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Abstract

The preferred mode of control and automation in the chemical process industry
is via distributed control systems(DCS) that typically consist of hundreds of control
loops working simultaneously to achieve reliable and efficient process operation. In such
conditions control loop performance assessment is extremely important because it helps
the process control engineer monitor these control loops to ensure that they operate at

optimum conditions.

The key idea in performance assessment is to have a benchmark against which the
existing controller performance can be evaluated. The minimum variance benchmark
represents one such benchmark and gives the theoretical best achievable output variance.
It can be estimated by simple time series analysis of closed-loop operating data. In a typical
process there are both measured and unmeasured disturbances. Analysis of variance of the
closed-loop output is shown to provide an estimate of the relative contribution from these
measured and unmeasured disturbances to the overall output variance. This analysis also

provides the incentive for implementing feedforward control of the measured disturbances.

Spectral analysis of routine operating data complements the time domain performance

assessment techniques. An insight into controller tuning guidelines is obtained by
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comparing the actual output spectrum with the minimum variance benchmark spectrum.
A method of determining whether the existing controller is over-tuned or under-tuned is

obtained and this can then lead to guidelines to adjust various tuning parameters.

The techniques for control loop performance assessment as presented here were
evaluated on three computer-interfaced pilot-scale processes and two industrial closed

loop data sets from Shell USA and Cominco Inc.
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Chapter 1

Introduction

1.1 Control Loop Performance Assessment: A brief
overview

Modern chemical process industries are highly automated and contain hundreds of
control loops that run on various distributed control systems (DCS). The task of
the process control engineer is to implement new control algorithms and improve the
performance of existing controllers. There are many techniques for designing and
implementing a control algorithm ranging from simple PID type algorithms to ad-
vanced model predictive control algorithms. But there are few tools that can be used
for assessing the performance of existing controllers. This in spite of the fact that
automatic controller performance assessment is very important in the chemical in-
dustry because of changes in equipment and process conditions and the consequential
deterioration in the performance of existing controllers. Ideally performance assess-
ment techniques should be carried out with minimum interference in routine process
operation.

Harris(1989) introduced a very simple time series technique to obtain the best the-

oretically achievable feedback control performance as measured by the output mean
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square error for a single input and single output (SISO) system. The most impor-
tant feature of this technique is to obtain a measure of performance using routine
closed loop data with minimum variance control as a reference benchmark. Many
researchers have proposed similar or slightly modified performance indices. Desbor-
ough and Harris(1992) propose a normalized performance index. Kozub and Gar-
cia(1993) define the measure of performance as closed loop potential (CLP). Tyler and
Morari(1995) have extended the same idea to non-minimum phase SISO processes.
Huang et al.(1995a,1996) have extended the SISO performance assessment techniques
to multivariate systems. In their results, they utilize the multivariate analog of the
univariate delay term known as the interactor. Desborough and Harris(1993), Stanfelj
et al.(1993), Huang(1997) have extended the feedback assessment techniques to feed-
back plus feedforward control loops. Analysis of variance on process output can also
be used to analyze the benefit of implementing feedforward control. Comparing the
existing controller performance with minimum variance benchmark may not always be
practical because minimum variance control usually requires excessive control action
and has poor robustness properties. Kozub and Garcia (1993) have proposed that
desired closed loop dynamics serve as a benchmark with which the actual output dy-
namics are compared. Tyler and Morari(1995) propose performance assessment and
monitoring schemes based on constraints on the impulse response coefficients using
likelihood estimates. More recently Huang and Shah(1996) have proposed perfor-
mance assessment with user defined benchmark under a unified H, framework.

Most of the performance assessment techniques are based on time domain analy-
sis. Spectral analysis involves transforming the time series data into the frequency
domain. The frequency domain expressions are analogous to the time domain ex-
pressions. However, spectral analysis provides valuable additional insight and infor-
mation into time series data. For example, spectral analysis can detect periodicities
in process variables that may be otherwise unnoticed due to wide band noise. These

periodicities in the process variables which are difficult to perceive in the time domain

2



become very evident when viewed in the frequency domain. Devries and Wu(1978)
used spectral analysis to diagnose sources of periodic variation in a paper machine
process. The minimum variance condition is usually verified by computing the au-
tocorrelation function(ACF) of the closed loop output. If the controller is close to
minimum variance condition then the ACF will be non-zero for the first d — 1 lags
and zero thereafter where d is the delay of the process. Desborough and Harris(1992)
extended the same idea to the frequency domain where the actual output spectrum is
compared with minimum variance spectrum to verify how close the existing controller
is to the minimum variance condition. This comparison in the frequency domain can
be used to see how the controller is tuned with respect to the benchmark spectrum.
The controller diagnosis problem is important in performance assessment. Once it
is determined that the performance of an existing control system is not satisfactory
and that it may be improved by re-tuning the controller, it is important to determine
which controller parameters to tune and whether they need to be adjusted upwards
or downwards. Comparing the actual spectrum with the minimum variance spectrum
can yield information about the frequency range where the controller is performing
poorly. It can also determine whether the controller is over-tuned or under-tuned
with respect to the minimum variance benchmark so that appropriate action can be
taken to improve the performance of the controller. An analogy to the classical ‘wa-
ter bed’ effect (in optimal control) is used to illustrate that the minimum variance
(MV) spectrum is the absolute lower bound of performance and that having better
controller than minimum variance controller at some frequencies comes at the cost of

deterioration in performance at other frequencies.

1.2 Organization of the thesis

The thesis is organized as follows. Performance assessment using the minimum vari-

ance benchmark for feedback control loops is introduced in chapter 2. The same idea



is extended to feedforward performance assessment in combination with the analysis
of variance. All of these techniques are illustrated via simulation and experimental
studies. Chapter 3 introduces the discrete Fourier transform which is very useful
in transforming data in time domain to frequency domain. The power spectrum of
routine operating data is used to detect if the process exhibits any periodicities. The
power spectrum is also used to check how close the existing controller is to minimurmn
variance condition. The controller tuning problem is thus addressed using spectral
techniques for SISO systems and its application is illustrated via experimental ex-
amples. Applying the performance assessment techniques to industrial data confirms
the usefulness of the above techniques. In chapter 4, the performance assessment
techniques are evaluated by application to two industrial data sets. The first data set
is from Shell USA. (The data was released by Kozub and Garcia(1993) for academic
purposes and deals with three distillation columns at Shell USA). The second case
study deals with the zinc acid leach process at Cominco Inc. In both case studies
performance analysis was done using time domain and frequency domain techniques.

The thesis ends with concluding remarks and suggestions for future work.
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Chapter 2

Feedback and Feedforward Control

Loop Performance Assessment

2.1 Introduction

Control loop performance monitoring is important to the control engineer, since it
can be used to monitor and diagnose problems associated with the controllers and
ensure that the controllers are performing in an optimal manner relative to process
specifications. If a process exhibits performance close to minimum variance control,
further reduction in the output variance cannot be achieved by retuning the existing
controller. However further reduction may be achieved by implementing feedforward
control and/or changing the control structure or the process. It has been proved that
for a system with time delay d, the minimum variance which is feedback invariant
can be estimated from routine closed loop data (Harris,1989). This gives the absolute
lower bound for the variance. Desborough and Harris(1992) and Stanfelj et al.(1993)
have extended this technique to the analysis of feedback plus feedforward control
loops. Performance assessment of multivariate systems has been exmained in detail

by Huang et al.(1996, 1995a). The cross correlation between the potential feedforward

w
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variables and the output may be used to determine which of them may be used
for feedforward control. The analysis of variance (Desborough and Harris, 1993)
highlights the contribution of various disturbances to the overall variance. This helps
in determining the benefit of implementing feedforward control.

This chapter is organized as follows: Section 2.2 outlines performance analysis
using a minimum variance feedback control benchmark; followed by extension to
feedforward performance assessment in section 2.3. The chapter ends with concluding

remarks in section 2.4.

2.2 Performance analysis using minimum variance
feedback control as a benchmark

Consider a process whose output to be regulated is denoted by y; and the setpoint is
represented by s; as shown in Figure 2.1. T is the process transfer function which can
also be written as T =f‘ g~? where d is the delay of the process. N is the disturbance
transfer function and a, is a white noise sequence with constant variance and zero
mean. @ is the feedback controller transfer function.

The closed loop transfer function between y, and the disturbance a, can be rep-

resented as:

N N

T T e g 2
The disturbance transfer function N can be expanded using the following diophantine
identity:
N =ty +1q7" +90g 7 + 9147 +Rg™ (2.2)
F

where R is a proper rational transfer function (Huang, 1997). Equation (2.1) will
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Figure 2.1: Block diagram of a typical single input single output feedback control

system

then reduce to
—d
F+gq ~R 2
1+q¢¢TQ
R-FT
4 TQ g

1+q‘d’f’Q
= Fa,t+Lat_d

Y = t (2.3)

= [F la;

The above expression represents an infinite order moving average model where F
is independent of the controller transfer function, @, and is therefore the minimum
variance process output. When setpoint changes are present, one can replace the
output y; with the output error defined as ¢, = y; — s, and carry out performance
assessment with €, instead of y;. The output error can be written as an infinite order

moving average (MA) process (Harris, 1989).
ge=(Yo+ U +Ug 2+ . + a1 + Y + ey (2.4)
The estimate of the minimum variance or the invariant portion of the output variance

7



is given by :
Oy = (W3 + 9T+ U3 + .+ ¥51)og

2
- (2.6)

Consider the performance index defined by

n(d) £ o2,/0?
Wa+vi+y5+...+¥i )0
o?

This performance index may be directly calculated via equation (2.6) (Harris.
1989) or via a regression analysis approach (Desborough and Harris, 1992). Alterna-
tively n(d) can be conveniently estimated via the FCOR (Filtering and Correlation)

algorithm introduced by Huang et al.(1995). The FCOR (applicable to SISO and

MIMO processes) algorithm consists of :
1. Fitting of routine operating time series output data, ;. by an ARMA or AR

time series model or state space innovation model (via a Kalman Filter) and

then estimation of the residuals or innovations sequence, a.;

2. A simple correlation analysis between ¢, and a, to yield the performance index.

2.2.1 Simulation example
Feedback performance assessment is illustrated via a simulation example. The process

used in the simulation is given by
-3 -1
1y _ 97°(1.45—q77)
G(g™Y) =
() 1-0.8q!

The process is being controlled by a proportional plus integral (PI) controller with
a sampling time of 1 sec. The controller parameters are proportional gain K = 0.23
and the integral time constant T; = 1sec. The process is under regulatory control.

