joint velocities. To get a suitable attribute 

weight set needed in the joint angle approach, the search process described in 4.2.2 is 

operated in two search spaces. Both are 101010 ×× , one evenly distributed, and the other 

non-uniformly distributed. Two optimal attribute weight sets are obtained for the test 

motions. Figure 15 shows the difference in the results generated by using the joint angle 

approach with different attribute weight sets.  In Figure 16, the performance for the 

approach based on joint angles and velocities is presented with different attribute weight 

sets. The results demonstrate that the performance with the optimal attribute weight sets 

is greatly improved when compared with the user specified attribute weights. Movie 1 

also shows the difference in the results by using a user specified attribute weight set and 

the improved optimal attribute weight set. 
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Figure 15: Similarity analysis based on joint angles and joint velocities with different     
attribute weight sets. Left: A user specified attribute weight set. Middle and right: Two 
optimal attribute weight sets.  Top: The distance matrix. Bottom: The resulting similar 
frame pairs denoted by dots. 

 

 

 

 

 

 

 

Figure 16: Performance comparison for the joint angle approach by using different 
attribute weight sets. The performance of the joint angle approach is largely improved 
by using the computed optimal attribute weight sets according to pD . 

   
1. A user specified weight set                   {  1.0 : 1.0 : 1.0  } 
2. Optimal attribute weight set One          {  0.1 : 1.0 : 0.1  } 
3. Optimal attribute weight set Two         { 0.05: 1.0 : 0.02} 

(a) Position difference.                     (b) Velocity difference.                   (c) Acceleration difference. 

(a) (1.0, 1.0, 1.0 )                               (b) (0.1, 1.0, 0.1)                               (c) (0.05, 1.0, 0.02) 
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4.2.3.3 Evaluation between Different Datasets 

Three different datasets have been tested using different motion similarity analysis 

approaches. Set A includes a walking and running clip (300×236 frames). Set B 

includes a rocknroll and a highwire walking (260×300 frames). Set C has 12 motion 

clips with a variety of human behaviors, such as sneaking, drunk-walking and dancing. 

For the three datasets, all the motions happen on the same level ground and the joint 

angle approach is applied with an improved attribute weight set. Figure 17 shows the 

similarity analysis results for Set B. The performance of different approaches for the 3 

datasets is presented in Figure 18. The result demonstrates that the performance of 

different approaches varies a little when different datasets are applied. According to the 

position difference criterion, there is not too much difference in their performance in 

terms of accuracy or quality. This can be verified by the similarities of their performance 

in terms of visual acceptability presented in the next section. Furthermore, the whole 

evaluation process shows that the two criteria, the velocity difference vD  and the 

acceleration difference vD , cannot be independently used as an evaluation criterion.  

 

 



Motion Similarity Analysis and Evaluation of Motion Capture Data 

 35

 



Guan and Yang 

 36

0

200

400

600

800

1000

1200

1400

1 2 3 4
0

2

4

6

8

10

12

1 2 3 4
0

0.5

1

1.5

2

2.5

1 2 3 4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 2 3 4
0

5

10

15

20

25

1 2 3 4
0

100

200

300

400

500

600

700

800

900

1000

1 2 3 4

0

5

10

15

20

25

30

35

40

1 2 3 4
0

20000

40000

60000

80000

100000

120000

140000

1 2 3 4
0

200

400

600

800

1000

1200

1400

1600

1 2 3 4

Figure 17: Motion similarity analysis results for Dataset B. Left: The distance matrices. 
Right: The resulting similar frame pairs. First row: Curvature and Drp approach; Second 
Row: The point clouds approach. Third Row: The joint angles approach. Fourth Row: 
The joint positions and velocities approach.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18: Performance comparison between 3 different datasets. Top row: Dataset A, a 
walking and a running (300×236 frames). Middle row: Dataset B, a rocknroll and a 
highwire walking (260×300 frames). Bottom row: Dataset C, 12 different motion clips. 
Left:  the position difference; middle: the velocity difference; right: the acceleration 
difference. 
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The results of our evaluation between different approaches are summarized in Table 3. 

 Table 3: Comparison between different approaches for motion similarity analysis. 

