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Abstract

This thesis investigates the Chow ring, and neighboring functors, of a Severi-
Brauer variety. The approach taken here heavily depends on the computation
of lower K-groups of a Severi-Brauer variety.

We construct a functor (for an arbitrary scheme essentially of finite type
over a field) that is a universal target for additive Chern classes and we com-
pare this functor to the associated graded for the gamma filtration on the
Grothendieck group of locally free sheaves via a Grothendieck-Riemann-Roch
type theorem. When the Chow ring is generated by Chern classes our theorem
reduces to the standard Grothendieck-Riemann-Roch.

Following this we show that, for some Severi-Brauer varieties including the
generic ones, the Chow ring is isomorphic with the associated graded of the
gamma filtration on the Grothendieck ring. The theorem more generally in-
volves Severi-Brauer varieties whose Chow rings are generated by Chern classes
and whose associated algebra has index and exponent that differ very mini-
mally (in the language of this section, for algebras of level 1). This prompts
us to investigate the gamma filtration in its own right. We prove some results
about the gamma filtration for a Severi-Brauer variety including results show-
ing the gamma filtration depends only on primary division algebra factors of
the central simple algebra of the Severi-Brauer variety.

Lastly, we continue work on the picture for the diagonal K-cohomology
groups which can be considered in degree one higher than the Chow ring. By
assuming the vanishing of reduced Whitehead groups for certain algebras with
equal index and exponent, we provide a complete description of the coniveau
filtration on the first K-group in some cases.
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Preface

A word about the contents of the following thesis: most of what follows has
been accepted for publication, and the rest has been submitted.

Chapter 3 is joint work with Nikita Karpenko and will appear in the Annals
of K-theory published by Mathematical Sciences Publishers (©)[2018]. In this
chapter, the appendices (included in the print version) have been changed to
sections, some equations have been “trimmed” to fit the format here, and some
exposition has been changed for this thesis.

Chapter 5 has also been accepted for publication. This chapter was first
published in the Canadian Mathematical Bulletin at https://doi.org/10.
4153/50008439518000073. (©)[2018] Canadian Mathematical Society in part-
nership with Cambridge University Press. This article will appear in an edited
form in press at a later date and the version here should not be redistributed
by the end-user.

Chapters 2 and 4 have only been submitted.

The mathematical content of these works is mostly unchanged between the
accepted for publication (or submitted) versions and the versions appearing
here. However, small typos have been corrected and occasionally the format-

ting has been changed.
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Chapter 1

Introduction

As challenging as it is to study the geometry of solutions to algebraic equations
themselves, it is nearly as equally challenging to study the relations between
such solutions. Algebraic geometry, however, is often solely dependent on
such relations: to classify embeddings of a variety X into projective space it
is equivalent to work with codimension one subvarieties up to an equivalence
where such subvarieties can be moved inside of X; whether or not a surface
is a minimal example in a family of blow-ups is equivalent to whether or not
the surface contains a line with —1 self intersection. Both of these concepts
are the first traces of a more interesting invariant one can assign to a variety

in algebraic geometry called the Chow ring.

Definition 1.0.1. For any integer £ > 0, the Chow group of k-dimensional

cycles of a variety X is defined to be the quotient
CHi(X) = Zi(X)/Re(X)

where Zy(X) = @y Z -V is the free abelian group generated by integral
subvarieties V' of X with dim(V) = k, and Rx(X) is the subgroup of Z;(X)

generated by the (nonzero) divisors of rational functions f of function fields
1



k(W)* of integral subvarieties W of X of dimension k& + 1.

The Chow ring is defined to be the sum of these groups,

CH(X) = @5 CHy(X)
and it comes equipped with an intersection product when X is, for example,
smooth. The name is motivated by the fact that the multiplication can, in
nice situations, be defined as taking the product of equivalence classes of two

subvarieties to the equivalence class of their intersection, i.e. [V]-[W] = [VNW].

The study of Chow rings is deeply interconnected with the study of alge-
braic geometry itself, as the examples above illuminate. The wealth of informa-
tion one can gain by understanding in detail the Chow ring of a given variety
is often too numerous to state, and this richness of information is typically
directly related with the difficulty level of studying these objects. Some of the
earliest examples of Chow rings that could be worked out in complete detail
were, then, some of the most structured examples as well, e.g. for algebraic
groups and their homogeneous spaces.

For split semisimple algebraic groups, the Chow groups of their projective
homogeneous varieties are free groups generated by the Schubert varieties of
their Bruhat decomposition, [Che94, Dem74]; see also [K91]. The Chow rings
for these varieties are often more difficult to compute and, even when a de-
scription of this ring is known it can be difficult, at least in practice, to relate
the structure of the Chow groups to the description of their Chow rings.

Although the picture in the case of a split semisimple algebraic group is
incomplete, one can still ask if there’s anything that can be said about the
Chow groups/rings for a homogeneous variety under an arbitrary semisimple

algebraic group. This problem is considerably harder and almost nothing
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is known in general about the structure of either the Chow groups or the
Chow rings for these varieties. For example, since for projective homogeneous
varieties under a nonsplit group there is no Bruhat decomposition, the Chow
groups don’t need to be free. Sometimes they do contain torsion, [[Kar98], and
sometimes this torsion isn’t even finitely generated, [KM90].

This thesis takes a (small) step towards answering the question “to what
extent can one describe the Chow ring or Chow groups of a projective homoge-
neous variety under a nonsplit semisimple algebraic group?” with a particular

emphasis on the simplest class of these varieties: the Severi-Brauer varieties.

Definition 1.0.2. A Severi-Brauer variety X over a field k is a scheme that
admits an isomorphism Xy = P with projective space of dimension n > 0

over an algebraic closure k.

It’s not a new question and the results themselves are not particularly
unique. The entire thesis can be considered a generalization of techniques,
theorems, and theories from places where the ideas were already known.

Before describing what is new here, I want to give some context on one
approach that can be used to answer the question posed in the previous para-
graph: the use of the Brown-Gersten-Quillen spectral sequence (henceforth
called the BGQss, and whose pth row, gth column, on the rth page will be
denoted EP?). This spectral sequence has played a critical role in a large num-
ber of computations involving the Chow group of a projective homogeneous
variety for a nonsplit group and one could attribute a large part of the success
that current programs have had in extending these results to the computability
of the K-theory of these varieties, [Qui73, Pan94, LSW8&9].

The key observations are the following. The second page of the BGQss is
a nice approximation to motivic cohomology, especially when the coordinates

add to 0, —1, —2 (e.g. EY"? is isomorphic with the Chow group of codimension-
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p cycles, and similarly E2 777! and E2 "2 are isomorphic with other motivic
cohomology groups). The converging terms E%* are explicitly describable as
graded pieces of a coniveau filtration and, for the EP>P terms, this filtration
is approximated by the even more computable y-filtration (for definitions of
both filtrations in the relevant degrees, see Section 4.3). Finally, the edge
map E5 P — EPP can be identified with the canonical surjection of the

Grothendieck-Riemann-Roch without denominators (GRRwod):

Theorem 1.0.3 ([F'ul98, Example 15.3.6]). Let X be a smooth and connected
variety. We write gr.G(X) for the associated graded ring to the coniveau
filtration on the Grothendieck ring of coherent sheaves Go(X). In the notation
above, the degree p summand gr?G(X) of gr.G(X) is also the limiting term

E?=P of the BGQss for X. In this notation, there are canonical morphisms

¢’ CHP(X) — gt?G(X) and ¢, : gr?G(X) — CHP(X)

where @P takes the class of a integral subvariety V- C X to the class [Oy] and
cp 15 induced by the pth Chern class.

Moreover, the morphism ¢P is surjective for all p > 0 and the compositions

Cp O P = (—1)p71(p i 1>! and "o cp = (_1)p*1(p . 1)!

are both multiplication by (—1)P~1(p — 1)!.

This means that, up to knowing the K-theory of a given variety and solving
an extension problem, the BGQss can compute the Chow groups by analyzing
the converging terms and a torsion subgroup of the Chow ring.

Since the K-theory of a Severi-Brauer variety has been computed, [(Qui73],

the BGQss effectively reduces the problem of computing the Chow groups to
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computing the associated graded ring for the coniveau filtration and computing
the kernel of the canonical surjection of the GRRwod. And, still for Severi-
Brauer varieties, both of these latter problems have been studied to a large
degree. In the following paragraphs, we outline a program one can take towards
solving these problems in general. At appropriate times we’ll single out some
papers that have impacted the work contained in this thesis and specify to
what extent we’ve managed to solve these problems.

Severi-Brauer varieties are closely related to central simple algebras.

Definition 1.0.4. A central simple k-algebra A is a unital and associative,
but not necessarily commutative, k-algebra that is finite dimensional as a k-
vector space, is central over the k-subfield generated by its unit, and which

has no nontrivial two-sided ideals.

These are objects that behave very unpredictably but closely depend on
only a few invariants called the index, the degree, and the exponent. Each of
these is a positive integer: the degree is the square-root of the dimension of the
algebra, the index is the dimension of the largest subfield contained in a central
division algebra contained in the central simple algebra, and the exponent is
the smallest nonnegative integer such that taking the tensor power of the given
algebra to the power of the exponent yields an algebra isomorphic to a matrix
ring (nontrivially the exponent is always finite). Any central simple algebra
A can be factored into a tensor product of a matrix ring and smaller division
algebras each having degree a power of a prime dividing the index of A. The
first step when studying the (Chow groups, K-theory, BGQss of the) Severi-
Brauer variety of A, is a reduction (using [I[<ar00] and [I{ar17a]) to the case A
is a division algebra of prime power degree.

The problem of determining the Chow groups of a Severi-Brauer variety

corresponding to a division algebra of prime power degree is much more subtle.
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For these algebras one typically doesn’t know whether or not the algebra will
decompose as a tensor product of smaller algebras. The two extreme cases
where one might expect to be able to say something would then be when
this division algebra is indecomposable and has largest possible exponent, and
when this division algebra is totally decomposable and has smallest possible
exponent. In the indecomposable highest exponent case, the coniveau filtration
on the Grothendieck group Gy was computed by Karpenko, [[Kar95b]. In the
totally decomposable lowest exponent case, the coniveau filtration on Gy was
computed, again by Karpenko, under the assumptions that the degree of this
division algebra is p? for a prime p and only two division algebras appear in
the product, [Kar96]. In other cases very little is known.

Unfortunately, even when one knows the coniveau filtration on Gy (and
hence the converging terms E? 7 of the BGQss) as in the cases above, one can
say very little about the kernel of the canonical surjection from the GRRwod,
and hence one can’t say anything complete regarding the Chow groups. In
some highly decomposable cases, the kernel turns out to be nontrivial, [Mer95].
In other highly indecomposable examples, the kernel turns out to be trivial,
[Kar17h]. Decomposability might be a red herring in these examples, however,
since the former examples depend on arithmetic information contained in the
Galois cohomology of the base field, while the latter examples depend on the
lack of this information, in some sense.

More precisely, [I[<ar17b] shows the kernel of the GRRwod surjection van-
ishes for so called generic Severi-Brauer varieties. In this case, the coniveau
filtration agrees with the more computable ~-filtration and it’s through this
equality that one can show the kernel is trivial. The equality between the
~-filtration and the coniveau filtration depends only on the associated graded

ring for the coniveau filtration being generated by Chern classes and, when this



happens, this ring depends only on the degree of the involved central simple
algebra and the indices of its tensor powers.

The main results of this thesis could be considered the results of Chapter
3. This chapter is joint work with Nikita Karpenko. In it, we relate two
conjectures around the triviality of the kernel of the canonical epimorphism of
the GRRwod for some classes of projective homogeneous varieties. Specifically,
we prove equivalence of the following two statements, both of which are stated

as individual conjectures in Chapter 3:

Theorem 1.0.5 (See Theorem 3.3.3). The following two statements are equiv-

alent:

1. the canonical surjection CH(X) — gr G(X) is an isomorphism for all
varieties X that are isomorphic to a product of Severi-Brauer varieties

and CH(X) is generated by Chern classes,

2. the canonical surjection CH(E/P) — gr,G(E/P) is an isomorphism for
all varieties E/P where E is a versal G-torsor for a split semisimple
algebraic group G satisfying the property that the Dynkin diagram of G
is a union of diagrams of type A and/or type C, and P is a special

parabolic subgroup of G.

In the latter half of this chapter, Sections 3.4 and 3.5, I extend the results
of [Karl7b] to a slightly larger class of Severi-Brauer varieties. This (reproves
and) generalizes the results from [Karl7b] and proves a subcase of the two
conjectures above; the techniques are exactly the same as before but the com-
putations required are considerably more involved. The class of Severi-Brauer
varieties I work with in this chapter are those associated to central simple

algebras of level one. Formally, I prove:



Theorem 1.0.6 (See Theorem 3.4.15). Suppose A is a central simple algebra
which can be realized as a matrix ring over a division algebra D. Suppose
D = ®p prime Dp @ factorization into p-primary division algebras and, for
each D, there is at most one integer v > 1 such that there is an inequality of
p-adic valuations

r—1

vpind(Dfpr) < vpind(Dy?

) 1.

Then, if X is the Severi-Brauer variety of A and CH(X) is generated by Chern

classes, the canonical surjection CH(X) — gr,G(X) is an isomorphism.

The assumptions seem, at first, to be overly complicated. However, exam-
ples of such Severi-Brauer varieties naturally arise by base change of generic
Severi-Brauer varieties to some function fields.

Chapters 2 and 4 stem from Chapter 3 in different ways. Chapter 2 is
largely disjoint from the overall program related to Severi-Brauer varieties
described here. The contents of this chapter investigate a universal theory
for Chern classes and relate this theory to the associated graded ring for the
~-filtration on K, the Grothendieck ring of locally free sheaves. It can be
considered an abstraction of the techniques used to study Chern classes that
appear in the proofs of Chapter 3. Chapter 2 also provides a new GRRwod
theorem that reduces to the usual one under the assumption the Chow ring is

generated by Chern classes.

Theorem 1.0.7 (See Theorem 2.5.1). Let B be the universal theory for ad-
ditive Chern classes in the sense of Proposition 2.2.2. Let X be a variety in
the sense of Chapter 2. We write gr, K(X) for the associated graded ring of
the ~-filtration on the Grothendieck ring K(X). We write B'(X) for the de-

gree i summand of B(X) and we write griYK(X) for the degree i summand of



grgK(X). In this notation, there are canonical morphisms
i . pi i B . i i
v, : B'(X) = grt K(X) and ¢ :grl K(X) — B'(X)

where bg takes universal Chern classes to Chern classes in grgK(X) and c? is
induced by the ith Chern class.
Moreover, the morphism bfy 1s surjective for all 1 > 0 and the compositions

c?o bl = (=1)"'(i —1)! and bl o e = (=17 —1)!

D =

are both multiplication by (—1)"*(i — 1)!.

Chapter 4 works directly with the y-filtration for an arbitrary Severi-Brauer
variety. Here we show how to extend the results on the coniveau filtration,
that allowed us to reduce to the case of a division algebra of prime power
degree which depend on motivic information and hence are not accessible to
the ~-filtration, to the ~-filtration. As a result, we get explicit computations
of the Chow groups of generic Severi-Brauer varieties in high codimension and

find they are torsion-free.

Theorem 1.0.8 (See Theorem 4.6.1). Suppose X is a Severi-Brauer variety
such that CH(X) is generated by Chern classes and the canonical surjection
CH(X) — gr,G(X) is an isomorphism. Then CH;(X) is torsion free for

0 <i < p—2 where p is the smallest prime integer dividing dim(X) + 1.

More generally, the above theorem follows from a complete computation of
the v-filtration in these low homological degrees for any Severi-Brauer variety
X. We give the statement above due to its similarity to a conjecture that, if
proved, would imply a conjecture of Suslin on the generic nontriviality of the

reduced Whitehead group of a central simple algebra.
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Finally, in Chapter 5, I generalize the description of the coniveau filtration
on G obtained in [[Kar95b] to a description of the coniveau filtration on Gy
and G, the first G-theory group of the category of coherent sheaves, for Severi-

Brauer varieties of central simple algebras satisfying a few conditions.

Theorem 1.0.9 (See Proposition 5.5.1). Let i = 0, or let i = 1 and assume
the reduced Whitehead groups are trivial, SK;(A®") = 1, for allT > 0. Assume
A satisfies the condition that its index and exponent are equal over all finite

extensions of the base field. Then there are isomorphisms

Ki(X)j/jH >~ Nrd;(A%),

where K;(X)/7+1 = EI7% are the limiting terms of the BGQss and Nrd;(A%?)
is the reduced norm group, for all0 < j < deg(A)—1. For other j these groups

vanish.

The techniques are quite different from [Kar95b] where one works by bound-
ing the indices of certain subgroups because it’s not necessarily clear whether
they make sense for G;. Here our proofs go by equating reduced norms to ac-
tual norms (or finite transfers) and giving some relationships between reduced
norm subgroups of different tensor powers of a given algebra.

Each chapter is written as an independent article. Occasionally notation
differs between the chapters (e.g. some chapters work primarily with Go or Ky
so we write G or K for simplicity; another chapter works primarily with K

so we just write K when we might mean, equivalently, G or Gy).
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Chapter 2

Universal additive Chern classes
and an integral GRR-type

theorem

Conventions. In the following we say X is a variety to mean X is a scheme
essentially of finite type over a field, i.e. a localization of a scheme of finite
type over a field. In this way we can work not only with varieties proper but
with their generic points as well.
For convenience, our fields all have continuum or countable cardinality.
We remark that the category of schemes essentially of finite type over a field
is essentially small and, when necessary, we work only in a small equivalent

category.

2.1 Introduction

A natural starting point for the investigation of the structure of the Chow ring
for a smooth projective variety X is the structure of its Chern subring. Often

this can be accomplished by understanding properties of the Grothendieck ring
11



of X which is sometimes easier to compute.

This paper produces a functor which maps to any other functor having a
suitable notion of Chern classes with an additive first Chern class. There are
obvious extensions to a number of other situations (e.g. using a different formal
group law in the definition, including an equivariant structure, or changing
coefficients) that are not pursued in this text.

The second section outlines the construction of the functor for a given
variety X. In this section we also prove a number of basic properties which
are cohomological in nature. It should be noted this functor does not form a
cohomology theory in any natural sense because it typically lacks pushforwards
along a given finite morphism.

Section three reviews the relationship between the A-ring structure on the
Grothendieck ring and operations on polynomials of Chern classes. This ma-
terial is well-known but we use it frequently in examples, appearing primarily
in section four, and in the main theorem so it seemed fitting to include it.

In section five we prove our main theorem. More precisely, we prove that
there are natural maps between our functor and the associated graded of the
~-filtration on the Grothendieck ring which are multiplication by a certain

integer after composition.

2.2 Construction and fundamental properties

Fix a variety X over a field k. Let Rx be the set of symbols {cP(F)} varying
over integers ¢ > 0 and over an appropriate representative of all isomorphism
classes of finite rank vector bundles F on X. The algebra Z|Rx]| generated by
these symbols is naturally graded with each ¢Z(F) in degree i.

We define an ideal Ix C Z[Rx] having generators:

12



- ¢B(F) — 1 for all bundles F
- ¢B(F) whenever i is greater than the rank of F

- cB(G) - Z;:D ¢ J(F)cP (&) for any short exact sequence 0 — & — G —

F — 0 (Whitney Sum)
- BLe L) —cB(L) - cP(L') for any pair of line bundles £, £'.

We denote by [cB(F)] the class of ¢?(F) in Z|Rx]/Ix. Note that Ix is a
homogeneous ideal so that the quotient is graded with a well-defined notion
of degree.

For any other variety Y and morphism f : X — Y there is a natural
morphism

f* : Z[Ry]/]y — Z[Rx]/IX

defined by [*[cB (F)] = [cB(f*F).

We write PX for the directed set of maps to X made up of isomorphism
classes of chains of projective bundles. By this we mean P¥ is the set of
sequences of maps

X—P Py

where P, — X is a composition of projections from successive projective
bundles, P, — P, is likewise a chain of projective bundles over P;, and so on;
isomorphism classes of such chains are given by commutative ladders which
are termwise isomorphic. One chain dominates another chain if there is a

commutative ladder with each vertical arrow a chain of projective bundles.

X « P < Py <
| T
X < Q1 < Q2 <

13



In the above diagram the bottom sequence, call it Sg, dominates the top, Sp,
and we would write Sg > Sp. Any two chains have a chain that dominates
them. To see this, let

X P+ P+ -
X Q¢ Qo

be two such chains. Then by taking fiber products a third such chain that

dominates the two given is
X< PiXx Q1 Py xXp g Q2.
A chain P of chains of projective bundles
X—P Py
determines a directed system using the natural maps defined above
Z|Rx|/Ix — Z|Rp,|/Ip, — Z|Rp,]/Ip, — - - - .

Denoting the limit of this directed system by Z[Rp] = lim Z[Rp,]/Ip,, we get

a directed system of the Z[Rp] over all chains in the set P¥X.

Definition 2.2.1. We define a ring B(X) as the quotient

Z|Rx]/ker(fx)

where fx : Z|Rx] — lim, o Z[Rp)| is the canonical map.

