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Abstract

This thesis considers PVol (Percentage of Volume) strategies, which are

an often used type of algorithmic trading strategies. In a PVol strategy, the

broker aims to bring the order execution speed in line with a percentage of the

market volume. This target percentage and the total order size are typically

given by the client. In a discrete-time setting, we analyze the optimization

problem of minimizing the expected deviations between the realized portion

of trading and the target percentage. Under different assumptions, we either

solve the problem explicitly or implement a numerical solution in MATLAB.
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Chapter 1

Problem Formulation

1.1 Introduction

Nowadays, algorithmic trading is very popular for equity trading among invest-

ment banks and hedge funds. Algorithmic trading is about computer-based

algorithms to execute trading orders. It is used for large orders, which affect

stock prices. The main goal of algorithmic trading is to control execution

costs and market risk. From a broker’s perspective, the task is to execute

an order in a way that it is close to a benchmark. The order size (number

of shares) and the benchmark are typically chosen by the client. The most

popular benchmarks are VWAP (Volume weighted average price), PVol (Per-

centage of volume; also abbreviated as POV), IS (Implementation shortfall)

and TWAP (Time weighted average price).

An IS strategy uses the arrival price as benchmark, which means that one

aims to find a strategy such that the price paid is close to the opening price

of the stock. While there is an extensive literature on IS strategies, notably

the seminal paper by Almgren and Chriss [1], IS strategies use a single price
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as benchmark, but it is often more adequate to compare with an average price

over a certain period.

Such an average price is TWAP. One splits the time interval, say one

trading day, into a number of small time buckets with the same length. A

TWAP strategy trades an equal number of shares in each period so that the

average cost of the strategy is close to the average intraday price over the

trading day. This leads to a strategy which is easy to execute. However,

such a strategy may not minimize the market impact because the market

volume, which is a key factor for the market impact of a trading order, is

not evenly distributed over a trading day. Indeed, intraday market volume is

often U-shaped: market volume is high in the morning and evening while the

volume in the middle of the day is lower. To account for this, VWAP and

PVol strategies are frequently used.

A VWAP strategy uses the VWAP benchmark, which is calculated at the

end of the day as the average intraday price weighted by the corresponding

market volume. VWAP strategies are among the oldest and most popular

trading algorithms, and there is some considerable literature about them, going

back to Berkowitz et al. [2], although much less research has been done than

for IS strategies.

In practice, also popular are PVol strategies, whose target is to keep

the ratio of our volume to the market volume close to a given participation

rate. However, there is very little literature about PVol strategies. Recent-

ly, Guéant [3] found a closed-form expression for the optimal participation

rate in a continuous-time setting under the assumption of deterministic mar-

ket volume. In contrast, this thesis considers a discrete-time setting from the

perspective of a broker with the participation rate fixed by the client and opti-
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mization is over trading strategies by minimizing expected deviations between

the ratio of our volume to the market volume and the fixed participation rate.

The remainder of this thesis is organized as follows. Section 1.2 introduces

the optimization problem corresponding to PVol. Because this optimization

problem is involved, the second chapter focuses on a simplified problem, which

removes a main difficulty, the random market volumes appearing in the de-

nominator of the optimization problem. At the end of Chapter 2, we use

exemplary trading data to analyze the performance of the strategy optimal to

the simplified problem. In the third chapter, we return to the original problem

with the market volumes in the denominator under i.i.d. assumption on the

market volumes.

1.2 Mathematical Formulation

We now present the problem in mathematical terms. A broker needs to buy

(or sell) a fixed volume S during the discrete-time periods 1, . . . , T . The target

of PVol is to bring the order execution speed in line with a certain percentage

of the market volume. We fix a target percentage c ∈ (0, 1), and want to have

Yj

Xj+Yj
close to c, where Yj is our trading volume in the market and Xj is the

trading volume of other participants. The aim is to minimize the value

E

[
T∑

j=1

(
Yj

Xj + Yj

− c

)2
]

(1.1)

under the condition Y1+ . . .+YT = S. This condition means that the order is

completed after T periods. We assume that the market volumes X1, . . . , XT

are positive random variables on some probability space (Ω,F , P ) with finite
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moments E[X2
j ] < ∞ and E[X−2

j ] < ∞ for all j. We denote by Ft the

σ-algebra generated by X1, . . . , Xt and set F0 = {Ω, ∅} equal to the trivial

σ-algebra. Because the trader needs to choose Yt with information available

at time t − 1, Yt must be Ft−1-measurable, hence the process Y must be

predictable. Because the trader can have completed the order already before

T , the problem we consider is minimizing

E

[
τ∑

j=1

(
Yj

Xj + Yj

− c

)2
]

under the condition Y1 + . . .+ Yτ = S where τ is a stopping time with respect

to the filtration (Ft−1)t=1,...,T , because the decision to stop at time t needs to

be based on the information from X1, . . . , Xt−1 available at time t − 1. In

mathematical terms, this means that {τ ≤ t} ∈ Ft−1 for all t = 1, . . . , T . Al-

ternatively, we can see this as first specifying all Ỹ1, . . . , ỸT with
∑T

j=1 Ỹj ≥ S,

then defining

τ = inf

{
t ≥ 1

∣∣∣∣∣
t∑

j=1

Ỹj ≥ S

}

and finally setting

Yt =


Ỹt , t < τ

S −
τ−1∑
j=1

Ỹj , t = τ.

1.2.1 Simplified Problem

Since this question is quite difficult, we modify it into a similar, but easier one.

In a first step, we aim to minimize

T∑
j=1

E
[
(Yj − c (Xj + Yj))

2]
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under the condition Y1 ≥ 0, . . . , YT ≥ 0 and
∑T

j=1 Yj = S. Note that this

results from multiplying each term in (1.1) by Xj + Yj, which removes a main

difficulty in (1.1) that the market volumes Xj appear in the denominator.

More generally, we consider a dynamic formulation which means that it starts

at time t and the broker has already executed volume s. The value function

equals

V1(t, s) = min
Yj≥0

E

[
T∑

j=t+1

(Yj − c (Xj + Yj))
2

]

for constants t ∈ {0, 1, . . . , T}, s ∈ [0, S] under the condition
T∑

j=t+1

Yj = S − s.

We will analyze this problem in Section 2.1 for identically distributed volume

and in Section 2.3 for time dependent volume.

We then include the possibility of stopping early, which means the value

function is

V2(t, s) = min
Yj≥0

E

[
τ∑

j=t+1

(Yj − c (Xj + Yj))
2

]

for constants t ∈ {0, 1, . . . , T}, s ∈ [0, S] under the condition
τ∑

j=t+1

Yj = S − s.

We will analyze this case in Section 2.2 for identically distributed volume and

in Section 2.4 for time dependent volume.

1.2.2 Original Problem

We then get back in Chapter 3 to the original problem formulation of per-

centage volume. We give a dynamic formulation which means that it starts at

time t and the broker has already traded volume s. Again, we consider first
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without stopping early, namely

V3(t, s) = min
Yj≥0

E

[
T∑

j=t+1

(
Yj

Xj + Yj

− c

)2
]

for constants t ∈ {0, 1, . . . , T}, s ∈ [0, S] under the condition
T∑

j=t+1

Yj = S − s.

We will analyze this case in Section 3.1.

Including the possibility to finish the order execution early, the value func-

tion equals

V4(t, s) = min
Yj≥0

E

[
τ∑

j=t+1

(
Yj

Xj + Yj

− c

)2
]

for constants t ∈ {0, 1, . . . , T}, s ∈ [0, S] under the condition
τ∑

j=t+1

Yj = S − s.

We will analyze this case in Section 3.2.
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Chapter 2

Simplified Problem

In this chapter, we approach the simplified problem presented in Section 1.2.1.

We divide this chapter into five parts. In Sections 2.1 and 2.2, we analyze the

simplified problem when the market volumes are identically distributed while

Sections 2.3 and 2.4 consider time dependent volumes. Section 2.5 compares

the performance of different trading strategies using real trading volume data.

2.1 Identically Distributed Volumes without

Stopping

In this section, we assume that the market volumes Xj are independent and

identically distributed with mean µ = E[Xj] and variance σ2 = Var(Xj).

Recall that we study here

V1(t, s) = min
Yj≥0

j=t+1,...,T

E

[
T∑

j=t+1

(Yj − c (Xj + Yj))
2

]
(2.1)
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under the condition
∑T

j=t+1 Yj = S − s. We use the following well-known

auxiliary result; see for example Theorem 6.4 of Kallenberg [4].

Lemma 2.1: Let X and Y be two random variables on some probability space

(Ω,F , P ). Let f : R2 → R be a measurable function with E[|f(X, Y )|] < ∞

and let A ⊆ F be a σ-algebra. If X is independent of A and Y is A-

measurable, then

E[f(X, Y )|A]|(ω) = E[f(X, y)]|y=Y (ω) for almost all ω ∈ Ω. (2.2)

The right-hand side of (2.2) means that we fix the random variable Y and

take expectation over the independent random variable X. Using this result,

we show that in (2.1), it is enough to minimize over deterministic Yj. Indeed,

we obtain that

V1(t, s) = min
Yj≥0

E

[
T∑

j=t+1

(Yj − c (Xj + Yj))
2

]

= min
Yj≥0

E

[
T−1∑
j=t+1

(Yj − c (Xj + Yj))
2 + (YT − c (XT + YT ))

2

]

= min
Yj≥0

E

[
T−1∑
j=t+1

E
[
(Yj − c (Xj + Yj))

2 |Fj−1

]
+ E

(S − s−
T−1∑
j=t+1

Yj − c

(
XT + S − s−

T−1∑
j=t+1

Yj

))2
∣∣∣∣∣∣FT−1


= min

Yj≥0
E

[
T−1∑
j=t+1

E
[
(yj − c (Xj + yj))

2] ∣∣∣
yj=Yj(ω)

+ E

[(
S − s−

T−1∑
j=t+1

yj

−c

(
XT + S − s−

T−1∑
j=t+1

yj

))2
 ∣∣∣∣∣

yt+1=Yt+1(ω),...,yT−1=YT−1(ω)

 ,

where the last equality follows from Lemma 2.1.
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Define a function

g(yt+1, . . . , yT−1) : =
T−1∑
j=t+1

E
[
(yj − c (Xj + yj))

2]
+ E

(S − s−
T−1∑
j=t+1

yj − c

(
XT + S − s−

T−1∑
j=t+1

yj

))2
 .