Figure 2.2 shows the closed loop output for this controller setting.
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Figure 2.2: Simulation ezample: Process output

The first step involved in obtaining the performance index would be to obtain
a time series model for the closed loop output. An auto regressive moving average
model was used to represent the output. The ARMA model was then expanded as a

finite order moving average model of the form
g = (1 +.9826¢7" + .9847¢2 + .6907¢ % + ... — .0006¢~%* — .0004¢~% — .0001g™*%)a,

Since the process delay is three, the first three terms of the above moving average
model form the feedback invariant portion of the output or the minimum variance

output and can be written as
Yernw = (1 + .9826¢7" + .9847¢"%)a,

The performance index can then be obtained using equation (2.6). The variance of
the input signal a, was estimated from residual analysis of the time series model fitted
to the output as o2 = .3348. The performance index 7 can then be obtained as

o2, [1+(9826)%+ (.9847)?c2
M8 =" = 1.2561

£

= 0.7823

9
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2.2.2 Experimental study

Experimental evaluation of the feedback performance assessment technique as applied
to a single input single output (SISO) system will be illustrated by a pilot scale
process. The objective is to control the water level in tank 2 by manipulating the
stem position of the valve shown in Figure 2.3 (see Appendix B for experimental
details). A cascade controller was implemented with a PID controlier (with sampling
time of 1 sec) in the inner (flow) loop. An IMC controller was implemented in the outer
(level) loop with a sampling time of 10 sec. The IMC controller provides the setpoint
for the flow controller. The IMC controller was implemented using Lab View/Matlab
intergration platform with Dynamic data exchange (DDE).

One of the important information required for performance assessment is the delay
of the process. An open loop test was performed to obtain a process model and also
to determine the delay of the process. Figure 2.4 shows the water level in tank 2
(process output) and the stem position of the valve during the open loop test. The
input sequence is a pseudo random binary sequence. The process model was identified

through prediction error method (Ljung, 1987) as

.0729¢~2

-1y _
Gla™) = 1 -1.3991q~! + .4267¢2

Figure 2.5 shows the residual analysis of the open loop model obtained. Cross-
correlation analysis of the open loop output and input was performed to estimate
the delay as shown in Figure 2.6. The delay is estimated as 2 sample intervals.
Routine closed loop data were collected using the IMC controller based on the
model obtained from the open loop test. The first step in performance assessment as
discussed in the previous example is to obtain a time series model for the output. An
ARMA model was fit to the closed loop data. The ARMA model identified can also

be written as a finite order moving average model of the form

g = (1 +.8534¢7" + .9847¢7% + .7943¢ ™3 + ... — .0047¢™*° ~ .0015¢™>)a,

10
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Since the delay was estimated as two we can obtain the minimum variance or feedback

invariant portion of the closed loop output as

Yo = (1 + -8534q—1)at

Finally the performance index can be calculated as

O’2 X 27 2
7(2) = o _ [L+(.8534)%]07

o2 0063

= .4326

o2 can be estimated from residual analysis of the time series model fitted to the

process output. The same performance index can also be obtained by using the
FCOR algorithm.
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2.3 Performance assessment using minimum vari-

ance FF and FB control as the benchmark

A closed loop response to both unmeasured and measured disturbances can be written

as
et = Gaa, + Z 9 %“Gp,,D.; (2.7)

i=1
where m is the number of measured disturbances. D,; are measured disturbances.
a, represents the “shock™ of the unmeasured disturbances. Substituting D,; with a

time series model of the form
Dt.i = bet,i (2-8)

we get
ee=Gaar + Y _q7“Gp,,Gsbr; (2.9)
=1

Expanding the above in impulse response form gives

g = (Féa) + ...+ Fx)lq‘(d"l))at-i-(Féa)q"d + F;Z)lq‘d‘l + ...)a (2.10)
e y?

m
b) — b —(d— b) - b) —l,~d+
+Z{(§§ g+ L+ FY g 1))bt‘£+(\F§_),lq Y+ B e

mu,
e €FF,

) S b) i, —~d—
+ (g + Fihg™ ™ + )by}

(bee)
t

=1

Equation (2.10) is valid if the process time delay d is greater than the feedforward
path time delay ;. eMY =ef+3 - e"™ constitutes the portion of minimum variance
which is feedforward and feedback controller invariant. e} is the variance contribution
to eMV from the unmeasured disturbances. y® is due to the non optimality of the
feedback controller. ef™™ is the variance contribution to eMV from the measured dis-

turbances. erg, is due to the non optimality of the feedforward controller. yfb"‘) is the

14



contribution to the overall variance due to either non optimal feedback/feedforward
controller or non optimal feedback plus feedforward controller. The significance of
each of these terms is explained in the next section.

If the feedforward delay is greater than or equal to the process delay, then by
implementing a minimum variance feedforward controller one can completely elimi-
nate the contribution from the measured disturbances to the output variance. In this
case e;' = 0. érr, may exist due to the non optimality of feedforward controller:
yfb"‘) may also exist due to non optimality of either feedback/feedforward controller

ta)

or feedback plus feedforward controller. The contributions from erg, and y,b can

be eliminated by a minimum variance feedforward controller.

2.3.1 Steps involved in performance assessment

Routine closed loop operating data can be used to perform analysis of variance and
to obtain performance indices. When the objective is to minimize variation in the
output variables, one needs to address two significant questions. First, what is the
potential reduction in the output variation that could be obtained, and second which
process variables have the most significant effect on the output variation. The various
steps involved in performance assessment have been summarized in Appendix A. Two

important steps require further discussion. They are:

2.3.2 Screening the measured disturbances for their poten-

tial for implementing FF control

Of the many measured disturbances, not all will have a significant effect on the output
error. So one needs to carry out a screening test to determine which of them could
be used for feedforward control. This involves two steps: (Desborough and Harris.

1993)
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1. Fit a time series model to the disturbances. From this model obtain the residuals

which give an estimate of the variance of the driving forces for the disturbances.

2. Compute the sample cross correlation between the residuals found in step 1 and
the output error. This can give an idea of the delay structure of the disturbances.
Disturbances which do not have any significant correlation are discarded from

further analysis.

2.3.3 Analysis of variance

After identifying the prospective feedforward variables, the next task is to determine
the benefit of implementing feedforward control of these measured disturbances. First
we fit a regression model between the output error and the various measured distur-
bances as shown in equation (2.7). From the residuals of the above fitted model. one
can get an estimate of the variance of the unmeasured disturbances 2. Replacing the
measured disturbances with a time series model for the disturbances and expanding
it in impulse response form as in equation (2.10), provides an analysis of variance
table as shown in Table 2.1.

The various terms obtained from equation (2.10) are explained in an earlier section.
Consider the contribution from the unmeasured disturbance @;. The minimum vari-
ance portion cannot be eliminated by any amount of control action. But the potential
for further reduction in output variance by re-tuning the feedback controller is given
by y¥. If the contribution to the overall variance is mainly from this source then one
does not need to consider feedforward control on any measured disturbances. Instead
one should concentrate all their efforts on re-tuning the existing feedback controller.

Now consider the contribution from the measured disturbances which mainly con-
sists of threz parts. e[*” constitutes the invariant portion and cannot be eliminated
by any amount of feedforward control action. erp is the contribution due to non

optimality of feedforward controller. This term is very important in determining the

16
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Table 2.1: Analysis of variance

MV FB/FF | Non opt.FB | Non opt.FF | Non opt.FB/FF | Total
a e 7 - - Tya
b 2
be,1 e - €FF, yt) Ty bes
be,m e - €FFm yz(bl"") T2 bem
2
Total Omy o2 g > 02 FF, >0 3,1-*13 /FFi o)

benefit of feedforward control. If the contribution to the output variance is from this
source then no amount of feedback controller re-tuning will eliminate this source of
variance. Whereas an optimal feedforward controller can eliminate this contribution
completely. If further reduction in output variance is warranted then implementing
feedforward control is a good option. y,(b‘) represents the contribution due to non op-
timal feedback and/or non optimal feedforward controller. Theoretically this source
of contribution can be eliminated either by a optimal feedback or feedforward con-
troller. So feedback controller re-tuning becomes the first option if further reduction
is necessary. Figure 2.8 shows the contribution to output error variance from various
sources of disturbances.

One of the important assumptions during the analysis of variance is the indepen-
dence of the pre-whitened input signals associated with the measured disturbances
(b;) and the driving force associated with the unmeasured disturbances (a.). If this
assumption is not valid, it is impossible to uniquely determine the contribution of
the various disturbances to the overall output variance. It is necessary to check the
independence of these input signals. This can be checked by doing a simple cross-
correlation test between these input signals. If these signals are dependent , the
analysis becomes more complex and involved. One way of handling such processes is

by considering Vector Autoregressive Moving Average models (DeVries and Wu, 1978)

17
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and carrying out multivariate regression analysis.

2.3.4 Experimental study

The various steps involved in performance assessment will be illustrated by application
to computer-interfaced, pilot-scale process. The objective is to control the water
level in tank 1 by manipulating the stem position of the valve shown in Figure 2.9
(see Appendix B for experimental details). An Internal Model Controller (IMC)
was implemented via LabVIEW/MATLAB integration platform with Dynamic Data
Fzrchange (DDE) with a sampling time of 5 seconds. The process transfer function

was identified from a previous identification exercise as

.0168q~2
—1.2429¢-" + .2539¢2

Glg™) =1

The process delay is 2 sample intervals. There is one source of measured disturbance
in the form of water flow into tank 1 from a different source as shown in Figure 2.9.
There is no feedforward compensation applied to this disturbance. The setpoint was
constant throughout the experiment. The main aim of this exercise is to determine
how the existing feedback controller is performing with respect to the minimum vari-
ance benchmark. In addition we want to determine the contribution to the output
variance from the measured and unmeasured disturbances.

The first step involved in performance assessment is to condition the data. This
involves removing outliers from the data set and zero-mean centering the data. Figure
2.10 shows the water level in tank 1 (process output), stem position of the valve
(controller output) and the disturbance (water flow rate). Both the output and the
disturbance have been zero-mean centered. The next step would be to determine
if the disturbance has any effect on the output error. Figure 2.11 shows the cross-
correlation between the output error and pre-whitened disturbance and we note that

the disturbance has a significant effect on the output error. Since the disturbance has
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Figure 2.11: Cross-correlation between the measured disturbance and process output

(water level in tank 1)

been pre-whitened the cross-correlation plot also gives an indication of the delay of
the feedforward path which is equal to four in this case.

Having determined that the measured disturbance has a significant effect on the
output, the next task would be to perform an analysis of variance on the output error.
A regression model of the form given in equation (2.10) was fit to the output error.
Figure 2.12 shows the residuals obtained from this model. The measured disturbance
was replaced by a time series model. This is done so that the inputs to the measured
(b;) and unmeasured disturbances (a;) are independent of each other. Figure 2.13
shows the cross correlation between the inputs to measured (b;) and unmeasured
disturbances (a;) and we can conclude that the input moves are independent of each
other. Using this regression model, an analysis of variance was performed on the
output as explained in the previous sub-section. Table 2.2 shows the analysis of

variance results.
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Figure 2.12: Residual test for the regression model fitted to the process output

0.08 - T T T T T T ]
006 - h
004 - 4

p i T

0
« é 6 | o
-
002 .
0.04 1
0 - g
06 [
S S T
[+] 2 4 6 8 10 12 14 16 18 20

Figure 2.13: Cross-correlation between the driving forces for unmeasured disturbance

(a;) and measured disturbance (b;)



B S e

Table 2.2: Analysis of variance (single tank pilot-scale process)

MV FB/FF | Non opt.FB | Non opt.FF | Non opt.FB/FF | Total

a .0014 .0238 - - 0252
b1 0 - 0131 .0638 .7069
Total .0014 .0238 0131 .0638 1021

The actual output variance is .1100. The total output variance from analysis of
variance is .1021. This difference may be due to estimation errors during regression
analysis. The contribution from unmeasured disturbances is .0252/.1100 = 23%. The
potential reduction by retuning the feedback controller is .0238/.1100 = 22%. The
contribution to the output variance due to the measured disturbance is .0769/.1100 =
70%. The feedforward delay is 4 and the process delay is 2. Since the feedforward
delay is greater than the process delay, the minimum variance feedforward portion will
be zero i.e. theoretically a minimum variance feedforward controller can eliminate the
contribution from this disturbance totally. Therefore by implementing a feedforward

controller the potential reduction in variance is equal to .0769/.1100 = 70%.