The following proposition can be considered the defining quality of the
rings B(X) and it largely motivated its definition.
14



Proposition 2.2.2. The rings given by B define a contravariant functor from
the category of varieties over k to the category of graded rings with pullbacks
along a morphism f : X — 'Y defined by f*[cP(F)] = [cP(f*F)]. There are
natural transformations c? : K(—) — Bi(—) defined by taking the class of a
vector bundle F to the class [cP(F)]. Moreover, the functor B and these cP
satisfy the universal property stated below.

Let A be any other contravariant functor from the category of varieties to
the category of graded rings which has a collection of natural transformations
et K(=) — AY=) for all i > 0. Assume A(X) and these c* satisfy the

(3

following properties for every variety X :
- ¢ (F) =1 for all vector bundles F on X
- ¢M(F) =0 for all integers i > rk(F)

7

- MG = Zézo et J(F)eME) for any short exact sequence 0 — £ — G —

F — 0 (Whitney Sum)
ML L) =cML) + (L) for any pair of line bundles L, L’

- For any projective bundle P — X, the pullback map A(X) — A(P) is injec-

tive.

Then there is a natural transformation by : B(—) — A(—) which is completely

determined by the rule ba([cB(F)]) = ¢ (F).

Proof. That B is a contravariant functor with the defined pullback map is

clear from the facts: to any chain of projective bundles

X—P Py

15



and any map X — Y one gets, via pullback, a chain

Y(—P1XXY(—PQXPIP1XXY<—"'

and that pullbacks of the defining relations are defining relations.
That B comes equipped with natural transformations (of sets) c? follows

by defining the group homomorphisms, for any variety X,

K(X)— 1+ B(X)[[t]]

which sends the class of a locally free sheaf [F] to the power series 1+[cP (F)]t+

<+ [eB(F)|tt + - - -, considered inside the set of all power series with leading
term 1 and coefficients in B(X), and extending linearly. By the Whitney
sum relation such maps are well-defined. That this homomorphism commutes
with the pullbacks on K and B follows from the fact both are defined by the
pullback of sheaves (or vector bundles) f*.

Finally, to see that B satisfies the universal property stated we define a
map Z[Rx| — A(X), again for any given variety X, taking the symbol cZ(F)
to the Chern class ¢'(F). To finish the claim, it suffices to show this map
descends to a ring map B(X) — A(X). Let r be a relation in the kernel
ker(fx) as defined above. As this element is zero when mapped to a direct
limit, of a direct limit, of rings there is a chain of projective bundles P — X

so that Z[Rx| — Z[Rp]/Ip contains r in its kernel. There is a canonical map

from Z[Rp|/Ip to A(P) sending symbols to Chern classes and it follows there

16



is a commuting diagram as below.

Z[Rx] — Z[Rp]/[p

| |

A(X) —— A(P)

Since the pullback A(X) — A(P) commutes with Chern classes and is in-
jective, a diagram chase shows r is 0 in A(X). In this way we get a map

B(X) — A(X) having all of the specified properties. O

Although B turns out not to be a cohomology theory, it does share a num-
ber of properties that are typical of a cohomology theory. As an example of
this, we’ll show that B could reasonably be said to satisfy homotopy invari-
ance, weak-localization, and continuity. Our main observation is the following

lemma.

Lemma 2.2.3. Let f : X — Y be a morphism of varieties such that f* :
K(Y) = K(X) is surjective. Then f*: B(Y) — B(X) is surjective.

B

Proof. 1t suffices to show each class [c;

(F)] is in the image of f* as F ranges
over vector bundles on X. Since the following diagram commutes for any

1> 0,

K(Y) - K(X)

lciB l .

*

B(Y) —— B(X)

the lemma follows from observing that there is a class z in K(Y') mapping to

F under f*. n

Lemma 2.2.4. Assume either X is reduced and quasi-projective or smooth and
separated. Then the pullback 7 : B(X) — B(X x A™) along the projection

m: X x A" — X is an isomorphism.
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Proof. Tt suffices to treat the case n = 1. Letting o : X — X x A! be the zero
section, the composite 7 o ¢ is the identity on X. By functorality ¢* o 7* is
the identity on B(X) and the map 7* is therefore injective.

To show surjectivity of 7*, we can apply Lemma 2.2.3 to 7 noting that,
with the given assumptions on X, the induced map K(X) — K(X x A!) is

surjective. O

Lemma 2.2.5. Ifi: U — X is the inclusion of an open subvariety U C X,

then the restriction i* : B(X) — B(U) is surjective.
Proof. Immediate from Lemma 2.2.3. O

Lemma 2.2.6. Let x be a point of X. There are isomorphisms

liny B(U) = B(lim U) = B(Spec(Ox..))

zeU zelU

where the limits are along Zariski opens containing x.

Proof. Since all projective modules over a local ring are free, we have
K(Spec(Ox.)) =Z

with generator the class of Ox,. Thus for every open U the canonical map

K(U) — K(Spec(Ox,)) is surjective and the surjectivity of the canonical map

ling B(U) — B(lim U)

zelU zelU

follows by Lemma 2.2.3.
To show injectivity of this map, it suffices to show every Chern class of
positive degree is trivial over some open set around x. But this is true for

every vector bundle on X so it is also true for every Chern class. O
18



2.3 Chern classes and A-rings

The functor B defined in the previous section is closely determined by the
A-ring structure of the Grothendieck ring. Since most of our examples depend
on this relation, we provide reference in this section. For further properties of
the objects in this section one can consult the relevant literature (cf. [MRO71,
Expose 0], [Man69], or [FL&5]).

We continue to work over a fixed field k. For any variety X over this field,
the Grothendieck ring K (X) is equipped with a canonical structure of a A-ring.
That is to say, there are natural transformations X : K(—) — K(—) defined so
that \'([F]) = [A*(F)] for a vector bundle F. These natural transformations

satisfy the following properties:
- A(z) =1 for all z in K(X)
- M(z) =z for all z in K(X)
SNzt y) = A ()N (y)

S A(xy) = B(AY (), ..., Xi(2), AL(y), ..., \i(y)) for certain universal polynomials
Pi

- X(N(x)) = P j(A\Y(x), ..., \9(z)) for certain universal polynomials P, ;.

Remark 2.3.1. For any A-ring R, there are well-defined Schur operations

S*: R — R for any partition u = (1, ..., 4 ) defined by
SH(x) = det (M7 (x))1<i j<n-

If € C p is another partition, one can define an operation S*/¢: R — R for the

skew diagram p/e as

SHe(x) =k, (x)

v
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where ¢/, is a Littlewood-Richardson coefficient. These operations satisfy the
formula

Se(xby) = S 8 (@) S (y)

eCrvCpu

generalizing that for the A-operations.

Example 2.3.2. Let Gr(m,n) be the Grassmannian of m-planes in an n-
dimensional vector space. Then K(Gr(m,n)) is additively generated by the
classes S*(Q) where @ is the universal quotient bundle on Gr(m,n) of rank

n —m and p ranges over partitions which fit inside a box of size (n —m) x m.

One also has the y-operations 7% : K(—) — K(—) defined by the formula
vYi(z) = Nz +i—1).

To define the ~-filtration on K (X) for a smooth variety X, one lets 7 =
K(X), ' = ker(rk) where rk : K(X) — Z is the rank homomorphism, and
7" is defined to be the ideal generated by monomials ¥ (x1) - - - ' () where
Ty, ...,x; are elements of v* and 4y + -+ +1i; > 4.

Denote by 1+ tB(X)[[t]] the set of invertible power series with coefficients

in B(X).

Definition 2.3.3. The total Chern class is the homomorphism
e K(X) = 1+tB(X)[[t]]

defined by c?(x) =1+ cB(x)t + B(2)t? + -

The total Chern class commutes with the pullbacks on K and B hence
it defines a natural transformation of some type. By composing with the

universal homomorphism b4 of Proposition 2.2.2 one also gets total Chern
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classes with values in A. When no confusion will arise, we will omit the
superscript B in the notation. We’ll show later (see Proposition 2.4.7) that

whenever X has an ample line bundle, the total Chern class is a polynomial.

Lemma 2.3.4. For any vector bundles F,G of ranks n,m respectively there

are polynomials QQy, i so that

a(F@G) =14+ Qumici(F),...ci(F),c1(G), ... (Gt
i>1
Proof. 1t suffices to work over a chain of projective bundles 7 : P — X

where the classes of F,G split into a sum of line bundles in K(P). If 7*F =

Li+-+ L, and 7*G = L + -+ + L], then

amForg) = J[ @+ L) +al)).
1<i<n,1<j<m
Since the latter is symmetric in the ¢;(£)’s and in the ¢;(£')’s, the claim follows
by choosing @, to be the homogeneous polynomial expressing the weight ¢
part of this product as a polynomial of in elementary symmetric polynomials
e; in these variables.

In more details, one can write

a(mF)=c(li+ -+ L) =[]+ cr(Li)t) (E)

=1

as ¢; is a group homomorphism. Then comparing coefficients of degree 7, one

finds an equality

amF) = [ e«

1< <-<gi<n
by expanding the expression on the right side of (E). This last product be-

ing, equivalently, the ith elementary symmetric polynomial e; in the variables
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c1(Ly),...;c1(Ly). A similar formula holds for the Chern classes ¢;(7*G) as
elementary symmetric polynomials f; in the ¢;(£’). Now as ¢;(7*F ® 7*G) is
expressible as a symmetric function in both of these sets of variables, and since
the ring of functions symmetric in both sets of variables is generated integrally
by both sets of elementary symmetric polynomials, there is a polynomial @y, 1 i

with equality

CZ'(W*‘F ® W*g) = Qn,m,i(eh weey €4, fla sy fz)

Hence, this claim is then because the difference

G(F®G) = Qumilcr(F),....ci(F),c1(G), ..., ci(G))

is an element of the kernel of B(X) — B(P), which is trivial. O

Example 2.3.5 (cf. [Ful98, Example 3.2.2]). If F is a vector bundle of rank

n and L is a line bundle then

Equivalently,

where 7 = t/¢,(L).

Example 2.3.6 (cf. [Ful98, Remark 3.2.3 (a)]). If F is a vector bundle of rank
n, then

¢;(FY) = (=1)¢;(F).

Lemma 2.3.7. For any vector bundle F, the Chern class ¢;(N'(F)) is a poly-

nomial in the Chern classes of F.
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Proof. Let x = [F|. Again we work over a chain of projective bundles P where

xr =x1+ -+ x, for the class of some invertible sheaves x4, ..., z,,. Then

aWF) = J] Q+e)+-+al))

i1 <<

is symmetric in the ¢ (zx)'s which proves the claim. O

2.4 Examples

The main purpose of this section is to compute some examples to illustrate

how one might go about studying the functor B.
Example 2.4.1. B(Spec(k)) = Z.

Example 2.4.2. B(P") = Z[z]/(2™"!) where x = ¢;(O(1)). To see this, one
observes K (X) is generated as a ring by O(1) so that B(P") is generated by
x because of Lemma 2.3.4. To get the relation 2" = 0, one can apply the

total Chern class to the Euler exact sequence
0— Ox = O)*" ™ = Tpn — 0

and note the tangent bundle has vanishing (n + 1)th Chern class. It follows
B(P") is a quotient of Z[z]/(z"™'). To complete the proof, it’s sufficient to
find a cohomology theory A such that A(P") = Z[z]/(z"™) (e.g. A= CH or
A=gr K).

Example 2.4.3. By Example 2.3.2, the Grothendieck ring K(Gr(n,m)) is
generated by polynomials in the A-operations of the universal quotient bundle
Q. By Lemma 2.3.7, this means the ring B(Gr(m,n)) is generated by the

Chern classes of @, call them ¢y, ..., ¢\_pm.
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We get relations in B(Gr(m,n)) from the exact sequence of the universal
sub and quotient bundles

0= 5= Ofimm = @ 0.

Gr(m,n

If m < n —m, then from this exact sequence we find ¢;(S) = 1/¢(Q). Let
timit, - tn be the polynomials in the Chern classes of () which are the coef-
ficients of t™*1 ... ¢" in the expansion of 1/¢;/(Q) as a power series in t. If
m > n — m, then let us rename cq, ..., ¢,, to be the Chern classes of S, which
evidently also generate B(Gr(m,n)) due to the exact sequence above, and
name t,_mi1, ..., tn to be the coefficients of t"~™*! .. ¢" in the expansion of
1/c(S) as a power series in t.

We claim that B(Gr(m,n)) = Z[c1, ..., ¢n—m)/(tms1y -y tn) if m <n—m or
B(Gr(m,n)) = Zlc1, ..., ¢m]/(ta—ma1, -, tn) if m > n—m. Indeed, to complete
the proof it’s sufficient to find a cohomology theory A such that A(Gr(n,m))
is the desired ring. Taking A = CH suffices (see [EH16, Theorem 5.26]).

Example 2.4.4. Let X be a smooth projective curve. Then there is an iso-
morphism K (X) = Z & Pic(X) and any class = in K(X) can be written
x = rk(x)+det(z). It follows that B(X) is generated by Z and the first Chern
classes.

In fact, there is an isomorphism B(X) = Z @ Pic(X). We've shown there
is a natural surjection from the right side of this equality to the left. And to
show that this map is an injection, we compose it with the map boy : B(X) —

CH(X) = Z & Pic(X).

A similar argument shows that B(X) = CH(X) for a smooth projective

surface X.

Knowing A\-ring generators for the Grothendieck ring of a variety X allows
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one to determine generators for the ring B(X) using Lemma 2.3.7.

Definition 2.4.5. The level of a variety X, shorthand lev(X), is defined to
be the minimal number of elements that generate K(X) as a A-ring. If no

such number exists, the level is said to be infinite.

Example 2.4.6. If X =P" or X = Gr(m,n) then lev(X) = 1.
For any sequence 0 = ng < ny < -+ < ng = n, let X(ng,...,ng) be the

variety of (ny, ..., nx)-flags in a vector space of dimension n. Then

lev(X(ng,...,ng)) =k — 1.

To see this, note that there are k tautological vector bundles which generate
the ring K (X) of ranks ny, ..., ny respectively with one linear relation between
them. Thus lev(X) < k — 1. Conversely, lev(X) > rkzPic(X) and the latter
of these equals k — 1 as well.

If X is a Severi-Brauer variety, then the level of X is determined by a
sequence of indices of tensor powers of the associated algebra of X, cf. [KM18a,

Lemma A.6].

We conclude this section by showing the total Chern class of any element

of K(X) is a polynomial if X has an ample line bundle.

Proposition 2.4.7. Suppose X is a variety with ample line bundle L. Then
for any vector bundle F on X, the Chern class ¢;(F) is nilpotent for all i >
1. Moreover, for any element x in K(X), the total Chern class c;(x) is a

polynomial in t.

Proof. If F is globally generated, then there is a morphism f : X — Gr(m,n)
for some m,n such that f*¢Q) = F. Since the Chern classes of () are nilpotent

due to Example 2.4.3, the same statement follows for this F.
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In the general case, since X has an ample line bundle, there is some product
F @ L2 that is globally generated. By Example 2.3.5 and induction, the jth
Chern class of F can be written as a polynomial in the Chern classes of F®L%"
and £®". Since both of these latter bundles are globally generated, their Chern
classes are nilpotent and thus so are the Chern classes of F.

For the final statement, we write z = [F] — [G] and observe for sufficiently
large Chern classes of x there are sufficiently large powers of the Chern classes

of F or G involved. Eventually then these terms must vanish. n

2.5 An integral GRR theorem

In this final section, we show how one can relate B with another functor, gr. K,
which associates to any variety X the associated graded ring of the y-filtration
on the Grothendieck ring K(X). Recall gr, K(—) is equipped with a collection
of Chern classes ¢/, in the spirit of Proposition 2.2, determined by the rule

] (F) = v (tk(F) — [FY]) for any vector bundle F. Our main theorem is the

7

following:

Theorem 2.5.1. Let X be a variety and write
v, B'(X) — grl K(X)

for the ith summand of the canonical morphism of Proposition 2.2.2 applied

to (gr,K,c}). Then the Chern classes cB induce well-defined maps

cf gl K(X) — B'(X)
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such that the compositions are both multiplication by (—1)""1(i — 1)!,
cfobl =(=1)"Mi—1)! and bocl = (-1)""(i—1)

The proof can be reduced to an essentially combinatorial argument. We

present the main computations as two separate lemmas below.

Remark 2.5.2. Theorem 2.5.1 recovers the integral Grothendieck-Riemann-
Roch for smooth varieties X with CH(X) generated by Chern classes. To see
this, denote by G(X) the Grothendieck ring of coherent sheaves on X and by
gr.G(X) the associated graded of the coniveau filtration on G(X).

There is a canonical map gr K(X) — gr,G(X) given by comparing the
v and coniveau filtrations. When CH(X) is generated by Chern classes, this
comparison morphism is an isomorphism, see [KM18b, Proposition 3.3]. To
get the statement for the integral Grothendieck-Riemann-Roch in this case

one observes the following square

%

Bi(X) —C1 ., CHI(X)

A1)

gt K(X) —— gl G(X)

is commutative in more than one way where the arrow CH'(X) — grt G(X) is
the canonical epimorphism from the Chow ring to the associated graded of the
coniveau filtration and the arrow gri G(X) — CH’(X) can be defined by going
around the outside of the square. This latter map coincides with the usual
Chern class map from the Grothendieck-Riemann-Roch and composition in

either direction is multiplication by (—1)""'(i — 1)! by Theorem 2.5.1.

Lemma 2.5.3. Let Lq,...,L;11 be i + 1 line bundles on some variety P which
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can be realized as a chain of projective bundles over X. Then
i+1
¢ (H(ﬁj - 1)) =0
j=1

inside of B(P) for all k < 1.

Proof. We proceed by induction on the length of the product ¢ + 1. For our

base case, we observe that

AL —1D)(Ly—1) =B (L@ Ly — L1 — Lo+ 1)

= ¢ (Ly) + ¢ (L2) — ¢ (L2) — ¢ (L1) + ¢ (1) = 0.

For our induction hypothesis, we assume the Chern class ¢ of any product of
such elements of length ¢ vanishes for all k <i—1. Let H;Zl(ﬁj —1) = [F]-[9].

Then

¢ (H(ﬁ - 1)) = ¢/ (F = G)(Lis1 — 1))

j=1
it (F @ Liw1)
(G ® Liz1)er (F = G)
G )
 BG)P(F-9)
(using 7 = m, cf. Example 2.3.5)
_BF-0)
P(F-0)

:1+Ci(f_g)7i+ci+1(f ) H_l—l— ..
1 + CZ(I — Q)tl + Ci+1(f Q)t”l

(by induction hypothesis)

=1- ZCZ<.F - g)01 (£i+1)ti+1 —+ e
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Lemma 2.5.4. Let Ly,...,L; be i line bundles on some variety P which can

be realized as a chain of projective bundles over X. Then

d3<II(Ej—1J>:=(—1YWi—-U!IIC?(EH

j=1 i=1
inside of B(P).

Proof. Expanding the Chern class ¢;(F — G) in the last expression in the proof

of Lemma 2.5.3 gives the result. [

Proof of Theorem 2.5.1. Let x be an element of 4%, the ith piece of the ~-
filtration on K (X). The proof will be complete if we can show there is a variety
P which can be realized as a chain of projective bundles over X such that the
pullback of x to K(P) can be written as a sum or difference of monomials of
the form (£; —1)---(£; — 1) with j > i. Indeed, assuming this is the case,

there is a commuting square

i —— K(P)

|

B'(X) —— B'(P)

B
G

where the horizontal pullback morphisms are injections. We find

Pl =P (Z (i [1n, - 1>>) = TL P T, — 10"

m=0 m=0 7j=1

The latter factors vanish whenever n,, > ¢ by Lemma 2.5.3 while the latter

factors are equal

1+(—1y4@-n!(ﬁfid%ﬁmg>ti+-~
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whenever n,, = ¢ by Lemma 2.5.4. Since
b (e’ (L)) = b (—c (L)) = =05 (e’ (L)) = £; — 1,

where we use Example 2.3.6 for the first equality, the proof is completed once
we can show our starting assumption.

To do this, we start by writing

for some elements x,; in ~%. Note that we can focus on a single monomial since
if we prove a monomial can be written in the desired way then the same follows
for the sum. So assume z = ™ (z4)---7™(x;) for some ny + --- +n; > i.

