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Abstract

The mechanics of composite materials is a subject of intense study due to their ver-

satile and tailorable mechanical properties. A composite material consists of at least

two different phases; one is called the reinforcing phase and the other one in which

it is embedded is called the matrix phase. Due to the presence of multi-phase and

fiber-matrix interface, the characterization of local behaviors of a composite is com-

putationally expensive. The continuum mechanics offers the necessary mathematical

framework to accommodate the overall microscopic behaviors of the reinforcement

phase into the model of deformations. In this thesis, the mechanics of fiber-reinforced

composite materials are presented within the framework of the second strain gradient

theory. A continuum-based model is developed for the analysis of elastic materials

reinforced with unidirectional and bidirectional fibers and subjected to finite plane

deformations. Moreover, the continuously distributed unidirectional fiber-composite

system is transformed into the randomly distributed short fiber-composite system by

introducing the shear lag parameter and krenchel orientation factor into the model.

The mechanics of randomly distributed short fiber-composite system is also presented.

The Euler equilibrium equations and the associated boundary conditions are obtained

via the variational principle and iterative integration by parts. In particular, the

energy density function is augmented to accommodate the first, second, and third

gradient of deformations into the models of continuum deformation. The complete

expressions of Piola-type triple stress and its coupled triple force arising in the third

gradient of continuum deformations are formulated, which, in turn, yield the unique

deformation maps in the presence of admissible boundary conditions of higher or-
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der. The solutions of the resulting systems of differential equations are obtained via

the custom-built numerical scheme from which smooth and dilatational shear angle

distributions are predicted throughout the entire domain of interest. It is also ob-

served that the third gradient constitutive parameter is associated with the volume

dilatation of third-gradient continua, which may be appeared in the form of shear

band inclination angle. In addition, the fiber aspect ratio and the third gradient

constitutive parameter are observed to be related to the effective Young’s modulus

of a randomly distributed short-fiber composite system. The obtained numerical re-

sults are compared with the results in the dedicated literature, which show a good

agreement.
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Chapter 1

Introduction

This chapter begins with a brief introduction to the composite material and, subse-

quently, fiber-reinforced composites. In section 1.1, we discuss the background of com-

posite materials and their common classifications. In section 1.2, we briefly discuss

the hyperelastic material models that are usually used as the matrix phase of compos-

ites. In section 1.3, we discussed the various approach to analyze the mechanics of

fiber-reinforced composite materials. In section 1.4, we illustrate the application of

higher-order theory. Furthermore, We will demonstrate the objectives of this thesis

in section 1.5. Lastly, we present a brief structure of this thesis in section 1.6.

1.1 Composite material and its Background

‘Composite materials’, also briefly referred to as ‘Composites’, consist of two or more

constituents that are combined at a macroscopic level and are not soluble in each

other. The physical and chemical properties of composite materials differ from their

constituents. One constituent is called the reinforcing phase material, which may be

appeared in the form of fibers, particles, or flakes, and the other one in which the

reinforcing phase is embedded is called the matrix. The matrix is the continuous ma-

terial phase, while reinforcement is the dispersed material phase. The matrix provides

structural integrity and works as a binder to keep the reinforcement phase in place.

The matrix transfers load to and between fibers. In particular, the reinforcement
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phase adds tensile strength to the matrix material [1]. The physical properties of

composite materials depend on the volume fraction of their constituents, individual

properties of constituents, fiber orientation, fiber length, bonding between fiber and

matrix, etc. So it is possible to tailor the properties of a composite and make it

specialized to do a certain job, for instance, to become stronger, lighter, or resistant

to electricity.

1.1.1 History of composite materials

The Mesopotamians are credited with using composite materials for the first time.

In 3400 B.C., these people glued wood strips at different angles to make plywood.

Following this, the Egyptians began to manufacture death masks out of linen or

papyrus soaked in plaster at around 2181 B.C. [2]

In 1200 A.D., the Mongols constructed composite bows using wood, bamboo, bone,

cattle tendons, horn, and silk which were quite effective at the time. This bows made

Genghis Khan military superior on earth until the invention of gunpowder [3].

During the 1900s, synthetic resins started to take a solid form by using polymer-

ization, which led to the creation of various plastics such as polyester, phenolic, and

vinyl. The famous Belgian chemist Leo Baekeland invented Bakelite which did not

conduct electricity and was heat resistant. [3, 4].

In 1935, Owens Corning combined fiberglass with a plastic polymer and invented

a remarkably strong and light structure. The Fiber Reinforced Polymers (FRP)

industry as we know it today began with this. [4]. The FRP industry transitioned

from research to manufacturing following World War II. A fully composite frame car

was created and tested by the year 1947. Later on, in 1961, carbon fiber composites

were used commercially, and by the mid-nineties, the composite started to replace the

traditional materials [5, 6]. In the case of manufacturing Boyeing 787 Dreamliner, 50

percent of major structures are made of Carbon Fiber Reinforced Polymer, and 15

percent of titanium alloy, resulting in 20 percent fuel saving due to reduced weight
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(See Figure 1.1).

The versatile and tailorable mechanical properties of composite materials make

them useful in every aspect of modern society, including home appliances, agriculture,

space, chemical, and automotive industries [6–8]. Currently, it is anticipated that the

size of the global market for composite materials will increase from USD 88.80 billion

in 2021 to USD 144.5 billion by 2028 with a CAGR (Compound Annual Growth Rate)

of 6.66 percent from 2021 to 2028.

Figure 1.1: Materials used for the Boeing 787 Dreamliner passenger airplane [9]

1.1.2 Classification of composite materials

Classification of composite materials has been presented in literature [10] at two

different stages:

1. Based on the matrix material types, the composites are classified as follows

• Polymer matrix composites (PMC)

• Ceramic matrix composites (CMC)

• Metal matrix composites (MMC)

• Carbon fiber/carbonaceous matrix composites (CCC)

• Particulate-reinforced metal matrix composites (PMMC)

• Fiber-reinforced polymeric composites (FRPC)
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2. The second criterion is based on the reinforcement material. The composites

are subdivided into the following categories as

• Particulate reinforced composites (PRC)

• Flake reinforced composite

• Fiber reinforced composites (FRC) (continuous fibers, short fibers, whiskers)

The main discussion in this thesis is about the Fiber reinforced composites (FRC).

Usually, the fiber’s radius is far less than its length, and they increase the strength of

the composites under tensile and shear loading. The necessary mathematical frame-

work for both continuous fibers and discretely distributed short fibers is presented in

this thesis.

1.2 Hyperelastic material models

The necessary mathematical framework for the continuum description of fiber-reinforced

composite materials is attained by assuming the fibers are densely embedded into the

matrix material. The stress-strain relationship of matrix material can be either linear

or nonlinear. For many cases, it is necessary to use a nonlinear stress-strain rela-

tionship to predict the mechanical behavior more accurately, and the hyperelasticity

models serve this purpose [11]. The strain energy density function is widely used

in continuum mechanics to derive the stress-strain relationship of the hyperelastic

matrix material. In this section, we briefly discuss the well-established hyperelastic

matrix material models.

1.2.1 Neo-Hookean model

The Neo-Hookean model is a hyperelastic material model that can be used for pre-

dicting the nonlinear stress-strain behavior of materials and is similar to Hooke’s

law. In general, the relationship between applied stress and strain is initially linear,

but at a certain point, the stress-strain curve changes to nonlinear. Ronald Rivlin
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[12] proposed this model in 1948 to predict the deformation of plastics and rubber-

like substances. The strain energy density function for a compressible Neo-Hookean

material is as follows:

W = C1(I1 − 3− 2 ln J) +D1(J − 1)2, (1.1)

where C1 and D1 are material constants, and I1 is the first invariant (trace), of the

right Cauchy-Green deformation tensor, i.e.,

I1 = λ2
1 + λ2

2 + λ2
3, (1.2)

where λi are the principal stretches. J is the determinant of deformation gradient

F , i.e.,

J = det(F ) = λ1λ2λ3. (1.3)

For an incompressible material (J = 1) the strain energy density function becomes

W = C1(I1 − 3). (1.4)

It is to be noted that, the Neo-Hookean model does not consider the dissipative

release of energy as heat during deformation and assumes the perfect elasticity at all

stages. It is usually used for small deformations and is typically accurate only for

strains less than 20% [13].

1.2.2 Mooney-Rivlin model

In 1940, Melvin Mooney [14] proposed a hyperelastic material model. Following that,

in 1948, Ronald Rivlin [12] expressed the strain energy function in terms of first and

second invariants of the Cauchy-Green deformation tensor. The strain energy density

function for a Mooney-Rivlin hyperelastic material is as follows:

W = C1(
−
I1 − 3) + C2(

−
I2 − 3), (1.5)
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where C1 and C2 are empirically determined material constants, and
−
I1 and

−
I2 are

the first and the second invariant of the deviatoric component of the Cauchy-Green

deformation tensor defined as
−
I1 = J− 2

3 I1, (1.6)

−
I2 = J− 4

3 I2,

where J and I1 are defined in Eq. (1.3) and Eq. (1.2) respectively, and I2 is defined

as

I2 = λ2
1λ

2
2 + λ2

2λ
2
3 + λ2

3λ
2
1. (1.7)

For an incompressible material (J = 1) the strain energy density function becomes

W = C1(I1 − 3) + C2(I2 − 3). (1.8)

Mooney-Rivlin model is related to the linear elastic shear modulus G, which can

be expressed as follows [15]:

G = 2(C1 + C2) (1.9)

Several hyperelastic material models are present in the literature, amongst which the

Ogden model, Arruda-Boyce model, Yeoh model, and Full and reduced Polynomial

model are notable. In this thesis, we used both Neo-Hookean and Mooney-Rivlin

models to characterize the matrix material. However, only the Neo-Hookean model

is considered for the model implementation.

1.3 Analysis of composite materials

The general approach to analyze the mechanics of composite materials leads to two

major branches of research [16]. The first approach is the direct investigation of local

behaviors of an individual fiber—matrix system, including interfacial region. The

interaction of the fibers with one another and with the surrounding matrix is well

explored in [17–19] to comprehend the mechanical properties of fiber-reinforced com-

posite materials. However, studies based on interface properties could not forecast
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how a fiber-reinforced composite will react to external pressures and/or displace-

ments. Later, microstructures and element interaction were added to the constitutive

equation to predict the microscopic behavior of composites under boundary stresses

[20–22]. Although the direct approach to investigate the local behavior is computa-

tionally expensive, this approach was used successfully to analyze the mechanics of

composite materials [16].

The second approach is the development of continuum theory by incorporating the

properties of fibers into the model of deformations. Adkins and Rivlin [23] introduced

the idea of considering fibers as a constraint to the extension of composite materials

along the directions of aligned fibers. Spencer et al. [20] extended Adkins and Rivlin’s

[23] concept to propose a continuum model for fiber-reinforced composite materials in

which the deformation history dictates the principal axes of anisotropy. The mathe-

matical framework of generalized continuum theories using Navier-Cauchy’s approach

is discussed in [24–27]. The issue with the Cauchy-Navier format is its inability to

encompass the generalized Micro-Structured continua [28–31]. Mindlin [32] adopts

the concept of variational principles to obtain the equilibrium equation. In this work,

Mindlin formulated a linear theory describing the responses of an elastic solid in which

the potential energy density is a function of the first and second gradient of contin-

uum deformations. Later on, the concept has been widely adopted in the analysis of

micro-structured solids [33–39].

1.3.1 Higher-gradient continuum theory

We have discussed in section 1.3 the usefulness of continuum theories in analyzing

micro-structured continua. This section will briefly discuss the higher-gradient con-

tinuum theories and their suitability in the analysis of fiber-reinforced composites.

Higher-gradient theories can be categorized into three major groups [40]:

• strain gradient elasticity
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• micropolar elasticity

• nonlocal elasticity

The strain gradient theories can be sub-categorized into the following groups:

• first and second strain gradient theories

• couple stress theory

• modified couple stress theory

• modified strain gradient theory

1.3.2 Strain gradient theory

In the strain gradient theories, the strain energy is a function of both strains and

the gradient of strains. The primary continuum theories describing the mechanical

responses under various loading conditions consider the composites as anisotropic

materials whose response function depends only on the first gradient of deformation

[41, 42]. Due to some of its limitations, i.e., the first gradient theory can’t capture

large deformations, Rivlin [43] formulated a new method incorporating up to the

second order of deformation gradient into the model. Later, Adkins and Rivlin [23]

provided a mathematical framework to analyze large deformations and considered

the fibers as a constraint to the extension of isotropic materials along the directions

of aligned fibers. The proposed model [23] is further developed in [44–47]. In [47],

Spencer developed a more comprehensive model for the fiber-reinforced composite,

which closely connects with nonlinear anisotropic elasticity. A few applications of

the proposed theory [47] in the analysis of biological materials can be found in [48].

However, all the previous developments [44–47] consider the fibers as infinitesimally

thin and thus infinitely flexible and exclude the fibers bending resistance. Later,

Spencer and Soldatos [49] incorporated fiber bending stiffness into the continuum

model by assuming that strain-energy density depends not only on the deformation
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and the fiber vectors but also on the gradients of the deformed fiber vectors. Thus

the fiber curvature is included in the continuum model via the second gradient of

deformation. A similar continuum theory is discussed for liquid crystals [50] and large

deformations of elastic membranes with bending stiffness [51]. Using the concept of

variational principle to obtain the Euler equilibrium equation, Mindlin [32] formulated

a continuum model for the deformation of an elastic solid in which the potential energy

density is a function of the strain and its first and second gradients. Steigmann [52]

modeled the fibers as continuously distributed spatial rods of the Kirchhoff type

and formulated a theory of fiber-reinforced composites where the fiber’s resistance to

bending and shear is incorporated. A similar mathematical framework can also be

found in [53–56]. In addition, several higher-order theories have been proposed to

analyze the micro-structured continua; for example, couple stress theory [34, 35, 57],

modified couple stress theory[58], modified strain gradient theory[59], etc.

1.3.3 Micropolar theory

The micropolar elasticity, also known as Cosserat elasticity, describes the static de-

formation of each point by a displacement vector and an independent rotation vector

along with non-symmetric strain and stress. According to micropolar elasticity, a

material element can have microrotation without undergoing a micro displacement

[60]. It incorporates both couple stress and force stress. In the isotropic Cosserat

solid, there are six elastic constants, in contrast to the classical elastic solid in which

there are two independent elastic constants (Lame’s constants). These constants are

experimentally determinable.

The micropolar elasticity was proposed by Cosserat brothers more than a hun-

dred years ago and later developed by others (see, for example, [37, 61]). Nowadays,

micropolar elasticity is widely used in modeling bones, cracks in fracture mechanics,

foams, porous media, beam lattices, etc [62]. Figure 1.2 depicts the micropolar model-

ing of bone structure. In general, micropolar elasticity has the following consequences
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over the classical elasticity theory:

• it can accommodate size effects, i.e., the effect of microstructure, whereas clas-

sical elasticity doesn’t [62]

• the stress concentration factor estimated from micropolar elasticity for a circular

hole is smaller than the classical value [63]

• in wave propagation analysis, the pace of dilational waves in the Cosserat

medium is independent of frequency[63]

Figure 1.2: Bone modeling using micropolar elasticity. Picture taken from [62]

1.3.4 Nonlocal elasticity theory

Kroner [64] presented the nonlocal elasticity hypothesis, which was further improved

by Eringen and Edelen [65]. In this theory, the points undergo translational motion

as in the classical case, but the stress at a point depends on the strain in a region near

that point, and the size effect is thus accounted for by constitutive equations with a

nonlocal parameter. Nonlocal elasticity theory was initially formulated in an integral

form and later reformulated by Eringen [66] in a differential form by considering a

specific kernel function. Compared to the integral model, the differential one is widely

used for nanostructures due to its simplicity [40].

1.3.5 Classical theory vs Higher-order theory

The classical theory or the first-order deformation gradient theory assumes the stress

as a function of strain only, whereas the higher-order deformation gradient theory

includes both strain and strain gradient into the constitutive equation of stress. The
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mathematical relationships of stress-strain for classical and higher-order gradient con-

tinua are defined in Eqs. (1.10) and (1.11) respectively as

σ = f(ε), (1.10)

σ = f(ε,∇ε). (1.11)

In the case of fiber-reinforced composite materials analysis, the classical theory doesn’t

append the fiber’s bending energy into the strain energy potential function that

demonstrates the stress-strain relationship. Mathematically, we can express the strain

energy potential function for the first gradient continua as

W (F, ε(F)) = W (F) +W (ε(F)), (1.12)

where W (F) is the energy potential of matrix, W (ε(F)) is the fiber’s energy po-

tential pertaining to the extension. The mechanical response (i.e., shear angle dis-

tribution) of first-gradient continua under the extension test is shown in Figure 1.3.

It is shown that the transition zones (from the red area to the green area and again

from the green area to the blue area) are sharp, which doesn’t correspond to the

experimental results. In the actual case, there exists some gradient in the transition

areas, and the transitions are smooth, continuous, and dilatational [67].

Figure 1.3: First vs. second gradient elasticity comparison. Picture taken from [68]

In the case of second-order theory, the strain energy potential is augmented as

W (F, ε(F),g(G)) = W (F) +W (ε(F)) +W (g(G)), (1.13)
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to incorporate the bending energy of fiber into the model of deformations. The

fiber bending energy (W (g(G))) can be computed via the computation of geodesic

curvature, which is related to the second gradient of deformation. The shear angle

distribution (see, Figures 1.3 and 1.4) from the second gradient theory exhibits a good

match with the experimental results as it can capture the gradients in transition zones.

Although the shear angle distribution is smooth and continuous, it is non-dilatational.

To this end, Kim et al. [69, 70] devised a third gradient theory and incorporated the

rate of change in curvature into the model by augmenting the strain energy potential

(see Eq. 3.3). The obtained solutions provide a smooth, continuous, and dilatational

shear angle distribution (see figure 1.5).

Figure 1.4: Shear angle distribution: first gradient (left), second gradient (right).
Picture taken from [67]

Figure 1.5: Shear angle distribution: first gradient (left), second gradient (middle),
third gradient (right). Picture taken from [69]
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1.4 Applications of higher-order gradient theory

We have already mentioned the applicability of higher-gradient theories to analyze

the mechanical responses of micro-structured continua. In particular, higher gradient

models account for singularities and can explain phenomena associated with localiza-

tion, such as crack nucleation and the localization of shear stresses, amongst other

examples [71, 72]. Higher gradient theories are applied to study several complicated

phenomena, including buckling, interactions of multiple bodies, internal resonance

due to the interactions of beams and cables with three-dimensional bodies, and wave

propagation inside an inhomogeneous body [73–75].

The numerical analysis of bones and biomaterials is a very challenging problem

due to complex microstructures and physical properties. Sometimes a bone can be

treated as an open foam-like structure or a system of beams. Since in foam struts or in

beams, there exist moments in addition to forces, this naturally leads to the model of

the higher-order gradient elasticity [62]. The complex continuum modelings of bone

tissues [76, 77], tendons, and ligaments [78] are obtained within the framework of the

higher-gradient theory.