 

4.3 Visual Acceptability 

To visually assess the performance of the similarity analysis results, a hierarchical graph 

is built based on the results of different motion similarity analysis methods. Then 

according to the user's specifications, new motion sequences are created by stitching 

different motion clips together. Since motion transition points are detected based on 

motion similarity analysis, the quality of the resulting motion sequence directly depends 

on the similarity analysis results. In our experiments, linear interpolation is applied to 

distribute the discontinuities in the transition region. The experimental results 

demonstrate that the smooth and natural transitions can be achieved at the similar frame 

pairs generated by using the curvature and rpD approach. Figure 19 shows the transitions 

between walking and running. The left columns show the skeleton poses at selected 

 Our 
Approach 

Point 
Clouds 

Joint 
Angle 

Joint Velocity & 
Joint Acceleration 

Running Time 
 

Fast Slow Medium Medium 

Optimal  Attribute 
Weight Determination 

No No Yes Yes 

Coordinate Invariant Yes No Yes Yes 

Velocity Difference Acceptable Good Good Acceptable 

Acceleration Difference 
 

Good Acceptable Good Good 

Position Difference 
 

Acceptable Acceptable Acceptable Good 
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similar frame pairs. The middle and right columns are the transition results without and 

with linear smoothing. Movie 2 to Movie 4 demonstrate that our approach can generate 

visually appealing transitions.  Movie 5 shows the transition results based on the other 

similarity analysis techniques. 
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Figure 19: Transitions between walking (green) and running (red).  Left: Skeleton poses 
at the selected similar frame pairs. Middle: Transitions without linear interpolation. 
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Right: Transitions with linear interpolation. The screen shots are down-sampled by a 
factor of 3. 

5 Conclusions and Future Work 

In this paper, two typical motion similarity approaches are investigated and the related 

problems are identified. The approach based on a weighted sum of multiple joint 

attributes requires attribute weight detection, while the point clouds approach is 

coordinated variant and not efficient. To tackle the problems existed in the previous 

approach, a novel method for motion similarity analysis is designed and developed. Two 

motion features: the curvature of space curve and the joint relative positions are 

presented to estimate the similarity between two motion frames. The experimental 

results show that our approach is very efficient and is completely coordinate invariant. 

And visually acceptable transition results can be generated. We also introduce a general 

criterion to evaluate the performance of different methods for motion similarity analysis. 

By using this criterion, better attribute weight parameters can be found to improve the 

results of the approach based on the weighted sum of different joint attributes. 

 

For the approach based on joint positions, velocities and accelerations, as the similarity 

is represented as the weighted sum of three or more components, the appropriate 

attribute weight set is very difficult to determine. Moreover, for the dataset with 

different motion patterns, the attribute weight set is likely to change. In our approach, 

although two motion features are used, the two-step process instead of the weighted sum 

avoids the attribute weight selection. Though a threshold is specified in the first stage, 
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we have found a fixed range ( 20%~25% ) empirically. Meanwhile, in the case of the 

point clouds approach, the minimum distance between two point sets is computed by 

aligning them with a 2D rigid transformation matrix. As a result, this method cannot 

correctly deal with motions on different plane levels. The universal criterion pD  

presented in this paper is different from the minimum distance in the point clouds 

approach for the following two reasons. First, pD  is the distance after two point sets are 

aligned by a 3D transformation matrix instead of a 2D transformation matrix. Second, 

the 3D transformation matrix is directly computed from the 6 DOF of the root joints of 

the two frames. Therefore, pD  is more general and easily computed. And according 

to pD , an optimal attribute weight set can be found for approaches that require attribute 

weight determination.  

 

In our approach, two novel motion features are proposed to describe the similarity 

between two motion frames. The joint relative positions capture the skeletal pose 

information, while the curvature of space curve formed by the joint movements capture 

the kinematic information. Compared with the previous approach for motion similarity 

analysis, the new curvature and rpD approach has three major advantages. First, it has a 

high efficiency. It is because the two features can be computed directly from motion 

capture data. Second, it is coordinate invariant. The two selected features are coordinate 

independent. Thus, the proposed approach can correctly handle a wide range of motions, 
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particularly, the motions on different levels. Finally, no attribute weight determination is 

required in our approach. A two-step process does not require attribute weight selection.   

However, there are several limitations in our work. When processing stationary motions, 

the curvature calculation becomes unreliable that may ruin our similarity analysis 

results. So our approach is restricted to the motions where most of the important joints 

keep continuously movement.  But the accuracy of the curvature computation can be 

improved by using the ENO schemes (Essentially Non-Oscillatory) that are introduced 

in [6]. Secondly, only a brute-force sampling method is employed to illustrate how to 

use the more general measure pD  to find the optimal attribute weight set. In the future, 

we can try some classic optimization methods to improve the computation process for 

optimal attribute weight set. Another issue needs to consider is the design of Guassian 

filter used to smooth the space curve of joint movement. Technically, it depends on 

amount of noise in the raw motion data.  

Additionally, there are several areas left open for future work. One possibility is to 

improve the efficiency of the curvature and rpD  approach by performing the cross-

correlation in the Fourier domain by using the FFT. As well, we would like to apply our 

work to much larger datasets with various motion patterns and to test the effects of using 

larger data sets on the performance of different approaches. Moreover, we will 

investigate if there are other motion features that are more suitable to represent and to 

identify motion similarities between two motion frames.  
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