Each x, belonging to ~!, can be written as

v = [F] = [G] = [F] = 1k(F) — ([9] - 1k(9))

for some F,G that depend on k.
Now there is a variety P which can be realized as a chain of projective

bundles over X such that each of the F,G’s can be written
wp = [F]=1k(F) = (6] = 1k(G)) = (L1 + -+ Lo —n) = (L + -+ L}, — n)

with the (£)’s and (£')’s depending on k still. Another way to say this is that

we can find such a P so that for every k we have an expression like

=L -1)+-+L,-1)— (L) —1)—---— (L, —1).
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Finally, applying the operation v, = > >0 Vit we find

() = (Z(ﬁj —1 -y - 1>)

_ Vi <Z;‘l:1(£j - 1)) 7
7 (S =)

ijo thj
220 05t

where o; is the jth elementary symmetric polynomial in the variables (£; —
1),..., (L, —1) and similarly for o with (£} —1),...,(£;, —1). Expanding this
series in ¢t we find 7" (xy) is a polynomial, homogeneous and symmetric in
variables like (£L—1), of degree my. This completes the proof since we’ve shown
there is a variety P which can be realized as a chain of projective bundles over

X such that z can be written in the desired form. O
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Chapter 3

On the K-theory coniveau
epimorphism for products of

Severi-Brauer varieties

Notation and Conventions. We fix a field k throughout. All of our objects
are defined over k unless stated otherwise. Sometimes we use k as an index
when no confusion will occur.

For any field F, we fix an algebraic closure F.

A variety X is a separated scheme of finite type over a field.

Let X = X; x---x X, be a product of varieties with projections 7; : X —
X;. Let Fi,..., F,. be sheaves of modules on X7, ..., X,. We use /1 X ---X F.
for the external product 7 F; ® - - - @ mrF,.

For a ring R with a Z-indexed descending filtration F?, (e.g. v =y or T
as in Section 3.2), we write gr’ R for the corresponding quotient F/F*t1. We
write gr, R = @@, gr, R for the associated graded ring.

A semisimple algebraic group G is of type AC if its Dynkin diagram is a

union of diagrams of type A and type C'. Similarly a semisimple group G is of
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type AA if its Dynkin diagram is a union of diagrams of type A.

For an index set Z, two elements ¢,j € Z, we write d;; for the function
which is 0 when ¢ # j and 1 if i = j.

Given two r-tuples of integers, say I, J, we write I < J if the ith component

of I is less than the ith component of J for any 1 <i <r.

3.1 Introduction

For any smooth variety X, the coniveau spectral sequence for algebraic K-
theory induces a canonical epimorphism CH(X) — gr,G(X) from the Chow
ring of X to the associated graded ring of the coniveau filtration on the
Grothendieck ring of X (for notation related to Grothendieck rings see Sec-
tion 3.2). The kernel of this epimorphism is torsion, as can be seen using the
Grothendieck-Riemann-Roch without denominators. In general this can’t be
refined: there are examples of smooth varieties where the kernel of the K-
theory coniveau epimorphism is nontrivial. With this in mind, a particularly
difficult problem has been finding families of varieties where this epimorphism

is, or fails to be, an isomorphism. In this direction we propose the following:

Conjecture 3.1.1. Let X be a product of Severi-Brauer varieties. If the Chow
ring CH(X) is generated by Chern classes, then the canonical epimorphism

CH(X) — gr,G(X) is an isomorphism.

Since the ring gr, G(X) is computable for such X (see Section 3.2 for rec-
ollections on the Grothendieck rings of Severi-Brauer varieties and their prod-
ucts), a positive answer to Conjecture 3.1.1 could then be interpreted as a
method for computing the Chow ring of such varieties. This is carried out,
for instance, in [[{ar17c, Theorem 3.1] where Karpenko shows a special case of

Conjecture 3.1.1 and, using this, is able to compute the Chow ring of certain
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generic Severi-Brauer varieties.

In Section 3.3, we give some evidence that a positive answer to Conjecture
3.1.1 is a likely one. The main result of this section, Theorem 3.3.3, shows
that Conjecture 3.1.1 is equivalent to a particular case of an older conjecture

of Karpenko’s: !

Conjecture 3.1.2. Let G be a split semisimple algebraic group, E a standard
generic G-torsor, and P a special parabolic subgroup of G. Then the canonical

epimorphism CH(E/P) — gr,G(E/P) is an isomorphism.

The proof uses an analysis of the products of Severi-Brauer varieties one
obtains from a standard generic G-torsor for algebraic groups of type AA along
with various specialization maps.

In Section 3.4, we introduce the notion of the level of a central simple
algebra. We show how the level gives a useful description of the Grothendieck
ring of a Severi-Brauer variety and use this description in the main result of
this section, Theorem 3.4.15, where we prove Conjecture 3.1.1 for a single
Severi-Brauer variety associated to a central simple algebra of level 1. This

generalizes the previously known results obtained in [I[<arl7c¢, Theorem 3.1].

3.2 Grothendieck rings of Severi-Brauer vari-
eties

By K(X), we mean the Grothendieck ring of locally free sheaves (equivalently

vector bundles) on a variety X; by G(X) we mean the Grothendieck group of

n its original formulation [Kar17b, Conjecture 1.1], Conjecture 3.1.2 only asserts there
is an isomorphism in the case P is a Borel subgroup. However, to prove Conjecture 3.1.2 for
all special parabolic subgroups of G it suffices to check the result holds for a particular choice
of special parabolic subgroup P. These two forms of Conjecture 3.1.2 are then equivalent
since a Borel subgroup is special.
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coherent sheaves on X. The ith term of the 7-filtration on K(X) is denoted
F!(X); the ith term of the coniveau filtration on G(X) is denoted F}(X).

There’s a canonical map px : K(X) — G(X) taking the class [£] € K(X)
of a locally free sheaf £ to the class [£] € G(X). When X is smooth, px is an
isomorphism giving G(X) the structure of a ring. The coniveau filtration is
compatible with the ring structure on G(X), and px (FX(X)) C F}(X). More-
over, if the Chow ring CH(X) is generated by Chern classes, then ¢ x (F2(X)) =
FY(X), cf. [Kar98, Proof of Theorem 3.7].

We will often be working with the rings K(X) for X a Severi-Brauer variety
and for X a product of Severi-Brauer varieties.

In the case X is a Severi-Brauer variety, K(X) has been determined by
Quillen. To state this result, recall that X is the variety of right ideals of
dimension deg(A) in the central simple algebra A associated with X. The
tautological vector bundle (x on X is a right A-module.

For any central simple algebra B, let us define K(B) as the Grothendieck
group of the category of finitely generated left B-modules. The group K(B)
is infinite cyclic with a canonical generator given by the class of a (unique up

to isomorphism) simple B-module.

Theorem 3.2.1 ([Qui73, §8, Theorem 4.1]). Let X be the Severi-Brauer va-

riety of a central simple algebra A. The group homomorphism
deg(A)—1
P KA - KX),

1=0

mapping the class of a left A% -module M to the class of (¥' ®4ei M, is an

1somorphism.

Note that if F' is a field over k, the pullback K(X) — K(XF) respects the
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decomposition of Theorem 3.2.1, is injective, and the image
K(A®) c K(AY) =7Z

is generated by ind(A%?)/ind(A%"). For i > 0, let us write (x (i) for the tensor
product (over A®?) of (¢ by a simple A%-module. This is a vector bundle
of rank ind(A%?) and (¥ decomposes into a direct sum of deg(A%?)/ind(A%?)
copies of (x (7).

A similar description is afforded to the rings K(X') for products X = X x

--- x X, of Severi-Brauer varieties:

Theorem 3.2.2 (cf. [Pey95, Corollary 3.2]). Let X = X; x --- x X, be a
product of Severi-Brauer varieties X1, ..., X, corresponding to central simple

algebras Ay, ..., A, respectively. Then the group homomorphism

) K(AP" @ @ A%") — K(X),
I<(deg(A1),...,deg(Ar))

as I = (iy,...,4,) Tanges over r-tuples of nonnegative integers, is an isomor-
phism. Here the class of a left AP ®---® A% -module M is sent to the class
C;@éi«l & [N & C?:T ®A?i1®m®A§ir M

Similarly, if F' is a field over k, the pullback K(X) — K(Xr) respects this

decomposition, is injective, and the image
K(AP" @+ @ AP") CK((AT" @ -+ @ AP")p) = Z

is generated by ind(AY" @ -+ ® A%")/ind((AY" @ --- @ A% p).
Given two products of Severi-Brauer varieties X = X7 x--- x X, and Y =
Y1 % -+ x Y,, over possibly different fields F} and Fy with dim(X;) = dim(Y;)

for every 1 <i < r, let us identify K(X%) with K(Y%;) via the isomorphism
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of Theorem 3.2.2. Let us also identify K(X) and K(Y') with their images in

K(X%) = K(Y%). Note that we have K(X) = K(Y') if and only if
ind(AY" ®@ - ® AY") = ind(BY" ® - - - ® BY™)

for all integers iy, ..., 7, where Ay, ..., A, are the algebras associated to X, ..., X,
and By, ..., B, are the algebras associated to Yi,...,Y,.
The following statement shows that (unlike the coniveau filtration) the

v-filtration on K(X) is completely determined by K(X):

Theorem 3.2.3 ([[1K99, Theorem 1.1 and Corollary 1.2]). If K(X) = K(Y),
then F(X) = Fi(Y') for alli> 0.

3.3 Equivalence of the two conjectures

Let G' be an affine algebraic group, let U be a non-empty open G-invariant
subset of a G-representation V. If the fppf quotient U/G is representable by a
scheme, and if U is a G-torsor over U/G, then U has the property that for any
G-torsor H over an infinite field F' D k, there is an F-point x of U/G so that
H is isomorphic to the fiber of the morphism U — U/G over z, cf. [Ser(3,
§5]. The generic fiber E of the quotient map U — U/G is called a standard

generic G-torsor.

Example 3.3.1. If G = SL,,, then G acts on V = End(k") with GL,, C V
an open, G-invariant subset. The generic fiber £/ = SL,, y(g,,) of the quotient
GL, — GL,/G = G,, is a standard generic G-torsor.

A standard generic G-torsor F exists for any affine algebraic group G: one
can take E to be the generic fiber of the quotient morphism GL, — GL, /G

for any embedding G — GL,,.
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Now assume G is a split semisimple algebraic group, with P a special
parabolic subgroup of G, and F a standard generic G-torsor. Recall an alge-
braic group H over a field k is special if every H-torsor over any field extension
of k is trivial. The quotient E/P is a generic flag variety, which is moreover
generically split, meaning that E becomes trivial after scalar extension to the

function field k(E/P), cf. [Karlg, Lemma 7.1].

Example 3.3.2. Let G = SL, /i, where m is a divisor of n. Then G acts
on X =P ! and, if P is the stabilizer of a rational point in X, the quotient
G/ P is isomorphic to X. The parabolic P is special, it’s conjugacy class is
given by the subset of the Dynkin diagram of G corresponding to removing
the first vertex, see [Karlg, §8].

If F is a standard generic G-torsor given as the generic fiber of a quotient
map U — U/G, then our identification of G/P = X above shows that the
generic flag variety F/P is a Severi-Brauer variety over the function field
k(U/G). The central simple k(U/G)-algebra associated to E/P is called a
generic central simple algebra of degree n and exponent m. The index of such
an algebra is equal to r where n = rs is a factorization of n with r having the

same prime factors as m and with s prime to m.

In [Karl7¢], Karpenko proves Conjecture 3.1.1 for the Severi-Brauer variety
of a generic central simple algebra of degree n and exponent m and, as a Corol-
lary obtained by analysis similar to Example 3.3.2 above, proves Conjecture
3.1.2 for split semisimple almost-simple algebraic groups of type A and C. In
this section we prove an equivalence between Conjecture 3.1.1 and Conjecture
3.1.2 for algebraic groups of type AC similar to that obtained in [IXarl7¢] for
a single Severi-Brauer variety and for a split semisimple almost-simple group

of type A or of type C:
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Theorem 3.3.3. The following statements are equivalent:

(1) Conjecture 3.1.1 holds for all X,

(2) Conjecture 3.1.2 holds for all G of type AC and P given by removing
the first vertex from each of the connected components of the Dynkin

diagram of G,
(3) Conjecture 3.1.2 holds for all G of type AC and arbitrary P,

(4) Conjecture 3.1.2 holds for all G of type AA and arbitrary P.

The proof is given below Lemma 3.3.6, after some preparation. It pro-
ceeds by showing (1) implies (2) implies (3) implies (4) implies (1). The most
difficult part of the proof is in showing the last step, (4) implies (1). To do
this, one realizes a product of Severi-Brauer varieties X = X; x --- x X,
as a specialization of a generic flag variety E/P for a certain choice of split
semisimple algebraic group G of type AA, standard generic G-torsor E, and
special parabolic P. With mild hypotheses, one can show that this will prove

the claim:

Lemma 3.3.4. Let G be a split semisimple algebraic group of type AA, E a
standard generic G-torsor, and P a special parabolic subgroup of G. Let X be
a product of Severi-Brauer varieties such that X is a specialization of E/P.

Assume the following conditions hold:
(1) CH(X) is generated by Chern classes,
(2) the canonical surjection CH(E/P) — gr.G(E/P) is an isomorphism,
(3) the specialization K(E/P) — K(X) is an isomorphism.

Then the canonical surjection CH(X) — gr.G(X) is an isomorphism.
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Proof. Since X is a specialization of F/P, there is a commutative diagram

CH(E/P) — gr,G(E/P)

| | (D)

CH(X) — gr.G(X)

where the downward-pointing vertical arrows are specializations and the hor-
izontal arrows are the canonical surjections.

In the diagram (D) above, the map CH(E/P) — gr,G(E/P) is an isomor-
phism by assumption and CH(X) is generated by Chern classes by assumption.
Note that CH(E/P) is also generated by Chern classes, by [Karl8, Corollary
7.2 and Theorem 7.3]. Since the specialization K(E/P) — K(X) is an isomor-
phism it follows the specialization CH(E/P) — CH(X) is surjective.

The specialization gr,G(E/P) — gr,G(X) is an isomorphism: it fits into
the commutative square below with the vertical arrows being specializations
and the horizontal arrows being the canonical maps; the horizontal arrows
are isomorphisms since the Chow rings CH(E/P) and CH(X) are generated
by Chern classes, [Kar98, proof of Theorem 3.7]; the left-vertical arrow is
an isomorphism since by Theorem 3.2.3 the isomorphism K(E/P) — K(X)
induces a bijection F!(E/P) = F!(X) for all i.

gr, K(E/P) = gr.G(E/P)

L !

gr, K(X) —— gr, G(X)

Hence the specialization CH(E/P) — CH(X) is also an injection and there-
fore an isomorphism. It follows the canonical surjection CH(X) — gr. G(X)

is an isomorphism as well, completing the proof. O]

The problem is to find the correct GG, P, and E that satisfy the conditions
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of Lemma 3.3.4. The naive method, taking E/P = E; /P, X---x E,./P, to be a
product of generic flag varieties with each F;/P; having X; as a specialization
fails in at least one regard: the algebras associated to such an E/P are usually
too unrelated. That is to say, the specialization in (3) of Lemma 3.3.4 will
typically not be a surjection.

The following result of Nguyen, giving a description to the central simple
algebras obtained from a G-torsor for split semisimple algebraic groups G of

type AA, provides at least one resolution to this problem.

Theorem 3.3.5 ([CR15, Theorem A.1]). Let I' = GL,, X --- x GL,,, be a
product of r general linear groups for some integers ni,...,n,.. Let C be a
central subgroup of I', and write G =T'/C. Let m : G — I'/Z(T") be the natural
projection. Then, for every field extension F of k, . identifies H'(F,G)
with the set of isomorphism classes of r-tuples (Ay, ..., A,) of central simple F'-
algebras such that the degree of each A; is deg(A;) = n;, and A ®- - -@ AZ™r

1s split over F' for every r-tuple of

2(ZI)/)C)={(my,...om,) €Z" | 7" -7 =1Y(1,...,7) € C}.

To apply the theorem above to get the same description for the algebras
associated to a G-torsor for a split semisimple algebraic group G of type AA,
one notes that such a G is isomorphic to a quotient of a product G5, = SL,,, x

- x SL,, by a central subgroup C' of G4. One can then use the quotient
G' = G™/C of the reductive group G"** = GL,, x- - -x GL,,. and the canonical
inclusion ¢+ : G — @, taking into account that the induced map on cohomology
L HY(F,G) — H'(F,G") is a surjection (with trivial kernel).

It turns out, with the description given in Theorem 3.3.5, one has sufficient

control to ensure the conditions of Lemma 3.3.4 hold (up to introducing some
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additional factors, which won’t matter in the end).

Lemma 3.3.6. Let X4,..., X, be a finite number of Severi-Brauer varieties
corresponding to central simple k-algebras Ay, ..., A, and let X = X1 x---x X,
be their product. Let n; = deg(A;) for all 1 < i < r. For every r-tuple
of nonnegative integers I = (iy,...,1,), write Dy for the underlying division
algebra of the product AS" ®- - -@ A% and write Y; = SB(Dy) for the associated

Severi-Brauer variety. Let Z = X x [, Y.

N1yeeeyNr)
In this setting, there exists a split semisimple algebraic group G of type AA
and a special parabolic P of G so that for any standard generic G-torsor E,

the variety Z is a specialization of E/P and the specialization map K(E/P) —

K(Z) is an isomorphism.

Proof. For every such r-tuple I = (i1, ...,7,) we set m; := ind(Dy) to be the

index of D;. The group

Gee = ﬁSLnj x J[ SLm
j=1

I<(nl:-~7nr)

is split, semisimple, and simply connected of type AA. We consider the quotient
G := G4/S, where S is the subgroup of the center of G. consisting of those

elements

(xla coey Ty I(O,‘..,0)7 RS x(nl—l,‘..,nr—1)>

satisfying the relation z(;, . ;) = 2 ...z (when identified with elements of

G.n). Let E be a standard generic G-torsor. We let
0:G = Guq, m;:Geqg— PGL,,, m5:G — PGL,,

be the canonical isogeny, projection to the ith factor for ¢« < r, and projection

to the factor corresponding to the r-tuple I respectively.
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Let G™ be the reductive group

Gt = H GL,, X GLy,
J=1 I<(n1,mr)
and set G’ = G™/S. Let T be the kernel of the quotient G™¢ — Goq. We
fix the isomorphism of the character group Z™*(7") = Hom(7, G,,) = Z™ that
identifies the character with weights (iy,...,i,) with the element (i, ...,i,).
The subgroup S above is defined so that the inclusion 2™*(7'/S) — Z™*(T)

identifies 27*(T/S) with the sublattice generated by those elements

(ilw"ai?“)_dl(o ..... 0)7"'a_51(n171 ..... nrfl))a

where I = (iy,...,4,) < (n1,...,n,) is an r-tuple. For any field extension F' of
k, the map o, : H'(F,G) — H'(F,G,a) factors through the map H'(F, G) —
H'(F,@), induced by the inclusion of G into G’; this puts us in position to
apply the description in Theorem 3.3.5 of the algebras B; := (m; o 0).(E),
Cy := (m;00).(E). In particular, our choice of S implies BY" ® - -- ® B®"r is
Brauer equivalent with C;, ;..

Again by Theorem 3.3.5, each of the algebras A; are specializations of the
algebras B; and, additionally, for every r-tuple I = (iy,...,7,) we have an

equality
my = ind(A?" @ - ® A®") = ind(BY" @ --- @ B®™)

since the underlying division algebra D; of AY" ®-- - ® A% is a specialization

of C';. The first claim then results from the fact the variety



is isomorphic with £/P which has Z as a specialization. The second claim
results from the description of the rings K(£/P) and K(Z) given in Theorem
3.2.2. [

And now for the proof:

Proof of Theorem 3.3.3. We show (1) implies (2). To start, let G be a group
of type AC and E be a standard generic G-torsor over a field extension F' of

our base k. Let G,4 be the adjoint group of G it is isomorphic to a product

Gad = ﬁ GZ
=1

with each G; a simple adjoint group of type A or type C. We write 0 : G — Gy
for the canonical isogeny from G to its adjoint and m; : G.q — G; for the
projection to the ith factor of G.q4.

From the n maps m;00 with varying ¢, we obtain n central simple F-algebras

given by the images of £ under the pushforwards on Galois cohomology
(m;00).(E) € im(HY(F,G) — H*(F,G))).

Let X be the product of the Severi-Brauer varieties associated to the n algebras
(m;00)(E). Then X is isomorphic to /P, where P is a parabolic subgroup
of G whose conjugacy class is given by the subset of the set of vertices of
the Dynkin diagram of GG obtained by excluding the first vertex of each of its
connected components. That the parabolic P obtained in this way is special is
a consequence of Lemma 3.3.8 below since, by [Karl8, §8], the group o(P) is
special. The claim now follows from [Karl8, Corollary 7.2 and Theorem 7.3],
which shows CH(X) is generated by Chern classes, allowing us to apply (1) to
X E/P.

44



(2) implies (3) is a consequence of [Karl7c, Lemma 4.2].

(3) implies (4) is obvious.