Recently, higher-gradient theories have gotten more attention to analyze fiber-

reinforced composites, especially to obtain the shear strain distribution and deforma-

tion configuration under various boundary conditions. To this end, Kim et al. [67]

devised a strain gradient elasticity theory for composites and incorporated fiber’s re-

sistance to stretch and flexure via the variational computations of the first and second

gradients of deformations. In addition, Kim et al. [69, 70] formulated a third gradient

continuum model, in which the energy density function depends on the first, second,

and third gradients of deformation, and demonstrated that introducing an additional

gradient field results in a set of mechanical interaction forces on the desired bound-

aries. The obtained third gradient models also predict smooth and dilatational shear

angle distribution.
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1.5 Thesis Objectives

In the previous sections (1.1-1.4), we have discussed that the first-order theory can’t

describe the micro-structured continua properly. Several second-order theories [24,

34, 35, 67] have been proposed to attain the experimental results more accurately.

However, the second-gradient theories can’t explain some complex phenomena, for

example, mechanical contacts on the edges, dilatation, etc. The third gradient of

deformation model or the second strain-gradient model leads to dilatational shear

angle distribution throughout the domain of interest [69, 70].

The main objective of this thesis is to develop a second-strain gradient model to

understand the mechanical responses of an elastic material reinforced with unidirec-

tional or bidirectional, or randomly distributed short fibers and subjected to finite

plane deformations. The complete procedure to develop the continuum model is given

in chapter (2-3). We first define the kinematics of the fibers by their position and

director fields, allowing them to be modeled as continuously distributed spatial rods

of the Kirchhoff type [79]. Within this prescription, we develop the energy density

function to account for the third gradient of continuous deformation. In particular,

we consider the contact forces, couplings, double forces, and triple forces in addition

to the extension and bending resistance of fibers. Then, we obtain the Euler equations

and associated boundary conditions by employing iterative integrations by parts and

variational formulations that emerge from the third gradient of continuum deforma-

tions. Further, we compute the rate of change in curvature, specified at locations

on the convected curves of fibers, using the third gradient of the deformation map.

Both Neo-Hookean and Mooney-Rivlin hyperelastic models are used to characterize

the response of matrix material.

The model furnishes the governing equations as a system of sixth-order nonlinear

coupled Partial Differential Equations (PDEs) from which we obtain a set of numerical

solutions via the custom-built Finite Element Analysis (FEA) code. The detailed
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finite element analysis procedures are given in chapter 2 to 3. Finally, we compare

the obtained solutions with existing literature and find a perfect match.

1.6 Structure of thesis

This thesis consists of 4 main chapters, including the introduction and the conclusion.

The first chapter briefly introduces the composite materials and the objectives of this

thesis.

In chapter 2, we formulate a second strain-gradient theory for the mechanics of

continua reinforced with extensible bidirectional fibers resistant to flexure. In sec-

tion 2.1 to 2.3, we develop the fiber kinematics, equilibrium equation, and boundary

conditions and form the governing equations as a nonlinear coupled system of par-

tial differential equations (PDEs). The case of Neo-Hookean material reinforced with

bidirectional fibers is considered for the purpose of model development which has

been generalized to the case of a Mooney-Rivlin hyperelastic matrix material rein-

forced with bidirectional fibers. The obtained model is further applied to the case of

Neo-Hookean material reinforced with unidirectional fiber for the purpose of model

implementation. The resulting system of PDEs has been solved numerically and the

procedures are shown in section 2.4. The following section 2.5 provides the results

obtained from the proposed model and found to be consistent with those reported in

the literature.

In chapter 3, we develop a second strain gradient-based continuum model for the

composite reinforced with nano-fibers. We assume that the fiber’s directors and ac-

companying deformation map remain in a plane with no out-of-plane components

and that the corresponding deformations and material parameters are constrained

to be independent of the out-of-plane coordinate. The kinematics of the embedded

fibers are formulated by their position and director fields. The reinforcement phase is

transformed from the continuously distributed unidirectional fibers to the nanofibers

system using shear lag parameters[80, 81] and Krenchel orientation factors [82]. Fi-
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nally, we investigate the effect of fiber aspect ratio on the mechanical response of

composites.

Throughout all chapters, we use standard notation such as AT ,A−1,A∗ and tr(A).

These are the transpose, the inverse, the cofactor and the trace of a tensor A, re-

spectively. The tensor product of vectors is indicated by interposing the symbol ⊗,

and the Euclidian inner product of tensors A,B is defined by A·B = tr(ABT ); the

associated norm is |A| =
√
A·A. The symbol | ∗ |is also used to denote the usual

Euclidian norm of three-vectors. Latin and Greek indices take values in {1, 2} and,

when repeated, are summed over their ranges. Lastly, the notation FA stands for the

tensor-valued derivatives of a scalar-valued function F (A).
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Chapter 2

A third gradient based continuum
model for the mechanics of
continua reinforced with extensible
bidirectional fibers resistant to
flexure

In section 2.1, we define the kinematics of fibers. Following that, we develop the Equi-

librium equation by using the virtual work statement and iterative integration by parts

in section 2.2. The associated boundary conditions are derived in section 2.3 and

the governing equations for the mechanics of Neo-Hookean solids and Mooney-Rivlin

solids reinforced with fibers are delivered in section 2.3.1 and 2.3.2 respectively. In

section 2.4, we provide a detailed Finite Element Analysis procedure to solve the ob-

tained nonlinear Partial Differential Equations PDEs for the case of the Neo-Hookean

solid. Lastly, we discuss the obtained numerical solution in section 2.5 and provide a

summary of this chapter in section 2.6.

2.1 Kinematics

In the reference configuration, let D and M be the unit tangents to the fiber’s tra-

jectory. d and m are their equivalents in the deformed configuration. Following that,
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the orientations of specific bidirectional fibers are determined as

λ = |η| = ds

dS
, γ = |τ | = du

dU
and d = ηλ−1,m = τγ−1, (2.1)

where

FD = λd and FM = γm. (2.2)

The unit tangents to the fiber’s trajectory in the current configuration are d and

m, and F is the gradient of deformation function (χ(X)), i.e.,

F = ∇χ(X). (2.3)

Eq. (2.2) can be derived by taking the derivative of r(s(S)) = χ(X(S)), with

respect to the arc length parameters, S, and ultimately, s, upon making the iden-

tifications D = dX
dS

and d = dχ
ds
and similarly for M (i.e. M = dX

dU
and m = dχ

du
).

Here, d(∗)
dS

, d(∗)
dU

and d(∗)
ds

, d(∗)
du

refer to the arc length derivatives of (∗) along the fibers’

directions in the reference and deformed configurations, respectively. In this thesis,

we limit our attention to the case of initially orthogonal fibers:

M·D = 0. (2.4)

Combining Eqs. (2.2) and (2.4) embellishes a useful fiber decomposition of the

deformation gradient that is

F = λd⊗D+ γm⊗M. (2.5)

Therefore we have, for example, D = DAEA and d = diei to yield

λdi = FiADA, (2.6)

where {ei} and {EA} are the orthonormal bases in the current and reference con-

figurations. Accordingly, from Eq. (2.2), the geodesic curvature of an arc (r(s, u))

can be obtained as

g1 =
d2r(S)

dS2
=

d

dS
(
d(r(S)

dS
) =

∂(FD)

∂X

dX

dS
= ∇[FD]D, (2.7)
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and

g2 =
d2r(U)

dU2
=

d

dU
(
d(r(U)

dU
) =

∂(FM)

∂X

dX

dU
= ∇[FM]M. (2.8)

In a typical environment, most of the fibers are assumed as a straight prior to

deformations. The length scales of fibers compared to the matrix materials are small

and that allows us to treat the slightly curved fibers as ‘fairly straight’ [70]. Thus,

the gradient fields of the unit tangent in the reference configuration are assumed as

zero (i.e.,∇D = 0, and ∇M = 0). Now Eqs. (2.7) and (2.8) reduce to

g1 = ∇F(D⊗D) and g2 = ∇F(M⊗M). (2.9)

The commonly used conventions of the second gradient of deformations is:

∇F ≡ G, (2.10)

and the compatibility condition of G is as follows

GiAB = FiA,B = FiB,A = GiBA. (2.11)

Combining Eqs. (2.9) and (2.10) gives

g1 = G(D⊗D) = g1(G) and g2 = G(M⊗M) = g2(G). (2.12)

The above kinematic settings constitute a second gradient-based energy function

in the description of an elastic solid reinforced with fibers resistant to flexure;

W (F,g(G)) = W (F)+W (g(G)), W (g(G)) ≡ 1

2
C1(F)|g1(G)|2 + 1

2
C2(F)|g2(G)|2,

(2.13)

where Ci(F) refers to the material property of fibers which are, in general, inde-

pendent of the deformation gradient (i.e. Ci(F) = Ci ). Thus, we find

W (F,g(G)) = W (F)+W (g(G)), W (g(G)) ≡ 1

2
C1|g1(G)|2 + 1

2
C2|g2(G)|2. (2.14)

In Eq. (2.14), the fiber’s bending energy is assumed to be dependent entirely on

the second gradient of deformations, G, which facilitates the development of the
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associated mathematical framework. The concept has been widely and successfully

adopted in the relevant studies (see, for example, [52, 54, 67]). For the desired

applications, the above energy potential is now augmented to accommodate extensible

fibers as

W (F, ε(F),g(G)) = W (F)+W (g(G)) +W (ε(F)), W (ε(F)) =
1

2
E1ε

2
1 +

1

2
E2ε

2
2,

(2.15)

where Ei are the elastic modulus of fiber’s extension. The expressions of εi are

given respectively as

ε1 =
1

2
(λ2 − 1), (2.16)

and

ε2 =
1

2
(γ2 − 1). (2.17)

The expressions of λ2 and γ2 can be obtained using Eqs. (2.2) and (2.4) as following:

λ2 = FD · FD = FTFD ·D =
(︁
FTF

)︁
·D⊗D, (2.18)

and

γ2 = FM · FM = FTFM ·M =
(︁
FTF

)︁
·M⊗M. (2.19)

Hence, Eqs. (2.16)-(2.17) can be recast as

ε1 =
1

2
(λ2 − 1) =

1

2
(
(︁
FTF

)︁
·D⊗D− 1), (2.20)

and

ε2 =
1

2
(γ2 − 1) =

1

2
(
(︁
FTF

)︁
·M⊗M− 1). (2.21)

In this thesis, a more comprehensive description of generalized higher-order con-

tinua is obtained by introducing the third gradient of deformations into the model

of continuum deformations. For this purpose, the rate of changes in curvature (the
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third gradient of deformations) at points on the fibers is computed as

α1 =
d3r(S)

dS3
=

d

dS
(∇[FD]D) =

∂(∇[FD]D)

∂X

dX

dS
= [∇{∇[FD]D}]D

= [∇{∇[FD]}D+∇[FD] (∇D)]D,

α2 =
d3r(U)

dU3
=

d

dU
(∇[FM]M) =

∂(∇[FM]M)

∂X

dX

dU
= [∇{∇[FM]M}]M

= [∇{∇[FM]}M+∇[FM] (∇M)]M, (2.22)

through which the interactions between the fibers and the surrounding matrix, con-

tact forces between the edges may be characterized [69]. The required third gradient

fields can be formulated in the same spirit as in Eqs. (2.9)-(2.10) that

α1 = ∇ (∇F) (D⊗D⊗D) and α2 = ∇ (∇F) (M⊗M⊗M) , (2.23)

∇ (∇F) = ∇(G) ≡ H. (2.24)

Combining Eqs. (2.23) and (2.24) furnishes the third gradient fields as

α1 = H (D⊗D⊗D) = α1(H) and α2 = H (M⊗M⊗M) = α2(H). (2.25)

Thus, the energy potential associated with the third gradient of deformations is

incorporated and yields

W (F, ε(F),g(G),α(H)) = W (F) +W (ε(F))+W (g(G)) +W (α(H)),

W (α(H)) ≡ 1

2
A1(H)|α1(H)|2 + 1

2
A2(H)|α2(H)|2. (2.26)

We note here that, Ai(H) pertaining to the third gradient of continuum deforma-

tions is assumed to be constant for the sake of simplicity (i.e., Ai(H) = Ai). Thus

W (F, ε(F),g(G),α(H)) = W (F) +W (ε(F))+W (g(G)) +W (α(H)),

W (α(H)) ≡ 1

2
A1|α1(H)|2 + 1

2
A2|α2(H)|2. (2.27)

We continue by assessing the induced energy variation of the response function

with respect to F, ε,g and α as needed for the derivation of Euler equations and the

appropriate boundary conditions,

·
W (F, εi,gi,αi) = WF ·

·
F+Wεi

·
εi +Wgi

· ·
gi +Wαi

· ·
αi, i = 1, 2, (2.28)
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where the superposed dot refers to derivatives with respect to a parameter at the

particular configuration of the composite (ϵ = 0) that labels a one-parameter family

of deformations. The desired expression for the induced energy variation can be found

using Eqs. (2.16)-(2.27) as

·
ε1 =

1

2
(λ2 − 1)· =

1

2
(FD · FD− 1)· = FD ·

·
FD = FD⊗D ·

·
F, (2.29)

·
ε2 =

1

2
(γ2 − 1)· =

1

2
(FM · FM− 1)· = FM·

·
FM= FM⊗M ·

·
F, (2.30)

and

Wεi

·
εi = Wε1

·
ε1 +Wε2

·
ε2 = E1ε1

·
ε1 + E2ε2

·
ε2. (2.31)

Using Eqs. (2.20)-(2.21) and Eqs. (2.29)-(2.30), we find

E1ε1
·
ε1 =

E1

2
(FD · FD− 1)FD⊗D·

·
F =

E1

2
(FjCFjDDCDD − 1)(FiBDBDA)

·
F iA,

(2.32)

and

E2ε2
·
ε2 =

E2

2
(FM · FM− 1)FM⊗M·

·
F =

E2

2
(FjCFjDMCMD − 1)(FiBMBMA)

·
F iA.

(2.33)

Combining Eqs. (2.32) and (2.33) gives

Wεi

·
εi =

[︃
E1

2
(FjCFjDDCDD − 1)(FiBDBDA) +

E2

2
(FjCFjDMCMD − 1)(FiBMBMA)

]︃
·
F iA.

(2.34)

Using Eq. (2.12) (i.e., g1 = G(D⊗D) and g2 = G(M⊗M)), the variational deriva-

tive of the energy potential with respect to the second gradient of deformations is

Wgi
· ·
gi = Wg1 ·

·
g1 +Wg2 ·

·
g2 = C1g1 ·

·
g1 + C2g2 ·

·
g2 = C1 (g1)j ej ·

·
GiABDADBei

+ C2 (g2)j ej ·
·
GiABMAMBei. (2.35)

This can be further simplified as

Wgi
· ·
gi = C1 (g1)j

·
GiABDADBδij + C2 (g2)j

·
GiABMAMBδij = C1 (g1)i

·
GiABDADB

+ C2 (g2)i
·
GiABMAMB. (2.36)
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The similar fashion is used to find the variational derivative of the energy potential

with respect to the third gradient of deformations, i.e. using Eq. (2.25),

Wαi
· ·
αi = Wα1 ·

·
α1 +Wα2 ·

·
α2 = A1α1 ·

·
α1 + A2α2 ·

·
α2 = A1 (α1)j ej ·

·
H iABCDADBDCei

+A2 (α2)j ej ·
·
H iABCMAMBMCei, (2.37)

which is reduced as

Wαi
· ·
αi = A1 (α1)j

·
H iABCDADBDCδij + A2 (α2)j

·
H iABCMAMBMCδij

= A1 (α1)i
·
H iABCDADBDC + A2 (α2)i

·
H iABCMAMBMC . (2.38)

Now, from Eq. (2.28) the final expression for the induced energy potential variation

is obtained as

·
W (F, ε1, ε2,g1,g2,α1,α2) = WFiA

·
F iA + [

E1

2
(FjCFjDDCDD − 1)(FiBDBDA)+

E2

2
(FjCFjDMCMD − 1)(FiBMBMA)]

·
F iA+C1 (g1)i

·
GiABDADB +C2 (g2)i

·
GiABMAMB

+ A1 (α1)i
·
H iABCDADBDC + A2 (α2)i

·
H iABCMAMBMC . (2.39)

As a result, we have the variational form in Eq. (2.39) that is dependent on

both the second and third deformation gradients. The rate of change in curvature

has now been incorporated into the model via the third gradient of deformations,

as can be shown. The obtained variational form (Eq. (2.39)) facilitates the relevant

mathematical framework to accommodate the triple force (e.g. interaction forces) and

its energy couple (Piola-type triple stress) sustained by the third-gradient continua.

2.2 Equilibrium

The derivation of the Euler equation and boundary conditions arising in the second-

gradient elasticity are well established in [24, 34, 35, 67]. In this section, we discuss

a variational formulation arising in the third gradient of the continuum deformation

using the principles of the virtual work statement and iterated integrations by parts
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[24, 33, 67]. The weak form of the equilibrium equations is given by the virtual-work

statement,
·
E = P, (2.40)

where P is the virtual work of the applied load and the superposed dot refers to

the variational and/or Gateâux derivative.

Volumetric changes in material deformations are energetically expensive processes

in a typical environment, and so are constrained in most engineering analyses [52].

The following form of the augmented energy potential can be used to overcome the

constraint of bulk incompressibility.

U(F, ε1, ε2,g1,g2,α1,α2, p) = W (F, ε1, ε2,g1,g2, α1,α2)− p(J − 1), (2.41)

where J is determinant of F and p is a Lagrange multiplier field. The strain energy

of the system is then expressed as

E =

∫︂
Ω

U(F, ε1, ε2,g1,g2, α1,α2, p)dA, (2.42)

where Ω is the referential domain occupied by a fiber-matrix material. Since the

conservative loads are characterized by the existence of a potential L such that P =
·
L,

the problem of determining equilibrium deformations is then reduced in this case to

the problem of minimizing the potential energy E − L: Accordingly, we find

·
E =

∫︂
Ω

·
U(F, ε1, ε2,g1,g2,α1,α2, p)dA. (2.43)

Using the identity
·
J = JF

·
F ·

·
F = F∗ ·

·
F along with Eqs. (2.39) and (2.41), the

variational derivative of the augmented energy potential can be evaluated as

·
U =

·
W − p

·
J

= WFiA

·
F iA + [

E1

2
(FjCFjDDCDD − 1)(FiBDBDA) +

E2

2
(FjCFjDMCMD − 1)

(FiBMBMA)]
·
F iA+C1 (g1)i

·
GiABDADB+C2 (g2)i

·
GiABMAMB+A1 (α1)i

·
H iABCDADBDC

+ A2 (α2)i
·
H iABCMAMBMC − pF ∗

iA

·
F iA. (2.44)
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Let us define the variation of position field
·
χi = ui. Then, Eq. (2.43) can be recast

as

·
E =

∫︂
Ω

[WFiA
ui,A + [

E1

2
(FjCFjDDCDD − 1)(FiBDBDA) +

E2

2
(FjCFjDMCMD − 1)

(FiBMBMA)]ui,A + (C1 (g1)i DADB + C2 (g2)i MAMB)ui,AB + (A1 (α1)i DADBDC

+ A2 (α2)i MAMBMC)ui,ABC − pF ∗
iAui,A]dA. (2.45)

Applying integration by parts on the third and fourth terms in Eq. (2.45)

(C1 (g1)iDADB + C2 (g2)i MAMB)ui,AB = [(C1 (g1)iDADB + C2 (g2)iMAMB)ui,A],B

− [(C1 (g1)i DADB + C2 (g2)i MAMB)],B ui,A, (2.46)

and

(A1 (α1)i DADBDC + A2 (α2)iMAMBMC)ui,ABC = [A1 (α1)i DADBDC

+A2 (α2)i MAMBMC)ui,AB],C−[(A1 (α1)iDADBDC + A2 (α2)i MAMBMC)],C ui,AB.