2.4 Conclusion

Feedback and feedforward control loop performance assessment has been demon-
strated via experimental and simulation studies for single input and single output
systems. A minimum variance benchmark represents the absolute lower bound that
can be achieved using feedback control strategy. Performance indices based on the
minimum variance benchmark can be obtained by routine closed loop data and a
prior knowledge of the time delay of the process. The analysis of variance is very use-
ful in determining the incentive for implementing feedforward control on measured

disturbances as shown in the experimental study.
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Chapter 3

Spectral Techniques in

Performance Assessment

3.1 Introduction

It is a well known fact that there is a mathematical equivalence between all the time
domain expressions in time series analysis and the same expressions in the frequency
domain. Even though they are mathematically equivalent, one can sometimes obtain
unique and different insight and information through spectral analysis of time series
data. The most common benchmark used in performance assessment is the minimum
variance benchmark (Harris, 1989). One can obtain the minimum variance output
from routine closed loop data and a knowledge of the delay of the process. By compar-
ing the autocorrelation of this minimum variance output with the autocorrelation of
the actual output, one can determine how close the existing controller is to minimum
variance condition. The same idea can be extended to the frequency domain where
the minimum variance spectrum is compared with the spectrum of the actual output.
It has been shown (Desborough and Harris, 1992) that this could give an indication of

the frequency range where the output deviates from the minimum variance condition
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and if a controller is under-tuned or over-tuned. The minimum variance condition
is not always a good benchmark since this may not always be desirable due to the
fact that a minimum variance controller usually demands excessive control action and
may have poor robustness properties. Instead one can specify some desired closed
loop dynamics and compare the actual output spectrum with this desired closed loop
spectrum. This analysis can then be used to appropriately tune the existing con-
troller. Another area where spectral analysis is very useful is in the detection of
adverse oscillations in the closed loop output. These cycles in the output may be
due to several reasons. They include poor controller tuning (i.e. usually over-tuned
gains), cyclical disturbances or actuator related problems such as valve hysteresis or
stiction. Bialkowski et al.(1996) have reported that a significant amount of process
variance occurs due to actuator related and/or maintenance problems. It is essential
during performance assessment to separate these problems and take corrective action
accordingly.

This chapter is organized as follows. Estimation of the spectrum via the discrete
Fourier transform is discussed in section 3.2. Controller tuning problem and the use
of spectral techniques to solve this problem are discussed in section 3.3. Experimental

results are presented to illustrate some of the above techniques in section 3.4.

3.2 Signal processing in frequency domain

3.2.1 Discrete Fourier transform

The first step in spectral analysis is to effectively transform the time domain data
into the frequency domain. In a typical chemical process, the data one deals with
is usually discrete in nature. The discrete Fourier transform converts the discrete
time domain data into frequency domain data. Consider time domain data given by

Y, t = 1,2,...N where N is the total number of data points. The discrete Fourier
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transform of this data is given by the expression

N
V() = o= S ue (3.1)
t=1

These values are obtained at frequencies w = 2wk/N , k£ = 1, ....N. The original series

y: can be recovered by the inverse Fourier transform given by
1 <. 2k
—_— Y l_ ei27l’kt/N 3.2
From the above relations we can conclude that
Y(w+27) =Y(w) (3.3)

Therefore, the function Y (w) is uniquely defined in the interval by its values in the
interval [0 7] (Ljung, 1987). The function Y (w) is usually defined in the interval

-m < w < 7. Therefore equation(3.2) is modified to

1 N2 2wk
Yo = —— Z Y(_)ei27rkt/N (34)
VN k=—N/2+1 N

The quantity [Y((.u)l2 represents the contribution of this frequency to the total energy
of the signal y,. This value is also known as the periodogram of the signal y,. Parse-
val’s theorem (Ljung, 1987) can be used to get a relation between the time domain
signal y, and the periodogram Y (w).

N

>

k=1

2ar |2 N
Y(Wk)

3.2.2 Power spectrum

The autocovariance function of the signal y, at lag 7 is given by

(1) = E[(y: — 1) (Yesr — 1)) (3.6)
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where p is the mean of the signal. Since we usually have a finite data set, we can

only obtain sample mean and therefore the sample autocovariance function given by

(1) = E[(ye— 9)(yerr— 9)) (3.7)

where ¥ is the sample mean of y;. We can then define the power spectrum of y, as

oo

By(w) = Y yy(r)e™" (3.8)

T=—0C
Since one can obtain only the sample autocovariance, one can only estimate the

sample spectrum denoted as

oc

dy(w) = D Fy(r)e™”

T==—0C

Also from the inverse Fourier transform one can obtain

Yy(T) = 2%/_ ®, (w)e™ dw (3.9)

Sample spectrums are also known as periodograms. These periodograms can be
estimated via the discrete Fourier transform described earlier. The periodogram is
usually estimated by fast Fourier transform (FFT) algorithm as shown (eg. in Matlab

the command ‘fft’ will transform the time series data into the frequency domain):
Y(w)= FFT(y.) (3.10)

then
b, (w) = j—tr-Y(w)Y’(w) (3.11)

where Y™ (w) is the complex conjugate transpose of Y (w).

3.2.3 Frequency response of a transfer function

Assume that the signal y, is related to u, by a stable linear transfer function of the

form:

ye = Gy(q ™ u, (3.12)
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In the frequency domain this translates into (Ljung, 1987):

- _Y(w)
Y(w) = Gy(w)U(w) or Gy(w) = T@) (3.13)
Where U(w) is the periodogram of the input signal u,. A similar expression can be

obtained in terms of the complex conjugate transpose of Y (w) and U(w) as

- —_ £ 4 t - — Y‘(w)
Y*(w) = G (w)U"(w) or Gy(w) = U (@) (3.14)
Combining equation (3.13) with equation (3.14) gives:
ooy Y (@)Y (w) -
Gy(w)Gy(w) - U(UJ)U‘(L{J) (3-10)
Using equation (3.11) the above equation can be reduced to:
Gy w)f? = ) (3.16)

Py (w)

In particular, let the input u, be a white noise sequence a; with mean zero and
constant variance 2. The spectrum of white noise is constant and is proportional
to o2 (this is because the spectrum is a function of the autocorrelation function and
for a white noise sequence the autocorrelation function is zero for all lags except at
lag zero where it is equal to 02). The spectrum of the output y, can therefore be
expressed as:

0y (w) = [Gy(w)* o3 (3.17)
Gy(q™') can represent a time series model such as a Moving Average model (MA) or
in general an Auto Regressive Moving Average model (ARMA). A general stationary
ARMA(p, q) model can be represented by:

6o(a7 ")y = 04(g™V)ar

This discrete transfer function can also be represented as an infinite order moving

average model of the form

oc

= ijat—j =¥(@gHa: = Gy(¢7)a

=0
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Control loop performance assessment is carried out by collecting routine operating

Y(g™)

data. This routine closed loop data can be conveniently represented as a time series
model. Therefore the above analysis allows one to estimate the spectrum of the closed

loop output when it is represented as a time series model.

3.3 Controller tuning

3.3.1 Introduction

The closed loop output y: can be represented as an infinite order moving average

series given by:

—(d—

ye=[1+Ug  + .+ Uy 179V + e, = Gylgha

If one knows the time delay ‘d’ of the process, then the minimum variance output
corresponding to the feedback invariant part consists of the first ‘d — 1 terms of the

above expression. So the minimum variance output can be written as:

Ytmv = [1 + wlq‘l +.o+ ¢d_1q—(d-l)]a't = va(q_l)at

The spectra of the above moving average models can be represented as

@y (w) = |Gy(w)[* o2 (3.18)

Bry(W) = |Grmo(w)]* 72 (3.19)

a

Using equation (3.9) and setting 7 = 0 one can obtain the variance of the output as
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ol = o @, (w)dw (3.20)

y
-
The above expression also represents the area under the spectral plot. In other words
the integrated power spectrum of a signal over the frequency range [-m, 7| is equal to
the variance of the signal. This is a very useful relation because one can obtain the
distribution of the output variance at various frequencies. Minimum variance output
represents the absolute lower bound beyond which one cannot reduce the output

variance, i.e.

o2, < 052, or (o2, - oz) <0 (3.21)

The above inequality represents the difference between the minimum output vari-
ance and the actual output variance or the difference between the areas under the
spectrum of minimum variance output and the actual output. Using equation (3.20)

one can translate this inequality into the frequency domain as

/ [Pmu(w) — y(w)] dw <O (3.22)
5)

where §(w) above denotes the difference between the actual output spectrum and
the minimum variance spectrum. The output spectrum can be smaller than the
minimurm variance spectrum at some frequencies; but the total output variance or the
area under the spectrum is always smaller than the minimum output variance. This
means that if the output spectrum is smaller than the minimum variance spectrum at
some frequencies, then it has to be substantially greater than the minimum variance
spectrum at other frequencies so that the total variance is always less than that of
minimum output variance. In the context of optimal control this is known as the
‘water bed’ effect. This ‘water bed’ effect is illustrated by the following simulation

example.
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3.3.2 Simulation example

This simulation example deals with a process represented by:

33q¢7
1-0.67¢71

It is controlled by a Dahlin controller (Eriksson and Isaksson, 1994) given by

Glg™") =

- 0.3 %[.7-0.47¢7"]
1 1y _
Celd™) = g5 = 1g1 = 23

The sampling interval is 1 minute. From the routine closed loop data the minimum
variance spectrum was estimated. Figure 3.1 shows the spectrum of the minimum
variance output and that of the actual output for the stated controller settings. The
present controller setting is not close to the benchmark spectrum. Suppose the ob-
jective is to make the output spectrum match in the low frequency range. This can
be achieved by employing a more aggressive controller than before.

0.8 + [.7 — 0.47¢7Y]

27 =1\ _
Geld™) = 933 = 1g-1 = 234

The output spectrum for this new controller setting is shown in Figure 3.1. Even
though we were able to shift the output spectrum in the low frequency range, there is
deterioration in the performance in the high frequency range. The ‘water bed’ effect
becomes clear here. Finally a more overtuned controller than G? is employed and it
is observed that the output spectrum is closer to the minimum variance spectrum. It
is worth mentioning that one does not necessarily want to reach minimum variance
condition because it may pose problems such as excessive input moves. This setting
which is closer to the minimum variance condition can be regarded as a satisfactory

controller setting.