This is a deterministic function g : RT−t+1 → R and we can write

V1(t, s) = min
Yj≥0

E [g(Yt+1, . . . , YT−1)]

under the condition
∑T−1

t+1 Yj ≤ S − s. Hence, the problem is equivalent

to minimizing g and finding a deterministic minimizer y∗ = (y∗t+1, . . . , y
∗
T−1)

of g. To do so, we take partial derivatives of g with respect to yℓ for ℓ =

t+ 1, . . . , T − 1, which results in

∂g

∂yℓ
= E [2 (yℓ − c (Xℓ + yℓ)) (1− c)]

+ E

[
2

(
S − s−

T−1∑
j=t+1

yj − c

(
XT + S − s−

T−1∑
j=t+1

yj

))
(−1 + c)

]

= E

[
(yℓ − c (Xℓ + yℓ))−

(
S − s−

T−1∑
j=t+1

yj − c

(
XT + S − s−

T−1∑
j=t+1

yj

))]

= (1− c)yℓ − cµ−

(
S − s−

T−1∑
j=t+1

yj − cµ− c

(
S − s−

T−1∑
j=t+1

yj

))
.

We set ∂g
∂yℓ

equal to 0, thus we have

y∗ℓ = S − s−
T−1∑
j=t+1

y∗j , ℓ = t+ 1, . . . , T − 1.

Then we sum all the y∗ℓ for ℓ = t+ 1, . . . , T − 1 so that
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T−1∑
j=t+1

y∗j = (T − t− 1)

(
S − s−

T−1∑
j=t+1

y∗j

)
.

This implies

T−1∑
j=t+1

y∗j =
(T − t− 1)(S − s)

T − t
< S − s.

Hence, we get

y∗ℓ = S − s−
T−1∑
j=t+1

y∗j =
S − s

T − t
, ℓ = t+ 1, . . . , T − 1,

y∗T = S − s−
T−1∑
j=t+1

y∗j =
S − s

T − t
,

which means y∗ℓ = S−s
T−t

for all ℓ. This shows that the minimizer of V1(t, s) is

deterministic with y∗ℓ = S−s
T−t

because g has only one critical point and needs

to have a global minimum as continuous function with g(y) → ∞ for |y|→ ∞.

This means that we distribute our trades equally, which is what we expect

because the market volume is i.i.d. and we cannot finish our trading early as

opposed to the setting of the next section. The value function equals

V1(t, s) = min
Yj≥0

E

[
T∑

j=t+1

(Yj − c (Xj + Yj))
2

]
= min

Yj≥0
(T − t)E

[
(1− c)2Y 2

j − 2c(1− c)XjYj + c2X2
j

]
= (T − t)

(
(1− c)2

(
S − s

T − t

)2

− 2c(1− c)
S − s

T − t
E[Xj] + c2E[X2

j ]

)

= (T − t)

((
(1− c)(S − s)

T − t

)2

− 2cµ(1− c)(S − s)

T − t
+ c2(σ2 + µ2)

)
.

Alternatively, we can use another method to determine the minimizers for Yℓ,
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ℓ = t + 1, . . . , T − 1 and V1(t, s). We do this backward in time by dynamic

programming. When t = T − 1, we need to trade all the remaining volume,

hence YT = S − s and

V1(T − 1, s) = min
YT≥0

E
[
(YT − c (XT + YT ))

2]
= E

[
(S − s− c (XT + S − s))2

]
= ((1− c)(S − s))2 − 2c(1− c)(S − s)E[XT ] + c2E[X2

T ]

= ((1− c)(S − s))2 − 2cµ(1− c)(S − s) + c2(µ2 + σ2).

When t = T − 2, we have

YT = S − s− YT−1,

V1(T − 2, s) = min
YT≥0,YT−1≥0

E
[
(YT−1 − c (XT−1 + YT−1))

2 + (YT − c (XT + YT ))
2]

= min
YT−1∈[0,S−s]

E
[
(YT−1 − c (XT−1 + YT−1))

2

+(S − s− YT−1 − c (XT + S − s− YT−1))
2] .

Define a function

g(yT−1) : = E
[
(yT−1 − c (XT−1 + yT−1))

2]
+ E

[
(S − s− yT−1 − c (XT + S − s− yT−1))

2] .
This is a deterministic function g : R → R. Hence, the problem is equivalent to

minimizing g and finding the minimizer y∗T−1 of g. We then choose YT−1 = y∗T−1
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to minimize V1. We take the derivative of g, namely,

g′(yT−1) = E [2 (yT−1 − c (XT−1 + yT−1)) (1− c)

+2 (S − s− yT−1 − c (XT + S − s− yT−1)) (−1 + c)]

= (1− c)yT−1 − cµ− (S − s− yT−1 − cµ− c(S − s− yT−1)) .

Setting g′(y∗T−1) equal to 0, we have

y∗T−1 =
S − s

2
, y∗T = S − s− y∗T−1 =

S − s

2

and then

V1(T − 2, s) = min
YT−1∈[0,S−s]

E
[
(YT−1 − c (XT−1 + YT−1))

2

+(S − s− YT−1 − c (XT + S − s− YT−1))
2]

= 2

((
(1− c)(S − s)

2

)2

− 2cµ(1− c)(S − s)

2
+ c2(σ2 + µ2)

)
.

This structure leads us to the induction hypothesis that

V1(T − j, s) = j

((
(1− c)(S − s)

j

)2

− 2cµ(1− c)(S − s)

j
+ c2(σ2 + µ2)

)
(2.3)

with optimizers y∗ℓ = S−s
j
, ℓ = T − j, . . . , T . To confirm this hypothesis, we
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deduce

V1(T − j − 1, s)

= min
YT−j∈[0,S−s]

E
[
(YT−j − c (XT−j + YT−j))

2 + V (T − j, s+ YT−j)
]

= min
YT−j∈[0,S−s]

E

[
(YT−j − c (XT−j + YT−j))

2 + j

((
(1− c)(S − s− YT−j)

j

)2

−2cµ(1− c)(S − s− YT−j)

j
+ c2(σ2 + µ2)

)]
.

Define a function

g(yT−j) : = E

[
(yT−j − c (XT−j + yT−j))

2 + j

((
(1− c)(S − s− yT−j)

j

)2

−2cµ(1− c)(S − s− yT−j)

j
+ c2(σ2 + µ2)

)]
.

This is a deterministic function g : R → R. Hence, the problem is equivalent to

minimizing g and finding the minimizer y∗T−j of g. We then choose YT−j = y∗T−j

to minimize V1. We take the derivative of g, namely,

g′(yT−j) = E

[
2 (yT−j − c (XT−j + yT−j)) (1− c)− 2

j
(1− c)2(S − s)

+
2

j
(1− c)2yT−j + 2cµ(1− c)

]
=

2(j + 1)

j
(1− c)2yT−j −

2

j
(1− c)2(S − s).

Setting g′(yT−j) equal to 0, we have

y∗T−j =
S − s

j + 1

13



and then

V1(T − j − 1, s)

= (j + 1)

((
(1− c)(S − s)

j + 1

)2

− 2cµ(1− c)(S − s)

j + 1
+ c2(σ2 + µ2)

)
,

which is consistent with our induction hypothesis (2.3). By backward induction,

we conclude that this holds for all j = 0, . . . , T − 1.

2.2 Identically Distributed Volumes with Stop-

ping

We first show that it is enough to minimize over deterministic stopping times.

Recall that the value function is now given by

V2(t, s) = min
Yj≥0

E

[
τ∑

j=t+1

(Yj − c (Xj + Yj))
2

]

= min
Yj≥0

E

[
T∑

j=t+1

(Yj − c (Xj + Yj))
2
1{τ≥j}

]

= min
Yj≥0

E

[
T∑

j=t+1

(Yj − c (Xj + Yj))
2
1{τ≤j−1}c

]

= min
Yj≥0

E

[
T∑

j=t+1

E
[
(Yj − c (Xj + Yj))

2 |Fj−1

]
1{τ≤j−1}c

]

= min
Yj≥0

E

[
T∑

j=t+1

E
[
(yj − c (Xj + yj))

2] ∣∣∣∣
yj=Yj(ω)

1{τ≤j−1}c

]
,

using Lemma 2.1 for the last equality and that {τ ≤ j−1} is Fj−1-measurable

for the second last equality because τ is a stopping time. Note that the last

equality uses that Xj is independent of Fj−1 since (Xj)j=1,...,T are i.i.d.

14



Define g(y) = E [(y − c(Xj + y)2)], then

V2(t, s) = min
yj≥0

E

[
T∑

j=t+1

g(yj)1{τ≤j−1}c

]

= min
yj≥0

E

[
τ∑

j=t+1

g(yj)

]

subject to
∑τ

j=t+1 yj = S− s. Note that this last formulation does not involve

any given random variables. We can minimize over deterministic yj and τ .

We can solve for the value of τ explicitly. From the conclusion of the previous

section, we get

V1(t, s) = (T − t)

((
(1− c)(S − s)

T − t

)2

− 2cµ(1− c)(S − s)

T − t
+ c2(σ2 + µ2)

)

and we set

Ṽ1(τ) = (τ − t)

((
(1− c)(S − s)

τ − t

)2

− 2cµ(1− c)(S − s)

τ − t
+ c2(σ2 + µ2)

)

for the value function between time t and τ . The question becomes

V2(t, s) = min
τ=t+1,...,T

Ṽ1(τ).

Define a deterministic function g : R → R by

g(p) := (p− t)

((
(1− c)(S − s)

p− t

)2

− 2cµ(1− c)(S − s)

p− t
+ c2(σ2 + µ2)

)
.

Hence, the problem is equivalent to minimizing g over integers between t and

T and finding the integer-valued minimizer p∗ of g. We first find the minimizer

15



over the real numbers in [t,+∞). We take the derivative of g, resulting in

g′(p) = −((1− c)(S − s))2

(p− t)2
+ c2(σ2 + µ2).

Then we set g′(p∗) = 0 so that

p∗ = t+
(1− c)(S − s)

c
√

σ2 + µ2
.

Taking the derivative of g′(p), we have

g′′(p) =
2 ((1− c)(S − s))2

(p− t)3
.

We find that g
′′
(p) > 0 for all p > t, so we get that if p ∈

(
t, t+ (1−c)(S−s)

c
√

σ2+µ2

]
,

the function g is decreasing, and if p ∈
[
t+ (1−c)(S−s)

c
√

σ2+µ2
,+∞

)
, the function g is

increasing. Hence, we need to consider three situations.

1.case: When T < t + (1−c)(S−s)

c
√

σ2+µ2
, we take τ ∗ = T to minimize V2(t, s), which

then equals

V2(t, s) = (T − t)

((
(1− c)(S − s)

T − t

)2

− 2cµ(1− c)(S − s)

T − t
+ c2(σ2 + µ2)

)
.