We finish by showing (4) implies (1). Let Xj,..., X, be Severi-Brauer va-
rieties over a field k, corresponding to central simple algebras Ay, ..., A, re-
spectively, and let X = X; X --- x X, be their product. Let n; = deg(4;)
be the degree of the algebra A;. For every r-tuple of nonnegative integers
I = (i1,...,1,) we write D; for the underlying division algebra of the tensor
product AY" @ --- ® A% We write Y7 := SB(D;) for the associated Severi-

Let G and P be respectively an algebraic group of type AA and its special
parabolic subgroup, obtained from Z as in Lemma 3.3.6. Let F be a standard
generic G-torsor. By Lemma 3.3.7 below, to show the epimorphism CH(X) —
gr.G(X) is an isomorphism, it’s sufficient to show CH(Z) — gr,G(Z) is an

isomorphism since the projection Z — X factors

Z— X x 11 Y= = X X Y

I<(ni,...,;np—1,np—1)

.....

with each arrow a projective bundle. Finally, the arrow CH(Z) — gr,G(Z)
is an isomorphism by Lemma 3.3.4: CH(Z) is generated by Chern classes by
repeated applications of the projective bundle formula and the assumption
CH(X) is generated by Chern classes, the map CH(E/P) — gr,G(E/P) is
an isomorphism by assumption, and the specialization K(E/P) — K(Z) is an

isomorphism. O

Lemma 3.3.7. Assume Z is a projective bundle over a variety X. Then the
canonical epimorphism CH(Z) — gr.G(Z) is an isomorphism if, and only if,

the canonical epimorphism CH(X) — gr G(X) is an isomorphism.
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Proof. The pullback along the projection Z — X gives a commuting diagram

CH(Z) —» gr.G(Z)

| I

CH(X) — gr,G(X)

with both vertical arrows injections. It follows if the top-horizontal arrow is
an isomorphism, then the bottom-horizontal arrow is an isomorphism.

The converse follows from the projective bundle formula: the groups CH(Z)
and gr.G(Z) are direct sums of several copies of of the groups CH(X) and
gr_G(X) respectively, and the coniveau epimorphism respects this direct sum

decomposition. O

Lemma 3.3.8. Let G be a split semisimple algebraic group over a field F', and
0 : G — Guq the canonical isogeny with kernel C, the center of G. If P is a

parabolic subgroup of G such that the image o(P) is special, then P is special.

Proof. Let L be a Levi subgroup of P. By [Karl8, §3|, P is special if and
only if L is special. Since G is a split reductive group, P is also a split
reductive group so that, by [Karl8, Theorem 2.1], L is special if and only if
the semisimple commutator L' C L is special. Similarly, o(P) is special if and
only if o(L)" is special. Thus the proof of the lemma can be reduced to the
following statement: if L’ is a split semisimple algebraic group and L' — o(L)’
is an isogeny with o(L)’ split, semisimple, and special, then L’ is special. The
result then follows from the fact a split semisimple algebraic group is special
if and only if it is a product of special linear or symplectic groups and all such

groups are simply connected. O]

We conclude this section with some remarks on, and special cases of, Con-

jectures 3.1.1 and 3.1.2.
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Remark 3.3.9. One can construct a large class of products X of Severi-Brauer
varieties which satisfy the condition CH(X) is generated by Chern classes. To
do so, let G = PGL,, x --- x PGL,, for some ny,..,n, > 2; let Ay,..., A, be
the central simple algebras associated to a standard generic G-torsor; let X
be the product of the associated Severi-Brauer varieties. By [Karl8, Theorem
7.3], CH(X) has the desired property.

One can extend this class by base change: it’s possible to lower the index
of any tensor product A = A" @ -+ ® A% by extending the base to the
function field of any generalized Severi-Brauer variety of A. The new variety
X obtained from these algebras also has the property CH(X) is generated
by Chern classes, [Kar98, Theorem 3.7]. This procedure can be repeated
indefinitely.

In fact, to prove Conjecture 3.1.1 for all products of Severi-Brauer varieties,
it suffices to prove Conjecture 3.1.1 for the varieties obtained by the above
procedure (one can even restrict to the class whose construction involves the
function field of usual Severi-Brauer varieties only); to go from the above case

to the general case, one can use the specialization argument as in Theorem

3.3.3.

Example 3.3.10 (A; x A; and A; x Ay x A;). In small rank cases, one can
check Conjecture 3.1.2 for G of type AA by hand.

For GG as in Conjecture 3.1.2 of type A; X A; one can observe: for any pro-
jective homogeneous variety X of dimension less or equal 2, the epimorphism
CH(X) — gr,G(X) is an isomorphism, cf. [CMO0G, Proposition 4.4].

For G as in Conjecture 3.1.2 of type A; x Ay X Aj, one can proceed by
cases. If G is a product of groups of smaller rank, then [Karl7h, Proposition
4.1] proves the claim. Otherwise, G is a quotient of SLy x SLy x SLsy by

the diagonal of the center uo X o X ps or by the subgroup generated by the
47



partial 2-diagonals. In the first case, the corresponding generic flag variety is
a product C' x C' x C of a fixed conic C' and the claim follows. In the second
case, the corresponding generic flag variety is a product X = C; x Cy x (3
where each C; is the conic of a quaternion algebra @);; here the sum of the
classes [@Q1] +[Q2] + [@s] is trivial in the Brauer group. Since X is a projective

bundle over any two of the factors this proves the result by Lemma 3.3.7.

Example 3.3.11. Conjecture 3.1.2 holds for G = SL,,/u,, by [Karl7c, Theo-
rem 1.1] and for products of such groups by [Karl7b, Proposition 4.1]. From
this, one can show Conjecture 3.1.1 holds for products X = X; x --- x X,

satisfying the following conditions:

(1) for each 1 < i < r there is a prime p; so that the algebra A; associated
to the variety X; has index p;* and exponent p;" for some integers

n; > m; > 1,

(2) the algebras A; satisfy ind(A;@p;ni_ ) = ind(4;)/p™

2

(3) the algebras A; are disjoint in the sense there are equalities
ind(AY" ® - ® Ar) = ind(AY™) - - - ind (A®™)

for all integers 4, ..., %;.

To see this, one may assume that all A; are division algebras and use
Lemma 3.3.4. Property (2) allows one to realize such an X as a specialization
of E/P where E is a standard generic G = [[,,<, SL, /p,mi-torsor and
P C G is a special parabolic subgroup whose conjugacy class can be obtained
by removing the first vertex from each of the connected components of the
Dynkin diagram of G. The canonical map CH(E/P) — gr,G(E/P) for this

E/P is an isomorphism, as explained above. Now property (3), [Karl7b,
48



Lemma 4.3], and Theorem 3.2.3 show the specialization K(E/P) — K(X) is

an isomorphism.

3.4 Algebras with level 1

In this section we introduce the level of a central simple k-algebra. The level
is a nonnegative integer that measures, roughly speaking, how far away the
algebra is from having its index equal to its exponent. It’s related to, and
depends on, the reduced behavior of the primary components of the algebra
as defined in [I[<ar98]. The same concept was considered in [Bacl5], there as
the length of a reduced sequence obtained from the reduced behavior of a p-
primary algebra for a prime p; the length of this reduced sequence as defined
by Baek is equal to the level of the p-primary algebra as defined here.

It turns out the level of a central simple algebra A can be used to obtain
detailed information on A-ring generators for the Grothendieck ring of the
Severi-Brauer variety X of A, see Lemma 3.4.6. A particular consequence of
this is that the subring of CH(X) which is generated by Chern classes has
an explicit and small set of generators that can be helpful for computational
purposes. Using this more refined information based on the level, we’re able
to generalize the results of [[<arl7c¢] to prove the main result, Theorem 3.4.15,
that the K-theory coniveau epimorphism is an isomorphism for Severi-Brauer
varieties whose Chow ring is generated by Chern classes and whose associated
central simple algebra has level 1.

Throughout this section we work with a fixed prime p and we continue to
work over the fixed but arbitrary field k. We write v,(—) for the p-adic val-
uation. We've relegated some computations needed in this section to Section

3.5.
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Recall, the reduced behavior of an algebra A with index ind(A) = p” and
exponent exp(A) = p™, 0 < m < n, is defined to be the following sequence of

p-adic orders of increasing p-primary tensor powers of A:

rBeh(A) = (vp(ind(A‘@pi)))m

1=0

= (vp(ind(A)), v,(ind(A®P)), ..., v, (ind (A%™))) .
The reduced behavior of A is strictly decreasing; it starts with v,(ind(A)) = n
and ends with v,(ind(A%P™)) = 0.
Definition 3.4.1. A is said to have level [, abbreviated lev(A) = [, if there
exist exactly [ distinct integers ¢y, ...,7; > 1 with

0, (ind (A®7*)) < v, (ind (AP 1)) — 1

for every 1 < k < [. If no such integers exist, A is said to have level 0. An
arbitrary central simple algebra B, not necessarily p-primary, is said to have

level | if | is the maximum

I = max {lev(B,)}

q prime
of the levels of the ¢g-primary components B, of B.

Example 3.4.2. A central simple algebra A has level 0, i.e. lev(A) = 0, if

and only if the index and exponent of A coincide, ind(A) = exp(A).

Example 3.4.3. If A is a generic algebra of degree p” and exponent p™ with

m < n, in the sense of Example 3.3.2, then the level of A is 1, i.e. lev(A) = 1.
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The reduced behavior for this algebra is

rBeh(A) = (vp(ind(A))7 vp(ind(A®P)), ..., vp(ind(A®pm)))

=(n,n—1,...,n—m+1,0).

To see this, note that with a large enough field extension F' of k one may
find a central division F-algebra B with index p", exponent p™, and reduced
behavior rBeh(B) = (n,n —1,....,n —m + 1,0), [Kar98, Lemma 3.10]. Since

B is a specialization of A it follows
P> ind(A®pi) > ind(B‘X’pi) = pn

for 2 =0,...,m — 1, so that equalities hold throughout.
We make the following definition for notational convenience.

Definition 3.4.4. The Chern subring of a smooth variety X, denoted CS(X),
is the subring of CH(X) which is generated by all Chern classes of elements
of K(X).

Proposition 3.4.5. Let X be the Severi-Brauer variety of a central simple
algebra A with ind(A) = p" and lev(A) = r. Then CS(X) is generated, as a
ring, by the Chern classes of r + 1 sheaves on X. Namely, the sheaves whose

Chern classes generate CS(X) are:

CX(1)7 CX(phL SRR CX<piT>7

where 1 < iy < --- < i, are the r distinct integers with v,(ind(A®"™)) <

v, (ind(ASP* 1)) — 1.
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Proof. It suffices to show that K(X) is generated by the classes of

CX<1)’ CX<pil)7 SRR CX(pZ‘T)

as a A-ring; this is because Chern classes of A-operations of an element of K(.X)
are certain universal polynomials in the Chern classes of this element. This is

done in the next lemma. O

Lemma 3.4.6. Let X be the Severi-Brauer variety of a central simple algebra
A with ind(A) = p" and lev(A) = r. Then K(X) is generated, as a A-ring, by

r 4+ 1 elements. Namely, the sheaves whose classes generate K(X) are:

gX(1)7 gX(pil)w R CX(pir)a

where 1 < iy < --- < i, are the r distinct integers with v,(ind(A®P™*)) <

v, (ind (A®P* 1)) — 1.

Proof. Since the pullback 7* : K(X) — K(X.) to a splitting field L of A
is injective, we can work, instead of K(X) itself, with its image in K(X).
We'll write € to denote the class of O(—1) in K(X). By the comments under
Theorem 3.2.1 we have 7*(Cx (i) = ind(A®")¢". Tt follows that the elements
ind(A®)E" with ¢ > 0 generate K(X) as an abelian group.

The M-operations of any multiple of £% are easy to compute:
. d\ .. .
N (dE') = < ,)f” for any i, j,d > 0.
J

Let us first show that the elements ind(A®”)¢”’ (j > 0) generate K(X)
as a A-ring. Since the A-subring generated by these elements contains powers
of ind(A) = p™¢, we only need to check that, for every i > 1, this subring

contains an integer multiple of & whose coefficient has p-adic valuation equal
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v, (ind(A®")). For this, given any i > 1, we write i = p’s with j > 0 and s
prime-to-p. We set p* := ind(A®") = ind(A®P’). Write further s = sop” + s
with 0 < s; < p” and s > 0. Then we have X" (p&?’) = &77" and \* (pv&?’)
is a multiple of £&”’*' with p-adic valuation of the (binomial) coefficient of this
multiple equal p*, see [[Kar98, Lemma 3.5]. The claim we are checking follows.

It remains to show if v, (ind(A®P’)) > v, (ind(A%"" ")) — 1 for some j > 1,
then the generator ind(A®” )P can be omitted. Let us set p¥ := ind(A®' ).
If v = 0, then we get £ as a pth power of £ = ind(A®” )&”’ ™" For v > 0,
we consider the A-operation /\p(pvfpjfl) which is a multiple of &7 with p-adic

valuation of its coefficient equal v — 1 < v, (ind(A®P")). O

To systematically study the relations between the Chern classes of the

sheaves appearing in Proposition 3.4.5, we introduce:

Definition 3.4.7. Let A be a central simple algebra and X the Severi-Brauer
variety of A. We write CT(iy,...,4,; X) for the graded subring of CS(X) C
CH(X) generated by the Chern classes of the sheaves (x(i1), ..., (x(4,).

Proposition 3.4.8. Let X be the Severi-Brauer variety of a central simple
algebra A. Then, for any i > 0, CT(i; X) ® Z,) is a free Z)-module. More-
over, for 0 < j < deg(A) the group CT’(i; X) ® Z) is additively generated
by

7i(J) = ¢ (Cx (4)) s, (Cx (4))

where p¥ is the largest power of p dividing ind(A®") and j = p'so + s1 with

0§81<pv.

Proof. By first extending to a prime-to-p extension (which is an injection when
CH(X) ® Z, has Z,-coefficients) that splits the prime-to-p components of

A, we can assume A is p-primary. We continue by reducing to the case i = 1.
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Lemma 3.4.9. Let X be the Severi-Brauer variety of a central simple algebra
A, and let Y be the Severi-Brauer variety of A%*. Then there is a functorial

surjection

CT(1,Y) — CT(i; X).

Proof. Let
X 5 X Y

be the composition of the diagonal embedding and the twisted Segre embed-
ding. The corresponding maps on Grothendieck groups can be determined by

moving to a splitting field L of X. There is a commutative diagram

K(Yz) — K(X[) — K(X7)

[

K(Y) — K(X*) — K(X)

defined so that under the top-horizontal maps we have
OYL(_l) — OXL(_]-> X..-X OXL(_]-) — OXL(—Z)

Thus, the class of (y(1) on Y is mapped to the class of (x (i) on X.

So under the composition of the diagonal X — X* and the twisted Segre
embedding X** — Y, there is a surjection CT(1;Y) — CT(i; X) induced by
the pullback CH(Y) — CH(X). O

Next we reduce to the case our algebra is division. Let D be the underlying
division algebra of A, and Y the Severi-Brauer variety of D. Fix an embedding
Y — X so that, over a splitting field of both, the inclusion is as a linear

subvariety. The pullback

CH(X) (024 Z(p) — CH(Y) X Z(p)
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is an isomorphism in degrees where both groups are nonzero. If the claim is
true for CH(Y ) ®Z, then, since the pullback is functorial for Chern classes, we
find CT(1; X)®Zy) is a free Z,-module of rank 1 in degrees 0 < j < deg(D).
That this holds is due to [I[<ar17¢, Proposition 3.3|, where it’s shown CT(1; X)
is free if A is division. This will serve as the base case for an induction proof.

In an arbitrary degree j between deg(D) < j < deg(A), we assume the

claim is true for all degrees 0 < k < j. It suffices to show the multiplication

by 71(p") = cpo(Cx (1)) map
CTV P (1, X)®Zgp — CTV(L; X) ® Zgy

is surjective and, by Nakayama’s Lemma, we can do this modulo p. Any

ni Ny

element of CT/(1; X) is a sum of monomials of the form 71(j — p¥)c}’ -

with ¢; = ¢;({x(1)). We claim any such monomial which is not 71(j) = 7 (j —
p”)711(p¥) is congruent to 0 modulo p.

Indeed, if such a monomial was divisible by ¢;,, ¢;, then without loss of
generality we can assume v,(iz) < v,(i1) < v. By [Karl7c, Proposition 3.5]
there is a field F finite over the base so that v,ind(Ar) = v,(i1), and ¢;;, = m.(x)
for an element = of CH(Xr) ® Z,) and where 7 : X — X is the projection.

Using the projection formula we find

CiyCiy = Tu(T)Ciy = To(xT™ (C1y)).

By Lemma 3.4.10 below, it follows 7*(¢;,) is divisible by p which proves the
claim.

To see the generators are as claimed for ¢ = 1, one can compute the degrees
of the images of the Chern classes of (x(1) over an algebraic closure; for the
other 7, one can use Lemma 3.4.9. O
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Lemma 3.4.10. Let X be the Severi-Brauer variety of a central simple algebra
A with ind(A) = p*. Let F be a field with p*~* = ind(Ar) < ind(A) = p* and

let m: Xp — X be the projection. Then

(¢ (Cx(1)) =0 (mod p)

for all j not divisible by p*.

Proof. We have 7*(Cx (1)) = (x,(1)®"" with p* = ind(A)/ind(Afr). By func-
torality we have

™ (e;(Cx (1)) = (e (D).

We're going to compute the total Chern polynomial of (x, (1)®" modulo p. If
F splits A then ¢;((x,(1)®7") = (1 — h)?" = 1+ h”" (mod p) where h is the

class of a hyperplane in CH(Xr). Otherwise v # s and we have

(G (D)) = (G (1)) = (T4 crt 4 -+ 4 cpust? )

with ¢; = ¢;(Cx,(1)). Using the multinomial formula, the latter expression can

be rewritten

p pS .
. i v—s .
1+Z Z ( y ; )C’Lll...cpzzls tj'
. 1 Zl veey bpyv—s
i=1 |1|=p* O

i14+2ig4 AP Ty =]

. | . . .
Here the notation means (ao " a_) = rapand I = (20, ..., ipu—s) is a tuple of
----- % : i

nonnegative integers with |I| =g + -+ 4 ipo-s.

By Lemma 3.5.3, p divides all of the coefficients (io p;%s) except when

p® divides one of ig, ..., ip-s. We are left to show cf]: = 0 modulo p for any

k=0,..p"*—1. Using [Karl7c, Proposition 3.5], we can find a finite field
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extension E/F lowering the index of Ap and such that ¢;, = p.(x) for some
z in CH(Xg) ® Z,) and for p : Xp — Xp the projection. The projection

formula then gives

S

& = p.(e(p"pu())” ) =0 (mod p)

since p*p, = [E : F/. O

Corollary 3.4.11. Let A be a central simple algebra and X its associated

Severi-Brauer variety. The classes 7;(j) of CH(X) ® Z,) satisfy the relations:
(1) for alli > 1, we have 1;(0) =1,
(2) for any j >0, we have 7;,(p*)7:(j) = 7:(p*J), where v = v,(ind(A®")),
(3) for any integers ay, ...,a, >0, there is a relation
()" m(p)* = aTi(ay + 2as + -+ - + pUaw)

for some o in Z,) with

0 if v=0

vp(a) = P (v —wy(k))ay, ifv>0,7=0 (mod p")

vp(r) — v+ Zi;(v —vp(k))ar ifv>0,7#0 (mod p’)

\

where we write j = a1 + 2as + -+ + pap and 0 < v < pY is the

remainder in the division of j by p°.

Proof. We remark that the definition of the classes 7;(j) makes sense for any
integer 7 > 0 but when j > deg(A) these classes are 0. For simplifications

below, we don’t put any upper bound on the value j may have.
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The relation (1) is obvious from the definition. The relation (2) is also clear
from the definition. So we're left proving the complicated relation (3). To do
this, we pullback, to a splitting field L, the left and right side of the equation
in (3) and compare p-adic valuations of their coefficients on the element h’
where h is the class of a hyperplane over L. Some immediate observations for
the following: we can assume j isn’t larger than the dimension of X and we
can assume v > 0; otherwise the claim is trivial.

The pullback of 7;(1)® - - - 7;(p”)%" can be written Sh/ where
vp(B) = Z(U — vp(k) + vp(i)k)ay.
k=1
Similarly, the pullback of 7;(a; + - - + pYa,») can be written yh? with
v, (1)ps0 if j=0 (mod p’)

Up(V) =
Up(1)p¥so + v — vp(s1) +vp(i)sy if j#0 (mod pv)

where j = sop” + 51 and 0 < s; < p¥. Since v,(y) > v,(B) by Proposition

3.4.8, the result follows by subtracting. O]

Lemma 3.4.12. Let A be a central simple algebra with ind(A) = p" and
rBeh(A) = (ng,...,nm). Let X be the Severi-Brauer variety of A. Then, for

any pair of integers 1,7 with 0 < i < j < m, the total Chern polynomial

n; —(j—1

» )
alCe@ )™ =14 > B (R
k=1

is a polynomial with coefficients in CT(p'; X) @ Zy,).
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Moreover, the p-adic valuation of the coefficient By equals

ni —nj — (j — i) —vp(k/p") if k=0 (modp™)
Op(B) =
n; —n; —(j —1) if k#0 (mod p™).
Proof. We identify K(X) with its image in K(X;) for a splitting field L of
X. We write £ for the class of O(—1) in K(X;). Then the class of (x(p') is

identified with p™&?" and the class of Cx (p?) is identified with p"i&”. We have
=1, . el p”i j
AP (plép)z( : »>£p]-

2

It follows that

¢ (pm—(j—i)gpf) = (pm—(j—i)—nj (p"i gpj))
= alcx ()"

=L+ 7 (Dt 4 + 7 (pnj)tpnj )

nifnjf(jfi)

is a polynomial with coefficients contained in CT(p*; X) ® Z,. This proves
the first claim.