_ 0.5+ [.7 — 0.47¢"]
3 1y
Geld™) = 533 = 1g-1 = 23—

The above analysis using spectral domain information is very useful because it pro-

vides one with information on the frequency range where the performance of the
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Figure 3.1: Output spectrum for different controller settings

controller is adequate. If one is interested in controller performance only at some
specific frequency range, this analysis will give an idea of how to tune the existing

controller with respect to the frequency range of interest.

3.3.3 User specified closed loop response

A minimum variance controller is not always desirable; so 2 minimum variance bench-
mark may not be a practical measure for performance assessment. Instead one can
specify the desired closed loop dynamics for the process of interest. This desired
dynamics can be in the form of a settling time or a time constant of the closed loop
system (Kozub and Garcia, 1993). The desired dynamics may also be in terms of
higher order performance objectives such as robustness or frequency domain charac-
terization of the closed loop response. Tyler and Morari(1995) consider all the above
performance objectives as constraints on the impulse response of the closed loop sys-

tem and have proposed a maximum likelihood test based on these constraints. But
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one can also obtain the impulse response of the closed loop system by fitting a suffi-

ciently high order moving average model of the form
Y = [1 + wlq-—l + ..+ wd_lq_(d_l) + ...]at (323)

This ensures that the time series model provides a theoretical autocorrelation similar
to the observed autocorrelation. The closed loop output under minimum variance
output will consist of the first ‘d’ terms in the above expression. Therefore the
autocorrelation of the minimum variance output is non zero for first ‘d-1° lags and
zero thereafter. This kind of autccorrelation function may need aggressive control
action which may not be achievable or desirable. So specifying the desired closed
loop dynamics in the form of a settling time or a closed loop time constant is another
way of making the autocorrelation function decay smoothly so that excessive control
action is avoided. Figure 3.2 shows the autocorrelation function for different desired

closed loop dynamics.
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Consider the desired closed loop dynamics to be given by a settling time of ‘&’
lags. This means
Y,=0,p>k (3.24)

Therefore
Yedes = (L + 017+ oo ¥ 94107V + .+ ¥rg7Fa (3.25)

Where a, is estimated from residual analysis of the original time series model. The
estimate for a; depends on the disturbance transfer function. One disadvantage of
specifying a desired settling time is that the output response may settle in the specified
time but may have a large variance due to bad initial transients. Another approach
is to specify a first order decay for the output error for any disturbance upsets. In
this case the desired output is given by

1

—i = Ganla™) (3.26)

Yt.des = 1

where a, is a white noise sequence and « is given by

a= exp(-_—f—:,:) (3.27)

One can estimate the desired spectrum for the above expressions as
Dyes = lGdes(W)l2 0'¢2; (328)

Let 6(w) = [®ges(w) — @y(w)]. If the output spectrum is close to the desired spec-
trum, then §(w) will be zero for most of the frequency values. After estimating the
desired spectrum one can carry out the analysis as described above except that the
difference is that one now uses the desired closed loop spectrum as the benchmark.
By comparing the output spectrum with the desired spectrum, one can determine
whether a controller is undertuned or overtuned relative to the desired closed loop
response. If the controller tuning is not satisfactory, this procedure allows us to deter-
mine whether one has to overtune or undertune the feedback controller as illustrated

by the following simulation example.
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Simulation example

The process model is given by

g %(15-q7")
1-0.8¢"!

The process is controlled by a proportional plus integral (PI) type controller. The

Glg™") =

manipulated input dead time is 2 seconds and the sampling time is 1 second. The open
loop time constant is about 4.5 seconds. The desired closed loop time constant has
been set at 7 = 3. A settling time of 15 seconds has been specified. The first controller
setting used was K = 0.5 and integral time constant T; = 1sec. The output spectrum
corresponding to this controller setting and the minimum variance spectrum is shown
in Figure 3.3. The next step would be to tune this controller setting so that one shifts
the output spectrum closer to the minimum variance spectrum. The performance of
the controller in the low frequency range can be improved by increasing the integral
action. To demonstrate the effect of integral action on the output spectrum three
controller settings with different integral time constants have been used. As seen in
Figure 3.3 as the integral time constant is reduced from T; = lsec to T, = .33sec
(which amounts to increasing integral action), the output spectrum shifts downwards
in the low frequency range. For the controller setting with T; = .16sec, the output
spectrum shifts below the minimum variance spectrum in the low frequency range
but is above the minimum variance spectrum in the mid-frequency range. This gives
rise to oscillations in the closed loop output.

Next the effect of increasing the proportional gain was investigated. The initial
proportional gain which was K = .05 was increased to K = .35. We expect the
change in the proportional gain to have an overall effect on the output spectrum at
all frequencies. From Figure 3.4 one can see that by increasing the proportional gain
the output spectrum shifts towards the benchmark spectrum in the low frequency
range but results in some high frequency oscillations. This is the result of the ‘water

bed’ effect discussed previously. Performance in the low frequency range is improved

35



102, .
i r > K=0.05,Ti=lsec
1
10 ~ > K=020,T, =l sec ]
E E
E of K =035,T. = I sec
g 107 =m—————— i
& 3
5 1
2 -f
- 10 3 ;
102 )
-3l
10 \ . "
1072 107" 10° 10" 102

Frequency (rad/sec)

Figure 3.3: Output spectrum for different values of integral time constant (T;)

but there is deterioration of the performance in the high frequency range. Finally the
proportional gain was decreased frcm K = 0.35 to K = 0.20. This makes the output
spectrum match the minimum variance spectrum over most of the frequency range.
To illustrate the use of this technique in controller tuning the process was sim-
ulated and 5000 data points were obtained at controller settings of K = .10 and
T. = 1 sec. The performance index defined by the minimum variance benchmark was
obtained via regression analysis for a batches of 500 data points. The performance
index is shown in Figure 3.5. It can be observed that the controller is not operating at
minimum variance condition. So the first option is to re-tune the feedback controller.
Then the question arises which way should the controller be re-tuned, i.e. should it
be de-tuned or over-tuned? A comparison of the actual spectrum and the minimum
variance spectrum as illustrated above can be used to determine whether to de-tune
or over-tune the controller. Figure 3.6 shows the actual spectrum with that of the

minimum variance spectrum for the controller setting K = 0.11.7; = lsec. From
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Figure 3.4: Output spectrum for different values of proportional gain (K)

the above analysis one can conclude that the controller should be overtuned. So the
controller gain is increased to K = .20. From Figure 3.5 it can be seen that the
performance index is closer to 1 showing that the controller is close to the minimum
variance condition. If in the absence of the above analysis one detunes the controller
to K = .05 , the performance of the controller actually deteriorates. So a knowledge
of how the controller should be tuned is very valuable.

The above analysis is based on comparing the output spectrum with minimum
variance spectrum. Instead one can specify some desired closed loop dynamics. A first
order decay to the closed loop output of the form given in equation (3.26) is specified.
Since the desired closed loop time constant has been set at 7 = 3. This translates to
a = .7887 according to equation (3.27). Figure 3.7 shows the desired spectrum with
upper and lower bounds. The desired spectrum was obtained by assuming a first
order decay for the closed loop data as given in equation (3.26). The first controller

setting used was K = .05. The output spectrum for this controller setting is shown in
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Figure 3.7: Actual output spectrum versus spectrum of desired closed-loop dynamics

Figure 3.7. One can see that the controller seems to be slightly undertuned. Therefore
the proportional gain has been increased to K = .20. The output spectrum for this
controller setting is better than the desired spectrum in the low frequency range and

is satisfactory at other frequency ranges.

3.4 Experimental results

3.4.1 Single tank pilot-scale process

The use of spectral techniques in the analysis of controller tuning is illustrated on
a computer-interfaced pilot scale process shown in Figure 3.8 (see Appendix B for
experimental details). The objective in this experiment is to control the water level
in tank 1 by manipulating the stem position of the valve. An internal model controller
was implemented with sampling time of 5 sec using Lab VIEW/Matlab with Dynamic
Data Ezchange (DDE) between these two platforms.
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Figure 3.8: Schematic diagram of the single tank computer-interfaced pilot-scale

process

Since IMC is a model-based controller an open loop identification test was carried
out on the process. Figure 3.9 shows the input excitation provided for identifying the
process. A pseudo random binary signal was used to excite the process. A second
order model for both process transfer function and the disturbance transfer function
was chosen. The process model was identified using the prediction error method
(Ljung, 1987) as

.0168¢~2

.
Gla™) = 1o 242947 + 253092

Figure 3.10 shows the measured output versus predicted output. We see that
there is a good match between the predicted output and the actual output. A first
order filter of the form

l-«a

Gylqg™') = T—ag
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Figure 3.9: Single tank pilot scale process: Process output (water level in tank 1) and

manipulated variable (stem position of the valve)

was chosen for the IMC controller. Since the process model has no zeros or poles
outside the unit circle, the theoretical closed loop output is given by

O]

Gd(q_l) = 1— aq_l

where d is the delay of the process. o can be regarded as a tuning parameter. Choosing
a particular value of « is equivalent to specifying the closed loop dynamics of the
process. When a equals zero we get deadbeat control and as we increase the value
of o the controller becomes less aggressive.. Figure 3.11 shows the output spectrum
of the process for & = 0.9 and the minimum variance spectrum. We note that the
controller setting is undertuned with respect to minimum variance spectrum. So the
controller is made more aggressive by increasing the value of a to 0.40. The output
spectrum for this controller setting is shown in Figure 3.11 and we observe that the

spectrum shifts towards the minimum variance spectrum. The final controller setting
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Figure 3.10: Single tank pilot scale process: Measured output versus predicted output

from the model

used was a = 0.2 which resulted in reduced output variance.

3.4.2 The light bulb experiment

The schematic diagram of the light bulb used for this experiment is shown in Figure
3.12. The objective is to control the temperature of the light bulb. A proportional
plus derivative controller was implemented using the Real Time Matlab/Simulink
Tool-bor with a sampling time of 1 sec. Figure 3.13 shows the output response for
the controller setting K = 6 and K; = 4 where K is the proportional gain and Ky
is the derivative time constant of the controller. It can be seen that this controller
setting produces an oscillatory response in the output.

Figure 3.14 shows the spectrum of the output for this controller setting and the
minimum variance spectrum. The oscillations observed in the closed loop output in

the time domain plot are also observed in the spectral plot. For controller setting
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Figure 3.13: Light bulb: Qutput trends for different controller settings

K = 6 the spectral plot suggests that the existing controller is under-tuned. The
controller gain therefore was increased to K = 18. The output response is shown
in Figure 3.13 and the spectrum of the output is shown in Figure 3.14. We observe
that the output spectrum is now closer to the minimum variance spectrum in the
low frequency range but has some oscillatory trends in the mid frequency range. It
should be noted that minimum variance spectrum represents the absolute lower bound
and one that may not be always achievable. Therefore this controller setting can be
regarded as a satisfactory controller setting if regulatory and setpoint tracking at low

frequencies is the main control objective.

3.5 Conclusions

Spectral techniques are very useful in obtaining valuable information about a process

from routine operating data. One of the areas where spectral analysis is very useful
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Figure 3.14: Light bulb: Spectrum for different controller settings

in control loop performance assessment is the controller tuning problem introduced
in this chapter. By comparing the actual output spectrum to the minimum variance
benchmark spectrum one can determine if a controller is over-tuned or under-tuned.
The same idea can be extended if the benchmark is user-defined instead of the mini-

mum variance benchmark.