(2.47)

Now putting back the values from Eqs. (2.46) and (2.47) into the Eq. (2.45) we

obtain

·
E =

∫︂
Ω

[WFiA
ui,A + [

E1

2
(FjCFjDDCDD − 1)(FiBDBDA) +

E2

2
(FjCFjDMCMD − 1)

(FiBMBMA)]ui,A + [(C1 (g1)i DADB + C2 (g2)i MAMB)ui,A],B − (C1 (g1)i DADB+

C2 (g2)i MAMB),Bui,A + [(A1 (α1)i DADBDC + A2 (α2)i MAMBMC)ui,AB],C

− (A1 (α1)i DADBDC + A2 (α2)i MAMBMC),C ui,AB − pF ∗
iAui,A]dA. (2.48)

This can be recast as

·
E =

∫︂
Ω

[WFiA
−pF ∗

iA+
E1

2
(FjCFjDDCDD−1)(FiBDBDA)+

E2

2
(FjCFjDMCMD−1)

(FiBMBMA)− (C1 (g1)i DADB + C2 (g2)i MAMB),B]ui,AdA−
∫︂
Ω

[((A1 (α1)i DADBDC

+A2 (α2)i MAMBMC),C)ui,AB]dA+

∫︂
∂Ω

[(C1 (g1)i DADB + C2 (g2)i MAMB)ui,A]NBdS

+

∫︂
∂Ω

[(A1 (α1)i DADBDC + A2 (α2)iMAMBMC)ui,AB]NCdS, (2.49)
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where N is the rightward unit normal to the boundary ∂Ω. To obtain the desired

expression, we again apply integration by parts and the Green-Stoke’s theorem on

the second integral of the above; i.e.,∫︂
Ω

[︂(︂
(A1 (α1)i DADBDC + A2 (α2)iMAMBMC),C

)︂
ui,AB

]︂
dA =

∫︂
Ω

[{((A1 (α1)i (DADB

DC) + A2 (α2)i MAMBMC),C)ui,A},B − ((A1 (α1)iDADBDC + A2 (α2)i MA

MBMC),CB)ui,A]dA =

∫︂
∂Ω

{︂(︂
(A1 (α1)i DADBDC + A2 (α2)i MAMBMC),C

)︂
ui,A

}︂
NBdS

−
∫︂

[((A1 (α1)iDADBDC + A2 (α2)i MAMBMC),CB)ui,A]dA. (2.50)

The substitution of Eq. (2.50) into Eq. (2.49) then furnishes

·
E =

∫︂
Ω

[WFiA
−pF ∗

iA+
E1

2
(FjCFjDDCDD−1)(FiBDBDA)+

E2

2
(FjCFjDMCMD−1)

(FiBMBMA)− (C1 (g1)i DADB + C2 (g2)i MAMB),B + (A1 (α1)i DADBDC

+A2 (α2)i MAMBMC),CB]ui,AdA+

∫︂
∂Ω

[(C1 (g1)i DADB + C2 (g2)i MAMB)ui,A]NBdS

+

∫︂
∂Ω

[(A1 (α1)iDADBDC + A2 (α2)i MAMBMC)ui,AB]NCdS

−
∫︂
∂Ω

{︂(︂
(A1 (α1)i DADBDC + A2 (α2)iMAMBMC),C

)︂
ui,A

}︂
NBdS. (2.51)

Finally, we obtain

·
E =

∫︂
Ω

PiAui,AdA+

∫︂
∂Ω

[{C1 (g1)i DADB +C2 (g2)i MAMB −A1 ((α1)i DADBDC),C

−A2 ((α2)i MAMBMC),C}ui,ANB+(A1 (α1)iDADBDC + A2 (α2)i MAMBMC)ui,ABNC ]dS,

(2.52)

where

PiA(ei⊗EA) = [WFiA
−pF ∗

iA+
E1

2
(FjCFjDDCDD−1)(FiBDADB)+

E2

2
(FjCFjDMCMD

− 1)(FiBMAMB)− C1 ((g1)iDADB),B − C2 ((g2)i MAMB),B

+ A1 ((α1)i DADBDC),BC
+ A2 ((α2)i MAMBMC),BC

](ei ⊗ EA). (2.53)
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2.3 Boundary conditions

In this section, we present derivations of the admissible boundary conditions which

arise in the third gradient of virtual displacement. The introduction of the higher

order gradient fields into the model of the continuum deformation leads to the nec-

essary existence of their high-order energy conjugate pairs (e.g. triple forces, contact

interactions) suitably imposed on the desired boundaries (see, for example, [33, 72,

83]).

To proceed, we apply integration by parts (i.e. PiAui,A = (PiAui),A − PiA,Aui) on

the first term of Eq. (2.52) and thereby obtain

·
E =

∫︂
∂Ω

PiAuiNAdS −
∫︂
Ω

PiA,AuidA+

∫︂
∂Ω

[{C1 (g1)i DADB + C2 (g2)i MAMB

− (A1 ((α1)i DADBDC),C + A2 ((α2)i MAMBMC),C)}ui,ANB + (A1 (α1)i DADBDC

+ A2 (α2)i MAMBMC)ui,ABNC ]dS, (2.54)

where we define

WGiAB
≡ C1 (g1)i DADB + C2 (g2)i MAMB, and

WHiABC
≡ A1 (α1)i DADBDC + A2 (α2)i MAMBMC . (2.55)

Also, the Euler equation satisfies

PiA,Aei = Div(P) = 0. (2.56)

Using Eqs. (2.55) and (2.56), we can recast Eq. (2.54) as

·
E =

∫︂
∂Ω

PiAuiNAdS +

∫︂
∂Ω

[
(︂
WGiAB

− (WHiABC
),C

)︂
ui,ANB +WHiABC

ui,ABNC ]dS.

(2.57)

We project ∇u onto the normal and tangential direction and thereby obtain

∇u = ∇u(T⊗T) +∇u(N⊗N) = u
′ ⊗T+ u,N ⊗N, (2.58)
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such that u
′
and u,N are, respectively, the tangential and normal derivatives of u

on ∂Ω , i.e.,

u
′

i = ui,ATA, ui,N = ui,ANA, (2.59)

where T = X
′
(S) = k × N defines the unit tangent to ∂Ω , and N is the asso-

ciated unit normal to the boundary. Thus, invoking Eqs. (2.58)–(2.59), ui,A can be

decomposed into

ui,A =
∂ui

∂XA

=
dui

dS

dS

dXA

+
dui

dN

dN

dXA

= u
′

iTA + ui,NNA, (2.60)

and similarly for ui,AB

ui,AB = u
′′

i TATB + u
′

i(T
′

ATB + TA,NNB) + u
′

i,N(TANB +NATB) + ui,N(N
′

ATB

+NA,NNB) + ui,NNNANB. (2.61)

Substituting Eqs. (2.60) and (2.61) into Eq. (2.57), we obtain

·
E =

∫︂
∂Ω

PiAuiNAdS +

∫︂
∂Ω

[︂
WGiAB

− (WHiABC
),C

]︂ (︂
u

′

iTA + ui,NNA

)︂
NBdS

+

∫︂
∂Ω

WHiABC
[u

′′

i TATB + u
′

i(T
′

ATB + TA,NNB) + u
′

i,N(TANB +NATB)

+ ui,N(N
′

ATB +NA,NNB) + ui,NNNANB]NCdS. (2.62)

In order to extract the admissible boundary conditions from Eq. (2.62), we make

use of iterated integrations by parts. For example,

WGiAB
TANBu

′

i = (WGiAB
TANBui)

′
− (WGiAB

TANB)
′
ui, (2.63)

(WHiABC
),C TANBu

′

i =
(︂
(WHiABC

),C TANBui

)︂′

−
(︂
(WHiABC

),C TANB

)︂′

ui, (2.64)

WHiABC
(T

′

ATBNC + TA,NNBNC)u
′

i =
(︂
WHiABC

(T
′

ATBNC + TA,NNBNC)ui

)︂′

−
(︂
WHiABC

(T
′

ATBNC + TA,NNBNC)
)︂′

ui, (2.65)

WHiABC
(TANBNC +NATBNC)u

′

i,N = (WHiABC
(TANBNC +NATBNC)ui,N)

′

− (WHiABC
(TANBNC +NATBNC))

′
ui,N , (2.66)
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WHiABC
TATBNCu

′′

i = (WHiABC
TATBNCui)

′′
+ (WHiABC

TATBNC)
′′
ui

−2
[︂
(WHiABC

TATBNC)
′
ui

]︂′

. (2.67)

Using Eqs. (2.63)-(2.67) into Eq. (2.62), we obtain

·
E =

∫︂
∂Ω

PiAuiNAdS +

∫︂
∂Ω

[︂
(WGiAB

TANBui)
′
− (WGiAB

TANB)
′
ui

]︂
dS

−
∫︂
∂Ω

[︃(︂
(WHiABC

),C TANBui

)︂′

−
(︂
(WHiABC

),C TANB

)︂′

ui

]︃
dS +

∫︂
∂Ω

[WGiAB
NANB

− (WHiABC
),C NANB]ui,NdS +

∫︂
∂Ω

[(WHiABC
TATBNCui)

′′
+ (WHiABC

TATBNC)
′′
ui

− 2
[︂
(WHiABC

TATBNC)
′
ui

]︂′

]dS +

∫︂
∂Ω

[
(︂
WHiABC

(T
′

ATBNC + TA,NNBNC)ui

)︂′

−
(︂
WHiABC

(T
′

ATBNC + TA,NNBNC)
)︂′

ui]dS +

∫︂
∂Ω

WHiABC
[ui,N(N

′

ATBNC

+NA,NNBNC)]dS +

∫︂
∂Ω

[(WHiABC
(TANBNC +NATBNC)ui,N)

′
− (WHiABC

(TANBNC

+NATBNC))
′
ui,N ]dS +

∫︂
∂Ω

(WHiABC
ui,NNNANBNC) dS, (2.68)

which can be rearranged as

·
E =

∫︂
∂Ω

[PiANA − (WGiAB
TANB)

′
+
(︂
(WHiABC

),C TANB

)︂′

+ (WHiABC
TATBNC)

′′

−
(︂
WHiABC

(T
′

ATBNC + TA,NNBNC)
)︂′

]uidS +

∫︂
∂Ω

[WGiAB
NANB − (WHiABC

),C NANB

+WHiABC
(N

′

ATBNC +NA,NNBNC)− (WHiABC
(TANBNC +NATBNC))

′
]ui,NdS

+

∫︂
∂Ω

[{WGiAB
TANB − (WHiABC

),C TANB − 2 (WHiABC
TATBNC)

′
}ui]

′
dS

+

∫︂
∂Ω

[︂
(WHiABC

TATBNCui)
′′
]︂
dS +

∫︂
∂Ω

[︂
WHiABC

(T
′

ATBNC + TA,NNBNC)ui

]︂′

dS

+

∫︂
∂Ω

[WHiABC
(TANBNC +NATBNC)ui,N ]

′
dS +

∫︂
∂Ω

(WHiABC
ui,NNNANBNC) dS.

(2.69)
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The above maybe further recast as

·
E =

∫︂
∂Ω

[PiANA − (C1 (g1)i DATADBNB + C2 (g2)i MATAMBNB)
′
+

(A1 (α1)i,C DATADBNBDC+A2 (α2)i,C MATAMBNBMC)
′
+(A1 (α1)iDATADBTBDCNC

+ A2 (α2)i MATAMBTBMCNC)
′′ − (A1 (α1)iDCNC(DAT

′

ADBTB +DATA,NDBNB)

+ A2 (α2)iMCNC(MAT
′

AMBTB +MATA,NMBNB))
′
]uidS

+

∫︂
∂Ω

[C1 (g1)i DANADBNB + C2 (g2)i MANAMBNB − A1 (α1)i,C DANADBNBDC

− A2 (α2)i,C MANAMBNBMC + A1 (α1)i DCNC(DAN
′

ADBTB +DANA,NDBNB)

+ A2 (α2)i MCNC(MAN
′

AMBTB +MANA,NMBNB)− {A1 (α1)i DADBDC(TANBNC

+NATBNC)}
′ − {A2 (α2)i MAMBMC(TANBNC +NATBNC)}

′
]ui,NdS

+
∑︂

∥ {C1 (g1)i DATADBNB + C2 (g2)i MATAMB NB − A1 (α1)i,C DATADBNBDC

− A2 (α2)i,C MATAMBNBMC − 2(A1 (α1)iDATADBTBDCNC)
′

− 2(A2 (α2)iMATAMBTBMCNC)
′}ui ∥ +

∑︂
∥ d

dS
[(A1 (α1)i DATADBTBDCNC

+ A2 (α2)i MATAMBTBMCNC)ui] ∥ +
∑︂

∥ [A1 (α1)i (DAT
′

ADBTBDCNC+

DATA,NDBNBDCNC) + A2 (α2)i (MAT
′

AMBTBMCNC +MATA,NMBNBMCNC)ui] ∥

+
∑︂

∥ [A1 (α1)i (DATADBNBDCNC +DANADBTBDCNC)

+ A2 (α2)i (MATAMBNBMCNC +MANAMBTBMCNC)]ui,N ∥

+

∫︂
∂Ω

(A1 (α1)i DANADBNBDCNC + A2 (α2)i MANAMBNBMCNC)ui,NNdS, (2.70)

where the double bar symbol refers to the jump across the discontinuities on the

boundary ∂Ω (i.e.∥ ∗ ∥= (∗)+ − (∗)−) and the sum refers to the collection of all

discontinuities. It is concluded from Eq. (2.40) that admissible powers are of the

form

P =

∫︂
∂wt

tiuidS +

∫︂
∂w

miui,NdS +

∫︂
∂w

riui,NNdS +
∑︂

fiui +
∑︂

hiui,N . (2.71)

By comparing Eqs. (2.70) and (2.71), we obtain
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ti = PiANA − d

ds
[C1 (g1)i DATADBNB + C2 (g2)i MATAMBNB−

A1 (α1)i,C DATADBNBDC−A2 (α2)i,C MATAMBNBMC+A1 (α1)iDCNC(DAT
′

ADBTB

+DATA,NDBNB) + A2 (α2)i MCNC(MAT
′

AMBTB +MATA,NMBNB)]

+
d2

ds2
(A1 (α1)i DATADBTBDCNC + A2 (α2)iMATAMBTBMCNC) ,

mi = C1 (g1)iDANADBNB + C2 (g2)iMANAMBNB − A1 (α1)i,C DANADBNBDC

− A2 (α2)i,C MANAMBNBMC + A1 (α1)i DCNC(DAN
′

ADBTB +DANA,NDBNB)

+ A2 (α2)iMCNC(MAN
′

AMBTB +MANA,NMBNB)

− d

ds
{2(A1 (α1)iDADBDCNATBNC + A2 (α2)i MAMBMCNATBNC)}],

ri = A1 (α1)iDANADBNBDCNC + A2 (α2)i MANAMBNBMCNC ,

fi = C1 (g1)i DATADBNB + C2 (g2)i MATAMB NB − A1 (α1)i,C DATADBNBDC

− A2 (α2)i,C MATAMBNBMC − 2
d

ds
[A1 (α1)i DATADBTBDCNC+

A2 (α2)i MATAMBTBMCNC ] + A1 (α1)i (DAT
′

ADBTBDCNC

+DATA,NDBNBDCNC) + A2 (α2)i (MAT
′

AMBTBMCNC +MATA,NMBNBMCNC),

d

ds
(fi) =

d

dS
[(A1 (α1)i DATADBTBDCNC + A2 (α2)i MATAMBTBMCNC)],

hi = 2[A1 (α1)i DANADBTBDCNC + A2 (α2)i MANAMBTBMCNC ], (2.72)

where ti,mi, and fi are, respectively, the expression for edge tractions, edge mo-

ments, and corner forces. More importantly, the introduction of the third gradient

of deformations yields new interaction boundary conditions (i.e. ri,
d
ds
(fi) and hi).

In [69], Kim et al. proposed that these additional sets of boundary conditions can

be thought of as the set of admissible contact interactions that the third-gradient

continuum can sustain (see, for example, [24, 33]). Kim et al. [69] referred that the

produced interaction forces are associated with the Piola-type triple stress, resulting

in the triple forces that characterize mechanical contacts on the edges and points of

Cauchy cuts [33, 39, 83]. In case of fiber-reinforced composite, the triple force would
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refer to the impacts of local fiber-matrix interactions that can be assimilated by the

computation of the third gradient of the continuum deformation on the convected

curves of fibers [69, 70].

In a typical environment where fibers are aligned along the directions of either

normal and/or tangential to the boundary (e.g., rectangular boundaries), we compute

DATADBNB = 0, MATAMBNB = 0 and TA,N = T
′

A = NA,N = N
′

A = 0. (2.73)

Thus the boundary conditions reduce to

ti = PiANA,

mi =
(︂
C1 (g1)i − A1 (α1)i,C DC

)︂
DANADBNB +

(︂
C2 (g2)i − A2 (α2)i,C MC

)︂
MANAMBNB,

ri = A1 (α1)i DANADBNBDCNC + A2 (α2)iMANAMBNBMCNC ,

fi = 0,

d

ds
(fi) = 0,

hi = 0, (2.74)

and, the expression of the associated Piola-type stress in Eq. (2.53) now becomes

PiA(ei⊗EA) = [WFiA
−pF ∗

iA+
E1

2
(FjCFjDDCDD−1)(FiBDADB)+

E2

2
(FjCFjDMCMD−1)

(FiBMAMB)− C1 (g1)i,B DADB − C2 (g2)i,B MAMB + A1 (α1)i,BC DADBDC

+ A2 (α2)i,BC MAMBMC ](ei ⊗ EA). (2.75)

2.3.1 Example: Neo-Hookean materials

In the case of Neo-Hookean materials, the energy density function is given by

W (I1, I3) =
µ

2
(I1 − 3)− µ log I3 +

λ

2
(log I3)

2 , (2.76)

where µ and λ are the material constants and I1 and I3 are, respectively, the

first and third invariants of the deformation gradient tensor. By setting I3 = 1, the
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incompressible model can be obtained as

W (I1) =
µ

2
(I1 − 3) =

µ

2
(F · F− 3). (2.77)

Now taking the derivative of the above with respect to F and subsequently substi-

tuting it into Eq. (2.75), we find

PiA(ei ⊗ EA) = [µFiA − pF ∗
iA +

E1

2
(FjCFjDDCDD − 1)(FiBDADB)+

E2

2
(FjCFjDMCMD − 1)(FiBMAMB)− C1 (g1)i,B DADB − C2 (g2)i,B MAMB

+ A1 (α1)i,BC DADBDC + A2 (α2)i,BC MAMBMC ](ei ⊗ EA). (2.78)

To obtain the Euler equation, we put the expression of Eq. (2.78) into Eq. (2.56)

and obtain

PiA,A = µFiA,A−p,AF
∗
iA+

E1

2
(FiB,AFjCFjD+FiBFjC,AFjD+FiBFjCFjD,A)DADBDCDD

− E1

2
FiB,ADADB +

E2

2
(FiB,AFjCFjD + FiBFjC,AFjD + FiBFjCFjD,A)MAMBMCMD

− E2

2
FiB,AMAMB − C1 (g1)i,AB DADB − C2 (g2)i,AB MAMB

+ A1 (α1)i,ABC DADBDC + A2 (α2)i,ABC MAMBMC = 0. (2.79)

Here we use the Piola’s identity F ∗
iA,A = 0.