2.case: When t + 1 > t + (1−c)(S−s)

c
√

σ2+µ2
, we take τ ∗ = t + 1 to minimize V2(t, s),

which then equals

V2(t, s) = ((1− c)(S − s))2 − 2cµ(1− c)(S − s) + c2(σ2 + µ2).
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3.case: When t + 1 ≤ t + (1−c)(S−s)

c
√

σ2+µ2
≤ T , we set p1 =

⌊
t+ (1−c)(S−s)

c
√

σ2+µ2

⌋
and

p2 =

⌈
t+ (1−c)(S−s)

c
√

σ2+µ2

⌉
.

If g(p1) ≤ g(p2), then we take τ ∗ = p1 so that

V2(t, s) = (p1 − t)

((
(1− c)(S − s)

p1 − t

)2

− 2cµ(1− c)(S − s)

p1 − t
+ c2(σ2 + µ2)

)
.

If g(p2) < g(p1), then we take τ ∗ = p2 so that

V2(t, s) = (p2 − t)

((
(1− c)(S − s)

p2 − t

)2

− 2cµ(1− c)(S − s)

p2 − t
+ c2(σ2 + µ2)

)
.

Following this idea, we program the MATLAB code presented in Appendix

A.1. This function returns the values of τ and V . For example, choosing

T = 50, t = 5, s = 500, c = 0.5, S = 600, µ = 5, σ = 5, we get τ = 19 and

V = 103.57. Similarly to the exercise boundary for American options, we

0 10 20 30 40 50
0

50

100

150

200

250

300

350

400

t

S
−

s

Figure 2.1: Optimal stopping regions depending on t and S − s.

can plot the optimal stopping regions, which are displayed in Figure 2.1. The

parameters chosen are S = 600, T = 50, c = 0.5, µ = 5 and σ = 5. The main

idea of the corresponding MATLAB code presented in Appendix A.1 is to
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compare V1(t, s) given different end times t+1, . . . , T and to find the stopping

time τ which is the end time where V1(t, s) is minimal. In Figure 2.1, we see, for

example, that a curve starts at (t, S−s) = (0, 210) goes via (t, S−s) = (20, 70)

to (t, S − s) = (30, 0). This means that with remaining volume 210 at time

zero it is optimal to trade over 30 periods while with remaining volume 70 at

time 20, it is optimal to trade over 10 periods. Note that the curves are linear

because the optimal strategies are the equal distributions of volume until the

stopping time thanks to the i.i.d assumption of market volume.

2.3 Time Dependent Volume without Stop-

ping

In this section, we consider the case where Xj are still independent, but not

necessarily identically distributed. Analogously to Section 2.1, we can min-

imize over deterministic Yj. However, here we need to make sure that the

optimizers Y ∗
j are nonnegative, because this does not automatically follow

from setting the partial derivatives equal to zero; see the example at the end

of this section. We use a set A ⊆ {t+1, . . . , T} which contains all j such that

Yj > 0. We can rewrite the optimization problem as

V1(t, y) = min
Yj≥0

E

[
T∑

j=t+1

(Yj − c (Xj + Yj))
2

]
= min

A,Yj≥0
E
[
g
(
A; (Yj)j∈A\{T̃}

)]
,
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where T̃ = max A and g is defined by

g
(
A; (yj)j∈A\{T̃}

)
:= c2

∑
j ̸∈A

(σ2
j + µ2

j) +
∑
j∈A

E
[
(yj − c (Xj + yj))

2]

+ E

S − s−
∑

j∈A\{T̃}

yj − c

XT̃ + S − s−
∑

j∈A\{T̃}

yj

2 .

Hence, the problem is equivalent to minimizing g and finding a deterministic

minimizer. To do so, we take partial derivatives of g with respect to yℓ, ℓ ∈

A \ {T̃}, which yields

∂g

∂yℓ
= E [2 (yℓ − c (Xℓ + yℓ)) (1− c)]

+ E

2
S − s−

∑
j∈A\{T̃}

yj − c

XT̃ + S − s−
∑

j∈A\{T̃}

yj

 (−1 + c)


= E

yℓ − c (Xℓ + yℓ)−

S − s−
∑

j∈A\{T̃}

yj − c

XT̃ + S − s−
∑

j∈A\{T̃}

yj


= (1− c)yℓ − cµℓ −

S − s−
∑

j∈A\{T̃}

yj − cµT − c

S − s−
∑

j∈A\{T̃}

yj

 .

We set ∂g
∂yℓ

equal to 0 to find y∗ℓ , which results in

y∗ℓ = S − s−
∑

j∈A\{T̃}

y∗j +
c(µℓ − µT̃ )

1− c
, ℓ = t+ 1, . . . , T − 1.

Then we sum all the y∗ℓ for ℓ ∈ A \ {T̃} so that

∑
j∈A\{T̃}

y∗j = (|A|−1)

S − s−
∑

j∈A\{T̃}

y∗j

+
∑

j∈A\{T̃}

c(µj − µT̃ )

1− c
.

19



This implies

∑
j∈A\{T̃}

y∗j =
(|A|−1)(S − s)

|A|
+

∑
j∈A\{T̃}

c(µj − µT̃ )

|A|(1− c)
.

Hence, we get

y∗ℓ = S − s−
∑

j∈A\{T̃}

y∗j +
c(µℓ − µT̃ )

1− c

=
S − s

|A|
−

∑
j∈A\{T̃}

c(µj − µT̃ )

|A|(1− c)
+

c(µℓ − µT̃ )

1− c
,

y∗T = S − s−
∑

j∈A\{T̃}

yj =
S − s

|A|
−

∑
j∈A\{T̃}

c(µj − µT̃ )

|A|(1− c)
.

So, we have

y∗ℓ =
S − s

|A|
−

∑
j∈A\{T̃}

c(µj − µT̃ )

|A|(1− c)
+

c(µℓ − µT̃ )

1− c

=
S − s

|A|
+

c

1− c

(
µℓ −

1

|A|
∑
j∈A

µj

)
for all ℓ = t+ 1, . . . , T. (2.4)

This is the minimizer of g(A; .) because it has only one critical point and

needs to have a global minimum as continuous function with g(A; y) → ∞ for

|y|→ ∞. We then choose Yℓ = y∗ℓ to minimize V1(t, s), which gives

V1(t, s) = min
A

∑
ℓ∈A

E
[
(y∗ℓ − c (Xj + y∗ℓ ))

2]+ c2
∑
ℓ ̸∈A

(σ2
ℓ + µ2

ℓ)

= min
A

∑
ℓ∈A

E

((S − s)(1− c)

|A|
− c

|A|
∑
j∈A

µj + cµℓ − cXℓ

)2


+ c2
∑
ℓ ̸∈A

(σ2
ℓ + µ2

ℓ). (2.5)
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We set

αA :=
(S − s)(1− c)

|A|
− c

|A|
∑
j∈A

µj, (2.6)

then

V1(t, s) = min
A

∑
ℓ∈A

E
[
(αA + cµℓ − cXℓ)

2]+ c2
∑
ℓ ̸∈A

(σ2
ℓ + µ2

ℓ)

= min
A

∑
ℓ∈A

E
[
α2
A + 2αA(cµℓ − cXℓ) + (cµℓ − cXℓ)

2
]
+ c2

∑
ℓ ̸∈A

(σ2
ℓ + µ2

ℓ)

= min
A

∑
ℓ∈A

(
α2
A + 2αAcE[µℓ −Xℓ] + c2E[(µℓ −Xℓ)

2]
)
+ c2

∑
ℓ ̸∈A

(σ2
ℓ + µ2

ℓ)

= min
A

∑
ℓ∈A

(
α2
A + c2σ2

ℓ

)
+ c2

∑
ℓ ̸∈A

(σ2
ℓ + µ2

ℓ).

The minimization is over A such that all y∗j , j ∈ A, given in (2.4), are nonneg-

ative. This can be done by ordering the µj, starting with the j corresponding

to the biggest µj and then continuing until a yj becomes negative. We denote

the resulting minimizing set by A∗, so that

V1(t, s) =
∑
ℓ∈A∗

(
α2
A∗ + c2σ2

ℓ

)
+ c2

∑
ℓ ̸∈A∗

(σ2
ℓ + µ2

ℓ).

To see that one really needs to introduce the set A, we consider a simple

situation with t = T − 2, µT = S
c
, µT−1 = 0 and s = 0. In this extreme

example, we would get from (2.4) for A = {T − 1, T} that

YT−1 =
S

2
− S

2(1− c)
< 0,

YT =
S

2
+

S

2(1− c)
> S.
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This makes no sense as Yj denotes our volume, which cannot be negative.

With the choice A = {T}, we have YT−1 = 0 and YT = S, which is the correct

optimizer. The introduction of the set A allows us to perform the optimization

over the nonnegative Yj.

2.4 Time Dependent Volume with Stopping

In this section, we consider the same situation as in Section 2.3, but allow for

stopping. Recall that the value function is now given by

V2(t, s) = min
Yj≥0

E

[
τ∑

j=t+1

(Yj − c (Xj + Yj))
2

]
.

We can rewrite this as a deterministic minimization problem. From the con-

clusion of the previous section, we get

V1(t, s) =
∑

ℓ∈A∗
t,T

(
α2
A∗

t,T
+ c2σ2

ℓ

)
+ c2

∑
ℓ ̸∈A∗

(σ2
ℓ + µ2

ℓ).

where α is given in (2.6) and A∗
t,T ⊆ {t+1, . . . , T} is the optimal set for (2.5).

Set

Ṽ1(τ) = c2
T∑

ℓ=t+1

σ2
ℓ + |A∗

t,τ |α2
A∗

t,τ
+ c2

∑
ℓ ̸∈A∗

t,τ

µ2
ℓ

for the value function between time t and τ .

The question becomes

V2(t, s) = min
τ=t+1,...,T

Ṽ1(τ).
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Define a deterministic function g : R → R by

g(p) = c2
T∑

ℓ=t+1

σ2
ℓ + |A∗

t,p|α2
A∗

t,p
+ c2

∑
ℓ ̸∈A∗

t,p

µ2
ℓ .

Hence, the problem is equivalent to minimizing g over integers and finding the

integer-valued minimizer p∗ of g. As illustration, we next consider different

examples of the time dependence of σt and µt.

1.case: Assume σt = σ is constant and µt depends linearly on time while the

total volume
∑T

t=1 µt = µtotal is fixed. When we start trading at time 1, this

implies µt =
bt+1

bT (T+1)
2

+T
µtotal, b ∈ (−1

T
,+∞). The coefficient b gives how fast

the volume increases (or decreases) over the different trading periods while the

total volume over all trading periods is fixed.

We can run the program shown in Appendix A.2 to minimize g. Choosing the

parameters S = 600, µtotal = 10, 000, T = 50, c = 0.1, t = 0, s = 0 and σ = 5,

we obtain the optimal stopping time displayed in Figure 2.2.