Chapter 4

Industrial Case Studies

4.1 Introduction

Chemical process industries aim at achieving reliable and profitable automated con-
trol. Control loop performance monitoring and diagnosis plays a crucial role in achiev-
ing this objective. Routine industrial data often exhibits complicated time series
patterns. This may be due to process non linearities, changing process conditions
etc. To further complicate the matter, control engineers are often responsible for
hundreds of applications, making the analysis of raw data virtually unmanageable.
Kozub and Garcia (1993) address these issues and define the requirements for auto-
mated controller performance monitoring. The objective of this chapter is to apply
the performance assessment techniques introduced in the previous chapters to indus-
trial closed loop data from Shell USA (released for academic purposes) and Cominco
Inc.

Performance analysis on these data sets was carried out using both time domain
and frequency domain techniques. Simple cross-correlation tests were used to de-
termine which of the measured disturbances could be used for feedforward control.

After identifying the prospective feedforward variables, analysis of variance was car-
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ried out for obtaining the relative contribution of various measured and unmeasured
disturbances on the output variance. This analysis also provides the benefit of im-
plementing feedforward control as discussed in chapter 2. Spectral analysis on the
output and the disturbance data sets was used to detect if any unfavourable oscilla-
tions were present in the process variables. This chapter is mainly concerned with the
experimental evaluation of these performance analysis tools on the Shell and Cominco

industrial data sets.

4.2 Shell Industrial Case Study

The data originates from three distillation columns at Shell which shall be referred as
columns 1, 2 and 3 respectively. The data was made available at a Shell ftp site!. The
objective in all three cases was to control a single tray temperature (output) at some
desired set point using a single manipulated input for control. All three controllers
can be assumed to be Quadratic Dynamic Matrix Controllers (QDMC) (Prett and
Garcia, 1988). All controllers operate at a one minute execution rate, and all data
has been collected at a sample rate of one minute. The ultimate goal is to attain

100% reliable control achieving maximum profitability with minimum cost.

4.2.1 Problems to be considered

e Shell control engineers typically aim for a certain closed loop settling time when
significant upsets occur. This is a constraint on the impulse response coefficients
of the closed loop transfer function. The impulse response coefficients should

go to zero at time greater than the specified settling time.

1 The response data files and files containing the step response models used in the designs are
available from Professor Manfred Morari at the ftp site AVALON.CALTECH.EDU in the directory
CDS/MONITOR/SHELL
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e Most performance assessment tools use minimum variance control as a refer-
ence benchmark. However comparing the output error trend with a minimum
variance output error trend is not always practical, and one alternative is to
specify a desired reference output error trend. For example, Kozub and Garcia

(1993) suggest a first order exponential decay trend given by:

: — Q¢ (4.1)

£ = ———
: l—-—agq

Such a response represents a first order decay for &, to disturbance upsets where
T
= exp(——) (4.2)
T
with T equal to the sampling interval and 7 equal to the desired first order
response time constant. This time series model describing an acceptable closed

- loop trend for &; can be shown to have an autocorrelation pattern given by

p.(k) = oF (4.3)

This could be used to determine if the trend for ¢, is acceptable. One could
also use the extension by Huang and Shah (1996) where the desired closed
loop dynamics are considered as the performance benchmark in a unified Ho

framework. The objectives of the ensuing analysis was

e To characterize the output error response characteristics associated with the
disturbances and give a break down of the relative contribution of different
disturbances to the output error, including unmeasured ones. This amounts to

performing analysis of variance on the data sets

e To also assess if the controller is over-tuned or under-tuned relative to the

reference benchmark.

e To obtain an indication of the quality of feedforward control compensation, if

present?
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Figure 4.1: Column 1: QOutput and Setpoint trends

e To determine if the response data exhibits time variant response characteristics?

4.2.2 Column 1

Figure 4.1 shows the tray temperature (output) and the setpoint time-series data for
column 1. The manipulated input in this case is the reboiler duty. Three trends
for consideration as measured disturbances are provided: the column feed flow rate
(b;,1); the column feed temperature (b;2); and column pressure (b;3). These trends are
shown in Figure 4.2. Feedforward compensation was applied to the measured column
feed flow rate (b 3).

The autocorrelation function of the output error with the desired output autocor-
relation function is shown in Figure 4.3. The autocorrelation plot clearly indicates
that the controller is performing no where near minimum variance condition since
there are significant lags beyond the process delay d = 1. The desired autocorrelation

function was obtained by assuming a first order decay for output error to disturbance
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Figure 4.2: Column 1: Disturbance trends

upsets as given in equation (4.1). The response time was set at 5 sample intervals.
The specified settling time was 15 minutes. The plot indicates that the output settles
much slower than the desired settling time.

Figure 4.4 shows the performance index as defined in equation 2.2 over a period
of three weeks with each point corresponding to a single day’s worth of data. This
performance index was obtained by lumping all the measured and unmeasured dis-
turbances and fitting a time series model to the output error. A moving window of
size 1440 was used to obtain the performance index. It is assumed that the process is
time invariant for this window size. Figure 4.5 shows the performance index for the
first 5000 data points with a sliding window of size 1440. The dash-dotted lines in
Figure 4.5 represent the performance indices with a moving window of size 1440. So
the first three indices in Figure 4.4 are identical to these points in Figure 4.5. A batch
of 1440 points was used to obtain the first performance index. For every subsequent

data point, the performance index was calculated with a sliding window size of 1440.
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The size of the window is very important in capturing any cyclical behavior in the
performance index such as day/night cycles etc. Choosing a small window size may
not provide accurate statistical results and by choosing a large window size any time
varying phenomena in the process are neglected. These are conflicting objectives.
For this data set different window sizes were used to obtain the performance index
(360, 720, 1440). A window size of 1440 was finally chosen since further reduction in
the window size did not provide any additional information. The performance index
plot shows that the average index is about 0.3. From the performance index we can
conclude that there is a potential for improvement in the performance of the existing
control system. Therefore the next step is to identify the source of the problem and
ways to improve the performance of the controller.

Figure 4.6 shows the cross correlation between output error and the pre-whitened
disturbances. Disturbances have been pre-whitened with an appropriate filter so

that any cross correlation between the individual disturbances is removed. The plot
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Figure 4.6: Cross-correlation between output error and disturbances

indicates that all the disturbances have some effect on the output error. So all the
three disturbances have been taken into account for further analysis. A regression
model between the output error and the disturbances as given by equation(2.8) was
obtained. This can be used to perform analysis of variance on the data set.

Figure 4.7 shows the spectra of output error and different disturbances with con-
fidence intervals. Disturbances 1 and 2 do not have any periodicities associated with
them. There is some cycling in disturbance 3 which may cause oscillations in the out-
put error. But from previous analysis it was concluded that disturbance 3 does not
have a significant effect on the output error. Table 4.1 shows the results of analysis of
variance that was carried out to determine the contribution of the various disturbances
to the output variance. These results were obtained by analyzing the whole data set
(30000 data points). The contribution from disturbance 3 is about 0.4%(.035/.1201).
Unmeasured disturbances contribute 83%(.1005/.1201) to the overall variance. The

potential reduction in the output variance by retuning the existing feedback controller
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Figure 4.7: Column 1: Spectra of output and disturbances

is (.0651/.1201) = 54%. Feedforward control on disturbance 2 and 3 is not worth-
while. If further reduction in variance is warranted, retuning the feedback controller
is the best option.

Figure 4.8 shows the spectrum of output error with the desired output spectrum
and the minimum variance spectrum superimposed on the same plot. Since a unit
process delay was assumed, the minimum variance spectrum is nothing but a white
noise spectrum. The desired spectrum was estimated assuming a first order decay of
the output for disturbances given by equation (4.1). The output spectrum is better
than the desired spectrum in the low frequency range but has an oscillatory trend in
the mid frequency range. These oscillations make the output settle much slower than
the desired rates. The same can be seen in the autocorrelation plot in Figure 4.3
where the actual output autocorrelation is smaller than the desired autocorrelation
for smaller lags but oscillates at higher lags. From the analysis in chapter 3 it can be

concluded that the controller is slightly over-tuned with respect to the desired output
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Table 4.1: Analysis of variance on Column 1

MV FB/FF | Non opt.FB | Non opt.FF | Non opt.FB/FF | Total

a; .0354 .0651 - - .1005
b1 =0 - - .0072 .0073
b ~ 0 - - .0086 .0086
bes ~0 - - .0035 .0037
Total .0354 0651 - .0193 .1201

spectrum. To avoid the mid frequency oscillations the controller can be made more
conservative. Controller tuning also represents a trade off between performance and
robustness of the controller. Incorporating performance and robustness objectives
constitutes the next level in performance assessment. This stage of performance as-
sessment requires more knowledge and information about the process. A more general

performance measure based on LQ objective is discussed by Huang and Shah(1996).

4.2.3 Column 2

Three sets of response data have been provided for this column. A move suppression
term (a tuning parameter for the QDMC controller) was specified for each of the
data sets. The manipulated variable is the column reflux flow rate. Two measured
disturbance variables for each of the data sets are provided: column feed flow rate
(b1); and column feed temperature (b,5). There is no feedforward compensation
applied to this column. A move suppression factor of 8 was applied to data sets
1 and 2. A move suppression setting of 4 was applied to data set 3. So the main
objective is to determine which of the move suppression settings yields a more effective
performance with respect to the different types of disturbance and setpoint change
patterns. Figure 4.9 shows the output, setpoint trend and disturbance trends for data

set 1.
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Autocorrelation plots of the output error trends are compared with the desired
autocorrelation in Figure 4.10 for data set 1 and for data sets 2 and 3 in Figure 4.11
for each of the data sets. The autocorrelation pattern indicates that the controller
is not under minimum variance control since there are significant lags beyond the
process time delay d = 2. The desired autocorrelation plot was obtained by assuming
a first order decay for output error to disturbance upsets as given in equation (4.1).
The response time was set at 4 minutes. The plot indicates that the actual autocor-
relation of the output matches the specified autocorrelation for smaller time lags but
has a oscillatory trend for larger time lags. The specified settling time is about 15
minutes. The output error trend for all the data sets settles much slower than the
desired response. This may be due to cycling in the output error as observed in the
autocorrealtion function. Figure 4.12 shows the performance index for each of the

data sets with a moving window of size 1440 for each of the data sets.
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4 min, Sampling time = 1 min

Figures 4.13, 4.14 and 4.15 show the cross-correlation between the output error
and the pre-whitened disturbances for data sets 1, 2 and 3. For data set 1 as can
be seen from Figure 4.13, disturbance 2 appears to affect the output error more than
disturbance 1. This is also confirmed by analysis of variance. In data sets 2 and 3
both disturbance 1 and 2 have significant effect on the output error.