Let us now assume a fiber-reinforced material that consists of initially an orthonor-

mal set of fibers and is subjected to finite plane deformations,

D = E1, D1 = 1, D2 = 0,M = E2,M1 = 0,M2 = 1. (2.80)

Accordingly, Eq. (2.79) can be reduced as

PiA,A = µFiA,A − p,AF
∗
iA +

E1

2
(Fi1,1Fj1Fj1 + Fi1Fj1,1Fj1 + Fi1Fj1Fj1,1)−

E1

2
Fi1,1

+
E2

2
(Fi2,2Fj2Fj2 + Fi2Fj2,2Fj2 + Fi2Fj2Fj2,2)−

E2

2
Fi2,2 − C1 (g1)i,11

− C2 (g2)i,22 + A1 (α1)i,111 + A2 (α2)i,222 = 0, (2.81)
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where

(g1)i = Fi1,1, (g2)i = Fi2,2, (α1)i = Fi1,11, (α2)i = Fi2,22, FiA = χi,A, F
∗
iA = εijεABFjB,

(2.82)

and εij is a 2-D permutation, ε12 = −ε21 = 1, ε11 = ε22 = 0. Consequently, invoking

Eqs. (2.80)-(2.82), together with the constraint of the bulk incompressibility (i.e., det

F = 1), we deliver the following system of PDEs,

0 = µχi,AA − p,AεijεABχj,B +
E1

2
(χi,11χj,1χj,1 +χi,1χj,11χj,1 +χi,1χj,1χj,11)−

E1

2
χi,11

+
E2

2
(χi,22χj,2χj,2 + χi,2χj,22χj,2 + χi,2χj,2χj,22)−

E2

2
χi,22

− C1χi,1111 − C2χi,2222 + A1χi,111111 + A2χi,222222, (2.83)

and

χ1,1χ2,2 − χ1,2χ2,1 = 1. (2.84)

The above system of PDE’s can be solved for χ1, χ2, and p using commercial finite

element analysis packages (e.g., Matlab, COMSOL, etc.).

For the special case of an unidirectional fiber (i.e., MA = MB = 0), the expression

of Euler equation can be found from Eq. (2.79) as

PiA,A = µFiA,A−p,AF
∗
iA+

E1

2
(FiB,AFjCFjD+FiBFjC,AFjD+FiBFjCFjD,A)DADBDCDD

− E1

2
FiB,ADADB − C1 (g1)i,AB DADB + A1 (α1)i,ABC DADBDC = 0. (2.85)

Using same fashion as in Eqs. (2.80)-(2.84), we can deduce the following system

of PDE’s for the unidirectional fiber reinforcement (i.e., M1 = M2 = 0) as

µχi,AA − p,AεijεABχj,B +
E1

2
(χi,11χj,1χj,1 + χi,1χj,11χj,1 + χi,1χj,1χj,11)−

E1

2
χi,11

− C1χi,1111 + A1χi,111111 = 0, (2.86)

for i = 1, µ(χ1,11 + χ1,22)− p,1χ2,2 + p,2χ2,1 +
E1

2
(3χ1,11χ1,1χ1,1 + χ1,11χ2,1χ2,1

+ 2χ2,11χ1,1χ2,1)−
E1

2
χ1,11 − C1χ1,1111 + A1χ1,111111 = 0, (2.87)

34



for i = 2, µ(χ2,11 + χ2,22) + p,1χ1,2 − p,2χ1,1 +
E1

2
(3χ2,11χ2,1χ2,1 + χ2,11χ1,1χ1,1

+ 2χ1,11χ1,1χ2,1)−
E1

2
χ2,11 − C1χ2,1111 + A1χ2,111111 = 0, (2.88)

and

χ1,1χ2,2 − χ1,2χ2,1 − 1 = 0. (2.89)

2.3.2 Example: Mooney-Rivlin materials

In the case of Mooney-Rivlin materials, the energy density function is given by

W (F) =
µ

2
(I1 − 3) +

κ

2
(I2 − 3), (2.90)

where I2 is the second invariants of the deformation gradient tensor defined by

I2 =
1

2

[︂(︁
tr(FTF)

)︁2 − tr
(︁
(FTF)2

)︁]︂
. (2.91)

Now, taking the derivative of W (F) with respect to F we obtain

WFiA
=

µ

2
(I1)FiA

+
κ

2
(I2)FiA

,

where (I1)FiA
= 2FiA,and (I2)FiA

= 2FiB(FjCFjCδAB − FjAFjB). The expression of

(I2)FiA
is derived in [84]. Thus Eq. (2.90) turns into the form

WFiA
= µFiA + κFiB(FjCFjCδAB − FjAFjB), (2.92)

and substituting it into Eq. (2.75), we find

PiA(ei ⊗ EA) = [µFiA + κFiB(FjCFjCδAB − FjAFjB)− pF ∗
iA +

E1

2
(FjCFjDDCDD

− 1)(FiBDADB) +
E2

2
(FjCFjDMCMD − 1)(FiBMAMB)− C1 (g1)i,B DADB

− C2 (g2)i,B MAMB + A1 (α1)i,BC DADBDC + A2 (α2)i,BC MAMBMC ](ei ⊗ EA).

(2.93)
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Hence the Euler equation for the Mooney-Rivlin materials reinforced with bidirec-

tional fiber in the frame of third gradient of deformation takes the form of

PiA,A = µFiA,A + κFiA,AFjCFjC − κFiB,AFjAFjB + κFiB(2FjCFjC,A − FjA,AFjB−

FjAFjB,A)− p,AF
∗
iA +

E1

2
(FiB,AFjCFjD + FiBFjC,AFjD + FiBFjCFjD,A)DADBDCDD

− E1

2
FiB,ADADB − E2

2
FiB,AMAMB +

E2

2
(FiB,AFjCFjD + FiBFjC,AFjD+

FiBFjCFjD,A)MAMBMCMD − C1 (g1)i,AB DADB − C2 (g2)i,AB MAMB

+ A1 (α1)i,ABC DADBDC + A2 (α2)i,ABC MAMBMC = 0. (2.94)

Using Eq. (2.80), the above can be reduced as

PiA,A = µFiA,A + κFiA,AFjCFjC − κFiB,AFjAFjB + κFiB(2FjCFjC,A − FjA,AFjB−

FjAFjB,A)− p,AF
∗
iA +

E1

2
(Fi1,1Fj1Fj1 + Fi1Fj1,1Fj1 + Fi1Fj1Fj1,1) +

E2

2
(Fi2,2Fj2Fj2

+Fi2Fj2,2Fj2+Fi2Fj2Fj2,2)−
E1

2
Fi1,1−

E2

2
Fi2,2−C1 (g1)i,11−C2 (g2)i,22+A1 (α1)i,111

+ A2 (α2)i,222 = 0. (2.95)

Using Eq. (2.82), we obtain the following system of PDE’s for the Mooney-Rivlin

matrix materials reinforced with bidirectional fiber

0 = µχi,AA + κχi,AAχj,Cχj,C − κχi,BAχj,Aχj,B + κχi,B(2χj,Cχj,CA − χj,AAχj,B−

χj,Aχj,BA)− p,AεijεABχj,B +
E1

2
(χi,11χj,1χj,1 + χi,1χj,11χj,1 + χi,1χj,1χj,11)−

E1

2
χi,11

+
E2

2
(χi,22χj,2χj,2 + χi,2χj,22χj,2 + χi,2χj,2χj,22)−

E2

2
χi,22 − C1χi,1111 − C2χi,2222

+ A1χi,111111 + A2χi,222222, (2.96)

and

χ1,1χ2,2 − χ1,2χ2,1 = 1. (2.97)

36



2.4 Finite element analysis of the sixth-order cou-

pled PDE

The resulting systems of PDEs (Eqs. (2.87)–(2.89)) are sixth-order coupled nonlinear

differential equations. Demonstrating numerical analysis approaches for coupled PDE

systems, especially those with higher order terms, is not trivial. For preprocessing,

(Eqs. (2.87)–(2.89)) can be recast as:

µ(Q+ χ1,22)− AS +BD +
E1

2
(3QC2 +QD2 + 2CRD −Q)− C1M + A1M,11 = 0,

µ(R + χ2,22) + AG−BC +
E1

2
(3RD2 +RC2 + 2CQD −R)− C1N + A1N,11 = 0,

Q− χ1,11 = 0,

R− χ2,11 = 0,

C − χ1,1 = 0,

D − χ2,1 = 0,

G− χ1,2 = 0,

S − χ2,2 = 0,

M −Q,11 = 0,

N −R,11 = 0,

A− µ(Q+ χ1,22)− C1M = 0,

B − µ(R + χ2,22)− C1N = 0, (2.98)

where, A = p,1, B = p,2, Q = χ1,11, R = χ2,11, C = χ1,1, D = χ2,1, G = χ1,2,

S = χ2,2, M = Q,11 and N = R,11. As a result, we were able to reduce a sixth-order

partial differential coupled system of equations to a second-order system of coupled

PDEs. The above non-linear terms(i.e., Aχ2,2, Bχ2,1 etc.) can be treated via the
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Picard iterative procedure,

−Ainitialχ
initial
2,2 +Binitialχ

initial
2,1 ⇒ −A0χ

0
2,2 +B0χ

0
2,1,

Ainitialχ
initial
1,2 −Binitialχ

initial
1,1 ⇒ A0χ

0
1,2 +B0χ

0
1,1,

−3QinitialC
2
initial +QinitialD

2
initial + 2CinitialRinitialDinitial ⇒ 3Q0C

2
0 +Q0D

2
0 + 2C0R0D0,

−3RinitialD
2
initial +RinitialC

2 + 2CinitialQinitialDinitial ⇒ 3R0D
2
0 +R0C

2
0 + 2C0Q0D0,

(2.99)

where the values of A,B,C,D,G, S,Q, and R continue to be refreshed based on

their previous estimations (i.e., A0, B0, C0, D0, G0, S0, Q0 and R0) as iteration pro-

gresses. As a result, the above expression can be generalised to N number of iterations

as

−AN−1χ
N−1
2,2 +BN−1χ

N−1
2,1 ⇒ −ANχ

N
2,2 +BNχ

N
2,1,

AN−1χ
N−1
1,2 −BN−1χ

N−1
1,1 ⇒ ANχ

N
1,2 +BNχ

N
1,1,

3QN−1C
2
N−1 +QN−1D

2
N−1 + 2CN−1RN−1DN−1 ⇒ 3QNC

2
N +QND

2
N + 2CNRNDN ,

3RN−1D
2 +RN−1C

2
N−1 + 2CN−1QN−1DN−1 ⇒ 3RND

2
N +RNC

2
N + 2CNQNDN .

(2.100)

A convergence criteria can be used to determine the number of iterations. Thus,
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the weak form of Eq. (2.98) is obtained by∫︂
Ωe

w1(µ(Q+ χ1,22)− A0S +B0D +
E1

2
(3QC2

0 +QD2
0 + 2RC0D0 −Q)− C1M

+A1M,11)dΩ = 0,∫︂
Ωe

w2(µ(R + χ2,22) + A0G−B0C +
E1

2
(3RD2

0 +RC2
0 + 2QC0D0 −R)− C1N

+A1N,11)dΩ = 0,∫︂
Ωe

w3(Q− χ1,11)dΩ = 0,∫︂
Ωe

w4(R− χ2,11)dΩ = 0,∫︂
Ωe

w5 (C − χ1,1) dΩ = 0,∫︂
Ωe

w6 (D − χ2,1) dΩ = 0,∫︂
Ωe

w7 (G− χ1,2) dΩ = 0,∫︂
Ωe

w8 (S − χ2,2) dΩ = 0,∫︂
Ωe

w9(M −Q,11)dΩ = 0,∫︂
Ωe

w10(N −R,11)dΩ = 0,∫︂
Ωe

w11(A− µ(Q+ χ1,22)− C1M)dΩ = 0,∫︂
Ωe

w12(B − µ(R + χ2,22)− C1N)dΩ = 0. (2.101)

Using integration by parts and Green–Stoke’s theorem (e.g.,
∫︁
Ωe w1χ1,11dΩ =

39



∫︁
∂Γe (w1χ1,1)NdΓ−

∫︁
Ωe w1,1χ1,1dΩ). We obtain from the above that∫︂

Ωe

w1µQ− µw1,2χ1,2 − w1A0S + w1B0D + w1
E1

2
(3QC2

0 +QD2
0 + 2RC0D0 −Q)

−w1C1M − A1w1,1M,1)dΩ +

∫︂
∂Γe

(µw1χ1,2)NdΓ +

∫︂
∂Γe

(A1w1M,1)NdΓ = 0,∫︂
Ωe

(w2µR− µw2,2χ2,2 + w2A0G− w2B0C + w2
E1

2
(3RD2

0 +RC2
0 + 2QC0D0 −R)

−w2C1N − A1w2,1N,1)dΩ +

∫︂
∂Γe

(µw2χ2,2)NdΓ +

∫︂
∂Γe

(A1w2N,1)NdΓ = 0,∫︂
Ωe

(w3Q+ w3,1χ1,1)dΩ−
∫︂
∂Γe

(w3χ1,1)NdΓ = 0,∫︂
Ωe

(w4R + w4,1χ2,1)dΩ−
∫︂
∂Γe

(w4χ2,1)NdΓ = 0,∫︂
Ωe

(w5C − w5χ1,1) dΩ = 0,∫︂
Ωe

(w6D − w6χ2,1) dΩ = 0,∫︂
Ωe

(w7G− w7χ1,2) dΩ = 0,∫︂
Ωe

(w8S − w8χ2,2) dΩ = 0,∫︂
Ωe

(w9M + w9,1Q,1)dΩ−
∫︂
∂Γe

(w9Q,1)NdΓ = 0,∫︂
Ωe

(w10N + w10,1R,1)dΩ−
∫︂
∂Γe

(w10R,1)NdΓ = 0,∫︂
Ωe

(w11A− w11µQ+ µw11,2χ1,2 − w11C1M)dΩ−
∫︂
∂Γe

(µw11χ1,2)NdΓ = 0,∫︂
Ωe

(w12B − w12µR + µw12,2χ2,2 − w12C1N)dΩ−
∫︂
∂Γe

(µw12χ2,2)NdΓ = 0, (2.102)

where Ω, ∂Γ and N are the domain of interest, the associated boundary, and the

rightward unit normal to the boundary in the sense of the Green–Stoke’s theorem

respectively. The unknowns χ1, χ2, Q, R,C,D,G, S,M,N,A and B can be expressed

in the form of Lagrangian polynomial as

(∗) =
n=4∑︂
j=1

[︂
(∗)j Ψj(x, y)

]︂
, (2.103)

where (∗) represents any of the twelve unknowns. Therefore, The test function w
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is obtained as

(wk) =
n=4∑︂
i=1

[︁
wi

kΨi(x, y)
]︁
; k = 1, 2, 3, 4, ...12, (2.104)

where wi is the weight of the test function and Ψi(x, y) are the corresponding shape

function for the four-node rectangular elements, such that

Ψ1 =
(x− 2)(y − 1)

2
,Ψ2 =

x(y − 1)

−2
,Ψ3 =

xy

2
and Ψ4 =

y(x− 2)

−2
. (2.105)

Eq. (2.102) can be recast using Eqs.(2.103) and (2.104) as

n∑︂
i,j=1

{︃∫︂
Ωe

(︃
µΨiΨj + 3

E1

2
ΨiΨjC

2
0 +

E1

2
ΨiΨjD

2
0 −

E1

2
ΨiΨj

)︃
dΩ

}︃
Qj −

n∑︂
i,j=1

{
∫︂
Ωe

(µΨi,2

Ψj,2)dΩ}χ1j −
n∑︂

i,j=1

{︃∫︂
Ωe

(ΨiΨjA0) dΩ

}︃
Sj +

n∑︂
i,j=1

{︃∫︂
Ωe

(ΨiΨjB0) dΩ

}︃
Dj

−
n∑︂

i,j=1

{︃∫︂
Ωe

(ΨiΨjC1 +Ψi,1Ψj,1A1) dΩ

}︃
Mj +

n∑︂
i,j=1

{︃∫︂
Ωe

(︃
E1

2
Ψi2ΨjC0D0

)︃
dΩ

}︃
Rj

+

∫︂
∂Γe

(µΨiχ1,2)NdΓ +

(︃∫︂
∂Γe

A1ΨiM,1

)︃
NdΓ = 0,

n∑︂
i,j=1

{︃∫︂
Ωe

(︃
µΨiΨj + 3

E1

2
ΨiΨjD

2
0 +

E1

2
ΨiΨjC

2
0 −

E1

2
ΨiΨj

)︃
dΩ

}︃
Rj −

n∑︂
i,j=1

{
∫︂
Ωe

(µΨi,2

Ψj,2)dΩ}χ2j +
n∑︂

i,j=1

{︃∫︂
Ωe

(ΨiΨjA0) dΩ

}︃
Gj −

n∑︂
i,j=1

{︃∫︂
Ωe

(ΨiΨjB0) dΩ

}︃
Cj

−
n∑︂

i,j=1

{︃∫︂
Ωe

(ΨiΨjC1 +Ψi,1Ψj,1A1) dΩ

}︃
Nj +

n∑︂
i,j=1

{︃∫︂
Ωe

(︃
E1

2
Ψi2ΨjC0D0

)︃
dΩ

}︃
Qj

+

∫︂
∂Γe

(µΨiχ2,2)NdΓ +

∫︂
∂Γe

(A1ΨiN,1)NdΓ = 0,

n∑︂
i,j=1

{︃∫︂
Ωe

(ΨiΨj) dΩ

}︃
Qj +

n∑︂
i,j=1

{︃∫︂
Ωe

(Ψi,1Ψj,1) dΩ

}︃
χ1j −

∫︂
∂Γe

(Ψiχ1,1)NdΓ = 0,

n∑︂
i,j=1

{︃∫︂
Ωe

(ΨiΨj) dΩ

}︃
Rj +

n∑︂
i,j=1

{︃∫︂
Ωe

(Ψi,1Ψj,1) dΩ

}︃
χ2j −

∫︂
∂Γe

(Ψiχ2,1)NdΓ = 0,

n∑︂
i,j=1

{︃∫︂
Ωe

(ΨiΨj) dΩ

}︃
Cj −

n∑︂
i,j=1

{︃∫︂
Ωe

(ΨiΨj,1) dΩ

}︃
χ1j = 0,

n∑︂
i,j=1

{︃∫︂
Ωe

(ΨiΨj) dΩ

}︃
Dj −

n∑︂
i,j=1

{︃∫︂
Ωe

(ΨiΨj,1) dΩ

}︃
χ2j = 0,
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n∑︂
i,j=1

{︃∫︂
Ωe

(ΨiΨj) dΩ

}︃
Gj −

n∑︂
i,j=1

{︃∫︂
Ωe

(ΨiΨj,2) dΩ

}︃
χ1j = 0,

n∑︂
i,j=1

{︃∫︂
Ωe

(ΨiΨj) dΩ

}︃
Sj −

n∑︂
i,j=1

{︃∫︂
Ωe

(ΨiΨj,2) dΩ

}︃
χ2j = 0,

n∑︂
i,j=1

{︃∫︂
Ωe

(ΨiΨj) dΩ

}︃
Mj +

n∑︂
i,j=1

{︃∫︂
Ωe

(Ψi,1Ψj,1) dΩ

}︃
Qj −

∫︂
∂Γe

(ΨiQ,1)NdΓ = 0,

n∑︂
i,j=1

{︃∫︂
Ωe

(ΨiΨj) dΩ

}︃
Nj +

n∑︂
i,j=1

{︃∫︂
Ωe

(Ψi,1Ψj,1) dΩ

}︃
Rj −

∫︂
∂Γe

(ΨiR,1)NdΓ = 0,

n∑︂
i,j=1

{︃∫︂
Ωe

(ΨiΨj) dΩ

}︃
Aj −

n∑︂
i,j=1

{︃∫︂
Ωe

(µΨiΨj) dΩ

}︃
Qj +

n∑︂
i,j=1

{︃∫︂
Ωe

(µΨi,2Ψj,2) dΩ

}︃
χ1j

−
n∑︂

i,j=1

{︃∫︂
Ωe

(ΨiΨjC1) dΩ

}︃
Mj −

∫︂
∂Γe

(µΨiχ1,2)NdΓ = 0,

n∑︂
i,j=1

{︃∫︂
Ωe

(ΨiΨj) dΩ

}︃
Bj −

n∑︂
i,j=1

{︃∫︂
Ωe

(µΨiΨj) dΩ

}︃
Rj +

n∑︂
i,j=1

{︃∫︂
Ωe

(µΨi,2Ψj,2) dΩ

}︃
χ2j

−
n∑︂

i,j=1

{︃∫︂
Ωe

(ΨiΨjC1) dΩ

}︃
Nj −

∫︂
∂Γe

(µΨiχ2,2)NdΓ = 0. (2.106)