With the parameter given, we get b ∈ (−0.02,+∞). We can find that the

shape of τ is increasing with b which means when the other participants’

volumes change faster over the different trading periods, then we stop our

trading later. From Figure 2.2, we see that the stopping time is close to 27

for b = 0. Actually, this is the same special case as the third case in Sec-

tion 2.2, because µt =
1
T
µtotal is then constant over time. Recall that when

t + 1 ≤ t + (1−c)(S−s)

c
√

σ2+µ2
≤ T , we get τ = t + (1−c)(S−s)

c
√

σ2+µ2
. When b = 0, we get

µ = µtotal

T
= 200, so τ = 27, which is the same as shown in the graph.

2.case: Assume σℓ = σ is constant and µt is quadratic function of time, while

the total volume
∑T

t=1 µt = µtotal is fixed. This implies that µt is of the form

µt =
at2+bt+1

aT (T+1)(2T+1)
6

+
bT (T+1)

2
+T

µtotal for some constants a and b. The coefficients
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Figure 2.2: The optimal stopping time depending on the parameter b of the
expected volume µt =

bt+1
bT2

2
+T

µtotal.

a and b control how fast the volume increases (or decreases) over the different

trading periods. The parameter a has more influence on the speed than b,

because of the quadratic structure.

We can run the program shown in Appendix A.2.2 to minimize g. This results

in the optimal stopping time of Figure 2.3 for the parameters S = 600, µtotal =

10000, T = 50, c = 0.1, t = 0, s = 0 and σ = 5.

We can find that τ is increasing with a and b which means when other partic-

ipants’ volumes change faster over the different trading periods, then we stop

our trading later. When a = 0 and b = 0, we get µ = µtotal

T
= 200 and can find

τ = t+ (1−c)(S−s)

c
√

σ2+µ2
= 27 from the conclusion in Section 2.2, which is in line with

the value in Figure 2.3.
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Figure 2.3: The optimal stopping time depending on the parameters a and b
of the expected volume µt =

at2+bt+1
aT (T+1)(2T+1)

6
+

bT (T+1)
2

+T
µtotal.

3.case: Assume µℓ = µ is constant and σ2
t = k + nt.

We can get

αA∗
t,p

=
(S − s)(1− c)

|A∗
t,p|

− cµ

If |µℓ − µj|< (1−c)(S−s)
c(T−t)

for all ℓ and j, then y∗ℓ > 0 for all ℓ, which means

A∗
t,p = {t+ 1, . . . , p}. Indeed, we want for any A the positivity of

y∗ℓ =
S − s

|A|
+

c

1− c

(
µℓ −

1

|A|
∑
j∈A

µj

)
> 0,

which means

µℓ −
1

|A|
∑
j∈A

µj > −(1− c)(S − s)

c|A|
.
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We know that

∣∣∣∣µℓ −
1

|A|
∑
j∈A

µj

∣∣∣∣ = ∣∣∣∣
∑

j∈A(µℓ − µj)

|A|

∣∣∣∣
≤
∑

j∈A|µℓ − µj|
|A|

,

which means that if |µℓ − µj|< (1−c)(S−s)
c(T−t)

for all ℓ and j, then y∗ℓ > 0 for all ℓ.

Hence, in this case, we have

αA∗
t,p

=
(S − s)(1− c)

p− t
− cµ,

g(p) = c2(p−t)

(
k + µ2 +

n(p+ t+ 1)

2

)
+
(S − s)2(1− c)2

p− t
−2cµ(S−s)(1−c).

Let q = p− t, C1 = c2
(
k + µ2 + n(2t+1)

2

)
, C2 =

c2n
2
, C3 = (S − s)2(1− c)2 and

C4 = −2cµ(S − s)(1− c). We then obtain

g̃(q) = g(q + t) = C2q
2 + C1q +

C3

q
+ C4.

Hence, the problem is equivalent to minimizing g̃ over integers and finding

the integer-valued minimizer q of g̃. We first find the minimizer over the real

numbers in [1,+∞). We take the derivative of g̃, resulting in

g̃′(q) = 2C2q −
C3

q2
+ C1.

Then we set g̃′(q∗) = 0, in other words, we need to find the solution q∗ to

2C2q
3 + C1q

2 − C3 = 0.
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The discriminant of this cubic function equals

∆ = 4C3
1C3 − 108C2

2C
2
3 .

The following cases need to be considered:

If ∆ > 0, then the equation has three distinct real roots.

If ∆ = 0, then the equation has a multiple root and all its roots are real.

If ∆ < 0, then the equation has one real root and two nonreal complex conju-

gate roots.

The general formula of the roots is given by

x1 = − C1

6C2

− C

6C2

− C2
1

6C2C
,

x2 = − C1

6C2

+
C(1 + i

√
3)

12C2

+
C2

1(1− i
√
3)

12C2C
,

x3 = − C1

6C2

+
C(1− i

√
3)

12C2

+
C2

1(1 + i
√
3)

12C2C
,

where Q =
√

−108C2
2∆ and C =

3

√
Q+ 2C3

1 − 108C2
2C3

2
.

Case A: ∆ < 0

Set v1 = ⌊x1⌋, v2 = ⌈x1⌉,

1.case: T − t ≤ x1 or x1 ≤ 1

If g̃(1) ≤ g̃(T − t), then we take τ ∗ = t+ 1 so that

V2(t, s) = C2 + C1 + C3 + C4. (2.7)
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If g̃(T − t) ≤ g̃(1), then we take τ ∗ = T so that

V2(t, s) = C2(T − t)2 + C1(T − t) +
C3

T − t
+ C4. (2.8)

2.case: 1 < x1 < T − t

If g̃(v1) is smallest, then we take τ ∗ = v1 so that

V2(t, s) = C2v
2
1 + C1v1 +

C3

v1
+ C4.

If g̃(v2) is smallest, then we take τ ∗ = v2 so that

V2(t, s) = C2v
2
2 + C1v2 +

C3

v2
+ C4.

If g̃(1) is smallest, then we take τ ∗ = t+ 1 so that (2.7) holds.

If g̃(T − t) is smallest, then we take τ ∗ = T so that (2.8) holds.

Case B: ∆ ≥ 0

Let m1,m2 and m3 be the largest, medium and smallest numbers, respectively,

among x1, x2, x3; We set p1 = ⌊m3⌋, p2 = ⌈m3⌉, p3 = ⌊m2⌋ and p4 = ⌈m2⌉,

p5 = ⌊m1⌋ and p6 = ⌈m1⌉ and consider the following situations:

1.case: T − t < m3 or m3 ≤ 1 < T − t ≤ m2 or m2 ≤ 1 < T − t ≤ m1 or

m1 ≤ 1

If g̃(1) ≤ g̃(T − t), then we take τ ∗ = t+ 1 so that (2.7) holds.

If g̃(T − t) ≤ g̃(1), then we take τ ∗ = T so that (2.8) holds.

2.case: 1 ≤ m3 ≤ T − t ≤ m2

Compare g̃(p1), g̃(p2), g̃(1), g̃(T − t). If g̃(pj) is smallest for j = 1 or 2, then we
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take τ ∗ = t+ pj so that

V2(t, s) = C2p
2
j + C1pj +

C3

pj
+ C4. (2.9)

If g̃(1) ≤ g̃(T − t), then we take τ ∗ = t+ 1 so that (2.7) holds.

If g̃(T − t) ≤ g̃(1), then we take τ ∗ = T so that (2.8) holds.

3.case: 1 ≤ m3 and m2 ≤ T − t ≤ m1

Compare g̃(p1), g̃(p2), g̃(p3), g̃(p4), g̃(1), g̃(T − t)

If g̃(pj) is smallest for some j = 1, . . . , 4, then we take τ ∗ = t+pj so that (2.9)

holds.

If g̃(1) ≤ g̃(T − t), then we take τ ∗ = t+ 1 so that (2.7) holds.

If g̃(T − t) ≤ g̃(1), then we take τ ∗ = T so that (2.8) holds.

4.case: 1 ≤ m3 and m1 ≤ T − t

Compare g̃(p1), g̃(p2), g̃(p3), g̃(p4), g̃(p5), g̃(p6), g̃(1), g̃(T − t).

If g̃(pj) is smallest for some j = 1, . . . , 6, then we take τ ∗ = t+pj so that (2.9)

holds.

If g̃(1) ≤ g̃(T − t), then we take τ ∗ = t+ 1 so that (2.7) holds.

If g̃(T − t) ≤ g̃(1), then we take τ ∗ = T so that (2.8) holds.

5.case: m3 ≤ 1 ≤ m2 and m2 ≤ T − t ≤ m1

If g̃(pj) is smallest for some j = 3 or 4, then we take τ ∗ = t+ pj so that (2.9)

holds.

If g̃(1) ≤ g̃(T − t), then we take τ ∗ = t+ 1 so that (2.7) holds.

If g̃(T − t) ≤ g̃(1), then we take τ ∗ = T so that (2.8) holds.
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6.case: m3 ≤ 1 ≤ m2 and m1 ≤ T − t

If g(p3) is smallest, then we take τ ∗ = t + p3 so that If g̃(pj) is smallest for

j = 3, . . . , 6, then we take τ ∗ = t+ pj so that (2.9) holds.

If g̃(1) ≤ g̃(T − t), then we take τ ∗ = t+ 1 so that (2.7) holds.

If g̃(T − t) ≤ g̃(1), then we take τ ∗ = T so that (2.8) holds.

7.case When m2 ≤ 1 ≤ m1 and m1 ≤ T − t,

If g̃(pj) is smallest for j = 5 or 6, then we take τ ∗ = t+ pj so that (2.9) holds.

If g̃(1) ≤ g̃(T − t), then we take τ ∗ = t+ 1 so that (2.7) holds.

If g̃(T − t) ≤ g̃(1), then we take τ ∗ = T so that (2.8) holds.

Following this idea, we program the MATLAB code presented in Appendix

A.2.3, which returns τ and V2. For example, choosing T = 50, t = 30, s =

500, c = 0.5, S = 600, µ = 5, k = 5, n = 10, we get τ = 35 and V2 = 700.

2.5 Performance Analysis using Trading Data

In this section, we analyze the performance of the strategy from Section 2.4

using real trading data.1 As examples, we consider trading volumes from four

large US companies: General Electric Company (GE), Microsoft Corporation

(MSFT), Wal-Mart Stores Inc. (WMT) and Exxon Mobil Corporation (XOM).