Figures 4.16, 4.17 and 4.18 show the spectra of output error and disturbance 2 for
all the data sets. The disturbance time-series data have been differenced wherever
necessary. This helps in removing the non-stationarity in the data and thus obtain a
better picture of any periodicities that may exist. It is interesting to note the spectral
plots of differenced disturbance 2 (data set 2 and 3, Figures 4.17 and 4.18). There
is a distinct cycling pattern. In Figure 4.17 the peaks in the spectra of output error
and disturbance 2 occur at the same frequency suggesting that the cycling in the

output error response is caused by disturbance 2. This certainly has an impact on
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the output error response and therefore one should expect some contribution to the
overall output variance from this disturbance. This can be seen in the analysis of
variance table for data set 2 where the contribution to the overall output variance is
around 40%. The cause of this is clearly due to the nature of the disturbance itself.
In contrast, disturbance 2 (data set 1) does not show any periodicity and contributes
very little to the overall output error. Data set 1 has the least contribution to the
output variance from measured disturbances. From the spectral plots, it appears that
the disturbance trends are very different from one another. Because of the difference
in the disturbance dynamics in each of the data sets, one cannot conclude clearly that
the first move suppression setting is the best. But it can be concluded that the existing
move suppression settings in data set 2 and 3 are not doing a good job of rejecting
the measured disturbances. The move suppression setting applied to data set 1 has

good performance with respect to setpoint and disturbance changes occurring at that
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time. Analysis of variance for each of the data sets is provided in Tables 4.2, 4.3
and 4.4 respectively. Since there are significant setpoint (b;3) changes, these setpoint
changes were treated as measured disturbances to evaluate their contribution to the
overall output variance.

Consider data set 1. The output error variance from analysis of variance is .2205
which differs from the actual output error variance which is .2239. This could be due
to errors in estimation of the fitted regression model between the output error and the
measured disturbances. The contribution from disturbance 1 and set point changes
is 2% and 5% respectively. The contribution from unmeasured disturbances to the
overall output variance is .1492 (66%) and the minimum variance contribution from
the unmeasured disturbances is .0564. By retuning the FB controller the maximum
reduction in the variance is (.0928)/.2205 = 42%. The contribution from disturbance
2 is .0547 (24%). The contribution due to the non optimality of the FB/FF controller
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Figure 4.16: Column 2, data set 1: Spectrum of output error and disturbance 2 (dif-

ferenced)
Table 4.2: Analysis of variance on Column 2 (data set 1)
MV FB/FF | Non opt.FB | Non opt.FF | Non opt.FB/FF | Total
a, .0564 .0928 - - .1492
be ~ 0 - .0001 .0050 .0051
bi2 =0 - .0002 0545 .0547
b3 .0022 - .0011 .0082 .0115
Total .0586 .0928 .0014 0677 .2205
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Table 4.3: Analysis of variance on Column 2 (data set 2)

MV FB/FF | Total | % contribution
a; .0634 .1463 38
bes ~0 0118 3
Be.o ~0 1549 40
be 3 ~0 | .0136 3.5
Total .0634 .3266 81.5
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Table 4.4: Analysis of variance on Column 2 (data set 3)

I MV FB/FF | Total | % contribution
a; .0852 .1878 49
bt ~0 0030 0.8
bea ~0 1692 44
bra ~0 0037 1
Total 0852 .3607 95
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which is represented as yt(b) in equation (2.10) was estimated as .05. An optimal
feedback controller can eliminate this contribution to the output variance as explained
in section 3. Although a feedforward controller can also eliminate this contribution,
there is marginal benefit in implementing a feedforward controller in this case; because
the majority of the contribution from disturbance 2 to the output variance is due to
the non optimality of FB/FF controller and by appropriately re-tuning the feedback
controller we can eliminate this contribution. Therefore the best strategy is to retune
the existing FB controller.

In data sets 2 and 3, disturbance 2 has some oscillatory trends associated with
it. This is also shown in the analysis of variance table for data sets 2 and 3. The
contribution from disturbance 2 to the overall output variance is about 40% and 44%
in data sets 2 and 3 respectively. These adverse oscillations can be eliminated at
source by a feedforward controller.

Figure 4.19 shows the actual output spectrum with the desired output spectrum
and the minimum variance spectrum for data set 1. The desired spectrum was ob-
tained the same way as explained for column 1. The controller setting seems to be
under-tuned relative to the minimum variance benchmark. The controller may have
been deliberately under-tuned to preserve robustness. If further reduction in variance
is desired the controller can be made slightly aggressive.

Figure 4.20 shows the actual output spectrum for data set 2 with minimum vari-
ance and desired output spectrum. In data set 2 the output spectrum is close to the
desired spectrum in the high frequency range but deviates from the desired spectrum
in the low frequency range. To decrease the output variance one can either re-tune
the existing feedback controller or implement a feedforward controller on disturbance
2 as discussed earlier.

For data set 3, as can be seen from Figure 4.21, even though the output spectrum
is close to the desired spectrum it deviates from the desired spectrum in the mid

frequency range. The frequency at which these oscillations occur is about 1.2 rad/sec
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Figure 4.19: Column 2, data set 1: Actual output spectrum with desired spectrum and

MV spectrum

and we observe from Figure 4.18 that disturbance 2 also has a peak at the same
frequency. So the benefit of implementing a feedforward controller on disturbance 2

is further strengthened in this case.

4.2.4 Column 3

The manipulated variable is the reboiler duty. Three measured disturbances trends
are supplied for consideration: column feed flow rate (b;;); column feed temperature
(b 2): and column reflux flow rate (b;3). Feed forward compensation is applied to
both the column feed flow rate (b, ;) and the column feed temperature (b, ). Figure
4.22 shows the output error trend.

An autocorrelation plot of the output error trend with the desired trend is shown
in Figure 4.23. Since there are significant lags beyond process delay d = 5, we can

conclude that the controller performance is far from minimum variance condition.
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Figure 4.20: Column 2, data set 2: Actual output spectrum with desired spectrum and
MYV spectrum

The desired output trend was obtained as given in equation (4.1) with the response
time set at 20 sampling intervals. The output settles in 150 minutes which is much
slower than the desired settling time of about 80 minutes. Figure 4.24 shows the
daily performance index over 8 weeks with each index representing 360 data points.
The wide variation in performance index indicates the possiblity of changing process
conditions or time variant phenomena. Figure 4.25 shows the performance index with
a sliding window of size 360. The indices are obtained as explained in the previous
sections.

Figure 4.26 shows the cross correlations between the output error and pre-whitened
disturbances. It is evident that all the disturbances 1 and 3 have some influence on
the output. Disturbance 2 has a feedforward controller implemented on it. Since
there is no significant correlation between disturbance 2 and output error it can be

concluded that the existing feedforward controller is doing a good job of rejecting this
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disturbance. A regression model was fit between the output error trend and the two
disturbance trends. Table 4.5 gives the results of analysis of variance performed for
this data set.

The actual output variance is 1.2604. Unmeasured disturbances contribute 88% to
the overall variance. Both measured disturbances contribute very little to the output
error variance. Therefore there is no incentive for retuning the existing feedforward
controllers. The best solution is therefore to retune the existing feedback controller.
The maximum reduction that could be achieved by retuning the feedback controller

is (1.1204 — .4244)/(1.2604) = 55%.

4.2.5 Concluding remarks

Contro! loop performance analysis has been performed on the three Shell distillation

columns. In the case of column 1, the existing feedback controller is doing a satisfac-
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Table 4.5: Analysis of variance on Column 3

MV FB/FF | Total | % Contribution
a; 4244 1.1204 88
b ~0 1130 9
bes ~0 0120 1
Total =~ 4244 1.2454 98
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Table 4.6: Comparison of performance for different controller Settings

Data Set | Move Suppression (A) | Var(e;) | Var(Au) | Index (n)
1 8 .2239 .0031 3773
2 8 .3829 0273 .3352
3 4 .3883 .0509 3317

tory job in meeting the process requirements. Any reduction in output variance could
be achieved by retuning the feedback controller. There is no benefit of implementing
feedforward control on disturbances 2 and 3.

Column 2 had three different control move suppression settings. Table 4.6 summa-
rizes the average perfomance indices for each of the move suppression settings. The
first move suppression provides the best compromise with respect to disturbance and
set point trends. Even though the performance index for the first move suppression
setting is only slightly higher than the other move suppression settings, data set 1 has
smaller output and input variance. Setpoint changes do not have a significant contri-
bution on the overall variance. In all cases disturbance 1 does not have a significant
effect on the output error variance. In data set 1, the unmeasured disturbances have
the greatest impact on the output error variability. Retuning the feedback controller
may lead to further reduction in output variance. In data sets 2 and 3, disturbance 2
has some periodicities associated with the output error. So a feedforward controller
may be useful to eliminate this disturbance.

Data from column 3 may have time variant phenomena associated with it. Except
for brief excursions between samples 500-1700, the performance index for this column
is about 0.6 which can be regarded as a very satisfactory performance level. The
drop in the performance index between samples 500-1700 may be due to disturbances
effecting the process. There is no incentive in retuning the existing feedforward con-
troller or applying feedforward control to any other measured disturbances. Feedback

controller re-tuning or re-designing is the best option in this column. Significant ef-
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forts should be focussed on identifying problems related to controller tuning from
routine operating data.

All the data sets have fairly complicated response patterns which could be due
to several factors such as the presence of nonlinearities or time varying disturbance
trends. Very high order whitening filters had to be used sometimes to pre-whiten
the data. The data sets consisted of data collected over 6-8 weeks. Traditional time
invariant performance assessment techniques posed a lot of problems in obtaining
accurate information about the processes. The disturbances were also time varying
in nature. A performance index based on a sliding window was used to minimize this
problem. This resulted in a performance index for every data point collected. But
getting the analysis of variance results for every data point poses a huge computational
burden. Recursive estimation of the performance index could lead to better results
for time varying processes. Spectral analysis on the output data for each of the data
sets complemented and further strengthened the conclusions obtained by time domain
performance analysis techniques. It is important to integrate both frequency and time
domain performance assessment techniques in industrial control loop performance

monitoring and assessment.

4.3 Cominco Industrial Case Study

4.3.1 Performance analysis

The second industrial example deals with the Cominco acid leach process. The main
objective of the leaching step is to dissolve zinc from dry calcine by addition of “return
acid”. Return acid is spent zinc electrolyte recycled from the cell house, and contains

H>S50, to facilitate the reaction
ZnO(Calcine) + H,SOy — ZnSO4 + H O
The acid wetting cone is a convenient location at which feeds from a number of
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Figure 4.27: Simplified schematic of the Cominco acid Leach process

sources are introduced. The setpoints of stage 1 and stage 2 pH are typically set
to 1.7 and 3.8 respectively. Tight control of stage 2 pH is of critical importance to
the acid leach process because it promotes the precipitation of crystalline goethite
particles, which settle well in the acid thickener tank following the later stages of acid
leaching. If the second stage pH is allowed to fall below 3.5, iron begins to precipitate
as ferric hvdroxide, which tends to carry through the thickener tanks and blinds the
filter cloths in cold stage purification. A simplified schematic diagram of the acid
leach process is shown in Figure 4.27. The control problem can be viewed as 2x2 i.e.
two manipulated variables and two controlled variables. Six potential feedforward
variables were provided for consideration. They are sum of recycle flow rates (ff1).
sum of stage 1 calcine mass flow rates (ff2), zinc pressure leach flow (ff3), oxide leach
plant fow (ff4), return acid to hot acid leach (f5) and acid thickener underflow to hot
acid leach (ff6). A multivariate controller has been implemented to control the pH

of stage 1 and stage 2. Stage 2 pH control is of critical importance and performance
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Figure 4.28: Stage 2: Controlled variable and manipulated variable

assessment of this loop is discussed first. Even though the existing control strategy is
multivariate in nature one can split this multivariate performance analysis into two
univariate performance assessment problems. For the stage 2-pH, the performance of
existing feedback controller is analyzed by taking the manipulated input from stage 1
as a measured disturbance. For stage 1-pH, traditional SISO performance assessment
will hold because there is only one way interaction. Figure 4.28 shows the process
output (pH measurement) and the manipulated variable for stage 2. Figure 4.29
shows the autocorrelation function of output error 1 and output error 2. The second
stage pH control is definitely not close to the minimum variance condition because
there are significant lags beyond the process delay d = 1.