To prove the second claim, we write
pri— (=9
g i — (=)
= (4t 4+ ()T =14 > B (k)
k=1
using Proposition 3.4.8. Explicitly there are equalities

ni—(j—1)—n;
p
Bitpi (k) = Z ( 7 )Téj

I

where the sum runs over tuples I = (ay, ..., a,~ ) such that ag + --- + a,» =
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p» U9 and a; + 2a9 + -+ - + p"a,n; = k; here we're using the notation

pni_(j—i)—nj _ pni—(j—i)—nj _ M
1 ag, ..., Ay agl -+ ayn;!

and

for a tuple I = (ao, ..., a,~ ). Thus

= (£ o) (7))

where o is the coefficient in Tpfj = a7, (k) from Corollary 3.4.11. In fact,
the above inequality is an equality if there is a unique minimum over the
given tuples I. The p-adic valuation of any coefficient (pnr(j; i)inj)af can be
found using Corollary 3.4.11 and Lemma 3.5.2; the p-adic valuation of any

p”i*(j*i)*"j

I )aI can also be bounded below using Corollary 3.4.11

coefficient (
and Lemma 3.5.3. With this bound, one can show there is a unique minimum

n;—(i—i)—n;

, Jar): set s =mn; — (j —i) and r = n; in Lemma

among the v,((
3.5.4. Finally, using Lemma 3.5.2 to compute the valuation explicitly and
using Lemma 3.5.5, setting s = n; — (j — i) and r = n;, shows the p-adic

valuation of (3} is as claimed. n

The lemma above provides a collection of numbers 3;, with 8,CT* (p; X) C
CT*(1; X). Using a technique developed in [Kar17c], we can reduce the size
of the 3; further. We assume A is a division algebra in the following as this is

the only case we will need.

Corollary 3.4.13. Let A be a division algebra with ind(A) = p™ and rBeh(A) =
(ng, ..., ). Let X be the Severi-Brauer variety of A. Pick an integer 0 < j <

m, and let 0 < i < p" — 1 be a second integer.
60



There exists a number a; in Zy) so that a;7, (i) is contained in CT(1; X)®

L. Moreover, the p-adic valuation of the a; we find equals

)
n—j—n; if 1<1<pv

vp(ai) = n —j —n; — [log,(i/p™)| if p" <i<p'

0 otherwise.
\

Proof. Let L be a maximal subfield of A, of degree p™ over the base, and let
N be the image of the pushforward 7, : CH(X.) ® Zgy — CH(X) ® Z
along the projection 7w : X — X. By [Karl7c¢, Proposition 3.5], the image N
is contained in CT(1; X) ® Z(,). Recall also the pullback 7* followed by the
pushforward 7* is multiplication by p”, the degree of L over the base. The
proof of the corollary mimics that of [Karl7c, Proposition 3.12]; the idea of
the proof is to use the explicit bounds of Lemma 3.4.12 and the projection
formula to get the result for any i. Note that the claim is trivial for j = 0
(or we can just set oy; = 1 in this case) so, throughout the proof, it’s safe to
assume 7 > 0.

We first show, for i < p"/ and using f3; for the coefficient such that
B:.CT' (p; X) € CT'(1; X) found in Lemma 3.4.12, that p»(¥)7;(i) is in the
image of the map 7,. Write ¢ = sop™ + s; with 0 < s; < p™. The image of

7 (1) in CH(X 1) ® Zp) is equal, up to prime-to-p parts, to

PR if 51=0

T (73 (1)) =

pItri—OR i s > 0.

By Lemma 3.4.12, the multiple /3,7, (7) has image, up to prime-to-p parts,

7 (Bimy (1)) = prH OO
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regardless of s;. Thus,

Ty (1) = %W*W* (P97 (i)
:mﬁwwwmmm

= 7, (pi—DI—u®Opt),

pvp(ﬁi)

Since (i —1)j — v,(i) > 0, we find p*»¥)7,; (i) is in N as claimed.

Now let 7 be an integer with 1 <7 < p" — 1 and set £ = |log,(i/p")|. To
get the bounds on the p-adic valuation in the corollary statement, we work in
cases. We first assume ¢ > n — j — n; or equivalently i > p"~7. By the above

and Lemma 3.4.12, we can find an element x of CH(X ) with

() = 7 (p"7).

Set k =1 — p" 7. Then, using (2) and (3) of Corollary 3.4.11,

Tpi (1) = Tpi (P )n_j_nj Tpi (K)
— ) )
= W*(x)ij (k)

= e (27" (75 (K)))

By [Karl7c, Proposition 3.5], it follows 7, (7) is contained in N C CT(1; X) ®
Ly for all i > pn7.
For the other i, we act similarly. If p™ < i < p"~/ then set k = i — p+’.

Then there is a (different) element x with m.(z) = p"7,; (p*™) where r =
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Up(B,4n; ). Then

P T (i) = pp (P )ngj (k)
=P Ty (pe+nj )Tpi (k)
= ()7 (k)

= (27 (13 (K)))

and the claim follows as before.
For the remaining 7, when ¢ < p™, the claim is actually immediate from

Lemma 3.4.12. O

We can do better still if we multiply the classes (i) and 7, (k) for some

integers ¢,k > 0.

Corollary 3.4.14. Let A be a division algebra with ind(A) = p™ and rBeh(A) =
(ng, ..., ). Let X be the Severi-Brauer variety of A. Pick an integer 0 < j <
m, and let 1 < i,k < p™ —1 be two integers with v + k < p" — 1.

There exists a number ;1 in Zy) so that B;,Ti(i)7, (k) is contained in

CT(1; X) ® Zpy. Moreover, the p-adic valuation of the ; we find equals

(

max{v,(i) — j — ny, 0} if 1<k<ph
U(Bin) =  max{v,(i) — j — n; — [log,(k/p™)|,0} if p <k <p

0 otherwise.

\

Proof. The proof is the same as Corollary 3.4.13 except that we use the equal-

ity, up to prime-to-p parts,
7 (B ()70 () = prt Db O i
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to find pvr%ir) 7 (i)7,, (k) is contained in N. O

As an application, the above can be used to settle the particular case of
Conjecture 3.1.1 when X is the Severi-Brauer variety of an algebra A with

level 1:

Theorem 3.4.15. Let A be a central simple k-algebra of level 1 and let X
be the Severi-Brauer variety of A. Assume CH(X) is generated by Chern
classes. Then the K-theory coniveau epimorphism CH(X) — gr,G(X) is an

1somorphism.

Proof. 1t’s sufficient to show the claim when A is a division algebra of index p™.
In this case the kernel of the epimorphism CH(X) — gr. G(X) is p-primary-
torsion so we can work with Z,) coefficients throughout the proof. Let L be a

splitting field for A. Since CT(1; X') ® Z, is p-torsion free, the composition

CT(l; X) X Z(p) — CH(X) X Z(p) — ngG<X) & Z(p)

is injective; we denote by C' the image of this composition. We have an in-

equality

[CH(X) ® Zg) : CT(1; X) ® Zp)] = [gr,G(X) ® Zg) = C. (in)

We're going to use the bounds from Corollary 3.4.14 to get an upper bound

on the left of (in). We’ll also bound the right of (in), by computing

g1, G(X,) : C)
[K(X2): K(X)]

g, G(X) ® Zg) : C] =

precisely; the equality of the ratio of these indices can be found in [Karl7c,
proof of Theorem 3.1]. The proof will be completed once we show these two

bounds are equal.
64



To get an upper bound on the left of (in), we sum the maximums of the
p-adic valuations occurring in Corollaries 3.4.13 and 3.4.14. Plainly said, we
compute an upper bound on p-adic valuations of the orders of the elements
71 (i) 7 (k), where 7 is the (unique since A has level 1) smallest positive integer
with v,(ind(A®"")) < w,(ind(A®”"")) — 1, in the group CH(X)/CT(1;X).
Note that, by Proposition 3.4.5 and Proposition 3.4.8 the elements 7 (i)7,- (k)
are exactly the generators of this quotient group so that by computing an upper
bound on their orders and raising p to this upper bound, we also compute an
upper bound on the index in the left of (in). Once we have this upper bound,
we’'ll move on to give a lower bound for the right hand side of (in). These two
bounds turn out to be equal, showing our upper bound on the orders were in
fact their precise order.

Set n, = v,(ind(A%?")) and £ = n —r —n,. When i = 0, we sum the

contributions from Corollary 3.4.13,

pnr—1 prTT—1
Z n—r—n,+ Z n—r—n, — |log,(a/p")]
a=1 a=pnr
-1
=P =D+ o™= b)
b=0

where ¢ is the Euler totient function (we use this function to combine those

terms a that have the same value of [log,(a/p"")]; there are exactly

ne+b+1 _  ny+b

nr—i-b—&-l) — p

o(p p

such terms with value b, i.e. p™*° .. p™+**1 — 1), When i > 0, we only need

to account for the terms with v, (i) > n—¢, (note if =1 then r+n, =n—1
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and there are no terms of this kind),

pnr_l pvp(i)fr_l
Z vp(1) —r —n, + Z vp(i) — 1 —n, — [log,(b/p"")]
b=1 b:pn'r
vp(i)—r—ny—1
=" —D(v,(i) —r —n,) + o(p" T (vp(3) — 7 — n, —b).
b=0

Of the integers i satisfying 1 < i < p" there are p(p‘~!) integers i with
v,(1) = n— €+ 1, there are p(p*~?) integers i with v,(i) =n — ¢+ 2, and so on
to o(p) integers ¢ with v,(i) = n — £+ (¢ — 1). Summing over all such ¢ with

vp(i) > n — € we get

/—1 a
> () ((p"T —Da+Y o) (a - b))

Combining both the ¢ = 0 and ¢ > 0 contributions gives a definitive upper

bound of

14

S=> o™ ((p”" —Da+Y_ ") (a - b)) :
b=0

a=1
To get a lower bound on the right of (in), we calculate [gr G(X)®Z,) : C]

precisely. Since this index equals

lgr, G(XL) : C]
[K(XL) : K(X)]’

it’s sufficient to calculate the numerator and denominator of this fraction. The

numerator depends only on the dimension of X and equals

p" n—1
H(pn—vp(i)) - H(pn—j)w(p”*j)
=1 j=1

66



The denominator depends on the reduced behavior of A and equals

pn_l r—1 Ny+r
H 1nd(A®Z> = (H(pn_J)@(an)> (H (pnr‘f"”‘_j)gp(p'rLJ))
i=0 =0 i
Dividing the two gives
Ny—+r p n ' B
P= <H (pé)w(p )) ( H (pn—l)go(p )) .

i=r i=n,r+r+1

What remains to be shown is the equality log,(P) = S. A computation of

the logarithm gives

ny+r _ n . o
lng(P) — Ing (H (pf)@(lm_l) H <pn—2)4,0(77 ))

i=r t=n,+r+1
ny+r ' n .
=Y @™+ D (n—i)e(")
i=r 1=ny+r+1

n—r—n,—1

=" ="+ D e

i=1
(—1pt —pt~t+1
:g(pnfr_péfl)_i_( )p p
p—1
¢
-1
_gpn—r p
p—1
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And by simplifying the sum S we find

S= e ((p”T = Da+ ) e~ b))

J4 a
= 0P = Da+ Y e e™ ) (a —b)

a=1
n—r 7. ¢ T a
el S +3 o) (p T - (a+1)p+a))
p—1 p—1 = (p—1)
pn—r _ pnr pf -1 gpnfrJrl _ (g + 1>pnfr + pnr
- - +
p—1 p—1 p—1
=/p" Pl
p—1
as desired. O

3.5 On p-adic valuations

Fix a prime p to be used throughout this section. For any integer n > 0
we use S,(n) to denote the sum of the base-p digits of n. In other words, if
n = ap+a1p+- - -+a.p” with 0 < ag, ..., a, < p—1then Sy(n) = ap+a1+- - -+a,.
This section proves some simple results on the function S, and on p-adic

valuations involving this function.
Lemma 3.5.1. Let n > 0 be an integer.
(1) Sp(p") =1
(2) Sy(p"a) = Sy(a) for any integer a > 0
(3) Sp(p" —1) =n(p—1)
(4) If 0 < k < n then Sy(p" —p*) = (n—k)(p — 1)

(5) If 0 < a < p" then S,(p™ —a) + Sy(a) = (n —vy(a))(p—1)+1
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(6) If 0 <a <p"—1 then S,(p" — 1 —a)+ Sy(a) =n(p—1)
Proof. The proofs for (1)-(6) are elementary and omitted. O

We use the notation

( n > n!
ag, ..., Ay ap! -+ - a,!

If ag + - - - + a, = n then we have the following:

Lemma 3.5.2. Letn =aqg+ --- + a, with n,aq,...,a, > 0. Then

(")) = ((Z spm)) - sp<n>) .

Proof. See for example [Mer(3, Lemma 11.2]. O

Lemma 3.5.3. Let n > 0 be an integer. Let ag,...,a, > 0 be integers with

agp+ -+ a, =n. Then

a (4" 0)) 2 ol - pin e

Proof. See for example [Mer(3, Lemma 11.3]. O

Lemma 3.5.4. Let 0 < r < s be integers. Fix an integer 0 < j < p®. Let
g, ..., apr > 0 be integers with ag+- - -+ay,r = p*~" and a1 +2az+- - -+p ay, = j.

Write 7 = sop” + s1 with 0 < s1 < p". Then if s = 0 there is an inequality

r

p

5—1— oggr{%(&k}} + ;(7‘ —v,(i))a; > s — 1 —vy(so)

and if s; > 0 there is an inequality

(e

p

s—r— min {vy(ar)} — (r —ov,(s1)) + Z(r —vy(i))a; > s —r.

0<k<p"
=1
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If s1 = 0, then equality holds if and only if ap = p*~" — so and ayr = so. If
sy > 0, then equality holds if and only if ag = p*" —so — 1, as, = 1, and

apr — S().

Proof. We first assume s; = 0. If ¢ = min{v,(ax)} is 0, then the inequality
clearly holds since r» — v,(i) > 0 for all 1 < ¢ <p". If £ > 0 and r = 0, then
Jj =ay and j = sp. So £ is either v,(ag) = v,(p* —J) or v,(ar) = v,(J) = vy(so).
Since j < p®, it follows ¢ = v,(s¢) and the claim follows with equality in this
case. If ¢ = min{v,(ax)} > 0, then since r —v,(i) > 0 for all 1 < i < p",
the inequality also holds if r # 0 and if there is a nonzero a; with ¢ # 0,p" as
(r —wvp(i))a; — £ > 0.

Thus, to prove that the inequality holds in general (for s; = 0), it suffices
to assume ¢ > 0, r > 0, and a; = 0 unless ¢ = 0 or + = p". Assuming this
is the case, it follows from the assumption p"a, = j that a,r = so and from
the assumption ag + a,r = p°~" that ap = p*" — sp. Since sy < p*~", we also
have v,(a, ) < s —r so that v,(ag) = v,(a,r) unless a,r = p°~" (in which case
vp(ap) = oo and the claim is clear). Thus ¢ = v,(s), the inequality holds, and
it is even an equality in this case.

To see ap = p*~" — sp and a,r = 50 is the only case the inequality is an
equality, one can work through the same cases. If £ = 0 and there is equality,
then v,(s9) = 0 and the large summation must equal 0. Hence p"a,r = j and
the claim follows. If ¢ > 0, then either r = 0 or » > 0. If » = 0, the claim
follows from the first paragraph. If » > 0, then either all a; with ¢ # 0, p" vanish
or there is at least one 0 < i < p” with a; # 0. We can assume the latter case
where the inequality is a strict inequality since (r — v,(i))a; — € > a; — £ > 0.

To show the claim when s; > 0, we work through cases similar to be-
fore. Note now r > 0 holds always, as otherwise we’d have s; = 0. If

¢ = min{v,(ar)} = 0 then since r — v,(i) > 0, we're left to show the sum-
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mation
'a

p
> (r=upli)a;
i=1
is greater or equal r—wv,(s1) < 7. Since s; > 0, there is a smallest integer k with
0<k<r—1, ay: # 0, and b relatively prime to p. It follows that p* divides
s1 and —(r —vy(s1)) > —r + k. Since (r — v, (bp"))ayr = (r — k)agr > (r — k)
we find that the inequality holds by summing (r — v, (bp¥))ay,. — (r —vp(s1)) >
(r—*k)—(r—Fk)=0.
Thus to prove the inequality holds in general, it suffices to assume ¢ > 0.
Under our assumptions £ > 0, » > 0, and j # p"a,r we have that there exists
at least one ¢ with ¢ # 0,p" such that a; # 0. Let k be the smallest integer

between 0 < k < r such that a,x # 0 for some b relatively prime to p. It

follows p* divides s; hence —(r — v,(s1)) > —r + k. Now

(r— vp(bpk))abpk —r4u,(s1) — 0> (r— k:)pg —r4+uvy(s) — ¢
= (r—k)(p" —1) = L+ v,(s1)
> (0 = 1= 0) + (1)

> 0.

We end by showing that equality holds, assuming s; > 0, only in the
specified case (it’s clear equality holds in this case). We first assume ¢ = 0.

For equality to hold, we must have

r

D (= vp(i))a;s =1 —up(s1).

i=1

Again there is a minimal 0 < k < r with a,x # 0 for some b relatively prime
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to p. We also get that p* divides s;. It follows
(r = vp(0p" ) apr = (r = K)age > (r —k) > 17— vy(s1)

must be an equality. Hence a;,» = 1 and we are in the specified case.
We next assume ¢ > 0 and show our inequality is strict. Let k£ with

0 < k < r be minimal with a,,» # 0 for some b relatively prime to p. Then

T

p

> (= vy(i)ai = (r = k)p'.

=1

Since £+1—wv,(s1) < {+7r—k it suffices to check (r —k)p* > £+r—k holds for
all (r —k),¢ > 0 in order to show this is a strict inequality in this case. But
this is true since dividing by r — k yields p® > ¢/(r — k) + 1; making another
estimate we can show p’ > ¢+ 1 for all £ and this is always true for £ > 0 and

p > 2. [l

Lemma 3.5.5. Let 0 < r < s be integers. Fix an integer 1 < j < p® and write
7 =580p" + 51 with 0 < s1 <p".

If sy =0, let I = (ao, ..., apr) be the tuple with ag = p*~" — sg, a,r = 5o and
a; = 0 for all other i. Then,

w (7)) = 52 (Sslao) + ) = ) =5 =7 = ),

p—1

If s1 >0, let I = (ag, ..., ay) be the tuple with ap = p°*~" —so — 1, a5, =1,

ay,r = 59 and a; = 0 for all other i. Then,

i (7)) = 55 (Salao) + Sifan) + Syla) = 5,077 =5 =

Proof. The first equality follows from Lemma 3.5.2 and Lemma 3.5.1 (1) and
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(5). The second equality follows from Lemma 3.5.2 and Lemma 3.5.1 (1) and
(6). O
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Chapter 4

On the gamma filtration for a

Severi-Brauer variety

Notation and Conventions. We fix a field k£ throughout. All of our objects
are defined over k unless stated otherwise.
If p is a prime, then v, is the p-adic valuation.

# A denotes the cardinality of the set A.

4.1 Introduction

Chow rings of Severi-Brauer varieties have been the subject of a number of
articles over the years. One attempt at studying these rings that has been
particularly fruitful is Karpenko’s use of the ~-filtration and the coniveau
filtration on the Grothendieck ring. Much of the material in this article lends
itself to the ideas contained in this work, particularly [[Karl7a, Kar95h, Kar0g].

The organization is as follows: sections 2 and 3 recall some background
information on the Grothendieck groups we study. Section 4 is more involved
and I've decided to give it a certain amount more of attention than it might

deserve. There we introduce the notion of a 7-functorial replacement for a
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Severi-Brauer variety X. This object is another Severi-Brauer variety, over
possibly a different field, that computes the ~-filtration of X but has the
enjoyable property the v and coniveau filtrations agree. The existence of this
object was known before but a proof in the general case is not in the literature.

Still in section 4, we use our 7-functorial replacements to give some func-
torial statements about the v-filtration which were only known to hold for the
t-filtration. In particular, we show how one can reduce certain results about
the ~-filtration of a Severi-Brauer variety of a central simple algebra to the
Severi-Brauer varieties of the primary components of the underlying division
algebra. I expect this idea could be used for a number of more general vari-
eties, specifically when there is a decomposition of the Grothendieck ring of the
variety into a sum of Grothendieck rings of central simple algebras (or, when
there is a decomposition of the motive of this variety into a sum of motives of
separable algebras in the sense of [Mer(5]). This line of thought isn’t pursued
here, however.

Sections 5 and 6 are computational. The main result of these sections is
that the associated graded ring of the v filtration is torsion free for Severi-
Brauer varieties associated to p-primary central simple algebras, for a prime

p, in (homological) degrees less than or equal p — 2.