We use intraday volume observed at 5 minute frequencies over the trading days

from January 2010 to December 2012. We compare the average error of our

method and two alternative strategies Ỹt,j and Y t,j: as long as the volume is

below S, they are given by Ỹt,j =
c
40

∑40
ℓ=1Xt−41+ℓ,j and Y t,j =

1
1−c

Ỹt,j, where t

is the trading day and j is the period. These are two reasonable alternatives:

1Wharton Research Data Service (WRDS) was used for this study. This service and the
data available thereon constitute valuable intellectual property and trade secrets of WRDS
and/or its third-party suppliers.
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the first is just c times the historical mean of market volume over the last 40

trading days while the second is chosen such that
Y t,j

Y t,j+µt,j
= c, where µt,j is

the historical mean.

We can run the program shown in Appendix A.3 to compare the performance

of the different strategies. We choose as parameters a trading volume of S =

100, 000 shares and a participation rate c = 0.1. Tables 2.1 and 2.2 show the

results for the different strategies: Strategy 1 is based on our method from

Section 2.4, Strategy 2 uses Ỹt,j and Strategy 3 uses Y t,j. Error 1 means the

average error of the simplified problem
∑τ

j=1 (Yj − c(Xj + Yj))
2 and Error 2

means the average error of the original problem
∑τ

j=1

(
Yj

Xj+Yj
− c
)2
. We see

in all the examples of Tables 2.1 and 2.2 that Strategy 1 has the lowest Errors

1 and 2.

Error 1 Strategy 1 Strategy 2 Strategy 3
GE 8.3897× 109 1.115× 1010 +32.9% 9.9214× 109 +18.3%

MSFT 6.1815× 109 7.9237× 109 +28.2% 6.8805× 109 +11.3%
WMT 9.0539× 108 1.1743× 109 +29.7% 1.0826× 109 +19.6%
XOM 8.9490× 108 1.3960× 109 +55.9% 1.4021× 109 +56.7%

Table 2.1: Comparison of Error 1 for different strategies

Error 2 Strategy 1 Strategy 2 Strategy 3
GE 0.0022870 0.0041416 +81.1% 0.0037910 +65.8%

MSFT 0.0020464 0.0035300 +72.5% 0.0026895 +31.4%
WMT 0.0158720 0.0162800 +2.6% 0.0180120 +13.5%
XOM 0.0060703 0.0073188 +20.6% 0.0083281 +37.2%

Table 2.2: Comparison of Error 2 for different strategies
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Chapter 3

Original Problem

3.1 Without Stopping

In this section, we assume that the market volumes Xj are independent and

identically distributed with mean µ = E[Xj] and variance σ2 = Var(Xj). We

now turn our attention to the problem

V3(t, s) = min
Yj≥0

j=t+1,...,T

E

[
T∑

j=t+1

(
Yj

Xj + Yj

− c

)2
]

where the minimization is under the constraint that
∑T

j=t+1 Yj = S − s. Sim-

ilarly to Section 2.1, we obtain that

V3(t, s) = min
Yj≥0

E

[
T∑

j=t+1

(
Yj

Xj + Yj

− c

)2
]

= min
Yj≥0

E

[
T−1∑
j=t+1

(
Yj

Xj + Yj

− c

)2

+

(
YT

XT + YT

− c

)2
]
,
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which equals

V3(t, s) = min
Yj≥0

E

[
T−1∑
j=t+1

E

[(
Yj

Xj + Yj

− c

)2
∣∣∣∣∣Fj−1

]

+ E

( S − s−
∑T−1

j=t+1 Yj

XT + S − s−
∑T−1

j=t+1 Yj

− c

)2
∣∣∣∣∣∣FT−1


= min

Yj≥0
E

[
T−1∑
j=t+1

E

[(
yj

Xj + yj
− c

)2
]∣∣∣∣∣

yj=Yj(ω)

+ E

( S − s−
∑T−1

j=t+1 yj

XT + S − s−
∑T−1

j=t+1 yj
− c

)2
∣∣∣∣∣∣

yt+1=Yt+1(ω),...,yT−1=YT−1(ω)


where the last equality follows from Lemma 2.1.

Define a function

g(yt+1, . . . , yT−1) : =
T−1∑
j=t+1

E

[(
yj

Xj + yj
− c

)2
]

+ E

( S − s−
∑T−1

j=t+1 yj

XT + S − s−
∑T−1

j=t+1 yj
− c

)2
 .

This is a deterministic function g : RT−t+1 → R and we can write

V3(t, s) = min
Yj≥0

E [g(Yt+1, . . . , YT−1)] .

Hence, the problem is equivalent to minimizing g and finding a deterministic

minimizer y∗ = (y∗t+1, . . . , y
∗
T−1) of g. To do so, we take partial derivatives of
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g with respect to yℓ for ℓ = t+ 1, . . . , T − 1, which results in

∂g

∂yℓ
= E

[
2

(
yℓ

Xℓ + yℓ
− c

)
Xℓ

(Xℓ + yℓ)2

]

− E

2( S − s−
∑T−1

j=t+1 yj

XT + S − s−
∑T−1

j=t+1 yj
− c

)
XT(

XT + S − s−
∑T−1

j=t+1 yj

)2


= E

[
2

(
yℓ

Xℓ + yℓ
− c

)
Xℓ

(Xℓ + yℓ)2

]
− E

[
2

(
yT

XT + yT
− c

)
XT

(XT + yT )
2

]
.

We set ∂g
∂yℓ

equal to 0. While we cannot solve this explicitly in general, we give

three examples.

1. Example: Consider the simple situation with T = 2 and X1 = X2 = µ

deterministic, which results in

(
y1

µ+ y1
− c

)
µ

(µ+ y1)2
=

(
y2

µ+ y2
− c

)
µ

(µ+ y2)2
.

We can change this equation to

cµ− (1− c)y1
cµ− (1− c)y2

=
(µ+ y1)

3

(µ+ y2)3
.

Set k1 = cµ, k2 = 1− c and k3 = S − s, then simplify the equation to

(y2 − y1)
(
(3µ2k1 + 3µk1k3 + k1k

2
3 + µ3k2)− (k1 + 3µk2 + k2k3)y1y2

)
= 0.

Let u = 3µ2k1 + 3µk1k3 + k1k
2
3 + µ3k2 and v = k1 + 3µk2 + k2k3, then

(y2 − y1)(u− vy1y2) = 0.
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Thus, y1 = y2 or y1y2 =
u
v
.

If y1 = y2, with condition y1 + y2 = S − s, we get

y1 = y2 =
S − s

2
. (3.1)

If y1y2 =
u
v
, with condition y1 + y2 = S − s, we distinguish three cases.

1. Case: If k2
3 − 4u

v
< 0, then there is no solution for y1 and y2 in addition to

(3.1).

2. Case: If k2
3 − 4u

v
= 0, then

y1 = y2 =
S − s

2
,

which corresponds to (3.1).

3. Case: If k2
3 − 4u

v
> 0, then there is a solution given by

y3,4 =
k3 ±

√
k2
3 − 4u

v

2
.

In conclusion, if k2
3− 4u

v
≤ 0, there exists a unique solution given by (3.1) while

in the case k2
3 − 4u

v
> 0, there exist two solutions. We next examine which of

the two leads to the minimizer.

Recall that the objective function is g = f(ỹ) + f(S − s − ỹ), where f(y) =(
y

µ+y
− c
)2
. To find out more about the minimizer of g, we study the function

f . We take the first derivative of f(y) and get

f ′(y) = 2

(
y

µ+ y
− c

)
µ

(µ+ y)2
.
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For f ′(y) = 0, we get y∗ = cµ
1−c

. Taking the second derivative of f(y), we

obtain

f ′′(y) =
2µ2

(µ+ y)4
+ 2

(
y

µ+ y
− c

)
−2µ

(µ+ y)3

=
2µ

(µ+ y)3

(
µ

µ+ y
− 2y

µ+ y
+ 2c

)
=

2µ

(µ+ y)3

(
µ− 2y

µ+ y
+ 2c

)
.

For f ′′(y) = 0, we get y∗ = (1+2c)µ
2(1−c)

. Figure 3.1 illustrates the function f for

the parameters µ = 300 and c = 0.5, based on the MATLAB code presented

in Appendix A.4. Choosing y = cµ
1−c

(300 in the plot), we can get the minimal

0 500 1000 1500 2000
0

0.05

0.1

0.15

0.2

0.25

y

f(
y)

Figure 3.1: Illustration of the penalty function f as function of our trading
volume y.

value which is equal to 0; when choosing y∗ = (1+2c)µ
2(1−c)

, we can get the point

(y∗, f(y∗)), which is the inflection point.

Note that f ′′(y) ≤ 0 for all y ∈
[
0, (1+2c)µ

2(1−c)

]
, hence f is convex on

[
0, (1+2c)µ

2(1−c)

]
.

Thus, we can get the conclusion that when 0 6 S − s 6 (1+2c)µ
2(1−c)

, then the

minimizer is y1 = y2 =
S−s
2
, since f(y3) + f(y4) ≥ 2f

(
y3+y4

2

)
= f(y1) + f(y2).

Realistically, we should satisfy the condition cµ
1−c

(T − t) > S − s, where cµ
1−c
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means the optimal volume per period without any constraint. This condition

says that the client has chosen c such that following the expected market

volume optimally will give at least the required amount of shares. In particular,

when considering two periods, we should satisfy 2cµ
1−c

> S − s. We have

(1 + 2c)µ

2(1− c)
− 2cµ

1− c
=

1− 2c

2(1− c)
.

Therefore, if we make c < 0.5, then 2cµ
1−c

> S−s implies (1+2c)µ
2(1−c)

> S−s and thus

the minimizer is y1 = y2 = S−s
2
. Actually, in the second example presented

next, we will find the result that the minimizer is the equal distribution of

volume holds for all c.

2. Example: We now consider the multiperiod generalization of Example 1.

The objective function is to minimize
∑T

ℓ=t+1 (
yℓ

yℓ+µ
− c)2 under the constraint∑T

ℓ=t+1 yℓ = S − s.

Lemma 3.1: Under the reasonable assumption S−s
T−t

< cµ
1−c

, the optimal strategy

is y∗t+1 = · · · = y∗T = S−s
T−t

.

Proof. Similarly to the first example, we can write
∑T

ℓ=t+1 (
yℓ

yℓ+µ
− c)2 =∑T

ℓ=t+1 f(yℓ) for f(y) = ( y
y+µ

− c)2. Recall that f is convex on [0, (1+2c)µ)
2(1−c)

].

Let yt+1, . . . , yT be nonnegative numbers such that
∑T

ℓ=t+1 yℓ = S − s. We set

yℓ = min
{
yℓ,

cµ
1−c

}
. Since f is increasing on [ cµ

1−c
,+∞), we have f(yℓ) ≥ f(yℓ)

for all ℓ. Therefore, we obtain

T∑
ℓ=t+1

f (yℓ) ≥
T∑

ℓ=t+1

f(yℓ) ≥ (T − t)f

(∑T
ℓ=t+1 yℓ
T − t

)

by Jensen’s inequality using that f is convex on [0, cµ
1−c

].