The existing control system can be regarded as a triangular system i.e. there is
only one way interaction from stage 1 to stage 2. The manipulated variable in stage 1
affects stage 2 pH controller. A simple way to check if there is any interaction between

stage 1 manipulated variable and stage 2 output is to carry out a cross-correlation
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Figure 4.29: Autocorrelation function of stage 1 and stage 2 output error

test between output 2 and manipulated variable 1 as shown in Figure 4.30. It can be
observed that there is significant correlation between output error 2 and manipulated
variable 1. In the same figure it can also be seen that there is no correlation between
output error 1 and manipulated variable 2, as one would expect to be the case. This
interaction can be related to the performance of the multivariate controller being
implemented. If the multivariate controller is doing a good job then the interaction
between the manipulated variable 1 and stage 2 output should be minimal. Since
the level of interaction is significant it can be concluded that there is potential for
improvement in the performance of the existing multivariate controller.

Figure 4.31 shows the performance index of output 2 with a sliding window of size
500. The first performance index is calculated by using 500 data points and for every
subsequent point thereafter a performance index was obtained. The dash-dotted lines
represent the performance index with a moving window of size 500. The performance

index drops at sample number 516. This can also be verified by the time series plot
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Figure 4.31: Performance indez of stage 2 controller

of output 2 where there is a big fluctuation in the output at the same sample instant.
The average index is about .07 which suggests that there is a potential for improvment
in the performance of the existing controller. The next task would be to identify ways
of improving the performance of the existing control system, ¢.e. whether to re-tune
the existing controller or implement a feedforward controller on any of the measured
disturbances.

For this one needs to check which of the six feedfoward variables have significant
effect on the output error. A simple cross-correlation test was employed to carry out
this screening test. Figure 4.32 shows the cross-correlation between process output
and various measured disturbances. All the disturbances have been pre-whitened with
an appropriate filter. From Figure 4.32 it can be concluded that disturbance 2 and
4 have similar effect on the output error while the other disturbances have negligible
effect on the output error. So these two variables are taken into account in a detailed

analysis. The manipulated variable from stage 1 is not considered for analysis of vari-
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Figure 4.32: Cross-correlation between various disturbances and output error

ance because there is a ratio controller implemented between measured disturbance 2
and manipulated variable 1. Both of these variables are highly correlated and because
of this, the ANOVA analysis would give incorrect results. A solution to overcome this
problem is to perform a principal components analysis (Lakshminarayanan, 1997) on
this data set so that any highly correlated variables can be combined into one or more
independent or uncorrelated virtual variables that can efficiently represent the effect
of these process variables on stage 2 output.

Figure 4.33 shows the spectrum of output with the minimum variance spectrum.
The minimum variance spectrum was estimated on the assumption that the delay for
loop 2 is equal to one. The output spectrum is not close to the minimum variance
benchmark and deviates more so in the low frequency range. To increase the controller
performance in the low frequency region, integral action may be necessary or should be
increased if it already exists. Figure 4.34 shows the output spectrum and spectrum

of disturbance 2. It can be seen that disturbance 2 has a peak close to the same
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Figure 4.33: Actual output spectrum (stage 2) vs. minimum variance spectrum

frequency as the output error, suggesting that disturbance 2 has some unfavourable
oscillatory trends which also affects the output error. A feedforward controller can
be implemented to reduce these effects.

Table 4.7 provides the analysis of variance results for stage 2 output. The contri-
bution from unmeasured disturbances to the output variance is 70%. The unmeasured
disturbances represents the contribution from all the other sources which have not
been taken into account for analysis of variance. Some of this contribution can be
eliminated by re-tuning the existing feedback controller. Since the feedback controller
for stage 2 forms part of the overall multivariate controller for the whole process, this
suggests that the existing multivariate controller has to be re-tuned in order to re-
duce output variation. The contribution from disturbance 2 is 20%. A feedforward
controller can be used to eliminate this contribution to the output error. Improving
the performance index results in reduced output variance. For stage 2. the output

variance is .0076 and the average performance index is about .06. If we can just
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Figure 4.34: 1. Spectrum of output error (stage 2); 2. Spectrum of disturbance 2

achieve 66% increase in the performance index (equivalent to average index = .10)
of stage 2 controller, then a 40% reduction in the output variance can be achieved.
Table 4.8 provides the decrease in output variance that can be achieved by incresing

the performance of stage 2 controller (7 is the performance index).

Table 4.7: Analysis of variance (Stage 2 pH control)

Total | % Contribution
at .0053 70
bo |.0015 20
ba | .0004 5
Total | .0072 95
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Table 4.8: Effect of increase in performance on stage 2 output variance

n | % Increase in 77 | % Decrease in output variance | Output Variance
.06 - - .0076
.10 66 40 .0046
12 100 50 .0038
.18 200 66 .0026

4.3.2 Benefits analysis

For this case study, the benefit of reducing the output variance can be viewed in two
different ways. To illustrate the benefit of reducing the output variance, a process
output which is normally distributed but with a variance equal to the variance of
stage 2 output is simulated. In practice the output may not be normally distributed.
For a given variance the normally distributed output response represents the best
possible output trend without any sudden upsets in the process. Therefore this gives
one an idea of the best way a process can be operated for a given output variance.
Figure 4.35 shows the output of the simulated process with a variance of .0076. The
mean operating level is at a pH of 3.8. Now assume that the variance is reduced by
40% to .0046. This allows the operator to lower the typical set point from 3.8 to 3.7
and still ensure that the process does not violate the pH lower limit of 3.5, 999 times
out of 1000. Figure 4.35 shows the case when the mean setpoint is 3.8 vs the case
when the mean setpoint is 3.7. The process output is within the lower limit of 3.5 for
both cases but in the second case the process output has a reduced variance of .0046;
this allows the process setpoint to be reduced from 3.8 to 3.7. This is regarded as
a very conservative estimate of possible improvement. In practice significantly more
improvements may be achieved.

Another way of assessing the benefit of reduction in variance is to check how far

the process operating from the lower (undesired) pH level of 3.5. Assume that the
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setpoint is at 3.8 and the process has a variance of .0076. For simplicity assume the
process is normally distributed. Then 99.9% of the operating points will lie in the
range of [3.8 + 30] which means that the range of process operation is between 3.54
and 4.06. If the variance is reduced to .0046 the range of process operation changes to
[3.6,4]. Figure 4.36 shows the process operating conditions when the output variance
is .0076 and when the output variance is reduced to .0046. Consider a hypothetical
safety margin defined by the distance between the typical process operating conditions
and the lower limit of 3.5. We can see that this margin of safety increases as the
variance of the output decreases. This mode of operation allows a larger “cushion-
zone” between desired setpoints and the lower limit of 3.5. This in turn will lead
to reduced Ferric hydroxide precipitation (a pH level of 3.5 causes undesirable ferric
hydroxide to form) and ensures smooth operation of downstream processes such as
cold stage purification. Again this is a very conservative estimate of the benefits
possible with improved feedback control. Effectively this translates into an economic
benefit.

The above two benefit analysis complement each other. If the reduction in the
mean operating level translates to efficient use of raw materials then efforts should
be directed to reduce the output variance so that the mean setpoint can be reduced
as illustrated. If the reduction in the mean operating level does not yield significant
benefits then the economic benefit of operating the process as far away from the lower
undesirable pH value of 3.5 should be explored.

The performance analysis of stage 1 is discussed next. The autocorrelation plot
of output error 1 shown in Figure 4.28 indicates that the performance of the stage 1
controller is far away from minimum variance since there are no significant lags beyond
the stage 2 loop delay = 2 . Figure 4.37 shows the performance index with a sliding
window size of 500. The indices are obtained in a similar fashion as explained for
stage 2 performance. The mean performance index is about 0.15. This suggests that

there is potential in improving the performance of existing controller. The feedback
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Figure 4.36: Simulated process operating conditions with different output variances
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Figure 4.37: Performance indez for stage 1 controller

controller in stage 1 also forms a part of the multivariate controller. This re-confirms
that the existing multivariate controller is not doing a good job in reducing the output
variance of stage 1 and stage 2 outputs.

Figure 4.38 shows the cross-correlation between stage 1 output and the various
disturbances. Disturbances 2 and 4 affect the output error significantly compared
to other disturbances. So these two disturbances are taken into account for further
analysis.

Table 4.9 shows the analysis of variance for stage 1 output. The most significant
contribution is from the unmeasured disturbances which is around 97%. This contri-
bution can be eliminated to a certain extent by re-tuning or re-designing the existing
stage 1 feedback controller. Some remarks on the above analysis are in order. The
measured disturbances are highly correlated with one another and also the driving
forces for each of the measured disturbances (b;;) and unmeasured disturbances (a;)

were not totally independent of one another. So there may be inflation in the contribu-
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Figure 4.38: Cross-correlation between different disturbances and stage 1 output

Table 4.9: Analysis of variance (Stage 1 pH control)

Total | % Contribution
ay .0030 97
beo | .0002 7
bea | .0001 3
Total | .0033 107

86



L

el

SO UEIATHEH S P R E LT R Ry 4 AR

Fofem s gen w'no

ot ST T TN R RTINS T e ATy

tion of output variances from each of the disturbances. The analysis was also difficult
because pH systems are inherently non-linear in nature and this further complicated
the data analysis. In addition more insight into the control strategy employed in the
actual plant would help in understanding the strong correlation observed between

different process variables.

4.3.3 Principal components analysis

The analysis of variance poses a lot of problems when the measured disturbances are
highly correlated with one another. One of the main assumptions in performing the
analysis of variance is the independence of the driving signals to the unmeasured dis-
turbances and measured disturbances. If this assumption is invalid, then one may not
be able to obtain reliable results. Instead of dealing with the measured disturbances
individually, one can use principal components analysis (PCA) to compress these
correlated variables into fewer independent latent variables. These latent variables
are an optimal linear combination of the original variables and can explain most of
the variance in the original process variables and are orthogonal to each other i.e.
uncorrelated with each other. A detailed discussion on principal components analysis
can be found in Lakshminarayanan (1997).