4.2 Grothendieck groups of Severi-Brauer va-
rieties

Throughout this section we fix a central simple algebra A of degree n and let
X = SB(A) be the Severi-Brauer variety of A of dimension n — 1. We write
(x for the tautological sheaf on X. For any k-algebra R and any point = of
X (R) corresponding to a right ideal I C A®y R, the sheaf x*(x is canonically
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identified with I; in particular, (x is a right module over the constant sheaf
A.

By K(X) we mean the Grothendieck ring of locally free sheaves on X. By
G(X) we mean the Grothendieck ring of coherent sheaves on X. The two
groups are canonically isomorphic via the morphism sending the class of a
locally free sheaf in K(X) to the class of itself in G(X). These groups have

been computed, in the following sense:

Theorem 4.2.1 ([Qui73, §8, Theorem 4.1]). The homomorphism of K -groups

deg(A)—1
P KA - K(X)

i=0
sending the class of a left A% -module M to (¢' @ 40: M is an isomorphism.

In particular, K(X) is free of rank deg(A) generated additively by the

classes of

QX(Z) = ;(?Z ®A®i Mz

as 0 < i < deg(A) and for a simple A®-module M;. For any splitting field F
of A, the extension of scalars map K(X) — K(X) is injective, and identifies

K (X) as a subring of K(Xg). More precisely, we have:

Theorem 4.2.2. In the setting above, let & denote the class of Ox,.(—1) in

K(Xg). There is a ring isomorphism
Zlx]/(1 —2)" = K(XF)

sending x to &.
Under this isomorphisms K (X)) identifies with the subring of Z[x]/(1 —z)"
generated by ind(A%®")z".
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Proof. The isomorphism is well-known, see [Man69]. Finally, we use that
(x @y F has class deg(A)¢ in K(Xr) to get the remaining claim by computing
the ranks of the (x (7). O

When working with K (X), it’s often more helpful to work with a covering

of this ring (e.g. this is done in [[{ar98, Section 4]).

Lemma 4.2.3. Consider the subring S C Z[z| generated by the elements
ind(A®)az"  for all 1 <i < exp(A).

Then the image of S in Z[x]/(1 — )" is isomorphic with K(X).

In particular we'll need the following lemma from [I[<ar98, Lemma 4.5]. The

proof is short and goes by induction on the coefficients.

Lemma 4.2.4. Let f,g,h be polynomials in Z[z] and assume g(0) = +1.

Assume both f = gh and f is contained in S. Then h is also contained in S.

We include here as well the following formulas. The first is just the binomial

theorem, and the second follows from the first by a change of coordinates.

Lemma 4.2.5. In any commutative ring there are equalities

(1—2) = i(-gj (Z) P and ot =3 (1) (;) (1—2).

J=0

4.3 The gamma and coniveau filtrations

In this section we recall some results on the y-filtration of K(X) and of the
coniveau (or topological or Chow) filtration on G(X) for a smooth variety X.
For the first, recall there are y-operations defined on K (X) as follows. The

ith-exterior power operation induces a well-defined map \* : K(X) — K(X)
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which is uniquely determined by sending the class of a locally free sheaf F
to the class of A’F. The ith v operation 7 : K(X) — K(X) is defined by

sending an element x to the coefficient of ¢’ in the formal series

v ()

3>0

The ~-filtration on K (X) is defined as 7° = K(X), 7' = ker(rk) where rk :
K(X) — Z is the map sending the class of a locally free sheaf F to its rank,
and ~* for 4 > 0 is generated by monomials 7 (z1) - - -y (z,) for any r > 0,

iy + -+, >iand z1, ..., 7, elements of 4. We use the notation

gl K(X) == AL = 41y and gr, K(X) := @gr;K(X)
i>0

for the associated graded pieces of this filtration and for the associated graded
ring of this filtration respectively. When we need to be precise about which va-
riety the v-filtration is being considered for, we will specify by writing (X)) to
mean the ith piece of the y-filtration for the variety X. For further properties
of these operations we refer to the references [Man69, MRO71].

For the second, recall the coniveau filtration on G(X) is defined by setting

7¢, for any ¢ > 0, to be the ideal generated by

= Y ker(G(X) = G(X\T))

zeX ()

where j > i, XU) denotes the set of codimension j points of X, and the arrows

are flat pullbacks with respect to the inclusion. We use the notation

gr! G(X) := 7/ = 717 and  gr, G(X @gr G(X

>0
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for the associated graded pieces of this filtration and for the associated graded
ring of this filtration respectively. Sometimes when more precision is needed,
we include the variety in our notation for the coniveau filtration, i.e. 7¢(X)
for the ith piece of the coniveau filtration of X.

The two filtrations are related:

Theorem 4.3.1. We identify K(X) with its image in G(X) under the canon-
ical isomorphism. For any i > 0 we have ' C 1°. Moreover, if the Chow ring
CH(X) is generated by Chern classes then the two filtrations are equal, i.e.

vt = 7% for all i > 0.

Proof. For the first claim, see [Man69]. The second claim originally appears

in [Kar98] and is updated in [KM18b, Proposition 3.3]. O

Remark 4.3.2. Slightly more generally, if the canonical morphism B(X) —
gr. G(X) is a surjection, then there is also an equality v = 7% for all i > 0. Here

B(X) is the universal source of Chern classes on X constructed in [Mac18].

4.4 Reductions

We specialize to the case A is a central simple algebra and X = SB(A). The
main purpose of this section is to provide a way to reduce to computations of
the associated graded for the ~-filtration to the case A is a p-primary division
algebra. In this regard we utilize heavily the motivic techniques of Karpenko
(e.g. [Kar95a, Corollary 1.3.2],[Karl7a, Lemma 3.5]). The reason we can use
these results is due to an observation (also Karpenko’s) that for any Severi-
Brauer variety X associated to an algebra A, there is a Severi-Brauer variety Y
so that the ~-filtrations of X and Y are equal and the ~-filtration and coniveau

filtration for this Y are also equal. This allows us to prove results about X by

79



first replacing it with the functorially-nicer ¥ and then reducing to previously

known results. This observation seems nice enough to name it.

Definition 4.4.1. Let X be an arbitrary Severi-Brauer variety associated to
A. We say that a Severi-Brauer variety Y associated to a central simple algebra

B is a 7-functorial replacement for X if the following conditions hold:
1. deg(A) = deg(B)

2. for every prime p, the p-behavior of A, B are the same Beh(p, A) =
Beh(p, B)

3. the filtration comparison map gr. K (Y) — gr,G(Y') is an isomorphism.
Here we're using the definition:

Definition 4.4.2. For an arbitrary central simple algebra A with primary

decomposition A = M, (k) ® <®p prime Ap>, the behavior of A is the sequence
Beh(A) = (ind(A), ind(A®?), ..., ind(A®=P)) .
The p-behavior is the sequence
Beh(p, A) = (ind(4,), ind(AZ?), ..., ind(APPA)))
The reduced p-behavior of A is the sequence

rBeh(p, A) = (vpind(Ap), upind(AF?), . .., vpind(AFPA))

p

If A is a p-primary algebra then we will call the reduced p-behavior simply

the reduced behavior of A, and write rBeh(A) for the reduced behavior.
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Remark 4.4.3. Note that a 7-functorial replacement doesn’t necessarily need

to exist over the same base field. In fact, it often doesn’t.

Remark 4.4.4. The reduced behavior is a strictly descending sequence ending
in 0. Conversely, for every prime p and for every strictly descending sequence
ending in 0 there is a p-primary algebra with reduced behavior the given
sequence, see [[Kar98, Lemma 3.10]. Note that it’s possible to reconstruct the
behavior of A from the p-behavior (or the reduced p-behavior) as p ranges over

all primes.

The first two conditions our 7-functorial replacements are required to have

insure that we haven’t changed the ~-filtration on replacement.

Lemma 4.4.5. The ring gr. K (X) depends only on the integers ind(A®") for
0 < i < deg(A). In particular, if B is another central simple algebra of the
same degree as A with Severi-Brauer variety Y = SB(B) and if there are
equalities

ind(A®") = ind(B®")

for alli > 0 then the rings gr. K(X) and gr., K(Y) are isomorphic (but maybe

not naturally).
Proof. This is the content of [[1{99, Theorem 1.1 and Corollary 1.2]. O

Modifying a proof from [[Kar98], it’s possible to show a 7-functorial replace-

ment exists for any Severi-Brauer variety of a division algebra.

Proposition 4.4.6. If A is a diwvision algebra then there exists a division

algebra B, possibly over a different field than k, with

ind(A®") = ind(B®")
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for allt > 0 satisfying the property that the canonical morphism comparing the
v and coniveau filtrations for Y = SB(B) is an isomorphism, i.e. gr K(Y) =

gr.G(Y).

Proof. The construction of B is given in [Kar98, Lemma 3.10] for A of p-
primary index. The proof that gr. K(Y) = gr,G(Y) in this case follows from
[Kar98, Theorem 3.7]. The following proof is a simple generalization of these
two references.

We first construct B. One can find a field ' and a division algebra B,
with ind(A) = ind(Bo) = exp(By). Let By = @), prime Bop be a p-primary

decomposition of By. Let ¢ be the smallest prime appearing among the indices

of these factors. We consider the reduced g-behavior
rBeh(q, A) = (ng,ny, ..., 0).

Set By = Bg"l with Severi-Brauer variety Y; = SB(EO) and By = By p(v)-

Then using index reduction formulas, see [SVdB92, Theorem 1.3], we find
rBeh(q, By) = (ng,n1,m1 — 1,...,0).

By repeating this process finitely many times, we can construct an algebra B
with the same reduced ¢-Behavior as A. Doing this procedure for the other
primes allows us to find B satisfying the restriction on its indices as in the
proposition statement.

It remains to show the ~-filtration and the coniveau filtration agree for
Y = SB(B). For the Severi-Brauer variety of any algebra with equal index
and exponent, for example By, these two filtrations coincide, [[<ar98, Corollary

3.6]. In the general case, we note that X x Y] is a projective bundle over X
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since By is in the subgroup generated by By. The commuting diagram

B(X xY)) —— B(Xrm))

l d
gr.G(X xYy) — gr.G(Xpv))

has surjective left vertical arrow by Lemma 4.4.7 below. The bottom horizon-
tal arrow is also surjective by localization. Hence the right vertical arrow is
surjective, which implies the v and coniveau filtrations coincide for Xzey,) by
Remark 4.3.2. Continuing this process for each modification of B; shows B

has the specified properties. O

Lemma 4.4.7. Suppose X is a variety (a scheme essentially smooth and es-
sentially of finite type over k) with ~* = 1° for all i > 0. Then, for any chain
of morphisms

Y= =Y =2Y=X

with each Y; the projective bundle of some vector bundle over Y;_i, the v and

coniveau filtrations for'Y, coincide.

Proof. Tt suffices to assume r = 1 and work by induction. As there is equality
of the v and coniveau filtrations for X, we get a commuting diagram like the
one below, using the universal maps from B and the filtration comparison

map.
B(X)

/ ™~
gr K(X) =— gr,G(X)

As the left diagonal map is always a surjection since gr, K (X) is generated by

Chern classes, it follows that the right diagonal map is also a surjection.
Now for any projective bundle Y; — X, the Grothendieck ring K(Y7) is

generated as a K(X)-algebra by K(X) and a single element ¢ which is the

class of a rank one locally free sheaf on Y;. In particular, B(Y}) is generated
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as an algebra by the image of B(X) under the pullback of the projection
and powers of the first chern class of t. Since gr G(Y)) is generated as an
algebra by gr_G(X) and the chern classes of t, it follows the canonical map
B(Yy) — gr,G(Y1) is a surjection. We conclude by Remark 4.3.2. O

The remainder of this section is devoted to showing the use in 7-functorial
replacements. First, we show that the associated graded for the v-filtration

depends only on the underlying division algebra of A.

Proposition 4.4.8. Let A be an arbitrary central simple algebra. If D 1is the

underlying division algebra of A with Xp = SB(D), then the morphism
deg(A)/deg(D)
P o, K(Xp) = e, K(X)

i=1

taking the element (x1,...,x,) to 1 + Toc + -+ + 2"~ L, where c is the top

Chern class of (x(1), is an isomorphism.

We'll need some lemmas.
Lemma 4.4.9. If D is the underlying division algebra of A with Xp = SB(D),
then the map induced by the pullback of the inclusion

gr, K(X) — gr, K(Xp)

s an isomorphism in degrees where both groups are nonzero.

Proof. As the morphism of the lemma statement depends only on the behav-
ior of A and the degree of A, we can first make a 7-functorial replacement,

Proposition 4.4.6, to assume the v and coniveau filtrations agree for Xp. Now
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the diagram
gr, K(X) — gr K(Xp)

| |

gr,G(X) — gr,G(Xp)

is commutative, with vertical arrows the comparison maps and horizontal ar-
rows the pullbacks. The top horizontal arrow is surjective because the pullback
K(X) — K(Xp) is surjective and the associated graded for the v-filtration is
generated by Chern classes, cf. [Macl8, Lemma 2.3]. The bottom horizontal
arrow is an isomorphism in degrees where both groups are nonzero by [I[{ar95a,
Corollary 1.3.2]. And the right vertical arrow is an isomorphism because of
our replacement.

Now from the commutative ladder with exact rows below

y f)/i/i-&-l 0

7 ”)/’L
J/fiJrl lfi lfi/iﬂ
‘ 7 7—7:

y /it 0

we get short exact sequences (using the snake lemma)

0 — ker(f;/i11) — coker(fi11) — coker(f;) =0

for all 0 <7 < n =ind(A). To complete the proof, it suffices to show f,,/n+1 is
a surjection and coker(f,,) = 0. These are both shown in the next lemma. []
Lemma 4.4.10. If A is a central simple algebra and ind(A) = n, then the
group grl K (X) is torsion free and there are equalities

Yr=1"=(-1)"K(X) and ngK(X) =grlG(X) = ({ - 1)"Z.

Proof. Let F' be a splitting field for A and identify K(X) with its image
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in K(Xp) under the extension of scalars map. We set £ to be the class of

Ox,.(—1). Our first goal is to show the inclusions

E-1)"K(X)Ccy"cm" C (- 1)"G(X)

which will imply equalities hold throughout. Note that the left of these is
immediate, as we have (£ —1)" =~"(n(§ —1)).
As in Lemma 4.2.2) let S C Z[x] be the subring generated as an algebra

by the elements ind(A®")z’. The preimage of 7% in S under the surjection

S = Zfz] = K(X) = G(X)

is always composed of polynomials in (1 — z) of degree greater or equal i; this
is because, if F were a splitting field for X then 7/(X) C 79(Xr) C G(XF)
and the preimage of 7/(Xr) is the ideal (1 — z)" C Z[x]. We know, from the
inclusion 4™ C 7" that the preimage of 7" contains ™. We want to show that
this preimage is actually also contained in the ideal S N (z™) C S. It would
then follow 7 C (1 — £)"G(X) = ™ and this would complete this part of the
proof.

To proceed, suppose f is a polynomial in the preimage of 7. Note this
implies f is in S. Assuming f # 0, we can write f = (1 — z)"g for some
polynomial g of Z[x]. It suffices to check that ¢ is in S as well and this is true
by Lemma 4.2.4.

Next we compute the quotients. The rank map rk : K(X) — Z is surjective

and provides a splitting K(X) = ! & Z given by = + (x — rk(x), rk(x)). We
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have a commuting diagram of free abelian groups

,Yn+1 P (é’ _ 1)nZ

.(5_1)/ \
(E-1)m

with the canonical inclusion 7 : v @ (£ — 1)"Z C ™. The bottom row
of this diagram is surjective by the description of 7". Hence m must also be
a surjection which, since both domain and target are free abelian groups of
the same rank (see Lemma 4.4.11), must be an isomorphism. This shows
grh K (X) = (§ — 1)"Z which happens to be the same as gr]’G(X) by the same

proof replacing everywhere v appears with 7. O

Lemma 4.4.11. The groups v* C K(X) and 7° C G(X) are free abelian of

rank n — i for any 0 < i < n = deg(A).

Proof. For any such i, 7" (resp. 7') is a free abelian group as its a subgroup of
K(X) (resp. G(X)). For the claim on the rank we go by induction. For any ¢

there is an exact sequence

0 — 4+ 5 i 5 AiF

and 7/"*1 has rank 1 by one variant of the Riemann-Roch theorem (resp. with
7"’s). For large enough i we have 4! = 0, 4 # 0 and v/"*! of rank 1 (resp.

with 79s). O

Proof of Proposition 4.4.8. Using Proposition 4.4.6 on D, one can find a 7-

functorial replacement B. In particular,

Beh(p, A) = Beh(p, A)
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for all primes p satisfying the property the coniveau filtration and ~-filtration
agree for the Severi-Brauer variety of B. Set C' = M,(B), the ring of square
matrices of size r = deg(A)/deg(D), set Z = SB(C), and set Zg = SB(B).

There’s a canonical morphism

deg(C)/deg(B)
B e, K(Zp) - gr,K(2).

i=1

To see it, label a basis of the left sum by e;, 1 < i < deg(C)/deg(B). The

1

canonical morphism is the map that sends ze; to zc'~! where ¢ is the top

Chern class of (x(1); here z is considered in gr, K (Z) via the isomorphism of

Lemma 4.4.9. We compose this morphism with the maps
deg(C)/deg(B)
e, K(Z) = er,G(Z)» P  er,G(Zp)
i=1
where the right arrow is an the inverse of the isomorphism
deg(C)/deg(B)
@ ngG(ZB) — gr‘rG(Z)

i=1

appearing from [Kar95a, Corollary 1.3.2].

The composition

deg(C’)/deg(B) deg(C)/deg(B)

B o KZs)—» G er,G(Zp)

i=1 i=1
is an isomorphism due to our choice of Zg. Hence there is a surjection

gr, K(Z) — gr.G(Z).
The filtration comparison map has the nice property that surjectivity implies
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injectivity, [KM18b, Proposition 3.3 (2)], so it’s an isomorphism here. Thus

the map
deg(C')/deg(B)

@ gr. K(Zp) — gr,K(Z)

i=1
is both injective and surjective. Since these rings are isomorphic when replac-

ing Zg by Xp and Z by X the claim follows. m
As a corollary to the above proof we get:

Theorem 4.4.12. For any arbitrary central simple algebra A, there exists a

T-functorial replacement of X = SB(A).

Proof. Let D be the underlying division algebra of A. There is a 7-functorial
replacement B of D. The proof of Proposition 4.4.8 shows that taking a matrix
ring over B with the same degree of A satisfies all the required properties of a

T-functorial replacement of A. O

A 7-functorial replacement also allows us to characterize the torsion in the
associated graded for the y-filtration of the Severi-Brauer variety of a central
simple algebra in terms of the Severi-Brauer variety associated to its underlying

division algebra.

Lemma 4.4.13. If A is a central simple algebra of p-primary index for some
prime p, then gr. K(X) and gr.G(X) contain only p-primary torsion.
Additionally, for every finite field extension F'/k of degree prime-to-p, the

extension of scalars map gr K (X) — gr. K(Xr) is an isomorphism.

Proof. The first claim is known for the associated graded of the coniveau
filtration where it follows from a restriction-corestriction argument. The first
claim for associated graded of the ~-filtration then follows from the existence

of a T-functorial replacement of X.
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For the second claim, it suffices to note the extension of scalars map along
a prime-to-p induces a natural isomorphism between K(X) and K(Xp) and

then apply Lemma 4.4.5. ]

Lemma 4.4.14. For an arbitrary central simple algebra A, we write A =
®p prime A, @ M, (k) for a decomposition of A into p-primary division algebras
A, and a matriz ring M, (k). Then, for any prime p, for any integer 0 <
Jj < deg(A), and for j' the remainder after dividing j by ind(A,), there are

1somorphisms
griK(X) X Z(p) = gr];K(X) X Z(p) and gl"Z_G(X) ® Z(p) = gI‘z_IG(X) X Z(p).

Proof. We use [Karl7a, Lemma 3.5] to get the claim involving the coniveau

filtration and Theorem 4.4.12 to get the claim for the v-filtration. O

4.5 Generating the ~-filtration

Again A is a central simple algebra, and X = SB(A) its Severi-Brauer variety.
In this section we describe the ~v-filtration for X when A is a p-primary division

algebra. The most distinguishing property for this purpose is the p-level of A.

Definition 4.5.1. The p-level of A is defined to be the level of A, where
A, is the p-primary division algebra occurring as a factor of A. We write
lev(p, A) for the p-level of A. Recall that the level of a p-primary algebra A,
written lev(A), as defined in [KM18a], is the largest number of distinct integers

1 <y, ...,y < exp(A) with
vpind(A@’pik) < vpind(A®pik_l) —1

for every 1 < k < [. In other words, the level of A is the number of places the
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reduced behavior decreases by more than one from one position to the next.

Lemma 4.5.2. Let A be a central simple algebra with p-primary index for a
prime p. We assume also that lev(A) = r, and that i, ...,1, are the distinct

integers satisfying
vpind(A®pik) < Upind(A®pik71) -1
for all1 <k <r. Then~' C K(X) is generated additively by products

7 (2 = k(@) -7 (2 — k()

where j; + -+ -+ j, >4 and xy, ..., x, are elements of {{x(p™)}H._;.