The local stiffness matrix and forcing vector for each element can be found as⎡⎢⎢⎢⎢⎢⎢⎣
K11

11 K11
12 K11

13 K11
14

K11
21 K11

22 K11
23 K11

24

K11
31 K11

32 K11
33 K11

34

K11
41 K11

42 K11
43 K11

44

⎤⎥⎥⎥⎥⎥⎥⎦
Local

⎡⎢⎢⎢⎢⎢⎢⎣
χ1
1

χ2
1

χ3
1

χ4
1

⎤⎥⎥⎥⎥⎥⎥⎦
Local

=

⎡⎢⎢⎢⎢⎢⎢⎣
F 1
1

F 1
2

F 1
3

F 1
4

⎤⎥⎥⎥⎥⎥⎥⎦
Local

, (2.107)

or alternatively, in a compact form,[︂
K11

ij

]︂ [︂
χi
1

]︂
=

[︂
F 1
i

]︂
for i, j = 1, 2, 3, 4, (2.108)

where [︂
K11

ij

]︂
= −

∫︂
Ωe

(µΨi,2Ψj,2) dΩ, (2.109)

and [︂
F 1
i

]︂
= −

∫︂
∂Γe

(µΨiχ1,2)NdΓ−
(︃∫︂

∂Γe

A1ΨiM,1

)︃
NdΓ. (2.110)
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Finally, we obtain the following global systems of equations for each individual

elements as

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[K11] [K12] [K13] [K14] ... [K19] [K110] [K111] [K112]

[K21] [K22] [K23] [K24] ... [K29] [K210] [K211] [K212]

[K31] [K32] [K33] [K34] ... [K39] [K310] [K311] [K312]

[K41] [K42] [K43] [K44] ... [K49] [K410] [K411] [K412]

[K51] [K52] [K53] [K54] ... [K59] [K510] [K511] [K512]

[K61] [K62] [K63] [K64] ... [K69] [K610] [K611] [K612]

[K71] [K72] [K73] [K74] ... [K79] [K710] [K711] [K712]

[K81] [K82] [K83] [K84] ... [K89] [K810] [K811] [K812]

[K91] [K92] [K93] [K94] ... [K99] [K910] [K911] [K912]

[K101] [K102] [K103] [K104] ... [K109] [K1010] [K1011] [K1012]

[K111] [K112] [K113] [K114] ... [K119] [K1110] [K1111] [K1112]

[K121] [K122] [K123] [K124] ... [K129] [K1210] [K1211] [K1212]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

χi
1

χi
2

Qi

Ri

Ci

Di

Gi

Si

Mi

Ni

Ai

Bi

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

{F 1}

{F 2}

{F 3}

{F 4}

{F 5}

{F 6}

{F 7}

{F 8}

{F 9}

{F 10}

{F 11}

{F 12}

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(2.111)

Figure 2.1: Schematic of the problem
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2.5 Results and discussion

In this section, we simulate a set of numerical solutions for the system of PDEs defined

in Eqs. (2.87)-(2.89) for the Neo-Hookean materials reinforced with unidirectional

fibers and subjected to uniaxial tension. We have applied the tension t and triple

force r at the two opposite ends (see Figure 2.1) of the composite to find its mechanical

response. More precisely, the boundary conditions are as follows:

t1 = P11 = µχ1,1−pχ2,2+
E1

2
(χ1,1χ1,1+χ2,1χ2,1−1)χ1,1−C1χ1,111+A1χ1,11111, t2 = 0,

m1 = C1χ1,11 − A1χ1,1111 = 0, m2 = C1χ2,11 − A1χ2,1111 = 0, r1 = A1χ1,111,

r2 = A1χ2,111 = 0. (2.112)

The deformation profile and shear angle distribution have also been displayed with

respect to the different values of second gradient and third gradient parameters. It is

noted that, data are obtained under the normalized setting ( t1
µ
= 10, E1

µ
= 10, C1

µ
=

5, A1

µ
= 5) unless otherwise specified. Also, we refer the material constants associated

with the Piola-type double stress and triple stress (i.e., C1 and A1) as the ‘double

stress parameter’ and ‘triple stress parameter’, respectively.

Figure 2.2 shows the deformed profile of a composite with fibers having axial stiff-

ness E1

µ
= 10, bending and triple force moduli of C1

µ
= 5, A1

µ
= 5 respectively when

the composite is subjected to the axial extension of t1
µ
= 10. The sensitivity of the

deformed configuration to the axial stiffness E1 is shown in Figure 2.3. It is evident

that, the axial stretch is increasing with the decreased values of E1. The results are

also closely aligned with the results in [67, 70]. Figure 2.4 represents the sensitivity of

the deformed configuration to the triple stress parameter A1. The axial stretch is in-

sensitive to the triple stress parameter, whereas the gradients of deformation profiles

at each material point become steeper as the triple stress parameter increases.

Figure 2.5(a) shows the deformed configurations for various applied triple forces.

A triple force r1
µ

= ±5 is applied in conjugate with t1
µ

= 10 keeping the material
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Figure 2.2: Deformation Configuration when t1
µ
= 10, E1

µ
= 10, C1

µ
= 5 and A1

µ
= 5

Figure 2.3: Deformed configuration with variation of E1

µ
when t1

µ
= 10, C1

µ
= 5, and

A1

µ
= 5

parameters as E1

mu
= 10, C1

mu
= 5, and A1

µ
= 5. It is evident that the positive triple

force ( r1
µ
) results clockwise point rotation. The effect is the opposite in the case of

negative triple force. The values of θ1, θ2 and θ3 correspond to the cases of negative,

zero, and positive triple force, respectively (i.e. θ1 < θ2 < θ3).

Also, when we remove the triple stress parameter (i.e., A1 = 0), the deformed

configuration aligns closely (Figure 2.6) with the result obtained from the second

gradient theory [67].

Figure 2.7 shows the deformed contour
√︁

χ2
1 + χ2

2 for different values of the triple
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Figure 2.4: Deformed configuration with variation of A1

µ
when t1

µ
= 10, E1

µ
= 10, and

C1

µ
= 5

(a) (b)

Figure 2.5: Deformed configuration with variation of triple force (a) when t1
µ

= 5,
E1

µ
= 10, C1

µ
= 5 and A1

µ
= 5, (b) Zoomed section

Figure 2.6: Comparison with the existing result [67]
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stress parameter. To gain a better understanding of the influences of the third gra-

(a)

(b)

(c)

Figure 2.7: Deformation contour
√︁

χ2
1 + χ2

2 (a) A1

µ
= 5, (b) A1

µ
= 10, (c) A1

µ
= 50

when t1
µ
= 10, E1

µ
= 10, and C1

µ
= 5

dient of deformations, we examine the shear strain fields and associated shear angle
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distributions (see Figure 2.8) over the domain of interest for the uniaxial tension of a

fiber-reinforced composite. The shear strain gradients and shear angles are computed

in the analysis using the following relationships [85]:

Φ′ =
u

′′
2(1 + u′

1)− u′
2u

′′
1

u′2
2 + (1 + u′

1)
2

, (2.113)

Φ = tan−1(
χ2,1 − χ1,1

2 + χ1,1 + χ2,1

). (2.114)

We have shown earlier that the proposed third gradient model can reproduces the

deformation anticipated from the second gradient model by vanishing the triple stress

parameter (i.e., A1 = 0), (see Figure 2.6). The shear angle distribution and corre-

sponding shear strain gradient distribution predicted by the second gradient model

is achieved by setting A1

µ
= 0 and the associated plot is shown in Figure 2.8. It can

be observed that when A1

µ
= 0, the shear angle distribution is smooth, continuous

but non-dilatational. The shear strain gradient field is found to be constant in this

case. On the other hand, the shear angle distribution predicted by the third gradient

model (A1

µ
̸= 0) is smooth, continuous, and dilatational. The shear strain gradient

field is also not constant (see Figure 2.8). The change in shear strain gradient can

be interpreted as a sign of dilatation. Further, the dilatation increases as the triple

stress parameter increases.
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Shear angle distribution Shear strain gradient distribution

Figure 2.8: Shear angle and shear strain distribution for various triple stress param-
eter when t1

µ
= 10, E1

µ
= 10 and C1

µ
= 5

2.5.1 Application of third gradient of deformation theory

The shear band is a narrow, intense shear strain zone that develops during large

deformation. The shear band usually occurs in a wide range of metallic materials,

including nanocrystalline metals and metallic glasses [86]. The thickness of the shear

band is usually in the order of particle size [87]. The shear band can contain extremely

large local deformation and frequently lead to failure [86, 88]. Hence, identifying

the formation of the shear band is an entrancing topic for researchers. Shear band

formation in metallic glasses under uniaxial tension has been well studied in [89–91].

It is found that the shear band inclination angle differs from 45 degrees [89]. In the

case of uniaxial tension, the inclination angle is higher than 45 degrees, and in the

49



case of uniaxial compression, the value is lower than 45 degrees. Several theories have

been proposed to describe the shear band inclination angle. In [92, 93], the author

used the Coulomb-Mohr yield criterion to describe this behavior. Some extensions

(see, for example, [91, 94]) to the Mohr-Coulomb criterion have been proposed. In

[90], the author used the Oyane fracture criterion in their simulation and observed

that a shear band was forming at an angle (59 degrees), which differed from their

experimental result (62.9 degrees). This discrepancy is a result of local rotation during

the damage process [90]. Moreover, In [91], the authors explain how the deviation

from the standard 45 degrees is caused by the local friction. Also, the author in

[89, 95] proposed that, since large deformation causes volume dilatation which results

in atomic re-arrangement, the shear band inclination angle can be predicted using a

formulation that incorporates the local volume dilatation. They incorporate a volume

dilatation parameter ’a’ and find that the shear band inclination angle deviates more

from 45 degrees with increasing the value of ’a’.

Local friction has an effect on shear band formation and shear band inclination

angle. In this respect, we would like to discuss the utility of the proposed third

gradient model in the analysis of the shear band’s inclination angles and associated

dilatation. Each particle rotates about its own axis, and the gradient of each unique

revolution creates a relative rotation. Due to the relative rotation of the atoms, a

local frictional force will be created. The friction describes the resistance of a system

to shearing [96]. Because of the high internal friction, the rate of particle rotation

is lower in highly coordinated materials [97]. In addition, for this type of highly

coordinated dense material, dilatation is observed to be more intense [98].

From Figure 2.9(a), we can see that in a close-packed array, the aqua-colored atom

is in direct contact with six adjacent atoms, whereas in a loose-packed array (see

Figure 2.9(b), the number is four. In addition, in a close-packed array, the distance

between neighboring atoms is smaller than in a loose-packed array. It is obvious that

in the case of highly coordinated materials, the atoms have more internal friction
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(a) (b)

Figure 2.9: Material structure (a) Close packed array, (b) Loose packed array

because of the higher number of neighboring atoms. Due to high friction, point

rotation or local rotation will be less in this case. For less coordinated materials, the

friction force is less and the local rotation is greater. Now, from our model,

R = A× Φ, (2.115)

where R,A and Φ are the applied triple force, triple stress parameter and induced

point rotation, respectively. The induced point rotation is inversely related to the

triple stress parameter. Accordingly, for a highly coordinated material where the

point rotation is less [96] and the dilatation is more intense [98], the triple stress pa-

rameter will be large. From the simulation (see Figure 2.8), with varying triple stress

parameter A1, we can observe that when A1

µ
is large the dilatation is more intense

compared to the case when A1

µ
is small. Thus the third gradient model also implies

the similar fact in terms of the dilatation of a highly coordinated material. Moreover,

we have also applied the positive and negative triple force (r) and have investigated

its impact on shear dilatation. The positive triple force results in clockwise point

rotation (see Figures 2.5(a) and 2.5(b)) and the shear dilatation for this case is less

intensified in comparison to the negative ones (see Figure 2.10). Also, the average

shear angle of the domain is higher in the case of positive triple force when it is com-

pared to the negative triple force. Lastly, we obtain the shear band inclination angle

using the formula provided in [89, 95]. In these papers, the authors introduce local

atomic volume dilatation as a governing factor for the shear band inclination angle.
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Figure 2.10: Shear angle distribution for various triple force r : r < 0 (left) and r > 0
(right)

They have used a formulation based on the Drucker-Prager yield criterion with the

volume change governed by Spaepen’s free volume model [99]. A brief description

of this model is presented in [89, 95]. The constitutive theory contains hydrostatic

pressure originated from volume dilatation, σe = aI1 +
√
J2, where I1 = trace(σ), is

the first invariant of the stress tensor, and the parameter a is constant related to the

volume dilation sensitivity. J2 =
ss
2
, s = σ − trace(σ)I/3 is the deviatoric stress with

I being the identity tensor. The authors implemented the constitutive theory into

the ABAQUS finite element software using the UMAT subroutine and obtained the

shear band inclination angle from the contour plot of the shear strain field for various

values of coefficient a (see Table 1). It is found that the shear band inclination angle

deviates more with increasing the value of coefficient a which resembles more intense

dilatation. The authors considered a sample under uniaxial tension and expressed

the volume change rate as
·
v
v
=

·
ε1 +

·
ε2 +

·
ε3, where

·
ε1,

·
ε2, and

·
ε3 are three principal

strain rates. For plane strain condition
·
ε3 = 0. The angle between the shear plane

and the loading axis, denoted by α, is defined as

cot(2α) = −1

2

(︂
·
ε1 +

·
ε2

)︂
/
(︂

·
γ/2

)︂
= −

·
v

v
·
γ
, (2.116)

where
·
γ is the shear strain rate. This expression explicitly incorporates the volume

change rate. Hence, using the ratio between the volume change rate and the shearing

rate, the shear band angle can be determined. For a particular time, the above
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expression can be simplified as

cot(2α) = −1

2
(ε1 + ε2) / (γ/2) , (2.117)

where, ε1 and ε2 are the principal strain and γ is the shear strain. We previously

discussed how our triple stress parameter A1 is related to the shear dilatation. We

can see from [89, 95] that the shear band inclination angle varies with dilatation. In

this respect, we compute the shear band inclination angle for different values of triple

stress parameter A1 using Eq. (2.117). We simulate our model with the following

parameter settings of E1

µ
= 100, C1

µ
= 100, where 8% axial strain has been applied.

We determine the shear angle at each nodal point of interest by using Eq. (2.114).

The shear strain (γ) is calculated from the average shear angle of the domain.

Table 2.1: Shear band inclination angle obtained from [89, 95] and proposed third
gradient model

Triple stress parameter, A1

µ
100 200 400 600 800

ε1 0.211 0.149 0.104 0.096 0.091

ε2 -0.233 -0.151 -0.097 -0.081 -0.071

θavg (deg) (see Figure 2.11) 21.94 14.05 7.053 5.276 3.982

γ = tan(θavg) 0.4028 0.250 0.124 0.092 0.069

Shear band inclination angle, α
(deg) (Using Eq. (2.117))

45.63 47.15 49.22 52.12 55.69

Drucker-Prager Coefficient, a [89,
95]

0.045 0.087 0.130 0.168 0.205

Shear band inclination angle, α
(deg) [89, 95]

48 51 54 56 58

We compared our result to the shear band inclination angle reported in [89, 95].

Table 2.1 reveals that the shear band inclination angle deviates more as A1

µ
increased.

Since the dilatation is more intense for the higher value of triple stress parameter A1

(see Figure 2.8), it is evident that our model can successfully correlate the shear band

inclination angle to the volume dilatation in a similar manner shown in [89, 95].
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Figure 2.11: Shear angle distribution with the average shear angle of the domain

The triple stress parameter follows a similar trend to the Drucker-Prager coefficient,

as shown in Figure 2.12. Both the triple stress parameter (A1

µ
) and the coefficient

a reported in [89, 95] characterize the deviation of shear band inclination angle and

found that the deviation is more intense with the higher value of the triple stress

parameter and drucker-prager coefficient. Thus, the triple stress parameter A1 can

be regarded as a new parameter characterizing volume dilatation and subsequently,

the shear band inclination angle as specified by the coefficient a in [89, 95]. It should

also be noted that the obtained model can be expanded to include more practical

issues, such as determining the triple stress parameter and analyzing the residual

triple stresses on the mechanical responses of higher-order continua.
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Figure 2.12: Variation of shear band inclination angle α with triple stress parameter
A1

µ
and drucker prager coefficient a presented in [89, 95]

2.6 Conclusions

In this chapter, we present a continuum-based model describing the mechanics of

third gradient continua reinforced with bidirectional fibers and subjected to finite

plane deformations. The kinematics of fibers are obtained via the first, second, and

third gradient of continuum deformations within the prescription of continuously dis-

tributed spatial rods of the Kirchhoff type. The variational principles and iterative

integration by parts have been employed to obtain the Euler equations and the nec-

essary boundary conditions. In particular, the energy density function of the Spencer

and Soldatos type is refined within the framework of the second strain gradient theory

to accommodate the kinematics and the associated bulk incompressibility arising in

the third-gradient continua. The resulting systems of partial differential equations

are solved using the custom-built numerical scheme.

The solution of the obtained model predicts smooth deformation profiles and di-

latational shear angle distributions throughout the domain of interest when the com-

posite is subjected to bias extension. Further, the introduction of the third gradient
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of continuum deformation has resulted in the emergence of a constitutive parame-

ter that is associated with the Piola-type triple stress and its energy couple (i.e.,

triple force) sustained by the third-gradient continua. Phenomenologically relevant

results pertaining to the third gradient of continuum deformations has been discussed

throughout the chapter, including; the increase of the triple stress parameter results

in intensified volume dilatation and reduced local point rotations. We also computed

the corresponding shear band inclination angles with respect to the different triple

stress parameters indicating that the triple stress parameter follows a similar trend

to the Drucker-Prager coefficients characterizing shear band inclination angle. More

precisely, the deviations of the shear band inclination angle under uniaxial tension

are intensified with the increasing triple stress parameter.
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Chapter 3

A second strain gradient based
continuum model for the composite
reinforced with extensible
nano-fibers resistant to flexure

In section 3.1, we define the kinematics of randomly distributed short fibers. Via the

virtual work statement and iterative integration by parts, the corresponding Equilib-

rium equation and associated boundary conditions are derived in section 3.2. Follow-

ing that, in sections 3.2.1 and 3.2.2, the governing equations for the mechanics of Neo-

Hookean solids and Mooney-Rivlin solids reinforced with randomly distributed short

fibers are delivered respectively. In section 3.3, Finite Element Analysis procedure is

discussed to solve the governing Equations obtained for the case of the Neo-Hookean

solid reinforced with randomly distributed short fiber. Finally, the obtained numerical

results are discussed in section 3.4, and a summary of this chapter is provided at the

end in section 3.5.