Because yℓ ≤ yℓ and
∑T

ℓ=t+1 yℓ = S − s, we have
∑T

ℓ=t+1 yℓ
T−t

≤ S−s
T−t

, and hence
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(T − t)f
(∑T

ℓ=t+1 yℓ
T−t

)
≥ (T − t)f

(
S−s
T−t

)
, since f is decreasing on [0, cµ

1−c
] and

S−s
T−t

≤ cµ
1−c

by assumption.

In conclusion, this shows

T∑
ℓ=t+1

f (yℓ) ≥ (T − t)f

(
S − s

T − t

)
,

which proves that the minimizer is y∗t+1 = · · · = y∗T = S−s
T−t

.

3. Example: We now consider uniformly distributed volumes. Assume that

o(ỹ) = E

[
2

(
ỹ

Xℓ + ỹ
− c

)
Xℓ

(Xℓ + ỹ)2

]

and Xℓ ∼ U [a, b], a, b > 0. The optimizers yℓ satisfy o(yℓ) = o(yT ). If o is

strictly monotone, then we can say that the solution is unique with

y∗ℓ = y∗T , ℓ = t+ 1, . . . , T − 1.

Then we sum all the y∗ℓ for ℓ = t+ 1, . . . , T so that

T∑
j=t+1

y∗j = (T − t)y∗ℓ = S − s.

Hence, we get

y∗ℓ =
S − s

T − t
, ℓ = t+ 1, . . . , T.

Instead, if for example o is strictly increasing and there exists yℓ <
S−s
T−t

, then

there must exist yj > S−s
T−t

because
∑T

j=t+1 yj = S − s. But then o(yj) >

o(S−s
T−t

) > o(yℓ), which contradicts to o(yj) = o(yℓ).
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Take the derivative of o(ỹ), which results in

o′(ỹ) = E

[
2Xℓ ((1 + 2c)Xℓ − (2− 2c)ỹ)

(Xℓ + ỹ)4

]
=

1

b− a

∫ b

a

[
2 + 4c

(x+ ỹ)2
+

(−4c− 8)ỹ

(x+ ỹ)3
+

6ỹ2

(x+ ỹ)4

]
dx

=
1

b− a

(
−2 + 4c

x+ ỹ
− (−4c− 8)ỹ

2(x+ ỹ)2
− 6ỹ2

3(x+ ỹ)3

) ∣∣∣∣b
a

=
1

(a+ ỹ)(b+ ỹ)

[
2 + 4c+

(−4c− 8)ỹ(a+ b+ 2ỹ)

2(a+ ỹ)(b+ ỹ)

+
6ỹ2(a2 + ab+ b2 + 3aỹ + 3bỹ + 3ỹ2)

3(a+ ỹ)2(b+ ỹ)2

]
=

1

(a+ ỹ)(b+ ỹ)

[
6(1 + 2c)(a+ ỹ)2(b+ ỹ)2 + 6ỹ2(4µ2 − ab+ 6µỹ + 3ỹ2)

3(a+ ỹ)2(b+ ỹ)2

−12(c+ 2)ỹ(µ+ ỹ)(a+ ỹ)(b+ ỹ)

3(a+ ỹ)2(b+ ỹ)2

]
=

1

(a+ ỹ)(b+ ỹ)

[
6(1 + 2c)(a+ ỹ)2(b+ ỹ)2 + 18ỹ2(µ+ ỹ)2 + 3ỹ2(a−b)2

2

3(a+ ỹ)2(b+ ỹ)2

−12(c+ 2)ỹ(µ+ ỹ)(a+ ỹ)(b+ ỹ)

3(a+ ỹ)2(b+ ỹ)2

]
=

2

(a+ ỹ)3(b+ ỹ)3

[(
(2ỹ2 + 2(a+ b)ỹ)c− 2ỹ2 − (a+ b)ỹ

2
+ (1 + 2c)ab

)
×
(
(a+ ỹ)(b+ ỹ)− ỹ(ỹ + µ)

)
+

3ỹ2(a− b)2

2

]
.

Set k = a
b
∈ (0, 1), and consider

f(c) =

(
(2ỹ2 + 2(a+ b)ỹ)c− 2ỹ2 − (a+ b)ỹ

2
+ (1 + 2c)ab

)
×
(
(a+ ỹ)(b+ ỹ)− ỹ(ỹ + µ)

)
+

3ỹ2(a− b)2

2
.

For o′(ỹ) > 0, which means f(c) > 0, it is enough to have f(0) ≥ 0 and

f(1) ≥ 0, because f depends linearly on c.
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When c = 1, we get

f(1) =

[
3(a+ b)ỹ

2
+ (1 + 2c)ab

] [
(k + 1)bỹ

2
+ kb2

]
+

3ỹ2(k − 1)2b2

2
> 0.

When c = 0, we get

f(0) =

[
−2ỹ2 − (k + 1)bỹ

2
+ kb2

] [
(k + 1)bỹ

2
+ kb2

]
+

3ỹ2(k − 1)2b2

2

= k2b3 +
5

4
(k2 − 4k + 1)ỹ2b− (k + 1)ỹ3

> k2ỹ3 +
5

4
(k2 − 4k + 1)ỹ2ỹ − (k + 1)ỹ3

=
1

4
(9k2 − 24k + 1)ỹ3.

Thus, if we make 9k2 − 24k + 1 ≥ 0, then f(0) > 0, which means we need to

have 0 < k < 4−
√
15

3
. In this case, the minimizer of V3(t, s) is deterministic

with y∗ℓ = S−s
T−t

. This means that we distribute our trades equally, which is

what we expect because the market volume is i.i.d. and we cannot finish our

trading early as opposed to the setting of the next section. The corresponding

value function equals

V3(t, s) = min
Yj≥0

E

[
T∑

j=t+1

(
Yj

Xj + Yj

− c

)2
]

= (T − t)E

[(
Y ∗
ℓ

Xℓ + Y ∗
ℓ

)2

− 2cY ∗
ℓ

Xℓ + Y ∗
ℓ

+ c2

]

=
T − t

b− a

∫ b

a

[(
y∗ℓ

x+ y∗ℓ

)2

− 2cy∗ℓ
x+ y∗ℓ

+ c2

]
dx,
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which can be simplified to

V3(t, s) =
T − t

b− a

[
− y∗2ℓ
x+ y∗ℓ

− 2cy∗ℓ ln |x+ y∗ℓ |+ c2x

] ∣∣∣∣b
a

=
T − t

b− a

[
− (S − s)2

b(T − t)2 + (S − s)(T − t)
− 2c

S − s

T − t
ln

∣∣∣∣b+ S − s

T − t

∣∣∣∣+ c2b

]
− T − t

b− a

[
− (S − s)2

a(T − t)2 + (S − s)(T − t)
− 2c

S − s

T − t
ln

∣∣∣∣a+ S − s

T − t

∣∣∣∣+ c2a

]
=

(T − t)(S − s)2

ab(T − t)2 + (a+ b)(T − t)(S − s) + (S − s)2

+
2c(S − s)

(b− a)
ln

(
a(T − t) + S − s

b(T − t) + S − s

)
+ (T − t)c2.

3.2 With Stopping

We first show that it is enough to minimize over deterministic stopping times.

Recall that the value function is now given by

V4(t, s) = min
Yj≥0

E

[
τ∑

j=t+1

(
Yj

Xj + Yj

− c

)2
]

= min
Yj≥0

E

[
T∑

j=t+1

(
Yj

Xj + Yj

− c

)2

1{τ≥j}

]

= min
Yj≥0

E

[
T∑

j=t+1

(
Yj

Xj + Yj

− c

)2

1{τ≤j−1}c

]

= min
Yj≥0

E

[
T∑

j=t+1

E

[(
Yj

Xj + Yj

− c

)2
∣∣∣∣∣Fj−1

]
1{τ≤j−1}c

]

= min
Yj≥0

E

 T∑
j=t+1

E

[(
yj

Xj + yj
− c

)2
] ∣∣∣∣∣

yj=Yj(w)

1{τ≤j−1}c

 ,

using Lemma 2.1 for the last equality and that {τ ≤ j−1} is Fj−1-measurable

for the second last equality because τ is a stopping time. Note that the last
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equality uses that Xj is independent of Fj−1 since (Xj)j=1,...,T are i.i.d.

Define g(y) = E

[(
y

Xj+y
− c
)2]

, then

V4(t, s) = min
yj≥0

E

[
T∑

j=t+1

g(yj)1{τ≤j−1}c

]

= min
yj≥0

E

[
τ∑

j=t+1

g(yj)

]

subject to
∑τ

j=t+1 yj = S− s. Note that this last formulation does not involve

any given random variables. We can minimize over deterministic Yj and τ .

1. Example: Consider the multiperiod situation with deterministic volumes

Xℓ = µ, ℓ ∈ [t+ 1, T ]. By using Example 2 of Section 3.1, we obtain

V3(t, s) = (T − t)

(
S−s
T−t

µ+ S−s
T−t

− c

)2

and we set

Ṽ3(τ) = (τ − t)

(
S−s
τ−t

µ+ S−s
τ−t

− c

)2

for the value function between time t and τ . The question becomes

V4(t, s) = min
τ=t+1,...,T

Ṽ3(τ).

Define a deterministic function g : R → R by

g(p) := (p− t)

(
S−s
p−t

µ+ S−s
p−t

− c

)2

.

Hence, the problem is equivalent to minimizing g over integers and finding

the integer-valued minimizer p∗ of g. We first find the minimizer over the real
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numbers in [t,+∞). We take the derivative of g, namely,

g′(p) =

(
S − s

(p− t)µ+ S − s
− c

)
×
(
(1− c)(S − s)2 − (1 + 2c)µ(S − s)(p− t)− cµ2(p− t)2

((p− t)µ+ S − s)2

)
.

Then we set g′(p∗) = 0 so that

p∗1 = t+
(1− c)(S − s)

cµ
,

p∗2 = t+
(
√
8c+ 1− 2c− 1)(S − s)

2cµ
,

p∗3 = t+
(−

√
8c+ 1− 2c− 1)(S − s)

2cµ
< t,

so that p∗3 is outside the relevant interval and p∗2 − p∗1 = (
√
8c+1−3)(S−s)

2cµ
< 0.

From cµ
1−c

(T − t) > S − s, which means (1−c)(S−s)
cµ

< T − t, we get p∗1 < T .

We find that g is increasing on [t, p∗2) and (p∗1, T ], and it is decreasing on [p∗2, p
∗
1].