Proof. In this setting, the ring gr, K(X) is generated as an algebra by the
Chern classes of the (x(p®)Y. This is because: K(X) is generated as a A-ring
by Cx(p'*), see [KM18a, Lemma A.6], Chern classes of A\-operations of a vector
bundle are polynomials in the Chern class of this bundle, see [Macl8, Lemma
3.7], and Chern classes of the dual of a bundle are Chern classes of this bundle
up to a sign [Macl8, Example 3.6].

Since these Chern classes in gr, K(X) are defined as

¢l (x) = 7 (rk() = 2”) mod 4**",

(2

it follows that ~* is generated by the lifts of monomials of degree i in these

1

Chern classes and ~**!. 1

By induction we can assume ™! is generated by
similarly defined elements but of degree ¢ + 1 and ~**2. Eventually, for large
enough d, we have v = 0 and it follows +* is generated by the lifts of these

monomials of degree ¢ or larger.

To complete the claim then, we only need to show that +*(z) is a polynomial
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in the 77 (—x). This follows as 1 = v(z — x) = v(z)y:(—x) implies

and the right hand side is a series in t with coefficients polynomials in the

~v-operations of —zx. m

Lemma 4.5.3. Let A be a central simple algebra with p-primary index for
some prime p. Assume A has reduced behavior rBeh(A) = (ng, ...,nm). Fiz a
splitting field F' of A and identify K(X) with its image in K(Xg) under the
extension of scalars map. Let & be the class of Ox,(—1).

Then
i j n; P ' i
et =) = (77 )€ 1)
Proof. This is computed in [[Kar98]. It’s done by

"5

Y€ —p) = (P (€ — 1)) = (& — P = (1+ (& — 1)ty

For future reference we provide the formula below.
Lemma 4.5.4.

n fn .

n_ 1= —1)¢ 1 — i

ro1=3 (-

Proof. Note 2" —1=(z —1)(1+z+---+ 2" ). Now apply Lemma 4.2.5 to

the latter sum and combine. O
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4.6 Comparison between the v, 7, and 7 filtra-
tions

For this section, fix a central division algebra A of index p™ for some prime p
and n > 0. We write X = SB(A) as before. We also assume that A is chosen
so that 7' = 7% for all # > 0, applying Theorem 4.4.12 if needed (and possibly
renaming our base field).

We're going to compute the ~v-filtration on X in degrees greater p" — p.
In some ways, this computation is facilitated by the fact that most of the
terms in an element of the 7-filtration start to vanish in these large degrees.
The restriction to degree greater p™ — p in particular means we’ll be doing
computations with polynomials that can be written as sums of monomials
of length at most p — 1. After making this observation, it only takes some
rudimentary approximations on the divisibility properties of these sums to get

our main result:

'

Theorem 4.6.1. For an arbitrary central simple algebra A with ind(A) = p
and X = SB(A) we have

g K (X) =p"({ - 1)L

foralll1 <i<p-—1.
In the above we’re identifying K(X) with its image in K(Xpg) for some
splitting field F of A and we are setting & to be the class of Ox,(—1) in

K(Xp).

Before giving the proof, we give some lower bounds on the size of the ~°.
Strictly speaking these bounds aren’t needed and the interested reader can go

straight to the proof of Theorem 4.6.1. We take the time to work through
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these bounds because it was consideration of these bounds that led to the
description of the 7-filtration in these degrees.

So, we introduce a new filtration on K (X) using the equality ' = 7°.
Up to making a prime-to-p extension of the base field, we can assume there
are finite field extensions k C Ly C Ly C .-+ C L, with [L; : Liyq] = p
and ind(Az,) = p"* for each i. For any j with (j,p") = p"~* Consider the
composition

N,k

VY (Xi,) = 7 (Xp,) —= (X)) =9/ (X).

The leftmost of these groups is equal (over k) to the ideal in K (X) generated
by (£ —1)’ by Lemma 4.4.10. The image of this element under the composition

is equal [L; : k](§ — 1) = a;p'(§ — 1)7 for some a; coprime to p.

Definition 4.6.2. We define ° C v C K(X) to be the group generated by
the elements

pi (e — 1) for all j > i.

That these elements exist inside of 4* follows because

Y (Cx (1) —p")y =p™(E—1)

is an element of 7' and (a,;p" =) p*) = pr=ul),
Alternatively, n* can be described as the ideal generated by the degree j

products of y-operations of p"(§ — 1) for all j > i.

We denote by 7/ := n/n'*! and gr, K(X) for the associated graded
pieces and the associated graded ring respectively. The following corollary
comes from the existence of the n-filtration; it can also be deduced, at least

when ¢ = 0, from [Kar95b, Proposition 2 and Lemma 3].
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Corollary 4.6.3. There’s an inequality

pr—1 pr—1
# Tors ED ngfK(X) < H pro )
j=i j=i

forany 0 <1 <p*—1. Wheni=0 ori=1 we have
p" '
Hpn—vp(]) _ npn _ (pn—l _l_pn—2 4ot 1)
j=1

Proof. The ladder below is commuting and has exact rows for every ¢ > 0.

0 —— ni+1 y nl y ni/i+1 — 50
0 it s i y yilit] . 0

As n*/"*1 is torsion free, all of the vertical arrows are injections. Since 1’ and
+/ have the same rank for every j, it follows the cokernels of these vertical

arrows are torsion. Using the snake lemma we get short exact sequences
e N O s N}
Setting A = Tors /"1 we can write
AL A /LA and AT it = A (/L) A) i
Now

v [T, #9/7

4 Tors @ griK(X) <4 H,yi/i-l—l/ni/i—i—l = — #,yi/ni‘
j=i i

HiZH-l #7'/1° B

Considering the natural inclusions of free abelian groups n* C 7v* C K(X) we
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get inequalities
p"—1

# Torsy'/n' < # Tors K(X) /' = [ p" @
j=t

which proves the corollary. ]

Our main theorem says the bound above is far from sharp. The remainder

of the section is devoted to this proof.

Proof of Theorem 4.6.1. 1t suffices by Lemma 4.4.8 to assume A is a division
algebra. Our proof works by showing p™ divides the coefficient of every element
of 47" ~P*1 5 4"~ when each of these elements is written as polynomial in

1 — &. Note since there are inclusions

APPRYX) C P PYX) C PPN (X ) = (1 - P TP K (X)),

we can write every element y of 47" P*! as a sum
p"—1
— (1 — £}
y= § a;(1—¢)
J=p"—p+1

for some integers a;. After we show p" divides each of these a;, it follows that

we have inclusions

p"—p+1 p"—p+1 p"—p+1
n Cy cn

and this will end the proof.

Suppose then

y =" (x1 —rk(21)) -7 (2, — rk(z,))

is an arbitrary monomial generating v*"~P*! like those described in Lemma
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4.5.2. We can work in the two cases: each of zy,...,x; equal (x(1) for some
1 <k < (since vp(j) > min{v,(j1), ..., v, (ji) } and v, (%) = n —v,(i), we can
even assume k = 1) or (x(1) does not appear among the 1, ..., ;.

Assuming we’re in the former case, we can expand y as

(e (e
_ (PN (YL (T (€ — 1 (e — 1) (& — 1),
(Jl)( J2 ) ( Jr )

Note also that s,, ..., s, > 1.

Now by Lemma 4.5.4, there is an expansion, for each 2 <[ < r,

g i(_ni(p;) (1—2),

i=1

We set 210, (1) = S0 (=1)F (%) (1 — )" and zpign(l) = fzp(—l)i(p:l)(l —
z)’. Note that p divides z;p, (1) for every 2 < [ < r. Rewriting y in terms of

Tiow'S and Tpgn’s gives

y=(7) (€~ 17 onl2) + D+ (10 (r) + ()
The lowest degree of any @y, is p, while the lowest degree of any w4, is 1.
This means, applying the binomial theorem and expanding, the lowest degree
of (1 —¢) in any monomial containing an xpgp is j1 +jo+---+Jjr — 1 +p >
p"—p+1—1+p>p". Hence all of these summands are 0.

Thus we find

v= (7)€ = D @ o

Wil

— (?j)pj2+---+ﬁ(£ 1y <xzo;(2)>j2 - <:L’zm;(r))j’"

97




since each x;,, is divisible by p.

The p-adic valuation of the coefficient leading this product is exactly n —
vp(J1) +J2+ -+ -+ jr. We finish by showing n —v,(j1) 4+ jo +- - -+ j» > n for all
possible ji, ..., j, or, equivalently, assuming j1 +---+7, =p"—itwith 0 <7 <p
we finish by showing

pn —1 Z jl + Up(jl)'

Assuming 7 is largest possible we can also show p" —p+1 > j; 4+ v,(j1). We
can assume v,(j;) > 0 as otherwise p” divides (’;7;) Hence we can assume
jl=aap" '+ +a,_p” with 0 <ay,...,a,_, < p and some minimal r > 1.

This inequality becomes
PrepH+ 1z ap" T et an e T

We make one last approximation, and assume all aq,...,a,_, are equal

(p — 1), as this is the largest they can be. We're left checking
Prp+1Zap" T A p =" =

Rearranging, we check

pr—p>r—1

which is clear if » = 1 and is the same as

for r > 1. Using the mean value theorem, the left of this inequality equals
f'(¢) for some ¢ in the interval [1,7] and f(x) = p*. Since f'(c) = log(p)p® >

log(p)p > log(2)2 > 1 we've completed this case.
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We still need to check the second case, when (x(1) is not a part of the
~v-operations of our monomial. Following the same process as before, we're left
to check the inequality p” —i > n for 0 < ¢ < p. But this is also readily checked
to be true: we can assume we want to show p" —p+1>n;and p"—p>n—1

o
n—1

is the same (ignoring the n = 1 case which is trivial) as 2= > 1 which by the

mean value theorem equals f’(c) for some ¢ in the interval [1,n| and f(z) = p*;

for all such ¢ we have f'(c) = log(p)p® > log(p)p > log(2)2 > 1. O

We end with some more general statements that can be obtained from

Theorem 4.6.1.

Corollary 4.6.4. Let B be a central simple algebra, and Y the Severi-Brauer
variety of B. Suppose ind(B) = d = pi* ---pl' is a prime factorization of B

with py < -+ <p.. Then foralll <i<p; —1

d—i _ d—i
where & is the class of Ox,.(—1) when identifying K(X) C K(Xpg) for a split-
ting field F of X.

Proof. Apply Lemma 4.4.14. O]

Corollary 4.6.5. Suppose B is generic central simple algebra of index p™ and

exponent p™ in the sense of [Karl7a, Example 2.2] and set X = SB(B). Then
CH;(X)=p"Z forall0<j<p-—2.

More generally, suppose B is a central simple algebra with ind(B) = d =
pit P a prime factorization of d ordered like p1 < --- < p,. Suppose the

pi-level of B is less or equal 1 for all1 < i < r and suppose CH(X) is generated
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by Chern classes where X = SB(B). Then

CH,;(X)=dZ forallj <p,—2

where k is the smallest number with lev(pg, B) = 1; if no k exists then CH(X)

is torsion free.

Proof. In the former case, the rings CH(X) and gr, K(X) are isomorphic,
[Karl7c, Theorem 3.1]. In the latter case, we use the same fact as before but

for these algebras [[KM18a, Theorem A.15]. O
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Chapter 5

The coniveau filtration on K; for

some Severi-Brauer varieties

Notation and conventions.
We work over a fixed base field k.
A variety is a separated scheme of finite type over a field.

For a prime p, we write v,(—) for the p-adic valuation.

5.1 Introduction

Some K-cohomology groups were studied, and computed, for Severi-Brauer
varieties associated to algebras with square-free degree in [MS82]. As an ap-
plication of these computations one can compute the Chow groups of these
Severi-Brauer varieties and find they are torsion free. Chow groups of arbi-
trary Severi-Brauer varieties X have been studied in depth and, in certain
degrees, are known to be torsion free (e.g. CH®(X) is free trivially, CH'(X) is
torsion free by [Art&82], CHy(X) is torsion free by [CMO6], if X is associated
to an algebra whose index equals its exponent then CH?(X) is torsion free by

[Kar9g]).
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The Chow groups of Severi-Brauer varieties are not always torsion free.
Their torsion subgroups have also been studied in depth. In [Kar98], Karpenko
shows, if X is a Severi-Brauer variety associated to an algebra with differing
index and exponent, CH?(X) sometimes contains a nontrivial torsion subgroup
which surjects onto torsion in the graded group associated with the coniveau
filtration on the Grothendieck group Go(X). In a different direction, Merkur-
jev [Mer95] has shown that there is sometimes nontrivial torsion in the Chow
groups of Severi-Brauer varieties which occurs in codimension 3 or higher;
this torsion can’t be detected by Karpenko’s methods since it’s contained in
the kernel of the canonical epimorphism from CH(X) onto the graded group
associated with the coniveau filtration on the Grothendieck group Go(X).

Recently, Karpenko has computed the Chow ring of a Severi-Brauer va-
riety associated to a central simple algebra with equal index and exponent
under the assumption the Chow ring is generated by Chern classes, [[<arl7al.
In this computation, the Chow ring turns out to be torsion free. Without
the assumption the Chow ring is generated by Chern classes, any nontriv-
ial torsion in the Chow ring of such a Severi-Brauer variety will come from
nontrivial differentials in the K-theory coniveau, or Brown-Gersten-Quillen,
spectral sequence.

This article stemmed from exploring the possibility of torsion in the Chow
group of a Severi-Brauer variety associated to an algebra A with index equal
to its exponent. Hopefully, it will be of use in further study of this problem.

Section 2 is mainly for reference and introducing notation. In Section 3 we
prove a series of lemmas that will be used for the main results of Sections 4
and 5.

In Section 4, we compute the E™ ™! terms of the K-theory coniveau

spectral sequence for any Severi-Brauer variety X associated to an algebra A
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satisfying the properties: the index of A is a power of a prime p, the exponent
of A equals the index of A over all finite extensions of the center of A, and
the reduced Whitehead groups SK;(A®") = 1 vanish for all » > 1. This result
is a direct generalization of the known computation for the terms E7~™ and
the proof of the main theorem manages to describe both simultaneously. The
main result is Theorem 5.4.2; it’s proof is elementary but, it requires some
involved arguments comparing the reduced norms of certain tensor powers of
a given algebra.

In Section 5, we show how to prove the general case stated using the pri-

mary case of Section 4.

5.2 On the K-theory of a Severi-Brauer variety

The material in this section has been developed in detail by Quillen, [Qui73].
The K-theory coniveau spectral sequence, or the Brown-Gersten-Quillen spec-

tral sequence, is a fourth quadrant cohomological spectral sequence

EYY = H K_pq(k(z)) = G_p—g(X)

zeX(P)

where X ® denotes the set of codimension p points of X. For a variety X, the
spectral sequence converges, and for a regular variety X one can identify the

FEs>-terms with K-cohomology groups

EyT=HI(X,K_y) = G_p—q(X).
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Recall the K-cohomology groups HP(X, IC;) are defined to be the homology of

a complex

[T Ko@) = 1 Keph@) = [T Kepr(h(@)).
zeX(—1) zeX® 2eX P HD)
In particular, the groups H?(X, IC;) = 0 whenever p > ¢q or p > dim(X).

The coniveau filtration is the filtration appearing in the abutment of the
K-theory coniveau spectral sequence. If X is a regular variety (which is all that
is worked with in this note), then there are natural isomorphisms K;(X) =
G;(X) and by transporting the filtration on G-theory to K-theory we get
a coniveau filtration on the groups K;(X). The jth term of this filtration
on K;(X) is denoted K;(X)? below. We write K;(X)?/7*1 for the quotient
K (X)) /K (X)L,

The K-theory of a Severi-Brauer variety X associated to a central simple

algbera A was computed by Quillen in terms of the tautological bundle (x on

X:

Theorem 5.2.1 ([Qui73, §8, Theorem 4.1]). Let X be the Severi-Brauer va-
riety of a central simple algebra A. Then, for every i > 0 the group homomor-

phism
deg(A)—1

P Ki(4¥) - Ki(X)

induced by the exact functor that takes a left A% -module M to (' @ a2 M is

an 1somorphism.

Crucial in our computation will be the reduced norm subgroups of a central
simple k-algebra. For this, let L be a Galois splitting field for A. The first

reduced mnorm of A is defined to be the unique map making the following
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diagram commutative.
Ki(AL) 2% Ki(L)

Nrdy

Ky (4) Ki(k)

The vertical arrows in this diagram are induced by extension of scalars. Sim-
ilarly we define the zeroth reduced norm of A to be the map Nrdy : Ko(A) —
Ko (k) taking the class of an A-module M to the k-vector space of dimension
rdim4 (M), the reduced dimension of M. For i = 0,1 we will often use the
abbreviation Nrd;(K;(A)) := Nrd,;(A).

The kernel of the map Nrd; is called the ith reduced Whitehead group and
denoted SK;(—). Note the group SKg(A) necessarily vanishes since Nrdy is
injective with image the subgroup generated by the index of A, ind(A)Z C
Ko(k) = Z. The group SK;(A) doesn’t vanish in general.

For any finite field extension £ of k, the extension of scalars map p7, e
K;(X) — K;(Xg) is the sum of the maps K;(A%7) — K;(A%) in the decom-
position of Theorem 5.2.1. In the other direction, the pushforward pg k. :
Ki;(Xg) = K;(X) is given by the sum of the norm maps Ki(A%j) — K;(A%9)
in the same decomposition. If ¢ = 0 then the norm map is characterized

componentwise by having image the number

rdim a4, (M)

pe/ks(Ko(Ap)) = [E: K] rdim 4 (V)

CKo(A)=Z

where M, N are simple modules under Ag, A respectively. The image of the
norm maps when ¢ = 1 are more complicated to describe. In the simple
situation we work in, these images can be described fairly explicitly. We do

this in detail in the next section.
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5.3 Relations between reduced norms

In this section we fix a central simple algebra A over k£ and we set X to be the
Severi-Brauer variety associated with X.
Our first objective is to describe the image of the reduced norm using

splitting fields of A:

Lemma 5.3.1. Let A be a central simple algebra. Then, for every finite field

extension L of k and for 1 = 0,1, the following diagram commutes

Nrd;

— Ky(L)

lNL/k

Ki(k)

Na;/a
Nr

K;(A) ey

where both Na, a4 and Npj, are the norm maps induced by restriction of
scalars.

Moreover, the subgroup Nrd;(A) is generated by the images Np;,(K;(L)) as
L varies over all finite extensions of k that split A. This can be reduced further:
the subgroup Nrd;(A) is generated by the images Ny, (K;(L)) as L varies over
all finite extensions of k that are maximal subfields of the underlying division

algebra of A.

Proof. The commutativity of the digram is clear when ¢ = 0, and is well-known
(see [GSO6, Proposition 2.8.11]) when i = 1.

The only claim that needs to be proved is the last one: the subgroup
Nrd;(A) is generated by norms of maximal subfields of the underlying division
algebra of A. In the case ¢ = 0, the claim follows from the fact such a field
has degree ind(A) over k so we are left proving the case i = 1.

For the proof when ¢ = 1, we’ll use Morita invariance to reduce to the

case A is a division algebra and we’ll use [GS06, Proposition 2.6.3] which says
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Nrd;(z) = Ng/i(z) for any element x of a maximal subfield K contained in
A. Any element x of A is contained in some maximal subfield (indeed, if F
is a maximal element in the collection of subfields of A containing k(z), then
the centralizer of F' in A is F itself — this is known to be equivalent to being

a maximal subfield) so taking the composition
X Nrd;
A" — K (A) — Ky (k)

of the natural surjection and the reduced norm gives the result by the com-

mutativity of the given diagram. ]

The K-theory of the Severi-Brauer variety X relies heavily on the tensor
powers of the algebra A due to the decomposition of Theorem 5.2.1. Because
of this, we’ll need to investigate certain relations between the reduced norms
Nrd;(A) and Nrd;(A®") for varying r > 0. It will be necessary in our formu-
lation of these relations to introduce some condition on the index of A over
finite extensions. From now on we’ll say an algebra A satisfies condition (C)
if:

ind(Ag) = exp(Ag) for any finite extension E/k. (C)

Example 5.3.2. Any central simple algebra of square-free index satisfies con-
dition (C) trivially. Any central simple algebra over a finite extension of Q,
satisfies condition (C). Central simple algebras over function fields of surfaces,
with base a separably closed field, having index coprime to the characteristic
of the base also satisfy condition (C), see [dJ04].

Moreover, if a central simple algebra A satisfies condition (C) then so do
the tensor powers of A. This is because, given a central simple algebra A
with equal index and exponent, the indices of all tensor powers of A can be

explicitly determined. If the index of A was a power of a prime p, say p", then
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A®P has index p"~!, cf. [Kar98, Example 3.9]. The general case follows easily

from this one.