3.1 Kinematics

In this section, we derive the kinematics of randomly distributed short fibers. The

transformation of unidirectional fiber composite into nano-fiber composite system is

developed by Suprabha [100]. Here we used the similar transformation method which
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is illustrated in Figure 3.1. We begin the derivation of the kinematics of continuously

distributed unidirectional fibers within the similar framework used in chapter 2. Next,

we transform the unidirectional fiber composite system into an aligned short fiber

composite system by introducing the Shear Lag Parameter. Finally, this aligned

short fiber system is transformed into a randomly distributed short fiber composite

using the Krenchel Orientation Factor.

Figure 3.1: Schematic of the problem and demonstration of the model development
(a) continuous unidirectional fiber, (b) aligned short fiber, (c) randomly distributed
fiber

3.1.1 Defining energy potential for the unidirectional contin-
uous fiber composite system

Let D be the unit tangent to the fiber’s trajectory in the reference configuration and

d is its equivalent in the deformed configuration. Following that, the configuration

of a particular unidirectional fiber is determined as

λ = |η| = ds

dS
, and d = ηλ−1, (3.1)

where

FD = λd, F = λd⊗D, (3.2)

and F is the first gradient of the deformation function, which is defined in Eq.
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(2.3). Also, the above equation can be yielded to Eq. (2.6) using the orthonormal

bases of the current and reference configurations.

In chapter 2, we have shown that (see Eq. 2.27) a third gradient based-energy

density function in the description of an elastic solid reinforced with extensible fibers

resistant to flexure can be expressed as

W (F, ε(F),g(G),α(H)) = W (F) +W (ε(F))+W (g(G)) +W (α(H)), (3.3)

where W (F) is the strain energy function for the matrix material; using the similar

manner as in Eqs. (2.7-2.27), the other terms can be defined for unidirectional fibers

as follows:

For example, W (ε(F)) is defined as

W (ε(F)) =
1

2
Eε2, (3.4)

where E is the fiber’s elastic modulus, and the expression of ε is given by Eqs.

(2.16)-(2.20) as

ε =
1

2
(λ2 − 1) =

1

2
[
(︁
FTF

)︁
·D⊗D− 1]. (3.5)

Next, W (g(G)) can be defined as

W (g(G)) ≡ 1

2
C(F)|g(G)|2, (3.6)

where the geodesic curvature g(G) is defined in Eq. (2.7). For the present unidi-

rectional case, it can be written as

g(G) = G(D⊗D), (3.7)

and C(F) is a constant material parameter. Thus Eq. 3.6 can be written as

W (g(G)) ≡ 1

2
C|g(G)|2. (3.8)

Also, the energy contribution related to the third gradient of deformation is defined

as

W (α(H)) ≡ 1

2
A(H)|α(H)|2, (3.9)
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where α(H) is the third gradient of deformations. Using Eqs. (2.22)-(2.24), for an

unidirectional fiber, α(H) can be defined as

α =
d3r(S)

dS3
= H (D⊗D⊗D) = α(H). (3.10)

Also, by assuming A(H) as a material constant, Eq. 3.9 can be recast as

W (α(H)) ≡ 1

2
A|α(H)|2, (3.11)

Thus, using Eqs. (3.3)-(3.4),(3.8),(3.11), we have defined the energy potential

accommodating fiber extension, fiber bending, and the third gradient of deformations

for the case of continuously distributed unidirectional fiber-composite system.

3.1.2 Development of randomly oriented short fiber compos-
ite system

To obtain the nano-fiber composite system, we followed the same procedure that was

originally developed by Suprabha in [100]. In this section, we briefly discuss the

theoretical development process. The continuously distributed unidirectional fiber

composite is transformed into the short-fiber reinforced composite system via the

shear lag parameter. In the case of a fiber-reinforced composite material, the load is

transferred from the matrix material to the fiber by means of interfacial shear stress

transfer. The theoretical background for the shear lag theory is well presented in [80,

81]. It is well known that the interfacial shear stress transfer is highly sensitive to the

length scale of fiber. For example, if a fiber length is L, height is h, and aspect ratio

S is defined as 2L
h
, it is shown that the interfacial shear stress transfer is more efficient

for the higher value of aspect ratio, S [81]. Figure 3.2 represents the settings for the

shear lag theory and displays the typical strain distribution along the fiber length.

When the aspect ratio S is small, the maximum strain attains in the fiber is low.

Also, the strain distribution is non-uniform throughout the entire fiber length. This

is due to the poor interfacial shear stress transfer from the matrix material to the
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fiber. In case of high aspect ratio, the strain in the fiber reaches its maximum value

which is close to the strain of the matrix (
ϵf
ϵm

≈ 1) at the very corner and remains

constant throughout the entire length.

Figure 3.2: A typical strain distribution along the fiber length, and its dependence
on the fiber aspect ratio

The dependence of the interfacial shear stress transfer on the aspect ratio of fiber

is accommodated by the following relation [81]

εf = ε[1− cosh(βsx)

cosh(βsL)
], (3.12)

where the shear lag parameter βs is defined as, βs =
√︂

K
Eh

, K is the interfacial stiffness,

h is the thickness, and L is the half-length of the fiber. To accommodate shear lag

parameter into our model for the entire length of the fiber, we have modified our

extension potential (see Eq. 3.4) using the similar method developed by Suprabha in
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[100] as follows

W (ε) =
1

2
Eε2f =

1

2
E[

1

2L

∫︂ +L

−L

ε[1− cosh(βsx)

cosh(βsL)
]dx]2

=
1

2
E

[︃
1− tanh(βsL)

βsL

]︃2
ε2

=
1

2
Eζε2, (3.13)

where the modified shear lag parameter is defined as

ζ =

[︃
1− tanh(βsL)

βsL

]︃2
. (3.14)

In Eq. (3.13), we have considered the energy potential for the uniformly distributed

nano-fiber reinforcement. In most cases, the fibers are distributed randomly. Hence,

the above fiber energy potential is further modified by Suprabha in [100] to accom-

modate randomly oriented fibers using the krenchel transformation function [82] as

W (ε(F)) =
1

2
Eη0ζε

2, (3.15)

where the term η0 is defined as

η0 =
8

15
+

8

21
⟨P2 cos θ⟩+

8

35
⟨P4 cos θ⟩ , (3.16)

for the perfectly oriented fiber, P2 cos θ = P4 cos θ = 1, and for the randomly ori-

ented fiber P2 cos θ = P4 cos θ = 0. A similar fashion is widely used in micromechanics

of randomly oriented fibers (see, for example, [101–104]).

Now, the energy fraction of fiber indicated as β, is accommodated to the model as

W (F, ε(F),g(G),α(H)) = (1−β)W (F)+β[W (ε(F))+W (g(G))+W (α(H))]. (3.17)

The induced energy variation can be evaluated from Eq. (3.17) as,

·
W (F, ε,g,α) = (1− β)WF ·

·
F+ β(Wε

·
ε+Wg ·

·
g +Wα · ·

α), (3.18)

Recalling the procedures used in Eqs. (2.29)-(2.38), we obtain the desired induced

energy variation for the present case. For example, using Eqs. (3.4), (3.5),(3.7)-(3.8)
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and (3.10)-(3.11), we define the following terms as

Wε
·
ε =

[︃
E

2
η0ζ(FjCFjDDCDD − 1)(FiBDBDA)

]︃
·
F iA, (3.19)

Wg ·
·
g = Cgi

·
GiABDADB, (3.20)

Wα · ·
α = Aαi

·
H iABCDADBDC . (3.21)

Now put back the values from Eqs. (3.19)-(3.21) into Eq. (3.18), the induced

energy potential variation is obtained as

·
W (F, ε,g,α) = (1− β)WFiA

·
F iA +

E

2
η0ζβ(FjCFjDDCDD − 1)FiBDBDA

·
F iA

+Cgiβ
·
GiABDADB + Aαiβ

·
H iABCDADBDC . (3.22)

Thus, we obtain the variational derivative of the energy potential in Eq. (3.22).

3.2 Equilibrium and Boundary Conditions

The weak form of the equilibrium equations can be obtained by the virtual-work

statement (see, for example, [24, 34, 35, 67]) as described in Eq. (2.40). In this

thesis, we also adopt the framework of the virtual work statement to formulate the

Euler equilibrium equations and the associated boundary conditions arising in the

third gradient of the continuum deformation. For the present case, we evaluate the

potential energy of the system as

E =

∫︂
Ω

U(F, ε,g,α)dA, (3.23)

where Ω is the referential domain occupied by a fiber-matrix material. The varia-

tional derivative of the potential energy of the system is

·
E =

∫︂
Ω

·
U(F, ε,g,α)dA. (3.24)

The energy potential in Eq. (3.23) is augmented as U(F, ε,g, α, p) = W (F, ε,g, α)−

p(J − 1) to overcome the constraint of bulk incompressibility, where J is determinant

63



of deformation gradient F and p is an indeterminate Lagrange multiplier field. There-

fore Eq. (3.24) becomes
·
E =

∫︂
Ω

·
U(F, ε,g,α,p)dA. (3.25)

Now, using Eq. (3.22) and the relation
·
J = JF

·
F ·

·
F = F∗ ·

·
F , we evaluated the

variational derivative of the augmented energy potential as

·
U =

·
W − p

·
J

= (1− β)WFiA

·
F iA +

E

2
η0ζβ(FjCFjDDCDD − 1)(FiBDBDA)

·
F iA + Cgiβ

·
GiABDADB

+ Aαiβ
·
H iABCDADBDC − pF ∗

iA

·
F iA. (3.26)

Let us define
·
χi = ui. Thus Eq. (3.25) can be recast as

·
E =

∫︂
Ω

[(1− β)WFiA
ui,A +

E

2
η0ζβ(FjCFjDDCDD − 1)(FiBDBDA)ui,A

+ CgiβDADBui,AB + AαiβDADBDCui,ABC − pF ∗
iAui,A]dA. (3.27)

Applying integration by parts (see Eqs. (2.46) and (2.47))

CgiDADBui,AB = (CgiDADBui,A),B − (CgiDADB),Bui,A, (3.28)

and

AαiDADBDCui,ABC = (AαiDADBDCui,AB),C − (AαiDADBDC),Cui,AB. (3.29)

Now using the expressions from Eqs. (3.28)-(3.29) into the Eq. (3.27) we obtain

·
E =

∫︂
Ω

[(1− β)WFiA
ui,A +

E

2
η0ζβ(FjCFjDDCDD − 1)(FiBDBDA)ui,A

+ (CgiβDADBui,A),B − (CgiβDADB),B ui,A + (AαiβDADBDCui,AB),C

− (AαiβDADBDC),C ui,AB − pF ∗
iAui,A]dA. (3.30)

This can be written as

·
E =

∫︂
Ω

[(1− β)WFiA
− pF ∗

iA +
E

2
η0ζβ(FjCFjDDCDD − 1)(FiBDBDA)

− (CgiβDADB),B]ui,AdA−
∫︂
Ω

[︂
(AαiβDADBDC),C ui,AB

]︂
dA

+

∫︂
∂Ω

(CgiβDADB)ui,ANBdS +

∫︂
∂Ω

(AαiβDADBDC)ui,ABNCdS. (3.31)
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By applying integration by parts and Green-Stoke’s theorem, we find the expression

of second integral term of Eq. (3.31) as∫︂
Ω

[︂
(AαiDADBDC),C ui,AB

]︂
dA

=

∫︂
Ω

[{(AαiDADBDC),C)ui,A},B − (AαiDADBDC),CBui,A]dA,

=

∫︂
∂Ω

(AαiDADBDC),C ui,ANBdS −
∫︂
Ω

(AαiDADBDC),CBui,AdA. (3.32)

In Eqs. (3.31) and (3.32), N is the rightward unit normal to the boundary ∂Ω. We

substitute the Eq. (3.32) into Eq. (3.31) and furnish

·
E =

∫︂
Ω

[(1− β)WFiA
− pF ∗

iA +
E

2
η0ζβ(FjCFjDDCDD − 1)(FiBDBDA)

− (CgiβDADB),B + (AαiβDADBDC),CB]ui,AdA+

∫︂
∂Ω

(CgiβDADBui,A)NBdS

+

∫︂
∂Ω

[(AαiβDADBDC)ui,AB]NCdS −
∫︂
∂Ω

[(AαiβDADBDC),C ui,A]NBdS. (3.33)

Finally, we obtain

·
E =

∫︂
Ω

PiAui,AdA+

∫︂
∂Ω

[
{︂
CgiβDADB − A (αiβDADBDC),C

}︂
ui,ANB

+ AαiβDADBDCui,ABNC ]dS, (3.34)

where

PiA(ei ⊗ EA) = [(1− β)WFiA
− pF ∗

iA +
E

2
η0ζβ(FjCFjDDCDD − 1)(FiBDADB)

− C (giβDADB),B + A (αiβDADBDC),BC ](ei ⊗ EA). (3.35)

To obtain the admissible boundary conditions, we apply integration by parts (i.e.

PiAui,A = (PiAui),A − PiA,Aui) in Eq. (3.34) and obtain

·
E =

∫︂
∂Ω

PiAuiNAdS −
∫︂
Ω

PiA,AuidA+

∫︂
∂Ω

[{CgiβDADB − A (αiβDADBDC),C}ui,ANB

+ AαiβDADBDCui,ABNC ]dS. (3.36)

Now, we define

WGiAB
≡ CgiDADB and WHiABC

≡ AαiDADBDC . (3.37)
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Using Eqs. (3.37) and (2.56), we can rewrite Eq. (3.36) as

·
E =

∫︂
∂Ω

PiAuiNAdS +

∫︂
∂Ω

[β
(︂
WGiAB

− (WHiABC
),C

)︂
ui,ANB + βWHiABC

ui,ABNC ]dS.

(3.38)

Eq. (3.38) can be recast using Eqs. (2.58)-(2.61) as

·
E =

∫︂
∂Ω

PiAuiNAdS +

∫︂
∂Ω

β
[︂
WGiAB

− (WHiABC
),C

]︂ (︂
u

′

iTA + ui,NNA

)︂
NBdS

+

∫︂
∂Ω

βWHiABC
[u

′′

i TATB + u
′

i(T
′

ATB + TA,NNB) + u
′

i,N(TANB +NATB)

+ ui,N(N
′

ATB +NA,NNB) + ui,NNNANB]NCdS. (3.39)

Now, we apply the iterated integrations by parts (see, for example, Eqs. (2.63)-

(2.67)) and obtain

·
E =

∫︂
∂Ω

PiAuiNAdS +

∫︂
∂Ω

β
[︂
(WGiAB

TANBui)
′
− (WGiAB

TANB)
′
ui

]︂
dS

−
∫︂
∂Ω

β[((WHiABC
),C TANBui)

′ −
(︂
(WHiABC

),C TANB

)︂′

ui]dS +

∫︂
∂Ω

β[WGiAB
NANB

− (WHiABC
),C NANB]ui,NdS +

∫︂
∂Ω

β[(WHiABC
TATBNCui)

′′
+ (WHiABC

TATBNC)
′′
ui

− 2
[︂
(WHiABC

TATBNC)
′
ui

]︂′

]dS +

∫︂
∂Ω

β[
(︂
WHiABC

(T
′

ATBNC + TA,NNBNC)ui

)︂′

−
(︂
WHiABC

(T
′

ATBNC + TA,NNBNC)
)︂′

ui]dS +

∫︂
∂Ω

βWHiABC
[ui,N(N

′

ATBNC

+NA,NNBNC)]dS +

∫︂
∂Ω

β[(WHiABC
(TANBNC +NATBNC)ui,N)

′
− (WHiABC

(TANBNC

+NATBNC))
′
ui,N ]dS +

∫︂
∂Ω

β (WHiABC
ui,NNNANBNC) dS. (3.40)

We can rearrange the above as
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·
E =

∫︂
∂Ω

[PiANA − β (WGiAB
TANB)

′
+ β

(︂
(WHiABC

),C TANB

)︂′

+ β (WHiABC
TATBNC)

′′

− β(WHiABC
(T

′

ATBNC + TA,NNBNC))
′
]uidS +

∫︂
∂Ω

β[WGiAB
NANB − (WHiABC

),C NANB

+WHiABC
(N

′

ATBNC +NA,NNBNC)− (WHiABC
(TANBNC +NATBNC))

′
]ui,NdS

+

∫︂
∂Ω

β[{WGiAB
TANB − (WHiABC

),C TANB − 2 (WHiABC
TATBNC)

′
}ui]

′
dS

+

∫︂
∂Ω

β
[︂
(WHiABC

TATBNCui)
′′
]︂
dS +

∫︂
∂Ω

β[WHiABC
(T

′

ATBNC + TA,NNBNC)ui]
′
dS

+

∫︂
∂Ω

β [WHiABC
(TANBNC +NATBNC)ui,N ]

′
dS +

∫︂
∂Ω

β (WHiABC
ui,NNNANBNC) dS,

(3.41)

which may be recast as

·
E =

∫︂
∂Ω

[PiANA − β (CgiDATADBNB)
′
+ β(Aαi,CDATADBNBDC)

′

+ β (AαiDATADBTBDCNC)
′′
−
(︂
βAαiDCNC(DAT

′

ADBTB +DATA,NDBNB)
)︂′

]uidS

+

∫︂
∂Ω

β[CgiDANADBNB − Aαi,CDANADBNBDC + AαiDCNC(DAN
′

ADBTB

+DANA,NDBNB)− {AαiDADBDC(TANBNC +NATBNC)}
′
]ui,NdS

+
∑︂

∥ β{CgiDATADBNB −Aαi,CDATADBNBDC − 2(AαiDATADBTBDCNC)
′}ui ∥

+
∑︂

∥ d

dS
[(βAαiDATADBTBDCNC)ui] ∥ +

∑︂
∥ [Aαiβ(DAT

′

ADBTBDCNC

+DATA,NDBNBDCNC)]ui ∥ +
∑︂

∥ [Aαiβ(DATADBNBDCNC

+DANADBTBDCNC)]ui,N ∥ +

∫︂
∂Ω

(AαiβDANADBNBDCNC)ui,NNdS, (3.42)

By comparing Eqs. (3.42) and (2.71), we obtain
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ti = PiANA − β
d

ds
[CgiDATADBNB − Aαi,CDATADBNBDC

+ AαiDCNC(DAT
′

ADBTB +DATA,NDBNB)] +
d2

ds2
(AαiβDATADBTBDCNC) ,

mi = C (g)i βDANADBNB − A (α)i,C βDANADBNBDC

+ AαiβDCNC(DAN
′

ADBTB +DANA,NDBNB)−
d

ds
{2(AαiβDADBDCNATBNC)}],

ri = AαiβDANADBNBDCNC ,

fi = CgiβDATADBNB − Aαi,CβDATADBNBDC − 2β
d

ds
[AαiDATADBTBDCNC ]

+ Aαiβ(DAT
′

ADBTBDCNC +DATA,NDBNBDCNC),

d

ds
(fi) =

d

dS
(AαiβDATADBTBDCNC),

hi = 2AαiβDANADBTBDCNC , (3.43)

where ti,mi, and fi are the expressions of edge tractions, edge moments, and corner

forces, respectively. Similar boundary conditions are formulated in [69, 70] for the

third gradient continua. In the present case, the local point rotations are obtained

via the computation of the third gradient of continuum deformation, i.e., the rate of

changes in curvature which is determined by the imposition of triple forces (i.e. ri,

hi) on the desired boundaries.