We set q1 = t+ 1, q2 =
⌊
t+ (1−c)(S−s)

cµ

⌋
and q3 =

⌈
t+ (1−c)(S−s)

cµ

⌉
.

If g(qj) = min[g(q1), g(q2), g(q3)] for j = 1, 2 or 3, then we take τ ∗ = qj so that

V4(t, s) = (qj − t)

(
S−s
qj−t

µ+ S−s
qj−t

− c

)2

.

2. Example: Consider the same situation as in Example 3 of Section 3.1 with

uniformly distributed volume Xℓ ∼ U [a, b], ℓ = t + 1, . . . , T for a, b > 0. In

this example, it is hard to find the solution explicitly, but we can solve it
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numerically.

V4(t, s) = min
yj≥0

E

[
τ∑

j=t+1

E

[(
yj

X + yj
− c

)2
]]

= min
yj≥0

τ∑
j=t+1

∫ b

a

[(
yj

x+ yj
− c

)2
]
dx

= min
yj≥0

τ∑
j=t+1

1

b− a

[
−

y2j
x+ yj

− 2cyj ln(x+ yj) + c2x

] ∣∣∣∣b
a

= min
yj≥0

τ∑
j=t+1

 y2j
(a+ yj)(b+ yj)

+
2cyj ln

(
a+yj
b+yj

)
b− a

+ c2

 .

We can run the program shown in Appendix A.5 to find the stopping time and

optimal trading volumes.

Choosing a = 30, b = 50, S = 0.5, s = 0, T = 10, t = 0, c = 0.1, we will get the

stopping time τ = 6, the minimizer y∗ℓ = 0.0833, ℓ = 1, . . . , 6 and V4 = 0.12635.
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Appendix A

MATLAB Code

A.1 MATLAB Code to Section 2.2

In the code, we write p1 instead of p1, p2 instead of p2, p instead of p̃, g1

instead of g(p1) and g2 instead of g(p2).

function [tau,V]=compare4(T,t,s,c,S,mu,sigma)

if T<t+(1−c)*(S−s)/(c*sqrt(muˆ2+sigmaˆ2))

tau=T;

V=(T−t)*(((1−c)*(S−s)/(T−t))ˆ2−2*c*mu*(1−c)*(S−s)/(T−t)

+cˆ2*(sigmaˆ2+muˆ2));

elseif t+1>t+(1−c)*(S−s)/(c*sqrt(muˆ2+sigmaˆ2))

tau=t+1;

V=((1−c)*(S−s))ˆ2−2*c*mu*(1−c)*(S−s)

+cˆ2*(sigmaˆ2+muˆ2);

else

p1=floor(t+(1−c)*(S−s)/(c*sqrt(muˆ2+sigmaˆ2)));

p2=ceil(t+(1−c)*(S−s)/(c*sqrt(muˆ2+sigmaˆ2)));

g1=(p1−t)*(((1−c)*(S−s)/(p1−t))ˆ2
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−2*c*mu*(1−c)*(S−s)/(p1−t)+cˆ2*(sigmaˆ2+muˆ2));

g2=(p2−t)*(((1−c)*(S−s)/(p2−t))ˆ2

−2*c*mu*(1−c)*(S−s)/(p2−t)+cˆ2*(sigmaˆ2+muˆ2));

if g1<=g2

tau=p1;

V=g1;

else

tau=p2;

V=g2;

end

end

function tau=compare(T,t,s,c,S,mu,sigma)

V=zeros(1,T−t);

a=t;

tau=t+1;

for ii=1:T−t

a=a+1;

V(ii)=(a−t)*(((1−c)*(S−s)/(a−t))ˆ2

−2*c*mu*(1−c)*(S−s)/(a−t)+cˆ2*(sigmaˆ2+muˆ2));

% assign V matrix

end

for ii=1:T−t−1

if V(ii+1)<=V(ii)

% compare which element of V

tau=ii+t+1;

% find tau when the element of V is smallest

else

V(ii+1)=V(ii);
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end

end

end

The following code generates Figure 2.1.

S=600;

T=50;

s=0:S−1;

sigma=zeros(50)+5;

c=.5;

mu=zeros(50)+5;

t=0:T−1;

O=zeros(T,S);

for j=0:T−1

mu=mu(1:T−j);

sigma=sigma(1:T−j);

for k=0:S−1

O(j+1,k+1)=compare(T,j,k,c,S,mu,sigma);

%0 matrix stores tau, the values of its rows

%correspond to t−1 and the values of its columns

%correspond to s−1 since j and k can be zero, but the

%subscript of O matrix cannot be

%zero, we need to add one.

end

end

z=ones(1,T);

%predefine z, z(j) is used to account the

%amounts of the points when given tau=j, j=1,...,T

for j=1:T
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eval(['a',num2str(j),'=[0;0];']);

%initialize the matrix aj, j=1,...,T, aj is used to

%store the points when given tau=j, j=1,...,T

end

for i=1:T

for g=1:S

for j=1:T

if O(i,g)==j

eval(['a',num2str(j),'(:,z(j))=[i;g];']);

%find the points, if the t is same, we

%just store the point which s is the maximum.

%In other words,

%each t maps to one point at most

%and assign the matrix aj, j=1,...,T,

end

end

end

for j=i+1:T

if eval(['a',num2str(j),'(:,z(j))˜=[0;0]']);

%since when given tau, it is not possible to

%find the points spreading all the t, so

%we need to account of the existing points

z(j)=z(j)+1;

end

end

end

for g=1:S

if O(1,g)==1

eval(['a',num2str(1),'(:,z(1))=[1;g];']);

%record the point when given tau=1

z(1)=z(1)+1;
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end

end

h = figure;

ColorSet = varycolor(T); set(gca, 'ColorOrder', ColorSet);

hold all;

for i=1:T

eval(['k','=a', num2str(i),'(1,:);']);

% k presents the vector storing the t+1 when given tau=i

eval(['sa','=a', num2str(i),'(2,:);']);

% sa presents the vector storing the s+1 when given tau=i

plot(k−1,S−sa+1);

% plot the points(t,S−s) when given each tau

end

xlabel('t');ylabel('S−sa');

axis(gca,[0 T+5 0 400]);

set(h,'Units','Inches');

pos = get(h,'Position');

set(h,'PaperPositionMode','Auto','PaperUnits',

'Inches','PaperSize',[pos(3), pos(4)])

print(h,'filename','−dpdf','−r0')

A.2 MATLAB Code to Section 2.4

A.2.1 Case 1

function [n,v,u]=compare22(T,g,t,s,c,e,S,b)

l=[];%keep the y j

k=[];%keep the \mu jˆ2,which j is not in optimal set A
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w=[];%keep the \mu j,which j is not in optimal set A

x=0;

for ii=1:g−t

x=x+(b*ii+1)/(b*T*(T+1)/2+T)*e;

end

for i=1:g−t

q=(S−s)/(g−t)+c/(1−c)*((b*i+1)/(b*T*(T+1)/2+T)*e−x/(g−t));

z=(b*i+1)/(b*T*(T+1)/2+T)*e;

if q<0

q=0;

else

z=0;

end

l=[l;q];

k=[k;zˆ2];

w=[w;z];

end

m=find(l(:)˜=0);%remove y j=0

n=length(m);% |A |

u=x−sum(w);%\sum\mu j,which j is in optimal set A

v=sum(k);%\sum\mu jˆ2,which j is not in optimal set A

end

function tau=compare7(T,t,s,c,e,S,b,sigma)

tau=t+1;

V=zeros(1,T−t);

for i=1:T−t

[n,v,u]=compare22(T,i+t,t,s,c,e,S,b);

al=(S−s)*(1−c)/n−c*u/n;

51



V(i)=cˆ2*sigmaˆ2*i+n*alˆ2+cˆ2*v;% assign V matrix

end

for ii=1:T−t−1

if V(ii+1)<=V(ii)% compare which element of V

tau=ii+t+1;

% find tau when the element of V is smallest

else

V(ii+1)=V(ii);

end

end

end

S=600;

e=10000;

T=50;

sigma=5;

c=.1;

k=[];

for i=−0.05:0.002:0.05

f=compare7(T,0,0,c,e,S,i,sigma);

k=[k;f];

end

b2=−0.05:0.002:0.05;

plot(b2,k);

ylim([0 55]);

xlim([−0.02 0.05]);

xlabel('b');ylabel('optimal stopping time');
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A.2.2 Case 2

function [n,v,u]=compare23(T,g,t,s,c,e,S,a,b)

l=[];%keep the y j

k=[];%keep the \mu jˆ2, which j is not in optimal set A

w=[];%keep the \mu j,which j is not in optimal set A

x=0;

for ii=1:g−t

x=x+(a*iiˆ2+b*ii+1)/(a*T*(T+1)*(2*T+1)/6+b*T*(T+1)/2+T)*e;

end

for i=1:g−t

q=(S−s)/(g−t)+c/(1−c)*((a*iˆ2+b*i+1)/

(a*T*(T+1)*(2*T+1)/6+b*T*(T+1)/2+T)*e−x/(g−t));

z=(a*iˆ2+b*i+1)/(a*T*(T+1)*(2*T+1)/6+b*T*(T+1)/2+T)*e;

if q<0

q=0;

else

z=0;

end

l=[l;q];

k=[k;zˆ2];

w=[w;z];

end

m=find(l(:)˜=0);%remove y j=0

n=length(m);% |A |

u=x−sum(w);%\sum\mu j,which j is in optimal set A

v=sum(k);%\sum\mu jˆ2,which j is not in optimal set A

end

53



function tau=compare9(T,t,s,c,e,S,a,b,sigma)

V=zeros(1,T−t);

tau=t+1;

for i=1:T−t

[n,v,u]=compare23(T,i+t,t,s,c,e,S,a,b);

alpha=(S−s)*(1−c)/n−c*u/n;

V(i)=cˆ2*sigmaˆ2*i+n*alphaˆ2+cˆ2*v;% assign V matrix

end

for ii=1:T−t−1

if V(ii+1)<=V(ii)

% compare which element of V

tau=ii+t+1;

% find tau when the element of V is smallest

else

V(ii+1)=V(ii);

end

end

end

S=600;

T=50;

e=10000;

sigma=5;

c=.1;

l=[];

for i=0:0.02:0.5

temp=[];

for j=0:0.02:0.5
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f=compare9(T,0,0,c,e,S,i,j,sigma);

temp=[temp,f];

end

l=[l;temp];

end

a=0:0.02:0.5;

b=0:0.02:0.5;

mesh(a,b,l);

axis ([0 0.5 0 0.5 0 55]);

xlabel('a');ylabel('b');zlabel('optimal stopping time');

A.2.3 Case 3

function [tau,V]=compare11(T,t,s,c,S,mu,k,n)