Remark 5.3.3. There exists a cyclic algebra A of index and exponent 4,
over a field F' of characteristic 2, along with a finite purely inseparable field
extension F/F with [E : F| = 2 and such that ind(Ag) = 4 and exp(Ag) = 2
(cf. [Perdl, Theorem 4]).

Lemma 5.3.4. Let A be a central simple k-algebra with ind(A) = p™ for some

n>0andleti=0o0ri=1. Then
Nrd,; (A®7) = Nrd, (A%

for any 7 > 0.

Proof. By Lemma 5.3.1 the subgroup Nrd;(A®7) C K;(k) is generated by the
norm subgroups Ny i (K;(L)) as L varies over all finite extension of k splitting
A®i. The set of such fields is the same for A%7 and A®P"”" | which proves the

claim. u

Lemma 5.3.5. Let A be a central simple k-algebra with ind(A) = p" = exp(A)
for some prime p and some n > 0. Assume A satisfies condition (C). Then

for1=0,1 the containments

a—b

NI‘dZ‘(A®pa) D) NI‘di(A(g)pb) D NI‘dZ‘(A®pa )p

hold for all a > b > 0.

Proof. By Lemma 5.3.1 the subgroup Nrd,;(A®7) C K;(k) is generated by the
norm subgroups Ny i (K;(L)) as L varies over all finite extension of k splitting
A®7_If such an L would split A®?", then L would also split A®?". Hence we

have the inclusion Nrd;(A®P") € Nrd;(A®F").
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To show the inclusion Nrd;(A®”")?"™" C Nrd,;(A®""), we work in two cases.
If a > n, then A®P" is split; if L is a maximal subfield of the underlying division

algebra of A®?" then [L : k] = p"? (see Example 5.3.2) and
Nrd; (A% )" C p"PKi(k) = Npk(Ki(k)) C Nrd;(A®").

Otherwise, when a < n, let L be a maximal subfield of the underlying division
algebra of A®P". Then L has degree [L : k] = p"¢, the algebra A; has
exponent dividing p® and, since we’re assuming condition (C), index dividing
p®. If E is a maximal subfield of the underlying division algebra of A%p " then

[E: L] divides p®~°. Again by Lemma 5.3.1 we have the inclusion
Ngu(Ki(B)) € Nrd(A%7")

since E splits A®?". Tt follows that for any element z of K;(L) € K;(E) we

have

Ngi(z) = Npjp(Npyr(2)) = Npjp(aPH) = Npjp () FH

is contained in Nrd;(A®?"). The proof is then complete since we’ve shown the
collection of elements N, /k(x)pa_b, as L varies over all maximal subfields of the
underlying division algebra of A®?" and x varies over K;(L), are contained in

Nrdi(A®pb) and these form a generating set by Lemma 5.3.1. O]

Lemma 5.3.6. Let A be a central simple k-algebra with ind(A) = p" = exp(A)
for some prime p and some n > 0. Assume A satisfies condition (C). Then

for1=0,1 there is containment
Nrd; (A%%)(2) ¢ Nrd;(A®?)

for alla > b > 0.
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Proof. The proof continues by working in cases: assuming either v,(a) < v,(b)
or vy(a) > v,(b). In the first case, v,(a) < v,(b), we appeal to Lemma 5.3.4

and Lemma 5.3.5 to find
Nrd;(A®*) = Nrd;(A®P"""") € Nrd;(A®"""”) = Nrd; (A®").

In the second case, vy(a) > v,(b), we appeal to the second containment

of Lemma 5.3.5. That is to say, by Lemma 5.3.7 below we find v,((})) >

vp(a) — vpy(b) so that
NI‘di<A®a)(Z) - Nrdi(A®pUp(a))pvp(a)_vp(b) - Nrdi(A®p“p(b)) _ NI’di(A@)b)

by applying Lemma 5.3.4 for the first inclusion, Lemma 5.3.5 for the second

inclusion, and Lemma 5.3.4 for the last equality. n

The lemma needed for the above is:
Lemma 5.3.7. Assume a > b and vy(a) > v,(b). Then v,((3)) > vp(a)—v,(b).

Proof. More generally, for any pair of integers a > b, one can show ﬁ divides

the binomial coefficient (Z) The claim follows from noting

o (755 ) = o) = ul(0,) = 1y(0) = 1,0,

First, write (a,b) = na + mb with n, m both integers. Then

()= 252 ) ) 20) ()7

with the latter sum an integer. O

To go from an algebra of p-primary index to an arbitrary central simple

algebra A, see Proposition 5.5.1, we’ll need a characterization of Nrd;(A) in
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terms of the primary components of A when A is a division algebra. For this,

we fix a primary decomposition
A=A, @@ A,

with py, ..., ps the primes dividing ind(A) (such decompositions exist with the
factors unique up to isomorphism, see [GS06, Proposition 4.5.16]). For each
algebra A, we fix a maximal subfield F), of its underlying division algebra,

necessarily of degree a power of p; over k. We set F?i to be a composite of

the fields F,,, ..., F, . F,

sy b pj—1ry L pjpas e

, I, the jth field being omitted, contained in

some fixed algebraic closure L.

Lemma 5.3.8. In the notation above, and for i = 0,1,
Nrd;(A) = (| Nrd;(Ap;)
j=1
inside of K;(L).
Proof. 1f s =1, the lemma is trivial so we can assume s > 1.
The inclusion C is immediate from Lemma 5.3.1 since a field E splitting
A also necessarily splits each of the Apr;.

For the other inclusion, D, we let x be an element of the intersection. By

Lemma 5.3.1 this means we have equalities

T = NEM/FPl (3/1,1) T NELrl/F”1 (yl,rl)

xr = NESJ/FPS (ys71> Tt NESVTS/FPS (yS,Ts>

for some elements y; 5, of fields E; j splitting Ap»; respectively. It follows from
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these equalities that x is an element of B = K;(FP*)N---NK;(FP¢). If i =0,
then B is just ind(A)Z. If i = 1, then, since by construction the degrees
[FPi : k| are divisible by all primes dividing ind(A) except for p;, we have
ged([FPr 2 k], ..., [FPs 1 k]) =1 and B = k*.

Applying the norm, from F?i to k, to the corresponding expression above

for x, we find the elements

NFPj/k@) = NEj,l/k(yj,l) T NEj,Tj/k(yj,rj)

are contained in Nrd;(A), for every 1 < j <'s, since each E; splits Apr; and
so necessarily also splits A. Since x is already contained in K;(k), taking the

norm also yields equalities
Nprj () = g,

Finally, as x is in the subgroup spanned by these powers, x is contained in

Nrd;(A), completing the proof. O

5.4 The coniveau filtration on K; for a p-primary
algebra

We fix a prime p throughout. We fix a central simple algebra A with index
ind(A) = p™ and exponent exp(A) = p” for some n > 0. We write X for the
Severi-Brauer variety of A.

This section describes the groups K;(X)’ and K;(X)?/7*! for j > 0 assum-
ing A satisfies condition (C) and either ¢ = 0 or, i = 1 and SK;(A%®") =1 for
all 7 > 1. In the case i = 0, this result was shown in [Kar98, Proposition 3.3]

(condition (C) is not needed in this result). Although the only new result is
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when ¢ = 1, the proof does not depend on this assumption.

We note that the assumption SK;(A®") is trivial for all powers r is another
way of stating that K;(X) — K;(Xp) is injective for a splitting field L of A.
The reason the latter, more natural, assumption is not given is because it’s
often easier to check that the groups SK;(A®") are trivial. Note the analogous
statement is also true replacing ¢ = 1 with ¢ = 0 in the above so that the map

Ko(X) — Ko(X) is always injective. Formally:

Lemma 5.4.1. Suppose B is an arbitrary central simple algebra and let' Y be
the Severi-Brauer variety of B. Let L be a splitting field for B. Then, for
i = 0,1 the pullback K;(Y) — K;(Yy) is injective if, and only if, the groups
SK;(B®?) are trivial for all j > 0.

Proof. The diagram

Ki(BfT) ==

Ki(L)

*
T

Ki<B®7‘)

Ky

Nrd; Kz<]€)

commutes where the vertical arrows are the extension of scalars maps. Since

the right-vertical arrow is always an injection we find SK;(B®") = ker(r}).

The claim then follows from Theorem 5.2.1 by summing over all » > 0. [

As in the above lemma, let B be an arbitrary central simple algebra and
Y the associated Severi-Brauer variety. If L is a splitting field for B, then
Ko(Y7) is generated as a group by the powers 7%, from ¢ = 0 to deg(B) — 1,
of the element 7 representing the class of Oy, (—1). By Lemma 5.4.1, the
pullback Ko(Y) — Ko(Yz) is injective and we identify Kq(Y') with its image
in Ko(Yz). Similarly, the group K;(Yz) is a sum of groups L*~* as i ranges
from i = 0 to i = deg(B) — 1. If SK;(B®") = 1 for all » > 1, then the pullback

Ki(Y) — Ky (Y7) is injective and we identify K (Y') with its image in K;(Y7).
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Theorem 5.4.2. Assume A satisfies condition (C). Let L be a splitting field
for A. Ifi =0, orif i = 1 and SK;(A®") =1 for all r > 1, then there is an

equality (with notation as above)
Ki(X) NKi(Xp)? = Nrd; (A%) (y — 1) + - - - + Nrd, (A®dee 1) (y — 7)des(A)—1

for all 0 < j < deg(A) — 1. For j < 0, or for j > deg(A) — 1, the groups
K;(X) = 0 vanish.

Proof. The claim when j < 0 or j > deg(A)—1 is immediate: the first of these
is by definition, the second follows from the fact (y — 1)3°&) = 0 in Ky(X).
Recall (cf. [Pey95, Proposition 3.6]) the coniveau filtration on K;(X) is given
by

Ki(Xp) = Ki(AF)(y = 1) + -+ 4 K (AT ) (y — 1ydest—

where 7 = [O(—1)] is the class of the tautological line bundle in K(X).
Under the pullback K;(X) — K;(X;) the groups K;(A®?) are identified with

the subgroups Nrd;(A%®7) C K;(L). Hence, we identify
K;(X) = Nrd;(k) - 1 + Nrd; (A)y + - - - + Nrd,(A®ee) 1) des(A)=1,
We claim

Ki(X)NK;(Xp) = Nrd; (A%)(y — 1) 4 - - - 4 Nrd, (AP 1) (y _ 1)des(D-1,
(%)

The proof utilizes the following lemmas:

Lemma 5.4.3. Let A and L be as in Theorem 5.4.2. Fix an element b in

Nrd;(A®%) with k > 0 and i = 0 or i = 1. Then, for any sequence of integers
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(nj)j>0 an equality

bt = Z a;(x + n;)’

Jj=0
inside of the free K;(L)-module K;(L)[x] implies a; is contained in Nrd;(A®7)
for all 5 > 0.
Proof. By assumption ay = b is contained in Nrd;(A®*). By descending in-
duction on j, we assume each a; is contained in Nrd;(A®7) for all j larger than
some fixed [ > 0. Then by expanding the right side of the given equality and

comparing coefficients yields

which is contained in Nrd;(A®') due to Lemma 5.3.6 applied to each (J)a;. O

Lemma 5.4.4. Keeping notation as above, we have

> " Nrdi(A%)n7 = " Nrdy(A%)(y — 1Y
J=0 J=0

inside of K;(Xp).

Proof. Setting n; = —1 for all j > 0 in Lemma 5.4.3, and setting = ~y, shows
the forward containment. Setting n; = 1 for all j > 0, and setting z = v — 1,

shows the reverse containment. O
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Continuing with the proof of Theorem 5.4.2, we have

Ki(X) NKi(X,) =) Nrdy(A%")y" n Y Ki(L)(y —1)"

= 5" Nrdi(A%")(y — 1) N Z Ki(L)(y = 1)"
= Z Nrd;(A®")(y — 1)"

as claimed. Here we used Lemma 5.4.4 to go from the first line to the second.

]

Corollary 5.4.5. Let L be an algebraic closure of k. Assume A satisfies
condition (C). Let i = 0 or i = 1 and assume SK;(A®") = 1 for all v > 1.

Then we have an equality

for all j > 0.

Proof. Tt’s clear we have the inclusion K;(X)? € K;(X)NK;(X1)’. By Theorem

5.4.2, there is an equality

Ki(X) NKi (X1 ) = Nrdi (A7) (y — 1)7 + - - 4 Nrd(A®IsA 1) (n — 1)desld=1,

To show the reverse containment K;(X) N K;(X1)! € Ki(X)? we go by
induction on the index. That is to say: if F is a finite extension of k splitting A
then we have containment K;(Xz)NK;(X1)’ C K;(Xg)? and for our induction
hypothesis we assume this containment holds for all fields £ with ind(Ag) <
ind(A).

If £ is a finite extension of k with ind(Ag) < ind(A) then, using our
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induction hypothesis and the assumption A satisfies condition (C), we have

Ki(X)? = pp i (Ki(X))
i P*L/k(PE/k*(Kz‘(XE)j))
= PE/k. (Nrdi(A%j )(y = 1) 4 - -+ Nedy (A FD ) (y - 1)deg(A>—1> ‘

Expanding a product (y — 1)" and taking pg k. shows

pEr(a(y —1)") = Ngs(a)(y — 1)".

Since all elements of Nrd;(A®") are norms from finite extensions E of k splitting
A®" by Lemma 5.3.1, it follows K;(X) N K;(X)? is generated by the groups

on the right of the containment above. [l

Corollary 5.4.6. Leti =0, ori =1 and SK;(A®") =1 for allr > 0. Assume

A satisfies condition (C). Then there is an isomorphism
K;(X)/9+1 = Nrd,; (A®7)

for all 0 < j < deg(A) — 1. For other j these groups vanish.

Proof. This follows immediately from Theorem 5.4.2 and Corollary 5.4.5. [

5.5 The coniveau filtration on K; for a central
simple algebra

In this section we assume B is a central simple algebra with ind(Bg) =
exp(Bg) for all finite field extensions E/k. We let Y be the Severi-Brauer
variety of B.
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Proposition 5.5.1. Ifi =0, orifi = 1 and SK1(B®") =1 for all r > 0, then

there 1s an isomorphism

K, (V)77 = Nrd;(B¥)

for all 0 < j < deg(B) — 1. For other j these groups vanish.

Proof. Using a result of Karpenko, [I[{ar00, Example 10.20], we can assume B
is a division algebra throughout the proof.

Fix a primary decomposition

BB, ®-® B,

with py, ..., ps the primes dividing ind(B). We can assume s > 1, as the result
has been proved above otherwise. For each algebra B, we fix a maximal
subfield F,, of its underlying division algebra, necessarily of degree a power of
p; over k. We set FP7 to be a composite of the fields Fy,,, ..., F}, ., Fp. .y oy Fp,

the jth field being omitted, contained in some fixed algebraic closure L of k

We first observe an equality

K;(Y)NK;(Y2) = Nrd;(B¥)(y — 1) 4 - - - + Nrd;(B®deB)=1) (4 — 1)dee(B)-1,

Indeed, by Lemma 5.3.8 and the explicit description of K;(Y") given by Lemma
5.4.1, we have
KZ(Y) — Ki(YFpl) .- ﬂ KZ'(YFps)
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inside of K;(Y7). Hence we get equalities

Ki(Y) NK;(Yg)

Il
~

(Yo ) N - N K (Y ) N K (Y2

S

(K; (Yrer) NK;(Y2))

\3
I
_

I
DX

(Nrdi(BppT-)(fy — 1)+t Nrdi(Bi?ng(B)’l)(y _ 1)deg(B)—1)

\3
Il
—

Z,

rdi(B‘X’j)(v _ 1)j R Nrdi(B@)deg(B)_l)(’y _ l)deg(B)—l.

A careful reading of the proof of Corollary 5.4.5 shows that the assumption
A has p-primary index was unnecessary. Hence the corollary can be applied

to B as well to show K;(Y) = K;(Y) N K;(Yz)? and the result follows. O
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Chapter 6

Conclusion

In this conclusion we discuss some of the possible avenues of further study that
one can take to continue the work presented above. We do this by presenting
questions, differing in specificity and detail, with motivation whenever possible.

The first question we ask is about extending results on the functor B in-
troduced in Chapter 2. There are a number of results about B that one might
expect to be true and that are not included here. Questions 1 and 2 pertain
to results that I'd say are expected to be true but, throughout the course of
trying to find an answer to said questions, single out the difficulties one may

encounter when using this functor.

Question 1: Let X be a variety and P = P(F) the projective bundle of a
vector bundle 7 : ' — X. Let £ be the class of the tautological line bundle on
P. Then B(P) is generated by B(X) = 7*B(X) and ¢;(£). Can one determine

relations on these generators?

If A is a cohomology theory with the correct form of Chern classes, and the

natural map B(X) — A(X) is an isomorphism, then it follows from the Pro-
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jective bundle theorem for A(P) that B(P) is isomorphic to a sum of copies
of B(X). However, it’s been extremely difficult, for the author, to find ways
to compute relations for B even in the case of a projective bundle. As a more
difficult question, still having to do with determining relations between the

elements of B, would be the following.

Question 2: Is B(X) torsion free for a Severi-Brauer variety associated to a

central simple algebra A with equal index and exponent?

Setting G4 = Gr(deg(A), A) to be the Grassmannian of deg(A)-dimensional
k-planes in A, there is a natural closed immersion ¢ : X — G4 which realizes
X as the subvariety of G 4 of planes which are also left ideals of A (or right ide-
als, depending one’s convention). The pullback ¢* : K(G4) — K(X) takes the
universal sub-bundle S on G4 to the tautological bundle (x on X. In partic-
ular, if A is division then, since K (G 4) is generated by A-operations of .S and
K(X) is generated by A-operations of (x(1) C (x, the map ¢* is surjective. It
seems reasonable to believe that one can show precisely what the kernel of this
map is. The answer might only involve computing precise relations between
Schubert classes of G4 of the same codimension when intersected with X and
these relations can even be computed: they should be the same relations one
gets between the Schur operations of the universal quotient bundle () on G4
from the kernel of +*.

The next question is more subtle and involves the level of a Severi-Brauer
variety. In Section 3.4 we define the level of a central simple algebra (Definition
3.4.1). In Chapter 2 there is the definition of the level of an arbitrary variety
(Definition 2.4.5). The following question is about the relationship between

these two definitions.
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Question 3: If A is a central simple algebra, what is the relation between

lev(A) and lev(X) for X the Severi-Brauer variety of A7

It’s clear from Proposition 3.4.5 that, if A has p-primary degree then
lev(X) <lev(A) + 1. The reverse inequality, lev(X) > lev(A) + 1, is a much
more difficult statement to prove (if it’s at all possible). A direct proof would
involve computing A-operations for an arbitrary element of K (X) which seems

unreasonably difficult.

More fitting to the theme of the rest of the thesis, I ask:

Question 4: For a p-primary central division algebra A of degree p™ with

Severi-Brauer variety X there is a decomposition
gr, K(X) = 2" @ (Z/p"L)*"" & - -- @ (Z/pL)™".
From the reduced behavior of A, can one determine formulas for py, ..., i, ?

This question is related to computations of Chow groups of Severi-Brauer
varieties. There is always a canonical map gr. K (X) — gr,G(X) by comparing
the v and 7 filtrations. One knows that if this map is either injective, or
surjective, then it is in fact bijective (and this claim only involves an induction
argument). Since the Chow ring surjects onto gr,G(X), one can hope to use
the latter object to obtain information about the Chow ring in general. But
even without considering the general case, in some particular cases where the

filtration comparison map is an isomorphism it’s also known the surjection

122



from the Chow ring is an isomorphism. Hence results in this direction would
provide a complete description of Chow groups for some class of Severi-Brauer
varieties (cf. Example 3.3.9).

Our last question is about extending these results from Severi-Brauer va-
rieties to other projective homogeneous varieties. Essentially this entire thesis
can be reworked from the point of view of an arbitrary projective homogeneous
variety; one can ask about computations for the associated graded rings for
the v and 7 filtrations and for how these relate to the Chow rings of such va-

rieties. Explicitly, the following question outlines a program for doing just this.

Questions 5+: For any projective homogeneous variety X under a semisimple
algebraic group G, there’s a separable algebra A and a natural isomorphism
K(X) ~ K(A). Since A is separable, it’s a sum of central simple algebras A;
over finite extensions F} of the base field. If, over an algebraic closure F, there

is an isomorphism X = G/ P for a parabolic P C G then one can ask:

I. Can one give a formula for lev(X) in terms of the lev(A;) and the subset

of the vertices of the Dynkin Diagram corresponding to P?
II. Can one determine generators for B(X)?

ITI. For any such X, does there exist a 7-functorial replacement for X7
In other words, does there exist a variety Y with a natural equality
gr, K(X) = gr, K(Y') and such that the filtration-comparison morphism

is an isomorphism, gr, K(Y) = gr G(Y)?

IV. If the answer to III. is yes, then, in the notation of that question, is the

canonical surjection CH(Y') — gr,G(Y) an isomorphism?

V. If the A; are p-primary algebras for some prime p, then there is a decom-
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position

or, K(X) = 2°" & @(Z/p'Z)"

i=1

for some integer n > 1. Can one determine formulas for the p;?
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