Now, using Eq. (2.73), we reduce the Eq. (3.43) to

ti = PiANA,

mi = (Cgiβ − Aαi,CβDC)DANADBNB,

ri = AαiβDANADBNBDCNC ,

fi = 0,

d

ds
(fi) = 0,

hi = 0. (3.44)
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Further, Eq. (3.35) can be written as

PiA(ei ⊗ EA) = [(1− β)WFiA
− pF ∗

iA +
E

2
η0ζβ(FjCFjDDCDD − 1)(FiBDADB)

−Cgi,BβDADB + Aαi,BCβDADBDC ](ei ⊗ EA). (3.45)

3.2.1 Example: Neo-Hookean materials

So far, we have discussed the kinematics of the reinforcement phase (i.e. fibers) of

a composite. The response of matrix material is assimilated by the energy density

function of Neo-Hookean materials which is given by Eqs. (2.76) and (2.77).

Taking the derivative of Eq. (2.77) with respect to deformation gradient F and

substituting it into Eq. (3.45), we find

PiA(ei ⊗ EA) = [(1− β)µFiA − pF ∗
iA +

E

2
η0ζβ(FjCFjDDCDD − 1)(FiBDADB)

−Cgi,BβDADB + Aαi,BCβDADBDC ](ei ⊗ EA). (3.46)

By using the Piola’s identity F ∗
iA,A = 0, Eq. (2.56), and Eq. (3.46), the Euler

equilibrium equation is obtained as

PiA,A = (1− β)µFiA,A − p,AF
∗
iA +

E

2
η0ζβ(FiB,AFjCFjD + FiBFjC,AFjD

+ FiBFjCFjD,A)DADBDCDD − E

2
η0ζβFiB,ADADB − Cgi,ABβDADB

+ Aαi,ABCβDADBDC = 0. (3.47)

In case of initially orthonormal set of fibers

D = E1, D1 = 1, D2 = 0, (3.48)

and Eq. (3.47) can be recast as

PiA,A = (1− β)µFiA,A − p,AF
∗
iA +

E

2
η0ζβ(Fi1,1Fj1Fj1 + Fi1Fj1,1Fj1 + Fi1Fj1Fj1,1)

− E

2
η0ζβFi1,1 − βCgi,11 + βAαi,111 = 0, (3.49)

where

gi = Fi1,1, αi = Fi1,11, FiA = χi,A, F
∗
iA = εijεABFjB, (3.50)
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and εij is a 2-D permutation. Now, using Eqs. (3.49)-(3.50) and the constraint

of the bulk incompressibility (i.e., det F = 1), we deliver the following system of

PDEs for the case of Neo-Hookean materials reinforced with randomly distributed

nano-fibers,

0 = (1−β)µχi,AA−p,AεijεABχj,B+
E

2
η0ζβ(χi,11χj,1χj,1+χi,1χj,11χj,1+χi,1χj,1χj,11)

− E

2
η0ζβχi,11 − βCχi,1111 + βAχi,111111, (3.51)

for i = 1; (1−β)µ(χ1,11+χ1,22)−p,1χ2,2+p,2χ2,1+
E

2
η0ζβ(3χ1,11χ1,1χ1,1+χ1,11χ2,1χ2,1

+ 2χ2,11χ1,1χ2,1)−
E

2
η0ζβχ1,11 − βCχ1,1111 + βAχ1,111111 = 0, (3.52)

for i = 2; (1−β)µ(χ2,11+χ2,22)+p,1χ1,2−p,2χ1,1+
E

2
η0ζβ(3χ2,11χ2,1χ2,1+χ2,11χ1,1χ1,1

+ 2χ1,11χ1,1χ2,1)−
E

2
η0ζβχ2,11 − βCχ2,1111 + βAχ2,111111 = 0, (3.53)

and

χ1,1χ2,2 − χ1,2χ2,1 − 1 = 0. (3.54)

The details of the numerical solution process of the above (Eqs. (3.52)-(3.54))

system of Partial Differentiation Equations (PDEs) are reserved in section 3.3.

3.2.2 Example: Mooney-Rivlin materials

In case of Mooney-Rivlin materials, the energy density function and its derivative

with respect to F are given by Eqs. (2.90)-(2.92).

Now, substituting Eq. (2.92) into Eq. (3.45), we find

PiA(ei ⊗ EA) = [(1− β){µFiA + κFiB(FjCFjCδAB − FjAFjB)} − pF ∗
iA

+
E

2
η0ζβ(FjCFjDDCDD−1)(FiBDADB)−Cgi,BβDADB+Aαi,BCβDADBDC ](ei⊗EA).

(3.55)
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The Euler equations for the Mooney-Rivlin materials reinforced with randomly ori-

ented nano-fibers are obtained using Eq. (2.56) as

PiA,A = (1− β){µFiA,A + κFiA,AFjCFjC − κFiB,AFjAFjB + κFiB(2FjCFjC,A

− FjA,AFjB − FjAFjB,A)} − p,AF
∗
iA − (

E

2
η0ζβFiB,ADADB) +

E

2
η0ζβ(FiB,AFjCFjD

+FiBFjC,AFjD+FiBFjCFjD,A)DADBDCDD−Cgi,ABβDADB+Aαi,ABCβDADBDC = 0,
(3.56)

which can be reduced by using Eq. (3.48) as

PiA,A = (1−β){µFiA,A+κFiA,AFjCFjC−κFiB,AFjAFjB+κFiB(2FjCFjC,A−FjA,AFjB

−FjAFjB,A)}− p,AF
∗
iA+

E

2
η0ζβ(Fi1,1Fj1Fj1+Fi1Fj1,1Fj1+Fi1Fj1Fj1,1)−

E

2
η0ζβFi1,1

− Cβgi,11 + Aβαi,111 = 0, (3.57)

where gi, αi, and F ∗
iA are defined in Eq. (3.50). Thus we deliver the following governing

equations for the Mooney-Rivlin matrix materials reinforced with randomly oriented

nano-fibers

0 = (1− β){µχi,AA + κχi,AAχj,Cχj,C − κχi,BAχj,Aχj,B + κχi,B(2χj,Cχj,CA − χj,AAχj,B

− χj,Aχj,BA)} − p,AεijεABχj,B +
E

2
η0ζβ(χi,11χj,1χj,1 + χi,1χj,11χj,1 + χi,1χj,1χj,11)

− E

2
η0ζβχi,11 − Cβχi,1111 + Aβχi,111111, (3.58)

3.3 Custom-built FEA of the nonlinear coupled

PDE

The resulting PDE systems (Eqs. (3.52)–(3.54)) are coupled nonlinear differential

equations of sixth order. For the purpose of preprocessing, Eqs. (3.52)-(3.54) has
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been recast as:

β
′
µ(Q+ χ1,22)− PS +BD +

E

2
Γ(3QT 2 +QD2 + 2TRD −Q)− βCM + βAM,11 = 0,

β
′
µ(R + χ2,22) + PG−BT +

E

2
Γ(3RD2 +RT 2 + 2TQD −R)− βCN + βAN,11 = 0,

Q− χ1,11 = 0,

R− χ2,11 = 0,

T − χ1,1 = 0,

D − χ2,1 = 0,

G− χ1,2 = 0,

S − χ2,2 = 0,

M −Q,11 = 0,

N −R,11 = 0,

P − µ(Q+ χ1,22)− CM = 0,

B − µ(R + χ2,22)− CN = 0, (3.59)

where Γ = βη0ζ, 1 − β = β
′
, P = p,1, B = p,2, Q = χ1,11, R = χ2,11, T = χ1,1,

D = χ2,1, G = χ1,2, S = χ2,2, M = Q,11, and N = R,11. Thus, we transform a system

of coupled sixth-order partial differential equations into a system of coupled second-

order PDEs. The above non-linear terms(i.e., Pχ2,2, Bχ2,1 etc.) has been treated via

the Picard iterative procedure,

−Pinitialχ
initial
2,2 +Binitialχ

initial
2,1 ⇒ −P0χ

0
2,2 +B0χ

0
2,1,

Pinitialχ
initial
1,2 −Binitialχ

initial
1,1 ⇒ P0χ

0
1,2 +B0χ

0
1,1,

3QinitialT
2
initial +QinitialD

2
initial + 2TinitialRinitialDinitial ⇒ 3Q0T

2
0 +Q0D

2
0 + 2T0R0D0,

3RinitialD
2
initial +RinitialT

2 + 2TinitialQinitialDinitial ⇒ 3R0D
2
0 +R0T

2
0 + 2T0Q0D0.

(3.60)

With the progress of iteration, values of P,B, T,D,G, S,Q, and R continue to be

refreshed based on their previous estimations (i.e., P0, B0, T0, D0, G0, S0, Q0 and R0).
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Hence, for Nth number iteration, we can write

−PN−1χ
N−1
2,2 +BN−1χ

N−1
2,1 ⇒ −PNχ

N
2,2 +BNχ

N
2,1,

PN−1χ
N−1
1,2 −BN−1χ

N−1
1,1 ⇒ PNχ

N
1,2 +BNχ

N
1,1,

3QN−1T
2
N−1 +QN−1D

2
N−1 + 2TN−1RN−1DN−1 ⇒ 3QNT

2
N +QND

2
N + 2TNRNDN ,

3RN−1D
2 +RN−1T

2
N−1 + 2TN−1QN−1DN−1 ⇒ 3RND

2
N +RNT

2
N + 2TNQNDN .

(3.61)

Thus, the weak form of Eq. (3.59) is obtained by∫︂
Ωe

w1(β
′
µ(Q+ χ1,22)− P0S +B0D +

E

2
Γ(3QT 2

0 +QD2
0 + 2RT0D0 −Q)− βCM

+βAM,11)dΩ = 0,∫︂
Ωe

w2(β
′
µ(R + χ2,22) + P0G−B0T +

E

2
Γ(3RD2

0 +RT 2
0 + 2QT0D0 −R)− βCN

+βAN,11)dΩ = 0,∫︂
Ωe

w3(Q− χ1,11)dΩ = 0,∫︂
Ωe

w4(R− χ2,11)dΩ = 0,∫︂
Ωe

w5 (T − χ1,1) dΩ = 0,∫︂
Ωe

w6 (D − χ2,1) dΩ = 0,∫︂
Ωe

w7 (G− χ1,2) dΩ = 0,∫︂
Ωe

w8 (S − χ2,2) dΩ = 0,∫︂
Ωe

w9(M −Q,11)dΩ = 0,∫︂
Ωe

w10(N −R,11)dΩ = 0,∫︂
Ωe

w11(P − µ(Q+ χ1,22)− CM)dΩ = 0,∫︂
Ωe

w12(B − µ(R + χ2,22)− CN)dΩ = 0, (3.62)
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Using integration by parts and Green–Stoke’s theorem, we obtain that∫︂
Ωe

β
′
w1µQ− β

′
µw1,2χ1,2 − w1P0S + w1B0D + w1

E

2
Γ(3QT 2

0 +QD2
0 + 2RT0D0 −Q)

−w1βCM − βAw1,1M,1)dΩ +

∫︂
∂Γe

(︂
β

′
µw1χ1,2

)︂
NdΓ +

∫︂
∂Γe

(βAw1M,1)NdΓ = 0,∫︂
Ωe

(w2β
′
µR− β

′
µw2,2χ2,2 + w2P0G− w2B0T + w2

E

2
Γ(3RD2

0 +RT 2
0 + 2QT0D0 −R)

−w2βCN − βAw2,1N,1)dΩ +

∫︂
∂Γe

(︂
β

′
µw2χ2,2

)︂
NdΓ +

∫︂
∂Γe

(βAw2N,1)NdΓ = 0,∫︂
Ωe

(w3Q+ w3,1χ1,1)dΩ−
∫︂
∂Γe

(w3χ1,1)NdΓ = 0,∫︂
Ωe

(w4R + w4,1χ2,1)dΩ−
∫︂
∂Γe

(w4χ2,1)NdΓ = 0,∫︂
Ωe

(w5T − w5χ1,1) dΩ = 0,∫︂
Ωe

(w6D − w6χ2,1) dΩ = 0,∫︂
Ωe

(w7G− w7χ1,2) dΩ = 0,∫︂
Ωe

(w8S − w8χ2,2) dΩ = 0,∫︂
Ωe

(w9M + w9,1Q,1)dΩ−
∫︂
∂Γe

(w9Q,1)NdΓ = 0,∫︂
Ωe

(w10N + w10,1R,1)dΩ−
∫︂
∂Γe

(w10R,1)NdΓ = 0,∫︂
Ωe

(w11P − w11µQ+ µw11,2χ1,2 − w11CM)dΩ−
∫︂
∂Γe

(µw11χ1,2)NdΓ = 0,∫︂
Ωe

(w12B − w12µR + µw12,2χ2,2 − w12CN)dΩ−
∫︂
∂Γe

(µw12χ2,2)NdΓ = 0, (3.63)

where Ω, ∂Γ and N are the domain of interest, the associated boundary, and the

rightward unit normal to the boundary. Now, the unknowns can be expressed in the

form of Lagrangian polynomial as

(∗) =
n=4∑︂
j=1

[︂
(∗)j Ψj(x, y)

]︂
, (3.64)

where (∗) represents any of the twelve (χ1, χ2, Q,R, T,D, G, S,M,N, P ,B) un-

knowns. Thus, The test function w is obtained as

(wk) =
n=4∑︂
i=1

[︁
wi

kΨi(x, y)
]︁
; k = 1, 2, 3, 4, ...12, (3.65)
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where wi is the weight of the test function and Ψi(x, y) are the corresponding shape

function, such that

Ψ1 =
(x− 2)(y − 1)

2
,Ψ2 =

x(y − 1)

−2
,Ψ3 =

xy

2
and Ψ4 =

y(x− 2)

−2
. (3.66)

Eq. (3.63) can be recast using Eqs. (3.64) and (3.65) as

n∑︂
i,j=1

{︃∫︂
Ωe

(︃
β

′
µΨiΨj + 3

E

2
ΓΨiΨjT

2
0 +

E

2
ΓΨiΨjD

2
0 −

E

2
ΓΨiΨj

)︃
dΩ

}︃
Qj−

n∑︂
i,j=1

{
∫︂
Ωe

(β
′
µΨi,2Ψj,2)dΩ}χ1j −

n∑︂
i,j=1

{︃∫︂
Ωe

(ΨiΨjP0) dΩ

}︃
Sj +

n∑︂
i,j=1

{
∫︂
Ωe

(ΨiΨjB0)

dΩ}Dj −
n∑︂

i,j=1

{︃∫︂
Ωe

(ΨiΨjβC +Ψi,1Ψj,1βA) dΩ

}︃
Mj +

n∑︂
i,j=1

{
∫︂
Ωe

(
E

2
ΓΨi2Ψj

T0D0)dΩ}Rj +

∫︂
∂Γe

(︂
β

′
µΨiχ1,2

)︂
NdΓ +

(︃∫︂
∂Γe

βAΨiM,1

)︃
NdΓ = 0,

n∑︂
i,j=1

{︃∫︂
Ωe

(︃
β

′
µΨiΨj + 3Γ

E

2
ΨiΨjD

2
0 +

E

2
ΓΨiΨjT

2
0 − E

2
ΓΨiΨj

)︃
dΩ

}︃
Rj

−
n∑︂

i,j=1

{︃∫︂
Ωe

(︂
β

′
µΨi,2Ψj,2

)︂
dΩ

}︃
χ2j +

n∑︂
i,j=1

{︃∫︂
Ωe

(ΨiΨjP0) dΩ

}︃
Gj

−
n∑︂

i,j=1

{︃∫︂
Ωe

(ΨiΨjB0) dΩ

}︃
Tj −

n∑︂
i,j=1

{︃∫︂
Ωe

(ΨiΨjβC +Ψi,1Ψj,1βA) dΩ

}︃
Nj

+
n∑︂

i,j=1

{︃∫︂
Ωe

(︃
E

2
ΓΨi2ΨjT0D0

)︃
dΩ

}︃
Qj +

∫︂
∂Γe

(︂
β

′
µΨiχ2,2

)︂
NdΓ

+

∫︂
∂Γe

(βAΨiN,1)NdΓ = 0,

n∑︂
i,j=1

{︃∫︂
Ωe

(ΨiΨj) dΩ

}︃
Qj +

n∑︂
i,j=1

{︃∫︂
Ωe

(Ψi,1Ψj,1) dΩ

}︃
χ1j −

∫︂
∂Γe

(Ψiχ1,1)NdΓ = 0,

n∑︂
i,j=1

{︃∫︂
Ωe

(ΨiΨj) dΩ

}︃
Rj +

n∑︂
i,j=1

{︃∫︂
Ωe

(Ψi,1Ψj,1) dΩ

}︃
χ2j −

∫︂
∂Γe

(Ψiχ2,1)NdΓ = 0,

n∑︂
i,j=1

{︃∫︂
Ωe

(ΨiΨj) dΩ

}︃
Tj −

n∑︂
i,j=1

{︃∫︂
Ωe

(ΨiΨj,1) dΩ

}︃
χ1j = 0,

n∑︂
i,j=1

{︃∫︂
Ωe

(ΨiΨj) dΩ

}︃
Dj −

n∑︂
i,j=1

{︃∫︂
Ωe

(ΨiΨj,1) dΩ

}︃
χ2j = 0,

n∑︂
i,j=1

{︃∫︂
Ωe

(ΨiΨj) dΩ

}︃
Gj −

n∑︂
i,j=1

{︃∫︂
Ωe

(ΨiΨj,2) dΩ

}︃
χ1j = 0,
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n∑︂
i,j=1

{︃∫︂
Ωe

(ΨiΨj) dΩ

}︃
Sj −

n∑︂
i,j=1

{︃∫︂
Ωe

(ΨiΨj,2) dΩ

}︃
χ2j = 0

n∑︂
i,j=1

{︃∫︂
Ωe

(ΨiΨj) dΩ

}︃
Mj +

n∑︂
i,j=1

{︃∫︂
Ωe

(Ψi,1Ψj,1) dΩ

}︃
Qj −

∫︂
∂Γe

(ΨiQ,1)NdΓ = 0,

n∑︂
i,j=1

{︃∫︂
Ωe

(ΨiΨj) dΩ

}︃
Nj +

n∑︂
i,j=1

{︃∫︂
Ωe

(Ψi,1Ψj,1) dΩ

}︃
Rj −

∫︂
∂Γe

(ΨiR,1)NdΓ = 0,

n∑︂
i,j=1

{︃∫︂
Ωe

(ΨiΨj) dΩ

}︃
Pj −

n∑︂
i,j=1

{︃∫︂
Ωe

(µΨiΨj) dΩ

}︃
Qj +

n∑︂
i,j=1

{︃∫︂
Ωe

(µΨi,2Ψj,2) dΩ

}︃
χ1j

−
n∑︂

i,j=1

{︃∫︂
Ωe

(ΨiΨjC) dΩ

}︃
Mj −

∫︂
∂Γe

(µΨiχ1,2)NdΓ = 0,

n∑︂
i,j=1

{︃∫︂
Ωe

(ΨiΨj) dΩ

}︃
Bj −

n∑︂
i,j=1

{︃∫︂
Ωe

(µΨiΨj) dΩ

}︃
Rj +

n∑︂
i,j=1

{︃∫︂
Ωe

(µΨi,2Ψj,2) dΩ

}︃
χ2j

−
n∑︂

i,j=1

{︃∫︂
Ωe

(ΨiΨjC) dΩ

}︃
Nj −

∫︂
∂Γe

(µΨiχ2,2)NdΓ = 0, (3.67)