C1=cˆ2*(k+muˆ2+n*(2*t+1)/2);

C2=cˆ2*n/2;

C3=(S−s)ˆ2*(1−c)ˆ2;

C4=−2*c*mu*(S−s)*(1−c);

delta=4*C1ˆ3*C3−108*C2ˆ2*C3ˆ2;

Q=(−108*C2ˆ2*delta)ˆ.5;

C=((Q+2*C1ˆ3−108*C2ˆ2*C3)/2)ˆ(1/3);

x1=−C1/(6*C2)−C/(6*C2)−C1ˆ2/(6*C2*C);

x2=−C1/(6*C2)+C*(1+sqrt(3)*1i)/12/C2

+C1ˆ2*(1−sqrt(3)*1i)/12/C2/C;

x=−C1/(3*C2)+C/(6*C2)+C1ˆ2/(6*C2*C);

x3=x−x2;

v=[floor(x1),ceil(x1)];

m=[max([x1 x2 x3]),median([x1 x2 x3]),min([x1 x2 x3])];

p=[floor(m(3)),ceil(m(3)),floor(m(2))
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,ceil(m(2)),floor(m(1)),ceil(m(1))];

g1=C1+C2+C3+C4;

gtT=C2*(T−t)ˆ2+C1*(T−t)+C3/(T−t)+C4;

gv=C2*v.ˆ2+C1*v+C3./v+C4;

gp=C2*p.ˆ2+C1*p+C3./p+C4;

r1=[g1 gtT gv];

m1=[t+1,T,t+v];

r2=[gp(1:2) g1 gtT];

m2=[t+p(1:2),t+1,T];

r3=[gp(1:4) g1 gtT];

m3=[t+p(1:4),t+1,T];

r4=[gp g1 gtT];

m4=[t+p,t+1,T];

r5=[gp(3:4) g1 gtT];

m5=[t+p(3:4),t+1,T];

r6=[gp(3:6) g1 gtT];

m6=[t+p(3:6),t+1,T];

r7=[gp(5:6) g1 gtT];

m7=[t+p(5:6),t+1,T];

if delta<0

if T−t<=x1 | | x1<=1

if g1<=gtT

tau=t+1;

V=g1;

else

tau=T;

V=gtT;

end

end

if 1<x1<T−t

tau=m1(min(r1)==r1);
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V=min(r1);

end

end

if delta>=0

if T−t<m(3) | | m(3)<=1<T−t<=m(2) | | m(2)<=1<T−t<=m(1)

if g1<=gtT

tau=t+1;

V=g1;

else

tau=T;

V=gtT;

end

end

if 1<=m(3)<=T−t<=m(2)

tau=m2(min(r2)==r2);

V=min(r2);

end

if 1<=m(3) && m(2)<=T−t<=m(1)

tau=m3(min(r3)==r3);

V=min(r3);

end

if 1<=m(3) && m(1)<=T−t

tau=m4(min(r4)==r4);

V=min(r4);

end

if m(3)<=1<=m(2) && m(2)<=T−t<=m(1)

tau=m5(min(r5)==r5);

V=min(r5);

end

if m(3)<=1<=m(2) && m(1)<=T−t

tau=m6(min(r6)==r6);
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V=min(r6);

end

if m(2)<=1<=m(1) && m(1)<=T−t

tau=m7(min(r7)==r7);

V=min(r7);

end

end

A.3 MATLAB Code to Section 2.5

function [op,tau,l]=compare24(t,s,c,S,mu,ss)

tau=t+1;

g=size(mu(:,1),1);%keep the size of mu

V=zeros(1,g−t);

for i=t+1:g

[n,v,u,l]=compare25(i+t,t,s,c,S,mu);

al=(S−s)*(1−c)/n−c*u/n;

V(i)=cˆ2*sum(ss(1:g−t,1),1)+n*alˆ2+cˆ2*v;

% assign V matrix

end

for ii=1:g−1

if V(ii+1)<=V(ii)

% compare which element of V

tau=ii+t+1;

% find tau when the element of V is smallest

op=V(ii+1);

% find the optimal value of V

else
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V(ii+1)=V(ii);

op=V(ii+1); % find the optimal value of V

end

end

[n,v,u,l]=compare25(tau,t,s,c,S,mu);

for i=t+1:tau

if l(i)˜=0

l(i)=(S−s)/n+c/(1−c)*(mu(i)−u/n);

%keep the optimal strategy

end

end

end

function [n,v,u,l]=compare25(g,t,s,c,S,mu)

l=[];%keep the y j

w=[];

%keep the \mu j,which j is not in optimal set A

x=sum(mu(1:g−t,1),1);

for i=1:g−t

q=(S−s)/(g−t)+c/(1−c)*(mu(i)−x/(g−t));

z=mu(i);

if q<0

q=0;

else

z=0;

end

l=[l;q];

w=[w;z];

end
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m=find(l(:)˜=0);%remove y j=0

n=length(m);% |A |

u=x−sum(w);

%\sum\mu j,which j is in optimal set A

v=sum(w.ˆ2);

%\sum\mu jˆ2,which j is not in optimal set A

end

S=100000;

Aa =xlsread('WMT.xlsx','vlm');

Aa = Aa(3:78,844:end−2);

Aa(isnan(Aa))=0;

%replace undefined values by zero

err1=0;

err2=0;

err3=0;

err4=0;

err5=0;

err6=0;

c=.1;

l2=zeros(n,754);

%initialize one alternative strategy with \tilde{Y}

l3=zeros(n,754);

%initialize another alternative strategy with \overline{Y}

for i=0:753

mu=mean(Aa(:,1+i:40+i),2);

%using the previous 40 columns data to estimate mu

ss=var(Aa(:,1+i:40+i),0,2);

%using the previous 40 columns data to estimate the variance
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[op,tau,l1]=compare24(0,0,c,S,mu,ss);

err=sum((l1(1:tau)−c*(Aa(1:tau,40+i)+l1(1:tau))).ˆ2);

err0=sum((l1(1:tau)./(l1(1:tau)+Aa(1:tau,40+i))−c).ˆ2);

err1=err1+err;

err2=err2+err0;

l2(:,i+1)=mu*c;

muc=cumsum(mu*c);

[˜,tau0]=max(muc>S);

l2(tau0,i+1)=S−sum(l2(1:tau0−1,i+1));

err=sum((l2(1:tau0,i+1)−c*(Aa(1:tau0,40+i)+l2(1:tau0,i+1))).ˆ2);

err0=sum((l2(1:tau0,i+1)./(l2(1:tau0,i+1)

+Aa(1:tau0,40+i+1))−c).ˆ2);

err3=err3+err;

err4=err4+err0;

l3=l2/(1−c);

muc1=cumsum(mu*c/(1−c));

[˜,tau1]=max(muc1>S);

l3(tau1,i+1)=S−sum(l3(1:tau1−1,i+1));

err=sum((l3(1:tau1,i+1)−c*(Aa(1:tau1,40+i)+l3(1:tau1,i+1))).ˆ2);

err0=sum((l3(1:tau1,i+1)./(l3(1:tau1,i+1)

+Aa(1:tau1,40+i+1))−c).ˆ2);

err5=err5+err;

err6=err6+err0;

end

err1=err1/754;

%average error of 754 days in simplified form with our method

err2=err2/754;

%average error of 754 days in original form with our method

err3=err3/754;

%average error of 754 days in simplified form in strategy ...

with \tilde{Y}
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err4=err4/754;

%average error of 754 days in original form in strategy with ...

\tilde{Y}

err5=err5/754;

%average error of 754 days in simplified form in strategy ...

with \overline{Y}

err6=err6/754;

%average error of 754 days in original form in strategy with ...

\overline{Y}

A.4 MATLAB Code to Section 3.1

x=300;

c=.5;

l=[];

for i=0:10:2000

f=(i/(x+i)−c)ˆ2;

l=[l;f];

end

y=0:10:2000;

plot(y,l);

xlabel('y');ylabel('f(y)');

function [g1,g2]=compare12(x,c,k3)

k1=c*x;

k2=1−c;

u=3*xˆ2*k1+3*x*k1*k3+k1*k3ˆ2+xˆ3*k2;
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v=k1+3*x*k2+k2*k3;

g1=2*(k3/(2*x+k3)−c)ˆ2;

if k3ˆ2−4*u/v==0

y1=k3/2;

y2=k3/2;

g2=(y1/(x+y1)−c)ˆ2+(y2/(x+y2)−c)ˆ2;

elseif k3ˆ2−4*u/v>0

y1=(k3+sqrt(k3ˆ2−4*u/v))/2;

y2=(k3−sqrt(k3ˆ2−4*u/v))/2;

g2=(y1/(x+y1)−c)ˆ2+(y2/(x+y2)−c)ˆ2;

elseif k3ˆ2−4*u/v<0

g2=NaN;

end

x=300;

c=.5;

l=[];

for i=0:5:200

[a,b]=compare12(x,c,i);

f=[a,b];

l=[l;f];

end

b1=0:5:200;

plot(b1,l(:,1));

hold all;

plot(b1,l(:,2));

xlabel('S−s');ylabel('minimal value');

legend('g1','g2')
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x=50;

k3=300;

l=[];

for i=0.005:.05:0.995

[a,b]=compare12(x,i,k3);

f=[a,b];

l=[l;f];

end

b1=0.005:.05:0.995;

plot(b1,l(:,1));

hold all;

plot(b1,l(:,2));

xlabel('c');ylabel('minimal value');

legend('g1','g2')

A.5 MATLAB Code to Section 3.2

function y=fun(x)%find the minimal value of V3 and minimizer yˆ*

y=0;

a=30;

b=50;

c=0.1;

for i=1:size(x,1)

y=sum(x.ˆ2./(a+sqrt(x)).*(b+x)

+2*c*x.*log((a+x)./(b+x))/(b−a)+cˆ2);

end

end
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T=10;

f=[];

k=zeros(T);

S=0.5;

s=0;

t=0;

for i=1:T

e=eye(i−t)*(−1);%e*x<=m, which means y j>=0

m=zeros(i−t,1);

n=ones(1,i−t);%n*x=S−s; which means \sum y j=S−s

x0=ones(i−t,1)*(S−s)/(i−t);

V=zeros(1,i−t);

[X,V] = fmincon(@fun,x0,e,m,n,S−s);

k(1:i,i)=X;

f=[f;V];

end

for ii=1:T−t−1

if f(ii+1)<=f(ii)% compare which element of V

temp=ii+t+1;

% find tau when the element of V is smallest

q=k(:,ii+t+1);

s=f(ii+t+1);

else

f(ii+1)=f(ii);

end

end

q(q==0)=[];

tau=temp% the stopping time

y=q% the minimizer y j

V4=s% V 4
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