For stage 2 pH control there are six potential feedforward variables. In addition.
the manipulated variable from stage 1 can be regarded as a measured disturbance
for stage 2 as explained earlier. Of these seven measured disturbances only four
were found to have some effect on the output. These four variables were therefore
used for principle components analysis and reduced to two latent variables. Figure
4.39 shows the loadings plot between principle components 1 and 2. The loadings
plot gives an idea as to which of the variables are correlated with one another. The
variables which are correlated with one another tend to cluster together. It can be

seen that manipulated variable ! and feedforward variable 2 are strongly correlated.
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Figure 4.39: Loadings plot

Similarly measured disturbances 3 and 4 are correlated with one another. The two
latent variables were used for carrying out analysis of variance. The procedure for
analysis of variance is s1m1lar to that described in earlier sections except that now
the latent variables are used instead of the original variables. Table 4.10 gives the
contribution from the two latent variables (denoted as Lvl and Lv2) to the output
variance. By implementing feedforward control of latent variable 1, one can eliminate
most of the contribution to the output due to this latent variable.

The main advantage with the above analysis is that one deals with latent variables
which are independent of each other and are also an optimal combination of the mea-
sured disturbances. So the assumption that the driving forces between unmeasured

disturbances (a;) and measured disturbances (b;) is easily satisfied.
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Table 4.10: Analysis of variance using PCA (Stage 2 pH control)

Total | % Contribution
a; .0049 64.5
Lvl | .0027 35.5
Lv2 | .0006 7.0
Total | .0082 107

4.3.4 Concluding Remarks

Performance analysis was carried out on two pH control loops associated with the
Cominco zinc acid leach process. The performance of the existing multivariate con-
troller is far from satisfactory and significantly away from minimum variance condi-
tion. There is significant potential for improvement by re-tuning or re-designing the
multivariate controller. From the spectral analysis of the output data it can be con-
cluded that the controller is under-tuned relative to the MV benchmark. To improve
controller performance, the controller can be made more aggressive by increasing in-
tegral action and/or the proportional gain. The benefits of improved performance
for this process include reduction in mean operating levels and operating the process

significantly far away from the lower pH limit of 3.5 which can translate into economic
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benefit.
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Chapter 5

Conclusions

Control loop performance assessment shoud be regarded as an integral part of a
control system in any chemical process industry. The key idea behind performance
assessment is to use routine operating data to obtain information about the ‘health’
of the control system. The minimum variance benchmark represents the absolute
lower bound beyond which one cannot reduce the output variance. In Chapter 2, the
performance assessment of feedback and feedforward control loops using a minimum
variance benchmark and analysis of variance was discussed. Once it is determined
that the existing controller is not performing satisfactorily with respect to the desired
benchmark it is then necessary to carry out controller diagnosis to improve overall
performance. One way is to re-tune the existing controller. Thus controller tuning is
an integral part of performance assessment. In Chapter 3, spectral techniques are used
to evaluate how well the existing controller is tuned with respect to minimum variance
benchmark. Spectral analysis of routine closed loop data allows one to determine if
a controller is over-tuned or under-tuned with respect to a benchmark spectrum.
In Chapter 4, the application of the above performance assessment techniques were

evaluated on two industrial data sets.
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5.1 Contributions of this thesis

The main contributions of this thesis are:

e Feedback and feedforward performance assessment techniques were extensively

evaluated on pilot-scale processes.

e A laboratory scale performance assessment system was developed using Lab-
VIEW/Matlab integration platform with Dynamic Data Fzchange (DDE). The
program collects routine closed loop data and provides the user with on-line
performance index and monitors process variables using a univariate Shewart
chart. The details of the above performance assessment system are provided in
Appendix B.

e Controller tuning problem for single input single output processes was addressed
through spectral analysis of routine closed loop data. The technique developed
provides the user with information on whether the controller is over-tuned or

under-tuned and recommend necessary steps for performance improvement.

e The techniques for the analysis of controller tuning problem were extended to
a practical user-defined benchmark such as settling time, desired closed loop

constant etc. instead of the minimum variance benchmark.

e The use of spectral techniques in performance assessment was demonstrated by

experimental application to computer-interfaced pilot-scale processes.

e Control loop performance assessment was also evaluated on two industrial closed

loop data sets from Shell USA and Cominco Inc.

e Principal components analysis was used to carry out analysis of variance on the

Cominco industrial data set which had highly correlated measured disturbances.
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5.2 Future Work

e Measured disturbances are sometimes highly correlated and carrying out analy-
sis of variance often poses many difficulties. One way of tackling this problem
would be to use Vector AutoRegressive Moving (VARMA) models and then
carry out multivariate regression analysis. Another way would be to combine
some of these highly correlated variables into latent variables through princi-
pal components analysis and then carry out performance assessment with these

latent variables.

o Feedforward controller tuning also forms an important part of the overall per-
formance assessment tool and should be examined with respect to minimum

variance feedforward control.

e Performance degradation of the existing control system can be due to either
controller related problems or process related problems. Process related prob-
lems include poor equipment selection, valve stiction etc. These problems make
the process non-linear and traditional performance assessment techniques may
not give reliable results. Spectral techniques such as coherency analysis can
be used to detect some of these non-linearities. The problem is more involved

because one has to deal with closed loop data.

e Fault detection and integration of fault diagnosis and performance assessment

would be a logical complement to the techniques discussed in this thesis.

o Industrial data usually is time-variant in nature. Performance assessment tech-
niques that take into account these time-varying phenomena would have great

industrial appeal.
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Appendix A

Steps Involved In Performance

Assessment

The various steps involved in performance assessment are shown in Figures A.l-
A.3. The first step involved in performance assessment is to screen the closed loop
data by removing outliers and mean centering the data. The next step would be to
verify if the performance of the existing controller is satisfactory with respect to the
desired benchmark. This benchmark could be minimum variance benchmark or user
defined benchmark. If the control loop performance is not satisfactory, one needs
to determine whether the poor performance is due to controller related or process
related problems. Process related problems may include poor equipment selection.
sensor/actuator problems etc. Figures A.2 and A.3 detail the various steps involved

if the performance degradation is due to controller related problems.
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Figure A.1: Steps involved in Performance Assessment (I)




bttt i s JEE LTI RN R el

Already
existing FF

performance

Diagnose FF & FB control

Is the effect
of dt oft
significant

Is the controlle
under MV
control?

No variance
reduction by tuning
FB controller

4
Retune FF Screen the variables which| FF | Cslz:alllne%::lecontrol
controller may have significant [ Applv EF
effect on output variance PPy

Figure A.2: Steps involved in Performance Assessment (II)

93




PR i € AL R LY

F L O R N A A B

ATy mapa T,

Get the contribution of
various sources of variance

—1 Apply FF

Is FB tuning
necessary

Poor performance
due to input constraints
or robustness issues
in the design

Reiterate steps

—> until satisfied

Re-tune FB
controller

ey

A

Reiterate steps
until satisfied

Figure A.3: Steps involved in Performance Assessment (III)

99




Appendix B

Laboratory Scale Performance

Monitoring Using LabVIEW

B.1 Introduction

The main objective in developing this laboratory scale performance monitoring system
was to utilize the latest advances in systems integration. A new trend has emerged
in the field of systems integration that considerably simplifies the job of the systems
integrator, and allows for a lot of flexibility. This trend is towards the establishment
of communication interfaces between application programs which may be written
on different platforms and may be run on different computers. This new approach
has been brought to the PC world by Microsoft’s Windows API (Application Pro-
grammers Interface). The performance assessment system developed uses Matlab for
carrying out the control algorithms and LabVIEW for real-time data acquistion, im-
plementation of the control signals on the process and a LabVIEW MMI or front-end
for user interaction. Matlab is extremely useful in developing control algorithms in
a relatively straightforward fashion. LabVIEW allows reliable data acquistion in a

real-time environment. In effect the performance monitoring system developed here
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tries to combine the useful features both of these two platforms.

B.2 System configuration

The main software packages used in the development of this system are Matlab 4.2.c1
and LabVIEW 4.0. The DAQ hardware mainly consisted of OPTO22 - Optomux
boards. The program was operating under Windows 3.1 operating system environ-
ment (The system developed is also fully compatible with the latest Windows 95
operating system). LabVIEW 4.0 provides a suite of four communication protocol
VI (virtual instruments) libraries: DDE (Dynamic Data Exchange), OLE (Object
Linking and Embedding), UDP (User Datagram Protocol) and TCP/IP (Transmis-
sion Control Protocol/Internet Protocol). The system developed for this particular
application uses the DDE protocol in a client (LabVIEW) - server (Matlab) mode.
DDE is a client-controlled data passing protocol, which can be used to write, request
and execute string commands in another windows application that is running either
on the same or on a different computer. Since LabVIEW 4.0 and Matlab 4.2.cl are
DDE-enabled, a DDE conversation can be opened between the two applications, and
the DDE read, write, and execute commands can be implemented in real-time. This
code also uses VI's in OPTO22 libraries (OPTO022.1lb, OPTO22S.1lb) to read data
from the sensors and write data to the final control elements such as valves. The code
has four case structures (details about case structures can be found in the LabVIEW

users manual)

e Case 0: Open DDE conversation
e Case 1: Initialize the OPTO22 board at Optumux address FF (255)

e Case 2: Configure the channels of the Optomux board for Read or Write
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e Case 3: Perform read/write operations from/to Opto22, and request/execute

operations from/to Matlab.

B.3 Main features

The main features of the monitoring system are as follows:
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. Data acquistion is possible on as many as four input variables and three output

variables (data acquistion is limited by the existing hardware setup).

. The system provides the user with a matlab command window where the control

algorithm can be implemented.

. Simple univariate shewart chart is displayed for any or all of the process variables

with an option for number of data points to be used for calculating the sample

statistics.

. Univariate performance index is displayed for the controller being implemented

with a sliding window whose size is fixed by the user.

. The front panel created using LabVIEW allows the user to dynamically change

the controller tuning parameters, sampling time etc. (see Figure B.1)

. The code is extremely portable and can be used for different pilot-scale processes

with appropriate changes in the input/output configurations.

. Each tank in the experimental setup is a double-walled glass tank 50 cm high

with an inside diameter of 14.5 cm The nominal operating conditions are as
follows: a) The steady state value of the stem position of the control valve is
50%. b). The steady state value of the water level in the tank is 40% of the
actual tank height.
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The performance index was obtained using the methods described in chapter 2.
The sample statistics such as mean, standard deviation were calculated using inbuilt

LabVIEW VT’s (Virtual Instruments).
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Control Loop Performance Audit

Main Statistics

Loop Tag: AC 3251 Data Sample size: 1970
Loop Delay: 1 Sample date : Jan 17 - 18, 1997
Average Performance Index: 0.06

Performance Index
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Analysis
o
1. Controller is far away from minimum
w0 ? variance condition
] Actal ourgne
m 3 3 3 .
o 2. There is significant potential for
} improvement by re-tuning or
o L re-designing the multivariate
] o controller
10 *
10 o o o 10 3. Controller is under-tuned
relative to the MV benchmark
Recommendations

Make the controller more effective/aggressive by increasing integral
action and/or the overall proportional gain

Benefits

1. Should lead to reduction in mean operating levels

2. Allows the process to operate significantly far away from the lower pH limit
of 3.5 or close to the limit due to reduced variance thus saving operation costs
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