Now, we obtain the local stiffness matrix and the forcing vector for each element

as ⎡⎢⎢⎢⎢⎢⎢⎣
K11

11 K11
12 K11

13 K11
14

K11
21 K11

22 K11
23 K11

24

K11
31 K11

32 K11
33 K11

34

K11
41 K11

42 K11
43 K11

44

⎤⎥⎥⎥⎥⎥⎥⎦
Local

⎡⎢⎢⎢⎢⎢⎢⎣
χ1
1

χ2
1

χ3
1

χ4
1

⎤⎥⎥⎥⎥⎥⎥⎦
Local

=

⎡⎢⎢⎢⎢⎢⎢⎣
F 1
1

F 1
2

F 1
3

F 1
4

⎤⎥⎥⎥⎥⎥⎥⎦
Local

. (3.68)

Which can be written in compact form as[︂
K11

ij

]︂ [︂
χi
1

]︂
=

[︂
F 1
i

]︂
for i, j = 1, 2, 3, 4, (3.69)

where [︂
K11

ij

]︂
= −

∫︂
Ωe

(︂
β

′
µΨi,2Ψj,2

)︂
dΩ, (3.70)

and [︂
F 1
i

]︂
= −

∫︂
∂Γe

(︂
β

′
µΨiχ1,2

)︂
NdΓ−

(︃∫︂
∂Γe

βAΨiM,1

)︃
NdΓ. (3.71)

Finally, the global systems of equations for each individual elements can be ob-

tained as
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[K11] [K12] [K13] [K14] ... [K19] [K110] [K111] [K112]

[K21] [K22] [K23] [K24] ... [K29] [K210] [K211] [K212]

[K31] [K32] [K33] [K34] ... [K39] [K310] [K311] [K312]

[K41] [K42] [K43] [K44] ... [K49] [K410] [K411] [K412]

[K51] [K52] [K53] [K54] ... [K59] [K510] [K511] [K512]

[K61] [K62] [K63] [K64] ... [K69] [K610] [K611] [K612]

[K71] [K72] [K73] [K74] ... [K79] [K710] [K711] [K712]

[K81] [K82] [K83] [K84] ... [K89] [K810] [K811] [K812]

[K91] [K92] [K93] [K94] ... [K99] [K910] [K911] [K912]

[K101] [K102] [K103] [K104] ... [K109] [K1010] [K1011] [K1012]

[K111] [K112] [K113] [K114] ... [K119] [K1110] [K1111] [K1112]

[K121] [K122] [K123] [K124] ... [K129] [K1210] [K1211] [K1212]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

χi
1

χi
2

Qi

Ri

Ti

Di

Gi

Si

Mi

Ni

Pi

Bi

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

{F 1}

{F 2}

{F 3}

{F 4}

{F 5}

{F 6}

{F 7}

{F 8}

{F 9}

{F 10}

{F 11}

{F 12}

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(3.72)

3.4 Results and discussion

The delivered system of PDEs (Eqs. (3.52)-(3.54)) which govern the mechanics of the

Neo-Hookean material reinforced with nano-fibers has been solved using a custom-

built numerical analysis scheme. The schematic of the problem is demonstrated in

Figure 3.1. It is to be noted that, data are obtained under the normalized setting

t
µ
= 10, E

µ
= 100, C

µ
= 10, A

µ
= 10, S = 100 unless otherwise specified. The fiber

energy fraction is taken as equivalent to the volume fraction of fiber (β = 4.6%). The

various aspect ratios S are obtained by varying the fiber length 2L while keeping the

thickness h = 0.34nm as a constant. Typical strain distribution along the fiber length

for three different types of graphene i.e., Pristine, Hydroxylated, and TSW defected

is shown in Figure 3.3. The relevant parameters (i.e., interfacial stiffness K, Young’s

modulus E etc.) for the different types of graphene are taken from [100].

As the aspect ratio of graphene increases, the strain distribution becomes uniform

throughout the entire length of nano-fiber for all the three cases shown in Figure 3.3.
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Table 3.1: Interfacial parameters and properties of graphene [100]

Graphene K(GPa) E(GPa) h(nm)

Pristine 0.173 1023 0.34

Hydroxylated 3.03 956 0.34

TSW defected 0.931 335 0.34

(a) (b)

(c)

Figure 3.3: Strain distribution along the fiber length for (a) Pristine, (b) Hydroxylated
and (c) TSW-defected cases with various aspect ratios S

The uniform strain distribution along the fiber length obtained for higher aspect ratio

(S) indicates a greater efficiency of interfacial shear stress transfer from the matrix

material to the fiber. In later section, we will discuss how this high interfacial stress

transfer efficiency affects the effective Young’s modulus of a nano-fiber reinforced

composite.

A general deformation configuration of a nano-fiber reinforced composite material

subjected to the uniaxial tension under the normalized parameter setting (i.e. t
µ
=
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10, E
µ
= 100, C

µ
= 10, A

µ
= 10, S = 100) is displayed in Figure 3.4. The expression

of the applied load t is obtained from Eqs. (3.44)-(3.45) as follows

t = P11 = (1−β)µχ1,1−pχ2,2+
E

2
η0ζβ(χ1,1χ1,1+χ2,1χ2,1−1)χ1,1−Cβχ1,111+Aβχ1,11111.

(3.73)

Figure 3.4: Deformation configuration: t
µ
= 10, E

µ
= 100, C

µ
= 10, A

µ
= 10, S = 100

The variation of the deformation profile with fiber axial stiffness is shown in Figure

3.5. In chapter 2, we have discussed the effect of fiber’s elastic modulus (see, for

example, Figure 2.3) for the case of unidirectional fiber reinforcement. We observed

a similar result in the present nano-fiber reinforcement case, which refers that the

axial extension of the composite is sensitive to the modulus pertaining to the fiber’s

extension. When the fiber stiffness is reduced, the amount of axial strain in the

composite increases. The result is closely aligned with the findings in [67]. Figure 3.6

indicates that the composite’s axial extension is also sensitive to the fiber aspect ratio

S. The axial extension of the composite is less for a higher fiber aspect ratio (i.e.,

S = 5000) compared to the lower fiber aspect ratio (i.e., S = 100) under the same

applied tension. As we have seen from Figure 3.3 that the interfacial shear stress

transfer from the matrix material to the fiber is less effective for the lower aspect

ratio, most of the load is carried by the matrix itself. Therefore, the resistance to the

axial tension is poor and the axial strain of the composite becomes more in case of

low aspect ratio S.
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Figure 3.5: Deformed configuration with variation of E
µ
when t

µ
= 10, C

µ
= 10, A

µ
=

10, S = 100

Figure 3.6: Deformed configuration with variation of S when t
µ
= 10, E

µ
= 100, C

µ
=

10, A
µ
= 10

The deformation configuration is also affected by the varying triple stress modulus

(A
µ
). Figure 3.7 depicts the change in deformation configuration with the various

triple stress parameter (A
µ
) for the case of nano-fiber reinforcement. In this case, the

axial strain is also found to be insensitive to the triple stress parameter, whereas

the lateral strain decreases as the triple stress parameter increases. The obtained

result is similar to the unidirectional fiber reinforcement case that we have discussed

in section 2.5 (see Figure 2.4 ). Moreover, the solution obtained from the proposed

third gradient model accommodates the solutions from the second gradient model [67]
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in the limit of vanishing triple stress modulus (i.e., A
µ
= 0, see, Figure 3.8). It is to be

noted here that, to compare the deformation configuration obtained from the third

gradient model to the second gradient model [67], we set the shear lag parameter

ζ = 1 and the krencel orientation factor η0 = 1.

Figure 3.7: Deformed configuration with variation of A
µ
when t

µ
= 10, E

µ
= 100, C

µ
=

10, S = 100

Figure 3.8: Comparison with the existing results [67]

To get a better understanding of the effect of fiber aspect ratio S, the deformation

contour (
√︁

χ2
1 + χ2

2) is plotted in Figure 3.9. The resulting deformation contours

due to the bias extension of the composite demonstrates that the proposed model

can predict the smooth transitions throughout the entire domain of interest. The
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maximum deformation is observed at the two ends of the composite, and with a

smooth transition, the minimum is attained at the center. In addition, the maximum

deformation in case of a higher fiber aspect ratio is small compared to the lower

fiber aspect ratio. For example, the maximum deformation (
√︁
χ2
1 + χ2

2) for the fiber

aspect ratio S = 5000 is almost 50% lower compared to the case when S = 1000 (see

Figure 3.9).

It is clear from Figs. (3.5-3.9) that the net amount of axial (longitudinal) extension

decreases with increasing the values of fiber’s young’s modulus E and aspect ratio S.

In particular, to examine the effects of the fiber aspect ratios within the framework of

the third gradient of deformations onto the shear responses of the nano-fiber reinforced

composite material, we evaluate the shear angle distributions over the domain of

interest. The corresponding shear angles are computed by using Eq. (2.114). As we

discussed in chapter 2, in case of first-order theory, there is a significant discontinuity

in the shear strain field, whereas the second-gradient model predicts a smooth but

non-dilatational transition (see, for example, Fig. 5 in [67]). The results in Figure

3.10 indicate that the proposed third gradient theory predicts continuous, smooth,

and dilatational shear angle distribution over the domain of interest for the nano-

fiber reinforcement case. The shear angle is calculated at each node, and the average

(θavg) is presented in Figure 3.10. The obtained value of the average shear angle

(θavg) decreases with increasing fiber aspect ratio S. The compatible results can also

be found in [85], which demonstrate a close agreement with the presented results.

In addition, the dilatational shear angle distribution is reported in [70], where a

linearized third gradient model is implemented.

Finally, we simulate our proposed model with various fiber aspect ratios (S) and

triple stress parameters (A
µ
) to find the effect of S and A

µ
on the effective Young’s mod-

ulus of the nanofiber-reinforced composite. The Euclidean norm is used to calculate

the effective strain. Upon giving the axial extension, the effective Young’s modulus

of composite is obtained from the applied stress divided by the effective strain. It is
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(a)

(b)

(c)

Figure 3.9: Deformation contour
√︁
χ2
1 + χ2

2 (a) S = 100, (b) S = 1000, (c) S = 5000
when t

µ
= 10, E

µ
= 100, C

µ
= 10, A

µ
= 10
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(a)

(b)

(c)

Figure 3.10: Shear angle distribution for various fiber aspect ratios S ((a) S = 100,
(b) S = 1000, (c) S = 5000) when t

µ
= 10, E

µ
= 100, C

µ
= 10, A

µ
= 10
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clear from Figure 3.11 that, Young’s modulus of composite EC increases with the fiber

aspect ratio. The rate of increment is high until a certain level of fiber aspect ratio

and Young’s modulus gets saturated beyond that level. For example, when A
µ
= 100,

the Young’s modulus increases sharply until the fiber aspect ratio value S = 750, then

it increases slowly up to S = 2000. Beyond that limit Young’s modulus converges to

nearly 40GPa and becomes saturated (i.e. insensitive to the fiber aspect ratio).

Figure 3.11: Variation of effective Young’s modulus of composite with fiber aspect
ratio S

We mentioned earlier that the proposed third gradient model can accommodate the

solutions predicted by the second gradient theory in the limit of the vanishing triple

stress modulus (see, for example, Figure 3.8). In this respect, we compare Young’s

modulus of composite EC obtained from the proposed third gradient model (A
µ
̸= 0)

to Young’s modulus of composite EC obtained from second gradient model (A
µ
= 0).

Figure 3.11 indicates that Young’s modulus EC converges to a higher value in the case

of the third gradient model approximation than that of the second gradient model.

For example, in case of the second gradient model (A
µ
= 0), the Young’s modulus EC

converges to nearly 36GPa, whereas it converges to nearly 40GPa when A
µ
= 100.

The relationship between Young’s modulus of composite EC and triple stress pa-
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rameter A
µ
is also investigated. In particular, the modulus of elasticity of a highly

coordinated material is high compared to the less coordinated material [105]. In

[105], the authors determined the modulus of elasticity for various planar densities

and showed that the higher the planar density, the larger the modulus of elasticity.

In section 2.5.1, we have discussed that, for highly coordinated materials, the rate

of particle rotation is less and the triple stress parameter value is high. Since the

higher triple stress parameter is a characteristic of highly coordinated material, the

modulus of elasticity will essentially be large for the high value of the triple stress

parameter. Figure 3.12 indicates that Young’s modulus of composite EC increases

with the higher value of the triple stress parameter. When the triple stress parameter

A
µ
is small, the Young’s modulus EC converges to a lower value compared to the case

when A
µ
is high. Again, Young’s modulus EC gets saturated at a certain limit of the

triple stress parameter. If the triple stress parameter is increased from A
µ
= 100 to

A
µ
= 500, the Young’s modulus EC converges to nearly 40GPa in both cases, as shown

in Figure 3.12

Figure 3.12: Variation of effective Young’s modulus of composite with triple stress
parameter A

µ
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3.5 Conclusions

In this chapter, we present a third gradient-based continuum model for the mechan-

ics of nanofiber-reinforced composite material subjected to plane deformations. The

fibers are initially assumed as continuously distributed spatial rods of Kirchhoff type,

in which the kinematics of fibers is obtained via the first, second and third gradi-

ent of continuum deformations. The shear lag parameter is incorporated into the

model to transform the continuously distributed unidirectional fibers into the aligned

nanofibers reinforcement, which is subsequently transformed into a randomly ori-

ented nanofiber composite system by introducing the Krenchel orientation factor.

The variational principles and iterative integration by parts are employed to derive

the Euler equations and associated boundary conditions. The energy density function

of Spencer and Soldatos type is modified within the framework of the third gradient

theory to accommodate the third-gradient continua and the associated bulk incom-

pressibility. These, in turn, furnish a system of nonlinear coupled partial differential

equations which have been solved using the custom-built FEA procedure to obtain

the mechanical responses of nanofiber composites.

The mechanical response of nanofiber composite for the various fiber aspect ratios

is presented throughout the chapter. The effective Young’s modulus of the composite

is found to be increased with the fiber aspect ratio up to a certain limit. Beyond that

limit, Young’s modulus gets saturated and converges to a constant value. Moreover,

the obtained model predicts continuous, smooth and dilatational shear angle distri-

butions of the composite subjected to plane bias extension. A constitutive parameter

associated with Piola-type triple stress and its energy couple (i.e., triple force), des-

ignated as the triple stress parameter, emerges due to the introduction of the third

gradient of continuum deformation. The relationship between Young’s modulus of

composite and triple stress parameter is discussed within the scope of the third gra-

dient theory. The effective Young’s modulus of the composite increases with the
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triple stress parameter even when the elastic modulus of the nanofiber remains con-

stant. However, The value of Young’s modulus is nearly the same for all values of the

triple-stress parameter above a certain limit.
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Chapter 4

Conclusions & Future Works

4.1 Conclusions

In this thesis, we have presented a second strain gradient-based continuum model for

the mechanics of elastic solid reinforced with unidirectional fibers (see chapter 2 and

chapter 3), bidirectional fibers (see chapter 2), and randomly distributed nanofibers

(see chapter 3) in finite plane elastostatics. The conclusions can be drawn as follows:

• We have developed a second strain gradient model for the composite and solved

it numerically. We formulated the kinematics of embedded fibers by their po-

sition and director fields and eliminated the constraints of fibers by means of

modeling them as Kirchhoff’s rods so that the fibers can bend and stretch within

the medium. Then, we obtained the Euler equations and associated boundary

conditions arising from the third gradient of continuum deformations using it-

erative integrations by parts and variational formulations.

• Wemodified the energy density function of Spencer and Soldatos type within the

framework of the third gradient theory to accommodate the fiber’s extension,

bending and point rotation.

• Finally, we obtained the governing equations, which are sixth-order nonlin-

ear coupled PDE systems from which a set of numerical solutions describing

mechanical responses of fiber composites are obtained using the custom-built
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numerical scheme.

• To validate the model, we compared the deformation fields obtained from the

proposed model with deformation fields predicted by the second gradient model

in the limit of vanishing triple stress parameter. The results are found to be

consistent.

• We obtained a new constitutive parameter called the triple stress parameter

due to the introduction of the third gradient of deformations into the model.

The obtained triple stress parameter is related to the variation in the curvature

change rate. More precisely, the rate of change in curvature at a particular

point on the convex surface, which provides implicit information about the point

rotation, decreases when the triple stress parameter is increased. Moreover, we

observed that the positive triple force results in clockwise point rotation.

• The shear angle distribution is found to be smooth and dilatational, in contrast

to the first and second gradient of deformation models, where the distribution

is either non-smooth or non-dilatational. The dilatation becomes intensified,

as the triple stress parameter gets higher. The results further suggest that

the proposed third gradient model leads to a more comprehensive analysis of

the characterization of the dilatation process in fiber composites. In the case

of highly coordinated materials, the triple stress parameter is high and the

dilatation is more intense. Also, the deviations of the shear band inclination

angle under uniaxial tension are found to be intensified with the increasing triple

stress parameter. Moreover, we simulate our model for various triple stress

parameters and compute the corresponding shear band inclination angles. It is

observed that the triple stress parameter follows a similar trend to the Drucker-

Prager coefficients with shear band inclination angle.

• We also provide a comprehensive analytical platform for the nanofiber-reinforced
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composite. To do so, we incorporated the Shear Lag Parameter into the model

to transform the continuously distributed unidirectional fibers into the aligned

nano-fibers reinforcement. After that, we transformed the aligned nano-fibers

composite into a randomly oriented nanofiber composite system by introducing

the Krenchel Orientation Factor. The effect of fiber aspect ratio on the me-

chanical response of a nanocomposite is discussed. The interfacial shear stress

transfer from the matrix to the fiber becomes more efficient with the higher

value of the fiber aspect ratio. The effective Young’s modulus of nanocompos-

ite is found to be sensitive to the fiber’s aspect ratio and triple stress parameter.

More precisely, with increasing the fiber aspect ratio, the effective Young’s mod-

ulus of composite starts increasing initially and eventually converges to a certain

constant value. In addition, up to a certain limit, the effective Young’s mod-

ulus is observed to converge at higher values with increasing the triple stress

parameter. Above that certain limit of the triple stress parameter, the effective

Young’s modulus converges to a similar value.

4.2 Future Work

In this thesis, we used the second strain gradient framework for the analysis of fiber-

reinforced composites. The present work can be further extended into various aspects.

Such as,

• In this thesis, we have provided the governing equations using both Neo-Hookean

and Mooney-Rivlin hyperelastic models. However, we have only implemented

the Neo-Hookean case. To characterize the large deformation of soft materials

more accurately, the Mooney-Rivlin case can be solved.

• Since we get an explicit idea of point rotation from this model, with further

investigations, it can be used as an alternative to the micropolar elasticity.

• Experimentation and/or molecular dynamics study is needed to specify the
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numerical value of the obtained new constitutive material parameter called the

triple stress parameter.

• Other forms of energy potential, especially the polynomial and exponential

forms may be used to explore the behavior of fiber.
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